National Library of Energy BETA

Sample records for uranium disposition services

  1. Consent Order, Uranium Disposition Services, LLC - NCO-2010-01...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Disposition Services, LLC - NCO-2010-01 Consent Order, Uranium Disposition Services, LLC - NCO-2010-01 March 26, 2010 Issued to Uranium Disposition Services, LLC related to ...

  2. Uranium Downblending and Disposition Project Technology Readiness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment | Department of Energy Uranium Downblending and Disposition Project Technology Readiness Assessment Uranium Downblending and Disposition Project Technology Readiness Assessment Full Document and Summary Versions are available for download PDF icon Uranium Downblending and Disposition Project Technology Readiness Assessment PDF icon Summary - Uranium233 Downblending and Disposition Project More Documents & Publications Compilation of TRA Summaries EA-1574: Final Environmental

  3. Disposition of DOE Excess Depleted Uranium, Natural Uranium, and

    Office of Environmental Management (EM)

    Low-Enriched Uranium | Department of Energy Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and

  4. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Lemons, T.R.

    1991-12-31

    Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

  5. Highly Enriched Uranium Disposition | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    needs primarily by down-blending, or converting, it into low enriched uranium (LEU). Once down-blended, the material can no longer be used for nuclear weapons. To the extent...

  6. Highly Enriched Uranium Disposition | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Disposition | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs

  7. EIS-0240: Disposition of Surplus Highly Enriched Uranium

    Broader source: Energy.gov [DOE]

    The Department proposes to eliminate the proliferation threat of surplus highly enriched uranium (HEU) by blending it down to low enriched uranium (LEU), which is not weapons-usable. The EIS assesses the disposition of a nominal 200 metric tons of surplus HEU. The Preferred Alternative is, where practical, to blend the material for use as LEU and use overtime, in commercial nuclear reactor field to recover its economic value. Material that cannot be economically recovered would be blended to LEU for disposal as low-level radioactive waste.

  8. Uranium Disposition Services, LLC, Consent Order

    Energy Savers [EERE]

  9. EA-1290: Disposition of Russian Federation Titled Natural Uranium

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to transport up to an average of 9,000 metric tons per year of natural uranium as uranium hexafluoride (UF6) from the United...

  10. uranium

    National Nuclear Security Administration (NNSA)

    to prepare surplus plutonium for disposition, and readiness to begin the Second Uranium Cycle, to start processing spent nuclear fuel.

    H Canyon is also being...

  11. Abandoned Uranium Mine Technical Services and Cleanup Industry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abandoned Uranium Mine Technical Services and Cleanup Industry Day In January 2015, the United States (U.S.) and the Anadarko Litigation Trust ("Litigation Trust") entered into a...

  12. Integration of health physics, safety and operational processes for management and disposition of recycled uranium wastes at the Fernald Environmental Management Project (FEMP)

    SciTech Connect (OSTI)

    Barber, James; Buckley, James

    2003-02-23

    Fluor Fernald, Inc. (Fluor Fernald), the contractor for the U. S. Department of Energy (DOE) Fernald Environmental Management Project (FEMP), recently submitted a new baseline plan for achieving site closure by the end of calendar year 2006. This plan was submitted at DOE's request, as the FEMP was selected as one of the sites for their accelerated closure initiative. In accordance with the accelerated baseline, the FEMP Waste Management Project (WMP) is actively evaluating innovative processes for the management and disposition of low-level uranium, fissile material, and thorium, all of which have been classified as waste. These activities are being conducted by the Low Level Waste (LLW) and Uranium Waste Disposition (UWD) projects. Alternatives associated with operational processing of individual waste streams, each of which poses potentially unique health physics, industrial hygiene and industrial hazards, are being evaluated for determination of the most cost effective and safe met hod for handling and disposition. Low-level Mixed Waste (LLMW) projects are not addressed in this paper. This paper summarizes historical uranium recycling programs and resultant trace quantity contamination of uranium waste streams with radionuclides, other than uranium. The presentation then describes how waste characterization data is reviewed for radiological and/or chemical hazards and exposure mitigation techniques, in conjunction with proposed operations for handling and disposition. The final part of the presentation consists of an overview of recent operations within LLW and UWD project dispositions, which have been safely completed, and a description of several current operations.

  13. Natural uranium/conversion services/enrichment services

    SciTech Connect (OSTI)

    1993-12-31

    This article is the 1993 uranium market summary. During this reporting period, there were 50 deals in the concentrates market, 26 deals in the UF6 market, and 14 deals for enrichment services. In the concentrates market, the restricted value closed $0.15 higher at $9.85, and the unrestricted value closed down $0.65 at $7.00. In the UF6 market, restricted prices fluctuated and closed higher at $31.00, and unrestricted prices closed at their initial value of $24.75. The restricted transaction value closed at $10.25 and the unrestricted value closed at $7.15. In the enrichment services market, the restricted value moved steadily higher to close at $84.00 per SWU, and the unrestricted value closed at its initial value of $68.00 per SWU.

  14. EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany

    Broader source: Energy.gov [DOE]

    This environmental assessment (EA) will evaluate the potential environmental impacts of a DOE proposal to accept used nuclear fuel from the Federal Republic of Germany at DOEs Savannah River Site (SRS) for processing and disposition. This used nuclear fuel is composed of kernels containing thorium and U.S.-origin highly enriched uranium (HEU) embedded in small graphite spheres that were irradiated in nuclear reactors used for research and development purposes.

  15. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-05-28

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its operating and onsite service contractors. Cancels DOE O 1324.1 dated 7-10-78. Chg 1 dated 7-2-81. Chg 2 dated 11-9-82. Canceled by DOE O 1324.2A dated 9-13-88.

  16. Disposition of Uranium -233 (sup 233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Freiboth, Cameron J.; Gibbs, Frank E.

    2000-03-01

    This report documents the position that the concentration of Uranium-233 ({sup 233}U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging, shipping and storage limits. The {sup 233}U stabilization, packaging and storage limit is 0.5 weight percent (wt%), which is also the shipping limit maximum. These two plutonium products (metal and oxide) are scheduled for processing through the Building 371 Plutonium Stabilization and Packaging System (PuSPS). This justification is supported by written technical reports, personnel interviews, and nuclear material inventories, as compiled in the ''History of Uranium-233 ({sup 233}U) Processing at the Rocky Flats Plant In Support of the RFETS Acceptable Knowledge Program'' RS-090-056, April 1, 1999. Relevant data from this report is summarized for application to the PuSPS metal and oxide processing campaigns.

  17. DOE Issues Request for Quotations for Depleted Uranium Hexafluoride Conversion Technical Services

    Broader source: Energy.gov [DOE]

    Cincinnati – The U.S. Department of Energy (DOE) today issued a Request for Quotation (RFQ) for engineering and operations technical services to support the Portsmouth Paducah Project Office and the oversight of operations of the Depleted Uranium Hexafluoride (DUF6) Conversion Project located in Paducah KY, and Portsmouth OH.

  18. EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing

    Energy Savers [EERE]

    U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany | Department of Energy 77: Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany SUMMARY This EA will evaluate the potential environmental impacts of a DOE proposal to accept spent nuclear fuel from the

  19. Records Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-09-13

    To assign responsibilities and authorities and to prescribe policies, procedures, standards, and guidelines for the orderly disposition of records of the Department of Energy (DOE) and its management and operating contractors. Cancels DOE O 1324.2 dated 5-28-80. Chg 1 dated 4-9-92. Canceled by DOE O 1324.2B dated 1-12-95.

  20. EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched ...

  1. EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing...

    Energy Savers [EERE]

    Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin...

  2. German Pebble Bed Research Reactor Highly Enriched Uranium (HEU...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Acceptance and Disposition of German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel Environmental Assessment Maxcine Maxted, DOE-SR Used Nuclear Fuel...

  3. Uranium industry annual 1996

    SciTech Connect (OSTI)

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  4. Draft EA for the Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EA for the Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany DOE/EA-1977 DRAFT ENVIRONMENTAL ASSESSMENT FOR THE ACCEPTANCE AND DISPOSITION OF SPENT NUCLEAR FUEL CONTAINING U.S.-ORIGIN HIGHLY ENRICHED URANIUM FROM THE FEDERAL REPUBLIC OF GERMANY January 2016 U.S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE AIKEN, SOUTH CAROLINA Draft EA for the Acceptance and Disposition of Spent Nuclear Fuel Containing

  5. Draft EA for the Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched

    Office of Environmental Management (EM)

    EA for the Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany DOE/EA-1977 DRAFT ENVIRONMENTAL ASSESSMENT FOR THE ACCEPTANCE AND DISPOSITION OF SPENT NUCLEAR FUEL CONTAINING U.S.-ORIGIN HIGHLY ENRICHED URANIUM FROM THE FEDERAL REPUBLIC OF GERMANY January 2016 U.S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE AIKEN, SOUTH CAROLINA Draft EA for the Acceptance and Disposition of Spent Nuclear Fuel Containing

  6. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Table S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners ...

  7. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    S2. Uranium feed deliveries, enrichment services, and uranium loaded by owners and operators of U.S. civilian nuclear power reactors, 1994-2014 million pounds U3O8 equivalent million separative work units (SWU) Year Feed deliveries by owners and operators of U.S. civilian nuclear power reactors Uranium in fuel assemblies loaded into U.S. civilian nuclear power reactors U.S.-origin enrichment services purchased Foreign-origin enrichment services purchased Total purchased enrichment services

  8. Disposition Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposition Schedules Disposition Schedules keyboard-70506__180.jpg Records Disposition Schedules The DOE Records Disposition Schedules provide the authority for transfer and disposal of records created and maintained by the Department. Disposition Schedules and the citations to the disposition authorities are available at the following links: DOE Administrative Records Schedules -- provides a list of records contained in the NARA General Records Schedule as customized to the needs of the

  9. Summary - Uranium233 Downblending and Disposition Project

    Office of Environmental Management (EM)

    Product EM wa in Buil to extr from 23 downb mitigat concer dispos downb WIPP condu the "ba allowin assess techno The as Techn Techn * An * C (T * Pr * O The Ele Site: O roject: 2 P Report Date: S ited States 233 Ura Why DOE t Packaging Syste as directed to t ding 3019 at O ract 229 Th (an is 33 U. The missi blend the inven te security and rns and prepar sal. The projec blended materia or the Nevada cted to coincid ack-end" of the ng observation sment team to ology maturity p What th

  10. Summary - Uranium233 Downblending and Disposition Project

    Office of Environmental Management (EM)

    pathw sposition, altho eet acceptance What the e team made t The project ( detailed sam process cont The project ( complete set identify requ detection lim disposal crite Test...

  11. Uranium Downblending and Disposition Project Technology Readiness...

    Office of Environmental Management (EM)

    exists represents a substantial risk for the project, as a failure to meet emission standards could shut the project down. Laboratory testing, if it can be designed and carried...

  12. Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Uranium-233 | Department of Energy Waste Management » Nuclear Materials & Waste » Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 Special Nuclear Materials: EM Manages Plutonium, Highly Enriched Uranium and Uranium-233 105-K building houses the K-Area Material Storage (KAMS) facility, designated for the consolidated storage of surplus plutonium at Savannah River Site pending disposition. The plutonium shipped to KAMS is sealed inside a

  13. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  14. NRC comprehensive records disposition schedule. Revision 3

    SciTech Connect (OSTI)

    1998-02-01

    Title 44 US Code, ``Public Printing and Documents,`` regulations issued by the General Service Administration (GSA) in 41 CFR Chapter 101, Subchapter B, ``Management and Use of Information and Records,`` and regulations issued by the National Archives and Records Administration (NARA) in 36 CFR Chapter 12, Subchapter B, ``Records Management,`` require each agency to prepare and issue a comprehensive records disposition schedule that contains the NARA approved records disposition schedules for records unique to the agency and contains the NARA`s General Records Schedules for records common to several or all agencies. The approved records disposition schedules specify the appropriate duration of retention and the final disposition for records created or maintained by the NRC. NUREG-0910, Rev. 3, contains ``NRC`s Comprehensive Records Disposition Schedule,`` and the original authorized approved citation numbers issued by NARA. Rev. 3 incorporates NARA approved changes and additions to the NRC schedules that have been implemented since the last revision dated March, 1992, reflects recent organizational changes implemented at the NRC, and includes the latest version of NARA`s General Records Schedule (dated August 1995).

  15. Used Fuel Disposition Campaign Preliminary Quality Assurance...

    Energy Savers [EERE]

    Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary...

  16. German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Potential Acceptance and Disposition of German Pebble Bed Research Reactor Highly Enriched Uranium (HEU) Fuel Environmental Assessment Maxcine Maxted, DOE-SR Used Nuclear Fuel Program Manager June 24, 2014 Public Scoping Meeting

  17. DOE Releases Excess Uranium Inventory Plan | Department of Energy

    Energy Savers [EERE]

    Excess Uranium Inventory Plan DOE Releases Excess Uranium Inventory Plan December 16, 2008 - 8:51am Addthis WASHINGTON, D.C. - The United States Department of Energy (DOE) today issued its Excess Uranium Inventory Management Plan (the Plan), which outlines the Department's strategy for the management and disposition of its excess uranium inventories. The Plan highlights DOE's ongoing efforts to enhance national security and promote a healthy domestic nuclear infrastructure through the efficient

  18. Beneficial Uses of Depleted Uranium

    SciTech Connect (OSTI)

    Brown, C.; Croff, A.G.; Haire, M. J.

    1997-08-01

    Naturally occurring uranium contains 0.71 wt% {sup 235}U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope {sup 235}U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a {sup 235}U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF{sub 6}) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved.

  19. USED FUEL DISPOSITION CAMPAIGN

    Energy Savers [EERE]

    Effects of Lower Drying-Storage Temperatures on the DBTT of High-Burnup PWR Cladding Prepared for U.S. Department of Energy Used Fuel Disposition Campaign M.C. Billone, T.A. Burtseva, and M.A. Martin-Rengel Argonne National Laboratory August 28, 2015 FCRD-UFD-2015-000008 ANL-15/21 About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South

  20. Savannah River Site Waste Disposition Project

    Office of Environmental Management (EM)

    Terrel J. Spears Assistant Manager Waste Disposition Project DOE Savannah River Operations Office Savannah River Site Savannah River Site Waste Disposition Project Waste Disposition Project 2 Waste Disposition Project - Mission Radioactive Liquid Waste - Tank Waste Stabilization and Disposition - Disposition 36 million gallons of radioactive liquid waste - Close 49 underground storage tanks in which the waste now resides 3 36.7 Million 33.7 Mgal (92%) 3.0 Mgal (8%) Saltcake Sludge Salt Supernate

  1. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2012-14 2012 2013 2014 Advance Uranium Asset Management Ltd. AREVA NC, Inc AREVA Enrichment Services, LLC / AREVA NC, Inc. AREVA NC, Inc. .CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) LES, LLC (Louisiana Energy Services) LES, LLC (Louisiana Energy Services) LES, LLC (Louisiana Energy Services)

  2. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for Records Disposition Authority PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications Request For Records Disposition Authority Request For Records Disposition Request For Records Disposition Authority

  3. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    3 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 2012 2013 2014 Advance Uranium Asset Management Ltd. AREVA NC, Inc. AREVA Enrichment Services, LLC / AREVA NC, Inc. AREVA NC, Inc. CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) CNEIC (China Nuclear Energy Industry Corporation) LES, LLC (Louisiana Energy Services) LES, LLC (Louisiana Energy Services) LES, LLC (Louisiana Energy Services) NUKEM, Inc.

  4. DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM Listed on this document are all the disposition authorities which are under the moratorium on the destruction of health related records as of March 2008. PDF icon DISPOSITION AUTHORITIES FROZEN UNDER THE EPIDEMIOLOGICAL MORATORIUM More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC,

  5. REQUEST FOR RECORDS DISPOSITION AUTHORITY

    Energy Savers [EERE]

    REQUEST FOR RECORDS DISPOSITION AUTHORITY LEAVE BLANK (NARA use only) JOB NUMBER To: NATIONAL ARCHIVES & RECORDS ADMINISTRATION 8601 ADELPHI ROAD, COLLEGE PARK, MD 20740-6001 Date Received 1. FROM (Agency or establishment) NOTIFICATION TO AGENCY In accordance with the provisions of 44 U.S.C 3303a, the disposition request, including amendments is approved except for items that may be marked "disposition not approved" or "withdrawn" in column 10. 2. MAJOR SUB DIVISION 3.

  6. FS65 Disposition Option Report

    SciTech Connect (OSTI)

    Wenz, Tracy R.

    2015-09-25

    This report outlines the options for dispositioning the MOX fuel stored in FS65 containers at LANL. Additional discussion regarding the support equipment for loading and unloading the FS65 transport containers is included at the end of the report.

  7. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY RS-Weapons X-Rays PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications...

  8. United States transuranium and uranium registries - 25 years of growth, research, and service. Annual report, April 1992--September 1993

    SciTech Connect (OSTI)

    Kathren, R.L.; Harwick, L.A.; Toohey, R.E.; Russell, J.J.; Filipy, R.E.; Dietert, S.E.; Hunacek, M.M.; Hall, C.A.

    1994-10-01

    The Registries originated in 1968 as the National Plutonium Registry with the name changed to the United States Transuranium Registry the following year to reflect a broader concern with the heavier actinides as well. Initially, the scientific effort of the USTR was directed towards study of the distribution and dose of plutonium and americium in occupationally exposed persons, and to assessment of the effects of exposure to the transuranium elements on health. This latter role was reassessed during the 1970`s when it was recognized that the biased cohort of the USTR was inappropriate for epidemiologic analysis. In 1978, the administratively separate but parallel United States Uranium Registry was created to carry out similar work among persons exposed to uranium and its decay products. A seven member scientific advisory committee provided guidance and scientific oversight. In 1992, the two Registries were administratively combined and transferred from the purview of a Department of Energy contractor to Washington State University under the provisions of a grant. Scientific results for the first twenty-five years of the Registries are summarized, including the 1985 publication of the analysis of the first whole body donor. Current scientific work in progress is summarized along with administrative activities for the period.

  9. Request For Records Disposition Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request For Records Disposition Authority Request For Records Disposition Authority National Archives Pacific Southwest Region PDF icon Request For Records Disposition Authority More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY Request For Records Disposition Autnority

  10. Request For Records Disposition Autnority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request For Records Disposition Autnority Request For Records Disposition Autnority Published Posters. Posters depicting Department of Energy facilities, research projects, security awareness themes, and related topics. PDF icon Request For Records Disposition Autnority More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY

  11. Uranium Marketing Annual Report - Release Date: May 31, 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and does not include the conversion service and enrichment service components. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (20...

  12. Excess Uranium Inventory Management Plan 2008 | Department of Energy

    Energy Savers [EERE]

    Plan 2008 Excess Uranium Inventory Management Plan 2008 On March 11, 2008, Secretary of Energy Samuel W. Bodman signed a policy statement1 on the management of the U.S. Department of Energy's (DOE) excess uranium inventory (Policy Statement). This Policy Statement provides the framework within which DOE will make decisions concerning future use and disposition of this inventory. The Policy Statement commits DOE to manage those inventories in a manner that: (1) is consistent with all applicable

  13. DOE - Office of Legacy Management -- Colonial Uranium Co - CO 10

    Office of Legacy Management (LM)

    Colonial Uranium Co - CO 10 FUSRAP Considered Sites Site: Colonial Uranium Co. (CO.10 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Grand Junction , Colorado CO.10-1 Evaluation Year: 1987 CO.10-2 Site Operations: Processed thorium concentrates for commercial market at another site. AEC purchased small quantity (100 lbs) for testing. CO.10-1 Site Disposition: Eliminated - No Authority - Commercial operation CO.10-2 Radioactive

  14. DOE/EA-1651: Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee (January 2010)

    Office of Environmental Management (EM)

    651 Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee U. S. Department of Energy Oak Ridge Office Oak Ridge, Tennessee January 2010 FINDING OF NO SIGNIFICANT IMPACT URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has completed the

  15. DOE - Office of Legacy Management -- Climax Uranium Co Grand Junction Mill

    Office of Legacy Management (LM)

    - CO 0-03 Climax Uranium Co Grand Junction Mill - CO 0-03 FUSRAP Considered Sites Site: Climax Uranium Co. (Grand Junction Mill) (CO.0-03) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Grand Junction, Colorado, Processing Site Documents Related to Climax Uranium Co. (Grand Junction Mill) Data Validation Package for the August

  16. Used Fuel Disposition Stainless Steel Canister Challenges Steve Marschman

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stainless Steel Canister Challenges Steve Marschman Field Demonstration Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Date 2 Overview n Chloride-Induced Stress Corrosion Cracking (CISCC) has been identified by the NRC as a potential degradation mechanism for welded, stainless steel used fuel canisters (not bare fuel storage casks). n Systems are difficult to inspect and monitor n Three in-service inspections have been performed - Results

  17. Services

    Broader source: Energy.gov [DOE]

    The Office of Management provides many of the services that keep the Department of Energy Headquarters offices operational. Other Program Offices also provide services to the employees at...

  18. DEVELOPMENT OF GLASS AND CRYSTALLINE CERAMIC FORMS FOR DISPOSITION OF EXCESS PLUTONIUM

    SciTech Connect (OSTI)

    Marra, James; Cozzi, A; Crawford, C.; Herman, C.; Marra, John; Peeler, D.

    2009-09-10

    In the aftermath of the Cold War, the United States Department of Energy (DOE) has identified up to 50 metric tons of excess plutonium that needs to be dispositioned. The bulk of the material is slated to be blended with uranium and fabricated into a Mixed Oxide (MOX) fuel for subsequent burning in commercial nuclear reactors. Excess plutonium-containing impurity materials making it unsuitable for fabrication into MOX fuel will need to be dispositioned via other means. Glass and crystalline ceramics have been developed and studied as candidate forms to immobilize these impure plutonium feeds. A titanate-based ceramic was identified as an excellent actinide material host. This composition was based on Synroc compositions previously developed for nuclear waste immobilization. These titanate ceramics were found to be able to accommodate extremely high quantities of fissile material and exhibit excellent aqueous durability. A lanthanide borosilicate (LaBS) glass was developed to accommodate high concentrations of plutonium and to be very tolerant of impurities yet still maintain good aqueous durability. Recent testing of alkali borosilicate compositions showed promise of using these compositions to disposition lower concentrations of plutonium using existing high level waste vitrification processes. The developed waste forms all appear to be suitable for Pu disposition. Depending on the actual types and concentrations of the Pu residue streams slated for disposition, each waste form offers unique advantages.

  19. DOE Records Disposition Schedule Changes | Department of Energy

    Energy Savers [EERE]

    Records Disposition Schedule Changes DOE Records Disposition Schedule Changes Disposition Schedule Changes PDF icon DOE Records Disposition Schedule Changes More Documents & Publications DOE Administrative Records Schedules Changes DOERS Records Schedule Cross Index to DOE Administrative Records Disposition Schedules ADMINISTRATIVE RECORDS SCHEDULE 18: SECURITY, EMERGENCY PLANNING, AND SAFETY RECORDS

  20. Personal Property Disposition - Community Reuse Organizations (CROs) |

    Energy Savers [EERE]

    Department of Energy Personal Property Disposition - Community Reuse Organizations (CROs) Personal Property Disposition - Community Reuse Organizations (CROs) MEMORANDUM TO: DISTRIBUTION FROM: Michael Owen (signed) Director, Office of Worker and Community Transition Department of Energy Washington, DC 20505 January 22, 2003 Disposition of Excess Personal Property BACKGROUND AND PURPOSE CROs have been operating asset conversion and personal property transfer programs since shortly after the

  1. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  2. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  3. Summary - Major Risk Factors Integrated Facility Disposition...

    Office of Environmental Management (EM)

    Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did...

  4. 8.0 FACILITY DISPOSITION PROCESS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from operational status to its end state condition (final disposition) at Hanford. ... September 24, 2003 and The Decommissioning Handbook (DOEEM-0383, January 2000) ...

  5. Weapons Dismantlement and Disposition NNSS Capabilities

    SciTech Connect (OSTI)

    Pat Arnold

    2011-12-01

    The U.S. Department of Energy (DOE) has tasked the WDD working group to disposition the large inventory of legacy classified weapon components scattered across the complex.

  6. Dismantlement and Disposition | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    Weapons dismantlement 1 and disposition are major parts of NNSA's stockpile work and significant elements of NNSA's effort to transform the nuclear weapons complex and stockpile. ...

  7. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pacific Northwest Lab: Richland Operations Office PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY Request For Records Disposition Autnority ADMINISTRATIVE RECORDS SCHEDULE 21:AUDIOVISUAL RECORDS (Revision 1)

  8. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Power Plant Docket Records PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications PIA - Savannah River Remediation Accreditation Boundary (SRR AB) REQUEST FOR RECORDS DISPOSITION AUTHORITY REQUEST FOR RECORDS DISPOSITION AUTHORITY

  9. Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Engineering Services The Network OSCARS Fasterdata IPv6 Network Network Performance Tools The ESnet Engineering Team Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Engineering Services ESnet provides interoperable, effective, reliable, and high performance network communications infrastructure, and certain

  10. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our ... - Transportation - Analysis Used Fuel Disposition 3 Overall Objectives * Develop ...

  11. Integrated Tool Development for Used Fuel Disposition Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase...

  12. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Forty years of plutonium production at the...

  13. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lawrence Berkeley National Laboratory: Cyclotron Records PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY...

  14. CXD 4605, Disposition Excess Equipment from Alpha 1 (4605)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Disposition Excess Equipment from Alpha 1 (4605) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to characterize and disposition equipment that was...

  15. Request For Records Disposition Authority | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fossil Energy Equity Re-determination Records PDF icon Request For Records Disposition Authority More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY Inspection ...

  16. Services

    Broader source: Energy.gov [DOE]

    The Human Capital Office offers benefit, new employee orientation and some learning & development related services to all DOE employees. Additionally the Office supplies employee and labor...

  17. ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Moore, E.

    2013-07-17

    The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

  18. disposition

    National Nuclear Security Administration (NNSA)

    MT of surplus HEU has been down-blended for use as fuel in Tennessee Valley Authority reactors (completed in October 2011);

  19. 22 MT of surplus HEU has been set aside for...

  20. EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium.

  21. PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) This document lists the procedures for preparing records inventory and disposition schedules PDF icon PROCEDURE FOR PREPARING RECORDS INVENTORY AND DISPOSITION SCHEDULES (RIDS) More Documents & Publications DOE F 1324.10 Computer System Retirement Guidelines DOE F 1324.9

  1. Topic Index to the DOE Administrative Records Disposition Schedules |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules Topic Index to the DOE Administrative Records Disposition Schedules PDF icon Topic Index to the DOE Administrative Records Disposition Schedules More Documents & Publications ADMINISTRATIVE RECORDS SCHEDULE 20: ELECTRONIC RECORDS ADMINISTRATIVE RECORDS SCHEDULE 20: ELECTRONIC RECORDS ADMINISTRATIVE RECORDS SCHEDULE 12: COMMUNICATIONS

  2. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge |

    Energy Savers [EERE]

    Department of Energy Integrated Facility Disposition Project - Oak Ridge Major Risk Factors Integrated Facility Disposition Project - Oak Ridge Full Document and Summary Versions are available for download PDF icon Major Risk Factors Integrated Facility Disposition Project - Oak Ridge PDF icon Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN More Documents & Publications Major Risk Factors to the Integrated Facility Disposition Project Compilation

  3. Major Risk Factors to the Integrated Facility Disposition Project |

    Energy Savers [EERE]

    Department of Energy to the Integrated Facility Disposition Project Major Risk Factors to the Integrated Facility Disposition Project The scope of the Integrated Facility Disposition Project (IFDP) needs to comprehensively address a wide range of environmental management risks at the Oak Ridge Reservation (ORO). PDF icon Major Risk Factors to the Integrated Facility Disposition Project More Documents & Publications Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

  4. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This book presents the GAO's views on the Department of Energy's (DOE) program to develop a new uranium enrichment technology, the atomic vapor laser isotope separation process (AVLIS). Views are drawn from GAO's ongoing review of AVLIS, in which the technical, program, and market issues that need to be addressed before an AVLIS plant is built are examined.

  5. Excess plutonium disposition using ALWR technology

    SciTech Connect (OSTI)

    Phillips, A.; Buckner, M.R.; Radder, J.A.; Angelos, J.G.; Inhaber, H.

    1993-02-01

    The Office of Nuclear Energy of the Department of Energy chartered the Plutonium Disposition Task Force in August 1992. The Task Force was created to assess the range of practicable means of disposition of excess weapons-grade plutonium. Within the Task Force, working groups were formed to consider: (1) storage, (2) disposal,and(3) fission options for this disposition,and a separate group to evaluate nonproliferation concerns of each of the alternatives. As a member of the Fission Working Group, the Savannah River Technology Center acted as a sponsor for light water reactor (LWR) technology. The information contained in this report details the submittal that was made to the Fission Working Group of the technical assessment of LWR technology for plutonium disposition. The following aspects were considered: (1) proliferation issues, (2) technical feasibility, (3) technical availability, (4) economics, (5) regulatory issues, and (6) political acceptance.

  6. Request For Records Disposition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeastern Power Administration (SEPA) PDF icon Request For Records Disposition More Documents & Publications Audit/Investigative Records Schedule (Revision 2) ADMINISTRATIVE RECORDS SCHEDULES COMPILED Audit/Investigation Records

  7. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim storage, packaging, transportation, waste forms, waste treatment, decontamination and decommissioning issues; and low-level waste (LLW) and high-level waste (HLW) disposal.

  8. Waste Disposition News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Disposition News Waste Disposition News December 29, 2015 The Idaho State University class is briefed by Idaho Treatment Group Operations Support Manager Jeremy Hampton, far left, front row. Field Trip to EM's Idaho Treatment Facility is Students' High Point of Class IDAHO FALLS, Idaho - For graduate students in Dr. Mary Lou Dunzik-Gougar's Idaho State University (ISU) radioactive waste management class, waste treatment takes on a new meaning when watching the Supercompactor transform a

  9. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  10. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  11. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers occurs only if they are physically proximal in solution or the plutonium present in the solid phase is intimately mixed with compounds or solutions of these absorbers. No information on the potential chemical interaction of plutonium with cadmium was found in the technical literature. Definitive evidence of sorption or adsorption of plutonium onto various solid phases from strongly alkaline media is less clear-cut, perhaps owing to fewer studies and to some well-attributed tests run under conditions exceeding the very low solubility of plutonium. The several studies that are well-founded show that only about half of the plutonium is adsorbed from waste solutions onto sludge solid phases. The organic complexants found in many Hanford tank waste solutions seem to decrease plutonium uptake onto solids. A number of studies show plutonium sorbs effectively onto sodium titanate. Finally, this report presents findings describing the behavior of plutonium vis-à-vis other elements during sludge dissolution in nitric acid based on Hanford tank waste experience gained by lab-scale tests, chemical and radiochemical sample characterization, and full-scale processing in preparation for strontium-90 recovery from PUREX sludges.

  12. Uranium enrichment

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that in 1990 the Department of Energy began a two-year project to illustrate the technical and economic feasibility of a new uranium enrichment technology-the atomic vapor laser isotope separation (AVLIS) process. GAO believes that completing the AVLIS demonstration project will provide valuable information about the technical viability and cost of building an AVLIS plant and will keep future plant construction options open. However, Congress should be aware that DOE still needs to adequately demonstrate AVLIS with full-scale equipment and develop convincing cost projects. Program activities, such as the plant-licensing process, that must be completed before a plant is built, could take many years. Further, an updated and expanded uranium enrichment analysis will be needed before any decision is made about building an AVLIS plant. GAO, which has long supported legislation that would restructure DOE's uranium enrichment program as a government corporation, encourages DOE's goal of transferring AVLIS to the corporation. This could reduce the government's financial risk and help ensure that the decision to build an AVLIS plant is based on commercial concerns. DOE, however, has no alternative plans should the government corporation not be formed. Further, by curtailing a planned public access program, which would have given private firms an opportunity to learn about the technology during the demonstration project, DOE may limit its ability to transfer AVLIS to the private sector.

  13. Excess Uranium Management

    Broader source: Energy.gov [DOE]

    The Department's Notice of Issues for Public Comment on the effects of DOE transfers of excess uranium on domestic uranium mining, conversion, and enrichment industries.

  14. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U. S. Atomic Energy Commision PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY DOE-HDBK-1109-97 DOE-HDBK-1109-97

  15. Request For Records Disposition Authority | Department of Energy

    Energy Savers [EERE]

    Records Schedule Contractor Checks PDF icon Request For Records Disposition Authority More Documents & Publications DOE-STD-4001-2000 DOE Records Disposition Schedule Changes Audit Letter Report: INS-L-07-05

  16. PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Koenig, R.; Davies, S.

    2009-06-01

    Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

  17. H. R. S. 182 - Reservation and Disposition of Government Mineral...

    Open Energy Info (EERE)

    (Redirected from Hawaii Revised Statute 182-1, Definitions for Reservation and Disposition of Government Mineral Rights)...

  18. EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 283: Surplus Plutonium Disposition Environmental Impact Statement EIS-0283: Surplus Plutonium Disposition Environmental Impact Statement Summary This EIS analyzes the potential environmental impacts associated with alternatives for the disposition of surplus plutonium. Also see Surplus Plutonium Disposition Supplemental EIS (DOE/EIS-0283-S2). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download April 30,

  19. Facility Disposition Safety Strategy RM | Department of Energy

    Energy Savers [EERE]

    Disposition Safety Strategy RM Facility Disposition Safety Strategy RM The Facility Disposition Safety Strategy (FDSS) Review Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the facility documentation, preparations or previous activities, characterization and planning activities as related to safety and associated with the phases or paths that a facility may take to ultimately achieve decommissioning . PDF icon Facility Disposition Safety Strategy RM

  20. Waste and Materials Disposition Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste and Materials Disposition Information Waste and Materials Disposition Information Waste and Materials Disposition Information As the Office of Environmental Management (EM) fulfills its mission, waste and materials disposition plays a vital role in the cleanup of radioactive waste and the environmental legacy of nuclear weapons production and nuclear energy research. Disposal of waste frequently falls on the critical path of cleanup projects. Significant planning resources are spent to

  1. MANAGING HANFORD'S LEGACY NO-PATH-FORWARD WASTES TO DISPOSITION

    SciTech Connect (OSTI)

    WEST LD

    2011-01-13

    The U.S. Department of Energy (DOE) Richland Operations Office (RL) has adopted the 2015 Vision for Cleanup of the Hanford Site. This vision will protect the Columbia River, reduce the Site footprint, and reduce Site mortgage costs. The CH2M HILL Plateau Remediation Company's (CHPRC) Waste and Fuels Management Project (W&FMP) and their partners support this mission by providing centralized waste management services for the Hanford Site waste generating organizations. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 m{sup 3} of waste was defined as 'no-path-forward waste.' The majority of these wastes are suspect transuranic mixed (TRUM) wastes which are currently stored in the low-level Burial Grounds (LLBG), or stored above ground in the Central Waste Complex (CWC). A portion of the waste will be generated during ongoing and future site cleanup activities. The DOE-RL and CHPRC have collaborated to identify and deliver safe, cost-effective disposition paths for 90% ({approx}8,000 m{sup 3}) of these problematic wastes. These paths include accelerated disposition through expanded use of offsite treatment capabilities. Disposal paths were selected that minimize the need to develop new technologies, minimize the need for new, on-site capabilities, and accelerate shipments of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico.

  2. REQUEST FOR RECORDS DISPOSITION AUTHORITY | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AEC - Power Reactor Records, Summaries of Data and Statistics Useful in the Control of Operations, Source Records Utilized in Compiling Summaries and Reports in Operations Control, II-NNA-2110 PDF icon REQUEST FOR RECORDS DISPOSITION AUTHORITY More Documents & Publications REQUEST FOR RECORDS DISPOSITION AUTHORITY DOE F 1324.10 REQUEST FOR RECORDS DISPOSITION AUTHORITY

  3. Characterizing surplus US plutonium for disposition

    SciTech Connect (OSTI)

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-02-26

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

  4. Surplus Plutonium Disposition Supplemental Environmental Impact Statement |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Plutonium Disposition Supplemental Environmental Impact Statement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  5. Analysis of disposition alternatives for radioactively contaminated scrap metal

    SciTech Connect (OSTI)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1997-01-01

    Millions of tonnes of slightly radioactive, scrap iron and steel, stainless steel, and copper are likely to become available as nuclear and other facilities and equipment are withdrawn from service. Disposition of this material is an international policy issue under consideration currently. The major alternatives for managing this material are to either develop a regulatory process for decontamination and recycling that will safeguard human health or to dispose of the scrap and replace the metal stocks. To evaluate the alternatives, we estimate quantities of scrap arising from nuclear power plant decommissioning, evaluate potential price impacts of recycling on regional markets, and assess the health and environmental impacts of the management alternatives. We conclude that decontaminating and recycling the scrap is the superior alternative.

  6. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  7. PRODUCTION OF PURIFIED URANIUM

    DOE Patents [OSTI]

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  8. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    5 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Enrichment service contract type U.S. enrichment Foreign enrichment Total Spot W W 628 Long-term W W 12,310 Total 3,773 9,165 12,939 Table 17. Purchases of enrichment services by owners and operators of U.S. civilian nuclear power reactors by contract type in delivery year, 2014 thousand separative work units (SWU) W = Data withheld to avoid disclosure of individual company data. Note: Totals may not

  9. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Enrichment service sellers to owners and operators of U.S. civilian nuclear power reactors, 2012-14" 2012,2013,2014 "Advance Uranium Asset Management Ltd.","AREVA NC, Inc.","AREVA Enrichment Services, LLC / AREVA NC, Inc." "AREVA NC, Inc.","CNEIC (China Nuclear Energy Industry Corporation)","CNEIC (China Nuclear Energy Industry Corporation)" "CNEIC (China Nuclear Energy Industry Corporation)","LES, LLC (Louisiana

  10. Waste Disposition Update by Christine Gelles

    Office of Environmental Management (EM)

    Waste Disposition Update Christine Gelles Associate Deputy Assistant Secretary for Waste Management (EM-30) EM SSAB Chairs Meeting Washington, DC 2 October 2012 www.em.doe.gov 2 o Waste Stream Highlights o DOE Transportation Update o Greater Than Class C (GTCC) Low Level Waste Environmental Impact Statement o Blue Ribbon Commission on America's Nuclear Future o Nuclear Regulatory Commission's LLW Regulatory Initiatives Discussion Topics www.em.doe.gov 3 Waste Stream Highlights www.em.doe.gov 4 o

  11. CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS

    SciTech Connect (OSTI)

    Allender, J; Edwin Moore, E; Scott Davies, S

    2008-07-15

    The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

  12. Material Disposition | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Disposition | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog

  13. Plutonium Disposition Program | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Disposition Program | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  14. EM Waste and Materials Disposition & Transportation

    Office of Environmental Management (EM)

    On Closure Success 1 EM Waste and Materials Disposition & Transportation National Transportation Stakeholders Forum Chicago, Illinois May 26, 2010 Frank Marcinowski Acting Chief Technical Officer and Deputy Assistant Secretary for Technical and Regulatory Support Office of Environmental Management DOE's Radioactive Waste Management Priorities * Continue to manage waste inventories in a safe and compliant manner * Address high risk waste in a cost- ff ti effective manner * Maintain and

  15. Independent Oversight Review, Babcock & Wilcox Technical Services...

    Broader source: Energy.gov (indexed) [DOE]

    Long Lead Procurement Processed Used by Babcock & Wilcox Technical Services Y-12, LLC for the Uranium Processing Facility Project This report provides the results of an independent...

  16. METHOD FOR PURIFYING URANIUM

    DOE Patents [OSTI]

    Knighton, J.B.; Feder, H.M.

    1960-04-26

    A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

  17. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. Inventories of uranium by owner as of end of year, 2010-14 thousand pounds U3O8 equivalent Inventories at the end of the year Owner of uranium inventory 2010 2011 2012 2013...

  18. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. Inventories of natural and enriched uranium by material type as of end of year, 2010-14 thousand pounds U3O8 equivalent Inventories at the end of the year Type of uranium...

  19. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2012-14 2012 2013 2014 Advance Uranium Asset Management Ltd. (was Uranium Asset Management) American Fuel Resources, LLC Advance Uranium Asset Management Ltd. American Fuel Resources, LLC AREVA NC, Inc. AREVA / AREVA NC, Inc. AREVA NC, Inc. BHP Billiton Olympic Dam Corporation Pty Ltd ARMZ (AtomRedMetZoloto) BHP Billiton Olympic Dam Corporation Pty Ltd CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd CAMECO

  20. Final Uranium Leasing Program Programmatic Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing...

  1. Additional public meeting on plutonium disposition on September 18

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Public Meeting on Plutonium Disposition Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Additional public meeting on plutonium disposition on September 18 DOE has extended the public review and comment period for the Draft Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (EIS). September 1, 2012 dummy image Read our archives Contacts Editor Linda

  2. Portsmouth Waste Disposition Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Disposition Record of Decision Portsmouth Waste Disposition Record of Decision The Ohio Environmental Protection Agency (Ohio EPA) and the U.S. Department of Energy (DOE) have agreed upon a plan for the disposition of more than two million cubic yards of waste that would be generated from the decontamination and decommissioning (D&D) of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. Ohio EPA's concurrence with the Record of Decision (ROD) prepared by DOE comes after a

  3. DRAFT EM SSAB Chair's Meeting Waste Disposition Strategies Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of EM Waste Disposition Frank Marcinowski Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting - Pasco, WA April 23, 2014 www.energy.gov/EM 2 * EM Waste Disposition Updates by Site * LLW/MLLW Disposal Update * Disposition Strategies * Questions and Answers Discussion Topics www.energy.gov/EM 3 Radioactive Tank Waste $ 2,042M / 36% Facility D&D $ 992M / 18% Special Nuclear Materials and Used Nuclear Fuel** $ 971M / 17% Transuranic

  4. DOE Seeks Industry Input on Nickel Disposition Strategy | Department of

    Office of Environmental Management (EM)

    Energy Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical,

  5. EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental

    Office of Environmental Management (EM)

    Impact Statement | Department of Energy 83-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement EIS-0283-S2: Surplus Plutonium Disposition Supplemental Environmental Impact Statement Summary This Supplemental EIS (SEIS) analyzes the potential environmental impacts associated with changes to the surplus plutonium disposition program, including changes to the inventory of surplus plutonium and proposed new alternatives. The Final SEIS does not identify a preferred

  6. Used Fuel Disposition Campaign Disposal Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear...

  7. Used Fuel Disposition R&D Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28, 2012 Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report The natural barrier system (NBS) is an integral part of a geologic nuclear...

  8. ,"U.S. Natural Gas Monthly Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  9. Used Fuel Disposition Campaign Phase I Ring Compression Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase I Ring Compression Testing of High Burnup Cladding Used Fuel Disposition Campaign Phase I Ring Compression Testing of High Burnup Cladding The purpose of ring compression...

  10. EIS-0327: Disposition of Scrap Metals Programmatic EIS | Department...

    Broader source: Energy.gov (indexed) [DOE]

    intent to prepare an EIS that would evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel)...

  11. Portsmouth Proposed Plan for the Site-wide Waste Disposition...

    Energy Savers [EERE]

    Plan for the Site-wide Waste Disposition Evaluation Project DOE has evaluated alternatives for managing waste that would be created by decomtamination and decommissioning of...

  12. EA-1488: Environmental Assessment for the U-233 Disposition,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1488:...

  13. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration / 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand separative work units (SWU) Country of enrichment service (SWU-origin) 2010 2011 2012 2013 2014 China 0 W W W 636 France W W 0 0 0 Germany 681 1,539 1,075 753 1,005 Netherlands 2,292 1,506 1,496 2,112 1,801 Russia 5,055 5,308 6,560 2,491 3,083 United Kingdom 2,119 2,813 2,648 2,674 2,435 Europe 1 W 670 W 0 W Other 2 W

  14. URANIUM RECOVERY PROCESS

    DOE Patents [OSTI]

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  15. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  16. Hight-Level Waste & Facilities Disposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Level Waste (HLW) and Facilities Disposition Final Environmental Impact Statement You are here: DOE-ID Home > Environmental Management > Idaho High-Level Waste (HLW) Table of Contents Documents are in the Adobe� PDF format and require the Adobe� Reader to access them. If you do not currently have the Acrobat Reader, you can download the Free Adobe Reader at http://get.adobe.com/reader/ Icon link to Free Adobe Acrobat Reader software * Large chapters broken down into sections

  17. Plutonium stabilization and disposition focus area, FY 1999 and FY 2000 multi-year program plan

    SciTech Connect (OSTI)

    1998-03-01

    Consistent with the Environmental Management`s (EM`s) plan titled, ``Accelerating Cleanup: Paths to Closure``, and ongoing efforts within the Executive Branch and Congress, this Multi-Year Program Plan (MYPP) for the Plutonium Focus Area was written to ensure that technical gap projects are effectively managed and measured. The Plutonium Focus Area (PFA) defines and manages technology development programs that contribute to the effective stabilization of nuclear materials and their subsequent safe storage and final disposition. The scope of PFA activities includes the complete spectrum of plutonium materials, special isotopes, and other fissile materials. The PFA enables solutions to site-specific and complex-wide technology issues associated with plutonium remediation, stabilization, and preparation for disposition. The report describes the current technical activities, namely: Plutonium stabilization (9 studies); Highly enriched uranium stabilization (2 studies); Russian collaboration program (2 studies); Packaging and storage technologies (6 studies); and PFA management work package/product line (3 studies). Budget information for FY 1999 and FY 2000 is provided.

  18. Process Guide for the Identification and Disposition of S/CI...

    Office of Environmental Management (EM)

    Process Guide for the Identification and Disposition of SCI or Defective Items at Department of Energy Facilities Process Guide for the Identification and Disposition of SCI or...

  19. HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE

    SciTech Connect (OSTI)

    Magoulas, V; Charles Goergen, C; Ronald Oprea, R

    2008-06-05

    The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the product throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.

  20. About the Uranium Mine Team | Department of Energy

    Energy Savers [EERE]

    Uranium Mine Team About the Uranium Mine Team Text coming

  1. Disposition of ORNL's Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Turner, D. W.; DeMonia, B. C.; Horton, L. L.

    2002-02-26

    This paper describes the process of retrieving, repackaging, and preparing Oak Ridge spent nuclear fuel (SNF) for off-site disposition. The objective of the Oak Ridge SNF Project is to safely, reliably, and efficiently manage SNF that is stored on the Oak Ridge Reservation until it can be shipped off-site. The project required development of several unique processes and the design and fabrication of special equipment to enable the successful retrieval, transfer, and repackaging of Oak Ridge SNF. SNF was retrieved and transferred to a hot cell for repackaging. After retrieval of SNF packages, the storage positions were decontaminated and stainless steel liners were installed to resolve the vulnerability of water infiltration. Each repackaged SNF canister has been transferred from the hot cell back to dry storage until off-site shipments can be made. Three shipments of aluminum-clad SNF were made to the Savannah River Site (SRS), and five shipments of non-aluminum-clad SNF are planned to the Idaho National Engineering and Environmental Laboratory (INEEL). Through the integrated cooperation of several organizations including the U.S. Department of Energy (DOE), Bechtel Jacobs Company LLC (BJC), Oak Ridge National Laboratory (ORNL), and various subcontractors, preparations for the disposition of SNF in Oak Ridge have been performed in a safe and successful manner.

  2. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  3. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  4. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  5. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Table S3a. Foreign purchases, foreign sales, and uranium ...

  6. METHOD OF ROLLING URANIUM

    DOE Patents [OSTI]

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  7. Uranium Purchases Report

    Reports and Publications (EIA)

    1996-01-01

    Final issue. This report details natural and enriched uranium purchases as reported by owners and operators of commercial nuclear power plants. 1996 represents the most recent publication year.

  8. highly enriched uranium

    National Nuclear Security Administration (NNSA)

    and radioisotope supply capabilities of MURR and Nordion with General Atomics' selective gas extraction technology-which allows their low-enriched uranium (LEU) targets to remain...

  9. Domestic Uranium Production Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Resources, Inc. dba Cameco Resources Smith Ranch-Highland Operation Converse, Wyoming ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  10. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (20...

  11. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (20...

  12. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    rounding. Weighted-average prices are not adjusted for inflation. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2010-14)....

  13. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    of the United States. Weighted-average prices are not adjusted for inflation. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2010...

  14. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2011...

  15. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    independent rounding. Weighted-average prices are not adjusted for inflation. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2013...

  16. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    independent rounding. Weighted-average prices are not adjusted for inflation. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2010-...

  17. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2013...

  18. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Table 9. Summary production statistics of the U.S. uranium industry, 1993-2014 Exploration and Development Surface Drilling Exploration and Development Drilling Expenditures 1 Mine Production of Uranium Uranium Concentrate Production Uranium Concentrate Shipments Employment Year (million feet) (million dollars) (million pounds U 3 O 8 ) (million pounds U 3 O 8 )

  19. U.S.Uranium Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Reserves Data for: 2003 Release Date: June 2004 Next Release: Not determined Uranium Reserves Estimates The Energy Information Administration (EIA) has reported the...

  20. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report May 2015 Independent ... DC 20585 U.S. Energy Information Administration | 2014 ... Team, Office of Electricity, Renewables, and Uranium ...

  1. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report April 2015 Independent ... by the U.S. Energy Information Administration (EIA), ... Team, Office of Electricity, Renewables, and Uranium ...

  2. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand ...

  3. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Minimum ...

  4. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Energy Information Administration, Form EIA-858 ""Uranium Marketing Annual Survey"" (2012-14)." "32 U.S. Energy Information Administration 2014 Uranium Marketing Annual Report

  5. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Origin of ...

  6. Plan Approved for Waste Disposition at DOE's Portsmouth Site | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Plan Approved for Waste Disposition at DOE's Portsmouth Site Plan Approved for Waste Disposition at DOE's Portsmouth Site July 7, 2015 - 3:01pm Addthis PIKETON, Ohio - The Ohio Environmental Protection Agency (Ohio EPA) and the U.S. Department of Energy (DOE) have agreed upon a plan for the disposition of more than two million cubic yards of waste that would be generated from the decontamination and decommissioning (D&D) of the Portsmouth Gaseous Diffusion Plant in Piketon,

  7. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  8. ISMS/EMS Lessons Learned Disposition Projects at SRS | Department of Energy

    Office of Environmental Management (EM)

    ISMS/EMS Lessons Learned Disposition Projects at SRS ISMS/EMS Lessons Learned Disposition Projects at SRS August 2009 Presenter: Joan Bozzone, NNSA SRS Track 7-5 Topics Covered: Pu Disposition Projects US Surplus Plutonium Disposition Paths Challenging Characteristics of NNSA Plutonium Disposition Projects MFFF Environmental Features Project Permitting Lessons Learned #1 MOX Environmental Management Project Permitting Lessons Learned #2 MOX Environmental Sustainability Policy PDF icon ISMS/EMS

  9. U.S. and Russia Sign Plutonium Disposition Agreement | National...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline U.S. and Russia Sign Plutonium Disposition Agreement U.S. and Russia Sign Plutonium...

  10. Update of the Used Fuel Disposition Campaign Implementation Plan

    Broader source: Energy.gov [DOE]

    The Used Fuel Disposition Campaign will identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles.

  11. Office of UNF Disposition International Program- Strategic Plan

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Office of Nuclear Energy, Used Nuclear Fuel Disposition Research and Development Office (UFD), performs the critical mission of addressing the need for an integrated...

  12. Americium/Curium Disposition Life Cycle Planning Study

    SciTech Connect (OSTI)

    Jackson, W.N.; Krupa, J.; Stutts, P.; Nester, S.; Raimesch, R.

    1998-04-30

    At the request of the Department of Energy Savannah River Office (DOE- SR), Westinghouse Savannah River Company (WSRC) evaluated concepts to complete disposition of Americium and Curium (Am/Cm) bearing materials currently located at the Savannah River Site (SRS).

  13. SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP

    SciTech Connect (OSTI)

    Allender, J.; Mcclard, J.; Christopher, J.

    2012-06-08

    The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

  14. Low Level Waste Disposition – Quantity and Inventory

    Office of Energy Efficiency and Renewable Energy (EERE)

    This study has been prepared by the Used Fuel Disposition (UFD) campaign of the Fuel Cycle Research and Development (FCR&D) program. The purpose of this study is to provide an estimate of the...

  15. Used Fuel Disposition Campaign Disposal Research and Development Roadmap

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and...

  16. DOE Chooses Contractor to Disposition Waste at the Advanced Mixed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IDAHO, 83403 DOE Chooses Contractor to Disposition Waste at the Advanced Mixed Waste Treatment Project (AMWTP) CH2M Hill Newport News Nuclear, LLC to continue cleanup and waste...

  17. EIS-0327: Disposition of Scrap Metals Programmatic EIS

    Broader source: Energy.gov [DOE]

    DOE announced its intent to prepare an EIS that would evaluate the environmental impacts of policy alternatives for the disposition of scrap metals (primarily carbon steel and stainless steel) that may have residual surface radioactivity. DOE cancelled this EIS.

  18. Draft - DOE G 410.2-1, Nuclear Material Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This document provides a roadmap for implementing the requirements for disposition of nuclear material as outlined in the U.S. Department of Energy (DOE) Order 410.2, Management of Nuclear Materials, and DOE Order 474.2, Nuclear Material Control and Accountability. This Guide provides the basic framework for the nuclear material disposition process, includes information related to the Programmatic Value Determination (PVD) process, and identifies Discard Limits (DL) for specific low-equity nuclear materials.

  19. Used Fuel Disposition Campaign International Activities Implementation Plan

    Office of Environmental Management (EM)

    | Department of Energy International Activities Implementation Plan Used Fuel Disposition Campaign International Activities Implementation Plan The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office

  20. Experimental Program for Used Fuel Disposition in Crystalline Rocks.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Experimental Program for Used Fuel Disposition in Crystalline Rocks. Citation Details In-Document Search Title: Experimental Program for Used Fuel Disposition in Crystalline Rocks. Abstract not provided. Authors: Wang, Yifeng Publication Date: 2014-10-01 OSTI Identifier: 1242086 Report Number(s): SAND2014-19251C 540815 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the DOE Fuel Cycle

  1. Assessment of the Integrated Facility Disposition Project at Oak Ridge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory & Y-12 for Transfer of Facilities & Materials to EM | Department of Energy the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program

  2. Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline This Report to Congress provides a summary of the analysis supporting DOE's determination to dispose of the Naval Petroleum Reserve No. 3 through sale of all right, title, interest on the open market. PDF icon RMOTC Report to Congress.pdf More Documents & Publications EIS-0158-S2: Record of Decision EA-1236: Finding of No

  3. Development of Authorized Limits for Portsmouth Oil Inventory Disposition

    Office of Environmental Management (EM)

    safety  performance  cleanup  closure M E Environmental Management Development of Authorized Limits for Portsmouth Oil Inventory Disposition September 12, 2012 By Don Dihel and Dan Mosley Portsmouth/Paducah Project Office safety  performance  cleanup  closure M E Environmental Management PORTS Oil Disposition Problem in Late 2007 * Need to the dispose of approximately 2.5 million pounds or 350,000 gallons of lubricating oils contained in storage tanks and associated lines and

  4. Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary objective of this report is to determine whether the existing Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is sufficient for work to be performed in the Used Fuel Disposition Campaign (UFDC), and where the existing QAPD is not sufficient, supply recommendations for changes to the QAPD to

  5. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage and Transportation Overview Steve Marschman Field Demonstration Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our R&D Objectives n What Guides Our Work n FY14 and FY15 Work - Full-Scale High Burn-Up Demo - Experiments - Transportation - Analysis Used Fuel Disposition 3 Overall Objectives * Develop the technical bases to demonstrate the continued safe and secure storage of used nuclear fuel for extended

  6. EA-1488: Environmental Assessment for the U-233 Disposition, Medical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee | Department of Energy 88: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge,

  7. Hanford Tank Waste Retrieval, Treatment, and Disposition Framework |

    Energy Savers [EERE]

    Department of Energy Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Hanford Tank Waste Retrieval, Treatment, and Disposition Framework Forty years of plutonium production at the Hanford Site has yielded a challenging nuclear waste legacyapproximately 56 million gallons of radioactive and chemical wastes stored in 177 underground tanks (tank farms) located on Hanford's Central Plateau. The mission of the U.S. Department of Energy (DOE) Office of River Protection (ORP) is

  8. Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    Office of Environmental Management (EM)

    U.S. Department of Energy Office of Material Management and Minimization and Office of Environmental Management Washington, DC Summary Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement AVAILABILITY OF THE FINAL SURPLUS PLUTONIUM DISPOSITION SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (SPD Supplemental EIS) For further information on this SPD Supplemental EIS, or to request a copy, please contact: Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S.

  9. Hanford Tank Waste Retrieval, Treatment and Disposition Framework |

    Office of Environmental Management (EM)

    Department of Energy Hanford Tank Waste Retrieval, Treatment and Disposition Framework Hanford Tank Waste Retrieval, Treatment and Disposition Framework Completing the Office of River Protection (ORP) mission of stabilizing 56 million gallons of chemical and radioactive waste stored in Hanford's 177 tanks is one of the Energy Department's highest priorities. This Framework document outlines a phased approach for beginning tank waste treatment while continuing to resolve technical issues with

  10. EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho

    Office of Environmental Management (EM)

    Site | Department of Energy Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 - 12:00pm Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. A tank at the Materials and Fuels Complex containing residual sodium is moved

  11. Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    Savannah River Site - South Carolina Sequoyah Nuclear Plant - Tennessee Browns Ferry Nuclear Plant - Alabama Waste Isolation Pilot Plant - New Mexico Los Alamos National Laboratory - New Mexico DOE/EIS-0283-S2 July 2012 U.S. Department of Energy Office of Fissile Materials Disposition and Office of Environmental Management Washington, DC AVAILABILITY OF THE DRAFT SURPLUS PLUTONIUM DISPOSITION SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (SPD Supplemental EIS) To submit comments on this SPD

  12. Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    of Material Management and Minimization and Office of Environmental Management Washington, DC Volume 1 (Chapters 1 through 10) Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement For further information on this SPD Supplemental EIS, or to request a copy, please contact: AVAILABILITY OF THE FINAL SURPLUS PLUTONIUM DISPOSITION SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (SPD Supplemental EIS) Printed with soy ink on recycled paper Sachiko McAlhany, NEPA Document

  13. Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    of Material Management and Minimization and Office of Environmental Management Washington, DC Volume 3 Comment Response Document Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement For further information on this SPD Supplemental EIS, or to request a copy, please contact: AVAILABILITY OF THE FINAL SURPLUS PLUTONIUM DISPOSITION SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (SPD Supplemental EIS) Printed with soy ink on recycled paper Sachiko McAlhany, NEPA Document

  14. Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy Office of Material Management and Minimization and Office of Environmental Management Washington, DC Summary Final Surplus Plutonium Disposition Supplemental Environmental Impact Statement AVAILABILITY OF THE FINAL SURPLUS PLUTONIUM DISPOSITION SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT (SPD Supplemental EIS) For further information on this SPD Supplemental EIS, or to request a copy, please contact: Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S.

  15. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commissions Mid-Term Appraisal of the countrys current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of Indias uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  16. Literature review: Phytoaccumulation of chromium, uranium, and plutonium in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plant systems (Technical Report) | SciTech Connect Literature review: Phytoaccumulation of chromium, uranium, and plutonium in plant systems Citation Details In-Document Search Title: Literature review: Phytoaccumulation of chromium, uranium, and plutonium in plant systems × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI

  17. GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM

    Office of Environmental Management (EM)

    GC GUIDANCE ON BARTER TRANSACTIONS INVOLVING DOE-OWNED URANIUM The Department of Energy has on a variety of occasions engaged in transactions under which it bartered uranium to which it has title for goods or services . This guidance memorializes the results of analyses previously directed to individual proposed transactions . For the reasons discussed below, we conclude that the Atomic Energy Act of 1954' , as amended, (AEA), authorizes such barter transactions. Background : DOE Barter

  18. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth

    Office of Environmental Management (EM)

    and Paducah Gaseous Diffusion Sites | Department of Energy Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites October 20, 2011 - 9:16am Addthis When Babcock & Wilcox Conversion Services took over the DUF6 Project on March 29 of this year, the company had one thing in mind: Bring all seven conversion lines at both plants to

  19. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    SciTech Connect (OSTI)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-02-27

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

  20. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    2 U.S. Energy Information Administration / 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 2012 2013 2014 Advance Uranium Asset Management Ltd. (was Uranium Asset Management) American Fuel Resources, LLC Advance Uranium Asset Management Ltd. American Fuel Resources, LLC AREVA NC, Inc. AREVA / AREVA NC, Inc. AREVA NC, Inc. BHP Billiton Olympic Dam Corporation Pty Ltd ARMZ (AtomRedMetZoloto) BHP Billiton Olympic Dam

  1. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2014 million pounds U3O8 equivalent Delivery year Total purchased Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007)1 Purchased from foreign suppliers U.S.-origin uranium Foreign-origin uranium Spot contracts2 Short, medium, and long-term contracts3 1994

  2. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    . Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by supplier and delivery year, 2010-14 thousand pounds U3O8 equivalent, dollars per pound U3O8 equivalent Deliveries 2010 2011 2012 2013 2014 Purchased from U.S. producers Purchases of U.S.-origin and foreign-origin uranium 350 550 W W W Weighted-average price 47.13 58.12 W W W Purchased from U.S. brokers and traders Purchases of U.S.-origin and foreign-origin uranium 11,745 14,778 11,545 12,835 17,111

  3. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  4. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect (OSTI)

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  5. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9. Summary production statistics of the U.S. uranium industry, 1993-2014 Year Exploration and development surface drilling (million feet) Exploration and development drilling expenditures 1 (million dollars) Mine production of uranium (million pounds U3O8) Uranium concentrate production (million pounds U3O8) Uranium concentrate shipments (million pounds U3O8) Employment (person-years) 1993 1.1 5.7 2.1 3.1 3.4 871 1994 0.7 1.1 2.5 3.4 6.3 980 1995 1.3 2.6 3.5 6.0 5.5 1,107 1996 3.0 7.2 4.7 6.3

  6. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2012-14 deliveries thousand pounds U3O8...

  7. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2010-14 thousands pounds U3O8...

  8. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9. Contracted purchases of uranium by owners and operators of U.S. civilian nuclear power reactors, signed in 2014, by delivery year, 2015-24 thousand pounds U3O8 equivalent Year...

  9. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0. U.S. broker and trader purchases of uranium by origin, supplier, and delivery year, 2010-14 thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent Deliveries 2010...

  10. Uranium Marketing Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a. Foreign purchases, foreign sales, and uranium inventories owned by U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors, 1994-2014 million pounds U3O8...

  11. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2014 deliveries thousand pounds U3O8 equivalent; dollars...

  12. Uranium Marketing Annual Report -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4. Deliveries of uranium feed for enrichment by owners and operators of U.S. civilian nuclear power reactors by origin country and delivery year, 2012-14 thousand pounds U3O8...

  13. Uranium Marketing Annual Report -

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2012-14 deliveries thousand pounds U3O8...

  14. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  15. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, Alvin B. (Cincinnati, OH)

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  16. Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors

    SciTech Connect (OSTI)

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

  17. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    SciTech Connect (OSTI)

    NORTON SH

    2010-02-23

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford nuclear reservation. Workers had to pass through metal detectors when they arrived at the plant and materials leaving the plant had to be scanned for security reasons. Whereas other high-security nuclear materials were shipped from the PFP to Savannah River, S.C. as part ofa Department of Energy (DOE) program to consolidate weapons-grade plutonium, it was determined that the SIF should remain onsite pending disposition to a national repository. Nevertheless, the SIF still requires a high level of security that the PFP complex has always provided. With the 60-year PFP mission of producing and storing plutonium concluded, the environmental cleanup plans for Hanford call for the demolition of the 63-building PFP complex. Consequently, if the SIF remained at PFP it not only would have interfered with the environmental cleanup plans, but would have required $100 million in facility upgrades to meet increased national security requirements imposed after the 9/11 terrorist attacks. A new smaller and more cost-effective area was needed to store this material, which led to the SIF Project. Once the SIF project was successfully completed and the SIF was safely removed from PFP, the existing Protected Area at PFP could be removed, and demolition could proceed more quickly without being encumbered by restrictive security requirements that an active Protected Area requires. The lightened PFP security level brought by safely removing and storing the SIF would also yield lowered costs for deactivation and demolition, as well as reduce overall life-cycle costs.

  18. Nuclear Fuel Facts: Uranium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing

  19. file://\\\\fs-f1\\shared\\uranium\\uranium.html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glossary Home > Nuclear > U.S. Uranium Reserves Estimates U.S. Uranium Reserves Estimates Data for: 2008 Report Released: July 2010 Next Release Date: 2012 Summary The U.S. Energy...

  20. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  1. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  2. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  3. PRODUCTION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-08-27

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

  4. Uranium-titanium-niobium alloy

    DOE Patents [OSTI]

    Ludtka, Gail M. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    1990-01-01

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  5. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 2013 2014 2013 2014 2013 2014 Weighted-average price ...

  6. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand pounds U 3 O 8 equivalent Year Maximum ...

  7. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Deliveries Uranium concentrate Natural UF 6 Enriched UF 6 Total Purchases 2,004 1,312 ...

  8. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Table S1a. Uranium purchased by owners and operators of U.S. civilian nuclear power ...

  9. METHOD OF SINTERING URANIUM DIOXIDE

    DOE Patents [OSTI]

    Henderson, C.M.; Stavrolakis, J.A.

    1963-04-30

    This patent relates to a method of sintering uranium dioxide. Uranium dioxide bodies are heated to above 1200 nif- C in hydrogen, sintered in steam, and then cooled in hydrogen. (AEC)

  10. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Summary production statistics of the U.S. uranium industry, 1993-2014" ,"Exploration and Development Surface ","Exploration and Development Drilling","Mine Production of Uranium ","Uranium Concentrate Production ","Uranium Concentrate Shipments ","Employment " "Year","Drilling (million feet)"," Expenditures 1 (million dollars)","Mine Production (million pounds U3O8)","(million pounds

  11. LLNL Site plan for a MOX fuel lead assembly mission in support of surplus plutonium disposition

    SciTech Connect (OSTI)

    Bronson, M.C.

    1997-10-01

    The principal facilities that LLNL would use to support a MOX Fuel Lead Assembly Mission are Building 332 and Building 334. Both of these buildings are within the security boundary known as the LLNL Superblock. Building 332 is the LLNL Plutonium Facility. As an operational plutonium facility, it has all the infrastructure and support services required for plutonium operations. The LLNL Plutonium Facility routinely handles kilogram quantities of plutonium and uranium. Currently, the building is limited to a plutonium inventory of 700 kilograms and a uranium inventory of 300 kilograms. Process rooms (excluding the vaults) are limited to an inventory of 20 kilograms per room. Ongoing operations include: receiving SSTS, material receipt, storage, metal machining and casting, welding, metal-to-oxide conversion, purification, molten salt operations, chlorination, oxide calcination, cold pressing and sintering, vitrification, encapsulation, chemical analysis, metallography and microprobe analysis, waste material processing, material accountability measurements, packaging, and material shipping. Building 334 is the Hardened Engineering Test Building. This building supports environmental and radiation measurements on encapsulated plutonium and uranium components. Other existing facilities that would be used to support a MOX Fuel Lead Assembly Mission include Building 335 for hardware receiving and storage and TRU and LLW waste storage and shipping facilities, and Building 331 or Building 241 for storage of depleted uranium.

  12. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3. U.S. uranium concentrate production, shipments, and sales, 2003-14 Activity at U.S. mills and In-Situ-Leach plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Estimated contained U3O8 (thousand pounds) Ore from Mines and Stockpiles Fed to Mills1 0 W W W 0 W W W W W W W Other Feed Materials 2 W W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W W Uranium Concentrate Produced at

  13. PROCESS OF PREPARING URANIUM CARBIDE

    DOE Patents [OSTI]

    Miller, W.E.; Stethers, H.L.; Johnson, T.R.

    1964-03-24

    A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

  14. Uranium immobilization and nuclear waste

    SciTech Connect (OSTI)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  15. Paducah Demolition Debris Shipped for Disposition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demolition Debris Shipped for Disposition Paducah Demolition Debris Shipped for Disposition August 27, 2013 - 12:00pm Addthis The first five-car section of demolition debris from the C-340 Metals Plant leaves July 15 from the Paducah site. The first five-car section of demolition debris from the C-340 Metals Plant leaves July 15 from the Paducah site. A P&L locomotive travels near Woodville Road, south of the Paducah site, with the waste shipment in tow. A P&L locomotive travels near

  16. Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 |

    Energy Savers [EERE]

    Department of Energy Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 Savannah River Site Achieves Transuranic Waste Disposition Goal in 2013 December 24, 2013 - 12:00pm Addthis Workers gather behind a “Safety and Security begins with Me” banner at the Savannah River Site. Workers gather behind a "Safety and Security begins with Me" banner at the Savannah River Site. Workers sort through transuranic waste at the Savannah River Site. Workers sort

  17. Optimizing the Use of Federal Lands Through Disposition | Department of

    Energy Savers [EERE]

    Energy Optimizing the Use of Federal Lands Through Disposition Optimizing the Use of Federal Lands Through Disposition July 14, 2014 - 1:20pm Addthis What does this project do? Goal 4. Optimize the use of land and assets. The foundation of the U.S. Department of Energy (DOE) Office of Legacy Management's (LM) Goal 4, "Optimize the use of land and assets," is to establish environmentally sound and protective land uses on LM sites. LM believes there can be beneficial uses of land

  18. Used Fuel Disposition Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Used Fuel Disposition Research & Development Used Fuel Disposition Research & Development A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful

  19. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Portsmouth, Ohio, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Portsmouth site in Ohio (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Portsmouth to a more stable chemical form suitable for use or disposal. The facility would also convert the DUF{sub 6} from the East Tennessee Technology Park (ETTP) site near Oak Ridge, Tennessee. In a Notice of Intent (NOI) published in the Federal Register on September 18, 2001 (Federal Register, Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (United States Code, Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (Code of Federal Regulations, Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a Federal Register Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Portsmouth site; from the transportation of all ETTP cylinders (DUF{sub 6}, low-enriched UF6 [LEU-UF{sub 6}], and empty) to Portsmouth; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). An option of shipping the ETTP cylinders to Paducah is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Portsmouth and ETTP sites. A separate EIS (DOE/EIS-0359) evaluates potential environmental impacts for the proposed Paducah conversion facility.

  20. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

  1. Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    b. Weighted-average price of uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2014 dollars per pound U3O8 equivalent Delivery year Total purchased (weighted-average price) Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007)1 Purchased from foreign suppliers U.S.-origin uranium (weighted-average price)

  2. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  3. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  4. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10. Uranium reserve estimates at the end of 2013 and 2014 million pounds U3O8 End of 2013 End of 2014 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 130.7 W W 154.6 Properties Under Development for Production and Development Drilling W

  5. Uranium Transport Modeling

    SciTech Connect (OSTI)

    Bostick, William D.

    2008-01-15

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO{sub 2}{sup 2+}) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range {approx} 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to mineral phases. Four case studies are presented: Water and Soil Characterization, Subsurface Stabilization of Uranium and other Toxic Metals, Reductive Precipitation (in situ bioremediation) of Uranium, and Physical Transport of Particle-bound Uranium by Erosion.

  6. Uranium enrichment management review: summary of analysis

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    In May 1980, the Assistant Secretary for Resource Applications within the Department of Energy requested that a group of experienced business executives be assembled to review the operation, financing, and management of the uranium enrichment enterprise as a basis for advising the Secretary of Energy. After extensive investigation, analysis, and discussion, the review group presented its findings and recommendations in a report on December 2, 1980. The following pages contain background material on which that final report was based. This report is arranged in chapters that parallel those of the uranium enrichment management review final report - chapters that contain summaries of the review group's discussion and analyses in six areas: management of operations and construction; long-range planning; marketing of enrichment services; financial management; research and development; and general management. Further information, in-depth analysis, and discussion of suggested alternative management practices are provided in five appendices.

  7. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  8. Uranium Reduction by Clostridia

    SciTech Connect (OSTI)

    Francis, A.J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    2006-04-05

    The FRC groundwater and sediment contain significant concentrations of U and Tc and are dominated by low pH, and high nitrate and Al concentrations where dissimilatory metal reducing bacterial activity may be limited. The presence of Clostridia in Area 3 at the FRC site has been confirmed and their ability to reduce uranium under site conditions will be determined. Although the phenomenon of uranium reduction by Clostridia has been firmly established, the molecular mechanisms underlying such a reaction are not very clear. The authors are exploring the hypothesis that U(VI) reduction occurs through hydrogenases and other enzymes (Matin and Francis). Fundamental knowledge of metal reduction using Clostridia will allow us to exploit naturally occurring processes to attenuate radionuclide and metal contaminants in situ in the subsurface. The outline for this report are as follows: (1) Growth of Clostridium sp. under normal culture conditions; (2) Fate of metals and radionuclides in the presence of Clostridia; (3) Bioreduction of uranium associated with nitrate, citrate, and lepidocrocite; and (4) Utilization of Clostridium sp. for immobilization of uranium at the FRC Area 3 site.

  9. WASTE DISPOSITION PROJECT MAKES GREAT STRIDES AT THE IDAHO SITE

    Broader source: Energy.gov [DOE]

    Idaho - The Waste Disposition Project Team at the Department of Energy’s Idaho Site has continued to keep its commitment to remove remote handled (RH) transuranic (TRU) waste out of Idaho, protecting the Snake River Plain Aquifer and keeping the Office of Environmental Management’s commitment to environmental clean up.

  10. Analysis of Surplus Weapons-Grade Plutonium Disposition Options | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration Analysis of Surplus Weapons-Grade Plutonium Disposition Options | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets

  11. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  12. Independent Oversight Review, Babcock & Wilcox Technical Services Y-12, LLC- July 2012

    Broader source: Energy.gov [DOE]

    Review of the Long Lead Procurement Processed Used by Babcock & Wilcox Technical Services Y-12, LLC for the Uranium Processing Facility Project

  13. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L.; Meyer, Mitchell K.; Knighton, Gaven C.; Clark, Curtis R.

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  14. recycled_uranium.cdr

    Office of Legacy Management (LM)

    Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic

  15. ELECTROLYSIS OF THORIUM AND URANIUM

    DOE Patents [OSTI]

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  16. Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232

    SciTech Connect (OSTI)

    Glenn, J.; Patterson, J.; DeRoos, K.; Patterson, J.E.; Mitchell, K.G.

    2012-07-01

    Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and the entire SEC RTG team are nearing the conclusion of the Sr-90 RTG disposition challenge - a legacy now 50 years in the making. Over 600,000 Ci of Sr-90 waste await disposal and its removal from ORNL will mark an historical moment in the clean-up of the cold-war legacy in the ORNL central industrial area. Elimination (i.e., removal) of the RTGs will reduce security risks at ORNL and disposal will permanently eliminate security risks. The RTGs will eventually decay to benign levels within a reasonable timeframe relative to radiological risks posed by long-lived isotopes. The safety authorization basis at ORNL Building 3517 will be reduced enabling greater operational flexibility in future clean-out and D and D campaigns. Upon disposition the Department of Energy will realize reduced direct and indirect surveillance and maintenance costs that can be reapplied to accelerated and enhanced clean-up of the Oak Ridge Reservation. At present, waste profiles for the RTGs are developed and under review by NNSS RWAP staff and approval authorities. Disposition schedule is driven by the availability of compliant shipping casks necessary to safely transport the RTGs from ORNL to NNSS. The first disposal of the RCA RTG is expected in April 2012 and the remaining RTGs disposed in 2012 and 2013. (authors)

  17. VANE Uranium One JV | Open Energy Information

    Open Energy Info (EERE)

    VANE Uranium One JV Jump to: navigation, search Name: VANE-Uranium One JV Place: London, England, United Kingdom Zip: EC4V 6DX Product: JV between VANE Minerals Plc & Uranium One....

  18. SEPARATION OF THORIUM FROM URANIUM

    DOE Patents [OSTI]

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  19. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Delivery year Total purchased (weighted- average price) Purchased from U.S. producers Purchased from U.S. brokers and traders Purchased from other owners and operators of U.S. civilian nuclear power reactors, other U.S. suppliers, (and U.S. government for 2007) 1 Purchased from foreign suppliers U.S.-origin uranium (weighted- average price) Foreign-origin uranium (weighted-

  20. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    or dissolving-out from mined rock, of the soluble uranium constituents by the natural action of percolating a prepared chemical solution through mounded (heaped) rock material. ...

  1. Highly Enriched Uranium Materials Facility

    National Nuclear Security Administration (NNSA)

    Appropriations Subcommittee, is shown some of the technology in the Highly Enriched Uranium Materials Facility by Warehousing and Transportation Operations Manager Byron...

  2. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Jab and Antelope Sweetwater, Wyoming 2,000,000 Developing Developing Developing Developing Developing Uranium One Americas, Inc. Moore Ranch Campbell, Wyoming 500,000 Permitted And ...

  3. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ing","Developing","Developing","Developing","Developing" "Uranium One Americas, Inc.","Moore Ranch","Campbell, Wyoming",500000,"Permitted And Licensed","Permitted And ...

  4. Domestic Uranium Production Report - Quarterly

    Gasoline and Diesel Fuel Update (EIA)

    Resources, Inc. dba Cameco Resources Smith Ranch-Highland Operation Converse, Wyoming ... Uranium is first processed at the Nichols Ranch plant and then transported to the Smith ...

  5. 2014 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    5 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Quantity with reported price Weighted-average price Quantity with reported price ...

  6. Update of the Used Fuel Disposition Campaign Implementation Plan

    SciTech Connect (OSTI)

    Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

    2014-09-01

    This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

  7. Microsoft PowerPoint - REVWaste_Disposition_Update.061411.pptx

    Office of Environmental Management (EM)

    Materials and Disposition Update Environmental Management Site-Specific www.em.doe.gov 1 Environmental Management Site-Specific Advisory Board Chairs' Meeting June 15, 2011 Shirley J. Olinger EM Associate Principal Deputy for Corporate Operations DOE's Waste Management Priorities Continue to manage waste inventories in a safe and compliant manner. Address high risk waste in a cost- effective manner. Maintain and optimize current disposal capability for future generations. www.em.doe.gov 2

  8. DOE NE Used Fuel Disposition FY2015 Working Group Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NE Used Fuel Disposition FY2015 Working Group Presentations http://energy.sandia.gov/energy/nuclear-energy/ne-workshops/ufd-working-group-2015/ FOLDER NAME PRESENTATION TITLE AUTHOR Tuesday, June 9, 2015 UFD WG 2015-06-09 Tue Auditorium Afternoon - 1 Quantification of Cation Sorption to Engineered Barrier Materials Under Extreme Conditions Powell UFD WG 2015-06-09 Tue Auditorium Afternoon - 1 Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures

  9. Draft Environmental Assessment on the Remote-handled Waste Disposition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project available for public review and comment Draft Environmental Assessment on the Remote-handled Waste Disposition Project available for public review and comment The U.S. Department of Energy invites the public to review and comment on a draft environmental assessment that the Department issued today, for a proposal to process approximately 327 cubic meters of remote-handled waste currently stored at the Idaho National Laboratory. An additional five cubic meters of waste stored at the

  10. Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    SHEET Lead Agency: U.S. Department of Energy (DOE) / National Nuclear Security Administration (NNSA) Cooperating Agency: Tennessee Valley Authority Title: Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD Supplemental EIS) (DOE/EIS-0283-S2) Locations: South Carolina, New Mexico, Alabama, and Tennessee For further information or for copies of this Draft SPD Supplemental EIS, contact: Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S. Department of

  11. Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement

    National Nuclear Security Administration (NNSA)

    SHEET Lead Agency: U.S. Department of Energy (DOE) / National Nuclear Security Administration (NNSA) Cooperating Agency: Tennessee Valley Authority Title: Draft Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD Supplemental EIS) (DOE/EIS-0283-S2) Locations: South Carolina, New Mexico, Alabama, and Tennessee For further information or for copies of this Draft SPD Supplemental EIS, contact: Sachiko McAlhany, NEPA Document Manager SPD Supplemental EIS U.S. Department

  12. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  13. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting Apparatus, systems, and methods for...

  14. Nuclear radiation cleanup and uranium prospecting (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Nuclear radiation cleanup and uranium prospecting Citation Details In-Document Search Title: Nuclear radiation cleanup and uranium prospecting You are accessing a document from...

  15. Multiple Mechanisms of Uranium Immobilization by Cellulomonas...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Multiple Mechanisms of Uranium Immobilization by Cellulomonas sp. Strain ES6 Citation Details In-Document Search Title: Multiple Mechanisms of Uranium ...

  16. Uranium Resources Inc URI | Open Energy Information

    Open Energy Info (EERE)

    exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References: Uranium Resources, Inc. (URI)1 This article...

  17. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit, OAS-FS-10-05 Uranium Enrichment Decontamination and...

  18. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOE Patents [OSTI]

    Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  19. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    SciTech Connect (OSTI)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  20. Recovery and Blend-Down Uranium for Beneficial use in Commercial Reactors - 13373

    SciTech Connect (OSTI)

    Magoulas, Virginia [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    In April 2001 the Department of Energy (DOE) and the Tennessee Valley Authority (TVA) signed an Interagency Agreement to transfer approximately 33 MT of off-specification (off-spec) highly enriched uranium (HEU) from DOE to TVA for conversion to commercial reactor fuel. Since that time additional surplus off-spec HEU material has been added to the program, making the total approximately 46 MT off-spec HEU. The disposition path for approximately half (23 MT) of this 46 MT of surplus HEU material, was down blending through the H-canyon facility at the Savannah River Site (SRS). The HEU is purified through the H-canyon processes, and then blended with natural uranium (NU) to form low enriched uranium (LEU) solution with a 4.95% U-235 isotopic content. This material was then transported to a TVA subcontractor who converted the solution to uranium oxide and then fabricated into commercial light water reactor (LWR) fuel. This fuel is now powering TVA reactors and supplying electricity to approximately 1 million households in the TVA region. There is still in excess of approximately 10 to 14 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for use in either currently designed light water reactors, ?5% enriched LEU, or be made available for use in subsequent advanced 'fast' reactor fuel designs, ?19% LEU. (authors)

  1. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    0. Contracted purchases of uranium from suppliers by owners and operators of U.S. civilian nuclear power reactors, in effect at the end of 2014, by delivery year, 2015-24 thousand pounds U3O8 equivalent Contracted purchases from U.S. suppliers Contracted purchases from foreign suppliers Contracted purchases from all suppliers Year of delivery Minimum Maximum Minimum Maximum Minimum Maximum 2015 8,405 8,843 31,468 34,156 39,873 42,999 2016 7,344 7,757 29,660 31,787 37,004 39,544 2017 5,980 6,561

  2. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7. Employment in the U.S. uranium production industry by state, 2003-14 person-years State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Wyoming 134 139 181 195 245 301 308 348 424 512 531 416 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 198 105 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W W W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W W 0 California, Montana,

  3. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2010-14 Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) Operating status at end of the year 2010 2011 2012 2013 2014 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Processing Alternate Feed Operating-Processing Alternate Feed Energy Fuels Resources Corp Pinon Ridge Mill Montrose,

  4. Used Fuel Disposition R&D Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiatives » Fuel Cycle Technologies » Used Fuel Disposition Research & Development » Used Fuel Disposition R&D Documents Used Fuel Disposition R&D Documents September 26, 2014 Results of Stainless Steel Canister Corrosion Studies and Environmental Sample Investigations. This report documents experimental work evaluating localized corrosion of container and canister materials performed at Sandia National Laboratories. The report also documents the results of analyses of the dust

  5. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation

    Energy Savers [EERE]

    Project | Department of Energy Site-Wide Waste Disposition Evaluation Project Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation Project This Remedial Investigation and Feasibility Study Report for the Site-Wide Waste Disposition Evaluation Project at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, presents the information necessary to select a Site-wide disposal alternative for the waste generated under the Director's Final Findings and Orders (DFF&O) for

  6. Service Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Service Characteristics by Activity... Service Service buildings are those in which some type of service is provided, other than food service or retail sales of goods. Basic...

  7. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies...

    Office of Environmental Management (EM)

    EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5 ...

  8. Public Comment Period for Portsmouth Site D&D and Waste Disposition Decisions

    Broader source: Energy.gov [DOE]

    Public Comment Period for the Process Buildings and Complex Facilities Decontamination and Decommissioning and Site-Wide Waste Disposition Decisions at the Portsmouth Gaseous Diffusion Plant

  9. EIS-0229: Storage and Disposition of Weapons-Usable Fissile Materials

    Broader source: Energy.gov [DOE]

    The EIS will evaluate thereasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition.

  10. Portsmouth RI/FS Report for the Site-Wide Waste Disposition Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Site-Wide Waste Disposition Evaluation Project at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, presents the information necessary to select a Site-wide...

  11. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  12. U.S. Natural Gas Monthly Supply and Disposition Balance

    Gasoline and Diesel Fuel Update (EIA)

    Monthly Supply and Disposition Balance (Billion Cubic Feet) Period: Monthly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Data Series Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Gross Withdrawals 2,767 2,766 2,750 2,818 2,740 2,823 1973-2015 Marketed Production 2,459 2,474 2,407 2,456 2,372 2,440 1973-2015 NGPL Production, Gaseous Equivalent 146 148 144 153 149 151 1973-2015 Dry Production 2,314 2,326 2,263 2,303

  13. Topic Index to the DOE Administrative Records Disposition Schedules

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    /21/07 TOPICINDEXTODOEADMINSCHEDULES Topic Index to the DOE Administrative Records Disposition Schedules (excluding the GRS Schedules) Topic Schedule Item [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] A Academic/Outreach Program 1 44 Access Request Files 18 6 Accountable Officers' Files 6 1 Accounting Administrative Files 6 5 Administrative Claims Files 6 10 Administrative Training Records 1 29.2 Administrative Issuances 16 1

  14. Plutonium_Disposition_Phase_2_TOR_082015_FINAL

    National Nuclear Security Administration (NNSA)

    AEROSPACE REPORT NO. TOR-2015-02671 Plutonium Disposition Study Options Independent Assessment Phase 2 Report August 20, 2015 Matthew J. Hart 1 , Nichols F. Brown 2 , Mark J. Rokey 1 , Harold J. Huslage 3 , J. Denise Castro-Bran 4 , Norman Y. Lao 5 , Roland J. Duphily 5 , Vincent M. Canales 2 , Joshua P. Davis 6 , Whitney L. Plumb-Starnes 7 , Jya-Syin W. Chien 5 1 Civil Applications Directorate, Civil and Commercial Programs Division 2 Schedule and Cost Analysis Department, Acquisition Analysis

  15. Uranium Processing Facility | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly,...

  16. Uranium hexafluoride bibliography

    SciTech Connect (OSTI)

    Burnham, S.L.

    1988-01-01

    This bibliography is a compilation of reports written about the transportation, handling, safety, and processing of uranium hexafluoride. An on-line literature search was executed using the DOE Energy files and the Nuclear Science Abstracts file to identify pertinent reports. The DOE Energy files contain unclassified information that is processed at the Office of Scientific and Technical Information of the US Department of Energy. The reports selected from these files were published between 1974 and 1983. Nuclear Science Abstracts contains unclassified international nuclear science and technology literature published from 1948 to 1976. In addition, scientific and technical reports published by the US Atomic Energy Commission and the US Energy Research and Development Administration, as well as those published by other agencies, universities, and industrial and research organizations, are included in the Nuclear Science Abstracts file. An alphabetical listing of the acronyms used to denote the corporate sponsors follows the bibliography.

  17. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    3. Deliveries of uranium feed by owners and operators of U.S. civilian nuclear power reactors by enrichment country and delivery year, 2012-14 thousand pounds U3O8 equivalent Feed deliveries in 2012 Feed deliveries in 2013 Feed deliveries in 2014 Enrichment country U.S.-origin Foreign-origin Total U.S.-origin Foreign-origin Total U.S.-origin Foreign-origin Total China 0 W W 0 W W W W W France 0 4,578 4,578 0 1,606 1,606 0 3.055 3,055 Germany W W 1,904 W W W W W 2,140 Netherlands W W 2,674 1,058

  18. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. U.S. uranium drilling activities, 2003-14 Exploration drilling Development drilling Exploration and development drilling Year Number of holes Feet (thousand) Number of holes Feet (thousand) Number of holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904

  19. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6. Employment in the U.S. uranium production industry by category, 2003-14 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 2013 149 392 W W 199 1,156 2014 86 246 W W 161

  20. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. U.S. uranium mine production and number of mines and sources, 2003-14 Production / Mining method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W W W Total Mine Production (thousand pounds U3O8) E2,200 2,452

  1. Implementation Guide for Surveillance and Maintenance during Facility Transition and Disposition

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-29

    As DOE facilities complete mission operations and are declared excess, they pass into a transition phase that ultimately prepares them for disposition. The disposition phase of a facility's life cycle usually includes deactivation, decommissioning, and surveillance and maintenance (S&M) activities.

  2. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Deliveries 2010 2011 2012 2013 2014 Purchases of U.S.-origin and foreign-origin uranium 350 550 W W W Weighted-average price 47.13 58.12 W W W Purchases of U.S.-origin and foreign-origin uranium 11,745 14,778 11,545 12,835 17,111 Weighted-average price 44.98 53.29 54.44 50.44 42.90 Purchases 0 0 0 0 0 Weighted-average price -- -- -- -- -- Purchases of U.S.-origin and

  3. Y-12 and uranium history

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    did happen six days after he was given the assignment. The history of uranium at Y-12 began with that decision, which will be commemorated on September 19, 2012, at...

  4. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Annual Cumulative Annual Cumulative 2014 2,494 2,494 - -- 2015 6,014 8,507 3,496 3,496 ...

  5. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    1 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand pounds U 3 O 8 equivalent U.S.-origin Foreign- origin Total U.S.-origin ...

  6. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Deliveries to foreign suppliers and utilities 2010 2011 2012 2013 2014 Foreign sales ...

  7. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    9 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand pounds U 3 O 8 equivalent; dollars per pound U 3 O 8 equivalent Deliveries ...

  8. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  9. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A. (Kennewick, WA)

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  10. Uranium enrichment: investment options for the long term

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    The US government supplies a major portion of the enriched uranium used to fuel most of the nuclear power plants that furnish electricity in the free world. As manager of the US uranium enrichment concern, the Department of Energy (DOE) is investigating a number of technological choices to improve enrichment service and remain a significant world supplier. The Congress will ultimately select a strategy for federal investment in the uranium enrichment enterprise. A fundamental policy choice between possible future roles - that of the free world's main supplier of enrichment services, and that of a mainly domestic supplier - will underlie any investment decision the Congress makes. The technological choices are gaseous diffusion, gas centrifuge, and atomic vapor laser isotope separation (AVLIS). A base plan and four alternatives were examined by DOE and the Congressional Budget Office. In terms of total enterprise costs, Option IV, ultimately relying on advanced gas centrifuges for enrichment services, would offer the most economic approach, with costs over the full projection period totaling $123.5 billion. Option III, ultimately relying on AVLIS without gas centrifuge enrichment or gaseous diffusion, falls next in the sequence, with costs of $128.2 billion. Options I and II, involving combinations of the gas centrifuge and AVLIS technologies, follow closely with costs of $128.7 and $129.6 billion. The base plan has costs of $136.8 billion over the projection period. 1 figure, 22 tables.

  11. Domestic Uranium Production Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8. U.S. uranium expenditures, 2003-14 million dollars Year Drilling1 Production2 Land and other 3 Total expenditures Total land and other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6

  12. Transportable Vitrification System RCRA Closure Practical Waste Disposition Saves Time And Money

    SciTech Connect (OSTI)

    Brill, Angie; Boles, Roger; Byars, Woody

    2003-02-26

    The Transportable Vitrification System (TVS) was a large-scale vitrification system for the treatment of mixed wastes. The wastes contained both hazardous and radioactive materials in the form of sludge, soil, and ash. The TVS was developed to be moved to various United States Department of Energy (DOE) facilities to vitrify mixed waste as needed. The TVS consists of four primary modules: (1) Waste and Additive Materials Processing Module; (2) Melter Module; (3) Emissions Control Module; and (4) Control and Services Module. The TVS was demonstrated at the East Tennessee Technology Park (ETTP) during September and October of 1997. During this period, approximately 16,000 pounds of actual mixed waste was processed, producing over 17,000 pounds of glass. After the demonstration was complete it was determined that it was more expensive to use the TVS unit to treat and dispose of mixed waste than to direct bury this waste in Utah permitted facility. Thus, DOE had to perform a Resource Conservation and Recovery Act (RCRA) closure of the facility and find a reuse for as much of the equipment as possible. This paper will focus on the following items associated with this successful RCRA closure project: TVS site closure design and implementation; characterization activities focused on waste disposition; pollution prevention through reuse; waste minimization efforts to reduce mixed waste to be disposed; and lessons learned that would be integrated in future projects of this magnitude.

  13. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  14. Microsoft Word - Pu Disposition Red Team Report.docx

    National Nuclear Security Administration (NNSA)

    Final Report of the Plutonium Disposition Red Team Date: 13 August 2015 Oak Ridge, Tennessee Thom Mason, Chair This r eport w as p repared a s a n a ccount o f w ork s ponsored b y a n a gency o f t he U nited S tates Government. N either t he U nited S tates G overnment n or any a gency t hereof, n or a ny o f t heir employees, m akes a ny w arranty, e xpress o r i mplied, o r a ssumes a ny l egal l iability o r responsibility f or t he a ccuracy, c ompleteness, o r u sefulness o f a ny i

  15. Inherently safe in situ uranium recovery

    DOE Patents [OSTI]

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  16. SRS MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site(SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. SRS has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 2 or 3 facility with storage of bulk PuO{sub 2} and assembly, storage, and shipping of fuel bundles in an S and S Category 1 facility. The total Category 1 approach, which is the recommended option, would be done in the 221-H Canyon Building. A facility that was never in service will be removed from one area, and a hardened wall will be constructed in another area to accommodate execution of the LA fuel fabrication. The non-Category 1 approach would require removal of process equipment in the FB-Line metal production and packaging glove boxes, which requires work in a contamination area. The Immobilization Hot Demonstration Program equipment in the Savannah River Technology Center would need to be removed to accommodate pellet fabrication. This work would also be in a contaminated area.

  17. Uranium Biomineralization By Natural Microbial Phosphatase Activities...

    Office of Scientific and Technical Information (OSTI)

    Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface ... Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL ...

  18. Uranium Management and Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Management and Policy Uranium Management and Policy The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United States. The Paducah Gaseous Diffusion Plant is located 3 miles south of the Ohio River and is 12 miles west of Paducah, Kentucky. Paducah remains the only operating gaseous diffusion uranium enrichment plant in the United

  19. Process Guide for the Identification and Disposition of S/CI or Defective

    Energy Savers [EERE]

    Items at Department of Energy Facilities | Department of Energy Process Guide for the Identification and Disposition of S/CI or Defective Items at Department of Energy Facilities Process Guide for the Identification and Disposition of S/CI or Defective Items at Department of Energy Facilities August 2011 The Process Guide for the Identification and Disposition of S/CI or Defective Items was developed to help DOE facilities to collect, screen, communicate information, and dispose of S/CI or

  20. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration / 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand pounds U 3 O 8 equivalent 2010 2011 2012 2013 P2014 Owners and operators of U.S. civilian nuclear power reactors inventories 86,527 89,835 97,647 113,077 116,047 Uranium concentrate (U 3 O 8 ) 13,076 14,718 15,963 18,131 20,501 Natural UF 6 35,767 35,883 29,084 38,332 40,972 Enriched UF 6 25,392 19,596 38,428 40,841

  1. Domestic Uranium Production Report - Quarterly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. Number of uranium mills and plants producing uranium concentrate in the United States Uranium concentrate processing facilities End of Mills - conventional milling 1 Mills - other operations 2 In-situ-leach plants 3 Byproduct recovery plants 4 Total 1996 0 2 5 2 9 1997 0 3 6 2 11 1998 0 2 6 1 9 1999 1 2 4 0 7 2000 1 2 3 0 6 2001 0 1 3 0 4 2002 0 1 2 0 3 2003 0 0 2 0 2 2004 0 0 3 0 3 2005 0 1 3 0 4 2006 0 1 5 0 6 2007 0 1 5 0 6 2008 1 0 6 0 7 2009 0 1 3 0 4 2010 1 0 4 0 5 2011 1 0 5 0 6 2012 1

  2. Continuous reduction of uranium tetrafluoride

    SciTech Connect (OSTI)

    DeMint, A.L.; Maxey, A.W.

    1993-10-21

    Operation of a pilot-scale system for continuous metallothermic reduction of uranium tetrafluoride (UF{sub 4} or green salt) has been initiated. This activity is in support of the development of a cost- effective process to produce uranium-iron (U-Fe) alloy feed for the Uranium-Atomic Vapor Laser Isotope Separation (U-AVLIS) program. To date, five runs have been made to reduce green salt (UF{sub 4}) with magnesium. During this quarter, three runs were made to perfect the feeding system, examine feed rates, and determine the need for a crust breaker/stirrer. No material was drawn off in any of the runs; both product metal and by-product salt were allowed to accumulate in the reactor.

  3. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  4. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  5. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    6. Purchases of enrichment services by owners and operators of U.S. civilian nuclear power reactors by origin country and year, 2010-14 thousand separative work units (SWU) Country of enrichment service (SWU-origin) 2010 2011 2012 2013 2014 China 0 W W W 636 France W W 0 0 0 Germany 681 1,539 1,075 753 1,005 Netherlands 2,292 1,506 1,496 2,112 1,801 Russia 5,055 5,308 6,560 2,491 3,083 United Kingdom 2,119 2,813 2,648 2,674 2,435 Europe 1 W 670 W 0 W Other 2 W 0 W W W Foreign total 11,526 12,395

  6. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Wyoming 134 139 181 195 245 301 308 348 424 512 531 416 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 198 105 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W W W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W W W Alaska, Michigan, Nevada, and South Dakota 0

  7. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 130.7 W W 154.6 Properties Under Development for Production and Development Drilling W 31.8 W W 38.2 W Mines in Production W 19.6 W

  8. 2014 Uranium Market Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration / 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Purchase contract type (Signed in 2014) Quantity of deliveries received in 2014 Weighted-average price Number of purchase contracts for deliveries in 2014 Spot W W 67 Long-term W W 2 Total 12,263 34.83 69 Table 8. Contracts signed in 2014 by owners and operators of U.S. civilian nuclear power reactors by contract type thousand

  9. METHOD OF PROTECTIVELY COATING URANIUM

    DOE Patents [OSTI]

    Eubank, L.D.; Boller, E.R.

    1959-02-01

    A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

  10. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    10. Uranium reserve estimates at the end of 2013 and 2014" "million pounds U3O8" ,"End of 2013",,,"End of 2014" "Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s)","Forward Cost 2" ,"$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound","$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound" "Properties with Exploration

  11. Domestic Uranium Production Report - Quarterly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating status at the end of Owner Mill and Heap Leach1 Facility name County, state (existing and planned locations) Capacity (short tons of ore per day) 2014 1st quarter 2015 2nd quarter 2015 3rd quarter 2015 4th Quarter 2015 Anfield Resources Shootaring Canyon Uranium Mill Garfield, Utah 750 Standby Standby Standby Standby Standby EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000

  12. Electron Backscatter Diffraction (EBSD) Characterization of Uranium and Uranium Alloys

    SciTech Connect (OSTI)

    McCabe, Rodney J.; Kelly, Ann Marie; Clarke, Amy J.; Field, Robert D.; Wenk, H. R.

    2012-07-25

    Electron backscatter diffraction (EBSD) was used to examine the microstructures of unalloyed uranium, U-6Nb, U-10Mo, and U-0.75Ti. For unalloyed uranium, we used EBSD to examine the effects of various processes on microstructures including casting, rolling and forming, recrystallization, welding, and quasi-static and shock deformation. For U-6Nb we used EBSD to examine the microstructural evolution during shape memory loading. EBSD was used to study chemical homogenization in U-10Mo, and for U-0.75Ti, we used EBSD to study the microstructure and texture evolution during thermal cycling and deformation. The studied uranium alloys have significant microstructural and chemical differences and each of these alloys presents unique preparation challenges. Each of the alloys is prepared by a sequence of mechanical grinding and polishing followed by electropolishing with subtle differences between the alloys. U-6Nb and U-0.75Ti both have martensitic microstructures and both require special care in order to avoid mechanical polishing artifacts. Unalloyed uranium has a tendency to rapidly oxidize when exposed to air and a two-step electropolish is employed, the first step to remove the damaged surface layer resulting from the mechanical preparation and the second step to passivate the surface. All of the alloying additions provide a level of surface passivation and different one and two step electropolishes are employed to create good EBSD surfaces. Because of its low symmetry crystal structure, uranium exhibits complex deformation behavior including operation of multiple deformation twinning modes. EBSD was used to observe and quantify twinning contributions to deformation and to examine the fracture behavior. Figure 1 shows a cross section of two mating fracture surfaces in cast uranium showing the propensity of deformation twinning and intergranular fracture largely between dissimilarly oriented grains. Deformation of U-6Nb in the shape memory regime occurs by the motion of twin boundaries formed during the martensitic transformation. Deformation actually results in a coarsening of the microstructure making EBSD more practical following a limited amount of strain. Figure 2 shows the microstructure resulting from 6% compression. Casting of U-10Mo results in considerable chemical segregation as is apparent in Figure 2a. The segregation subsists through rolling and heat treatment processes as shown in Figure 2b. EBSD was used to study the effects of homogenization time and temperature on chemical heterogeneity. It was found that times and temperatures that result in a chemically homogeneous microstructure also result in a significant increase in grain size. U-0.75Ti forms an acicular martinsite as shown in Figure 4. This microstructure prevails through cycling into the higher temperature solid uranium phases.

  13. Sample results from the interim salt disposition program macrobatch 9 tank 21H qualification samples

    SciTech Connect (OSTI)

    Peters, T. B.

    2015-11-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H.

  14. 105-N basin sediment disposition phase-two sampling and analysis plan

    SciTech Connect (OSTI)

    Smith, R. C.

    1997-03-14

    The sampling and analysis plan for Phase 2 of the 105-N Basin sediment disposition task defines the sampling and analytical activities that will be performed to support characterization of the sediment and selection of an appropriate sediment disposal option.

  15. 2013-01 "Action in Analysis of Disposal Pathways for Disposition of 33 Shafts"

    Broader source: Energy.gov [DOE]

    Approved January 30, 2013 The intent of this Recommendation 2013‐01 remains the same as 2010‐01, namely to discourage inaction in addressing the permanent disposition of the 33 shafts.

  16. Development of pulsed neutron uranium logging instrument

    SciTech Connect (OSTI)

    Wang, Xin-guang; Liu, Dan; Zhang, Feng

    2015-03-15

    This article introduces a development of pulsed neutron uranium logging instrument. By analyzing the temporal distribution of epithermal neutrons generated from the thermal fission of {sup 235}U, we propose a new method with a uranium-bearing index to calculate the uranium content in the formation. An instrument employing a D-T neutron generator and two epithermal neutron detectors has been developed. The logging response is studied using Monte Carlo simulation and experiments in calibration wells. The simulation and experimental results show that the uranium-bearing index is linearly correlated with the uranium content, and the porosity and thermal neutron lifetime of the formation can be acquired simultaneously.

  17. Process for alloying uranium and niobium

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Northcutt, Jr., Walter G. (Oak Ridge, TN); Masters, David R. (Knoxville, TN); Chapman, Lloyd R. (Knoxville, TN)

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  18. Domestic Uranium Production Report - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report - Annual With Data for 2014 | Release Date: April 30, 2015 | Next Release Date: May 2016 | full report Previous domestic uranium production reports Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Figure 1. U.S. Uranium drilling by number of holes, 2004-14 Total uranium drilling was 1,752 holes covering 1.3 million feet, 67% fewer holes than in 2013 and the lowest since 2004. Expenditures for uranium drilling in the United States were $28

  19. Summary - Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN

    Office of Environmental Management (EM)

    & ORNL, Oak Ridge, TN EM Project: Integrated Facility Disposition Project (IFDP) ETR Report Date: August 2008 ETR-15 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN Why DOE-EM Did This Review Approximately two million pounds of mercury are unaccounted for at Y-12 and mercury contamination has been detected in both soils and groundwater. The IFDP will

  20. DRAFT EM SSAB Chairs Meeting Waste Disposition Strategies Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EM HQ Updates Waste Disposition Overview Christine Gelles Associate Deputy Assistant Secretary for Waste Management Office of Environmental Management EM SSAB Chairs Meeting 5 November 2013 www.energy.gov/EM 2 * Waste Management Accomplishments and Priorities * National TRU Program Update * LLW/MLLW Disposal Update * Other Programmatic Updates * Disposition Maps - Current Tools Discussion Outline www.energy.gov/EM 3 FY13 Waste Management Accomplishments * WIPP: Emplaced 5,065 cubic meters of

  1. Portsmouth Proposed Plan for the Site-wide Waste Disposition Evaluation

    Energy Savers [EERE]

    Project | Department of Energy Proposed Plan for the Site-wide Waste Disposition Evaluation Project Portsmouth Proposed Plan for the Site-wide Waste Disposition Evaluation Project DOE has evaluated alternatives for managing waste that would be created by decomtamination and decommissioning of the buildings at the Portsmouth Site. Three remedial alternatives for management of anticipated Portsmouth waste were developed for consideration. This Proposed Plan describes the required no-action

  2. Evaluation Of Used Fuel Disposition In Clay-Bearing Rock | Department of

    Office of Environmental Management (EM)

    Energy Of Used Fuel Disposition In Clay-Bearing Rock Evaluation Of Used Fuel Disposition In Clay-Bearing Rock Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties, e.g., low permeability, potential geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. This report describes various R&D activities applicable to shale/argillite media (e.g., progress made on modeling

  3. Fuel Cycle Potential Waste Inventory for Disposition Rev 5 | Department of

    Office of Environmental Management (EM)

    Energy Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 The United States currently utilizes a once-through fuel cycle where used nuclear fuel is stored onsite in either wet pools or in dry storage systems with ultimate disposal envisioned in a deep mined geologic repository. This report provides an estimate of potential waste inventory and waste form characteristics for the DOE used nuclear fuel and high-level radioactive

  4. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Year of delivery Minimum Maximum 2015 2,838 2,838 2016 3,573 3,573 2017 2,718 2,818 ...

  5. ES-3100: A New Generation Shipping Container for Bulk Highly Enriched Uranium and Other Fissile Materials

    SciTech Connect (OSTI)

    Arbital, J.G.; Byington, G.A.; Tousley, D.R.

    2004-07-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) is shipping bulk quantities of surplus fissile materials, primarily highly enriched uranium (HEU), over the next 15 to 20 years for disposition purposes. The U.S. Department of Transportation (DOT) specification 6M container is the package of choice for most of these shipments. However, the 6M does not conform to the Type B packaging requirements in the ''Code of Federal Regulations'' (10CFR71) and, for that reason, is being phased out for use in the secure transportation system of DOE. BWXT Y-12 is currently developing a package to replace the DOT 6M container for HEU disposition shipping campaigns. The new package is based on state-of-the-art, proven, and patented insulation technologies that have been successfully applied in the design of other packages. The new package, designated the ES-3100, will have a 50% greater capacity for HEU than the 6M and will be easier to use. Engineering analysis on the new package includes detailed dynamic impact finite element analysis (FEA). This analysis gives the ES-3100 a high probability of complying with regulatory requirements.

  6. Uranium isotopes fingerprint biotic reduction

    SciTech Connect (OSTI)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earths history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earths crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  7. Uranium isotopes fingerprint biotic reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  8. GENERAL SERVICES ADMINISTRATION NATIONAL ARCHIVES AND RECORDS SERVICE, WASHINGTON, DC 20408

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GENERAL SERVICES ADMINISTRATION NATIONAL ARCHIVES AND RECORDS SERVICE, WASHINGTON, DC 20408 1. F R O M (Agency or establishment) Lawrence Berkeley Laboratory 2. MAJOR SUBDIVISION REQUEST FOR RECORDS DISPOSITION AUTHORITY (See ~nstructions on reverse) 3. M I N O R SUBDIVISION LEAVE BLANK JOB N O . H / - % ~ ~ L J - - !If'-7 D A T E R E C E I V E D /z-=4g NOTIFICATION TO AGENCY In accordance with the provisions of 44 U.S.C. 3303a the di$posal request, including amendments, is approved except for

  9. Environmental Assessment for the Transportation of Highly Enriched Uranium from the Russian Federation for the Y-12 National Security Complex and Finding of No Significant Impact

    SciTech Connect (OSTI)

    2004-01-01

    The United States (U.S.) Department of Energy (DOE) proposes to transport highly enriched uranium (HEU) from Russia to a secure storage facility in Oak Ridge, TN. This proposed action would allow the United States and Russia to accelerate the disposition of excess nuclear weapons materials in the interest of promoting nuclear disarmament, strengthening nonproliferation, and combating terrorism. The HEU would be used for a non-weapons purpose in the U.S. as fuel in research reactors performing solely peaceful missions.

  10. Major Risk Factors Integrated Facility Disposition Project - Oak Ridge

    Office of Environmental Management (EM)

    D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f E E n n v v i i r r o o n n m m e e n n t t a a l l M M a a n n a a g g e e m m e e n n t t ( ( E E M M ) ) E E n n g g i i n n e e e e r r i i n n g g a a n n d d T T e e c c h h n n o o l l o o g g y y External Technical Review (ETR) Report Major Risk Factors Integrated Facility Disposition Project (IFDP) Oak Ridge, TN AUGUST 1, 2008 Acknowledgement The External Technical Review of the

  11. Nuclear Material Disposition | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    examples. Global Security Cooley joins Y-12's Global Security and Strategic Partnerships Manufacturing and Technical Services Nuclear Material Recovery Nuclear Detection and...

  12. Inherently safe in situ uranium recovery.

    SciTech Connect (OSTI)

    Krumhansl, James Lee; Beauheim, Richard Louis; Brady, Patrick Vane; Arnold, Bill Walter; Kanney, Joseph F.; McKenna, Sean Andrew

    2009-05-01

    Expansion of uranium mining in the United States is a concern to some environmental groups and sovereign Native American Nations. An approach which may alleviate some problems is to develop inherently safe in situ uranium recovery ('ISR') technologies. Current ISR technology relies on chemical extraction of trace levels of uranium from aquifers that, once mined, can still contain dissolved uranium and other trace metals that are a health concern. Existing ISR operations are few in number; however, high uranium prices are driving the industry to consider expanding operations nation-wide. Environmental concerns and enforcement of the new 30 ppb uranium drinking water standard may make opening new mining operations more difficult and costly. Here we propose a technological fix: the development of inherently safe in situ recovery (ISISR) methods. The four central features of an ISISR approach are: (1) New 'green' leachants that break down predictably in the subsurface, leaving uranium, and associated trace metals, in an immobile form; (2) Post-leachant uranium/metals-immobilizing washes that provide a backup decontamination process; (3) An optimized well-field design that increases uranium recovery efficiency and minimizes excursions of contaminated water; and (4) A combined hydrologic/geochemical protocol for designing low-cost post-extraction long-term monitoring. ISISR would bring larger amounts of uranium to the surface, leave fewer toxic metals in the aquifer, and cost less to monitor safely - thus providing a 'win-win-win' solution to all stakeholders.

  13. Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement | Department of Energy Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act (TSCA) Uranium Enrichment Federal Facility Compliance Agreement establishes a plan to bring DOE's Uranium Enrichment Plants (and support facilities) located in Portsmouth, Ohio and Paducah, Kentucky and DOE's former Uranium Enrichment Plant (and support

  14. Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Services shutterstock_106609430_jpg.jpg

  15. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209

  16. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    Domestic Uranium Production Report 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Activity at U.S. Mills and In-Situ-Leach Plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Ore from Underground Mines and Stockpiles Fed to Mills 1 0 W W W 0 W W W W W W W Other Feed Materials 2 W W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W

  17. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    8 U.S. Energy Information Administration / 2014 Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Deliveries 2010 2011 2012 2013 2014 Purchases 2,226 1,668 1,194 W 410 Weighted-average price 43.36 54.85 51.78 W 33.55 Purchases 27,186 24,695 24,606 W 28,743 Weighted-average price 41.42 49.69 47.75 W 38.42 Purchases 29,412 26,363 25,800 30,191 29,153 Weighted-average price 41.57 50.02 47.94 42.95 38.35 Purchases 24,693

  18. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Purchases Weighted- average price Purchases Weighted- average price Purchases Weighted- average price Purchases Weighted- average price Purchases Weighted- average price Australia 7,112 51.35 6,001 57.47 6,724 51.17 10,741 49.92 10,511 48.03 Brazil W W W W W W W W W W Canada 10,238 50.35 10,832 56.08 13,584 56.75 7,808 52.61 9,789 45.87 China 0 -- W W W W W W W W Czech

  19. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    Uranium Marketing Annual Report 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Number of purchasers Quantity with reported price Weighted- average price Number of purchasers Quantity with reported price Weighted- average price Number of purchasers Quantity with reported price Weighted- average price First 8 10,981 45.58 8 12,328 42.01 8 11,681 37.64 Second 7 11,659 53.03 8 13,143 49.94 7 8,493 42.68 Third 7 21,146 57.22 7 18,057 53.43 7 21,805 48.04

  20. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  1. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    7 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Capacity (short tons of ore per day) 2010 2011 2012 2013 2014 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Operating-Processing Alternate Feed Energy Fuels Resources Corp Pinon Ridge Mill Montrose, Colorado 500 Developing Permitted And Licensed Partially Permitted And Licensed Permitted And Licensed Permitted And Licensed

  2. uranium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    uranium | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home

  3. :- : DRILLING URANIUM BILLETS ON A

    Office of Legacy Management (LM)

    'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO -

  4. Future of the Department of Energy's uranium enrichment enterprise

    SciTech Connect (OSTI)

    Sewell, P.G.

    1991-11-01

    The national energy strategy (NES) developed at President Bush's direction provides a focus for the US Department of Energy (DOE) future policy and funding initiatives including those of the uranium enrichment enterprise. The NES identifies an important and continuing role for nuclear energy as part of a balanced array of energy sources for meeting US energy needs, especially the growing demand for electricity. For many years, growth in US electricity demand has exhibited a strong correlation with growth in gross national product. NEW projections indicate that the US will need between 190 and 275 GW of additional system capacity by 2010. In order to unable nuclear power to help meet this need, the NEW establishes basic objectives for nuclear power. These objectives are to have a first order of a new nuclear power plant by 1995 and to have such a plant operational by 2000. The expansion of nuclear power anticipated in the NEW affirms a continuing need for a strong domestic uranium enrichment services supply capability. In terms of the future outlook for uranium enrichment, the atomic vapor laser isotope separation (AVLIS) technology continues to hold great promise for commercial application. If AVLIS efforts are successful, significant financial benefits from the commercial use of AVLIS will be realized by customers and the AVLIS deployment entity by approximately the year 2000 and thereafter.

  5. Uranium Metal Analysis via Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  6. Criteria for Packaging and Storing Uranium-233-Bearing Materials

    Office of Environmental Management (EM)

    3028-2000 July 2000 DOE STANDARD CRITERIA FOR PACKAGING AND STORING URANIUM-233-BEARING MATERIALS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S.

  7. Features, Events and Processes for the Used Fuel Disposition Campaign

    SciTech Connect (OSTI)

    Blink, J A; Greenberg, H R; Caporuscio, F A; Houseworth, J E; Freeze, G A; Mariner, P; Cunnane, J C

    2010-12-15

    The Used Fuel Disposition (UFD) Campaign within DOE-NE is evaluating storage and disposal options for a range of waste forms and a range of geologic environments. To assess the potential performance of conceptual repository designs for the combinations of waste form and geologic environment, a master set of Features, Events, and Processes (FEPs) has been developed and evaluated. These FEPs are based on prior lists developed by the Yucca Mountain Project (YMP) and the international repository community. The objective of the UFD FEPs activity is to identify and categorize FEPs that are important to disposal system performance for a variety of disposal alternatives (i.e., combinations of waste forms, disposal concepts, and geologic environments). FEP analysis provides guidance for the identification of (1) important considerations in disposal system design, and (2) gaps in the technical bases. The UFD FEPs also support the development of performance assessment (PA) models to evaluate the long-term performance of waste forms in the engineered and geologic environments of candidate disposal system alternatives. For the UFD FEP development, five waste form groups and seven geologic settings are being considered. A total of 208 FEPs have been identified, categorized by the physical components of the waste disposal system as well as cross-cutting physical phenomena. The combination of 35 waste-form/geologic environments and 208 FEPs is large; however, some FEP evaluations can cut across multiple waste/environment combinations, and other FEPs can be categorized as not-applicable for some waste/environment combinations, making the task of FEP evaluation more tractable. A FEP status tool has been developed to document progress. The tool emphasizes three major areas that can be statused numerically. FEP Applicability documents whether the FEP is pertinent to a waste/environment combination. FEP Completion Status documents the progress of the evaluation for the FEP/waste/environment combination. FEP Importance documents the potential importance for the FEP/waste/environment combination to repository performance.

  8. Uranium Leasing Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    » Uranium Leasing Program Uranium Leasing Program Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado LM currently manages the Uranium Leasing Program and continues to administer 31 lease tracts, all located within the Uravan Mineral Belt in southwestern Colorado. Twenty-nine of these lease tracts are actively held under lease and two tracts have been placed in inactive status indefinitely. Administrative duties include ongoing

  9. Uranium metal reactions with hydrogen and water vapour and the reactivity of the uranium hydride produced

    SciTech Connect (OSTI)

    Godfrey, H.; Broan, C.; Goddard, D.; Hodge, N.; Woodhouse, G.; Diggle, A.; Orr, R.

    2013-07-01

    Within the nuclear industry, metallic uranium has been used as a fuel. If this metal is stored in a hydrogen rich environment then the uranium metal can react with the hydrogen to form uranium hydride which can be pyrophoric when exposed to air. The UK National Nuclear Laboratory has been carrying out a programme of research for Sellafield Limited to investigate the conditions required for the formation and persistence of uranium hydride and the reactivity of the material formed. The experimental results presented here have described new results characterising uranium hydride formed from bulk uranium at 50 and 160 C. degrees and measurements of the hydrolysis kinetics of these materials in liquid water. It has been shown that there is an increase in the proportion of alpha-uranium hydride in material formed at lower temperatures and that there is an increase in the rate of reaction with water of uranium hydride formed at lower temperatures. This may at least in part be attributable to a difference in the reaction rate between alpha and beta-uranium hydride. A striking observation is the strong dependence of the hydrolysis reaction rate on the temperature of preparation of the uranium hydride. For example, the reaction rate of uranium hydride prepared at 50 C. degrees was over ten times higher than that prepared at 160 C. degrees at 20% extent of reaction. The decrease in reaction rate with the extent of reaction also depended on the temperature of uranium hydride preparation.

  10. Potentiometric determination of uranium in organic extracts

    SciTech Connect (OSTI)

    Bodnar, L.Z.

    1980-05-01

    The potentimetric determination of uranium in organic extracts was studied. A mixture of 30% TBP, (tributylphosphate), in carbon tetrachloride was used, with the NBL (New Brunswick Laboratory) titrimetric procedure. Results include a comparative analysis performed on organic extracts of fissium alloys vs those performed on aqueous samples of the same alloys which had been treated to remove interfering elements. Also comparative analyses were performed on sample solutions from a typical scrap recovery operation common in the uranium processing industry. A limited number of residue type materials, calciner products, and presscakes were subjected to analysis by organic extraction. The uranium extraction was not hindered by 30% TBP/CCl/sub 4/. To fully demonstrate the capabilities of the extraction technique and its compatibility with the NBL potentiometric uranium determination, a series of uranium standards was subjected to uranium extraction with 30% TBP/CCl/sub 4/. The uranium was then stripped out of the organic phase with 40 mL of H/sub 3/PO/sub 4/, 15 mL of H/sub 2/0, and 1 mL of 1M FeSO/sub 4/ solution. The uranium was then determined in the aqueous phosphoric phase by the regular NBL potentiometric method, omitting only the addition of another 40 mL of H/sub 3/PO/sub 4/. Uranium determinations ranging from approximately 20 to 150 mg of U were successfully made with the same accuracy and precision normally achieved. 8 tables. (DP)

  11. Uranium Processing Facility Team Signs Partnering Agreement ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Facility ... Uranium Processing Facility Team Signs Partnering Agreement Posted: July 18, 2014 - 4:39pm Front row, left to right: Bill Priest, Consolidated Nuclear...

  12. Oxidation and crystal field effects in uranium

    SciTech Connect (OSTI)

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  13. Colorimetric detection of uranium in water

    DOE Patents [OSTI]

    DeVol, Timothy A.; Hixon, Amy E.; DiPrete, David P.

    2012-03-13

    Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

  14. Radiological Safety Training for Uranium Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Continued on Next Page * Stein, F., Instructor Competencies: the Standards. International ... and acute exposures to significant amounts of uranium may result in kidney damage. ...

  15. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Broader source: Energy.gov (indexed) [DOE]

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2011 Financial ... Dear Mr. Friedman: We have audited the financial statements of the Department of Energy's ...

  16. Plutonium Uranium Extraction Plant (PUREX) - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site. The Plutonium Uranium Extraction Plant is massive. It is longer than three football fields, stands 64 feet above the ground, and extends another 40 feet below ground....

  17. Highly Enriched Uranium Materials Facility | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highly Enriched Uranium ... Highly Enriched Uranium Materials Facility HEUMF The Highly Enriched Uranium Materials Facility is our nation's central repository for highly enriched uranium, a vital national security asset. HEUMF is a massive concrete and steel structure that provides maximum security for the highly enriched uranium material that it protects. Approximately 300 feet by 475 feet, HEUMF has areas for receiving, shipping and providing long-term storage of the enriched uranium, as well

  18. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  19. DOE Evaluates Environmental Impacts of Uranium Mining on Government...

    Energy Savers [EERE]

    Evaluates Environmental Impacts of Uranium Mining on Government Land in Western Colorado DOE Evaluates Environmental Impacts of Uranium Mining on Government Land in Western...

  20. Record of Decision for the Uranium Leasing Program Programmatic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact...

  1. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

  2. DOE/NNSA Successfully Establishes Uranium Lease and Takeback...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog DOENNSA Successfully Establishes Uranium Lease and Takeback ... DOENNSA Successfully Establishes Uranium Lease ...

  3. Decommissioning of U.S. Uranium Production Facilities

    Reports and Publications (EIA)

    1995-01-01

    This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

  4. DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6...

    Office of Environmental Management (EM)

    Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at Ohio and Kentucky Facilities DOE Seeks Contractor for Depleted Uranium Hexafluoride (DUF6) Operations at...

  5. Legacy Management Work Progresses on Defense-Related Uranium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global positioning location data were...

  6. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers [EERE]

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  7. DOE Extends Contract to Operate Depleted Uranium Hexafluoride...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants DOE Extends Contract to Operate Depleted Uranium Hexafluoride Conversion Plants December 24, 2015 -...

  8. Sequestering Uranium from Seawater: Binding Strength and Modes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl...

  9. 3rd Quarter 2015 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " U.S. Energy Information Administration Domestic Uranium...

  10. Domestic Uranium Production Report 4th Quarter 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Uranium Production Report 4th Quarter 2015 February ... DC 20585 U.S. Energy Information Administration | ... Team, Office of Electricity, Renewables, and Uranium ...

  11. Superfund Policy Statements and Guidance Regarding Disposition of Radioactive Waste in Non-NRC Licensed Disposal Facilities - 13407

    SciTech Connect (OSTI)

    Walker, Stuart

    2013-07-01

    This talk will discuss EPA congressional testimony and follow-up letters, as well as letters to other stakeholders on EPA's perspectives on the disposition of radioactive waste outside of the NRC licensed disposal facility system. This will also look at Superfund's historical practices, and emerging trends in the NRC and agreement states on waste disposition. (author)

  12. Preliminary Technology Readiness Assessment (TRA) for the Calcine Disposition Project Volume 2 (CDP)

    Office of Environmental Management (EM)

    PRELIMINARY TECHNOLOGY OF THE CALCINE Prepared by the U.S. Department of Energy ECHNOLOGY READINESS ASSESSMENT ALCINE DISPOSITION PROJECT VOLUME TWO Anthony F. Kluk Hoyt C. Johnson Clyde Phillip McGinnis Michael Rinker Steven L. Ross Herbert G. Sutter John Vienna February 2011 Prepared by the U.S. Department of Energy Washington, DC SSESSMENT ROJECT 412.09 (06/03/2009 - Rev. 11) CALCINE DISPOSITION PROJECT TECHNOLOGY MATURATION PLAN Identifier: Revision*: Page: PLN-1482 2 C-1 of C-317 Appendix C

  13. ,"U.S. Natural Gas Monthly Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Monthly Supply and Disposition Balance",9,"Monthly","12/2015","1/15/1973" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel

  14. ,"U.S. Natural Gas Annual Supply and Disposition Balance"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Supply and Disposition Balance" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Supply",5,"Annual",2015,"6/30/1930" ,"Data 2","Disposition",5,"Annual",2015,"6/30/1930" ,"Release Date:","2/29/2016" ,"Next Release

  15. Low-level Waste Safely Dispositioned Under Runoff Cover at SRS | Department

    Office of Environmental Management (EM)

    of Energy Low-level Waste Safely Dispositioned Under Runoff Cover at SRS Low-level Waste Safely Dispositioned Under Runoff Cover at SRS April 26, 2011 - 12:00pm Addthis The liner installer heat-welds a sand anchor closed. The sand anchors are installed under the liner and across the length of the slit trench to keep the liner in place and minimize the effects of wind lift. The liner installer heat-welds a sand anchor closed. The sand anchors are installed under the liner and across the

  16. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    7 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Table S3b. Weighted-average price of foreign purchases and foreign sales by U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors, 1994-2014 Delivery year Foreign purchases by U.S. suppliers Foreign purchases by owners and operators of U.S. civilian nuclear power reactors Total foreign purchases (weighted-average price) U.S. broker and trader purchases from foreign suppliers

  17. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Employment in the U.S. uranium production industry by state, 2003-14" "person-years" "State(s)",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014 "Wyoming",134,139,181,195,245,301,308,348,424,512,531,416 "Colorado and Texas",48,140,269,263,557,696,340,292,331,248,198,105 "Nebraska and New Mexico",92,102,123,160,149,160,159,134,127,"W","W","W" "Arizona, Utah, and

  18. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    2. U.S. uranium mine production and number of mines and sources, 2003-14" "Production / Mining Method",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014 "Underground" "(estimated contained thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W","W","W" "Open Pit" "(estimated contained thousand pounds

  19. 2014 Domestic Uranium Production Report

    U.S. Energy Information Administration (EIA) Indexed Site

    3. U.S. uranium concentrate production, shipments, and sales, 2003-14" "Activity at U.S. Mills and In-Situ-Leach Plants",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014 "Estimated contained U3O8 (thousand pounds)" "Ore from Underground Mines and Stockpiles Fed to Mills 1",0,"W","W","W",0,"W","W","W","W","W","W","W" "Other Feed Materials

  20. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    6a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by quantity, 2012-14 deliveries" "thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent" "Quantity distribution 1","Deliveries in 2012",,"Deliveries in 2013",,"Deliveries in 2014" ,"Quantity with reported price","Weighted-average price","Quantity with reported

  1. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors ranked by price and distributed by purchaser, 2012-14 deliveries" "thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent" "Distribution of purchasers","Deliveries in 2012",,,"Deliveries in 2013",,,"Deliveries in 2014" ,"Number of purchasers","Quantity with reported price","Weighted-average price","Number of

  2. 2014 Uranium Marketing Annual Survey

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors by contract type and material type, 2014 deliveries" "thousand pounds U3O8 equivalent; dollars per pound U3O8 equivalent" "Material Type","Spot Contracts 1",,"Long-Term Contracts 2",,"Total" ,"Quantity with reported price","Weighted-average price","Quantity with reported price","Weighted-average price","Quantity

  3. Method for fabricating laminated uranium composites

    DOE Patents [OSTI]

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  4. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  5. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect (OSTI)

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  6. Potential dispositioning flowsheets for ICPP SNF and wastes

    SciTech Connect (OSTI)

    Olson, A.L. [ed.; Anderson, P.A.; Bendixsen, C.L. [and others

    1995-11-01

    The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1953. This activity resulted mainly in the recovery of uranium and the management of the resulting wastes. The acidic radioactive high-level liquid waste was routinely stored in stainless steel tanks and then calcined to form a dry granular solid. The calcine is stored in stainless steel bins that are housed in underground concrete vaults. In April 1992, the DOE discontinued the practice of reprocessing irradiated nuclear fuels. This decision has left a legacy of 1.8 million gallons of radioactive liquid wastes (1.5 million gallons of radioactive sodium-bearing liquid wastes and 0.3 million gallons of high-level liquid waste), 3800 cubic meters of calcine waste, and 289 metric tons of heavy metal within unprocessed spent nuclear fuel (SNF) left in inventory at the ICPP. The nation`s radioactive waste policy has been established by the Nuclear Waste Policy Act (NWPA), which requires the final disposal of SNF and radioactive waste in accordance with US Environmental Protection Agency (EPA) and Nuclear Regulatory Commission (NRC) standards. In accordance with these regulations and other legal agreements between the State of Idaho and the DOE, the DOE must, among other requirements, (1) complete a final Environmental Impact Statement by April 30, 1995, (2) evaluate and test sodium-bearing waste pre-treatment technologies, (3) select the sodium-bearing and calcine waste pre-treatment technology, if necessary, by June 1, 1995, and (4) select a technology for converting calcined waste into an appropriate disposal form by June 1, 1995.

  7. Used fuel disposition campaign international activities implementation plan.

    SciTech Connect (OSTI)

    Nutt, W. M. (Nuclear Engineering Division)

    2011-06-29

    The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

  8. Uranium Leasing Program Environmental Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Documents Uranium Leasing Program Environmental Documents Uranium Leasing Program Mitigation Action Plan for the Final Uranium Leasing Program Programmatic Environmental Impact Statement DOE/EIS-0472 (November 2014) Record of Decision Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS)

  9. Uranium Lease Tracts Location Map | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Lease Tracts Location Map Uranium Lease Tracts Location Map Uranium Lease Tracts Location Map PDF icon Uranium Lease Tracts Location Map More Documents & Publications EA-1037: Final Environmental Assessment EA-1535: Final Programmatic Environmental Assessment EIS-0472: Notice of Intent to Prepare a Programmatic Environmental Impact Statement

  10. Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-11

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  11. Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect (OSTI)

    Peters, T. B.; Fink, S. D.

    2012-12-20

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  12. Plutonium-bearing materials feed report for the DOE Fissile Materials Disposition Program alternatives

    SciTech Connect (OSTI)

    Brough, W.G.; Boerigter, S.T.

    1995-04-06

    This report has identified all plutonium currently excess to DOE Defense Programs under current planning assumptions. A number of material categories win clearly fan within the scope of the MD (Materials Disposition) program, but the fate of the other categories are unknown at the present time. MD planning requires that estimates be made of those materials likely to be considered for disposition actions so that bounding cases for the PEIS (Programmatic Environmental Impact Statement) can be determined and so that processing which may be required can be identified in considering the various alternatives. A systematic analysis of the various alternatives in reachmg the preferred alternative requires an understanding of the possible range of values which may be taken by the various categories of feed materials. One table identifies the current total inventories excess to Defense Program planning needs and represents the bounding total of Pu which may become part of the MD disposition effort for all materials, except site return weapons. The other categories, principally irradiated fuel, rich scrap, and lean scrap, are discussed. Another table summarizes the ranges and expected quantities of Pu which could become the responsibility of the MD program. These values are to be used for assessing the impact of the various alternatives and for scaling operations to assess PEIS impact. Determination of the actual materials to be included in the disposition program will be done later.

  13. IDENTIFYING IMPURITIES IN SURPLUS NON PIT PLUTONIUM FEEDS FOR MOX OR ALTERNATIVE DISPOSITION

    SciTech Connect (OSTI)

    Allender, J; Moore, E

    2010-07-14

    This report provides a technical basis for estimating the level of corrosion products in materials stored in DOE-STD-3013 containers based on extrapolating available chemical sample results. The primary focus is to estimate the levels of nickel, iron, and chromium impurities in plutonium-bearing materials identified for disposition in the United States Mixed Oxide fuel process.

  14. Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01

    Broader source: Energy.gov [DOE]

    The Used Fuel Disposition Campaign (UFDC) conducts R&D activities related to storage, transportation and disposal of used nuclear fuel and high level nuclear waste (for existing and future fuels); deep geologic disposal R&D activities are outlined and prioritized on the basis of gaps in understanding and benefit derived from R&D to narrow such gaps.

  15. EIS-0475: Disposition of the Bannister Federal Complex, Kansas City, MO

    Broader source: Energy.gov [DOE]

    NNSA/DOE announces its intent to prepare an EIS for the disposition of the Bannister Federal Complex, Kansas City, MO. NNSA previously decided in a separate NEPA review (EA-1592) to relocate its operations from the Bannister Federal Complex to a newly constructed industrial campus eight miles from the current location.

  16. uranium

    National Nuclear Security Administration (NNSA)

    a>

    NNSA Removes U.S.-Origin HEU from Jamaica, Makes the Caribbean HEU Free http:nnsa.energy.govmediaroompressreleasesnnsa-removes-u.s.-origin-heu-jamaica-mak...

  17. Technical Basis for Assessing Uranium Bioremediation Performance

    SciTech Connect (OSTI)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL NGuessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  18. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Contact User Services Print The User Services Group is available to aid ALS users before they arrive, while they are here, and after they leave. User Office Experiment...

  19. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    SciTech Connect (OSTI)

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  20. Secretarial Determination for the Sale or Transfer of Uranium | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium Secretarial Determination for the Sale or Transfer of Uranium, May 15, 2012 PDF icon Secretarial Determination for the Sale or Transfer of Uranium.pdf More Documents & Publications Secretarial Determination Pursuant to USEC Privatization Act for the Sale or Transfer of Low-Enriched Uranium Before the House Committee on Oversight and Government Reform

  1. Record of Decision for the Uranium Leasing Program Programmatic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Impact Statement | Department of Energy Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement The U.S. Department of Energy (DOE) issued its Record of Decision for the Uranium Leasing Program on May 6, 2014, announcing that it will continue managing the Uranium Leasing Program for another 10 years. PDF icon Record of Decision for the Uranium

  2. Uranium Leasing Program: Program Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium Leasing Program » Uranium Leasing Program: Program Summary Uranium Leasing Program: Program Summary Uranium Leasing Program: Program Summary The Atomic Energy Act and other legislative actions authorized the U.S. Atomic Energy Commission (AEC), predecessor agency to the DOE, to withdraw lands from the public domain and then lease them to private industry for mineral exploration and for development and mining of uranium and vanadium ore. A total of 25,000 acres of land in southwestern

  3. Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colorado | Department of Energy Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado PDF icon Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado More Documents & Publications EA-1535: Final Programmatic Environmental Assessment EA-1037: Final Environmental Assessment Final Uranium Leasing

  4. Final Uranium Leasing Program Programmatic Environmental Impact Statement

    Office of Environmental Management (EM)

    (PEIS) | Department of Energy Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing Program-Mesa, Montrose, and San Miguel Counties, Colorado EIS-0472 evaluated the environmental impacts of management alternatives for DOE's Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and

  5. RECOVERY OF URANIUM FROM CARBONATE LEACH LIQUORS

    DOE Patents [OSTI]

    Wilson, H.F.

    1958-07-01

    An improved process is described for the recovery of uranium from vanadifrous ores. In the prior art such ores have been digested with alkali carbonate solutions at a pH of less than 10 and then contacted with a strong base anion exchange resin to separate uranium from vanadium. It has been found that if the exchamge resin feed solution has its pH adjusted to the range 10.8 to 11.8, that vanadium adsorption on the resin is markedly decreased and the separation of uranium from the vanadium is thereby improved.

  6. Electrolytic process for preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  7. Uranium Mining, Conversion, and Enrichment Industries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Potential Impacts of Uranium Transfers on the Domestic Uranium Mining, Conversion, and Enrichment Industries May 1, 2015 ii EXECUTIVE SUMMARY: The Department of Energy ("Department" or "DOE") plans to transfer the equivalent of up to 2,100 metric tons ("MTU") of natural uranium per year (with a higher total for calendar year 2015, mainly because of transfers already executed or under way before today's determination). These transfers would include 1,600

  8. Inherently safe in situ uranium recovery (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Inherently safe in situ uranium recovery Citation Details In-Document Search Title: Inherently safe in situ uranium recovery An in situ recovery of uranium operation involves...

  9. Thermodynamic properties of uranium dioxide

    SciTech Connect (OSTI)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the thermodynamic properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, there has been international agreement on a vapor pressure equation for the total pressure over UO/sub 2/, new methods have been suggested for the calculation of enthalpy and heat capacity, and a phase change at 2670 K has been proposed. In this report, an electronic term is used in place of the Frenkel defect term in the enthalpy and heat capacity equation and the phase transition is accepted.

  10. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    9 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 2013 149 392 W W 199 1,156 2014 86 246 W W 161 787 Figure 3. Employment in

  11. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    5 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692 4,541

  12. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    3 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 As of As of December 31, 2013 December 31, 2014 2015 45,498 48,206 2,708 2,708 2016 48,693 46,529 -2,164 544 2017 47,005 49,924 2,919 3,463 2018 52,138 51,169 -969 2,494 2019 50,041 46,184 -3,857 -1,363 2020 49,726 49,598 -128 -1,491 2021 50,455 51,793 1,338 -153 2022 49,320 50,286 966 813 2023 49,688 49,118 -570 243 2024 - 51,829 -- -- thousand pounds U 3 O 8 equivalent Cumulative Figure 14. Shipments

  13. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    7 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Deliveries 2010 2011 2012 2013 2014 Foreign purchases 24,985 19,318 20,196 23,233 24,199 Weighted-average price 41.30 48.80 46.80 43.25 39.13 Foreign purchases 30,362 35,071 36,037 34,095 34,404 Weighted-average price 51.69 56.87 54.08 51.64 47.62 Foreign purchases 55,347 54,388 56,233 57,328 58,603 Weighted-average price 47.01 54.00 51.44 48.24 44.11 thousand pounds U 3 O 8 equivalent Figure 17.

  14. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    1 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 thousand pounds U 3 O 8 equivalent 2010 2011 2012 2013 P2014 Owners and operators of U.S. civilian nuclear power reactors 86,527 89,835 97,647 113,007 116,047 U.S. brokers and traders 11,125 6,841 5,677 7,926 5,798 U.S. converter, enrichers, fabricators, and producers 13,608 15,428 17,611 13,416 12,766 Total commercial inventories 111,259 112,104 120,936 134,418 134,611 thousand pounds U 3 O 8

  15. 2014 Uranium Marketing Annual Report

    Gasoline and Diesel Fuel Update (EIA)

    3 2014 Uranium Marketing Annual Report Release Date: May 13, 2015 Next Release Date: May 2016 Quantity with reported price Weighted-average price Quantity with reported price Weighted-average price Quantity with reported price Weighted- average price First 7,119 38.24 7,175 34.34 6,665 30.26 Second 7,119 48.64 7,175 41.29 6,665 35.11 Third 7,119 51.16 7,175 45.89 6,665 39.29 Fourth 7,119 54.15 7,175 49.84 6,665 43.36 Fifth 7,119 56.93 7,175 53.17 6,665 46.74 Sixth 7,119 59.98 7,175 57.24 6,665

  16. Domestic Uranium Production Report - Quarterly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1. Total production of uranium concentrate in the United States, 1996 - 4th quarter 2015 pounds U3O8 Calendar-year quarter 1st quarter 2nd quarter 3rd quarter 4th quarter Calendar-year total 1996 1,734,427 1,460,058 1,691,796 1,434,425 6,320,706 1997 1,149,050 1,321,079 1,631,384 1,541,052 5,642,565 1998 1,151,587 1,143,942 1,203,042 1,206,003 4,704,574 1999 1,196,225 1,132,566 1,204,984 1,076,897 4,610,672 2000 1,018,683 983,330 981,948 973,585 3,975,545 2001 709,177 748,298 628,720 553,060

  17. Uranium isotopic composition and uranium concentration in special reference material SRM A (uranium in KCl/LiCl salt matrix)

    SciTech Connect (OSTI)

    Graczyk, D.G.; Essling, A.M.; Sabau, C.S.; Smith, F.P.; Bowers, D.L.; Ackerman, J.P.

    1997-07-01

    To help assure that analysis data of known quality will be produced in support of demonstration programs at the Fuel Conditioning Facility at Argonne National Laboratory-West (Idaho Falls, ID), a special reference material has been prepared and characterized. Designated SRM A, the material consists of individual units of LiCl/KCl eutectic salt containing a nominal concentration of 2.5 wt. % enriched uranium. Analyses were performed at Argonne National Laboratory-East (Argonne, IL) to determine the uniformity of the material and to establish reference values for the uranium concentration and uranium isotopic composition. Ten units from a batch of approximately 190 units were analyzed by the mass spectrometric isotope dilution technique to determine their uranium concentration. These measurements provided a mean value of 2.5058 {+-} 0.0052 wt. % U, where the uncertainty includes estimated limits to both random and systematic errors that might have affected the measurements. Evidence was found of a small, apparently random, non-uniformity in uranium content of the individual SRM A units, which exhibits a standard deviation of 0.078% of the mean uranium concentration. Isotopic analysis of the uranium from three units, by means of thermal ionization mass spectrometry with a special, internal-standard procedure, indicated that the uranium isotopy is uniform among the pellets with a composition corresponding to 0.1115 {+-} 0.0006 wt. % {sup 234}U, 19.8336 {+-} 0.0059 wt. % {sup 235}U, 0.1337 {+-} 0.0006 wt. % {sup 236}U, and 79.9171 {+-} 0.0057 wt. % {sup 238}U.

  18. Synthesis of uranium nitride and uranium carbide powder by carbothermic reduction

    SciTech Connect (OSTI)

    Dunwoody, J.T.; Stanek, C.R.; McClellan, K.J.; Voit, S.L.; Volz, H.M.; Hickman, R.R.

    2007-07-01

    Uranium nitride and uranium carbide are being considered as high burnup fuels in next generation nuclear reactors and accelerated driven systems for the transmutation of nuclear waste. The same characteristics that make nitrides and carbides candidates for these applications (i.e. favorable thermal properties, mutual solubility of nitrides, etc.), also make these compositions candidate fuels for space nuclear reactors. In this paper, we discuss the synthesis and characterization of depleted uranium nitride and carbide for a space nuclear reactor program. Importantly, this project emphasized that to synthesize high quality uranium nitride and carbide, it is necessary to understand the exact stoichiometry of the oxide feedstock. (authors)

  19. Table 4.10 Uranium Reserves, 2008 (Million Pounds Uranium Oxide)

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Uranium Reserves,1 2008 (Million Pounds Uranium Oxide) State Forward-Cost 2 Category (dollars 3 per pound) $50 or Less $100 or Less Total 539 1,227 Wyoming 220 446 New Mexico 179 390 Arizona, Colorado, Utah 63 198 Texas 27 40 Others 4 50 154 1The U.S. Energy Information Administration (EIA) category of uranium reserves is equivalent to the internationally reported category of "Reasonably Assured Resources" (RAR). Notes: * Estimates are at end of year. * See "Uranium Oxide"

  20. Used fuel disposition research and development roadmap - FY10 status.

    SciTech Connect (OSTI)

    Nutt, W. M.

    2010-10-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems, engineered systems, and overall disposal system. The intent of this report is to consolidate the proposed R&D topics to support subsequent discussions among UFDC and external expertise to identify additional R&D needs and to prioritize these needs, leading to the development for the UFDC Research and Development Roadmap.

  1. DRAFT EM SSAB Chair's Meeting Waste Disposition Strategies Update

    Office of Environmental Management (EM)

    Fiscal Year 2016 Budget Genna Hackett Budget Analyst Environmental Management Los Alamos Field Office January 27, 2016 Northern New Mexico Citizens' Advisory Board Meeting www.energy.gov/EM 2 LOS ALAMOS (EM-LA) Agenda EM-HQ FY 2016 Funding Request EM-LA FY 2016 Appropriation FY 2016 Key Planned Scope FY 2016 In-Progress Summary www.energy.gov/EM 3 LOS ALAMOS (EM-LA) EM FY 2016 Funding Request Radioactive Liquid Tank Waste $ 2,297M / 39% Site Services** $ 413M /7% Soil and

  2. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, Gifford G. (Cincinnatti, OH); Kato, Takeo R. (Cincinnatti, OH); Schonegg, Edward (Cleves, OH)

    1986-01-01

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  3. The Uranium Resource: A Comparative Analysis

    SciTech Connect (OSTI)

    Schneider, Erich A.; Sailor, William C.

    2007-07-01

    An analogy was drawn between uranium and thirty five minerals for which the USGS maintains extensive records. The USGS mineral price data, which extends from 1900 to the present, was used to create a simple model describing long term price evolution. Making the assumption that the price of uranium, a geologically unexceptional mineral, will evolve in a manner similar to that of the USGS minerals, the model was used to project its price trend for this century. Based upon the precedent set by the USGS data, there is an 80% likelihood that the price of uranium will decline. Moreover, the most likely scenario would see the equilibrium price of uranium decline by about 40% by mid-century. (authors)

  4. Ex Parte Communications- Uranium Producers of America

    Broader source: Energy.gov [DOE]

    On Thursday, February 12, 2015, representatives from the Uranium  Producers  of America (UPA) met with the Department of Energy (DOE) officials to discuss the management of the federal excess...

  5. PROCESSES OF RECLAIMING URANIUM FROM SOLUTIONS

    DOE Patents [OSTI]

    Zumwalt, L.R.

    1959-02-10

    A process is described for reclaiming residual enriched uranium from calutron wash solutions containing Fe, Cr, Cu, Ni, and Mn as impurities. The solution is adjusted to a pH of between 2 and 4 and is contacted with a metallic reducing agent, such as iron or zinc, in order to reduce the copper to metal and thereby remove it from the solution. At the same time the uranium present is reduced to the uranous state The solution is then contacted with a precipitate of zinc hydroxide or barium carbonate in order to precipitate and carry uranium, iron, and chromium away from the nickel and manganese ions in the solution. The uranium is then recovered fronm this precipitate.

  6. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    1. U.S. Forward-Cost Uranium Reserves by State, Year-End 2008 State 50lb 100lb Ore (million tons) Gradea (%) U3O8 (million lbs) Ore (million tons) Gradea (%) U3O8 (million lbs)...

  7. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    Methodology The U.S. uranium ore reserves reported by EIA for specific MFC categories represent the sums of quantities estimated to occur in known deposits on properties where data...

  8. U.S. Uranium Reserves Estimates

    Gasoline and Diesel Fuel Update (EIA)

    2. U.S. Forward-Cost Uranium Reserves by Mining Method, Year-End 2008 Mining Method 50 per pound 100 per pound Ore (million tons) Gradea (percent U3O8) U3O8 (million pounds) Ore...

  9. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  10. Highly Enriched Uranium Transparency Program | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program reduces nuclear risk by monitoring the conversion of 500 metric tons (MT) of Russian HEU, enough material for 20,000 nuclear weapons, into low enriched uranium (LEU). ...

  11. Federal Actions to Address Impacts of Uranium

    Office of Legacy Management (LM)

    Federal Actions to Address Impacts of Uranium Contamination in the Navajo Nation 2014 Page | i TABLE OF CONTENTS Executive Summary ....................................................................................................................... 1 Introduction .................................................................................................................................... 2 Summary of Work Completed 2008-2012

  12. Depleted uranium: A DOE management guide

    SciTech Connect (OSTI)

    1995-10-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

  13. Uranium Leasing Program Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents Uranium Leasing Program Documents U.S. District Court's Order of October 18, 2011, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). The Court has issued the injunctive relief described on pages 51-52 of the Order. U.S. District Court's Order of February 27, 2012, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). Uranium Lease Tracts Location Map

  14. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Hayden, H. Wayne (Oakridge, TN)

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  15. LACED Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services LACED Services The expertise, capabilities, and facilities at Los Alamos enable use to provide a full suite of services that caters to countering explosive threats. v At LACED, we believe that technological knowhow is best leveraged through top-tier industrial partners, federal agencies, and academic institutions. LACED offers a variety of partnering mechanisms that enable access to federally developed technologies and R&D capabilities. If you have a complex problem related to

  16. Service Forms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service Forms Beamtime Request Form Deposition Request Form Exposure Request Form - pdf Fly Cutting Request Form Hot Embossing Request Form Metrology Request Form...

  17. Consulting Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that causes error conditions IO optimization effective use of compilers advising on best strategies for porting code User Services staff members work closely with vendors to...

  18. DOE Plutonium Disposition Study: Pu consumption in ALWRs. Volume 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-05-15

    The Department of Energy (DOE) has contracted with Asea Brown Boveri-Combustion Engineering (ABB-CE) to provide information on the capability of ABB-CE`s System 80 + Advanced Light Water Reactor (ALWR) to transform, through reactor burnup, 100 metric tonnes (MT) of weapons grade plutonium (Pu) into a form which is not readily useable in weapons. This information is being developed as part of DOE`s Plutonium Disposition Study, initiated by DOE in response to Congressional action. This document, Volume 1, presents a technical description of the various elements of the System 80 + Standard Plant Design upon which the Plutonium Disposition Study was based. The System 80 + Standard Design is fully developed and directly suited to meeting the mission objectives for plutonium disposal. The bass U0{sub 2} plant design is discussed here.

  19. Disposition and transportation of surplus radioactive low specific activity nitric acid. Volume 1, Environmental Assessment

    SciTech Connect (OSTI)

    1995-05-01

    DOE is deactivating the PUREX plant at Hanford; this will involve the disposition of about 692,000 liters (183,000 gallons) of surplus nitric acid contaminated with low levels of U and other radionuclides. The nitric acid, designated as low specific activity, is stored in 4 storage tanks at PUREX. Five principal alternatives were evaluated: transfer for reuse (sale to BNF plc), no action, continued storage in Hanford upgraded or new facility, consolidation of DOE surplus acid, and processing the LSA nitric acid as waste. The transfer to BNF plc is the preferred alternative. From the analysis, it is concluded that the proposed disposition and transportation of the acid does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of NEPA; therefore an environmental impact statement is not required.

  20. DOE SEEKS CONTRACTOR TO DISPOSITION WASTE AT THE ADVANCED MIXED WASTE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TREATMENT PROJECT (AMWTP) SEEKS CONTRACTOR TO DISPOSITION WASTE AT THE ADVANCED MIXED WASTE TREATMENT PROJECT (AMWTP) Inside the AMWTP facility The AMWTP facility Idaho Falls - The U.S. Department of Energy, Idaho Operations Office, in coordination with the Office of Environmental Management today released a Final �Request for Proposal� to obtain a contractor to perform waste processing at the Advanced Mixed Waste Treatment Project at the Department�s Idaho Site near Idaho Falls,

  1. DOE-STD-1120-2005; Integration of Environment Safety and Health into Facility Disposition Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20-2005 Volume 1 of 2 April 2005 DOE STANDARD INTEGRATION OF ENVIRONMENT, SAFETY, AND HEALTH INTO FACILITY DISPOSITION ACTIVITIES Volume 1 of 2: Documented Safety Analysis for Decommissioning and Environmental Restoration Projects U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE TS i This document has been reproduced directly from the best available copy. Available to DOE and DOE

  2. DOE-STD-1120-2005; Integration of Environment, Safety, and Health into Facility Disposition Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    120-2005 Volume 2 of 2 DOE STANDARD INTEGRATION OF ENVIRONMENT, SAFETY, AND HEALTH INTO FACILITY DISPOSITION ACTIVITIES Volume 2 of 2: Appendices U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak

  3. LANL's Role in the U.S. Fissile Material Disposition Program

    SciTech Connect (OSTI)

    Whitworth, Julia; Kay, Virginia

    2015-02-18

    The process of Fissile Material Disposition is in part a result of the Advanced Recovery and Integrated Extraction System (ARIES), which is an agreement between the U.S. and Russia to dispose of excess plutonium used to make weapons. LANL is one sight that aides in the process of dismantling, storage and repurposing of the plutonium gathered from dismantled weapons. Some uses for the repurposed plutonium is fuel for commercial nuclear reactors which will provide energy for citizens.

  4. DOE's Disposition of Excess Real Property Status of Banked Square Feet

    Office of Environmental Management (EM)

    FY 2014 Report on DOE's Disposition of Excess Real Property Status of Banked Square Feet for Future One-for-One Offsets Office of Acquisition and Project Management January 2015 DOE REPORT ON THE ELIMINATION OF EXCESS FACILITIES Background The Conference Report (Rpt. 107-258) accompanying the FY 2002 Energy and Water Development Appropriations Act directed the Department to develop an excess facility elimination report to be submitted as part of the Congressional budget. To implement the program

  5. 2014 Domestic Uranium Production Report

    Gasoline and Diesel Fuel Update (EIA)

    11 2014 Domestic Uranium Production Report Release Date: April 30, 2015 Next Release Date: May 2016 Total Land and Other 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3

  6. Uranium mill ore dust characterization

    SciTech Connect (OSTI)

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  7. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    SciTech Connect (OSTI)

    1998-05-01

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  8. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  9. 2014 Uranium Marketing Annual Report

    U.S. Energy Information Administration (EIA) Indexed Site

    17. Purchases of enrichment services by owners and operators of U.S. civilian nuclear power reactors by contract type in delivery year, 2014" "thousand separative work units (SWU)" "Enrichment service contract type","U.S. enrichment","Foreign enrichment","Total" "Spot ","W","W",628 "Long-term ","W","W",12310 "Total",3773,9165,12939 "W = Data withheld to avoid

  10. SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY

    SciTech Connect (OSTI)

    SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

    2010-03-09

    The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of the drying cycle, more realistic treatment of uranium metal consumption during oxidation, larger water inventory, longer time scales, and graphing of results of hydrogen gas concentration.

  11. RESOLUTION OF URANIUM ISOTOPES WITH KINETIC PHOSPHORESCENCE ANALYSIS

    SciTech Connect (OSTI)

    Miley, Sarah M.; Hylden, Anne T.; Friese, Judah I.

    2013-04-01

    This study was conducted to test the ability of the Chemchek Kinetic Phosphorescence Analyzer Model KPA-11 with an auto-sampler to resolve the difference in phosphorescent decay rates of several different uranium isotopes, and therefore identify the uranium isotope ratios present in a sample. Kinetic phosphorescence analysis (KPA) is a technique that provides rapid, accurate, and precise determination of uranium concentration in aqueous solutions. Utilizing a pulsed-laser source to excite an aqueous solution of uranium, this technique measures the phosphorescent emission intensity over time to determine the phosphorescence decay profile. The phosphorescence intensity at the onset of decay is proportional to the uranium concentration in the sample. Calibration with uranium standards results in the accurate determination of actual concentration of the sample. Different isotopes of uranium, however, have unique properties which should result in different phosphorescence decay rates seen via KPA. Results show that a KPA is capable of resolving uranium isotopes.

  12. LM Progressing with Uranium Mines Report to Congress | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progressing with Uranium Mines Report to Congress LM Progressing with Uranium Mines Report to Congress July 12, 2013 - 10:50am Addthis As reported in an earlier Program Update...

  13. DOE - Office of Legacy Management -- Abandoned Uranium Mines

    Office of Legacy Management (LM)

    Uranium Mines Report to Congress The U.S. Department of Energy (DOE) Office of Legacy Management completed a report on defense-related uranium mines in consultation with...

  14. Uranium at Y-12: Inspection | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inspection Uranium at Y-12: Inspection Posted: July 22, 2013 - 3:36pm | Y-12 Report | Volume 10, Issue 1 | 2013 Inspection of enriched uranium is performed by dimensional checks...

  15. Uranium at Y-12: Recovery | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Uranium at Y-12: Recovery Posted: July 22, 2013 - 3:44pm | Y-12 Report | Volume 10, Issue 1 | 2013 Recovery involves reclaiming uranium from numerous sources and...

  16. Uranium at Y-12: Accountability | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Uranium at Y-12: Accountability Posted: July 22, 2013 - 3:37pm | Y-12 Report | Volume 10, Issue 1 | 2013 Accountability of enriched uranium is facilitated by the ability to put...

  17. Think Uranium. Think Y-12 | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Y-12 Report | Volume 10, Issue 1 | 2013 Uranium fever: Much like the California gold rush of 1849, the uranium flurry of 1949 led Geiger counter-toting prospectors to scour...

  18. Y-12 Bulletin Uranium Articles | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bulletin Uranium ... Y-12 Bulletin Uranium Articles Posted: July 22, 2013 - 3:13pm | Y-12 Report | Volume 10, Issue 1 | 2013 These and other articles can be found in archived...

  19. Uranium distribution in relation to sedimentary facies, Kern Lake, California

    SciTech Connect (OSTI)

    Merifield, P.M.; Carlisle, D.; Idiz, E.; Anderhalt, R.; Reed, W.E.; Lamar, D.L.

    1980-04-01

    Kern Lake has served as a sink for drainage from the southern Sierra Nevada and, in lesser amounts, from the southern Temblor Range. Both areas contain significant uranium source rocks. The uranium content in Holocene Kern Lake sediments correlates best with the mud (silt and clay) fraction. It correlates less well with organic carbon. Biotite grains could account for much of the uranium in the sand fraction, and perhaps the silt fraction as well. The data suggest that fixation of uranium by adsorption on mineral grains is a dominant process in this lake system. Further work is required to determine the importance of cation-exchange of uranium on clays and micas and of organically complexed uranium adsorbed to mineral surfaces. These findings also raise the question of whether uranium transport down the Kern River occurs largely as uranium adsorbed to mineral surfaces.

  20. The Uranium Processing Facility (UPF) Finite Element Meshing Discussion |

    Office of Environmental Management (EM)

    Department of Energy The Uranium Processing Facility (UPF) Finite Element Meshing Discussion The Uranium Processing Facility (UPF) Finite Element Meshing Discussion The Uranium Processing Facility (UPF) Finite Element Meshing Discussion Loring Wyllie Arne Halterman Degenkolb Engineers, San Francisco PDF icon The Uranium Processing Facility (UPF) Finite Element Meshing Discussion More Documents & Publications SASSI Subtraction Method Effects at Various DOE projects October 2009 Seismic

  1. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes

    SciTech Connect (OSTI)

    Marsh, Terence L.

    2013-07-30

    Our contribution to the larger project (ANL) was the phylogenetic analysis of evolved communities capable of reducing metals including uranium.

  2. Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Print Sunday, 14 October 2012 00:00 The ocean is an important source of uranium if it can be extracted economically. Extraction of uranium from seawater is very challenging, not only because it is in an extremely low concentration, but also because

  3. Manhattan Project: Early Uranium Research, 1939-1941

    Office of Scientific and Technical Information (OSTI)

    Ernest Lawrence, Arthur Compton, Vannevar Bush, and James Conant discuss uranium research, Berkeley, March 29, 1940. EARLY URANIUM RESEARCH (1939-1941) Events > Early Government Support, 1939-1942 Einstein's Letter, 1939 Early Uranium Research, 1939-1941 Piles and Plutonium, 1939-1941 Reorganization and Acceleration, 1940-1941 The MAUD Report, 1941 A Tentative Decision to Build the Bomb, 1941-1942 President Franklin D. Roosevelt responded to the call for government support of uranium research

  4. Testing for Uranium Deuteride Initiation in Liquid Deuterium

    SciTech Connect (OSTI)

    Siekhaus, W. J.; Teslich, N. E.; Kucheyev, S. O.; Go, J.

    2015-10-29

    This report offers a description of the testing related to Uranium foil and its interaction with liquid deuterium.

  5. Los Alamos probes mysteries of uranium dioxide's thermal conductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mysteries of uranium dioxide's thermal conductivity Los Alamos probes mysteries of uranium dioxide's thermal conductivity New research is showing that the thermal conductivity of cubic uranium dioxide is strongly affected by interactions between phonons carrying heat and magnetic spins. August 4, 2014 Illustration of anisotropic thermal conductivity in uranium dioxide (UO2). Scientists are studying the thermal conductivity related to the material's different crystallographic directions, hoping

  6. Excess Uranium Inventory Management Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excess Uranium Inventory Management Plan Excess Uranium Inventory Management Plan The 2013 Excess Uranium Inventory Management Plan describes a framework for the effective management of the Energy Department's surplus uranium inventory in support of meeting its critical environmental cleanup and national security missions. The Plan is not a commitment to specific activities beyond those that have already been contracted nor is it a restriction on actions that the Department may undertake in the

  7. Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment March 15, 2013 - 11:08am Addthis Uranium Leasing Program Draft Programmatic EIS Issued for Public Comment DOE has issued the Draft Uranium Leasing Program Programmatic Environmental Impact Statement (ULP PEIS)(DOE/EIS-0472D) for public review and comment. The document is available here and on the ULP PEIS website. Under the

  8. Retrieval of buried depleted uranium from the T-1 trench

    SciTech Connect (OSTI)

    Burmeister, M.; Castaneda, N.; Greengard, T. |; Hull, C.; Barbour, D.; Quapp, W.J.

    1998-07-01

    The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

  9. Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (1967) | Department of Energy Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) PDF icon Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967) More Documents & Publications Gamma-Ray Logging Workshop (February 1981) Grade Assignments for Models Used for

  10. Uranium Processing Facility Site Readiness Subproject Completed on Time and

    National Nuclear Security Administration (NNSA)

    Under Budget | National Nuclear Security Administration Library / Press Releases / Uranium Processing Facility Site Readiness Subproject Completed ... Uranium Processing Facility Site Readiness Subproject Completed on Time and Under Budget Press Release Mar 13, 2015 Washington D.C.--The Uranium Processing Facility (UPF) project celebrates its first major milestone with the completion of site readiness work, delivered on time and under budget. "UPF is essential to our Nation's uranium

  11. Reimbursements to Licensees of Active Uranium and Thorium Processing Sites,

    Energy Savers [EERE]

    Fiscal Year 2009 and 2010 Status Report | Department of Energy Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report Reimbursements to Licensees of Active Uranium and Thorium Processing Sites, Fiscal Year 2009 and 2010 Status Report (March 2010) PDF icon Reimbursements to Licensees of Active Uranium and Thorium

  12. Central Scrap Management Office | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Security / Nuclear Material Recovery / Central Scrap Management ... Central Scrap Management Office The Y-12 Central Scrap Management Office serves as the U.S. Department of Energy repository for unirradiated uranium and provide technical assistance to DOE customers in the disposition of scrap uranium. CSMO manages scrap recovery, storage and disposition services for DOE programs. CSMO at the Y-12 National Security Complex provides centralized leadership and management of unirradiated

  13. Method for fluorination of uranium oxide

    DOE Patents [OSTI]

    Petit, George S. (Oak Ridge, TN)

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  14. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    SciTech Connect (OSTI)

    Beals, D; Charles Shick, C

    2008-06-09

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a series of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.

  15. Chapter 20 - Uranium Enrichment Decontamination & Decommissioning Fund

    Energy Savers [EERE]

    0. Uranium Enrichment Decontamination and Decommissioning Fund 20-1 CHAPTER 20 URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND 1. INTRODUCTION. a. Purpose. To establish policies and procedures for the financial management, accounting, budget preparation, cash management of the Uranium Enrichment Decontamination and Decommissioning Fund, referred to hereafter as the Fund. b. Applicability. This chapter applies to all Departmental elements, including the National Nuclear Security

  16. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, John P.

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  17. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  18. Uranium Processing Facility Site Readiness Subproject Completed on Time and

    National Nuclear Security Administration (NNSA)

    Under Budget | National Nuclear Security Administration Field Offices / Welcome to the NNSA Production Office / NPO News Releases / Uranium Processing Facility Site Readiness Subproject Completed ... Uranium Processing Facility Site Readiness Subproject Completed on Time and Under Budget The Uranium Processing Facility (UPF) project celebrates its first major milestone with the completion of site readiness work, delivered on time and under budget.

  19. User Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Section Sue Bailey This e-mail address is being protected from spambots. You need JavaScript enabled to view it User Services Group Leader Prospective users Proprietary users...

  20. Initial report on characterization of excess highly enriched uranium

    SciTech Connect (OSTI)

    1996-07-01

    DOE`s Office of Fissile Materials Disposition assigned to this Y-12 division the task of preparing a report on the 174.4 metric tons of excess highly enriched U. Characterization included identification by category, gathering existing data (assay), defining the likely needed processing steps for prepping for transfer to a blending site, and developing a range of preliminary cost estimates for those steps. Focus is on making commercial reactor fuel as a final disposition path.