Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Disposition Services, LLC - NCO-2010-01 Uranium Disposition Services, LLC - NCO-2010-01 Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 March 26, 2010 Consent Order issued to Uranium Disposition Services, LLC related to Construction Deficiencies at the DUF6 Conversion Buildings at the Portsmouth and Paducah Gaseous Diffusion Plants The Office of Health, Safety and Security's Office of Enforcement has completed its investigation into the facts and circumstances associated with construction deficiencies at the DUF6 Conversion Buildings located at the Portsmouth and Paducah Gaseous Diffusion Plants. The investigation reports, dated January 22, 2009, and April 23, 2009, were provided to Uranium Disposition Services, LLC (DDS), and addressed specific areas of potential noncompliance with DOE nuclear safety requirements established in

2

Uranium Downblending and Disposition Project Technology Readiness...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium...

3

Uranium Downblending and Disposition Project Technology Readiness...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simulated Operational Environment Environment that uses a range of waste simulants for testing of a virtual prototype. iv 233 Uranium Downblending and Disposition Project...

4

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

5

Disposition of Surplus Highly Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

@ @ Printed with soy ink on recycled paper. ,, ,, This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors horn the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; telephone (423) 576-8401 for prices, Available to the public from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Copies of this document are available (while supplies last) upon written request to: Office of Fissile Materials Disposition, MD-4 ' Forrestal Building United States Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Department of Energy Washington, DC 20585 June 1996 Dear hterested Party: The Disposition of Surplus Highly Enriched Uranium Final Environmental Impact Statemnt is enclosed for your information. This document has been prepared in accordance

6

Surplus Highly Enriched Uranium Disposition Program plan  

SciTech Connect

The purpose of this document is to provide upper level guidance for the program that will downblend surplus highly enriched uranium for use as commercial nuclear reactor fuel or low-level radioactive waste. The intent of this document is to outline the overall mission and program objectives. The document is also intended to provide a general basis for integration of disposition efforts among all applicable sites. This plan provides background information, establishes the scope of disposition activities, provides an approach to the mission and objectives, identifies programmatic assumptions, defines major roles, provides summary level schedules and milestones, and addresses budget requirements.

1996-10-01T23:59:59.000Z

7

The ultimate disposition of depleted uranium  

SciTech Connect

Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

Not Available

1990-12-01T23:59:59.000Z

8

Disposition of Surplus Highly Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . ------- .--- --. ---- DOE/EIS-0240 I United States Department of Energy I For Further Information Contact: U.S. Department of Energy Otice of Fissile Materials Disposition, 1000 Independence Ave., SW, Washington, D.C. 20585 1 I ---- I I . I I I I This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; telephone (423) 576-8401 for prices. Available to the public from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Copies of this document are available (while supplies last) upon written request to: I Office of Fissile Materials Disposition, MD-4 Forrestal Building United States Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 , @ Printed with soy ink on recycled paper. -_. - COVERS~ET

9

Disposition of Surplus Highly Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0240-S EIS-0240-S For Further Information Contact: U.S. Departmel>t of Energy Office of Fissile Materials Disposition, 1000 Independence Ave., SW, Washington, D.C. 20585 . This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; telephone (423) 576-8401 for prices, Available to the public from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161. Copies of this document are available (while supplies last) upon written request to: Office of Fissile Materials Disposition, MD-4 Forrestal Building United States Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 @ Printed with soy ink on recycled paper. .__- -. @ .: Depafimmt of Energy . i i~t " Wastin@on, DC 20585 June 1996 Dear hterested

10

EA-1290: Disposition of Russian Federation Titled Natural Uranium |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

290: Disposition of Russian Federation Titled Natural Uranium 290: Disposition of Russian Federation Titled Natural Uranium EA-1290: Disposition of Russian Federation Titled Natural Uranium SUMMARY This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United States to the Russian Federation. This amount of uranium is equivalent to 13,3000 metric tons of UF6. The EA also examines the impacts of this action on the global commons. Transfer of natural UF6 to the Russian Federation is part of a joint U.S./Russian program to dispose of highly enriched uranium (HEU) from dismantled Russian nuclear weapons. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD

11

Highly enriched uranium (HEU) storage and disposition program plan  

SciTech Connect

Recent changes in international relations and other changes in national priorities have profoundly affected the management of weapons-usable fissile materials within the United States (US). The nuclear weapon stockpile reductions agreed to by the US and Russia have reduced the national security requirements for these fissile materials. National policies outlined by the US President seek to prevent the accumulation of nuclear weapon stockpiles of plutonium (Pu) and HEU, and to ensure that these materials are subjected to the highest standards of safety, security and international accountability. The purpose of the Highly Enriched Uranium (HEU) Storage and Disposition Program Plan is to define and establish a planned approach for storage of all HEU and disposition of surplus HEU in support of the US Department of Energy (DOE) Fissile Material Disposition Program. Elements Of this Plan, which are specific to HEU storage and disposition, include program requirements, roles and responsibilities, program activities (action plans), milestone schedules, and deliverables.

Arms, W.M.; Everitt, D.A.; O`Dell, C.L.

1995-01-01T23:59:59.000Z

12

EIS-0240: Disposition of Surplus Highly Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE))

The Department proposes to eliminate the proliferation threat of surplus highly enriched uranium (HEU) by blending it down to low enriched uranium (LEU), which is not weapons-usable. The EIS assesses the disposition of a nominal 200 metric tons of surplus HEU. The Preferred Alternative is, where practical, to blend the material for use as LEU and use overtime, in commercial nuclear reactor field to recover its economic value. Material that cannot be economically recovered would be blended to LEU for disposal as low-level radioactive waste.

13

Unallocated Off-Specification Highly Enriched Uranium: Recommendations for Disposition  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has made significant progress with regard to disposition planning for 174 metric tons (MTU) of surplus Highly Enriched Uranium (HEU). Approximately 55 MTU of this 174 MTU are ''offspec'' HEU. (''Off-spec'' signifies that the isotopic or chemical content of the material does not meet the American Society for Testing and Materials standards for commercial nuclear reactor fuel.) Approximately 33 of the 55 MTU have been allocated to off-spec commercial reactor fuel per an Interagency Agreement between DOE and the Tennessee Valley Authority (1). To determine disposition plans for the remaining {approx}22 MTU, the DOE National Nuclear Security Administration (NNSA) Office of Fissile Materials Disposition (OFMD) and the DOE Office of Environmental Management (EM) co-sponsored this technical study. This paper represents a synopsis of the formal technical report (NNSA/NN-0014). The {approx} 22 MTU of off-spec HEU inventory in this study were divided into two main groupings: one grouping with plutonium (Pu) contamination and one grouping without plutonium. This study identified and evaluated 26 potential paths for the disposition of this HEU using proven decision analysis tools. This selection process resulted in recommended and alternative disposition paths for each group of HEU. The evaluation and selection of these paths considered criteria such as technical maturity, programmatic issues, cost, schedule, and environment, safety and health compliance. The primary recommendations from the analysis are comprised of 7 different disposition paths. The study recommendations will serve as a technical basis for subsequent programmatic decisions as disposition of this HEU moves into the implementation phase.

Bridges, D. N.; Boeke, S. G.; Tousley, D. R.; Bickford, W.; Goergen, C.; Williams, W.; Hassler, M.; Nelson, T.; Keck, R.; Arbital, J.

2002-02-27T23:59:59.000Z

14

Highly Enriched Uranium Disposition | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

the United States Senate Committee on Armed Services Sep 17, 2013 NNSA, Republic of Korea Ministry Agree to Minimize Use of HEU in Nuclear Reactors Sep 3, 2013 NNSA Conducts...

15

Summary - Uranium233 Downblending and Disposition Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Product Product EM wa in Buil to extr from 23 downb mitigat concer dispos downb WIPP condu the "ba allowin assess techno The as Techn Techn * An * C (T * Pr * O The Ele Site: O roject: 2 P Report Date: S ited States 233 Ura Why DOE t Packaging Syste as directed to t ding 3019 at O ract 229 Th (an is 33 U. The missi blend the inven te security and rns and prepar sal. The projec blended materia or the Nevada cted to coincid ack-end" of the ng observation sment team to ology maturity p What th ssessment team ology Element ology Readine nalytical Labor oncentration p TRL=4) roduct Packag ffgas Treatmen To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Oak Ridge/OR 233 Uranium Do Project September 20 Departmen anium D E-EM Did This em and Interfaces ake ownership Oak Ridge that sotope used in

16

Disposition of excess highly enriched uranium status and update  

SciTech Connect

This paper presents the status of the US DOE program charged with the disposition of excess highly enriched uranium (HEU). Approximately 174 metric tonnes of HEU, with varying assays above 20 percent, has been declared excess from US nuclear weapons. A progress report on the identification and characterization of specific batches of excess HEU is provided, and plans for processing it into commercial nuclear fuel or low-level radioactive waste are described. The resultant quantities of low enriched fuel material expected from processing are given, as well as the estimated schedule for introducing the material into the commercial reactor fuel market. 2 figs., 3 tabs.

Williams, C.K. III; Arbital, J.G.

1997-09-01T23:59:59.000Z

17

Barriers and Issues Related to Achieving Final Disposition of Depleted Uranium  

Science Conference Proceedings (OSTI)

Approximately 750,000 metric tons (MT) of surplus depleted uranium (DU) in various chemical forms are stored at several Department of Energy (DOE) sites throughout the United States. Most of the DU is in the form of DU hexafluoride (DUF6) that resulted from uranium enrichment operations over the last several decades. DOE plans to convert the DUF6 to ''a more stable form'' that could be any one or combination of DU tetrafluoride (DUF4 or green salt), DU oxide (DUO3, DUO2, or DU3O8), or metal depending on the final disposition chosen for any given quantity. Barriers to final disposition of this material have existed historically and some continue today. Currently, the barriers are more related to finding uses for this material versus disposing as waste. Even though actions are beginning to convert the DUF6, ''final'' disposition of the converted material has yet to be decided. Unless beneficial uses can be implemented, DOE plans to dispose of this material as waste. This expresses the main barrier to DU disposition; DOE's strategy is to dispose unless uses can be found while the strategy should be only dispose as a last resort and make every effort to find uses. To date, only minimal research programs are underway to attempt to develop non-fuel uses for this material. Other issues requiring resolution before these inventories can reach final disposition (uses or disposal) include characterization, disposal of large quantities, storage (current and future), and treatment options. Until final disposition is accomplished, these inventories must be managed in a safe and environmentally sound manner; however, this is becoming more difficult as materials and facilities age. The most noteworthy final disposition technical issues include the development of reuse and treatment options.

Gillas, D. L.; Chambers, B. K.

2002-02-26T23:59:59.000Z

18

DOE/EIS-0240-SA-1: Supplement Analysis for the Disposition of Surplus Highly Enriched Uranium (October 2007)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0-SA1 0-SA1 SUPPLEMENT ANALYSIS DISPOSITION OF SURPLUS HIGHLY ENRICHED URANIUM October 2007 U.S. Department of Energy National Nuclear Security Administration Office of Fissile Materials Disposition Washington, D.C. i TABLE OF CONTENTS 1.0 Introduction and Purpose .................................................................................................................1 2.0 Background......................................................................................................................................1 2.1 Scope of the HEU EIS............................................................................................................ 2 2.2 Status of Surplus HEU Disposition Activities .......................................................................

19

DOE/EA-1607: Final Environmental Assessment for Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium (June 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

μCi/cc microcuries per cubic centimeter μCi/cc microcuries per cubic centimeter MAP mitigation action plan MEI maximally exposed individual mg/kg milligrams per kilogram mrem millirem mSv millisievert MT metric ton MTCA Model Toxics Control Act MTU metric tons of uranium N/A not applicable Final Environmental Assessment: Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium vi NAAQS National Ambient Air Quality Standards NEF National Enrichment Facility NEPA National Environmental Policy Act NRC U.S. Nuclear Regulatory Commission NU natural uranium NUF 6 natural uranium hexafluoride pCi/g picocuries per gram PEIS programmatic environmental impact statement PM 2.5 particulate matter with a diameter of 2.5 microns or less PM 10 particulate matter with a diameter of 10 microns or less

20

University Loaned Normal Uranium Slug Disposition Study: University survey responses. Predecisional draft  

SciTech Connect

During the 1950`s and 1960`s, the Atomic Energy Commission loaned rejected natural uranium slugs from the Savannah River Site to United States universities for use in subcritical assemblies. Currently, there are sixty-two universities holding 91,798 slugs, containing about 167 metric tons of natural uranium. It was originally planned that the universities would return the material to Fernald when they no longer required it. Fernald has not received slugs since it was shut down in 1988. The Department of Energy`s Office of Weapons and Materials Planning requested that the Planning Support Group develop information to assist them in facilitating the return of the unwanted slugs to one or more of their facilities and develop alternatives for the ultimate disposition of this material. This supplemental report to the University Loaned Normal Uranium Slug Disposition Study documents responses to and summarizes the results of a survey of fifty-eight universities. University contacts and survey responses covering loaned slug descriptions, historical information, radiological data, current status, and plans and schedules are documented.

Becker, G.W. Jr.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)  

Science Conference Proceedings (OSTI)

Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

Barber, James; Buckley, James

2003-02-23T23:59:59.000Z

22

Remote Handling Devices for Disposition of Enriched Uranium Reactor Fuel Using Melt-Dilute Process  

SciTech Connect

Remote handling equipment is required to achieve the processing of highly radioactive, post reactor, fuel for the melt-dilute process, which will convert high enrichment uranium fuel elements into lower enrichment forms for subsequent disposal. The melt-dilute process combines highly radioactive enriched uranium fuel elements with deleted uranium and aluminum for inductive melting and inductive stirring steps that produce a stable aluminum/uranium ingot of low enrichment.

Heckendorn, F.M.

2001-01-03T23:59:59.000Z

23

The U.S. relies on foreign uranium, enrichment services to fuel ...  

U.S. Energy Information Administration (EIA)

The U.S. relies on foreign uranium, enrichment services to fuel its nuclear power plants. Source: U.S. Energy Information Administration, Uranium Marketing Annual Report.

24

INFORMATION: Management Alert on Environmental Management's Select Strategy for Disposition of Savannah River Site Depleted Uranium Oxides  

SciTech Connect

The Administration and the Congress, through policy statements and passage of the American Recovery and Reinvestment Act of 2009 (Recovery Act), have signaled that they hope that proactive actions by agency Inspectors General will help ensure that Federal Recovery Act activities are transparent, effective and efficient. In that context, the purpose of this management alert is to share with you concerns that have been raised to the Office of Inspector General regarding the planned disposition of the Savannah River Site's (SRS) inventory of Depleted Uranium (DU) oxides. This inventory, generated as a by-product of the nuclear weapons production process and amounting to approximately 15,600 drums of DU oxides, has been stored at SRS for decades. A Department source we deem reliable and credible recently came to the Office of Inspector General expressing concern that imminent actions are planned that may not provide for the most cost effective disposition of these materials. During April 2009, the Department chose to use funds provided under the Recovery Act to accelerate final disposition of the SRS inventory of DU oxides. After coordination with State of Utah regulators, elected officials and the U.S. Nuclear Regulatory Commission, the Department initiated a campaign to ship the material to a facility operated by EnergySolutions in Clive, Utah. Although one shipment of a portion of the material has already been sent to the EnergySolutions facility, the majority of the product remains at SRS. As had been planned, both for the shipment already made and those planned in the near term, the EnergySolutions facility was to have been the final disposal location for the material. Recently, a member of Congress and various Utah State officials raised questions regarding the radioactive and other constituents present in the DU oxides to be disposed of at the Clive, Utah, facility. These concerns revolved around the characterization of the material and its acceptability under existing licensing criteria. As a consequence, the Governor of Utah met with Department officials to voice concerns regarding further shipments of the material and to seek return of the initial shipment of DU oxides to SRS. Utah's objections and the Department's agreement to accede to the State's demands effectively prohibit the transfer of the remaining material from South Carolina to Utah. In response, the Department evaluated its options and issued a draft decision paper on March 1, 2010, which outlined an alternative for temporary storage until the final disposition issue could be resolved. Under the terms of the proposed option, the remaining shipments from SRS are to be sent on an interim basis to a facility owned by Waste Control Specialists (WCS) in Andrews, Texas. Clearly, this choice carries with it a number of significant logistical burdens, including substantial additional costs for, among several items, repackaging at SRS, transportation to Texas, storage at the interim site, and, repackaging and transportation to the yet-to-be-determined final disposition point. The Department source expressed the concern that the proposal to store the material on an interim basis in Texas was inefficient and unnecessary, asserting: (1) that the materials could remain at SRS until a final disposition path is identified, and that this could be done safely, securely and cost effectively; and, (2) that the nature of the material was not subject to existing compliance agreements with the State of South Carolina, suggesting the viability of keeping the material in storage at SRS until a permanent disposal site is definitively established. We noted that, while the Department's decision paper referred to 'numerous project and programmatic factors that make it impractical to retain the remaining inventory at Savannah River,' it did not outline the specific issues involved nor did it provide any substantive economic or environmental analysis supporting the need for the planned interim storage action. The only apparent driver in this case was a Recovery Act-related goal esta

None

2010-04-01T23:59:59.000Z

25

Disposition of highly enriched uranium obtained from the Republic of Kazakhstan. Environmental assessment  

Science Conference Proceedings (OSTI)

This EA assesses the potential environmental impacts associated with DOE`s proposal to transport 600 kg of Kazakhstand-origin HEU from Y-12 to a blending site (B&W Lynchburg or NFS Erwin), transport low-enriched UF6 blending stock from a gaseous diffusion plant to GE Wilmington and U oxide blending stock to the blending site, blending the HEU and uranium oxide blending stock to produce LEU in the form of uranyl nitrate, and transport the uranyl nitrate from the blending site to USEC Portsmouth.

NONE

1995-05-01T23:59:59.000Z

26

DOE/EA-1651: FINDING OF NO SIGNIFICANT IMPACT Uranium-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (01/13/10)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has completed the Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory [DOE/EA-1651]. This environmental assessment (EA) evaluates the impacts of planned activities to modify selected Oak Ridge National Laboratory (ORNL) facilities; process the ORNL inventory of uranium-233 (U-233); and transport the processed material to a long-term disposal facility. Small quantities of similar material currently stored at other DOE sites may also be included in this initiative. The

27

Fissile Materials Disposition | National Nuclear Security Administrati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Disposition Since the end of the Cold War, significant quantities of plutonium and highly enriched uranium have become surplus to the defense needs of both the...

28

Weapons-grade plutonium dispositioning. Volume 3: A new reactor concept without uranium or thorium for burning weapons-grade plutonium  

Science Conference Proceedings (OSTI)

The National Academy of Sciences (NAS) requested that the Idaho National Engineering Laboratory (INEL) examine concepts that focus only on the destruction of 50,000 kg of weapons-grade plutonium. A concept has been developed by the INEL for a low-temperature, low-pressure, low-power density, low-coolant-flow-rate light water reactor that destroys plutonium quickly without using uranium or thorium. This concept is very safe and could be designed, constructed, and operated in a reasonable time frame. This concept does not produce electricity. Not considering other missions frees the design from the paradigms and constraints used by proponents of other dispositioning concepts. The plutonium destruction design goal is most easily achievable with a large, moderate power reactor that operates at a significantly lower thermal power density than is appropriate for reactors with multiple design goals. This volume presents the assumptions and requirements, a reactor concept overview, and a list of recommendations. The appendices contain detailed discussions on plutonium dispositioning, self-protection, fuel types, neutronics, thermal hydraulics, off-site radiation releases, and economics.

Ryskamp, J.M.; Schnitzler, B.G.; Fletcher, C.D. [and others

1993-06-01T23:59:59.000Z

29

Programmatic Environmental Assessment for the U. S. Department of Energy, Oak Ridge Operations Implementation of a Comprehensive Management Program for the Storage, Transportation, and Disposition of Potentially Reusable Uranium Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPMZT IMPMZT PROGR4MMATIC ENVIRONMENTAL ASSESSME?X FOR THE U.S. DEPARTMENT OF ENERGY, OAK RIDGE OPER4TIOSS IMPLEMENTATION OF A COMPREHENSIVE MANAGEMEKT PROGK4hl FOR THE STORAGE, TRANSPORTATION, AND DISPOSITION OF POTENTIALLY REUSABLE URANJUh4 MATERIALS AGEhCY: U.S. DEPARTMENT OF ENERGY (DOE) ACTION: FINDI?iG OF NO SIGNIFICANT 1~IPAC-I SUMI\!L4RY: The U. S. DOE has completed a Programmatic Environmental Assessment (PE:,4) (DOE/E?,- 1393), which is incorporated herein by this reference. Tile purpose of the PEA is in assess potential enJ?ronmental impacts of the implementation of a comprehek-e management program for potentiaIly reusable ICW enriched uranium (LEU). norr,:al uranium (NU), and depleted uranium (DU). --l?prosimately 14,200 MTU (h?etric Tons of Uranium) of potentially reusable uranium is located at 15s

30

Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

This report documents the position that the concentration of Uranium-233 ({sup 233}U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The {sup 233}U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ({sup 233}U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns.

Freiboth, Cameron J.; Gibbs, Frank E.

2000-03-01T23:59:59.000Z

31

Programmatic Environmental Assessment for the U. S. Department of Energy, Oak Ridge Operations Implementation of a Comprehensive Management Program for the Storage, Transportation, and Disposition of Potentially Reusable Uranium Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93 93 FINAL Programmatic Environmental Assessment for the U.S. Department of Energy, Oak Ridge Operations Implementation of a Comprehensive Management Program for the Storage, Transportation, and Disposition of Potentially Reusable Uranium Materials FINDING OF NO SIGNIFICANT IMPMZT PROGR4MMATIC ENVIRONMENTAL ASSESSME?X FOR THE U.S. DEPARTMENT OF ENERGY, OAK RIDGE OPER4TIOSS IMPLEMENTATION OF A COMPREHENSIVE MANAGEMEKT PROGK4hl FOR THE STORAGE, TRANSPORTATION, AND DISPOSITION OF POTENTIALLY REUSABLE URANJUh4 MATERIALS AGEhCY: U.S. DEPARTMENT OF ENERGY (DOE) ACTION: FINDI?iG OF NO SIGNIFICANT 1~IPAC-I SUMI\!L4RY: The U. S. DOE has completed a Programmatic Environmental Assessment (PE:,4) (DOE/E?,- 1393), which is incorporated herein by this reference. Tile purpose of the

32

Disposition of Depleted Uranium Oxide  

Science Conference Proceedings (OSTI)

This document summarizes environmental information which has been collected up to June 1983 at Savannah River Plant. Of particular interest is an updating of dose estimates from changes in methodology of calculation, lower cesium transport estimates from Steel Creek, and new sports fish consumption data for the Savannah River. The status of various permitting requirements are also discussed.

Crandall, J.L.

2001-08-13T23:59:59.000Z

33

Plutonium Disposition Program | National Nuclear Security Administrati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The...

34

NRC comprehensive records disposition schedule  

SciTech Connect

Title 44 United States Code, Public Printing and Documents,'' regulations cited in the General Services Administration's (GSA) Federal Information Resources Management Regulations'' (FIRMR), Part 201-9, Creation, Maintenance, and Use of Records,'' and regulation issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter XII, Subchapter B, Records Management,'' require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA's General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 2, contains NRC's Comprehensive Records Disposition Schedule,'' and the original authorized approved citation numbers issued by NARA. Rev. 2 totally reorganizes the records schedules from a functional arrangement to an arrangement by the host office. A subject index and a conversion table have also been developed for the NRC schedules to allow staff to identify the new schedule numbers easily and to improve their ability to locate applicable schedules.

Not Available

1992-03-01T23:59:59.000Z

35

BIOLOGICAL EVIDENCE disposition process  

Science Conference Proceedings (OSTI)

... Notification of destruction sent per statutory requirements In-house tickler system tracks evidence and identifies upcoming disposition time ...

2013-05-14T23:59:59.000Z

36

Plutonium Disposition Program | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Media Room > Fact Sheets > Plutonium Disposition Program Home > Media Room > Fact Sheets > Plutonium Disposition Program Fact Sheet Plutonium Disposition Program Jun 26, 2013 SUPPORTING NUCLEAR NONPROLIFERATION Weapon-grade plutonium and highly enriched uranium (HEU) are the critical ingredients for making a nuclear weapon. With the end of the Cold War, hundreds of tons of these materials were determined to be surplus to U.S. and Russian defense needs. Denying access to plutonium and HEU is the best way to prevent nuclear proliferation to rogue states and terrorist organizations. The most certain method to prevent these materials from falling into the wrong hands is to dispose of them. During the April 2010 Nuclear Security Summit, Secretary of State Hillary Rodham Clinton and Russian Foreign Minister Sergey Lavrov signed a protocol

37

Uranium industry annual 1996  

SciTech Connect

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

38

SRS - Programs - H Area Nuclear Materials Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

H Area Nuclear Materials Disposition H Area Nuclear Materials Disposition The primary mission of the H-Canyon Complex is to dissolve, purify and blend-down surplus highly enriched uranium (HEU) and aluminum-clad foreign and domestic research reactor fuel to produce a low enriched uranium (LEU) solution suitable for conversion to commercial reactor fuel. A secondary mission for H-Canyon is to dissolve excess plutonium (Pu) not suitable for MOX and transfer it for vitrification in the Defense Waste Processing Facility at SRS. H Canyon was constructed in the early 1950s and began operations in 1955. The building is called a canyon because of its long rectangular shape and two continuous trenches that contains the process vessels. It is approximately 1,000 feet long with several levels to accommodate the various stages of material stabilization, including control rooms to monitor overall equipment and operating processes, equipment and piping gallery for solution transport, storage, and disposition, and unique overhead bridge cranes to support overall process operations. All work is remotely controlled, and employees are further protected from radiation by thick concrete walls.

39

disposition | OpenEI  

Open Energy Info (EERE)

disposition disposition Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035

40

Summary - Uranium233 Downblending and Disposition Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and prepar sal. The projec blended materia or the Nevada cted to coincid ack-end" of the ng observation sment team to ology maturity p What th ssessment team ology Element ology...

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

m m - REQUEST FOR RECORDS DISPOSITION AUTHORITY (See Instructions on reverse) GENERAL SERVICES ADMINISTRATION N A T I O N A L ARCHIVES AND RECORDS SERVICE, WASHINGTON, DC 20408 1. F R O M ( A g e n c y o r e s t a b l i s h m e n t ) jepartment of Energy 2. MAJOR S U B D I V I S I O N Oak Ridse Operations Office 3. M I N O R S U B D I V I S I O N 4 . N A M E O F PERSON W I T H W H O M T O C O N F E R ( 5 . T E L E P H O N E E X T . L E A V E B L A N K - JOB N O . d/-d33P PO- ZJ - - - - p p D A T E R E C E I V E D p - NOTIFICATION TO AGENCY In accordance with the provisions of 44 U.S.C. 3303a the disposal request, including amendments, is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. If no records are proposed for disposal, the signature of the Archivist is not required. - DATE ARCHIVIST

42

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Input on Nickel Disposition Strategy Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

43

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

44

NRC comprehensive records disposition schedule. Revision 2  

SciTech Connect

Title 44 United States Code, ``Public Printing and Documents,`` regulations cited in the General Services Administration`s (GSA) ``Federal Information Resources Management Regulations`` (FIRMR), Part 201-9, ``Creation, Maintenance, and Use of Records,`` and regulation issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter XII, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 2, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 2 totally reorganizes the records schedules from a functional arrangement to an arrangement by the host office. A subject index and a conversion table have also been developed for the NRC schedules to allow staff to identify the new schedule numbers easily and to improve their ability to locate applicable schedules.

Not Available

1992-03-01T23:59:59.000Z

45

NRC comprehensive records disposition schedule. Revision 3  

Science Conference Proceedings (OSTI)

Title 44 US Code, ``Public Printing and Documents,`` regulations issued by the General Service Administration (GSA) in 41 CFR Chapter 101, Subchapter B, ``Management and Use of Information and Records,`` and regulations issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter 12, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 3, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 3 incorporates NARA approved changes and additions to the NRC schedules that have been implemented since the last revision dated March, 1992, reflects recent organizational changes implemented at the NRC, and includes the latest version of NARA`s General Records Schedule (dated August 1995).

NONE

1998-02-01T23:59:59.000Z

46

U.S. Uranium Down-blending Activities: Fact Sheet | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Down-blending Activities: Fact Sheet Mar 23, 2012 The permanent disposition of Highly Enriched Uranium (HEU) permanently reduces nuclear security vulnerabilities. In 1996, the...

47

Integrated Facilities Disposition Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program (IFDP) addresses the remaining EM Scope at both ORNL and Y-12 Cost Range: $7 - $14B Schedule: 26 Years 3 Managed by UT-Battelle for the U.S. Department of Energy Scope of work * Treatment and disposition of legacy materials and waste * D&D 327 (1.5 M ft 2 ) excess facilities generating >2 M yd 3 debris * Soil and groundwater remedial actions generating >1 M yd 3 soils * Facilities surveillance and maintenance * Reconfiguration of waste management facilities * Ongoing waste management operations * Project management

48

Request For Records Disposition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Petroleum Reserve Request For Records Disposition More Documents & Publications Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management...

49

Uranium Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

Enrichment Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Uranium Enrichment A description of the uranium enrichment process, including gaseous...

50

Used Fuel Disposition Campaign Disposal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Campaign Disposal Research and Development Roadmap Prepared for U.S. Department of Energy Used Fuel Disposition Campaign September 2012 FCR&D-USED-2011-000065 REV 1 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or

51

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY Atomic Energy Commission REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications...

52

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RECORDS DISPOSITION AUTHORITY More Documents & Publications Disposition Schedule: Human Radiation Experiments REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS...

53

EA-1488: Environmental Assessment for the U-233 Disposition, Medical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

488: Environmental Assessment for the U-233 Disposition, 488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee The purpose of the proposed action evaluated in this environmental assessment (EA) is the processing of uranium-233 (233U) stored at the Oak Ridge National Laboratory (ORNL) and other small quantities of similar material currently stored at other U. S. Department of Energy (DOE) sites in order to render it suitable for safe, long-term, economical storage. The 233U is stored within Bldg. 3019A, which is part of the Bldg. 3019

54

EA-1599: Disposition of Radioactively Contaminated Nickel Located at the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

99: Disposition of Radioactively Contaminated Nickel Located 99: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications EA-1599: Disposition of Radioactively Contaminated Nickel Located at the East Tennessee Technology Park, Oak Ridge, Tennessee, and the Paducah Gaseous Diffusion Plant, Paducah, Kentucky, for Controlled Radiological Applications Summary This EA was being prepared to evaluate potential environmental impacts of a proposal to dispose of nickel scrap that is volumetrically contaminated with radioactive materials and that DOE recovered from equipment it had used in uranium enrichment. This EA is on hold. Public Comment Opportunities No public comment opportunities at this time.

55

Used Fuel Disposition R&D Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Used Fuel Disposition Research & Development Used Fuel Disposition R&D Documents Used Fuel Disposition R&D Documents April 30, 2012 Office of UNF Disposition...

56

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Instructions on reverse) Instructions on reverse) LEAVE BLANK - GENERAL SERVICES ADMINISTRATION NATIONAL ARCHIVES AND RECORDS SERVICE, WASHINGTON, DC 20408 I . F R O M (Agency or ertabluhmentJ D A T E RECEIVED NOTIF~CATION TO AGENCY Department of Energy 2. MAJ0.R S U B D I V I S I O N I 4 . N A M E O F PERSON W I T H W H O M T O CONFER 15. TELEPHONE E X T . \OATS l A R C H l V l S T O F T H E U N I T E D STATES In accordance with the provisions of 44 U.S.C. 3303 the dispoal request. including amendmentr, is approved . 3. M I N O R S U B D I V I S I O N except for items that may be marked "disposition not approved" or "withdrawn" in column 10. If no records are proposed for disposal, the signature of the Archivist is not required. I hereby certify that I am authorized to act for this agency in matters pertaining to the disposal of the agency's records;

57

Facility Disposition Safety Strategy RM  

Energy.gov (U.S. Department of Energy (DOE))

The Facility Disposition Safety Strategy (FDSS) Review Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the facility documentation, preparations or...

58

Review of the Long Lead Procurement Processed Used by Babcock & Wilcox Technical Services Y-12, LLC for the Uranium Processing Facility Proect, July 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Long Lead Procurement Processes Used by Long Lead Procurement Processes Used by Babcock &Wilcox Technical Services Y-12, LLC for the Uranium Processing Facility Project May 2011 July 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Scope ...................................................................................................................................................... 1 3.0 Background ............................................................................................................................................ 1

59

Uranium industry annual 1998  

SciTech Connect

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

60

Uranium industry annual 1994  

SciTech Connect

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Plutonium Disposition Now!  

SciTech Connect

A means for use of existing processing facilities and reactors for plutonium disposition is described which requires a minimum capital investment and allows rapid implementation. The scenario includes interim storage and processing under IAEA control, and fabrication into MOX fuel in existing or planned facilities in Europe for use in operating reactors in the two home countries. Conceptual studies indicate that existing Westinghouse four-loop designs can safety dispose of 0.94 MT of plutonium per calendar year. Thus, it would be possible to consume the expected US excess stockpile of about 50 MT in two to three units of this type, and it is highly likely that a comparable amount of the FSU excess plutonium could be deposed of in a few VVER-1000`s. The only major capital project for this mode of plutonium disposition would be the weapons-grade plutonium processing which could be done in a dedicated international facility or using existing facilities in the US and FSU under IAEA control. This option offers the potential for quick implementation at a very low cost to the governments of the two countries.

Buckner, M.R.

1995-05-24T23:59:59.000Z

62

Dismantlement and Disposition | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Dismantlement and Disposition Home > Our Mission > Managing the Stockpile > Dismantlement and Disposition Dismantlement...

63

Disposition options for {sup 233}U  

SciTech Connect

The United States is implementing a program to dispose of excess nuclear-weapons-usable materials--including {sup 233}U. A series of studies have identified multiple {sup 233}U disposition options, and these options are described herein. Most of the options involve adding depleted uranium containing {sup 238}U to the {sup 233}U. Converting the {sup 233}U into a mixture of <12 wt % {sup 233}U in {sup 238}U converts the weapons-usable {sup 233}U into nonweapons-usable {sup 233}U. For {sup 233}U that is considered waste, further isotopic dilution to <0.66 wt % {sup 233}U in {sup 238}U minimizes potential long-term repository criticality concerns and in many cases minimizes final waste volumes.

Forsberg, C.W.; Icenhour, A.S.; Krichinsky, A.M.

1998-04-27T23:59:59.000Z

64

Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options  

Science Conference Proceedings (OSTI)

The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

1993-06-01T23:59:59.000Z

65

Uranium industry annual 1995  

SciTech Connect

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

66

disposition. prices | OpenEI  

Open Energy Info (EERE)

disposition. prices disposition. prices Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 15, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal coal supply disposition. prices EIA Data application/vnd.ms-excel icon AEO2011: Coal Supply, Disposition, and Prices- Reference Case (xls, 91.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

67

Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

68

DOE/EA-1607 FINAL ENVIRONMENTAL ASSESSMENT DISPOSITION OF DOE EXCESS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

µCi/cc microcuries per cubic centimeter µCi/cc microcuries per cubic centimeter MAP mitigation action plan MEI maximally exposed individual mg/kg milligrams per kilogram mrem millirem mSv millisievert MT metric ton MTCA Model Toxics Control Act MTU metric tons of uranium N/A not applicable Final Environmental Assessment: Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium vi NAAQS National Ambient Air Quality Standards NEF National Enrichment Facility NEPA National Environmental Policy Act NRC U.S. Nuclear Regulatory Commission NU natural uranium NUF 6 natural uranium hexafluoride pCi/g picocuries per gram PEIS programmatic environmental impact statement PM 2.5 particulate matter with a diameter of 2.5 microns or less PM 10 particulate matter with a diameter of 10 microns or less

69

HEQUEST FOR Rt43RDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- - HEQUEST FOR Rt43RDS DISPOSITION AUTHORITY (See ~nstructions on reverse) / GENERAL SERVICES ADMINISTRATION NATIONAL ARCHIVES AND RECORDS SERVICE, WASHINGTON, D C 20408 1 . F R O M (Agency orestablishment) U.S. Department of Energy 2 . MAJOR SUBDIVISION Oak Ridge Operations Office 3. M I N O R SUBDIVISION I hereby certify that I am authorized to act for this agency in matters pertaining to the disposal of the agency's records; that the records proposed for disposal in this Request of 4 page(s) are not now needed for the business of this agency or will not be needed after the retention periods specified; and that written concurrence from the General Accounting Office, if required under the provisions of Title 8 of the GAO Manual for Guidance of Federal Agencies, is

70

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY U. S. Atomic Energy Commision REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents &...

71

Request For Records Disposition Authority | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Division Request For Records Disposition Authority More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY Request For Records Disposition Autnority...

72

Request For Records Disposition Authority | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition Authority Request For Records Disposition Authority Naval Petroleum and Oil Shale Reserves Request For Records Disposition Authority More Documents & Publications...

73

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel ... nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections ...

74

2011 Uranium Marketing Annual Report - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Uranium Feed, Enrichment Services, Uranium Loaded In 2011, COOs delivered 51 million pounds U 3 O 8 e of natural uranium feed to U.S. and foreign enrichers. Fifty-

75

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LEAVE BLANK (NARA use only) LEAVE BLANK (NARA use only) JOB NUMBER To: NATIONAL ARCHIVES & RECORDS ADMINISTRATION 8601 ADELPHI ROAD, COLLEGE PARK, MD 20740-6001 Date Received 1. FROM (Agency or establishment) NOTIFICATION TO AGENCY In accordance with the provisions of 44 U.S.C 3303a, the disposition request, including amendments is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. 2. MAJOR SUB DIVISION 3. MINOR SUBDIVISION 4. NAME OF PERSON WITH WHOM TO CONFER 5. TELEPHONE DATE ARCHIVIST OF THE UNITED STATES 6. AGENCY CERTIFICATION I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the records proposed for disposal on the attached______page(s) are not needed now for the business of this agency or will not be

76

BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL  

SciTech Connect

Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials at a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.

Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.; Thompson, Anthony J.

2003-02-27T23:59:59.000Z

77

IX disposition project, project management plan  

SciTech Connect

This subproject management plan defines the roles, responsibilities, and actions required for the execution of the IX Disposition Project.

WILLIAMS, N.H.

1999-05-11T23:59:59.000Z

78

Disposition Schedule: Human Radiation Experiments | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Schedule: Human Radiation Experiments Disposition Schedule: Human Radiation Experiments This database contains information on records collections related to human radiation...

79

Material Removal and Disposition | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Removal and Disposition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

80

RECORDS DISPOSITION AUTHORIZATION STATE AGENCIES  

E-Print Network (OSTI)

RECORDS DISPOSITION AUTHORIZATION ­ STATE AGENCIES Form RC-108 (Revised 07/2011) STATE, CT 06106 www.cslib.org/publicrecords AUTHORITY: State agencies in the Executive branch and certain or Transfer Agreement), and retain pursuant to S1-390. STATE AGENCY: DIVISION / UNIT: ADDRESS (for return

Oliver, Douglas L.

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fissile Materials Disposition | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Fissile Materials Disposition | National Nuclear Security Administration Fissile Materials Disposition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Fissile Materials Disposition Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition Fissile Materials Disposition Since the end of the Cold War, significant quantities of plutonium and

82

Plutonium Disposition Program | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Plutonium Disposition Program Plutonium Disposition Program Home > About Us > Our Programs > Nonproliferation > Fissile Materials Disposition > Plutonium Disposition Program Plutonium Disposition Program The U.S.-Russia Plutonium Management and Disposition Agreement (PMDA), which entered into force on July 13, 2011, commits each country to dispose of at least 34 metric tons (MT) of weapon-grade plutonium withdrawn from their respective nuclear weapon programs. The U.S. remains firmly committed to its PMDA obligation to dispose of excess weapons plutonium. U.S. Plutonium Disposition The current U.S. plan to dispose of 34 MT of weapon-grade plutonium is to fabricate it into Mixed Oxide (MOX) fuel and irradiate it in existing light water reactors. This approach requires construction of new facilities

83

Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Services Overview ECS Audio/Video Conferencing Fasterdata IPv6 Network Network Performance Tools (perfSONAR) ESnet OID Registry PGP Key Service Virtual Circuits (OSCARS) DOE Grids Service Transition Contact Us Technical Assistance: 1 800-33-ESnet (Inside the US) 1 800-333-7638 (Inside the US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Services ESnet provides interoperable, effective, reliable, and high performance network communications infrastructure, and certain collaboration services, in support of the Office of Science (SC)'s large-scale, collaborative science programs. ESnet provides users with high bandwidth access to DOE sites and DOE's primary science collaborators including Research and

84

Facility Disposition Safety Strategy RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Disposition Safety Strategy Review Module Facility Disposition Safety Strategy Review Module March 2010 CD-0 O 0 OFFICE OF Facilit C CD-1 F ENVIRO Standard R ty Dispos Rev Critical Decis CD-2 M ONMENTAL Review Plan sition Saf view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) fety Strat e pplicability D-3 EMENT tegy CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-1189-2008,

85

Uranium purchases report 1994  

SciTech Connect

US utilities are required to report to the Secretary of Energy annually the country of origin and the seller of any uranium or enriched uranium purchased or imported into the US, as well as the country of origin and seller of any enrichment services purchased by the utility. This report compiles these data and also contains a glossary of terms and additional purchase information covering average price and contract duration. 3 tabs.

1995-07-01T23:59:59.000Z

86

DOE Announces Policy for Managing Excess Uranium Inventory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy for Managing Excess Uranium Inventory Policy for Managing Excess Uranium Inventory DOE Announces Policy for Managing Excess Uranium Inventory March 12, 2008 - 10:52am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today released a Policy Statement on the management of the Department of Energy's (DOE) excess uranium inventory, providing the framework within which DOE will make decisions concerning future use and disposition of its inventory. During the coming year, DOE will continue its ongoing program for downblending excess highly enriched uranium (HEU) into low enriched uranium (LEU), evaluate the benefits of enriching a portion of its excess natural uranium into LEU, and complete an analysis on enriching and/or selling some of its depleted uranium. Specific transactions are expected to occur in

87

Uranium and Its Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

and Its Compounds Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects...

88

Services  

Energy.gov (U.S. Department of Energy (DOE))

The Human Capital Office offers benefit, new employee orientation and some learning & development related services to all DOE employees. Additionally the Office supplies employee and labor...

89

Savannah River Site Waste Disposition Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Terrel J. Spears Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste Disposition Project 2 Waste Disposition Project - Mission Radioactive Liquid Waste - Tank Waste Stabilization and Disposition - Disposition 36 million gallons of radioactive liquid waste - Close 49 underground storage tanks in which the waste now resides 3 36.7 Million 33.7 Mgal (92%) 3.0 Mgal (8%) Saltcake Sludge Salt Supernate Volume Curies 397 Million Curies (MCi) 212 MCi (54%) 185 MCi (46%) Gallons (Mgal) 36.5 Million 33.5 Mgal (92%) 3.0 Mgal (8%) Liquid Waste Background Liquid Waste Background * 2 tanks closed * 49 tanks remaining to close - aging, carbon steel - 27 compliant, 22 non-compliant - 12 have known leak sites

90

Surplus U.S. Highly Enriched Uranium (HEU) Disposition | National...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

91

Summary - Major Risk Factors Integrated Facility Disposition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& ORNL, Oak Ridge, TN EM Project: Integrated Facility Disposition Project (IFDP) ETR Report Date: August 2008 ETR-15 United States Department of Energy Office of Environmental...

92

Major Risk Factors Integrated Facility Disposition Project -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Oak Ridge Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN More Documents & Publications Major Risk Factors to the Integrated...

93

Request For Records Disposition Authority: Strategic Petroleum...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Authority: Strategic Petroleum Reserve Project Management Office Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management Office Paper case files...

94

Weapons Dismantlement and Disposition NNSS Capabilities  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

Pat Arnold

2011-12-01T23:59:59.000Z

95

EM Waste and Materials Disposition & Transportation | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and disposal alternatives in the 2 commercial sector Review current policies and directives Provide needed oversight EM Waste and Materials Disposition & Transportation More...

96

Personal Property Disposition - Community Reuse Organizations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition of Excess Personal Property BACKGROUND AND PURPOSE CROs have been operating asset conversion and personal property transfer programs since shortly after the passage of...

97

DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM  

SciTech Connect

In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

2009-09-10T23:59:59.000Z

98

Nuclear Isotopic Dilution of Highly-Enriched Uranium-235 and Uranium-233 by Dry Blending via the RM-2 Mill Technology  

SciTech Connect

The United States Department of Energy has initiated numerous activities to identify strategies to disposition various excess fissile materials. Two such materials are the off-specification highly enriched uranium-235 oxide powder and the uranium-233 contained in unirradiated nuclear fuel both currently stored at the Idaho National Engineering and Environmental Laboratory. This report describes the development of a technology that could dilute these materials to levels categorized as low-enriched uranium, or further dilute the materials to a level categorized as waste. This dilution technology opens additional pathways for the disposition of these excess fissile materials as existing processing infrastructure continues to be retired.

N. A. Chipman; R. N. Henry; R. K. Rajamani; S. Latchireddi; V. Devrani; H. Sethi; J. L. Malhotra

2004-02-01T23:59:59.000Z

99

DOE/EA-1651: Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee (January 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 51 Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee U. S. Department of Energy Oak Ridge Office Oak Ridge, Tennessee January 2010 FINDING OF NO SIGNIFICANT IMPACT URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has completed the Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory [DOE/EA-1651]. This environmental assessment (EA) evaluates the impacts of planned activities to modify selected

100

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

102

Beneficial Uses of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 2 (ref. 1). The content of 235 U in DU is dependent on economics. If the cost of natural uranium feed is high relative to the cost of enrichment services, then a low 235 U...

103

DOE Releases Excess Uranium Inventory Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Excess Uranium Inventory Plan Excess Uranium Inventory Plan DOE Releases Excess Uranium Inventory Plan December 16, 2008 - 8:51am Addthis WASHINGTON, D.C. - The United States Department of Energy (DOE) today issued its Excess Uranium Inventory Management Plan (the Plan), which outlines the Department's strategy for the management and disposition of its excess uranium inventories. The Plan highlights DOE's ongoing efforts to enhance national security and promote a healthy domestic nuclear infrastructure through the efficient and cost-effective management of its excess uranium inventories. The Department has a significant inventory of uranium that is excess to national defense needs and is expensive both to manage and secure. "The Plan provides the general public and interested stakeholders more

104

Excess Uranium Inventory Management Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective management of the Energy Department's surplus uranium inventory in support of meeting its critical environmental cleanup and national security missions. The Plan is not a commitment to specific activities beyond those that have already been contracted nor is it a restriction on actions that the Department may undertake in the future as a result of changing conditions. It replaces an earlier plan issued in 2008 and reflects updated information on the Department of Energy's management and disposition of its excess uranium inventories. Excess Uranium Inventory Management Plan More Documents & Publications

105

SRS - Programs - Liquid Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Waste Disposition Liquid Waste Disposition This includes both the solidification of highly radioactive liquid wastes stored in SRS's tank farms and disposal of liquid low-level waste generated as a by-product of the separations process and tank farm operations. This low-level waste is treated in the Effluent Treatment Facility. High-activity liquid waste is generated at SRS as by-products from the processing of nuclear materials for national defense, research and medical programs. The waste, totaling about 36 million gallons, is currently stored in 49 underground carbon-steel waste tanks grouped into two "tank farms" at SRS. While the waste is stored in the tanks, it separates into two parts: a sludge that settles on the bottom of the tank, and a liquid supernate that resides on top of the sludge. The waste is reduced to about 30 percent of its original volume by evaporation. The condensed evaporator "overheads" are transferred to the Effluent Treatment Project for final cleanup prior to release to the environment. As the concentrate cools a portion of it crystallizes forming solid saltcake. The concentrated supernate and saltcake are less mobile and therefore less likely to escape to the environment in the event of a tank crack or leak.

106

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1nstrlrcrlons on reverts) 1nstrlrcrlons on reverts) ' 0 NATIONAL ARCMVES and RECORDS AD~~INISTRAT~ON (NIR) WASHINGTON, DC 20408 1. FROM (Agency or estabi~shment) Department of Energy Washington, DC 20585 . '2. MAJOR SUBDIVISION fn lccordance w i l h the provirions o f 4 4 DOE~NEVADA OPERATIONS OFFICE U.S.C. 3 3 0 3 r the disposition r e q u c ~ t , including rmtndments, i s approvtd n c t p l 3. MINOR SUBOlVlStON lor ilemr that mky be mrrkcd 'dir wition not approved' o r withdmwn' in c&mn lo. '4. NAME O F PERSON WITH WHOM TO CONFER 5. TELEPHONE Mary Ann Wallace -301 903 4353 6. AGENCY CERTIFICATION I hereby certify that I am authorized to a d for this to th#disposit-ion of its records and that the records roposed for disposal on the P now needed for the business of this agency or wil not be needed after the concurrence f

107

Evaluation of Calcine Disposition Path Forward  

SciTech Connect

This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

Birrer, S.A.; Heiser, M.B.

2003-02-26T23:59:59.000Z

108

Evaluation of Calcine Disposition - Path Forward  

SciTech Connect

This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.

Steve Birrer

2003-02-01T23:59:59.000Z

109

Major Risk Factors to the Integrated Facility Disposition Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the...

110

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

This disposition requests describe records of the History Division under the Office Executive Secretariat at the Department of Energy Headquarters REQUEST FOR RECORDS DISPOSITION...

111

U.S. and Russia Sign Plutonium Disposition Agreement | National...  

National Nuclear Security Administration (NNSA)

Agreement U.S. and Russia Sign Plutonium Disposition Agreement September 01, 2000 Washington, DC U.S. and Russia Sign Plutonium Disposition Agreement After two years of...

112

EM Makes Significant Progress on Dispositioning Transuranic Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 -...

113

Request For Records Disposition Authority | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Authority Request For Records Disposition Authority Office of Naval Petroleum and Shale Oil Reserves Request For Records Disposition Authority More Documents & Publications...

114

Request For Records Disposition Authority | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Petroleum and Oil Shale Reserves Request For Records Disposition Authority More Documents & Publications Request For Records Disposition Authority Request For Records...

115

PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES...  

NLE Websites -- All DOE Office Websites (Extended Search)

PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) This document lists the procedures for...

116

Request For Records Disposition Authority-Nuclear Weapons | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Records Disposition Authority-Nuclear Weapons Request For Records Disposition Authority-Nuclear Weapons This document identifies the nuclear weapon records generated by the...

117

Topic Index to the DOE Administrative Records Disposition Schedules...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative...

118

Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials & Waste » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a welded 3013 containers that are nested in 9975 shipping containers. 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a welded 3013 containers that are nested in 9975 shipping

119

Nuclear Materials Disposition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition Nuclear Materials Disposition In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel. These are not waste. They are nuclear materials no longer needed for national security or other purposes, including spent nuclear fuel, special nuclear materials (as defined by the Atomic Energy Act) and other Nuclear Materials. Spent Nuclear Fuel Spent nuclear fuel (SNF) is fuel that has been withdrawn from a nuclear reactor following irradiation, the constituent elements of which have not been separated by reprocessing. SNF may include: (1) intact, non-defective fuel assemblies or fuel rods; (2) failed fuel assemblies or fuel rods; (3) segments of fuel rods or pieces of fuel derived from spent fuel rods; and

120

I REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY LEAVE BL ...A (NARA use only1 JOB NUMBER TO: NATIONAL ARCHIVES & RECORDS ADMINISTRATION In accordance with the provisions of 44 U.S.C. 3303a, the Office of the Chief Information Officer disposition request, including amendments, is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. Records Management Division N1-434-02-2 Date received 860 1 ADELPHI ROAD COLLEGE PARK, MD 20740-600 1 1. FROM (Agency or establishment) Department of Energy , ( / I 4 30 -A&&& NOTIFICATION TO AGENCY 6. AGENCY CERTIFICATION I hereby certify that I am authorized to act for this agency in matters pertaining to the disposition of its records and that the

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION  

Science Conference Proceedings (OSTI)

The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

Allender, J.; Moore, E.

2013-07-17T23:59:59.000Z

122

(. 4 DEPARTMENT OF HEALTH &..HUMAN SERVICES Public Health Service National Institutes of Health  

E-Print Network (OSTI)

~..""~ "+" ~. (. 4 DEPARTMENT OF HEALTH &..HUMAN SERVICES Public Health Service ~,~..Health Bethesda, Maryland 20892 January 18, 1995 TO: Addressees FROM: Deputy Director for Intramural Research SUBJECT: Disposition of Laboratory Animals There was an incident over

Bandettini, Peter A.

123

URANIUM ALLOYS  

DOE Patents (OSTI)

A uranium alloy is reported containing from 0.1 to 5 per cent by weight of molybdenum and from 0.1 to 5 per cent by weight of silicon, the balance being uranium.

Colbeck, E.W.

1959-12-29T23:59:59.000Z

124

Pyrolitic Uranium Compound (PYRUC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Pyrolitic Uranium Compound Pyrolitic Uranium Compound (PYRUC) PYRolitic Uranium Compound (PYRUC) is a shielding material consisting of depleted uranium UO2 or UC in either pellet...

125

Waste Disposition Update by Christine Gelles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Disposition Update Waste Disposition Update Christine Gelles Associate Deputy Assistant Secretary for Waste Management (EM-30) EM SSAB Chairs Meeting Washington, DC 2 October 2012 www.em.doe.gov 2 o Waste Stream Highlights o DOE Transportation Update o Greater Than Class C (GTCC) Low Level Waste Environmental Impact Statement o Blue Ribbon Commission on America's Nuclear Future o Nuclear Regulatory Commission's LLW Regulatory Initiatives Discussion Topics www.em.doe.gov 3 Waste Stream Highlights www.em.doe.gov 4 o Within current budget outlook, it is especially critical that EM ensures safe, reliable and cost effective disposition paths exist. o The program's refocused organization and the detailed

126

EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

127

Summary report of the screening process to determine reasonable alternatives for long-term storage and disposition of weapons-usable fissile materials  

SciTech Connect

Significant quantities of weapons-usable fissile materials (primarily plutonium and highly enriched uranium) have become surplus to national defense needs both in the US and Russia. These stocks of fissile materials pose significant dangers to national and international security. The dangers exist not only in the potential proliferation of nuclear weapons but also in the potential for environmental, safety and health consequences if surplus fissile materials are not properly managed. As announced in the Notice of Intent (NOI) to prepare a Programmatic Environmental Impact Statement (PEIS), the Department of Energy is currently conducting an evaluation process for disposition of surplus weapons-usable fissile materials determined surplus to National Security needs, and long-term storage of national security and programmatic inventories, and surplus weapons-usable fissile materials that are not able to go directly from interim storage to disposition. An extensive set of long-term storage and disposition options was compiled. Five broad long-term storage options were identified; thirty-seven options were considered for plutonium disposition; nine options were considered for HEU disposition; and eight options were identified for Uranium-233 disposition. Section 2 discusses the criteria used in the screening process. Section 3 describes the options considered, and Section 4 provides a detailed summary discussions of the screening results.

NONE

1995-03-29T23:59:59.000Z

128

Supplement to the Surplus Plutonium Disposition Draft Environmental Impact Statement  

Science Conference Proceedings (OSTI)

On May 22, 1997, DOE published a Notice of Intent in the Federal Register (62 Federal Register 28009) announcing its decision to prepare an environmental impact statement (EIS) that would tier from the analysis and decisions reached in connection with the ''Storage and Disposition of Weapons-Usable Fissile Materials Final Programmatic EIS (Storage and Disposition PEIS)''. ''The Surplus Plutonium Disposition Draft Environmental Impact Statement'' (SPD Draft EIS) (DOWEIS-0283-D) was prepared in accordance with NEPA and issued in July 1998. It identified the potential environmental impacts of reasonable alternatives for the proposed siting, construction, and operation of three facilities for plutonium disposition. These three facilities would accomplish pit disassembly and conversion, immobilization, and MOX fuel fabrication. For the alternatives that included MOX fuel fabrication, the draft also described the potential environmental impacts of using from three to eight commercial nuclear reactors to irradiate MOX fuel. The potential impacts were based on a generic reactor analysis that used actual reactor data and a range of potential site conditions. In May 1998, DCE initiated a procurement process to obtain MOX fuel fabrication and reactor irradiation services. The request for proposals defined limited activities that may be performed prior to issuance of the SPD EIS Record of Decision (ROD) including non-site-specific work associated with the development of the initial design for the MOX fuel fabrication facility, and plans (paper studies) for outreach, long lead-time procurements, regulatory management, facility quality assurance, safeguards, security, fuel qualification, and deactivation. No construction on the proposed MOX facility would begin before an SPD EIS ROD is issued. In March 1999, DOE awarded a contract to Duke Engineering & Services; COGEMA, Inc.; and Stone & Webster (known as DCS) to provide the requested services. The procurement process included the environmental review specified in DOE's NEPA regulations in 10 CFR 1021.216. The six reactors selected are Catawba Nuclear Station Units 1 and 2 in South Carolina McGuire Nuclear Station Units 1 and 2 in North Carolina, and North Anna Power Station Units 1 and 2 in Virginia. The Supplement describes the potential environmental impacts of using MOX fuel in these six specific reactors named in the DCS proposal as well as other program changes made since the SPD Draft EIS was published.

N /A

1999-05-14T23:59:59.000Z

129

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nstructions on reverse) G E N E R A L SERVICES A D M I N I S T R A T I O N N A T I O N A L ARCHIVES A N D RECORDS SERVICE, WASHINGTON, D C 20408 1. F R O M (Agency or...

130

ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1997-08-01T23:59:59.000Z

131

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

132

URANIUM COMPOSITIONS  

DOE Patents (OSTI)

This patent relates to high purity uranium alloys characterized by improved stability to thermal cycling and low thermal neutron absorption. The high purity uranium alloy contains less than 0.1 per cent by weight in total amount of any ore or more of the elements such as aluminum, silicon, phosphorous, tin, lead, bismuth, niobium, and zinc.

Allen, N.P.; Grogan, J.D.

1959-05-12T23:59:59.000Z

133

Excess Uranium Inventory Management Plan 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Excess Uranium Inventory Management Plan 2008 Excess Uranium Inventory Management Plan 2008 Excess Uranium Inventory Management Plan 2008 On March 11, 2008, Secretary of Energy Samuel W. Bodman signed a policy statement1 on the management of the U.S. Department of Energy's (DOE) excess uranium inventory (Policy Statement). This Policy Statement provides the framework within which DOE will make decisions concerning future use and disposition of this inventory. The Policy Statement commits DOE to manage those inventories in a manner that: (1) is consistent with all applicable legal requirements; (2) maintains sufficient uranium inventories at all times to meet the current and reasonably foreseeable needs of DOE missions; (3) undertakes transactions involving non-U.S. Government entities in a transparent and competitive manner, unless the Secretary of

134

Excess plutonium disposition: The deep borehole option  

SciTech Connect

This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

Ferguson, K.L.

1994-08-09T23:59:59.000Z

135

Nuclear & Uranium - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

The U.S. relies on foreign uranium, enrichment services to fuel its nuclear power plants August 28, 2013. See all new releases in EIA ...

136

Depleted Uranium and Uranium Alloys  

Science Conference Proceedings (OSTI)

...Naturally occurring uranium makes up 0.0004% of the crust of the Earth; it is 40 times more plentiful than silver, and 800 times more plentiful than gold. Natural uranium contains approximately 0.7% fissionable U 235 and 99.3%

137

MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

WEST LD

2011-01-13T23:59:59.000Z

138

Major Risk Factors Integrated Facility Disposition Project - Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

O O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the Integrated Facility Disposition Project was conducted simultaneous to other assessments and visits. The ETR Team wishes to note the outstanding support received from all parties involved in the review, including the DOE Oak Ridge Office, the National Nuclear Security Administration Y-12 Site Office, UT-Battelle, B&W Y-12, and the Professional Project Services, Inc. (Pro2Serve). The ETR Team feels compelled to note, and

139

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

instructions on reverse) instructions on reverse) L E A V E B L A N K JOB NO. #/-Y3Y-ff-L GENERAL SERVICES ADMINISTRATION NATIONAL ARCHIVES AND RECORDS SERVICE, WASHINGTON, DC 20408 1. f R O M (Agency orertabluhment) lepartment of Energy 2. M N O R SUBDIVISION 3. M I N O R SUBDIVISION - . ,#q/FEF 4. NAME OF P ~ R S O N WITH WHOM TO CONFER 15. TELEPHONE EXT. 1 hereby certify that I am authorized to act for this agency in matters pertaining to the disposal of the agency's records; that the records proposed for disposal in this Request of page(s) are not now needed for the business of this .agency or will not be needed after the retention periods specified; and that written concurrence from the General Accounting Office, if required under the prov~sions of Title 8 of the GAO Manual for Guidance of Federal Agenctes, is

140

Uranium industry annual 1997  

SciTech Connect

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant New Production Refinery & Blender Net Production Imports Net Receipts

142

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant Net Production Refinery & Blender Net Production Imports Net Receipts

143

U.S. and Russia Sign Plutonium Disposition Agreement | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Disposition Agreement | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

144

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Supply Disposition Ending Stocks; Field Production Renewable Fuels & Oxygenate Plant New Production Refinery & Blender Net Production Imports ...

145

Office of Fissile Materials Disposition | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fissile Materials Disposition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

146

Fissile Material Disposition (MD) - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

a legacy of surplus fissile materials (primarily weapons-grade plutonium and highly enriched uranium) in the United States and the former Soviet Union. These materials pose a...

147

Mission Need Statement: Calcine Disposition Project Major Systems Acquisition Project  

SciTech Connect

This document identifies the need to establish the Calcine Disposition Project to determine and implement the final disposition of calcine including characterization, retrieval, treatment (if necessary), packaging, loading, onsite interim storage pending shipment to a repository or interim storage facility, and disposition of related facilities.

J. T. Beck

2007-04-26T23:59:59.000Z

148

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Table 21. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2008-2012

149

PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION  

SciTech Connect

Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

Allender, J.; Koenig, R.; Davies, S.

2009-06-01T23:59:59.000Z

150

REQUEST FOR RECORDS DISPOSITION AUTHORITY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

~nstructions on reverse) ~nstructions on reverse) G E N E R A L SERVICES A D M I N I S T R A T I O N N A T I O N A L ARCHIVES A N D RECORDS SERVICE, WASHINGTON, D C 20408 1. F R O M (Agency or ertablishment) L E A V E B L A N K JOB NO. di-%3%-fF / C D A T E R E C E I V E D flzg)~? NOTIFICATION TO AGENCY n t n f F n e r a v - Sari Francisco Operations Office . 3. M I N O R S U B D I V I S I O N b ~ s ~ ~ 5 ? % 5 2 5 Lawrence Berkel ey Laboratory 4. N A M E O F PERSON W I T H W H O M T O CONFER IS. TELEPHONE EXT. I hereby certify that I am authorized to act for this agency in matters pertaining to the disposal of the agency's records; that the records proposed for disposal in this Request of 1 page(s) are not now needed for the business of this agency or will not be needed after the retention periods specified; and that written concurrence from the General Accounting Office, if required under the provisions of Title 8 of the GAO Manual for Guidance of Federal Agencies, is

151

What is Depleted Uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is Uranium? What is Uranium? Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects What is Uranium? Physical and chemical properties, origin, and uses of uranium. Properties of Uranium Uranium is a radioactive element that occurs naturally in varying but small amounts in soil, rocks, water, plants, animals and all human beings. It is the heaviest naturally occurring element, with an atomic number of 92. In its pure form, uranium is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes, which are identified by the total number of protons and neutrons in the nucleus: uranium-238, uranium-235, and uranium-234. (Isotopes of an element have the

152

Disposition of nuclear waste using subcritical accelerator-driven systems  

Science Conference Proceedings (OSTI)

Studies have shown that the repository long-term radiological risk is from the long-lived transuranics and the fission products Tc-99 and I-129, thermal loading concerns arise mainly form the short-lived fission products Sr-90 and Cs-137. In relation to the disposition of nuclear waste, ATW is expected to accomplish the following: (1) destroy over 99.9% of the actinides; (2) destroy over 99.9% of the Tc and I; (3) separate Sr and Cs (short half-life isotopes); (4) separate uranium; (5) produce electricity. In the ATW concept, spent fuel would be shipped to a ATW site where the plutonium, other transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their only pass through the facility. This approach contrasts with the present-day reprocessing practices in Europe and Japan, during which high purity plutonium is produced and used in the fabrication of fresh mixed-oxide fuel (MOX) that is shipped off-site for use in light water reactors.

Venneri, F.; Li, N.; Williamson, M.; Houts, M.; Lawrence, G.

1998-12-01T23:59:59.000Z

153

URANIUM IN ALKALINE ROCKS  

E-Print Network (OSTI)

combine to indicate uranium enrichment of an alkaline magma.uranium, the Ilfmaussaq intrusion contains an unusually high enrichment

Murphy, M.

2011-01-01T23:59:59.000Z

154

Uranium Mining and Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Presentation » Uranium Mining and Enrichment Overview Presentation » Uranium Mining and Enrichment Uranium Mining and Enrichment Uranium is a radioactive element that occurs naturally in the earth's surface. Uranium is used as a fuel for nuclear reactors. Uranium-bearing ores are mined, and the uranium is processed to make reactor fuel. In nature, uranium atoms exist in several forms called isotopes - primarily uranium-238, or U-238, and uranium-235, or U-235. In a typical sample of natural uranium, most of the mass (99.3%) would consist of atoms of U-238, and a very small portion of the total mass (0.7%) would consist of atoms of U-235. Uranium Isotopes Isotopes of Uranium Using uranium as a fuel in the types of nuclear reactors common in the United States requires that the uranium be enriched so that the percentage of U-235 is increased, typically to 3 to 5%.

155

DOE - Office of Legacy Management -- Colonial Uranium Co - CO 10  

NLE Websites -- All DOE Office Websites (Extended Search)

Colonial Uranium Co - CO 10 Colonial Uranium Co - CO 10 FUSRAP Considered Sites Site: Colonial Uranium Co. (CO.10 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Grand Junction , Colorado CO.10-1 Evaluation Year: 1987 CO.10-2 Site Operations: Processed thorium concentrates for commercial market at another site. AEC purchased small quantity (100 lbs) for testing. CO.10-1 Site Disposition: Eliminated - No Authority - Commercial operation CO.10-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Thorium CO.10-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Colonial Uranium Co. CO.10-1 - AEC Memorandum; Faulkner to Sapirie; Subject: Testing of

156

Uranium (U)  

Science Conference Proceedings (OSTI)

Table 63   Properties of unstable uranium isotopes with α-particle emission...Table 63 Properties of unstable uranium isotopes with α-particle emission Isotope Abundance, % Half-life ( t 1/2 ), years Energy, MeV 234 U 0.0055 2.47 ? 10 5 4.77, 4.72, 4.58, 4.47, 235 U 0.720 7.1 ? 10 6 4.40, 4.2 238 U 99.274 4.51 ? 10 9 4.18...

157

Remote Inspection Devices for Spent Reactor Enriched Uranium Fuel Elements  

SciTech Connect

A remote video inspection was developed and deployed in Argentina for the detailed inspection of highly radioactive spent reactor fuel (SNF) as a prerequisite to its shipment to the Savannah River Site (SRS) in the United States for long-term storage and disposition. The fuel is highly enriched uranium (HEU) spent assemblies dating from 1967 to 1989 and aluminum clad uranium-aluminum alloy of a typical material test reactor design. The specialized video system was designed for low cost, high portability, easy setup, and ease of usage, while accommodating the differing electrical systems (i.e. 110/60 Hz, 220/50 Hz) between the United States and Argentina.

Heckendorn, F.M.

2001-01-03T23:59:59.000Z

158

Surplus Plutonium Disposition (SPD) Environmental Data Summary  

Science Conference Proceedings (OSTI)

This document provides an overview of existing environmental and ecological information at areas identified as potential locations of the Savannah River Site's (SRS) Surplus Plutonium Disposition (SPD) facilities. This information is required to document existing environmental and baseline conditions from which SPD construction and operation impacts can be defined. It will be used in developing the required preoperational monitoring plan to be used at specific SPD facilities construction sites.

Fledderman, P.D.

2000-08-24T23:59:59.000Z

159

CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS  

SciTech Connect

The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

Allender, J; Edwin Moore, E; Scott Davies, S

2008-07-15T23:59:59.000Z

160

Uranium-234  

SciTech Connect

Translation of Uran-234 by J. Sehmorak. The following subjects are discussed: /sup 234/U and other natural radioactive isotopes, fractionation of heavy radioactive elements in nature, fractionation of radioactive isotopes, /sup 234/U in nuclear geochemistry, /sup 234/U in uranium minerals, /sup 234/U in continental waters and in quaternary deposits, and /sup 234/U in the ocean. (LK)

Cherdyntsev, V.V.

1971-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Update of the Used Fuel Disposition Campaign Implementation Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update of the Used Fuel Disposition Campaign Implementation Plan Update of the Used Fuel Disposition Campaign Implementation Plan Update of the Used Fuel Disposition Campaign Implementation Plan The Used Fuel Disposition Campaign will identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign supports achievement of the overarching Fuel Cycle Research and Development Program mission and objectives. Activities will be sufficiently flexible to accommodate any of the potential fuel cycle options for used fuel management. Update of the Used Fuel Disposition Campaign Implementation Plan

162

Waste and Materials Disposition Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste and Materials Disposition Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to identify alternatives and find a path that is cost-effective and in the best interest of the Federal government. In many instances, waste disposition, (processing, treatment and disposal) is part of cleanup agreements and is of interest to stakeholders and requires the oversight of regulators.

163

Depleted Uranium Health Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

164

RECORDS DISPOSITION SCHEDULE: Year 2000 Project Records | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Year 2000 Project Records RECORDS DISPOSITION SCHEDULE: Year 2000 Project Records Year 2000 (Y2K) Project records have been created to document the effort of the Department...

165

DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed Waste Treatment Project: Contract will continue cleanup and waste operations at the Idaho Site DOE...

166

Request For Records Disposition Authority: Strategic Petroleum Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Request For Records Disposition Authority: Strategic Petroleum Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management Office Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management Office Paper case files pertaining to environmental permit applications, permits and related correspondence as well as NEPA correspondence within of the Strategic Petroleum Reserve Project Management Office (SPRPMO) Request For Records Disposition Authority: Strategic Petroleum Reserve Project Management Office More Documents & Publications 2012 Annual Planning Summary for Fossil Energy, National Energy Technology Laboratory, RMOTC, and Strategic Petroleum Reserve Field Office CX-002673: Categorical Exclusion Determination CX-009794: Categorical Exclusion Determination

167

A Model Ceramic System for Plutonium Disposition - Programmaster ...  

Science Conference Proceedings (OSTI)

As-Cast Microstructures in Alloys of U, Pu, and Zr with Minor Actinides (Np, Am) ... Irradiation Effects in Ceramics for Inert Matrix Fuel and Plutonium Disposition.

168

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Crude Oil REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications Oil Overcharge Refund Cases 2003 Oil Overcharge Refund Cases 1996 Oil Overcharge Refund Cases 1999...

169

Used Fuel Disposition Campaign Disposal Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF)...

170

EIA Data: 2011 United States Coal Supply, Disposition, and Price...  

Open Energy Info (EERE)

Search Share this page on Facebook icon Twitter icon EIA Data: 2011 United States Coal Supply, Disposition, and Price Dataset Summary Description This dataset is the 2011...

171

REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Power Plant Docket Records REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications PIA - Savannah River Remediation Accreditation Boundary (SRR AB) REQUEST...

172

Disposition Record Request: Oil Import Appeals Board | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Record Request: Oil Import Appeals Board Disposition Record Request: Oil Import Appeals Board OIAB Case Files. Records consist of company requests for relief from hardship imposed...

173

AEO2011: Total Energy Supply, Disposition, and Price Summary...  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report...

174

DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5...

175

Joel Case Calcine Disposition Project Federal Project Director  

Results in large life-cycle cost savings through final disposition. 6 6 Basic Hot Isostatic Pressing Process ... nuclear fuel in 1964.

176

AEO2011: Coal Supply, Disposition, and Prices This dataset comes...  

Open Energy Info (EERE)

Supply, Disposition, and Prices This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is...

177

Used Fuel Disposition Campaign Phase I Ring Compression Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign Phase I Ring Compression Testing of High Burnup Cladding The purpose of ring compression...

178

Additional public meeting on plutonium disposition on September...  

NLE Websites -- All DOE Office Websites (Extended Search)

produce an oxide form of plutonium suitable for disposition and the use of mixed oxide (MOX) fuel fabricated from surplus plutonium in domestic commercial nuclear power reactors...

179

Office of UNF Disposition International Program - Strategic Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNF Disposition International Program - Strategic Plan UNF Disposition International Program - Strategic Plan Office of UNF Disposition International Program - Strategic Plan The Department of Energy's Office of Nuclear Energy, Used Nuclear Fuel Disposition Research and Development Office (UFD), performs the critical mission of addressing the need for an integrated strategy that combines safe storage of spent nuclear fuel with expeditious progress toward siting and licensing a disposal facility or facilities. The UFD International Program plays a key role in this effort. International collaboration provides a forum for exchanging strategies, expertise, and technologies with other nations that have also been investigating solutions to the problems of nuclear waste disposal-information that otherwise would have

180

Dry Blending to Achieve Isotopic Dilution of Highly Enriched Uranium Oxide Materials  

SciTech Connect

The end of the cold war produced large amounts of excess fissile materials in the United States and Russia. The Department of Energy has initiated numerous activities to focus on identifying material management strategies for disposition of these excess materials. To date, many of these planning strategies have included isotopic dilution of highly enriched uranium as a means of reducing the proliferation and safety risks. Isotopic dilution by dry blending highly enriched uranium with natural and/or depleted uranium has been identified as one non-aqueous method to achieve these risk (proliferation and criticality safety) reductions. This paper reviews the technology of dry blending as applied to free flowing oxide materials.

Henry, Roger Neil; Chipman, Nathan Alan; Rajamani, R. K.

2001-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Gas Generation Testing of Uranium Metal in Simulated K Basins Sludge and Grouted Sludge Waste Forms  

DOE Green Energy (OSTI)

The evolving plan for most of the KE and KW Basin sludges is disposition to WIPP as remote handled (RH) TRU. Because the hydrogen gas concentration in the sealed transportation cask destined for WIPP is limited by flammability safety, the number of containers and shipments to WIPP likely will be driven by the rate of hydrogen generated by the contained uranium metals reaction with water. Therefore, gas generation testing with uranium metal particles of known surface area and immobilized in candidate (grout) solidification matrices was used to identify the effectiveness of various candidate solidification matrices to inhibit the rate of the uranium metal-water reaction.

Delegard, Calvin H.; Schmidt, Andrew J.; Sell, Rachel L.; Sinkov, Sergei I.; Bryan, Samuel A.

2004-05-21T23:59:59.000Z

182

EM Waste and Materials Disposition & Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On Closure Success On Closure Success 1 EM Waste and Materials Disposition & Transportation National Transportation Stakeholders Forum Chicago, Illinois May 26, 2010 Frank Marcinowski Acting Chief Technical Officer and Deputy Assistant Secretary for Technical and Regulatory Support Office of Environmental Management DOE's Radioactive Waste Management Priorities * Continue to manage waste inventories in a safe and compliant manner * Address high risk waste in a cost- ff ti effective manner * Maintain and optimize current disposal capability for future generations * Develop future disposal capacity in a complex environment * Promote the development of treatment and disposal alternatives in the 2 and disposal alternatives in the

183

Properties of Uranium Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Triuranium Octaoxide (U3O8) Uranium Dioxide (UO2) Uranium Tetrafluoride (U4) Uranyl Fluoride (UO2F2) The physical properties of the pertinent chemical forms of uranium are...

184

Uranium Quick Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Quick Facts Uranium Quick Facts A collection of facts about uranium, DUF6, and DOEs DUF6 inventory. Over the years, the Department of Energy has received numerous...

185

PREPARATION OF URANIUM MONOSULFIDE  

DOE Patents (OSTI)

A process is given for preparing uranium monosulfide from uranium tetrafluoride dissolved in molten alkali metal chloride. A hydrogen-hydrogen sulfide gas mixture passed through the solution precipitates uranium monosulfide. (AEC)

Yoshioka, K.

1964-01-28T23:59:59.000Z

186

URANIUM IN ALKALINE ROCKS  

E-Print Network (OSTI)

1977. "Geology of Brazil's Uranium and Thorium Occurrences,"A tantalo-niobate of uranium, near pyrochlore. Isometric,niobate and tantalate of uranium, with ferrous iron and rare

Murphy, M.

2011-01-01T23:59:59.000Z

187

Derived enriched uranium market  

SciTech Connect

The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market.

Rutkowski, E.

1996-12-01T23:59:59.000Z

188

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

OFFICE OF DEPLETED URANIUM HEXAFLUORIDE MANAGEMENT Issuance Of Final Report On Preconceptual Designs For Depleted Uranium Hexafluoride Conversion Plants The Department of Energy...

189

Uranium Oxide Semiconductors  

NLE Websites -- All DOE Office Websites (Extended Search)

of semiconductors, it would consume the annual production rate of depleted uranium from uranium enrichment facilities. For more information: PDF Semiconductive Properties of...

190

COPPER COATED URANIUM ARTICLE  

DOE Patents (OSTI)

Various techniques and methods for obtaining coppercoated uranium are given. Specifically disclosed are a group of complex uranium coatings having successive layers of nickel, copper, lead, and tin.

Gray, A.G.

1958-10-01T23:59:59.000Z

191

Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA)

Home > Nuclear > Domestic Uranium Production Report Domestic Uranium Production Report Data for: 2005 Release Date: May 15, 2006 Next Release: May 15, 2007

192

Manhattan Project: Uranium cubes  

Office of Scientific and Technical Information (OSTI)

Cubes of uranium metal, Los Alamos, 1945 Events > Difficult Choices, 1942 > More Uranium Research, 1942 Events > Bringing It All Together, 1942-1945 > Basic Research at Los Alamos,...

193

Nuclear & Uranium  

U.S. Energy Information Administration (EIA)

Table 17. Purchases of enrichment services by owners and operators of U.S. civilian nuclear power reactors by contract type in delivery year, 2012

194

Hight-Level Waste & Facilities Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Level Waste (HLW) and Facilities Disposition Final High-Level Waste (HLW) and Facilities Disposition Final Environmental Impact Statement You are here: DOE-ID Home > Environmental Management > Idaho High-Level Waste (HLW) Table of Contents Documents are in the Adobe® PDF format and require the Adobe® Reader to access them. If you do not currently have the Acrobat Reader, you can download the Free Adobe Reader at http://get.adobe.com/reader/ Icon link to Free Adobe Acrobat Reader software * Large chapters broken down into sections Summary* Cover [ Adobe Acrobat File Size 1.48 MB] Section, 1.0 [ Adobe Acrobat File Size 612 KB] Section, 2.0 [ Adobe Acrobat File Size 251 KB] Sections, 3.0 - 3.2.1a [ Adobe Acrobat File Size 1.4 MB] Section, 3.2.1b [ Adobe Acrobat File Size 2.0 MB] Sections, 3.2.2 - 4.0 [ Adobe Acrobat File Size 1.4 MB]

195

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final...

196

EIS-0327: Disposition of Scrap Metals Programmatic EIS | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27: Disposition of Scrap Metals Programmatic EIS 27: Disposition of Scrap Metals Programmatic EIS EIS-0327: Disposition of Scrap Metals Programmatic EIS Summary This EIS will evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE is cancelling this EIS. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download December 19, 2011 EA-1919: Notice of Revision to Clearance Policy Recycle of Scrap Metals Originating from Radiological Areas (December 2011) July 12, 2001 EIS-0327: Notice of Intent to Prepare a Programmatic Environmental Impact Statement and Announcement of Public Scoping Meetings Disposition of Scrap Metals

197

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Integrated Facility Disposition Project at Oak Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

198

Assessment of the Integrated Facility Disposition Project at Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Integrated Facility Disposition Project at Oak the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM

199

Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Campaign Preliminary Quality Assurance Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to determine whether the existing Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is sufficient for work to be performed in the Used Fuel Disposition Campaign (UFDC), and where the existing QAPD is not sufficient, supply recommendations for changes to the QAPD to accommodate the UFDC. The FCT QAPD provides a sound and useable foundation for the implementation of QA for UFDC R&D activities, including the application of QA in a graded approach. Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan More Documents & Publications

200

EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-S2: Surplus Plutonium Disposition Supplemental 3-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement Summary This EIS analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives. The original EIS is available here. For more information, see: www.nnsa.energy.gov/nepa/spdsupplementaleis Public Comment Opportunities None available at this time. Documents Available for Download April 25, 2013 EIS-0283-S2: Interim Action Determination Surplus Plutonium Disposition Supplemental Environmental Impact Statement (K-Area Materials Storage (KAMS) Area Expansion at the Savannah River Site)

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Uranium Industry Annual, 1992  

Science Conference Proceedings (OSTI)

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

202

Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan  

SciTech Connect

Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

NONE

1998-03-01T23:59:59.000Z

203

Business Case Slide 1: DUF6 Conversion Program Background  

NLE Websites -- All DOE Office Websites (Extended Search)

to convert and dispose DUF6 Awarded to Uranium Disposition Services 8292002 Framatome ANPDuratek Federal ServicesBurns and Roe Design, construction, and 5 years operation of...

204

PRODUCTION OF URANIUM TETRACHLORIDE  

DOE Patents (OSTI)

A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

Calkins, V.P.

1958-12-16T23:59:59.000Z

205

PRODUCTION OF URANIUM MONOCARBIDE  

DOE Patents (OSTI)

A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)

Powers, R.M.

1962-07-24T23:59:59.000Z

206

REQUEST FOR RECORDS DISPOSITION AUTHORITY S  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S S e e Instructions o n reverse) NATIONAL ARCHIVES and RECORDS ADMINISTRATION (NIR) WASHINGTON. DC 20408 , - - 1. FROM (Agency or establishment) Department of Energy 2. MAJOR SUBDIVISION Assistant Secretary For Fossil Energy (FE-1) I 3. MINOR SUBDIVISION Office of Naval Petroleum and Shale Oil 4 . NAME OF PERSON WITH WHOM TO CON I 1 Jerry Hinkle (FE 47) 1(202)586-43 80 I I / 6. AGENCY CERTIFICATION I NOTIFICATION TO AGENCY i I In accordance with the provisions of 44 U.S.C. 3303a the disposition request, including amendments, is ap roved except for items that may be marke! "dis osition not approved" or "withdrawn" in c o L n 10. I hereby certify that I am authorized to act for this agency in yatters pertaining to of its records and that the records roposed for disposal on the attached

207

Neutron Assay System for Confinement Vessel Disposition  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory has a number of spherical confinement vessels (CVs) remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the CVs. The Confinement Vessel Assay System (CVAS) was developed to measure the amount of special nuclear material (SNM) in CVs before and after cleanout. Prior to cleanout, the system will be used to perform a verification measurement of each vessel. After cleanout, the system will be used to perform safeguards-quality assays of {le}100-g {sup 239}Pu equivalent in a vessel for safeguards termination. The CVAS has been tested and calibrated in preparation for verification and safeguards measurements.

Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Valdez, Jose I. [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

208

FAQ 23-How much depleted uranium -- including depleted uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

is stored in the United States? How much depleted uranium -- including depleted uranium hexafluoride -- is stored in the United States? In addition to the depleted uranium stored...

209

Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the Government of the United States and the Government of the Russian Federation has on the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on the Effect the Low Enriched Uranium Delivered Report on the Effect the Low Enriched Uranium Delivered Under the Highly Enriched Uranium Agreement Between the Government of the United States of America and the Government of the Russian Federation has on the Domestic Uranium Mining, Conversion, and Enrichment Industries and the Operation of the Gaseous Diffusion Plant 2008 Information Date: December 31, 2008 1 Introduction The Agreement Between the Government of the United States of America and the Government of the Russian Federation Concerning the Disposition of Highly Enriched Uranium Extracted from Nuclear Weapons (HEU Agreement) was signed on February 18, 1993. The HEU Agreement provides for the purchase over a 20-year period (1994-2013) of 500 metric tons (MT) of weapons-origin highly enriched uranium (HEU) from the Russian Federation

210

DECONTAMINATION OF URANIUM  

DOE Patents (OSTI)

This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.

Feder, H.M.; Chellew, N.R.

1958-02-01T23:59:59.000Z

211

Major Risk Factors to the Integrated Facility Disposition Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge Reservation Tennessee Major Risk Factors to the Integrated Facility Disposition Project (IFDP) Challenge The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). These include: environmental remediation, regulatory compliance, deactivation and decommissioning (D&D) activities, and disposition of legacy materials and waste, along with the ongoing modernization, reindustrialization, and reconfiguration initiatives at the Oak Ridge National Laboratory and at the Y-12 National Security Complex. The balancing of the broad nature of these activities and issues at ORO are a key challenge for the IFDP especially since their interrelationship is not always obvious.

212

Proliferation resistance criteria for fissile material disposition issues  

Science Conference Proceedings (OSTI)

The 1994 National Acdaemy of Sciences study ``Management and Disposition of Excess Weapons Plutonium`` defined options for reducing the national and international proliferation risks of materials declared excess to the nuclear weapons program. This paper proposes criteria for assessing the proliferation resistance of these options as well defining the ``Standards`` from the report. The criteria are general, encompassing all stages of the disposition process from storage through intermediate processing to final disposition including the facilities, processing technologies and materials, the level of safeguards for these materials, and the national/subnational threat to the materials.

Rutherford, D.A.; Fearey, B.L.; Markin, J.T.; Close, D.A. [Los Alamos National Lab., NM (United States); Tolk, K.M.; Mangan, D.L. [Sandia National Labs., Albuquerque, NM (United States); Moore, L. [Lawrence Livermore National Lab., CA (United States)

1995-09-01T23:59:59.000Z

213

Uranium Hexafluoride (UF6)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hexafluoride (UF6) Hexafluoride (UF6) Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Uranium Hexafluoride (UF6) Physical and chemical properties of UF6, and its use in uranium processing. Uranium Hexafluoride and Its Properties Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. UF6 crystals in a glass vial image UF6 crystals in a glass vial. Uranium hexafluoride does not react with oxygen, nitrogen, carbon dioxide, or dry air, but it does react with water or water vapor. For this reason,

214

Integrated Tool Development for Used Fuel Disposition Natural System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Tool Development for Used Fuel Disposition Natural Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report The natural barrier system (NBS) is an integral part of a geologic nuclear waste repository. The report describes progress in development of an integrated modeling framework that can be used for systematically analyzing the performance of a natural barrier system and identifying key factors that control the performance. This framework is designed as an integrated tool for prioritization and programmatic decisions. Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report More Documents & Publications Natural System Evaluation and Tool Development FY11 Progress Report

215

AEO2011: Coal Supply, Disposition, and Prices | OpenEI  

Open Energy Info (EERE)

Supply, Disposition, and Prices Supply, Disposition, and Prices Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 15, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO coal coal supply disposition. prices EIA Data application/vnd.ms-excel icon AEO2011: Coal Supply, Disposition, and Prices- Reference Case (xls, 91.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

216

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

217

Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Quality Assurance Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to determine whether the existing Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is sufficient for work to be performed in the Used Fuel Disposition Campaign (UFDC), and where the existing QAPD is not sufficient, supply recommendations for changes to the QAPD to accommodate the UFDC. The FCT QAPD provides a sound and useable foundation for the implementation of QA for UFDC R&D activities, including the application of QA in a graded approach. Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan More Documents & Publications Used Fuel Disposition Campaign International Activities Implementation Plan

218

AEO2011: Liquid Fuels Supply and Disposition | OpenEI  

Open Energy Info (EERE)

Liquid Fuels Supply and Disposition Liquid Fuels Supply and Disposition Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 11, and contains only the reference case. The dataset uses million barrels per day. The data is broken down into crude oil, other petroleum supply, other non petroleum supply and liquid fuel consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA liquid fuels Supply Data application/vnd.ms-excel icon AEO2011: Liquid Fuels Supply and Disposition- Reference Case (xls, 117 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

219

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

220

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE April 1, 2010 - 12:00pm Addthis An operator uses robotic manipulators to process RH TRU. An operator uses robotic manipulators to process RH TRU. Idaho - The Waste Disposition Project Team at the Department of Energy's Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management's commitment to environmental clean up. In 2007, the first shipment of RH TRU waste left the gates of the Idaho Site, headed to the Waste Isolation Pilot Plant (WIPP) for disposal. In the three years since, devoted individuals on the CH2M-WG, Idaho's (CWI)

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Low Level Waste Disposition - Quantity and Inventory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

222

Hanford Tank Waste Retrieval, Treatment and Disposition Framework |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with the Pretreatment and High-Level Waste Facilities. Hanford Tank Waste Retrieval, Treatment and Disposition Framework More Documents & Publications EIS-0391: Draft Environmental Impact Statement Waste Treatment Plant and Tank Farm Program EIS-0356: Notice of Intent to Prepare an Environmental Impact Statement

223

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Campaign Disposal Research and Development Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

224

Low Level Waste Disposition - Quantity and Inventory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory Low Level Waste Disposition - Quantity and Inventory This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the volume of low level waste resulting from a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. This study provides an estimate of Class A/B/C low level waste (LLW), greater than Class C (GTCC) waste, mixed LLW and mixed GTCC waste generated from the following initial set of fuel cycles and recycling processes: 1. Operations at a geologic repository based upon a once through light

225

Integrated Tool Development for Used Fuel Disposition Natural System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Tool Development for Used Fuel Disposition Natural Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report The natural barrier system (NBS) is an integral part of a geologic nuclear waste repository. The report describes progress in development of an integrated modeling framework that can be used for systematically analyzing the performance of a natural barrier system and identifying key factors that control the performance. This framework is designed as an integrated tool for prioritization and programmatic decisions. Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report More Documents & Publications Natural System Evaluation and Tool Development FY11 Progress Report

226

EIA Data: 2011 United States Coal Supply, Disposition, and Price...  

Open Energy Info (EERE)

EIA Data: 2011 United States Coal Supply, Disposition, and Price This...

227

AEO2011:Total Energy Supply, Disposition, and Price Summary ...  

Open Energy Info (EERE)

AEO2011:Total Energy Supply, Disposition, and Price Summary

228

EIS-0327: Disposition of Scrap Metals Programmatic EIS  

Energy.gov (U.S. Department of Energy (DOE))

This EIS will evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE is cancelling this EIS.

229

SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP  

SciTech Connect

The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

Allender, J.; Mcclard, J.; Christopher, J.

2012-06-08T23:59:59.000Z

230

DOE Chooses Contractor to Disposition Waste at the Advanced Mixed...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DEPARTMENT OF ENERGY IDAHO FALLS, IDAHO, 83403 DOE Chooses Contractor to Disposition Waste at the Advanced Mixed Waste Treatment Project (AMWTP) CH2M Hill Newport News...

231

Microsoft Word - Fuel Cycle Potential Waste Inventory for Disposition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Potential Waste Inventory for Disposition Prepared for U.S. Department of Energy Used Nuclear Fuel Joe T. Carter, SRNL Alan J. Luptak, INL Jason Gastelum, PNNL Christine...

232

DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at...  

NLE Websites -- All DOE Office Websites (Extended Search)

doe logo Media Contact: Brad Bugger (208) 526-0833 For Immediate Release: Friday, May 27, 2011 DOE Chooses Idaho Treatment Group, LLC to Disposition Waste at the Advanced Mixed...

233

Process for electroslag refining of uranium and uranium alloys  

DOE Patents (OSTI)

A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

1975-07-22T23:59:59.000Z

234

SOLDERING OF URANIUM  

SciTech Connect

One of Its Monograph Series, The Industrial Atom.'' The joining of uranium to uranium has been done successfully using a number of commercial soft solders and fusible alloys. Soldering by using an ultrasonic soldering iron has proved the best method for making sound soldered joints of uranium to uranium and of uranium to other metals, such as stainless steel. Other method of soldering have shown some promise but did not give reliable joints all the time. The soldering characteristics of uranium may best be compared to those of aluminum. (auth)

Hanks, G.S.; Doll, D.T.; Taub, J.M.; Brundige, E.L.

1957-01-01T23:59:59.000Z

235

URANIUM RECOVERY PROCESS  

DOE Patents (OSTI)

A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

1959-02-10T23:59:59.000Z

236

PRODUCTION OF PURIFIED URANIUM  

DOE Patents (OSTI)

A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

1960-01-26T23:59:59.000Z

237

EPA Update: NESHAP Uranium Activities  

E-Print Network (OSTI)

measurements have been performed on high-enriched uranium (HEU) oxide fuel pins and depleted uranium metal

238

Method of recovering uranium hexafluoride  

DOE Patents (OSTI)

A method of recovering uranium hexafluoride from gaseous mixtures which comprises adsorbing said uranium hexafluoride on activated carbon is described.

Schuman, S.

1975-12-01T23:59:59.000Z

239

Atomic Data for Uranium (U )  

Science Conference Proceedings (OSTI)

... Uranium (U) Homepage - Introduction Finding list Select element by name. Select element by atomic number. ... Atomic Data for Uranium (U). ...

240

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

Science Conference Proceedings (OSTI)

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Uranium from phosphate ores  

SciTech Connect

The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant.

Hurst, F.J.

1983-01-01T23:59:59.000Z

242

Uranium Health Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

For inhalation or ingestion of soluble or moderately soluble compounds such as uranyl fluoride (UO2F2) or uranium tetrafluoride (UF4), the uranium enters the bloodstream and...

243

METHOD FOR PURIFYING URANIUM  

DOE Patents (OSTI)

A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

Knighton, J.B.; Feder, H.M.

1960-04-26T23:59:59.000Z

244

Uranium Quick Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Quick Facts A collection of facts about uranium, DUF6, and DOEs DUF6 inventory. Over the years, the Department of Energy has received numerous inquiries from the...

245

Cathodoluminescence of uranium oxides  

SciTech Connect

The cathodoluminescence of uranium oxide surfaces prepared in-situ from clean uranium exposed to dry oxygen was studied. The broad asymmetric peak observed at 470 nm is attributed to F-center excitation.

Winer, K.; Colmenares, C.; Wooten, F.

1984-08-09T23:59:59.000Z

246

Bicarbonate leaching of uranium  

SciTech Connect

The alkaline leach process for extracting uranium from uranium ores is reviewed. This process is dependent on the chemistry of uranium and so is independent on the type of mining system (conventional, heap or in-situ) used. Particular reference is made to the geochemical conditions at Crownpoint. Some supporting data from studies using alkaline leach for remediation of uranium-contaminated sites is presented.

Mason, C.

1998-12-31T23:59:59.000Z

247

PREPARATION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

1959-10-01T23:59:59.000Z

248

PRODUCTION OF URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

A method is presented for producing uranium tetrafluoride from the gaseous hexafluoride by feeding the hexafluoride into a high temperature zone obtained by the recombination of molecularly dissociated hydrogen. The molal ratio of hydrogen to uranium hexnfluoride is preferably about 3 to 1. Uranium tetrafluoride is obtained in a finely divided, anhydrous state.

Shaw, W.E.; Spenceley, R.M.; Teetzel, F.M.

1959-08-01T23:59:59.000Z

249

Overview: A Legacy of Uranium Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

A Legacy of Uranium Enrichment Depleted Uranium is a Legacy of Uranium Enrichment Cylinders Photo Next Screen Management Responsibilities...

250

URANIUM AND PLUTONIUM LOADING ONTO MONOSODIUM TITANATE MST IN TANK 50H  

SciTech Connect

A possible disposition pathway for the residue from the abandoned In-Tank Precipitation (ITP) sends the material from Tank 48H in increments to Saltstone via aggregation in Tank 50H. After entering Tank 50H, the amount of fissile material sorbed on MST may increase as a result of contacting waste solutions with dissolved uranium and plutonium. SRNL recommends that nuclear criticality safety evaluations use uranium and plutonium loadings onto MST of 14.0 {+-} 1.04 weight percent (wt %) for uranium and 2.79 {+-} 0.197 wt % for plutonium given the assumed streams defined in this report. These values derive from recently measured for conditions relevant to the Actinide Removal Process (ARP) and serve as conservative upper bounds for uranium and plutonium loadings during the proposed transfers of MST from Tank 48H into Tank 50H.

Hobbs, D

2006-08-31T23:59:59.000Z

251

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

252

DOE Issues Request for Quotations for Depleted Uranium Hexafluoride  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Request for Quotations for Depleted Uranium Hexafluoride Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services December 12, 2012 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH. The RFQ is for a Time-and-Materials Task Order for three years with two one-year option periods. The estimated contract value is approximately $15 - 20 million.

253

HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE  

SciTech Connect

The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.

Magoulas, V; Charles Goergen, C; Ronald Oprea, R

2008-06-05T23:59:59.000Z

254

The Next Generation Safeguards Initiative s High-Purity Uranium-233 Preservation Effort  

Science Conference Proceedings (OSTI)

High-purity 233U serves as a crucial reference material for accurately quantifying and characterizing uranium. The most accurate analytical results which can be obtained only with high-purity 233U certified reference material (CRM) are required when used to confirm compliance with international safeguards obligations and international nonproliferation agreements. The U.S. supply of 233U CRM is almost depleted, and existing domestic stocks of this synthetic isotope are scheduled to be down-blended for disposition with depleted uranium beginning in 2015. Down blending batches of high-purity 233U will permanently eliminate the value of this material as a CRM. Furthermore, no replacement 233U stocks are expected to be produced in the future due to a lack of operating production capability and the high cost of replacing such capability. Therefore, preserving select batches of high-purity 233U is of great value and will assist in retaining current analytical capabilities for uranium-bearing samples. Any organization placing a priority on accurate results of uranium analyses, or on the confirmation of trace uranium in environmental samples, has a vested interest in preserving this material. This paper describes the need for high-purity 233U, the consequences organizations and agencies face if this material is not preserved, and the progress and future plans for preserving select batches of the purest 233U materials from disposition. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

Krichinsky, Alan M [ORNL; Bostick, Debra A [ORNL; Giaquinto, Joseph [ORNL; Bayne, Charles [Hazelwood Services and Manufacturing; Goldberg, Dr. Steven A. [DOE SC - Chicago Office; Humphrey, Dr. Marc [U.S. Department of Energy, NNSA; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL); Sobolev, Taissa [U.S. Department of Energy, NNSA

2012-01-01T23:59:59.000Z

255

Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors  

SciTech Connect

This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

1993-06-01T23:59:59.000Z

256

FAQ 10-Why is uranium hexafluoride used?  

NLE Websites -- All DOE Office Websites (Extended Search)

uranium hexafluoride used? Why is uranium hexafluoride used? Uranium hexafluoride is used in uranium processing because its unique properties make it very convenient. It can...

257

URANIUM RECOVERY PROCESS  

DOE Patents (OSTI)

In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

Yeager, J.H.

1958-08-12T23:59:59.000Z

258

URANIUM SEPARATION PROCESS  

DOE Patents (OSTI)

The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

1959-07-14T23:59:59.000Z

259

PRODUCTION OF URANIUM  

DOE Patents (OSTI)

The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.

Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

1958-04-15T23:59:59.000Z

260

Method for converting uranium oxides to uranium metal  

DOE Green Energy (OSTI)

A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

Duerksen, Walter K. (Norris, TN)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Method for converting uranium oxides to uranium metal  

DOE Patents (OSTI)

A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixtures is then cooled to a temperature less than -100/sup 0/C in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

Duerksen, W.K.

1987-01-01T23:59:59.000Z

262

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Makes Significant Progress on Dispositioning Transuranic Waste EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 - 12:00pm Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. Distillation equipment is shown prior to transport to the Idaho site. Distillation equipment is shown prior to transport to the Idaho site. In these 2010 photographs, unexploded ordnance were collected and then detonated onsite at the Mass Detonation Area.

263

Used Fuel Disposition Research & Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Used Fuel Disposition Research & Development Used Fuel Disposition Research & Development A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. In order to assure the development of a sustainable nuclear fuel cycle for the nation's energy future, to provide a sound technical basis for implementation of a new national policy for managing the back end of the nuclear fuel cycle, and to better understand, assess, and communicate the

264

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Makes Significant Progress on Dispositioning Transuranic Waste EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 - 12:00pm Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. Distillation equipment is shown prior to transport to the Idaho site. Distillation equipment is shown prior to transport to the Idaho site. In these 2010 photographs, unexploded ordnance were collected and then detonated onsite at the Mass Detonation Area.

265

Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savannah River Site Achieves Transuranic Waste Disposition Goal in Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 December 24, 2013 - 12:00pm Addthis Workers gather behind a “Safety and Security begins with Me” banner at the Savannah River Site. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. SRR employees Glenn Kelly and Fred Merriweather pour the final amount of grout into Tank 6. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site.

266

Paducah Demolition Debris Shipped for Disposition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demolition Debris Shipped for Disposition Demolition Debris Shipped for Disposition Paducah Demolition Debris Shipped for Disposition August 27, 2013 - 12:00pm Addthis The first five-car section of demolition debris from the C-340 Metals Plant leaves July 15 from the Paducah site. The first five-car section of demolition debris from the C-340 Metals Plant leaves July 15 from the Paducah site. A P&L locomotive travels near Woodville Road, south of the Paducah site, with the waste shipment in tow. A P&L locomotive travels near Woodville Road, south of the Paducah site, with the waste shipment in tow. The first five-car section of demolition debris from the C-340 Metals Plant leaves July 15 from the Paducah site. A P&L locomotive travels near Woodville Road, south of the Paducah site, with the waste shipment in tow.

267

FAQ 1-What is uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is uranium? What is uranium? What is uranium? Uranium is a radioactive element that occurs naturally in low concentrations (a few parts per million) in soil, rock, and surface and groundwater. It is the heaviest naturally occurring element, with an atomic number of 92. Uranium in its pure form is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes: primarily uranium-238, uranium-235, and a very small amount of uranium-234. (Isotopes are different forms of an element that have the same number of protons in the nucleus, but a different number of neutrons.) In a typical sample of natural uranium, most of the mass (99.27%) consists of atoms of uranium-238. About 0.72% of the mass consists of atoms of uranium-235, and a very small amount (0.0055% by mass) is uranium-234.

268

Record of Decision for the Disposition of Surplus Highly Envirched Uranium Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19 19 Federal Register / Vol. 61, No. 151 / Monday, August 5, 1996 / Notices contact: Carol M. Borgstrom, Director, Office of NEPA Policy and Assistance (EH-42), U.S. Department of Energy, 1000 Independence Avenue, S.W., Washington, D.C. 20585, Telephone: 202-586-4600 or leave a message at 800-472-2756. SUPPLEMENTARY INFORMATION: On July 17, 1996, the Department published a notice in the Federal Register (61 FR 37247) announcing its intent to prepare an environmental impact statement for interim storage of plutonium at the RFETS and the commencement of a public scoping period that was to continue until August 16, 1996. The July 17, 1996, notice also announced a public scoping meeting scheduled for August 6, 1996. In response to a stakeholder's request, the Department is rescheduling the public scoping meeting

269

Decision model for evaluating reactor disposition of excess plutonium  

Science Conference Proceedings (OSTI)

The US Department of Energy is currently considering a range of technologies for disposition of excess weapon plutonium. Use of plutonium fuel in fission reactors to generate spent fuel is one class of technology options. This report describes the inputs and results of decision analyses conducted to evaluate four evolutionary/advanced and three existing fission reactor designs for plutonium disposition. The evaluation incorporates multiple objectives or decision criteria, and accounts for uncertainty. The purpose of the study is to identify important and discriminating decision criteria, and to identify combinations of value judgments and assumptions that tend to favor one reactor design over another.

Edmunds, T.

1995-02-01T23:59:59.000Z

270

Uranium hexafluoride public risk  

SciTech Connect

The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

1994-08-01T23:59:59.000Z

271

MOBILE SYSTEMS FOR DILUTION OF HIGHLY ENRICHED URANIUM AND URANIUM CONTAINING COMPONENTS  

SciTech Connect

A mobile melt-dilute (MMD) module for the treatment of aluminum research reactor spent fuel is being developed. The process utilizes a closed system approach to retain fission products/gases inside a sealed canister after treatment. The MMD process melts and dilutes spent fuel with depleted uranium to obtain a fissile fraction of less than 0.2. The final ingot is solidified inside the sealed canister and can be stored safely either wet or dry until final disposition or reprocessing. The MMD module can be staged at or near the research reactor fuel storage sites to facilitate the melt-dilute treatment of the spent fuel into a stable non-proliferable form.

Adams, T

2007-05-02T23:59:59.000Z

272

U  

National Nuclear Security Administration (NNSA)

Dominion Nuclear Global Nuclear Fuel - Americas Framatome Advanced Nuclear Power First Energy Nuclear Operating Company DOE facilities recognized: Uranium Disposition Services,...

273

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. (was Uranium Asset Management) Advance Uranium Asset Management Ltd. (was Uranium Asset Management) AREVA NC, Inc. (was COGEMA, Inc.) American Fuel Resources, LLC American Fuel Resources, LLC BHP Billiton Olympic Dam Corporation Pty Ltd AREVA NC, Inc. AREVA NC, Inc. CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd BHP Billiton Olympic Dam Corporation Pty Ltd ConverDyn CAMECO CAMECO Denison Mines Corp. ConverDyn ConverDyn Energy Resources of Australia Ltd. Denison Mines Corp. Energy Fuels Resources Energy USA, Inc. Effective Energy N.V. Energy Resources of Australia Ltd.

274

Accelerating the Reduction of Excess Russian Highly Enriched Uranium  

SciTech Connect

This paper presents the latest information on one of the Accelerated Highly Enriched Uranium (HEU) Disposition initiatives that resulted from the May 2002 Summit meeting between Presidents George W. Bush and Vladimir V. Putin. These initiatives are meant to strengthen nuclear nonproliferation objectives by accelerating the disposition of nuclear weapons-useable materials. The HEU Transparency Implementation Program (TIP), within the National Nuclear Security Administration (NNSA) is working to implement one of the selected initiatives that would purchase excess Russian HEU (93% 235U) for use as fuel in U.S. research reactors over the next ten years. This will parallel efforts to convert the reactors' fuel core from HEU to low enriched uranium (LEU) material, where feasible. The paper will examine important aspects associated with the U.S. research reactor HEU purchase. In particular: (1) the establishment of specifications for the Russian HEU, and (2) transportation safeguard considerations for moving the HEU from the Mayak Production Facility in Ozersk, Russia, to the Y-12 National Security Complex in Oak Ridge, TN.

Benton, J; Wall, D; Parker, E; Rutkowski, E

2004-02-18T23:59:59.000Z

275

The U.S.-Russian joint studies on using power reactors to disposition surplus weapon plutonium as spent fuel  

SciTech Connect

In 1996, the US and the Russian Federation completed an initial joint study of the candidate options for the disposition of surplus weapons plutonium in both countries. The options included long term storage, immobilization of the plutonium in glass or ceramic for geologic disposal, and the conversion of weapons plutonium to spent fuel in power reactors. For the latter option, the US is only considering the use of existing light water reactors (LWRs) with no new reactor construction for plutonium disposition, or the use of Canadian deuterium uranium (CANDU) heavy water reactors. While Russia advocates building new reactors, the cost is high, and the continuing joint study of the Russian options is considering only the use of existing VVER-1000 LWRs in Russia and possibly Ukraine, the existing BN-60O fast neutron reactor at the Beloyarsk Nuclear Power Plant in Russia, or the use of the Canadian CANDU reactors. Six of the seven existing VVER-1000 reactors in Russia and the eleven VVER-1000 reactors in Ukraine are all of recent vintage and can be converted to use partial MOX cores. These existing VVER-1000 reactors are capable of converting almost 300 kg of surplus weapons plutonium to spent fuel each year with minimum nuclear power plant modifications. Higher core loads may be achievable in future years.

Chebeskov, A.; Kalashnikov, A. [State Scientific Center, Obninsk (Russian Federation). Inst. of Physics and Power Engineering; Bevard, B.; Moses, D. [Oak Ridge National Lab., TN (United States); Pavlovichev, A. [State Scientific Center, Moscow (Russian Federation). Kurchatov Inst.

1997-09-01T23:59:59.000Z

276

Preparation of uranium compounds  

SciTech Connect

UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

2013-02-19T23:59:59.000Z

277

LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition  

SciTech Connect

The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium.

Bronson, M.C.

1997-10-01T23:59:59.000Z

278

First Principles Calculations of Uranium and Uranium-Zirconium Alloys  

Science Conference Proceedings (OSTI)

Presentation Title, First Principles Calculations of Uranium and Uranium- Zirconium Alloys. Author(s), Benjamin Good, Benjamin Beeler, Chaitanya Deo, Sergey...

279

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents (OSTI)

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

1995-06-06T23:59:59.000Z

280

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents (OSTI)

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Plutonium Decontamination of Uranium using CO2 Cleaning  

SciTech Connect

A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pits for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology and showed that CO{sub 2} pellet blasting (or CO{sub 2} cleaning) reduced both fixed and smearable contamination on tools. In 1997, LLNL proved that even tritium contamination could be removed from a variety of different matrices using CO{sub 2}cleaning. CO{sub 2} cleaning is a non-toxic, nonconductive, nonabrasive decontamination process whose primary cleaning mechanisms are: (1) Impact of the CO{sub 2} pellets loosens the bond between the contaminant and the substrate. (2) CO{sub 2} pellets shatter and sublimate into a gaseous state with large expansion ({approx}800 times). The expanding CO{sub 2} gas forms a layer between the contaminant and the substrate that acts as a spatula and peels off the contaminant. (3) Cooling of the contaminant assists in breaking its bond with the substrate. Thus, LLNL conducted feasibility testing to determine if CO{sub 2} pellet blasting could remove Pu contamination (e.g., uranium oxide) from uranium metal without abrading the metal matrix. This report contains a summary of events and the results of this test.

Blau, M

2002-12-01T23:59:59.000Z

282

Plutonium Decontamination of Uranium using CO2 Cleaning  

SciTech Connect

A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pits for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology and showed that CO{sub 2} pellet blasting (or CO{sub 2} cleaning) reduced both fixed and smearable contamination on tools. In 1997, LLNL proved that even tritium contamination could be removed from a variety of different matrices using CO{sub 2}cleaning. CO{sub 2} cleaning is a non-toxic, nonconductive, nonabrasive decontamination process whose primary cleaning mechanisms are: (1) Impact of the CO{sub 2} pellets loosens the bond between the contaminant and the substrate. (2) CO{sub 2} pellets shatter and sublimate into a gaseous state with large expansion ({approx}800 times). The expanding CO{sub 2} gas forms a layer between the contaminant and the substrate that acts as a spatula and peels off the contaminant. (3) Cooling of the contaminant assists in breaking its bond with the substrate. Thus, LLNL conducted feasibility testing to determine if CO{sub 2} pellet blasting could remove Pu contamination (e.g., uranium oxide) from uranium metal without abrading the metal matrix. This report contains a summary of events and the results of this test.

Blau, M

2002-12-01T23:59:59.000Z

283

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report"...

284

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

1. U.S. uranium drilling activities, 2003-2012 Exploration Drilling Development Drilling Exploration and Development Drilling Year Number of Holes Feet (thousand) Number of Holes...

285

Uranium 'pearls' before slime  

NLE Websites -- All DOE Office Websites (Extended Search)

harm to themselves, scientists have wondered how on Earth these microbes do it. For Shewanella oneidensis, a microbe that modifies uranium chemistry, the pieces are coming...

286

Uranium Purchases Report  

Reports and Publications (EIA)

Final issue. This report details natural and enriched uranium purchases as reported by owners and operators of commercial nuclear power plants. 1996 represents the most recent publication year.

Douglas Bonnar

1996-06-01T23:59:59.000Z

287

PRODUCTION OF URANIUM  

DOE Patents (OSTI)

An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

Ruehle, A.E.; Stevenson, J.W.

1957-11-12T23:59:59.000Z

288

Uranium Purchases Report 1995  

U.S. Energy Information Administration (EIA)

DOE/EIA0570(95) Distribution Category UC950 Uranium Purchases Report 1995 June 1996 Energy Information Administration Office of Coal, Nuclear, ...

289

GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM The Department of Energy has on a variety of occasions engaged in transactions under which it bartered uranium to which it has title for goods or services . This guidance memorializes the results of analyses previously directed to individual proposed transactions . For the reasons discussed below, we conclude that the Atomic Energy Act of 1954' , as amended, (AEA), authorizes such barter transactions. Background : DOE Barter Transactions In a number of instances, DOE has engaged in transactions involving the barter of DOE-owned uranium2 in exchange for various products or services. For example, DOE entered into a transaction with the United States Enrichment Corporation (USEC), under which USEC would

290

NEPA Cases Filed in 2010 2010 NEPA Case Dispositions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Filed in 2010 2010 NEPA Case Dispositions Filed in 2010 2010 NEPA Case Dispositions Lead Defendant Cases Filed Injunctions - Remands Judgment for defendant 46 ARMY-USACE 6 3 Dismissal w/o settlement 11 DHS-USCG 0 0 Settlement 8 DOD 1 0 Adverse dispositions: 17 DOE-Energy 0 0 TRO 0 DOE-FERC 0 0 Preliminary Injunction 5 DOE-NNSA 1 0 Permanent Injunction 4 DOI-BIA 1 0 Remand 8 DOI-BLM 17 5 DOI-BOEM 5 0 Basis for 2010 NEPA Dispositions DOI-BOR 0 0 Jurisdictional - P prevailed 0 DOI-FWS 6 1 Jurisdictional - D prevailed 12 DOI-OSM 0 1 NEPA - Not required 1 DOI-NPS 2 2 NEPA - Is required 2 DOJ 0 0 CE - Adequate 4 DOS 0 0 CE - Not Adequate 1 DOT-FAA 3 0 EA - Adequate* 11 DOT-FHWA 10 1 EA - Not Adequate* 5 DOT-FTA 2 0 EIS - Adequate* 17 EPA 1 0 EIS - Not Adequate* 5

291

LCA Carbon Footprints Mining Materials Mfg Transport Use Disposition  

E-Print Network (OSTI)

LCA Carbon Footprints #12;Mining Materials Mfg Transport Use Disposition Recycle Transporta;on Use End of Life Results: Yours Six Products, Six Carbon Footprints, WSJ, 2009 Transporta;on Use End of Life Results: Yours Six Products, Six Carbon Footprints, WSJ, 2009

Gutowski, Timothy

292

Disposition of excess fissile materials in deep boreholes  

SciTech Connect

As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. Plutonium utilization options have in common the generation of high-level radioactive waste which will be disposed of in a mined geologic disposal system to be developed for spent reactor fuel and defense high level waste. Other final disposition forms, such as plutonium metal, plutonium oxide and plutonium immobilized without high-level radiation sources may be better suited to placement in a custom facility. This paper discusses a leading candidate for such a facility; deep (several kilometer) borehole disposition. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. The safety argument centers around ancient groundwater indicating lack of migration, and thus no expected communication with the accessible environment until the plutonium has decayed.

Halsey, W.G. [Lawrence Livermore National Lab., CA (United States); Danker, W. [USDOE, Washington, DC (United States); Morley, R. [Los Alamos National Lab., NM (United States)

1995-09-01T23:59:59.000Z

293

U.S. Natural Gas Annual Supply and Disposition Balance  

U.S. Energy Information Administration (EIA) Indexed Site

Storage 482,088 135,794 49,126 68,636 98,854 101,604 1973-2013 Disposition Consumption 2,508,032 1,947,684 1,739,493 1,726,304 1,911,261 1,910,113 2001-2013 Injections...

294

Dispositions, disciplines, and marble runs: a case study of resourcefulness  

Science Conference Proceedings (OSTI)

In this paper, three researchers and two teachers have zoomed in on three 'mid-level' episodes of learning in a childcare centre and analyzed them using two lenses: a dispositional lens and a disciplinary (science) practices lens. We wonder how these ...

Margaret Carr; Jane McChesney; Bronwen Cowie; Robert Miles-Kingston; Lorraine Sands

2010-06-01T23:59:59.000Z

295

DOE-STD-1120-2005; Integration of Environment Safety and Health into Facility Disposition Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20-2005 20-2005 Volume 1 of 2 April 2005 DOE STANDARD INTEGRATION OF ENVIRONMENT, SAFETY, AND HEALTH INTO FACILITY DISPOSITION ACTIVITIES Volume 1 of 2: Documented Safety Analysis for Decommissioning and Environmental Restoration Projects U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE TS i This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; (423) 576-8401. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

296

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA)

udrilling 2012 Domestic Uranium Production Report Next Release Date: May 2014 Table 1. U.S. uranium drilling activities, 2003-2012 Year Exploration Drilling

297

URANIUM LEACHING AND RECOVERY PROCESS  

DOE Patents (OSTI)

A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

McClaine, L.A.

1959-08-18T23:59:59.000Z

298

PROCESS FOR MAKING URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process is described for producing uranium hexafluoride by reacting uranium hexachloride with hydrogen fluoride at a temperature below about 150 deg C, under anhydrous conditions.

Rosen, R.

1959-07-14T23:59:59.000Z

299

Uranium industry annual 1993  

SciTech Connect

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

300

Process modeling of plutonium conversion and MOX fabrication for plutonium disposition  

SciTech Connect

Two processes are currently under consideration for the disposition of 35 MT of surplus plutonium through its conversion into fuel for power production. These processes are the ARIES process, by which plutonium metal is converted into a powdered oxide form, and MOX fuel fabrication, where the oxide powder is combined with uranium oxide powder to form ceramic fuel. This study was undertaken to determine the optimal size for both facilities, whereby the 35 MT of plutonium metal will be converted into fuel and burned for power. The bounding conditions used were a plutonium concentration of 3--7%, a burnup of 20,000--40,000 MWd/MTHM, a core fraction of 0.1 to 0.4, and the number of reactors ranging from 2--6. Using these boundary conditions, the optimal cost was found with a plutonium concentration of 7%. This resulted in an optimal throughput ranging from 2,000 to 5,000 kg Pu/year. The data showed minimal costs, resulting from throughputs in this range, at 3,840, 2,779, and 3,497 kg Pu/year, which results in a facility lifetime of 9.1, 12.6, and 10.0 years, respectively.

Schwartz, K.L. [Univ. of Texas, Austin, TX (United States). Dept. of Nuclear Engineering

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NSLS Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Services NSLS Services Computing Services Lab Space Libraries Postal Services Procurement Repair & Equipment Services Shipping Procedures Storage User Accounts Workshop Procedures...

302

URANIUM SEPARATION PROCESS  

DOE Patents (OSTI)

The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

McVey, W.H.; Reas, W.H.

1959-03-10T23:59:59.000Z

303

Uranium from phosphate ores  

Science Conference Proceedings (OSTI)

Phosphate rock, the major raw material for phosphate fertilizers, contains uranium that can be recovered when the rock is processed. This makes it possible to produce uranium in a country that has no uranium ore deposits. The author briefly describes the way that phosphate fertilizers are made, how uranium is recovered in the phosphate industry, and how to detect uranium recovery operations in a phosphate plant. Uranium recovery from the wet-process phosphoric acid involves three unit operations: (1) pretreatment to prepare the acid; (2) solvent extraction to concentrate the uranium; (3) post treatment to insure that the acid returning to the acid plant will not be harmful downstream. There are 3 extractants that are capable of extracting uranium from phosphoric acid. The pyro or OPPA process uses a pyrophosphoric acid that is prepared on site by reacting an organic alcohol (usually capryl alcohol) with phosphorous pentoxide. The DEPA-TOPO process uses a mixture of di(2-ethylhexyl)phosphoric acid (DEPA) and trioctyl phosphine oxide (TOPO). The components can be bought separately or as a mixture. The OPAP process uses octylphenyl acid phosphate, a commercially available mixture of mono- and dioctylphenyl phosphoric acids. All three extractants are dissolved in kerosene-type diluents for process use.

Hurst, F.J.

1983-01-01T23:59:59.000Z

304

DECONTAMINATION OF URANIUM  

DOE Patents (OSTI)

A process is given for separating fission products from uranium by extracting the former into molten aluminum. Phase isolation can be accomplished by selectively hydriding the uranium at between 200 and 300 deg C and separating the hydride powder from coarse particles of fissionproduct-containing aluminum. (AEC)

Spedding, F.H.; Butler, T.A.

1962-05-15T23:59:59.000Z

305

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

Uranium Marketing Uranium Marketing Annual Report May 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2010 Uranium Marketing Annual Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity, Renewables, and Uranium Statistics. Questions about the preparation and content of this report may be directed to Michele Simmons, Team Leader,

306

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

307

URANIUM PRECIPITATION PROCESS  

DOE Patents (OSTI)

A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

1957-12-01T23:59:59.000Z

308

Environmental Assessment DOE/EA-1172 DOE Sale of Surplus Natural and Low Enriched Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1172 DOE Sale of Surplus Natural and Low Enriched Uranium | October 1996 | For additional information contact: Office of Nuclear Energy, Science and Technology U.S. Department of Energy Washington, DC 20585 ii October 1996 | Table of Contents 1.0 Purpose and Need for Agency Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.1 Purpose and Need for Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 1.2 Relationship to Other DOE NEPA Documents . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 1.2.1 Environmental Assessment for the Purchase of Russian Low Enriched Uranium Derived from the Dismantlement of Nuclear Weapons in the | Countries of the Former Soviet Union . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 | 1.2.2 Disposition of Surplus Highly Enriched Uranium Final EIS . . . . . . . . 1-2 1.3 Public Comments on the Draft EA

309

Fissile material disposition program: Screening of alternate immobilization candidates for disposition of surplus fissile materials  

Science Conference Proceedings (OSTI)

With the end of the Cold War, the world faces for the first time the need to dismantle vast numbers of ``excess`` nuclear weapons and dispose of the fissile materials they contain, together with fissile residues in the weapons production complex left over from the production of these weapons. If recently agreed US and Russian reductions are fully implemented, tens of thousands of nuclear weapons, containing a hundred tons or more of plutonium and hundreds of tonnes* of highly enriched uranium (HEU), will no longer be needed worldwide for military purposes. These two materials are the essential ingredients of nuclear weapons, and limits on access to them are the primary technical barrier to prospective proliferants who might desire to acquire a nuclear weapons capability. Theoretically, several kilograms of plutonium, or several times that amount of HEU, is sufficient to make a nuclear explosive device. Therefore, these materials will continue to be a potential threat to humanity for as long as they exist.

Gray, L.W.

1996-01-08T23:59:59.000Z

310

Independent Oversight Review, Babcock & Wilcox Technical Services Y-12, LLC- July 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Long Lead Procurement Processed Used by Babcock & Wilcox Technical Services Y-12, LLC for the Uranium Processing Facility Project

311

Preliminary Notice of Violation, Babcock & Wilcox Teclmical Services Y-12, LLC- NEA-2008-01  

Energy.gov (U.S. Department of Energy (DOE))

Preliminary Notice of Violation issued to Babcock & Wilcox Technical Services Y-12, LLC, related to a Uranium Chip Fire at the Y-12 National Security Complex

312

Disposition of Unirradiated Sodium Bonded EBR-II Driver Fuel Elements and HEU Scrap: Work Performed for FY 2007  

SciTech Connect

Specific surplus high enriched uranium (HEU) materials at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) will be transferred to a designated off-site receiving facility. The DOE High Enriched Uranium Disposition Program Office (HDPO) will determine which materials, if any, will be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for nuclear reactors. These surplus HEU materials include approximately 7200 kg unirradiated sodium-bonded EBR-II driver fuel elements, and nearly 800 kg of HEU casting scrap from the process which formed various sodium-bonded fuels (including the EBR-II driver elements). Before the driver fuel can be packaged for shipment, the fuel elements will require removal of the sodium bond. The HEU scrap will also require repackaging in preparation for off-site transport. Preliminary work on this task was authorized by BWXT Y-12 on Nov 6, 2006 and performed in three areas: Facility Modifications Safety Documentation Project Management

Karen A Moore

2007-04-01T23:59:59.000Z

313

Used Fuel Disposition Campaign Disposal Research and Development Roadmap |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Used Fuel Disposition Campaign Disposal Research and Development Roadmap The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW). The Mission of the UFDC is To identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. has, for the past twenty-plus years, focused efforts on disposing

314

Microsoft PowerPoint - REVWaste_Disposition_Update.061411.pptx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials and Disposition Update Materials and Disposition Update Environmental Management Site-Specific www.em.doe.gov 1 Environmental Management Site-Specific Advisory Board Chairs' Meeting June 15, 2011 Shirley J. Olinger EM Associate Principal Deputy for Corporate Operations DOE's Waste Management Priorities Continue to manage waste inventories in a safe and compliant manner. Address high risk waste in a cost- effective manner. Maintain and optimize current disposal capability for future generations. www.em.doe.gov 2 Develop future disposal capacity in a complex environment. Promote the development of treatment and disposal alternatives in the commercial sector. Review current policies and directives and provide needed oversight. Completed Legacy TRU Sites Teledyne-Brown ARCO Energy Technology Engineering Center

315

Used Fuel Disposition Campaign Disposal Research and Development Roadmap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Research and Development Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development (R&D) activities related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has been made in the U.S and other nations, but gaps in knowledge still exist. This document provides an evaluation and prioritization of R&D opportunities

316

Used Fuel Disposition Campaign International Activities Implementation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Activities International Activities Implementation Plan Used Fuel Disposition Campaign International Activities Implementation Plan The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through

317

Plutonium disposition via immobilization in ceramic or glass  

SciTech Connect

The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

1997-03-05T23:59:59.000Z

318

"2012 Uranium Marketing Annual Report"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012" 5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012" 2010,2011,2012 "AREVA NC, Inc. (was COGEMA, Inc.)","Advance Uranium Asset Management Ltd.","Advance Uranium Asset Management Ltd." "LES, LLC (Louisiana Energy Services)","AREVA NC, Inc.","AREVA NC, Inc." "NUKEM, Inc.","CNEIC (China Nuclear Energy Industry Corporation)","CNEIC (China Nuclear Energy Industry Corporation)" "UG U.S.A., Inc.","Energy Northwest","LES, LLC (Louisiana Energy Services)" "URENCO, Inc.","LES, LLC (Louisiana Energy Services)","NextEra Energy Seabrook" "USEC, Inc. (United States Enrichment Corporation)","NUKEM, Inc.","NUKEM, Inc."

319

Uranium Marketing Annual Report - Release Date: May 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 AREVA NC, Inc. (was COGEMA, Inc.) Advance Uranium Asset Management Ltd. Advance Uranium Asset Management Ltd. LES (Louisiana Energy Services) AREVA NC, Inc. AREVA NC, Inc. NUKEM, Inc. CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) UG U.S.A., Inc. Energy Northwest LES, LLC (Louisiana Energy Services) URENCO, Inc. LES, LLC (Louisiana Energy Services) NextEra Energy Seabrook USEC, Inc. (United States Enrichment Corporation) NUKEM, Inc. NUKEM, Inc. Westinghouse Electric Company TENEX (Techsnabexport Joint Stock Company) TENEX (Techsnabexport Joint Stock Company) URENCO, Inc. UG U.S.A., Inc.

320

India's Worsening Uranium Shortage  

Science Conference Proceedings (OSTI)

As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commissions Mid-Term Appraisal of the countrys current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of Indias uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

Curtis, Michael M.

2007-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Accelerating the disposition of transuranic waste from LANL - 9495  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory (LANL) was established during World War II with a single mission -- to design and build an atomic bomb. In the 65 years since, nuclear weapons physics, design and engineering have been the Laboratory's primary and sustaining mission. Experimental and process operations -- and associated cleanout and upgrade activities -- have generated a significant inventory of transuranic (TRU) waste that is stored at LANL's Technical Area 54, Material Disposal Area G (MDA G). When the Waste Isolation Pilot Plant (WIPP) opened its doors in 1999, LANL's TRU inventory totaled about 10,200 m{sup 3}, with a plutonium 239-equivalent curie (PE Ci) content of approximately 250,000 curies. By December 2008, a total of about 2,300 m3 (61,000 PE Ci) had been shipped to WIPP from LANL. This has resulted in a net reduction of about 1,000 m{sup 3} of TRU inventory over that time frame. This paper presents progress in dispositioning legacy and newly-generated transuranic waste (TRU) from ongoing missions at the LANL. The plans for, and lessons learned, in dispositioning several hundred high-activity TRU waste drums are reviewed. This waste population was one of the highest risks at LANL. Technical challenges in disposition of the high-activity drums are presented. These provide a preview of challenges to be addressed in dispositioning the remaining 6,800 m{sup 3} of TRU stored above ground and 2,400 m{sup 3} of TRU waste that is 'retrievably' stored below-grade. LANL is using subcontractors for much of this work and has formed a strong partnership with WIPP and its contractor to address this cleanup challenge.

Shepard, Mark D [Los Alamos National Laboratory; Stiger, Susan G [Los Alamos National Laboratory; Blankenhorn, James A [Los Alamos National Laboratory; Rael, George J [Los Alamos National Laboratory; Moody, David C [U.S DOE

2009-01-01T23:59:59.000Z

322

EPRI Global LLW Profile - Generation, Treatment, Conditioning, and Disposition  

Science Conference Proceedings (OSTI)

In the past several years, the Electric Power Research Institutes (EPRIs) international membership has expanded significantly. As EPRIs membership demographics shift, the absence of a comprehensive global understanding of low level waste (LLW) practices limits our ability to effectively provide technically accurate dialogue and assistance. Understanding LLW waste generation, classification, packaging, treatment, conditioning and disposition profiles is imperative when providing ...

2012-11-29T23:59:59.000Z

323

RECOVERY OF URANIUM VALUES  

DOE Patents (OSTI)

A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine in the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected amine dissolved in a nonpolar water-immiscible organic solvent such as kerosene. The uranium which is substantially completely exiracted by the organic phase may be stripped therefrom by waters and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

Brown, K.B.; Crouse, D.J. Jr.; Moore, J.G.

1959-03-10T23:59:59.000Z

324

Depleted uranium management alternatives  

SciTech Connect

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

325

Disposition of actinides released from high-level waste glass  

SciTech Connect

A series of static leach tests was conducted using glasses developed for vitrifying tank wastes at the Savannah River Site to monitor the disposition of actinide elements upon corrosion of the glasses. In these tests, glasses produced from SRL 131 and SRL 202 frits were corroded at 90{degrees}C in a tuff groundwater. Tests were conducted using crushed glass at different glass surface area-to-solution volume (S/V) ratios to assess the effect of the S/V on the solution chemistry, the corrosion of the glass, and the disposition of actinide elements. Observations regarding the effects of the S/V on the solution chemistry and the corrosion of the glass matrix have been reported previously. This paper highlights the solution analyses performed to assess how the S/V used in a static leach test affects the disposition of actinide elements between fractions that are suspended or dissolved in the solution, and retained by the altered glass or other materials.

Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

1994-05-01T23:59:59.000Z

326

Video: The Depleted Uranium Hexafluoride Story  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Story The Depleted Uranium Hexafluoride Story An overview of Uranium, its isotopes, the need and history of diffusive separation, the handling of the Depleted Uranium...

327

BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE  

E-Print Network (OSTI)

Metallic Inclusions in Uranium Dioxide", LBL-11117 (1980).in Hypostoichiornetric Uranium Dioxide 11 , LBL-11095 (OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa L. Yang and

Yang, Rosa L.

2013-01-01T23:59:59.000Z

328

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site  

DOE Green Energy (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

N /A

2003-11-28T23:59:59.000Z

329

Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site  

DOE Green Energy (OSTI)

This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

N /A

2003-11-28T23:59:59.000Z

330

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 Mill Owner Mill Name County, State (existing and planned locations) Milling Capacity (short tons of ore per day) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished Denison White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby

331

Uranium-Based Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium-Based Catalysts S. H. Overbury, Cyrus Riahi-Nezhad, Zongtao Zhang, Sheng Dai, and Jonathan Haire Oak Ridge National Laboratory* P.O. Box 2008 Oak Ridge, Tennessee...

332

Domestic Uranium Production Report  

Annual Energy Outlook 2012 (EIA)

6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

333

Uranium Management and Policy  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Uranium Management and Policy (NE-54), as part of the Office of Fuel Cycle Technologies (NE-5), supports the Department of Energy (DOE) by assuring domestic supplies of fuel for...

334

Chemical Forms of Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

such as water vapor in the air, the UF6 and water react, forming corrosive hydrogen fluoride (HF) and a uranium-fluoride compound called uranyl fluoride (UO2F2). For this reason,...

335

300 AREA URANIUM CONTAMINATION  

SciTech Connect

{sm_bullet} Uranium fuel production {sm_bullet} Test reactor and separations experiments {sm_bullet} Animal and radiobiology experiments conducted at the. 331 Laboratory Complex {sm_bullet} .Deactivation, decontamination, decommissioning,. and demolition of 300 Area facilities

BORGHESE JV

2009-07-02T23:59:59.000Z

336

Depleted uranium valuation  

SciTech Connect

The following uses for depleted uranium were examined to determine its value: a substitute for lead in shielding applications, feed material in gaseous diffusion enrichment facilities, feed material for an advanced enrichment concept, Mixed Oxide (MOx) diluent and blanket material in LMFBRs, and fertile material in LMFBR systems. A range of depleted uranium values was calculated for each of these applications. The sensitivity of these values to analysis assumptions is discussed. 9 tables.

Lewallen, M.A.; White, M.K.; Jenquin, U.P.

1979-04-01T23:59:59.000Z

337

URANIUM SEPARATION PROCESS  

DOE Patents (OSTI)

A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

Lyon, W.L.

1962-04-17T23:59:59.000Z

338

Uranium tailings bibliography  

SciTech Connect

A bibliography containing 1,212 references is presented with its focus on the general problem of reducing human exposure to the radionuclides contained in the tailings from the milling of uranium ore. The references are divided into seven broad categories: uranium tailings pile (problems and perspectives), standards and philosophy, etiology of radiation effects, internal dosimetry and metabolism, environmental transport, background sources of tailings radionuclides, and large-area decontamination. (JSR)

Holoway, C.F.; Goldsmith, W.A.; Eldridge, V.M.

1975-12-01T23:59:59.000Z

339

URANIUM EXTRACTION PROCESS  

DOE Patents (OSTI)

A process is described for recovering uranium values from acidic aqueous solutions containing hexavalent uranium by contacting the solution with an organic solution comprised of a substantially water-immiscible organlc diluent and an organic phosphate to extract the uranlum values into the organic phase. Carbon tetrachloride and a petroleum hydrocarbon fraction, such as kerosene, are sultable diluents to be used in combination with organlc phosphates such as dibutyl butylphosphonate, trlbutyl phosphine oxide, and tributyl phosphate.

Baldwin, W.H.; Higgins, C.E.

1958-12-16T23:59:59.000Z

340

Method for the recovery of uranium values from uranium tetrafluoride  

DOE Patents (OSTI)

The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

Kreuzmann, A.B.

1982-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Method for the recovery of uranium values from uranium tetrafluoride  

DOE Patents (OSTI)

The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

Kreuzmann, Alvin B. (Cincinnati, OH)

1983-01-01T23:59:59.000Z

342

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

10. Uranium reserve estimates at the end of 2012 10. Uranium reserve estimates at the end of 2012 million pounds U3O8 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 1 Sixteen respondents reported reserve estimates on 71 mines and properties. These uranium reserve estimates cannot be compared with the much larger historical data set of uranium reserves that were published in the July 2010 report U.S. Uranium Reserves Estimates at http://www.eia.gov/cneaf/nuclear/page/reserves/ures.html. Reserves, as reported here, do not necessarily imply compliance with U.S. or Canadian government definitions for purposes of investment disclosure.

343

FAQ 5-Is uranium radioactive?  

NLE Websites -- All DOE Office Websites (Extended Search)

Is uranium radioactive? Is uranium radioactive? Is uranium radioactive? All isotopes of uranium are radioactive, with most having extremely long half-lives. Half-life is a measure of the time it takes for one half of the atoms of a particular radionuclide to disintegrate (or decay) into another nuclear form. Each radionuclide has a characteristic half-life. Half-lives vary from millionths of a second to billions of years. Because radioactivity is a measure of the rate at which a radionuclide decays (for example, decays per second), the longer the half-life of a radionuclide, the less radioactive it is for a given mass. The half-life of uranium-238 is about 4.5 billion years, uranium-235 about 700 million years, and uranium-234 about 25 thousand years. Uranium atoms decay into other atoms, or radionuclides, that are also radioactive and commonly called "decay products." Uranium and its decay products primarily emit alpha radiation, however, lower levels of both beta and gamma radiation are also emitted. The total activity level of uranium depends on the isotopic composition and processing history. A sample of natural uranium (as mined) is composed of 99.3% uranium-238, 0.7% uranium-235, and a negligible amount of uranium-234 (by weight), as well as a number of radioactive decay products.

344

Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (DOE/EIS-0287) (11/28/06)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

811 Federal Register 811 Federal Register / Vol. 71, No. 228 / Tuesday, November 28, 2006 / Notices Information Relay Service (FIRS) at 1-800-877-8339. [FR Doc. E6-20124 Filed 11-27-06; 8:45 am] BILLING CODE 4000-01-P DEPARTMENT OF ENERGY Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement AGENCY: Department of Energy. ACTION: Amended Record of Decision. SUMMARY: The U.S. Department of Energy (DOE) is amending its Record of Decision (ROD) published December 19, 2005 (70 Federal Register [FR] 75165), pursuant to the Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement (Final EIS) (DOE/EIS-0287, September 2002). The Final EIS analyzed two sets of alternatives for accomplishing DOE's

345

FAQ 6-What is depleted uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted uranium? What is depleted uranium? Depleted uranium is created during the processing that is done to make natural uranium suitable for use as fuel in nuclear power plants...

346

Tag: uranium | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

uranium Tag: uranium Displaying 1 - 10 of 23... Category: News The Nation's Expert in All Things Uranium Y-12 serves the nation and the world as a center of excellence for uranium...

347

Uranium Marketing Annual Report - Release Date: May 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

4. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and material type, 2012 deliveries 4. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by origin and material type, 2012 deliveries thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries Uranium Concentrate Natural UF6 Enriched UF6 Natural UF6 and Enriched UF6 Total U.S.-Origin Uranium Purchases W W W W 9,807 Weighted-Average Price W W W W 59.44 Foreign-Origin Uranium Purchases W W W W 47,713 Weighted-Average Price W W W W 54.07 Total Purchases 28,642 W W 28,878 57,520 Weighted-Average Price 54.20 W W 55.80 54.99 W = Data withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum of components because of independent rounding. Weighted-average prices are not adjusted for inflation. Natural UF6 is uranium hexafluoride. The natural UF6 and enriched UF6 quantity represents only the U3O8 equivalent uranium-component quantity specified in the contract for each delivery of natural UF6 and enriched UF6. The natural UF6 and enriched UF6 weighted-average price represent only the U3O8 equivalent uranium-component price specified in the contract for each delivery of natural UF6 and enriched UF6, and does not include the conversion service and enrichment service components.

348

Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site  

Science Conference Proceedings (OSTI)

The purpose of this study is to identify, assess, and rank potential sites for the proposed Surplus Plutonium Disposition Facilities complex at the Savannah River Site.

Wike, L.D.

2000-12-13T23:59:59.000Z

349

The Nature of Vibrational Softening in ? - Uranium  

Science Conference Proceedings (OSTI)

... The Nature of Vibrational Softening in ? - Uranium. The standard textbook ... B / atom. All experiments used uranium powder. High ...

350

Education: Digital Resource Center - WEB: Uranium Information ...  

Science Conference Proceedings (OSTI)

Sep 24, 2007 ... Uranium, Electricity and the Greenhouse Effect ... Educational Resource Papers," Australian Uranium Association Ltd. Site updated weekly.

351

Energy Levels of Neutral Uranium ( U I )  

Science Conference Proceedings (OSTI)

... Data, Uranium (U) Homepage - Introduction Finding list Select element by name. ... Version Energy Levels of Neutral Uranium ( U I ). ...

352

Domestic Uranium Production Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, ... with currently proven mining and processing technology and under current law and regulations.

353

Domestic Uranium Production Report 2004 -2011  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections ...

354

NSLS Services | Postal Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Postal Services Postal Services U.S. Postal Service BNL has a full-service U.S. Postal Service Office (Upton branch) located in Staff Services, Building 179, x2539. BNL Mail Service Mail is delivered and picked up twice a day from each building on site. Users should leave internal lab mail (brown envelopes, no stamps needed) and U.S. Mail (regular envelopes, stamps required) in the outgoing mail boxes at NSLS mail stop 725A, located in the lobby by the elevator. Receiving Mail During regular working hours, packages and other special deliveries are brought to the Stockroom while regular mail is taken to the mailstops around the building. Each beam port is assigned a mail slot at NSLS mail stop 725A near the elevator in the lobby. The beamline number should be on all mail addressed to users. Mail to users should be addressed as follows

355

Process for electrolytically preparing uranium metal  

DOE Patents (OSTI)

A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

Haas, Paul A. (Knoxville, TN)

1989-01-01T23:59:59.000Z

356

Uranium hexafluoride handling. Proceedings  

SciTech Connect

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

357

PRODUCTION OF URANIUM HEXAFLUORIDE  

DOE Patents (OSTI)

A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

Fowler, R.D.

1957-08-27T23:59:59.000Z

358

Uranium resources: Issues and facts  

SciTech Connect

Although there are several secondary issues, the most important uranium resource issue is, ``will there be enough uranium available at a cost which will allow nuclear power to be competitive in the future?`` This paper will attempt to answer this question by discussing uranium supply, demand, and economics from the perspective of the United States. The paper will discuss: how much uranium is available; the sensitivity of nuclear power costs to uranium price; the potential future demand for uranium in the Unites States, some of the options available to reduce this demand, the potential role of the Advanced Liquid Metal Cooled Reactor (ALMR) in reducing uranium demand; and potential alternative uranium sources and technologies.

Delene, J.G.

1993-12-31T23:59:59.000Z

359

METHOD OF RECOVERING URANIUM COMPOUNDS  

DOE Patents (OSTI)

S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

Poirier, R.H.

1957-10-29T23:59:59.000Z

360

METHOD OF SINTERING URANIUM DIOXIDE  

DOE Green Energy (OSTI)

This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

Henderson, C.M.; Stavrolakis, J.A.

1963-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Uranium-titanium-niobium alloy  

DOE Patents (OSTI)

A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

Ludtka, Gail M. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

1990-01-01T23:59:59.000Z

362

It's Elemental - The Element Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

into uranium-233, also through beta decay. If completely fissioned, one pound (0.45 kilograms) of uranium-233 will provide the same amount of energy as burning 1,500 tons...

363

EXTRACTION OF URANIUM  

DOE Patents (OSTI)

An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.

Kesler, R.D.; Rabb, D.D.

1959-07-28T23:59:59.000Z

364

Uranium immobilization and nuclear waste  

SciTech Connect

Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

Duffy, C.J.; Ogard, A.E.

1982-02-01T23:59:59.000Z

365

PROCESS OF PREPARING URANIUM CARBIDE  

DOE Patents (OSTI)

A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

Miller, W.E.; Stethers, H.L.; Johnson, T.R.

1964-03-24T23:59:59.000Z

366

Selection of a management strategy for depleted uranium hexafluoride  

Science Conference Proceedings (OSTI)

A consequence of the uranium enrichment process used in the United States (US) is the accumulation of a significant amount of depleted uranium hexafluoride (UF{sub 6}). Currently, approximately 560,000 metric tons of the material are stored at three different sites. The US Department of Energy (DOE) has recently initiated a program to consider alternative strategies for the cost-effective and environmentally safe long-term management of this inventory of depleted UF{sub 6}. The program involves a technology and engineering assessment of proposed management options (use/reuse, conversion, storage, or disposal) and an analysis of the potential environmental impacts and life-cycle costs of alternative management strategies. The information obtained from the studies will be used by the DOE to select a preferred long-term management strategy. The selection and implementation of a management strategy will involve consideration of a number of important issues such as environmental, health, and safety effects; the balancing of risks versus costs in a context of reduced government spending; socioeconomic implications, including effects on the domestic and international uranium industry; the technical status of proposed uses or technologies; and public involvement in the decision making process. Because of its provisions for considering a wide range of relevant issues and involving the public, this program has become a model for future DOE materials disposition programs. This paper presents an overview of the Depleted Uranium Hexafluoride Management Program. Technical findings of the program to date are presented, and major issues involved in selecting and implementing a management strategy are discussed.

Patton, S.E.; Hanrahan, E.J.; Bradley, C.E.

1995-09-06T23:59:59.000Z

367

Draft Environmental Assessment on the Remote-handled Waste Disposition  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review and comment on a draft environmental assessment that the Department issued today, for a proposal to process approximately 327 cubic meters of remote-handled waste currently stored at the Idaho National Laboratory. An additional five cubic meters of waste stored at the Hanford Site near Richland, Washington is also evaluated since it is reasonably foreseeable that a decision may be made in the future to send that waste to Idaho for treatment. The project is necessary to prepare the waste for legally-required disposal. Under the Department�s preferred alternative, workers would use sealed rooms called hot cells at the Idaho Nuclear Technology and Engineering Center (INTEC) to process the waste, treat it as necessary and repackage it so that it is ready for disposal. The document describes the modifications necessary to hot cells to perform the work.

368

U.S. Natural Gas Monthly Supply and Disposition Balance  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Supply and Disposition Balance Monthly Supply and Disposition Balance (Billion Cubic Feet) Period: Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Gross Withdrawals 2,473 2,541 2,444 2,550 2,540 2,465 1973-2013 Marketed Production 2,086 2,166 2,097 2,188 2,188 2,105 1973-2013 NGPL Production, Gaseous Equivalent 107 110 107 113 117 116 1973-2013 Dry Production 1,979 2,056 1,990 2,076 2,071 1,989 1973-2013 Supplemental Gaseous Fuels 5 5 3 3 5 5 1973-2013 Net Imports 95 92 103 108 106 123 1973-2013 Net Storage Withdrawals -136 -418 -372 -275 -270 -355 1973-2013 Balancing Item 14 12 9 7 6 -5 2001-2013

369

Disposition of ORNL's Spent Nuclear Fuel  

SciTech Connect

This paper describes the process of retrieving, repackaging, and preparing Oak Ridge spent nuclear fuel (SNF) for off-site disposition. The objective of the Oak Ridge SNF Project is to safely, reliably, and efficiently manage SNF that is stored on the Oak Ridge Reservation until it can be shipped off-site. The project required development of several unique processes and the design and fabrication of special equipment to enable the successful retrieval, transfer, and repackaging of Oak Ridge SNF. SNF was retrieved and transferred to a hot cell for repackaging. After retrieval of SNF packages, the storage positions were decontaminated and stainless steel liners were installed to resolve the vulnerability of water infiltration. Each repackaged SNF canister has been transferred from the hot cell back to dry storage until off-site shipments can be made. Three shipments of aluminum-clad SNF were made to the Savannah River Site (SRS), and five shipments of non-aluminum-clad SNF are planned to the Idaho National Engineering and Environmental Laboratory (INEEL). Through the integrated cooperation of several organizations including the U.S. Department of Energy (DOE), Bechtel Jacobs Company LLC (BJC), Oak Ridge National Laboratory (ORNL), and various subcontractors, preparations for the disposition of SNF in Oak Ridge have been performed in a safe and successful manner.

Turner, D. W.; DeMonia, B. C.; Horton, L. L.

2002-02-26T23:59:59.000Z

370

PROCESS OF RECOVERING URANIUM  

DOE Patents (OSTI)

An improved precipitation method is described for the recovery of uranium from aqueous solutions. After removal of all but small amounts of Ni or Cu, and after complexing any iron present, the uranium is separated as the peroxide by adding H/sub 2/O/sub 2/. The improvement lies in the fact that the addition of H/sub 2/O/sub 2/ and consequent precipitation are carried out at a temperature below the freezing; point of the solution, so that minute crystals of solvent are present as seed crystals for the precipitation.

Price, T.D.; Jeung, N.M.

1958-06-17T23:59:59.000Z

371

TREATMENT OF URANIUM SURFACES  

DOE Patents (OSTI)

An improved process is presented for prcparation of uranium surfaces prior to electroplating. The surfacc of the uranium to be electroplated is anodized in a bath comprising a solution of approximately 20 to 602 by weight of phosphoric acid which contains about 20 cc per liter of concentrated hydrochloric acid. Anodization is carried out for approximately 20 minutes at a current density of about 0.5 amperes per square inch at a temperature of about 35 to 45 C. The oxidic film produced by anodization is removed by dipping in strong nitric acid, followed by rinsing with water just prior to electroplating.

Slunder, C.J.

1959-02-01T23:59:59.000Z

372

Production and Handling Slide 21: Melting Points of Uranium and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Points of Uranium and Uranium Compounds Skip Presentation Navigation First Slide Previous Slide Next Slide Last Presentation Table of Contents Melting Points of Uranium and Uranium...

373

FAQ 26-Are there any uses for depleted uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

uses for depleted uranium? Are there any uses for depleted uranium? Several current and potential uses exist for depleted uranium. Depleted uranium could be mixed with highly...

374

Uranium Marketing Annual Report - Release Date: May 31, 2011  

Gasoline and Diesel Fuel Update (EIA)

S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners and operators of U.S. civilian nuclear power reactors, 1994-2012 S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners and operators of U.S. civilian nuclear power reactors, 1994-2012 Million Pounds U3O8 Equivalent 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Feed Deliveries by Owners and Operators of U.S. Civilian Nuclear Power Reactors 37.6 44.3 49.1 40.3 40.6 43.9 47.8 47.3 54.7 49.3 53.4 52.9 56.6 49.0 43.4 51.9 45.5 51.3 52.1 Uranium in Fuel Assemblies Loaded into U.S. Civilian Nuclear Power Reactors 40.4 51.1 46.2 48.2 38.2 58.8 51.5 52.7 57.2 62.3 50.1 58.3 51.7 45.5 51.3 49.4 44.3 50.9 49.5 Million Separative Work Units (SWU)

375

EIS-0287: Idaho High-Level Waste & Facilities Disposition | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Idaho High-Level Waste & Facilities Disposition 7: Idaho High-Level Waste & Facilities Disposition EIS-0287: Idaho High-Level Waste & Facilities Disposition SUMMARY This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD January 12, 2010 EIS-0287: Amended Record of Decision Idaho High-Level Waste and Facilities Disposition January 4, 2010

376

EIS-0287: Idaho High-Level Waste and Facilities Disposition Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho High-Level Waste and Facilities Disposition Final Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) EIS-0287: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, EIS-0287 (September 2002) This EIS analyzes the potential environmental consequences of alternatives for managing high-level waste (HLW) calcine, mixed transuranic waste/sodium bearing waste (SBW) and newly generated liquid waste at the Idaho National Engineering and Environmental Laboratory (INEEL) in liquid and solid forms. This EIS also analyzes alternatives for the final disposition of HLW management facilities at the INEEL after their missions are completed. Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement, DOE/EIS-0287 (September 2002)

377

EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29: Storage and Disposition of Weapons-Usable Fissile 29: Storage and Disposition of Weapons-Usable Fissile Materials EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials Summary The EIS will evaluate the reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. Public Comment Opportunities None available at this time. Documents Available For Download September 5, 2007 EIS-0229: Supplement Analysis (September 2007) Storage of Surplus Plutonium Materials at the Savannah River Site November 14, 2003 EIS-0229: Record of Decision (November 2003) Storage and Disposition of Weapons-Usable Fissile Materials November 7, 2003 EIS-0229-SA-03: Supplement Analysis Fabrication of Mixed Oxide Fuel Lead Assemblies in Europe

378

High loading uranium fuel plate  

DOE Patents (OSTI)

Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

1990-01-01T23:59:59.000Z

379

History of the US weapons-usable plutonium disposition program leading to DOE`s record of decision  

SciTech Connect

This report highlights important events and studies concerning surplus weapons-usable plutonium disposition in the United States. Included are major events that led to the creation of the U.S. Department of Energy (DOE) Office of Fissile Materials Disposition in 1994 and to that DOE office issuing the January 1997 Record of Decision for the Storage and Disposition of Weapons-Useable Fissile Materials Final Programmatic Environmental Impact Statement. Emphasis has been given to reactor-based plutonium disposition alternatives.

Spellman, D.J.; Thomas, J.F.; Bugos, R.G.

1997-04-01T23:59:59.000Z

380

STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS  

DOE Patents (OSTI)

A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)

Crouse, D.J. Jr.

1962-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Depleted Uranium Technical Brief  

E-Print Network (OSTI)

. This Technical Brief specifically addresses DU in an environmental contamination setting and specifically does.S. Department of Energy (DOE) and other govern ment sources. DU occurs in a number of different compounds airborne releases of uranium at one DOE facility amounted to 310,000 kg between 1951 and 1988, which

382

URANIUM RECOVERY PROCESS  

DOE Patents (OSTI)

The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

Hyman, H.H.; Dreher, J.L.

1959-07-01T23:59:59.000Z

383

US Department of Energy Uranium Enrichment Activity  

Science Conference Proceedings (OSTI)

KPMG Peat Marwick (KPMG), Certified Public Accountants, has completed its audit of the Department of Energy's Uranium Enrichment Activity (UEA) financial.statements as of September 30, 1991. The purpose of the audit was to determine whether (1) the financial statements were presented fairly in accordance with applicable accounting principles, (2) the auditee complied with all applicable laws and regulations that may have materially affected the financial statements, and (3) the internal accounting controls, taken as a whole, were adequate. The US Government, through the Department of Energy (DOE) and the management and operating contractor, operates the UEA to enrich uranium hexafluoride in the isotope U-235 for commercial power reactor operators, as further discussed in note 1 of the financial statements. The enrichment of uranium for Government program users, which had been a function of UEA, was transferred outside the UEA affective September 30, 1991, as described in note 3 of the financial statements. UEA is a part of DOE and does not exist as a separate legal entity. For financial reporting purposes, the entity is defined as those activities which provide enriching services to its customers. The financial statements are prepared by extracting and adjusting UEA related data from the financial records of DOE and its contractors.

Not Available

1992-06-16T23:59:59.000Z

384

Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies  

SciTech Connect

This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO{sub 2} assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the {sup 239}Pu and {ge}90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

Chodak, P. III

1996-05-01T23:59:59.000Z

385

Nuclear Fuel Facts: Uranium | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Management and Uranium Management and Policy » Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite. Uranium ore can be mined from open pits or underground excavations. The ore can then be crushed and treated at a mill to separate the valuable uranium from the ore. Uranium may also be dissolved directly from the ore deposits

386

Master EM Project Definition Rating Index - Facility Disposition Definitions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

43 43 Master EM Project Definition Rating Index - Facility Disposition Definitions The following definitions describe the criteria required to achieve a maximum rating or maturity value of 5. It should be assumed that maturity values of 1-5 represent a subjective assessment of the quality of definition and/or the degree to which the end-state or maximum criteria have been met, or the product has been completed in accordance with the definition of maturity values. Rating Element Criteria for Maximum Rating COST A1 Cost Estimate A cost estimate has been developed and formally approved by DOE and is the basis for the cost baselines. The cost estimate is a reasonable approximation of Total Project Costs, and covers all phases of the project. The estimate is prepared in

387

Microsoft Word - BingenSwitchDisposition_CXMemo.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2012 7, 2012 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Joan Kendall Realty Specialist - TERR-3 Proposed Action: Bingen Substation Sectionalizing Switches Disposition Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.24 Property Transfers Location: Klickitat County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to sell two sectionalizing switches owned by BPA but located on PacifiCorp's Condit-Powerdale 69-kilovolt (kV) line in and adjacent to the Bingen Substation. BPA sold the Bingen substation to Klickitat County PUD in 1997 but retained ownership rights to inspect, maintain, repair, and replace its remaining revenue meters,

388

Microsoft Word - DOE Records Disposition Schedule Changes3.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Changes-to-Schedules REV 3 DOE Administrative Records Schedules Changes Last revised: 12/14/2009 Date DOE Admin Schedule Item(s) Change Authorizing Document 3/02/07 1 10b, 24, 27, 42a-c Added items for Form I-9 (GRS 1, Item 10b), reasonable accommodation records (GRS 1, Item 24), alternative dispute resolution records (GRS 1, item 27), and alternative worksite records (GRS 1, Item 42). Added item numbers for N1 citations. GRS Transmittal No. 11, 12/31/03; GRS Transmittal No. 12, 7/14/04; GRS 1 Item 42 6/14/07 1 11 Second sentence in NOTE deleted. 6/14/07 1 12 Moved the NOTE for 12a to the series title. GRS 1, item 12 6/14/07 1 21 Inserted the "see note" and the disposition authority for the series title. N1-343-98-4, item 21 and GRS

389

Topic Index to the DOE Administrative Records Disposition Schedules  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5/21/07 TOPICINDEXTODOEADMINSCHEDULES 5/21/07 TOPICINDEXTODOEADMINSCHEDULES Topic Index to the DOE Administrative Records Disposition Schedules (excluding the GRS Schedules) Topic Schedule Item [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] A Academic/Outreach Program 1 44 Access Request Files 18 6 Accountable Officers' Files 6 1 Accounting Administrative Files 6 5 Administrative Claims Files 6 10 Administrative Training Records 1 29.2 Administrative Issuances 16 1 Administrative - All Other copies of Administrative Issuances 16 1.6 Administrative Grievance, Disciplinary, and Adverse Action Files 1 30 Americans with Disabilities Act 1 42 Apprenticeship Program Files 1 45 Architectural Models 17 7

390

Storage and Disposition of Weapons-Usable Fissile Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

86 86 Federal Register / Vol. 63, No. 156 / Thursday, August 13, 1998 / Notices 1 SRS has been identified by DOE as the preferred site for the immobilization disposition facility. responsibilities are to (1) evaluate the standards of accreditation applied to applicant foreign medical schools; and (2) determine the comparability of those standards to standards for accreditation applied to United States medical schools. For Further Information Contact: Bonnie LeBold, Executive Director, National Committee on Foreign Medical Education and Accreditation, 7th and D Streets, S.W., Room 3082, ROB #3, Washington, D.C. 20202-7563. Telephone: (202) 260-3636. Beginning September 28, 1998, you may call to obtain the identity of the countries whose standards are to be evaluated during this

391

ABSTRACT REQUESTER CONTRACT SCOPE OF WORK RATIONAL FOR DECISION DISPOSITION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WAIVER ACTION - WAIVER ACTION - ABSTRACT REQUESTER CONTRACT SCOPE OF WORK RATIONAL FOR DECISION DISPOSITION General Motors Conduct research, development and Cost Sharing 20 percent Recommended Corporation testing of 30 KW proton-exchange- membrane (PEM) fuel cell propulsion systems 0 STATEMENT OF CONSIDERATIONS REQUEST BY GENERAL MOTORS CORPORATION FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS UNDER CONTRACT NO. DE-AC02-90CH10435, W(A)-90- 056, CH-0663 The Allison Gas Turbine Division of the General Motors Corporation (hereafter GM), a large business, has petitioned for an advance waiver of patent rights under DOE Contract No. DE-AC02- 90CH10435. The contract, yet to be definitized, resulted from an RFP issued in January 1990. As set out in the attached waiver petition, GM has requested that domestic and foreign title to

392

PRODUCTION OF URANIUM METAL BY CARBON REDUCTION  

DOE Patents (OSTI)

The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

Holden, R.B.; Powers, R.M.; Blaber, O.J.

1959-09-22T23:59:59.000Z

393

Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel  

SciTech Connect

The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

Cowell, B.S.; Fisher, S.E.

1999-02-01T23:59:59.000Z

394

Remediation and Recovery of Uranium from Contaminated  

E-Print Network (OSTI)

uranium containing the mixture of isotopes occurring in nature; uranium depleted in the isotope 235; Depleted uranium 1000 kilograms; and Thorium 1000 kilograms. #12;INFCIRC/254/Rev.9/Part.1 November 2007 Annex B, section 4.); 2.5. Plants for the separation of isotopes of natural uranium, depleted uranium

Lovley, Derek

395

Method of preparation of uranium nitride  

SciTech Connect

Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

2013-07-09T23:59:59.000Z

396

Characteristics of Spent Fuel from Plutonium Disposition Reactors. Vol. 3: A Westinghouse Pressurized-Water Reactor Design  

Science Conference Proceedings (OSTI)

This report discusses the results of a simulation study involving the burnup of mixed-oxide (MOX) fuel in a Westinghouse pressurized-water reactor (PWR). The MOX was composed of uranium and plutonium oxides, where the plutonium was of weapons-grade composition. The study was part of the Fissile Materials Disposition Program and considered the possibility of fueling commercial reactors with weapons plutonium. The isotopic composition, the activities, and the decay heat, together with the gamma and neutron dose rates are discussed for the spent fuel. For the steady-state situation involving this PWR burning MOX fuel, two burn histories are reported. In one case, an assembly is burned in the reactor for two cycles, and in the second case and assembly is burned for three cycles. Furthermore, assemblies containing wet annular burnable absorbers (WABAs) and assemblies that do not contain WABAs are considered in all cases. The two-cycle cases have a burnup of 35 GWd/t, and the three-cycle cases have a burnup of 52.5 GWd/t.

Murphy, B.D.

1997-07-01T23:59:59.000Z

397

Method of preparing uranium nitride or uranium carbonitride bodies  

DOE Patents (OSTI)

Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U.sub.3 O.sub.8 and carbon by varying the weight ratio of carbon to U.sub.3 O.sub.8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies.

Wilhelm, Harley A. (Ames, IA); McClusky, James K. (Valparaiso, IN)

1976-04-27T23:59:59.000Z

398

Method for fabricating uranium foils and uranium alloy foils  

DOE Patents (OSTI)

A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

2006-09-05T23:59:59.000Z

399

METHOD OF PRODUCING URANIUM  

DOE Patents (OSTI)

A modified process is described for the production of uranium metal by means of a bomb reduction of UF/sub 4/. Difficulty is sometimes experienced in obtaining complete separation of the uranium from the slag when the process is carried out on a snnall scale, i.e., for the production of 10 grams of U or less. Complete separation may be obtained by incorporating in the reaction mixture a quantity of MnCl/sub 2/, so that this compound is reduced along with the UF/sub 4/ . As a result a U--Mn alloy is formed which has a melting point lower than that of pure U, and consequently the metal remains molten for a longer period allowing more complete separation from the slag.

Foster, L.S.; Magel, T.T.

1958-05-13T23:59:59.000Z

400

,"U.S. Natural Gas Monthly Supply and Disposition Balance"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Supply and Disposition Balance" Monthly Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Monthly Supply and Disposition Balance",9,"Monthly","9/2013","1/15/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_sndm_s1_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_sndm_s1_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"U.S. Natural Gas Annual Supply and Disposition Balance"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Supply and Disposition Balance" Annual Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Supply",5,"Annual",2012,"6/30/1930" ,"Data 2","Disposition",5,"Annual",2012,"6/30/1930" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_sum_snd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_sum_snd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

402

ELECTROLYSIS OF THORIUM AND URANIUM  

DOE Patents (OSTI)

An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

Hansen, W.N.

1960-09-01T23:59:59.000Z

403

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

9. Summary production statistics of the U.S. uranium industry, 1993-2012 9. Summary production statistics of the U.S. uranium industry, 1993-2012 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Exploration and Development Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars)1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 Mine Production of Uranium (million pounds U3O8) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 Uranium Concentrate Production (million pounds U3O8) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1

404

WELDED JACKETED URANIUM BODY  

DOE Patents (OSTI)

A fuel element is presented for a neutronic reactor and is comprised of a uranium body, a non-fissionable jacket surrounding sald body, thu jacket including a portion sealed by a weld, and an inclusion in said sealed jacket at said weld of a fiux having a low neutron capture cross-section. The flux is provided by combining chlorine gas and hydrogen in the intense heat of-the arc, in a "Heliarc" welding muthod, to form dry hydrochloric acid gas.

Gurinsky, D.H.

1958-08-26T23:59:59.000Z

405

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

8. U.S. uranium expenditures, 2003-2012 8. U.S. uranium expenditures, 2003-2012 million dollars Year Drilling Production Land and Other Total Expenditures Total Land and Other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Drilling: All expenditures directly associated with exploration and development drilling. Production: All expenditures for mining, milling, processing of uranium, and facility expense.

406

METHOD OF JACKETING URANIUM BODIES  

DOE Patents (OSTI)

An improved process is presented for providing uranium slugs with thin walled aluminum jackets. Since aluminum has a slightiy higher coefficient of thermal expansion than does uraaium, both uranium slugs and aluminum cans are heated to an elevated temperature of about 180 C, and the slug are inserted in the cans at that temperature. During the subsequent cooling of the assembly, the aluminum contracts more than does the uranium and a tight shrink fit is thus assured.

Maloney, J.O.; Haines, E.B.; Tepe, J.B.

1958-08-26T23:59:59.000Z

407

PROCESS FOR PREPARING URANIUM METAL  

DOE Patents (OSTI)

A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

Prescott, C.H. Jr.; Reynolds, F.L.

1959-01-13T23:59:59.000Z

408

FAQ 2-Where does uranium come from?  

NLE Websites -- All DOE Office Websites (Extended Search)

come from? Where does uranium come from? Small amounts of uranium are found almost everywhere in soil, rock, and water. However, concentrated deposits of uranium ores are found in...

409

IMPROVED PROCESSES FOR RECOVERING AND PURIFYING URANIUM  

DOE Patents (OSTI)

A process is described for reclaiming metallic uranium enriched with uranium-235 from the collector of a calutron upon which the enriched metallic uranium is Editor please delete 22166.

Price, T.D.; Henrickson, A.V.

1959-05-12T23:59:59.000Z

410

OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE  

E-Print Network (OSTI)

IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE Kee Chul Kim Ph.D.727-366; Figure 1. Oxygen-uranium phase-equilibrium _ystem [18]. uranium dioxide powders and 18 0 enriched carbon

Kim, Kee Chul

2010-01-01T23:59:59.000Z

411

Reoxidation of Bioreduced Uranium Under Reducing Conditions  

E-Print Network (OSTI)

Microbial reduction of uranium. Nature 350, 413-416 (1991).C. Enzymatic iron and uranium reduction by sulfate-reducingS. Reduction of hexavalent uranium from organic complexes by

2005-01-01T23:59:59.000Z

412

PROCESS FOR REMOVING NOBLE METALS FROM URANIUM  

DOE Patents (OSTI)

A pyrometallurgical method is given for purifying uranium containing ruthenium and palladium. The uranium is disintegrated and oxidized by exposure to air and then the ruthenium and palladium are extracted from the uranium with molten zinc.

Knighton, J.B.

1961-01-31T23:59:59.000Z

413

GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM | Department  

NLE Websites -- All DOE Office Websites (Extended Search)

GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM The Department of Energy has on a variety of occasions engaged in transactions under which it bartered uranium to which it has title for goods or services . This guidance memorializes the results of analyses previously directed to individual proposed transactions . For the reasons discussed below, we conclude that the Atomic Energy Act of 1954' , as amended, (AEA), authorizes such barter transactions. GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM More Documents & Publications Leasing of Department of Energy Property Before the Senate Energy and Natural Resources Subcommittee on Energy EIS-0468: Final Environmental Impact Statement

414

Transportation Services | Staff Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Services Transportation Services The BNL Transportation Office, located at 20 Brookhaven Avenue, Building 400A, is available to assist BNL employees, guests and visitors with transportation needs in support of Laboratory programs. The hours of operation are 8:30 AM - 5:00 PM Monday through Friday. To contact the Transportation Office call (631) 344-2535. Stony Brook Parking Passes The Transportation Office has a limited number of parking passes for the three (3) parking garages at Stony Brook University. The passes are available to and are intended for use by BNL employees/scientific staff on official business only. Passes may be used at the Administration, University Hospital and Health Services Center garages on the Stony Brook campus when visiting SBU on official business.

415

Y-12 and uranium history  

NLE Websites -- All DOE Office Websites (Extended Search)

German chemists, Otto Hahn and Fritz Strassman, successfully described a new term, nuclear fission, for their experiment that resulted in the first splitting of the uranium atom....

416

Highly Enriched Uranium Transparency Program  

NLE Websites -- All DOE Office Websites (Extended Search)

and Climate Research Center for Geospatial Analysis Program Highlights Index Highly Enriched Uranium Transparency Program EVS staff members helped to implement transparency and...

417

ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE  

DOE Patents (OSTI)

This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

Lofthouse, E.

1954-08-31T23:59:59.000Z

418

THERMAL DECOMPOSITION OF URANIUM COMPOUNDS  

DOE Patents (OSTI)

A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

Magel, T.T.; Brewer, L.

1959-02-10T23:59:59.000Z

419

SEPARATION OF THORIUM FROM URANIUM  

DOE Patents (OSTI)

A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

Bane, R.W.

1959-09-01T23:59:59.000Z

420

Microsoft Word - A07DN052 Uranium Leasing Final Report 01-15-08.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit Services Audit Services Audit Report Management Controls over the Department of Energy's Uranium Leasing Program OAS-M-08-05 January 2008 Department of Energy Washington, DC 20585 J a n u a r y 2 3 , 2 0 0 8 MEMORANDUM FOR THE DIRECTOR, OFFICE OF LEGACY MANAGEMENT FROM: ~ssista/nt Lnspector General for NNSA and Energy Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Management Controls over the Department of Energy's Uranium Leasing Program" BACKGROUND The Department of Energy's Uranium Leasing Program was established by the Atomic Energy Act of 1954 to develop a supply of domestic uranium to meet the nation's defense needs. Pursuant to the Act, the Program leases tracts of land to private sector entities for

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

PREPARATION OF URANIUM(IV) NITRATE SOLUTIONS  

SciTech Connect

A procedure was developed for the preparation of uranium(IV) nitrate solutions in dilute nitric acid. Zinc metal was used as a reducing agent for uranium(VI) in dilute sulfuric acid. The uranium(IV) was precipitated as the hydrated oxide and dissolved in nitric acid. Uranium(IV) nitrate solutions were prepared at a maximum concentration of 100 g/l. The uranium(VI) content was less than 2% of the uranium(IV). (auth)

Ondrejcin, R.S.

1961-07-01T23:59:59.000Z

422

METHOD FOR RECOVERING URANIUM FROM OILS  

DOE Patents (OSTI)

A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

Gooch, L.H.

1959-07-14T23:59:59.000Z

423

DOE/EIS-0283; Surplus Plutonium Disposition Final Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the various proposed alternatives. 3.3.11.1 General Site Description INEEL has extensive production, service, and research facilities. An extensive infrastructure supports these...

424

Uranium Compounds and Other Natural Radioactivities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Science Division XSD Groups Industry Argonne Home Advanced Photon Source Uranium Compounds and Other Natural Radioactivities Uranium containing compounds and other...

425

Uranium Mining Tax (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Savings Uranium Mining Tax (Nebraska) Uranium Mining Tax (Nebraska) Eligibility Agricultural...

426

Microsoft Word - UraniumBioreductionV3  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Highlight - March 2013 Biotic-Abiotic Pathways: A New Paradigm for Uranium Reduction in Sediments Uranium, one of the most common radioactive elements on Earth, makes its...

427

Uranium Leasing Program | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Leasing Program Uranium Leasing Program Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado LM currently...

428

Consolidated Edison Uranium Solidification Project | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consolidated Edison Uranium Solidification Project Consolidated Edison Uranium Solidification Project CEUSP Inventory11-6-13Finalprint-ready.pdf CEUSPtimelinefinalprint-ready...

429

PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES  

DOE Patents (OSTI)

A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

Hamilton, N.E.

1957-12-01T23:59:59.000Z

430

Uranium Enrichment Decontamination and Decommissioning Fund's...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

431

Understanding How Uranium Changes in Subsurface Environments...  

Office of Science (SC) Website

whether it is immobilized or moves out of a contaminated area, potentially into water supplies. The Impact New research on the transformation of uranium (VI) to uranium...

432

Domestic Uranium Production Report - Quarterly - Energy ...  

U.S. Energy Information Administration (EIA)

Total anticipated uranium market requirements at U.S. civilian nuclear power reactors are 50 million pounds for 2013. 2. 1 2012 Uranium Marketing ...

433

EA-1410: Proposed Disposition of the Omega West Facility at Los Alamos  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10: Proposed Disposition of the Omega West Facility at Los 10: Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico EA-1410: Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts for the proposal to remove the Omega West Facility and the remaining support structures from Los Alamos Canyon at the U.S. Department of Energy Los Alamos National Laboratory in Los Alamos, New Mexico. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 28, 2002 EA-1410: Finding of No Significant Impact Proposed Disposition of the Omega West Facility at Los Alamos National Laboratory, Los Alamos, New Mexico March 28, 2002 EA-1410: Final Environmental Assessment

434

DOE/EIS-0283; Surplus Plutonium Disposition Final Environmental Impact Statement (11/1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 of 5 3 of 5 Volume II Final Environmental Impact Statement November 1999 DOE/EIS-0283 Surplus Plutonium Disposition Final Environmental Impact Statement Volume II United States Department of Energy Office of Fissile Materials Disposition November 1999 Cover Sheet Responsible Agency: United States Department of Energy (DOE) Title: Surplus Plutonium Disposition Final Environmental Impact Statement (SPD EIS) (DOE/EIS-0283) Locations of Candidate Sites: California, Idaho, New Mexico, North Carolina, South Carolina, Tennessee, Texas, Virginia, and Washington Contacts: For further information on the SPD Final EIS contact: For information on the DOE National Environmental Policy Act (NEPA) process contact: Mr. G. Bert Stevenson, NEPA Compliance Officer Ms. Carol Borgstrom, Director Office of Fissile Materials Disposition

435

Used Fuel Disposition R&D Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Used Fuel Disposition Used Fuel Disposition Research & Development » Used Fuel Disposition R&D Documents Used Fuel Disposition R&D Documents December 4, 2013 Preliminary Report on Dual-Purpose Canister Disposal Alternatives (FY13) This report documents the first phase of a multi-year project to understand the technical feasibility and logistical implications of direct disposal of spent nuclear fuel in existing dual-purpose canisters (DPCs) and other types of storage casks. October 25, 2013 Deep Borehole Disposal Research: Demonstration Site Selection Guidelines, Borehole Seals Design, and RD&D Needs Deep borehole disposal is one alternative for the disposal of spent nuclear fuel and other radioactive waste forms; identifying a site or areas with favorable geological, hydrogeological, and geochemical conditions is one of

436

AEO2011:Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption disposition energy exports imports Supply Data application/vnd.ms-excel icon AEO2011:Total Energy Supply, Disposition, and Price Summary- Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

437

EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0475: Disposition of the Bannister Federal Complex, Kansas EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO Summary NNSA/DOE announces its intent to prepare an EIS for the disposition of the Bannister Federal Complex, Kansas City, MO. NNSA previously decided in a separate NEPA review (EA-1592) to relocate its operations from the Bannister Federal Complex to a newly constructed industrial campus eight miles from the current location. NOTE: On November 30, 2012, DOE announced the cancellation of this EIS and its intent to prepare an Environmental Assessment (EA-1947). Public Comment Opportunities None available at this time. Documents Available for Download November 30, 2012 EA-1947: Notice of Intent to Prepare an Environmental Assessment and

438

Fuel Cycle Potential Waste Inventory for Disposition Rev 5 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 The United States currently utilizes a once-through fuel cycle where used nuclear fuel is stored onsite in either wet pools or in dry storage systems with ultimate disposal envisioned in a deep mined geologic repository. This report provides an estimate of potential waste inventory and waste form characteristics for the DOE used nuclear fuel and high-level radioactive waste and a variety of commercial fuel cycle alternatives in order to support subsequent system-level evaluations of disposal system performance. Fuel Cycle Potential Waste Inventory for Disposition R5a.docx More Documents & Publications Repository Reference Disposal Concepts and Thermal Load Management Analysis

439

``Cats and Dogs'' disposition at Sandia: Last of the legacy materials  

SciTech Connect

Over the past 12 months, Sandia National Laboratories, New Mexico (SNL/NM), has successfully conducted an evaluation of its nuclear material holdings. As a result, approximately 46% of these holdings (36% by mass) have been reclassified as no defined use (NDU). Reclassification as NDU allows Sandia to determine the final disposition of a significant percentage of its legacy nuclear material. Disposition will begin some time in mid CY2000. This reclassification and the proposed disposition of the material has resulted in an extensive coordination effort lead by the Nuclear Materials Management Team (NMMT), which includes the nuclear material owners, the Radioactive Waste/Nuclear Material Disposition Department (7135), and DOE Albuquerque Operations Office. The process of identifying and reclassifying the cats and dogs or miscellaneous lots of nuclear material has also presented a number of important lessons learned for other sites in the DOE complex.

STRONG,WARREN R.; JACKSON,JOHN L.

2000-05-03T23:59:59.000Z

440

Microsoft Word - CX-MountainAvenueDispositionFY12_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joan Kendall Realty Specialist - TERR-3 Proposed Action: Disposition of Mountain Avenue Substation and Tap Line Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021):...

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

105-N basin sediment disposition phase-two sampling and analysis plan  

DOE Green Energy (OSTI)

The sampling and analysis plan for Phase 2 of the 105-N Basin sediment disposition task defines the sampling and analytical activities that will be performed to support characterization of the sediment and selection of an appropriate sediment disposal option.

NONE

1997-12-31T23:59:59.000Z

442

On Solar Energy Disposition:A Perspective from Observation and Modeling  

Science Conference Proceedings (OSTI)

Solar energy disposition (SED) concerns the amount of solar radiation reflected to space, absorbed in the atmosphere, and absorbed at the surface. The state of knowledge on SED is examined by comparing eight datasets from surface and satellite ...

Zhanqing Li; Louis Moreau; Albert Arking

1997-01-01T23:59:59.000Z

443

AEO2011: Natural Gas Supply, Disposition, and Prices | OpenEI  

Open Energy Info (EERE)

Supply, Disposition, and Prices Supply, Disposition, and Prices Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 13, and contains only the reference case. The dataset uses gigawatts. The data is broken down into production, net imports, consumption by sector and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO disposition EIA natural gas supply prices Data application/vnd.ms-excel icon AEO2011: Natural Gas Supply, Disposition, and Prices - Reference Case (xls, 91.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

444

Conversion of depleted uranium hexafluoride to a solid uranium compound  

DOE Patents (OSTI)

A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2001-01-01T23:59:59.000Z

445

FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE  

DOE Patents (OSTI)

A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

1962-06-26T23:59:59.000Z

446

Environmental Assessment Addendum Disposition of Additional Waste at the Paducah Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9-A 9-A Environmental Assessment Addendum Disposition of Additional Waste at the Paducah Site December 2003 U. S. Department of Energy Oak Ridge Operations Oak Ridge, Tennessee DOE/EA-1339-A Disposition of Additional Waste at the Paducah Site Environmental Assessment Addendum December 2003 U. S. Department of Energy Oak Ridge Operations U.S. Department of Energy Paducah Site DOE/EA-1339A Table of Contents Table of Contents............................................................................................................................ v Acronyms.......................................................................................................................................

447

EPRI Report on Solid Material Disposition: Evaluation to Assess Industry Impact  

Science Conference Proceedings (OSTI)

In March 2005, the NRC staff requested Commission approval for publication of a proposed rule in the Federal Register to amend 10CFR Part 20 to include criteria for controlling the disposition of solid materials. This report provides an initial analysis of whether or not methods of solid material assessment, currently practiced at nuclear power facilities, would be sufficient to meet the disposition limits in the proposed rule.

2005-12-01T23:59:59.000Z

448

Disposition Options for Hanford Site K-Basin Spent Nuclear Fuel Sludge  

SciTech Connect

This report provides summary-level information about a group of options that have been identified for the disposition of spent-nuclear-fuel sludge in the K-Basins at the Hanford Site. These options are representative of the range of likely candidates that may be considered for disposition of the sludge. The product of each treatment option would be treated sludge that would meet waste acceptance requirements for disposal as transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).

Mellinger, George B.; Delegard, Calvin H.; Gerber, Mark A.; Naft, Barry N.; Schmidt, Andrew J.; Walton, Terry L.

2004-01-18T23:59:59.000Z

449

Solubility measurement of uranium in uranium-contaminated soils  

SciTech Connect

A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site.

Lee, S.Y.; Elless, M.; Hoffman, F.

1993-08-01T23:59:59.000Z

450

Recruitment Services  

NLE Websites -- All DOE Office Websites (Extended Search)

IAEA Recruitment Services Personal History Form (PHF) and Job Opportunities IAEA Employment Benefits Relevant Publications and Brochures Interview Process This service is provided...

451

Criteria for Packaging and Storing Uranium-233-Bearing Materials  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3028-2000 3028-2000 July 2000 DOE STANDARD CRITERIA FOR PACKAGING AND STORING URANIUM-233-BEARING MATERIALS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3028-2000 iii ABSTRACT This Standard provides guidance for the packaging and long-term (50 years) storage of stabilized, separated uranium-233(

452

Aluminosilicate Precipitation Impact on Uranium  

SciTech Connect

Experiments have been conducted to examine the fate of uranium during the formation of sodium aluminosilicate (NAS) when wastes containing high aluminate concentrations are mixed with wastes of high silicate concentration. Testing was conducted at varying degrees of uranium saturation. Testing examined typical tank conditions, e.g., stagnant, slightly elevated temperature (50 C). The results showed that under sub-saturated conditions uranium is not removed from solution to any large extent in both simulant testing and actual tank waste testing. This aspect was not thoroughly understood prior to this work and was necessary to avoid criticality issues when actual tank wastes were aggregated. There are data supporting a small removal due to sorption of uranium on sites in the NAS. Above the solubility limit the data are clear that a reduction in uranium concentration occurs concomitant with the formation of aluminosilicate. This uranium precipitation is fairly rapid and ceases when uranium reaches its solubility limit. At the solubility limit, it appears that uranium is not affected, but further testing might be warranted.

WILMARTH, WILLIAM

2006-03-10T23:59:59.000Z

453

METHOD OF SEPARATING URANIUM SUSPENSIONS  

DOE Patents (OSTI)

A process is presented for separating colloidally dissed uranium oxides from the heavy water medium in upwhich they are contained. The method consists in treating such dispersions with hydrogen peroxide, thereby converting the uranium to non-colloidal UO/sub 4/, and separating the UO/sub 4/ sfter its rapid settling.

Wigner, E.P.; McAdams, W.A.

1958-08-26T23:59:59.000Z

454

U.S. Crude Oil Supply & Disposition  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Supply Field Production (Commercial) 1,853,122 1,829,897 1,954,021 1,996,787 2,063,138 2,374,842 1859-2012 Alaskan 263,595 249,874 235,491 218,904 204,829 192,368 1981-2012 Lower 48 States 1,589,527 1,580,024 1,718,529 1,777,883 1,858,309 2,182,474 1993-2012 Imports 3,661,404 3,580,694 3,289,675 3,362,856 3,261,422 3,120,755 1910-2012 Commercial 3,658,701 3,573,581 3,269,307 3,362,856 3,261,422 3,120,755 2001-2012 Strategic Petroleum Reserve (SPR) 2,703 7,113 20,368 1977-2009 Adjustments (Commercial) 9,742 5,777 29,077 37,829 63,600 52,746 1981-2012 Disposition Stock Change -17,835 44,617 24,132 8,180 -33,345 34,134 1983-2012 Commercial -26,171 39,735 -661 8,251 -2,751 34,817 1993-2012

455

Plutonium disposition study phase 1b final report  

Science Conference Proceedings (OSTI)

This report provides the results of the Westinghouse activities performed as part of the Plutonium Disposition Study Phase 1b. These activities, which took place from May 16, 1993 to September 15, 1993, build upon the work completed in Phase 1a, which concluded on May 15, 1993. In Phase 1a, three Plutonium Disposal Reactor (PDR) options were developed for the disposal of excess weapons grade plutonium from returned and dismantled nuclear weapons. This report documents the results of several tasks that were performed to further knowledge in specific areas leading up to Phase 2 of the PDR Study. The Westinghouse activities for Phase 1b are summarized as follows: (1) resolved technical issues concerning reactor physics including equilibrium cycle calculations, use of gadolinium, moderator temperature coefficient, and others as documented in Section 2.0; (2) analyzed large Westinghouse commercial plants for plutonium disposal; (3) reactor safety issues including the steam line break were resolved, and are included in Section 2.0; (4) several tasks related to the PDR Fuel Cycle were examined; (5) cost and deployment options were examined to determine optimal configuration for both plutonium disposal and tritium production; (6) response to questions from DOE and National Academy of Scientists (NAS) reviewers concerning the PDR Phase 1a report are included in Appendix A.

NONE

1993-09-15T23:59:59.000Z

456

Disposition of Weapons-Grade Plutonium in Westinghouse Reactors  

E-Print Network (OSTI)

Disposition of Weapons-Grade Plutonium in Westinghouse Reactors Abdelhalim Ali Alsaed and Marvin Adams We have studied the feasibility of using weapons-grade plutonium in the form of mixed-oxide (MOX) fuel in existing Westinghouse reactors. We have designed three transition cycles from an all LEU core to a partial MOX core. We found that four-loop Westinghouse reactors such as the Vogtle power plant are capable of handling up to 45 percent weapons-grade MOX loading without any modifications. We have also designed two kinds of weapons-grade MOX assemblies with three enrichments per assembly and four total enrichments. Wet annular burnable absorber (WABA) rods were used in all the MOX feed assemblies, some burned MOX assemblies, and some LEU feed assemblies. Integral fuel burnable absorber (IFBA) was used in the rest of the LEU feed assemblies. The average discharge burnup of MOX assemblies was over 47,000 MWD/MTM, which is more than enough to meet the "spent fuel standard." One unit is ...

No. De-fc-al; Abdelhalim Ali Alsaed; Abdelhalim Ali Alsaed; Marvin Adams; Marvin Adams

1998-01-01T23:59:59.000Z

457

Service Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Service Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Service Buildings... Most service buildings were small, with almost ninety percent between 1,001 and 10,000 square feet. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics Number of Service Buildings by Predominant Building Size Category Figure showing number of service buildings by size. If you need assistance viewing this page, please contact 202-586-8800. Equipment Table: Buildings, Size, and Age Data by Equipment Types Predominant Heating Equipment Types in Service Buildings

458

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Milling Capacity (short tons of ore per day) 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby Uranium One Americas, Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Changing License To Operational Standby

459

METHOD OF ELECTROPLATING ON URANIUM  

DOE Patents (OSTI)

This patent relates to a preparation of metallic uranium surfaces for receiving coatings, particularly in order to secure adherent electroplated coatings upon uranium metal. In accordance with the invention the uranium surface is pretreated by degreasing in trichloroethylene, followed by immersion in 25 to 50% nitric acid for several minutes, and then rinsed with running water, prior to pickling in trichloroacetic acid. The last treatment is best accomplished by making the uranium the anode in an aqueous solution of 50 per cent by weight trichloroacetic acid until work-distorted crystals or oxide present on the metal surface have been removed and the basic crystalline structure of the base metal has been exposed. Following these initial steps the metallic uranium is rinsed in dilute nitric acid and then electroplated with nickel. Adnerent firmly-bonded coatings of nickel are obtained.

Rebol, E.W.; Wehrmann, R.F.

1959-04-28T23:59:59.000Z

460

Copy Service, Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Copy Service Copy Service Copying in color or black-and-white from hard copy or electronic files. Paper size up to 13" x 19" in a variety of stocks and colors. Larger Documents (up to 36" wide and 100" long) can be reproduced in Black & White from prints or files and can be saved in a variety of electronic format Variable Data Printing - personalized document production Tab Printing Forms CD/DVD Duplication CD/DVD direct printing Binding Collate documents, insert tab dividers, punch holes for binding Stapling documents up to 1 inch thick Spiral, adhesive and perfect binding. Hard covers also available upon request Folding & Mailing Print and apply mailing addresses and labels Machine fold documents and insert into envelopes for mailing Laminate printed items up to 35" wide.

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE/EA-1471: Environmental Assessment for the Transportation of Highly Enriched Uranium from the Russian Federation to the Y-12 National Security Complex and Finding of No Significant Impact (January 2004)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA for the Transportation of Highly Enriched Uranium from the Russian Federation to the Y-12 National Security Complex EA for the Transportation of Highly Enriched Uranium from the Russian Federation to the Y-12 National Security Complex i FINDING OF NO SIGNIFICANT IMPACT FOR THE TRANSPORTATION OF HIGHLY ENRICHED URANIUM FROM THE RUSSIAN FEDERATION TO THE Y-12 NATIONAL SECURITY COMPLEX ISSUED BY: United States Department of Energy ACTION: Finding of No Significant Impact SUMMARY: The United States (U.S.) Department of Energy (DOE) proposes to transport highly enriched uranium (HEU) from Russia to a secure storage facility in Oak Ridge, TN. This proposed action would allow the United States and Russia to accelerate the disposition of excess nuclear weapons materials in the interest of promoting nuclear disarmament, strengthening nonproliferation, and combating terrorism. The HEU

462

U.S. Energy Information Administration / 2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 2012 Uranium Marketing Annual Report Release Date: May 16, 2013 Next Release Date: May 2014 2010 2011 2012 AREVA NC, Inc. (was COGEMA, Inc.) Advance Uranium Asset Management Ltd. Advance Uranium Asset Management Ltd. LES, LLC (Louisiana Energy Services) AREVA NC, Inc. AREVA NC, Inc. NUKEM, Inc. CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) UG U.S.A., Inc. Energy Northwest LES, LLC (Louisiana Energy Services) URENCO, Inc. LES, LLC (Louisiana Energy Services) NextEra Energy Seabrook USEC, Inc. (United States Enrichment Corporation) NUKEM, Inc. NUKEM, Inc. Westinghouse Electric Company TENEX (Techsnabexport Joint Stock Company) TENEX (Techsnabexport Joint Stock Company) URENCO, Inc. UG U.S.A., Inc. USEC, Inc. (United States Enrichment Corporation)

463

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. uranium mine production and number of mines and sources, 2003-2012 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W Total Mine Production (thousand pounds U3O8) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Number of Operating Mines Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources1 1 1 2 1 1 1 2 1 1 1

464

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources,Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

465

FAQ 7-How is depleted uranium produced?  

NLE Websites -- All DOE Office Websites (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

466

THE RECOVERY OF URANIUM FROM GAS MIXTURE  

DOE Patents (OSTI)

A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)

Jury, S.H.

1964-03-17T23:59:59.000Z

467

Process for removing carbon from uranium  

DOE Patents (OSTI)

Carbon contamination is removed from uranium and uranium alloys by heating in inert atmosphere to 700.degree.-1900.degree.C in effective contact with yttrium to cause carbon in the uranium to react with the yttrium. The yttrium is either in direct contact with the contaminated uranium or in indirect contact by means of an intermediate transport medium.

Powell, George L. (Oak Ridge, TN); Holcombe, Jr., Cressie E. (Knoxville, TN)

1976-01-01T23:59:59.000Z

468

APPENDIX J Partition Coefficients For Uranium  

E-Print Network (OSTI)

APPENDIX J Partition Coefficients For Uranium #12;Appendix J Partition Coefficients For Uranium J.1.0 Background The review of uranium Kd values obtained for a number of soils, crushed rock and their effects on uranium adsorption on soils are discussed below. The solution pH was also used as the basis

469

NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY  

SciTech Connect

DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

2003-08-01T23:59:59.000Z

470

The End of Cheap Uranium  

E-Print Network (OSTI)

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

Michael Dittmar

2011-06-18T23:59:59.000Z

471

DOE G 430.1-2, Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition  

Directives, Delegations, and Requirements

As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The ...

1999-09-29T23:59:59.000Z

472

ELECTRODEPOSITION OF NICKEL ON URANIUM  

SciTech Connect

Electrodeposited nickel coatings on uranium for protection from destructive corrosion in boiling water wns investigated. Correlation between the pretreatment of the uranium and subsequent protection by thin nickel coatings was established. Thin electrodeposited nickel coatings provide better protection when applied to a matte surface produced by blasting with an aqueous suspension of silica (100 mesh) followed by a cathodic treatment in 35 wt% sulfuric acid than when applied to the rough surfaces produced on uranium by anodic pretreatments and acid pickling. Blistering of nickel electrodeposits arising from hydrogen was encountered and eliminated. (auth)

Beard, A.P.; Crooks, D.D.

1954-08-31T23:59:59.000Z

473

SEPARATION OF URANIUM FROM THORIUM  

DOE Patents (OSTI)

A process is presented for separating uranium from thorium wherein the ratio of thorium to uranium is between 100 to 10,000. According to the invention the thoriumuranium mixture is dissolved in nitric acid, and the solution is prepared so as to obtain the desired concentration within a critical range of from 4 to 8 N with regard to the total nitrate due to thorium nitrate, with or without nitric acid or any nitrate salting out agent. The solution is then contacted with an ether, such as diethyl ether, whereby uranium is extracted into ihe organic phase while thorium remains in the aqueous phase.

Hellman, N.N.

1959-07-01T23:59:59.000Z

474

Uranium Lease Tracts Location Map | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Uranium Lease Tracts Location Map Uranium Lease Tracts Location Map Uranium Lease Tracts...

475

FAQ 11-What are the properties of uranium hexafluoride?  

NLE Websites -- All DOE Office Websites (Extended Search)

properties of uranium hexafluoride? What are the properties of uranium hexafluoride? Uranium hexafluoride can be a solid, liquid, or gas, depending on its temperature and pressure....

476

THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE  

E-Print Network (OSTI)

Soubbaramayer, (1979) in "Uranium Enrichment", S. Villani,and Davies, E. (1973) "Uranium Enrichment by Gas Centrifuge"THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE

Olander, Donald R.

2013-01-01T23:59:59.000Z

477

Production and Handling Slide 43: The Uranium Fuel Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentation Table of Contents The Uranium Fuel Cycle Refer to caption below for image description Enriched uranium hexafluoride, generally containing 3 to 5% uranium-235, is sent...

478

Highly Enriched Uranium Materials Facility | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Highly Enriched Uranium ... Highly Enriched Uranium Materials Facility HEUMF The Highly Enriched Uranium Materials Facility is our nation's central repository for highly enriched...

479

Summary Production Statistics of the U.S. Uranium Industry ...  

U.S. Energy Information Administration (EIA)

Domestic Uranium Production Report presents information Operating Status of U.S. Uranium Expenditures, 2003-2005. ... Mine Production of Uranium

480

FLUX COMPOSITION AND METHOD FOR TREATING URANIUM-CONTAINING METAL  

DOE Patents (OSTI)

A flux composition is preseated for use with molten uranium and uranium alloys. It consists of about 60% calcium fluoride, 30% calcium chloride and 10% uranium tetrafluoride.

Foote, F.

1958-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "uranium disposition services" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

THE THEORY OF URANIUM ENRICHMENT BY THE GAS CENTRIFUGE  

E-Print Network (OSTI)

Soubbaramayer, (1979) in "Uranium Enrichment", S. Villani,and Davies, E. (1973) "Uranium Enrichment by Gas Centrifuge"Nuclear Energy THE THEORY OF URANIUM ENRICHMENT BY THE GAS

Olander, Donald R.

2013-01-01T23:59:59.000Z

482

Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation  

E-Print Network (OSTI)

Phillips. 1992. Bioremediationof uraniumcontaminationwith enzymaticuraniumreduction. Environ. Sci. Microbial reduction of uranium. Nature350:413?416.

Wilkins, M.J.

2010-01-01T23:59:59.000Z

483

CALIFORNIUM ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS  

E-Print Network (OSTI)

Isotopes from Bombardment of Uranium with Carbon Ions A.ISOTOPES FROM BOMBARDMENT OF URANIUM WITH CARBON IONS A.the irradiations, the uranium was dissolved in dilute

Ghiorso, A.; Thompson, S.G.; Street, K. Jr.; Seaborg, G.T.

2008-01-01T23:59:59.000Z

484

THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.  

E-Print Network (OSTI)

Products in Irradiated Uranium Dioxide," UKAEA Report AERE-OF METALLIC INCLUSIONS IN URANIUM DIOXIDE Rosa Lu Yang (Chemical State of Irradiated Uranium- Plutonium Oxide Fuel

Yang, Rosa Lu.

2010-01-01T23:59:59.000Z

485

THE HIGH TEMPERATURE BEHAVIOR OF METALLIC INCLUSIONS IN URANIUM DIOXIDE.  

E-Print Network (OSTI)

State of Irradiated Uranium- Plutonium Oxide Fuel Pins,"Ingots Formed in Uranium-Plutonium Oxide Irradiated in EBR-Roake, "Fission Products and Plutonium Migration in Uranium-

Yang, Rosa Lu.

2010-01-01T23:59:59.000Z

486

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

487

Regulation of New Depleted Uranium Uses  

NLE Websites -- All DOE Office Websites (Extended Search)

2-5 2-5 Regulation of New Depleted Uranium Uses Environmental Assessment Division Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

488

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Domestic Uranium Production Report June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2012 Domestic Uranium Production Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

489

2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Uranium Marketing Annual Report May 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report ii

490

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3. U.S. uranium concentrate production, shipments, and sales, 2003-2012" "Activity at U.S. Mills and In-Situ-Leach Plants",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012...

491

Depleted Uranium (DU) Dioxide Fill  

NLE Websites -- All DOE Office Websites (Extended Search)

Fill Depleted Uranium (DU) Dioxide Fill DU dioxide in the form of sand may be used to fill the void spaces in the waste package after the package is loaded with SNF. This...

492

High Purity Germanium Gamma-PHA Assay of Uranium Storage Pigs for 321-M Facility  

Science Conference Proceedings (OSTI)

The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Solid Waste's Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. This report describes and documents the use of a portable HPGe detector and EG and G Dart system that contains a high voltage power supply, signal processing electronics, a personal computer with Gamma-Vision software, and space to store and manipulate multiple 4096-channel g-ray spectra to assay for 235U content in 268 uranium shipping and storage pigs. This report includes a description of three efficiency calibration configurations and also the results of the assay. A description of the quality control checks is included as well.

Dewberry, R.A.

2001-09-18T23:59:59.000Z

493

LIQUID METAL COMPOSITIONS CONTAINING URANIUM  

DOE Patents (OSTI)

Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

Teitel, R.J.