Sample records for uranium activity result

  1. EPA Update: NESHAP Uranium Activities

    E-Print Network [OSTI]

    for underground uranium mining operations (Subpart B) EPA regulatory requirements for operating uranium mill for Underground Uranium Mining Operations (Subpart B) #12;5 EPA Regulatory Requirements for Underground Uranium uranium mines include: · Applies to 10,000 tons/yr ore production, or 100,000 tons/mine lifetime · Ambient

  2. URANIUM MILLING ACTIVITIES AT SEQUOYAH FUELS CORPORATION

    E-Print Network [OSTI]

    unknown authors

    Sequoyah Fuels Corporation (SFC) describes previous operations at its Gore, Oklahoma, uranium conversion facility as: (1) the recovery of uranium by concentration and purification processes; and (2) the conversion of concentrated and purified uranium ore into uranium hexafluoride (UF 6), or the reduction of depleted uranium tetrafluoride (UF 4) to UF 6. SFC contends that these

  3. Measurement of uranium enrichment by gamma spectroscopy: result of an experimental design

    E-Print Network [OSTI]

    , Gamma Spectrometry, uranium enrichment #12;PAPER Measurement of uranium enrichment by gamma spectroscopy: result of an experimental design Gamma spectroscopy is commonly used in nuclear safeguards to measure uranium enrichment. An experimental

  4. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, Gifford G. (Cincinnatti, OH); Kato, Takeo R. (Cincinnatti, OH); Schonegg, Edward (Cleves, OH)

    1986-01-01T23:59:59.000Z

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  5. Process for reducing beta activity in uranium

    DOE Patents [OSTI]

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11T23:59:59.000Z

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  6. Stimulating the In Situ Activity of Geobacter Species to Remove Uranium from the Groundwater of a Uranium-Contaminated Aquifer

    SciTech Connect (OSTI)

    Anderson, R. T.; Vrionis, Helen A.; Ortiz-Bernad, Irene; Resch, Charles T.; Long, Philip E.; Dayvault, R. D.; Karp, Ken; Marutzky, Sammy J.; Metzler, Donald R.; Peacock, Aaron D.; White, David C.; Lowe, Mary; Lovley, Derek R.

    2003-10-01T23:59:59.000Z

    The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 _M in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant, and Geobacter species became a minor component of the community. This apparent switch from Fe(III) reduction to sulfate reduction as the terminal electron accepting process for the oxidation of the injected acetate was associated with an increase in uranium concentration in the groundwater. These results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species.

  7. Uranium Adsorption on Granular Activated Carbon Batch Testing

    SciTech Connect (OSTI)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2013-09-26T23:59:59.000Z

    The uranium adsorption performance of two activated carbon samples (Tusaar Lot B-64, Tusaar ER2-189A) was tested using unadjusted source water from well 299-W19-36. These batch tests support ongoing performance optimization efforts to use the best material for uranium treatment in the Hanford Site 200 West Area groundwater pump-and-treat system. A linear response of uranium loading as a function of the solution-to-solid ratio was observed for both materials. Kd values ranged from ~380,000 to >1,900,000 ml/g for the B-64 material and ~200,000 to >1,900,000 ml/g for the ER2-189A material. Uranium loading values ranged from 10.4 to 41.6 ?g/g for the two Tusaar materials.

  8. E-Print Network 3.0 - antei uranium deposit Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Powered by Explorit Topic List Advanced Search Sample search results for: antei uranium deposit Page: << < 1 2 3 4 5 > >> 1 geology and Ranger 1 open-pit uranium mine in...

  9. E-Print Network 3.0 - albarrana uranium ores Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powered by Explorit Topic List Advanced Search Sample search results for: albarrana uranium ores Page: << < 1 2 3 4 5 > >> 1 geology and Ranger 1 open-pit uranium mine in...

  10. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, Claude R. (Paducah, KY); Ernstberger, Harold G. (Paducah, KY)

    1988-01-01T23:59:59.000Z

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  11. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03T23:59:59.000Z

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  12. Active neutron multiplicity counting of bulk uranium

    SciTech Connect (OSTI)

    Ensslin, N.; Krick, M.S.; Langner, D.G.; Miller, M.C.

    1991-01-01T23:59:59.000Z

    This paper describes a new nondestructive assay technique being developed to assay bulk uranium containing kilogram quantities of {sup 235}U. The new technique uses neutron multiplicity analysis of data collected with a coincidence counter outfitted with AmLi neutron sources. We have calculated the expected neutron multiplicity count rate and assay precision for this technique and will report on its expected performance as a function of detector design characteristics, {sup 235 }U sample mass, AmLi source strength, and source-to-sample coupling. 11 refs., 2 figs., 2 tabs.

  13. Sorption of uranium from nitric acid solution using TBP-impregnated activated carbons

    SciTech Connect (OSTI)

    Abbasi, W.A. [Pakistan Atomic Energy Commission, Islamabad (Pakistan). Pakistan Inst. of Nuclear Science and Technology; Streat, M. [Loughborough Univ. (United Kingdom). Dept. of Chemical Engineering

    1998-08-01T23:59:59.000Z

    The concept of extraction chromatography has been used to study the sorption of uranium from nitric acid solutions using tri-n-butyl phosphate (TBP) impregnated activated carbons. Batch equilibrium data and kinetic and breakthrough column behavior of uranium are reported. Wood based activated carbon has shown better capacity and breakthrough characteristics than shell based activated carbon. Sorption rate on impregnated carbons was relatively slow indicating that diffusion is the rate controlling step within the pore structure of the activated carbon. Uranium distribution on impregnated activated carbons is compared with equivalent bulk liquid extraction and a mechanism of uranium sorption is discussed.

  14. Uranium industry annual 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

  15. Temporal variability of uranium concentrations and 234 activity ratios in the Mississippi river and its tributaries

    E-Print Network [OSTI]

    Temporal variability of uranium concentrations and 234 U/238 U activity ratios in the Mississippi Department of Geology and Geophysics, Texas A&M University, College Station, TX 77845, United States c/238 U activity ratios and total dissolved uranium concentrations in the Lower Mississippi River at New

  16. Charge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and Chemical Transformation

    E-Print Network [OSTI]

    Meyer, Karsten

    coordination and organometallic chemistry.1-3 The covalency in uranium ligand bonds is weaker thanCharge-Separation in Uranium Diazomethane Complexes Leading to C-H Activation and ChemicalVersity of California, San Diego, Department of Chemistry, 9500 Gilman DriVe, La Jolla, California 92093, and Uni

  17. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer

    E-Print Network [OSTI]

    Robert T. Anderson; Helen A. Vrionis; Irene Ortiz-bernad; Charles T. Resch; Philip E. Long; Richard Dayvault; Ken Karp; Sam Marutzky; Donald R. Metzler; Aaron Peacock; David C. White; Mary Lowe; Derek R. Lovley

    2003-01-01T23:59:59.000Z

    The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 ?M in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant,

  18. E-Print Network 3.0 - activated zinc sulfide Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Initial Reports and Scientific Results portions of Vol- Summary: -14 active zones, geology, A:18-19 age sulfides, B:111-117 vs. uranium content, B:113-114 alteration...

  19. The non-aqueous chemistry of uranium has been an active area of exploration in recent decades1,2

    E-Print Network [OSTI]

    Cai, Long

    -purity depleted uranium produced as a by-product of nuclear isotope enrichment programmes. The early actinideThe non-aqueous chemistry of uranium has been an active area of exploration in recent decades1 for uranium will be created in part by the quest of researchers to understand the properties and potential

  20. Uranium industry annual 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  1. E-Print Network 3.0 - arlit uranium mines Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mathematics 5 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

  2. E-Print Network 3.0 - area uranium plume Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology 4 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

  3. E-Print Network 3.0 - abandoned uranium mill Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology 17 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

  4. E-Print Network 3.0 - anaconda uranium mill Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology 7 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

  5. E-Print Network 3.0 - abandoned uranium mines Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology 15 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

  6. E-Print Network 3.0 - ash doped uranium Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology 2 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

  7. E-Print Network 3.0 - alloyed uranium sicral Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology 33 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

  8. Results of the remote sensing feasibility study for the uranium hexafluoride storage cylinder yard program

    SciTech Connect (OSTI)

    Balick, L.K.; Bowman, D.R. [Bechtel Nevada, Las Vegas, NV (United States). Remote Sensing Lab.; Bounds, J.H. [Los Alamos National Lab., NM (United States)] [and others

    1997-02-01T23:59:59.000Z

    The US DOE manages the safe storage of approximately 650,000 tons of depleted uranium hexafluoride remaining from the Cold War. This slightly radioactive, but chemically active, material is contained in more than 46,000 steel storage cylinders that are located at Oak Ridge, Tennessee; Paducah, Kentucky; and Portsmouth, Ohio. Some of the cylinders are more than 40 years old, and approximately 17,500 are considered problem cylinders because their physical integrity is questionable. These cylinders require an annual visual inspection. The remainder of the 46,000-plus cylinders must be visually inspected every four years. Currently, the cylinder inspection program is extremely labor intensive. Because these inspections are accomplished visually, they may not be effective in the early detection of leaking cylinders. The inspection program requires approximately 12--14 full-time-equivalent (FTE) employees. At the cost of approximately $125K per FTE, this translates to $1,500K per annum just for cylinder inspection. As part of the technology-development portion of the DOE Cylinder Management Program, the DOE Office of Facility Management requested the Remote Sensing Laboratory (RSL) to evaluate remote sensing techniques that have potential to increase the effectiveness of the inspection program and, at the same time, reduce inspection costs and personnel radiation exposure. During two site visits (March and May 1996) to the K-25 Site at Oak Ridge, TN, RSL personnel tested and characterized seven different operating systems believed to detect leakage, surface contamination, thickness and corrosion of cylinder walls, and general area contamination resulting from breached cylinders. The following techniques were used and their performances are discussed: Laser-induced fluorescent imaging; Long-range alpha detection; Neutron activation analysis; Differential gamma-ray attenuation; Compton scatterometry; Active infrared inspection; and Passive thermal infrared imaging.

  9. Recent International R&D Activities in the Extraction of Uranium from Seawater

    SciTech Connect (OSTI)

    Rao, Linfeng

    2010-03-15T23:59:59.000Z

    A literature survey has been conducted to collect information on the International R&D activities in the extraction of uranium from seawater for the period from the 1960s till the year of 2010. The reported activities, on both the laboratory scale bench experiments and the large scale marine experiments, were summarized by country/region in this report. Among all countries where such activities have been reported, Japan has carried out the most advanced large scale marine experiments with the amidoxime-based system, and achieved the collection efficiency (1.5 g-U/kg-adsorbent for 30 days soaking in the ocean) that could justify the development of industrial scale marine systems to produce uranium from seawater at the price competitive with those from conventional uranium resources. R&D opportunities are discussed for improving the system performance (selectivity for uranium, loading capacity, chemical stability and mechanical durability in the sorption-elution cycle, and sorption kinetics) and making the collection of uranium from seawater more economically competitive.

  10. Recent International R&D Activities in the Extraction of Uranium from Seawater

    E-Print Network [OSTI]

    Rao, Linfeng

    2011-01-01T23:59:59.000Z

    Uranium and Rare Earth Elements Using Biomass of Algae, Bioinorganic ChemistryRecovery of uranium from sea water. Chemistry & Industry (uranium recovery from seawater. Industrial & Engineering Chemistry

  11. Biomarker monitoring of a population residing near uranium mining activities

    SciTech Connect (OSTI)

    Au, W.W.; Legator, M.S.; Whorton, E.B.; Wilkinson, G.S.; Gabehart, G.J.; Lane, R.G. [Univ. of Texas Medical Branch, Galveston, TX (United States)

    1995-05-01T23:59:59.000Z

    We investigated whether residents residing near uranium mining operations (target population), who are potentially exposed to toxicants from mining waste, have increased genotoxic effects compared with people residing elsewhere (reference population). Population surveys were conducted, and 24 target and 24 reference residents were selected. The selected subjects and controls were matched on age and gender and they were nonsmokers. Blood samples were collected for laboratory studies. The standard cytogenetic assay was used to determine chromosome aberration frequencies, and the challenge assay was used to investigate DNA repair responses. We found that individuals who resided near uranium mining operations had a higher mean frequency of cells with chromosome aberrations and higher deletion frequency but lower dicentric frequency than the reference group, although the difference was not statistically significant. After cells were challenged by exposure to {gamma}-rays, the target population had a significantly higher frequency of cells with chromosome aberrations and deletion frequency than the reference group. The latter observation is indicative of abnormal DNA repair response in the target population. 22 refs., 3 tabs.

  12. Uranium Industry Annual, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-28T23:59:59.000Z

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  13. E-Print Network 3.0 - active uranium americium Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    << < 1 2 3 4 5 > >> 21 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

  14. E-Print Network 3.0 - alaska national uranium Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Sciences and Ecology 30 Mathematical Geology, Vol. 33, No. 1, 2001 Modeling Uranium Transport in Koongarra, Summary: Mathematical Geology, Vol. 33, No. 1, 2001...

  15. E-Print Network 3.0 - ambrosia lake uranium Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Department of Geological Sciences, University of Manitoba Collection: Geosciences 2 geology and Ranger 1 open-pit uranium mine in Australia Summary: . Currently all of...

  16. E-Print Network 3.0 - actinide doped uranium Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dissolution rate in oxidizing... media is increasing all the more the content of uranium is increases in the mixed oxide. While for Th Source: Ecole Polytechnique, Centre...

  17. Some Investigations of the Reaction of Activated Charcoal with Fluorine and Uranium Hexafluoride

    SciTech Connect (OSTI)

    Del Cul, G.D.; Fiedor, J.N.; Simmons, D.W.; Toth, L.M.; Trowbridge, L.D.; Williams

    1998-09-01T23:59:59.000Z

    The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory has been shut down since 1969, when the fuel salt was drained from the core into two Hastelloy N drain tanks at the reactor site. Over time, fluorine (F{sub 2}) and uranium hexafluoride (UF{sub 6}) moved from the salt through the gas piping to a charcoal bed, where they reacted with the activated charcoal. Some of the immediate concerns related to the migration of F{sub 2} and UF{sub 6} to the charcoal bed were the possibility of explosive reactions between the charcoal and F{sub 2}, the existence of conditions that could induce a criticality accident, and the removal and recovery of the fissile uranium from the charcoal. This report addresses the reactions and reactivity of species produced by the reaction of fluorine and activated charcoal and between charcoal and F{sub 2}-UF{sub 6} gas mixtures in order to support remediation of the MSRE auxiliary charcoal bed (ACB) and the recovery of the fissile uranium. The chemical identity, stoichiometry, thermochemistry, and potential for explosive decomposition of the primary reaction product, fluorinated charcoal, was determined.

  18. Regulatory impact analysis of environmental standards for uranium mill tailings at active sites. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    The Environmental Protection Agency was directed by Congress, under PL 95-604, the Uranium Mill Tailings Radiation Control Act of 1978, to set standards of general application that provide protection from the hazards associated with uranium mill tailings. Title I of the Act pertains to tailings at inactive sites for which the Agency has developed standards as part of a separate rulemaking. Title II of the Act requires standards covering the processing and disposal of byproduct materials at mills which are currently licensed by the appropriate regulatory authorities. This Regulatory Impact Analysis (RIA) addresses the standards developed under Title II. There are two major parts of the standards for active mills: standards for control of releases from tailings during processing operations and prior to final disposal, and standards for protection of the public after the disposal of tailings. This report presents a detailed analysis of standards for disposal only, since the analysis required for the operations standards is very limited.

  19. Regulatory impact analysis of final environmental standards for uranium mill tailings at active sites

    SciTech Connect (OSTI)

    Not Available

    1983-09-01T23:59:59.000Z

    The Environmental Protection Agency was directed by Congress, under PL 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), to set standards of general application that provide protection from the hazards associated with uranium mill tailings. Title II of the Act requires standards covering the processing and disposal of byproduct materials at mills which are currently licensed by the appropriate regulatory authorities. This Regulatory Impact Analysis (RIA) addresses the standards promulgated under Title II. There are two major parts of the standards for active mills: standards for control of releases from tailings during processing operations and prior to final disposal, and standards for protection of the public health and environment after the disposal of tailings. This report presents a detailed analysis of standards for disposal only, since the analysis required for the standards during mill operations is very limited.

  20. Uranium industry annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-05T23:59:59.000Z

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  1. Parametric Evaluation of Active Neutron Interrogation for the Detection of Shielded Highly-Enriched Uranium in the Field

    SciTech Connect (OSTI)

    D. L. Chcihester; E. H. Seabury; S. J. Thompson; R. R. C. Clement

    2011-10-01T23:59:59.000Z

    Parametric studies using numerical simulations are being performed to assess the performance capabilities and limits of active neutron interrogation for detecting shielded highly enriched uranium (HEU). Varying the shield material, HEU mass, HEU depth inside the shield, and interrogating neutron source energy, the simulations account for both neutron and photon emission signatures from the HEU with resolution in both energy and time. The results are processed to represent different irradiation timing schemes and several different classes of radiation detectors, and evaluated using a statistical approach considering signal intensity over background. This paper describes the details of the modeling campaign and some preliminary results, weighing the strengths of alternative measurement approaches for the different irradiation scenarios.

  2. Design criteria applicable to the environmental restoration of sites affected by uranium mining activities in the past

    SciTech Connect (OSTI)

    Carboneras, P. [ENRESA, Madrid (Spain); Sanchez, M. [INITEC, Madrid (Spain)

    1993-12-31T23:59:59.000Z

    In this paper the authors discuss the basic aspects to be considered while evaluating different alternatives to perform environmental restoration of sites affected by naturally occurring radionuclides, enhanced by human actions, as is the case in some old uranium mining activities. The discussion is confined to sites where radiation hazards had existed forever (sites with uranium deposits) and where the mining activities have introduced several factors modifying the initial situation, leading to the now existing one, requiring intervention as decided by the relevant authorities, in accordance with recommendations of ICRP60.

  3. Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

  4. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    researchers from uranium chemistry. Fortunately, despitescarce in uranium coordination chemistry. A more detailedligands for uranium coordination chemistry. Figure 4-2.

  5. Development of a mobile laboratory for analyses at uranium cleanup sites resulting in significant time and cost savings

    SciTech Connect (OSTI)

    Bianconi, J. [RUST Federal Services, Inc., Albuquerque, NM (United States)

    1994-12-31T23:59:59.000Z

    A mobile laboratory was developed for the analysis of {sup 230}Th in soil at Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) sites to speed sample turnaround time and reduce the cost of using commercial laboratories. The laboratory utilizes recent developments in microwave acid dissolution, nuclide-specific extraction with extractive scintillators, and liquid scintillation alpha spectrometry to give results with an estimated minimum detectable concentration of 52 Bq kg{sup -1} (1.4 pCi g{sup -1}) for a 300-s count using a 1-g sample. The analysis time for {sup 230}Th is 16 h for eight samples, excluding quality control samples, at a cost of approximately $30 per sample. No significant additional time or costs are incurred by performing uranium analysis. As a result savings of up to $40,000 per week can be realized on the UMTRA project.

  6. Uranium from seawater

    SciTech Connect (OSTI)

    Gregg, D.; Folkendt, M.

    1982-09-21T23:59:59.000Z

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  7. Control of structure and reactivity by ligand design : applications to small molecule activation by low-valent uranium complexes

    E-Print Network [OSTI]

    Lam, Oanh Phi

    2010-01-01T23:59:59.000Z

    coordination chemistry is depleted uranium, a by-product innuclear reactors. Depleted uranium Figure 1-1. The periodic

  8. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    SciTech Connect (OSTI)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01T23:59:59.000Z

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  9. Recent International R&D Activities in the Extraction of Uranium from Seawater

    E-Print Network [OSTI]

    Rao, Linfeng

    2011-01-01T23:59:59.000Z

    41. H. G. Bals, Uranium extraction from seawater. INIS.Report (1976), (INIS-mf-3844), 149 pp.From: INIS Atomindex 1977, 8(20), Abstr. No. 334731. 42. K.

  10. EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill...

  11. Uranium Ore Uranium is extracted

    E-Print Network [OSTI]

    Milling of Uranium Ore Uranium is extracted from ore with strong acids or bases. The uranium is concentrated in a solid substance called"yellowcake." Chemical Conversion Plants convert the uranium in yellowcake to uranium hexafluoride (UF6 ), a compound that can be made into nuclear fuel. Enrichment

  12. Uranium 238U/235U isotope ratios as indicators of reduction: Results from an in situ biostimulation experiment at Rifle, Colorado, USA

    E-Print Network [OSTI]

    Bopp IV, C.J.

    2010-01-01T23:59:59.000Z

    sandstone-type uranium deposits. Economic Geology; 1962; (5)uranium ore deposits: Isotopic signatures of the U reduction process? ; Geology,

  13. Uranium hexafluoride public risk

    SciTech Connect (OSTI)

    Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

    1994-08-01T23:59:59.000Z

    The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

  14. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect (OSTI)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01T23:59:59.000Z

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  15. Environmental assessment of ground-water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This report assesses the environmental impacts of the Uranium Mill Tailings Site at Spook, Wyoming on ground water. DOE previously characterized the site and monitoring data were collected during the surface remediation. The ground water compliance strategy is to perform no further remediation at the site since the ground water in the aquifer is neither a current nor potential source of drinking water. Under the no-action alternative, certain regulatory requirements would not be met.

  16. Safe Operating Procedure SAFETY PROTOCOL: URANIUM

    E-Print Network [OSTI]

    Farritor, Shane

    involve the use of natural or depleted uranium. Natural isotopes of uranium are U-238, U-235 and U-234 (see Table 1 for natural abundances). Depleted uranium contains less of the isotopes: U-235 and U-234. The specific activity of depleted uranium (5.0E-7 Ci/g) is less than that of natural uranium (7.1E-7 Ci

  17. Uranium industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  18. Depleted uranium management alternatives

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.

    1994-08-01T23:59:59.000Z

    This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

  19. India's Worsening Uranium Shortage

    SciTech Connect (OSTI)

    Curtis, Michael M.

    2007-01-15T23:59:59.000Z

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commissions Mid-Term Appraisal of the countrys current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of Indias uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  20. Remediation of former uranium mining and milling activities in Central Asia

    SciTech Connect (OSTI)

    Waggitt, Peter [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: Several of the Central Asian countries of the former Soviet Union were involved in the uranium mining and milling industry from about 1945 for varying periods until the break up of the Soviet Union in 1991 and beyond. Some facilities are still producing in Uzbekistan and Kazakhstan. However, before the break up, many facilities had been abandoned and in only a few cases had any remediation been undertaken. Since 1991 the newly independent states of the region have been seeking assistance for the remediation of the multitude of tailings piles, waste rock stockpiles and abandoned, and often semi dismantled, production facilities that may be found throughout the region. Many of these sites are close to settlements that were established as service towns for the mines. Most towns still have populations, although the mining industry has departed. In some instances there are cases of pollution and contamination and in many locations there is a significant level of public concern. The IAEA has been undertaking a number of Technical Cooperation (TC) projects throughout the region for some time to strengthen the institutions in the relevant states and assist them to establish monitoring and surveillance programs as an integral part of the long term remediation process. The IAEA is liaising with other agencies and donors who are also working on these problems to optimise the remediation effort. The paper describes the objectives and operation of the main TC regional program, liaison efforts with other agencies, the achievements so far and the long term issues for remediation of these legacies of the 'cold war' era. (authors)

  1. Decommissioning of U.S. uranium production facilities

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  2. Clean Air Act Requirements: Uranium Mill Tailings

    E-Print Network [OSTI]

    EPA'S Clean Air Act Requirements: Uranium Mill Tailings Radon Emissions Rulemaking Reid J. Rosnick requirements for operating uranium mill tailings (Subpart W) Status update on Subpart W activities Outreach/Communications #12;3 EPA Regulatory Requirements for Operating Uranium Mill Tailings (Clean Air Act) · 40 CFR 61

  3. Derivation of uranium residual radioactive material guidelines for the Shpack site

    SciTech Connect (OSTI)

    Cheng, J.J.; Yu, C.; Monette, F.; Jones, L.

    1991-08-01T23:59:59.000Z

    Residual radioactive material guidelines for uranium were derived for the Shpack site in Norton, Massachusetts. This site has been identified for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP) of the US Department of Energy (DOE). The uranium guidelines were derived on the basis of the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Shpack site should not exceed a dose of 100 mrem/yr following decontamination. The DOE residual radioactive material guideline computer code, RESRAD, which implements the methodology described in the DOE manual for implementing residual radioactive material guidelines, was used in this evaluation. Three potential scenarios were considered for the site; the scenarios vary with regard to time spent at the site, sources of water used, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded for uranium (including uranium-234, uranium-235, and uranium-238) within 1000 years, provided that the soil concentration of combined uranium (uranium-234 and uranium-238) at the Shpack site does not exceed the following levels: 2500 pCi/g for Scenario A (recreationist: the expected scenario); 1100 pCi/g for Scenario B (industrial worker: a plausible scenario); and 53 pCi/g for Scenario C (resident farmer using a well water as the only water source: a possible but unlikely scenario). The uranium guidelines derived in this report apply to the combined activity concentration of uranium-234 and uranium-238 and were calculated on the basis of a dose of 100 mrem/yr. In setting the actual uranium guidelines for the Shpack site, DOE will apply the as low as reasonably achievable (ALARA) policy to the decision-making process, along with other factors, such as whether a particular scenario is reasonable and appropriate. 8 refs., 2 figs., 8 tabs.

  4. Uranium deposits of Brazil

    SciTech Connect (OSTI)

    NONE

    1991-09-01T23:59:59.000Z

    Brazil is a country of vast natural resources, including numerous uranium deposits. In support of the country`s nuclear power program, Brazil has developed the most active uranium industry in South America. Brazil has one operating reactor (Angra 1, a 626-MWe PWR), and two under construction. The country`s economic challenges have slowed the progress of its nuclear program. At present, the Pocos de Caldas district is the only active uranium production. In 1990, the Cercado open-pit mine produced approximately 45 metric tons (MT) U{sub 3}O{sub 8} (100 thousand pounds). Brazil`s state-owned uranium production and processing company, Uranio do Brasil, announced it has decided to begin shifting its production from the high-cost and nearly depleted deposits at Pocos de Caldas, to lower-cost reserves at Lagoa Real. Production at Lagoa Real is schedules to begin by 1993. In addition to these two districts, Brazil has many other known uranium deposits, and as a whole, it is estimated that Brazil has over 275,000 MT U{sub 3}O{sub 8} (600 million pounds U{sub 3}O{sub 8}) in reserves.

  5. Distribution of uranium-bearing phases in soils from Fernald

    SciTech Connect (OSTI)

    Buck, E.C.; Brown, N.R.; Dietz, N.L.

    1993-12-31T23:59:59.000Z

    Electron beam techniques have been used to characterize uranium-contaminated soils and the Fernald Site, Ohio. Uranium particulates have been deposited on the soil through chemical spills and from the operation of an incinerator plant on the site. The major uranium phases have been identified by electron microscopy as uraninite, autunite, and uranium phosphite [U(PO{sub 3}){sub 4}]. Some of the uranium has undergone weathering resulting in the redistribution of uranium within the soil.

  6. URANIUM IN ALKALINE ROCKS

    E-Print Network [OSTI]

    Murphy, M.

    2011-01-01T23:59:59.000Z

    Greenland," in Uranium Exploration Geology, Int. AtomicOklahoma," 1977 Nure Geology Uranium Symposium, Igneous HostMcNeil, M. , 1977. "Geology of Brazil's Uranium and Thorium

  7. Survey of Radionuclide Distributions Resulting from the Church Rock, New Mexico, Uranium Mill Tailings Pond Dam Failure

    SciTech Connect (OSTI)

    Weimer, W. C.; Kinnison, R. R.; Reeves, J. H.

    1981-12-01T23:59:59.000Z

    An intensive site survey and on-site analysis program were conducted to evaluate the distribution of four radionucliGes in the general vicinity of Gallup, New Mexico, subsequent to the accidental breach of a uranium mill tailings pond dam and the release of a large quantity of tailings pond materials. The objective of this work was to determine the distribution and concentration levels of {sup 210}Pb, {sup 226}Ra, {sup 230}Th, and {sup 238}U in the arroyo that is immediately adjacent to the uranium tailings pond (pipeline arroyo) and in the Rio Puerco arroyo into which the pipeline arroyo drains. An intensive survey between the United Nuclear Corporation (UNC) Church Rock Mill site and the New Mexico-Arizona state border was performed. Sampling locations were established at approximately 500-ft intervals along the arroyo. During the weeks of September 24 through October 5, 1979, a series of samples was collected from alternate sampling locations along the arroyo. The purpose of this collection of samples and their subsequent analysis was to provide an immediate evaluation of the extent and the levels of radioactive contamination. The data obtained from this extensive survey were then compared to action levels which had been proposed by the Nuclear Regulatory Commission and were adapted by the New Mexico Environmental Improvement Division (NMEID) for {sup 230}Th and {sup 226}Ra concentrations that would require site cleanup. The Pacific Northwest Laboratory/Nuclear Regulatory Commission mobile laboratory van was on-site at the UNC Church Rock Mill from September 22, 1979, through December 13, 1979, and was manned by one or more PNL personnel for all but four weeks of this time period. Approximately 1200 samples associated with the Rio Puerco survey were analyzed 1n the laboratory. An additional 1200 samples related to the Rio Puerco cleanup operations which the United Nuclear Corporation was conducting were analyzed on-site in the mobile laboratory. The purpose of these analyses was to determine the effectiveness of the cleanup operations that were ongoing and to evaluate what additional cleanup would be required. This on-site analysis of radioactive contamination constituted the principal task of this project, with the identification of those portions of the arroyo exceeding the NMEID proposed cleanup criteria being the major output. Additiond1 tasks included an evaluation of the initial soil sampling scheme (letter from T. Wolff [NMEID] to J. Abiss [UNC]. oated September 25, 1979) and the proposed NMEID verification sampling scheme (letter from T. Buhl [NMEID] to H. Miller [NRC]. dated April 23, 1980).

  8. 2014 Poultry activity results 4-H Poultry Promotional Posters

    E-Print Network [OSTI]

    Netoff, Theoden

    2014 Poultry activity results 4-H Poultry Promotional Posters Kindergarten- 2nd Grade Winners Rice Reserve Champion Michaela Olson Waseca 2014 4-H Poultry Educational Poster Winners Kindergarten-2

  9. Immobilization of uranium in contaminated soil by natural apatite addition

    SciTech Connect (OSTI)

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa; Iles, Deana; Zildzovic, Snezana [Institute for Technology of Nuclear and other Mineral Raw Materials, Franche d' Epere 86, Belgrade (Serbia)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P{sub 2}O{sub 5} in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uranium determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P{sub 2}O{sub 5} in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)

  10. Results of mobile gamma scanning activities in St. Louis, Missouri

    SciTech Connect (OSTI)

    Rodriguez, R E; Witt, D A; Cottrell, W D; Carrier, R F

    1991-06-01T23:59:59.000Z

    From 1942 through approximately 1966, the Mallinckrodt Chemical Works operated four plants in St. Louis, Missouri, for the Manhattan Engineer District and the Atomic Energy Commission. A variety of production processes using uranium- and radium-bearing ore materials were performed at the plants. It is the policy of the DOE to verify that radiological conditions at such sites or facilities comply with current DOE guidelines. Guidelines for release and use of such sites have become more stringent as research has provided more information since previous cleanups. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was established as part of that effort to confirm the closeout status of facilities under contract to agencies preceding DOE during early nuclear energy development. Under the FUSRAP program, the Mallinckrodt properties have been previously investigated to determine the extent of on-site radiological contamination. At the request of DOE, Oak Ridge National Laboratory (ORNL) conducted a survey in May 1990, of public roadways and suspected haul routes between the Mallinckrodt plant and storage sites in St. Louis to ensure that no residual radioactive materials were conveyed off-site. A mobile gamma scanning van with an on-board computer system was used to identify possible anomalies. Suspect areas are those displaying measurements deviating from gamma exposure rates identified as typical for radiologically unenhanced areas in the vicinity of the areas of interest. The instrumentation highlighted three anomaly locations each of which measured less than 1m{sup 2} in size. None of the slightly elevated radiation levels originated from material associated with former AEC-related processing operations in the area. The anomalies resulted from elevated concentrations of radionuclides present in phosphate fertilizers, increased thorium in road-base gravel, and emanations from the radioactive storage site near the Latty Avenue airport. 9 refs., 3 figs.

  11. Process for alloying uranium and niobium

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Farragut, TN); Northcutt, Jr., Walter G. (Oak Ridge, TN); Masters, David R. (Knoxville, TN); Chapman, Lloyd R. (Knoxville, TN)

    1991-01-01T23:59:59.000Z

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  12. Results from a "Proof-of-Concept" Demonstration of RF-Based Tracking of UF6 Cylinders during a Processing Operation at a Uranium Enrichment Plant

    SciTech Connect (OSTI)

    Pickett, Chris A [ORNL] [ORNL; Kovacic, Donald N [ORNL] [ORNL; Whitaker, J Michael [ORNL] [ORNL; Younkin, James R [ORNL] [ORNL; Hines, Jairus B [ORNL] [ORNL; Laughter, Mark D [ORNL] [ORNL; Morgan, Jim [Innovative Solutions] [Innovative Solutions; Carrick, Bernie [USEC] [USEC; Boyer, Brian [Los Alamos National Laboratory (LANL)] [Los Alamos National Laboratory (LANL); Whittle, K. [USEC] [USEC

    2008-01-01T23:59:59.000Z

    Approved industry-standard cylinders are used globally for processing, storing, and transporting uranium hexafluoride (UF{sub 6}) at uranium enrichment plants. To ensure that cylinder movements at enrichment facilities occur as declared, the International Atomic Energy Agency (IAEA) must conduct time-consuming periodic physical inspections to validate facility records, cylinder identity, and containment. By using a robust system design that includes the capability for real-time unattended monitoring (of cylinder movements), site-specific rules-based event detection algorithms, and the capability to integrate with other types of monitoring technologies, one can build a system that will improve overall inspector effectiveness. This type of monitoring system can provide timely detection of safeguard events that could be used to ensure more timely and appropriate responses by the IAEA. It also could reduce reliance on facility records and have the additional benefit of enhancing domestic safeguards at the installed facilities. This paper will discuss the installation and evaluation of a radio-frequency- (RF-) based cylinder tracking system that was installed at a United States Enrichment Corporation Centrifuge Facility. This system was installed primarily to evaluate the feasibility of using RF technology at a site and the operational durability of the components under harsh processing conditions. The installation included a basic system that is designed to support layering with other safeguard system technologies and that applies fundamental rules-based event processing methodologies. This paper will discuss the fundamental elements of the system design, the results from this site installation, and future efforts needed to make this technology ready for IAEA consideration.

  13. Evaluation of Uranium Measurements in Water by Various Methods - 13571

    SciTech Connect (OSTI)

    Tucker, Brian J. [Shaw Environmental and Infrastructure Group, 150 Royall Street, Canton, MA (United States)] [Shaw Environmental and Infrastructure Group, 150 Royall Street, Canton, MA (United States); Workman, Stephen M. [ALS Laboratory Group, Environmental Division, 225 Commerce Drive, Fort Collins, CO 80524 (United States)] [ALS Laboratory Group, Environmental Division, 225 Commerce Drive, Fort Collins, CO 80524 (United States)

    2013-07-01T23:59:59.000Z

    In December 2000, EPA amended its drinking water regulations for radionuclides by adding a Maximum Contaminant Level (MCL) for uranium (so called MCL Rule)[1] of 30 micrograms per liter (?g/L). The MCL Rule also included MCL goals of zero for uranium and other radionuclides. Many radioactively contaminated sites must test uranium in wastewater and groundwater to comply with the MCL rule as well as local publicly owned treatment works discharge limitations. This paper addresses the relative sensitivity, accuracy, precision, cost and comparability of two EPA-approved methods for detection of total uranium: inductively plasma/mass spectrometry (ICP-MS) and alpha spectrometry. Both methods are capable of measuring the individual uranium isotopes U-234, U- 235, and U-238 and both methods have been deemed acceptable by EPA. However, the U-238 is by far the primary contributor to the mass-based ICP-MS measurement, especially for naturally-occurring uranium, which contains 99.2745% U-238. An evaluation shall be performed relative to the regulatory requirement promulgated by EPA in December 2000. Data will be garnered from various client sample results measured by ALS Laboratory in Fort Collins, CO. Data shall include method detection limits (MDL), minimum detectable activities (MDA), means and trends in laboratory control sample results, performance evaluation data for all methods, and replicate results. In addition, a comparison will be made of sample analyses results obtained from both alpha spectrometry and the screening method Kinetic Phosphorescence Analysis (KPA) performed at the U.S. Army Corps of Engineers (USACE) FUSRAP Maywood Laboratory (UFML). Many uranium measurements occur in laboratories that only perform radiological analysis. This work is important because it shows that uranium can be measured in radiological as well as stable chemistry laboratories and it provides several criteria as a basis for comparison of two uranium test methods. This data will indicate which test method is the most accurate and most cost effective. This paper provides a benefit to Formerly Utilized Sites Remedial Action Program (FUSRAP) and other Department of Defense (DOD) programs that may be performing uranium measurements. (authors)

  14. Interpreting Helioseismic Structure Inversion Results of Solar Active Regions

    E-Print Network [OSTI]

    Chia-Hsien Lin; Sarbani Basu; Linghuai Li

    2008-09-08T23:59:59.000Z

    Helioseismic techniques such as ring-diagram analysis have often been used to determine the subsurface structural differences between solar active and quiet regions. Results obtained by inverting the frequency differences between the regions are usually interpreted as the sound-speed differences between them. These in turn are used as a measure of temperature and magnetic-field strength differences between the two regions. In this paper we first show that the "sound-speed" difference obtained from inversions is actually a combination of sound-speed difference and a magnetic component. Hence, the inversion result is not directly related to the thermal structure. Next, using solar models that include magnetic fields, we develop a formulation to use the inversion results to infer the differences in the magnetic and thermal structures between active and quiet regions. We then apply our technique to existing structure inversion results for different pairs of active and quiet regions. We find that the effect of magnetic fields is strongest in a shallow region above 0.985R_sun and that the strengths of magnetic-field effects at the surface and in the deeper (r < 0.98R_sun) layers are inversely related, i.e., the stronger the surface magnetic field the smaller the magnetic effects in the deeper layers, and vice versa. We also find that the magnetic effects in the deeper layers are the strongest in the quiet regions, consistent with the fact that these are basically regions with weakest magnetic fields at the surface. Because the quiet regions were selected to precede or follow their companion active regions, the results could have implications about the evolution of magnetic fields under active regions.

  15. Uranium 2014 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  16. Uranium 2005 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2006-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  17. Gamma/neutron time-correlation for special nuclear material characterization %3CU%2B2013%3E active stimulation of highly enriched uranium.

    SciTech Connect (OSTI)

    Marleau, Peter; Nowack, Aaron B.; Clarke, Shaun D. [University of Michigan; Monterial, Mateusz [University of Michigan; Paff, Marc [University of Michigan; Pozzi, Sara A. [University of Michigan

    2013-09-01T23:59:59.000Z

    A series of simulations and experiments were undertaken to explore and evaluate the potential for a novel new technique for fissile material detection and characterization, the timecorrelated pulse-height (TCPH) method, to be used concurrent with active stimulation of potential nuclear materials. In previous work TCPH has been established as a highly sensitive method for the detection and characterization of configurations of fissile material containing Plutonium in passive measurements. By actively stimulating fission with the introduction of an external radiation source, we have shown that TCPH is also an effective method of detecting and characterizing configurations of fissile material containing Highly Enriched Uranium (HEU). The TCPH method is shown to be robust in the presence of the proper choice of external radiation source. An evaluation of potential interrogation sources is presented.

  18. The End of Cheap Uranium

    E-Print Network [OSTI]

    Michael Dittmar

    2011-06-21T23:59:59.000Z

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

  19. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    SciTech Connect (OSTI)

    none,

    2013-07-01T23:59:59.000Z

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through cradle-to-grave case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

  20. Statistical data of the uranium industry

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Statistical Data of the Uranium Industry is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1981. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining, and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office (GJAO) of the US Department of Energy. The production, reserves, and drilling information is reported in a manner which avoids disclosure of proprietary information.

  1. Idaho National Engineering and Environmental Laboratory Site Report on the Production and Use of Recycled Uranium

    SciTech Connect (OSTI)

    L. C. Lewis; D. C. Barg; C. L. Bendixsen; J. P. Henscheid; D. R. Wenzel; B. L. Denning

    2000-09-01T23:59:59.000Z

    Recent allegations regarding radiation exposure to radionuclides present in recycled uranium sent to the gaseous diffusion plants prompted the Department of Energy to undertake a system-wide study of recycled uranium. Of particular interest, were the flowpaths from site to site operations and facilities in which exposure to plutonium, neptunium and technetium could occur, and to the workers that could receive a significant radiation dose from handling recycled uranium. The Idaho National Engineering and Environmental Laboratory site report is primarily concerned with two locations. Recycled uranium was produced at the Idaho Chemical Processing Plant where highly enriched uranium was recovered from spent fuel. The other facility is the Specific Manufacturing Facility (SMC) where recycled, depleted uranium is manufactured into shapes for use by their customer. The SMC is a manufacturing facility that uses depleted uranium metal as a raw material that is then rolled and cut into shapes. There are no chemical processes that might concentrate any of the radioactive contaminant species. Recyclable depleted uranium from the SMC facility is sent to a private metallurgical facility for recasting. Analyses on the recast billets indicate that there is no change in the concentrations of transuranics as a result of the recasting process. The Idaho Chemical Processing Plant was built to recover high-enriched uranium from spent nuclear fuel from test reactors. The facility processed diverse types of fuel which required uniquely different fuel dissolution processes. The dissolved fuel was passed through three cycles of solvent extraction which resulted in a concentrated uranyl nitrate product. For the first half of the operating period, the uranium was shipped as the concentrated solution. For the second half of the operating period the uranium solution was thermally converted to granular, uranium trioxide solids. The dose reconstruction project has evaluated work exposure and exposure to the public as the result of normal operations and accidents that occurred at the INEEL. As a result of these studies, the maximum effective dose equivalent from site activities did not exceed seventeen percent of the natural background in Eastern Idaho. There was no year in which the radiation dose to the public exceeded the applicable limits for that year. Worker exposure to recycled uranium was minimized by engineering features that reduced the possibility of direct exposure.

  2. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, Bruce A. (Kennewick, WA)

    1986-01-01T23:59:59.000Z

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  3. Laser induced phosphorescence uranium analysis

    DOE Patents [OSTI]

    Bushaw, B.A.

    1983-06-10T23:59:59.000Z

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  4. Microbial Janitors: Enabling natural microbes to clean up uranium contamination

    E-Print Network [OSTI]

    Microbial Janitors: Enabling natural microbes to clean up uranium contamination Oak Ridge to the development of the atomic bomb. Uranium enrichment activities on the Oak Ridge Reservation in the 1940s until then the uranium and nitrate contamination has spread through the ground and now covers an area of about 7 km

  5. Soil to plant transfer of 238 Th on a uranium

    E-Print Network [OSTI]

    Hu, Qinhong "Max"

    Soil to plant transfer of 238 U, 226 Ra and 232 Th on a uranium mining-impacted soil from species grown in soils from southeastern China contaminated with uranium mine tailings were analyzed The radioactive waste (e.g. tailings) produced by uranium mining activities contains a series of long

  6. Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

  7. Review The Toxicity of Depleted Uranium

    E-Print Network [OSTI]

    Wayne Briner

    Abstract: Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed.

  8. Uranium Metal Analysis via Selective Dissolution

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10T23:59:59.000Z

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  9. Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill

    SciTech Connect (OSTI)

    Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

    2002-02-26T23:59:59.000Z

    Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

  10. The ultimate disposition of depleted uranium

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    Significant amounts of the depleted uranium (DU) created by past uranium enrichment activities have been sold, disposed of commercially, or utilized by defense programs. In recent years, however, the demand for DU has become quite small compared to quantities available, and within the US Department of Energy (DOE) there is concern for any risks and/or cost liabilities that might be associated with the ever-growing inventory of this material. As a result, Martin Marietta Energy Systems, Inc. (Energy Systems), was asked to review options and to develop a comprehensive plan for inventory management and the ultimate disposition of DU accumulated at the gaseous diffusion plants (GDPs). An Energy Systems task team, under the chairmanship of T. R. Lemons, was formed in late 1989 to provide advice and guidance for this task. This report reviews options and recommends actions and objectives in the management of working inventories of partially depleted feed (PDF) materials and for the ultimate disposition of fully depleted uranium (FDU). Actions that should be considered are as follows. (1) Inspect UF{sub 6} cylinders on a semiannual basis. (2) Upgrade cylinder maintenance and storage yards. (3) Convert FDU to U{sub 3}O{sub 8} for long-term storage or disposal. This will include provisions for partial recovery of costs to offset those associated with DU inventory management and the ultimate disposal of FDU. Another recommendation is to drop the term tails'' in favor of depleted uranium'' or DU'' because the tails'' label implies that it is waste.'' 13 refs.

  11. Y-12 Uranium Exposure Study

    SciTech Connect (OSTI)

    Eckerman, K.F.; Kerr, G.D.

    1999-08-05T23:59:59.000Z

    Following the recent restart of operations at the Y-12 Plant, the Radiological Control Organization (RCO) observed that the enriched uranium exposures appeared to involve insoluble rather than soluble uranium that presumably characterized most earlier Y-12 operations. These observations necessitated changes in the bioassay program, particularly the need for routine fecal sampling. In addition, it was not reasonable to interpret the bioassay data using metabolic parameter values established during earlier Y-12 operations. Thus, the recent urinary and fecal bioassay data were interpreted using the default guidance in Publication 54 of the International Commission on Radiological Protection (ICRP); that is, inhalation of Class Y uranium with an activity median aerodynamic diameter (AMAD) of 1 {micro}m. Faced with apparently new workplace conditions, these actions were appropriate and ensured a cautionary approach to worker protection. As additional bioassay data were accumulated, it became apparent that the data were not consistent with Publication 54. Therefore, this study was undertaken to examine the situation.

  12. Recovery of uranium by using new microorganisms isolated from North American uranium deposits

    SciTech Connect (OSTI)

    Sakaguchi, T.; Nakajima, A.; Tsuruta, T. [Miyazaki Medical College (Japan)

    1995-12-31T23:59:59.000Z

    Some attempts were made to remove uranium that may be present in refining effluents, mine tailings by using new microorganisms isolated from uranium deposits and peculiar natural environments. To screen microorganisms isolated from uranium deposits and peculiar natural environments in North America and Japan for maximal accumulation of uranium, hundreds of microorganisms were examined. Some microorganisms can accumulate about 500 mg (4.2 mEq) of uranium per gram of Microbial cells within 1 h. The uranium accumulation capacity of the cells exceeds that of commercially available chelating agents (2-3 mEq/g adsorbent). We attempted to recover uranium from uranium refining waste water by using new microorganisms. As a result, these microbial cells can recover trace amounts of uranium from uranium waste water with high efficiency. These strains also have a high accumulating ability for thorium. Thus, these new microorganisms can be used as an adsorbing agent for the removal of nuclear elements may be present in metallurgical effluents, mine tailings and other waste sources.

  13. Bioremediation of uranium contaminated soils and wastes

    SciTech Connect (OSTI)

    Francis, A.J.

    1998-12-31T23:59:59.000Z

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (1) stabilization of uranium and toxic metals with reduction in waste volume and (2) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  14. E-Print Network 3.0 - active power filtering Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    filtering Search Powered by Explorit Topic List Advanced Search Sample search results for: active power filtering...

  15. E-Print Network 3.0 - active power filter Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    filter Search Powered by Explorit Topic List Advanced Search Sample search results for: active power filter...

  16. E-Print Network 3.0 - active power filters Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    filters Search Powered by Explorit Topic List Advanced Search Sample search results for: active power filters...

  17. Final Uranium Leasing Program Programmatic Environmental Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Final Uranium Leasing Program Programmatic Environmental Impact Statement (PEIS) Uranium Leasing...

  18. Depleted Uranium Technical Brief

    E-Print Network [OSTI]

    Depleted Uranium Technical Brief United States Environmental Protection Agency Office of Air and Radiation Washington, DC 20460 EPA-402-R-06-011 December 2006 #12;#12;Depleted Uranium Technical Brief EPA of Radiation and Indoor Air Radiation Protection Division ii #12;iii #12;FOREWARD The Depleted Uranium

  19. Stellar Activity and Coronal Heating: an overview of recent results

    E-Print Network [OSTI]

    Testa, Paola; Drake, Jeremy

    2015-01-01T23:59:59.000Z

    Observations of the coronae of the Sun and of solar-like stars provide complementary information to advance our understanding of stellar magnetic activity, and of the processes leading to the heating of their outer atmospheres. While solar observations allow us to study the corona at high spatial and temporal resolution, the study of stellar coronae allows us to probe stellar activity over a wide range of ages and stellar parameters. Stellar studies therefore provide us with additional tools for understanding coronal heating processes, as well as the long-term evolution of solar X-ray activity. We discuss how recent studies of stellar magnetic fields and coronae contribute to our understanding of the phenomenon of activity and coronal heating in late-type stars.

  20. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    SciTech Connect (OSTI)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01T23:59:59.000Z

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 g/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests conducted to ascertain the effects of changing pH showed that at pH values of 6.5 and 7.5, no significant differences existed in Tc-adsorption performance for three of the carbons, but the fourth carbon performed better at pH 7.5. When the pH was increased to 8.5, a slight decline in performance was observed for all carbons. Tests conducted to ascertain the temperature effect on Tc-99 adsorption indicated that at 21 C, 27 C, and 32 C there were no significant differences in Tc-99 adsorption for three of the carbons. The fourth carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature. The presence of volatile organic compounds (VOCs) in the source water did not significantly affect Tc-99 adsorption on either of two carbons tested. Technetium-99 adsorption differed by less than 15% with or without VOCs present in the test water, indicating that Tc-99 adsorption would not be significantly affected if VOCs were removed from the water prior to contact with carbon.

  1. RERTR program activities related to the development and application of new LEU fuels. [Reduced Enrichment Research and Test Reactor; low-enriched uranium

    SciTech Connect (OSTI)

    Travelli, A.

    1983-01-01T23:59:59.000Z

    The statue of the U.S. Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of RERTR Program objectives and goals, program accomplishments are discussed with emphasis on the development, demonstration and application of new LEU fuels. Most program activities have proceeded as planned, and a combination of two silicide fuels (U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al) holds excellent promise for achieving the long-term program goals. Current plans and schedules project the uranium density of qualified RERTR fuels for plate-type reactors to grow by approximately 1 g U/cm/sup 3/ each year, from the current 1.7 g U/cm/sup 3/ to the 7.0 g U/cm/sup 3/ which will be reached in late 1988. The technical needs of research and test reactors for HEU exports are also forecasted to undergo a gradual but dramatic decline in the coming years.

  2. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    SciTech Connect (OSTI)

    A K Wertsching

    2012-09-01T23:59:59.000Z

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.

  3. Molten-Salt Depleted-Uranium Reactor

    E-Print Network [OSTI]

    Dong, Bao-Guo; Gu, Ji-Yuan

    2015-01-01T23:59:59.000Z

    The supercritical, reactor core melting and nuclear fuel leaking accidents have troubled fission reactors for decades, and greatly limit their extensive applications. Now these troubles are still open. Here we first show a possible perfect reactor, Molten-Salt Depleted-Uranium Reactor which is no above accident trouble. We found this reactor could be realized in practical applications in terms of all of the scientific principle, principle of operation, technology, and engineering. Our results demonstrate how these reactors can possess and realize extraordinary excellent characteristics, no prompt critical, long-term safe and stable operation with negative feedback, closed uranium-plutonium cycle chain within the vessel, normal operation only with depleted-uranium, and depleted-uranium high burnup in reality, to realize with fission nuclear energy sufficiently satisfying humanity long-term energy resource needs, as well as thoroughly solve the challenges of nuclear criticality safety, uranium resource insuffic...

  4. National Uranium Resource Evaluation, Tonopah quadrangle, Nevada

    SciTech Connect (OSTI)

    Hurley, B W; Parker, D P

    1982-04-01T23:59:59.000Z

    The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas.

  5. Uranium and Neptunium Desorption from Yucca Mountain Alluvium

    SciTech Connect (OSTI)

    C.D. Scism; P.W. Reimus; M. Ding; S.J. Chipera

    2006-03-16T23:59:59.000Z

    Uranium and neptunium were used as reactive tracers in long-term laboratory desorption studies using saturated alluvium collected from south of Yucca Mountain, Nevada. The objective of these long-term experiments is to make detailed observations of the desorption behavior of uranium and neptunium to provide Yucca Mountain with technical bases for a more realistic and potentially less conservative approach to predicting the transport of adsorbing radionuclides in the saturated alluvium. This paper describes several long-term desorption experiments using a flow-through experimental method and groundwater and alluvium obtained from boreholes along a potential groundwater flow path from the proposed repository site. In the long term desorption experiments, the percentages of uranium and neptunium sorbed as a function of time after different durations of sorption was determined. In addition, the desorbed activity as a function of time was fit using a multi-site, multi-rate model to demonstrate that different desorption rate constants ranging over several orders of magnitude exist for the desorption of uranium from Yucca Mountain saturated alluvium. This information will be used to support the development of a conceptual model that ultimately results in effective K{sub d} values much larger than those currently in use for predicting radionuclide transport at Yucca Mountain.

  6. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL)

    1992-01-01T23:59:59.000Z

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  7. Plutonium recovery from spent reactor fuel by uranium displacement

    DOE Patents [OSTI]

    Ackerman, J.P.

    1992-03-17T23:59:59.000Z

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  8. Electron Backscatter Diffraction (EBSD) Characterization of Uranium and Uranium Alloys

    SciTech Connect (OSTI)

    McCabe, Rodney J. [Los Alamos National Laboratory; Kelly, Ann Marie [Los Alamos National Laboratory; Clarke, Amy J. [Los Alamos National Laboratory; Field, Robert D. [Los Alamos National Laboratory; Wenk, H. R. [University of California, Berkeley

    2012-07-25T23:59:59.000Z

    Electron backscatter diffraction (EBSD) was used to examine the microstructures of unalloyed uranium, U-6Nb, U-10Mo, and U-0.75Ti. For unalloyed uranium, we used EBSD to examine the effects of various processes on microstructures including casting, rolling and forming, recrystallization, welding, and quasi-static and shock deformation. For U-6Nb we used EBSD to examine the microstructural evolution during shape memory loading. EBSD was used to study chemical homogenization in U-10Mo, and for U-0.75Ti, we used EBSD to study the microstructure and texture evolution during thermal cycling and deformation. The studied uranium alloys have significant microstructural and chemical differences and each of these alloys presents unique preparation challenges. Each of the alloys is prepared by a sequence of mechanical grinding and polishing followed by electropolishing with subtle differences between the alloys. U-6Nb and U-0.75Ti both have martensitic microstructures and both require special care in order to avoid mechanical polishing artifacts. Unalloyed uranium has a tendency to rapidly oxidize when exposed to air and a two-step electropolish is employed, the first step to remove the damaged surface layer resulting from the mechanical preparation and the second step to passivate the surface. All of the alloying additions provide a level of surface passivation and different one and two step electropolishes are employed to create good EBSD surfaces. Because of its low symmetry crystal structure, uranium exhibits complex deformation behavior including operation of multiple deformation twinning modes. EBSD was used to observe and quantify twinning contributions to deformation and to examine the fracture behavior. Figure 1 shows a cross section of two mating fracture surfaces in cast uranium showing the propensity of deformation twinning and intergranular fracture largely between dissimilarly oriented grains. Deformation of U-6Nb in the shape memory regime occurs by the motion of twin boundaries formed during the martensitic transformation. Deformation actually results in a coarsening of the microstructure making EBSD more practical following a limited amount of strain. Figure 2 shows the microstructure resulting from 6% compression. Casting of U-10Mo results in considerable chemical segregation as is apparent in Figure 2a. The segregation subsists through rolling and heat treatment processes as shown in Figure 2b. EBSD was used to study the effects of homogenization time and temperature on chemical heterogeneity. It was found that times and temperatures that result in a chemically homogeneous microstructure also result in a significant increase in grain size. U-0.75Ti forms an acicular martinsite as shown in Figure 4. This microstructure prevails through cycling into the higher temperature solid uranium phases.

  9. E-Print Network 3.0 - active oxygen content Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powered by Explorit Topic List Advanced Search Sample search results for: active oxygen content Page: << < 1 2 3 4 5 > >> 1 Reactivity and coverage of active surface species...

  10. E-Print Network 3.0 - air pollution active Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    active Search Powered by Explorit Topic List Advanced Search Sample search results for: air pollution active Page: << < 1 2 3 4 5 > >> 1 Poster Design & Printing by Genigraphics...

  11. Method for converting uranium oxides to uranium metal

    DOE Patents [OSTI]

    Duerksen, Walter K. (Norris, TN)

    1988-01-01T23:59:59.000Z

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  12. Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films

    E-Print Network [OSTI]

    Hart, Gus

    Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

  13. Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

  14. The U.S. Uranium Mill Tailings Radiation Control Act -- An environmental legacy of the Cold War

    SciTech Connect (OSTI)

    Watson, C.D.; Nelson, R.A. [Jacobs Engineering Group Inc., Albuquerque, NM (United States). Albuquerque Operations Office; Mann, P. [USDOE Albuquerque Operations Office, NM (United States)

    1993-12-31T23:59:59.000Z

    The US Department of Energy (DOE) has guided the Uranium Mill Tailings Remedial Action (UMTRA) Project through its first 10 years of successful remediation. The Uranium Mill Tailings Radiation Control Act (UMTRCA), passed in 1978, identified 24 uranium mill tailings sites in need of remediation to protect human health and the environment from the residual contamination resulting from the processing of uranium ore. The UMTRCA was promulgated in two titles: Title 1 and Title 2. This paper describes the regulatory structure, required documentation, and some of the technical approaches used to meet the Act`s requirements for managing and executing the $1.4 billion project under Title 1. Remedial actions undertaken by private industry under Title 2 of the Act are not addressed in this paper. Some of the lessons learned over the course of the project`s history are presented so that other countries conducting similar remedial action activities may benefit.

  15. Welding of uranium and uranium alloys

    SciTech Connect (OSTI)

    Mara, G.L.; Murphy, J.L.

    1982-03-26T23:59:59.000Z

    The major reported work on joining uranium comes from the USA, Great Britain, France and the USSR. The driving force for producing this technology base stems from the uses of uranium as a nuclear fuel for energy production, compact structures requiring high density, projectiles, radiation shielding, and nuclear weapons. This review examines the state-of-the-art of this technology and presents current welding process and parameter information. The welding metallurgy of uranium and the influence of microstructure on mechanical properties is developed for a number of the more commonly used welding processes.

  16. E-Print Network 3.0 - arsenic sulfides Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Initial Reports and Scientific Results portions of Vol- Summary: -14 active zones, geology, A:18-19 age sulfides, B:111-117 vs. uranium content, B:113-114 alteration...

  17. E-Print Network 3.0 - americium sulfides Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Initial Reports and Scientific Results portions of Vol- Summary: -14 active zones, geology, A:18-19 age sulfides, B:111-117 vs. uranium content, B:113-114 alteration...

  18. CHP REGIONAL APPLICATION CENTERS: ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin [ORNL

    2010-08-01T23:59:59.000Z

    Between 2001 and 2005, the U.S. Department of Energy (DOE) created a set of eight Regional Application Centers (RACs) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies. By utilizing the thermal energy that is normally wasted when electricity is produced at central generating stations, Combined Heat and Power installations can save substantial amounts of energy compared to more traditional technologies. In addition, the location of CHP facilities at or near the point of consumption greatly reduces or eliminates electric transmission and distribution losses. The regional nature of the RACs allows each one to design and provide services that are most relevant to the specific economic and market conditions in its particular geographic area. Between them, the eight RACs provide services to all 50 states and the District of Columbia. Through the end of the federal 2009 fiscal year (FY 2009), the primary focus of the RACs was on providing CHP-related information to targeted markets, encouraging the creation and adoption of public policies and incentives favorable to CHP, and providing CHP users and prospective users with technical assistance and support on specific projects. Beginning with the 2010 fiscal year, the focus of the regional centers broadened to include district energy and waste heat recovery and these entities became formally known as Clean Energy Application Centers, as required by the Energy Independence and Security Act (EISA) of 2007. In 2007, ORNL led a cooperative effort to establish metrics to quantify the RACs accomplishments. That effort began with the development of a detailed logic model describing RAC operations and outcomes, which provided a basis for identifying important activities and accomplishments to track. A data collection spreadsheet soliciting information on those activities for FY 2008 and all previous years of RAC operations was developed and sent to the RACs in the summer of 2008. This represents the first systematic attempt at RAC program measurement in a manner consistent with approaches used for other efforts funded by DOE's Industrial Technologies Program (ITP). In addition, data on CHP installations and associated effects were collected for the same years from a state-by-state database maintained for DOE by ICF international. A report documenting the findings of that study was produced in September, 2009. The purpose of the current report is to present the findings from a new study of RAC activities and accomplishments which examined what the Centers did in FY 2009, the last year in which they concentrated exclusively on CHP technologies. This study focused on identifying and describing RAC activities and was not designed to measure how those efforts influenced CHP installations or other outcomes.

  19. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers.

  20. Uranium Mill Tailings Management

    SciTech Connect (OSTI)

    Nelson, J.D.

    1982-01-01T23:59:59.000Z

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements).

  1. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect (OSTI)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19T23:59:59.000Z

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  2. Bioreduction and immobilization of uranium in situ: a case study at a USA Department of Energy radioactive waste site, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Wu, Weimin [Stanford University; Carley, Jack M [ORNL; Watson, David B [ORNL; Gu, Baohua [ORNL; Brooks, Scott C [ORNL; Kelly, Shelly D [Argonne National Laboratory (ANL); Kemner, Kenneth M [Argonne National Laboratory (ANL); Van Nostrand, Joy [University of Oklahoma, Norman; Wu, Liyou [University of Oklahoma, Norman; Zhou, Jizhong [University of Oklahoma, Norman; Luo, Jian [Georgia Institute of Technology; Cardenas, Erick [Michigan State University, East Lansing; Fields, Matthew Wayne [Miami University, Oxford, OH; Marsh, Terence [Michigan State University, East Lansing; Tiedje, James [Michigan State University, East Lansing; Green, Stefan [Florida State University; Kostka, Joel [Florida State University; Kitanidis, Peter K. [Stanford University; Jardine, Philip [University of Tennessee, Knoxville (UTK); Criddle, Craig [Stanford University

    2011-01-01T23:59:59.000Z

    Bioremediation of uranium contaminated groundwater was tested by delivery of ethanol as an electron donor source to stimulate indigenous microbial bioactivity for reduction and immobilization of uranium in situ, followed by tests of stability of uranium sequestration in the bioreduced area via delivery of dissolved oxygen or nitrate at the US Department of energy's Integrated Field Research Challenge site located at Oak Ridge, Tennessee, USA. After long term treatment that spanned years, uranium in groundwater was reduced from 40-60 mg {center_dot} L{sup -1} to <0.03 mg {center_dot} L{sup -1}, below the USA EPA standard for drinking water. The bioreduced uranium was stable under anaerobic or anoxic conditions, but addition of DO and nitrate to the bioreduced zone caused U remobilization. The change in the microbial community and functional microorganisms related to uranium reduction and oxidation were characterized. The delivery of ethanol as electron donor stimulated the activities of indigenous microorganisms for reduction of U(VI) to U(IV). Results indicated that the immobilized U could be partially remobilized by D0 and nitrate via microbial activity. An anoxic environmental condition without nitrate is essential to maintain the stability of bioreduced uranium.

  3. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06T23:59:59.000Z

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  4. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W. (Oakridge, TN); Horton, James A. (Livermore, CA); Elliott, Guy R. B. (Los Alamos, NM)

    1995-01-01T23:59:59.000Z

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  5. Preparation of uranium compounds

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19T23:59:59.000Z

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  6. The potential human health effect(s) of the metal uranium in the environment. Report on the known human health effects associated with the exposure to the metal uranium

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    Concern over the levels of the metal uranium in the environment as a result of industrial activities has been expressed by several Federal and State agencies. This concern is associated with potential human health effects of this metal on kidney function and bone formation. Although limits for the Metal uranium in the environment remain to be set, the Environmental Protection Agency (EPA) is currently in the process of establishing guidance limits for this metal in water and soil. These limits will be established for both the metal and the associated radioactivity. The suggested limits currently being considered for water and soil are, 20 pCi/liter and 10 pCi/gram wet weight, respectively. For naturally occurring uranium EPA assumes that 1 ug of uranium metal equals 0.67 pCi at equilibrium (i.e. at equilibrium the mass ratio of {sup 234}uranium to {sup 238}uranium is small but their activities are equal). Thus the limits for water and soil on weight basis for the uranium metal would be 30 ug/liter and 15 ug/gram wet weight, respectively. These limits are being established based on the potential increase in cancer death in populations that exceed this limit. Since there does not appear to be a significant correlation between cancer deaths and.uranium metal exposure (see discussion below), these limits will probably be established based on the known association between radionuclides exposure and cancer deaths. The exposure limits for other health effects such as kidney damage and retardation in bone formation apparently are not being considered by EPA.

  7. THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS

    E-Print Network [OSTI]

    Winfree, Erik

    THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS Thesis. I have benefitted from conversations with many persons w~ile engaged in this project. I would like

  8. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    SciTech Connect (OSTI)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal,; Monado, Fiber; Sekimoto, Hiroshi [Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134, Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134 (Indonesia); Department of Physics Bandung Institute of Technology Jl. Ganesha 10, Bandung 40134, Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Reserach of Laboratory for Nuclear Reactors, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152 (Japan)

    2012-06-06T23:59:59.000Z

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  9. Radiation measurements of uranium ingots from the electrometallurgical treatment of spent fuel.

    SciTech Connect (OSTI)

    Westphal, B. R.; Liaw, J. R.; Krsul, J. R.; Maddison, D. W.; Jensen, B. A.

    2003-03-24T23:59:59.000Z

    Radiation measurements and gamma spectroscopy analyses were made on numerous uranium ingots produced during the treatment of Experimental Breeder Reactor-II (EBR-II) spent nuclear fuel. The objective of these measurements was to provide background data for shielding concerns and potential process optimization. The uranium ingots resulted from the processing of both driver and blanket fuel by the electrometallurgical treatment process. The observed variation in the measurements was traced to the levels of certain fission product residues that remained in the uranium ingots produced during spent fuel treatment. A minor process change to hold the material at an elevated temperature for a specified length of time was found to significantly reduce concentrations of high-activity fission products and, thus the radiation field.

  10. CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS

    E-Print Network [OSTI]

    Hart, Gus

    CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

  11. Uranium dioxide electrolysis

    DOE Patents [OSTI]

    Willit, James L. (Batavia, IL); Ackerman, John P. (Prescott, AZ); Williamson, Mark A. (Naperville, IL)

    2009-12-29T23:59:59.000Z

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  12. E-Print Network 3.0 - activates mad1 target Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample search results for: activates mad1 target Page: << < 1 2 3 4 5 > >> 1 Molecular Biology of the Cell Vol. 10, 26072618, August 1999 Summary: is sufficient to activate the...

  13. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  14. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

  15. Uranium Recovery Surface Activities (Texas)

    Broader source: Energy.gov [DOE]

    This section of the Texas Commission on Environmental Quality enforces and makes the rules and regulations for handling and recovering radioactive materials associated with in situ mining in Texas....

  16. BIOREMEDIATION OF URANIUM CONTAMINATED SOILS AND WASTES.

    SciTech Connect (OSTI)

    FRANCIS,A.J.

    1998-09-17T23:59:59.000Z

    Contamination of soils, water, and sediments by radionuclides and toxic metals from uranium mill tailings, nuclear fuel manufacturing and nuclear weapons production is a major concern. Studies of the mechanisms of biotransformation of uranium and toxic metals under various microbial process conditions has resulted in the development of two treatment processes: (i) stabilization of uranium and toxic metals with reduction in waste volume and (ii) removal and recovery of uranium and toxic metals from wastes and contaminated soils. Stabilization of uranium and toxic metals in wastes is accomplished by exploiting the unique metabolic capabilities of the anaerobic bacterium, Clostridium sp. The radionuclides and toxic metals are solubilized by the bacteria directly by enzymatic reductive dissolution, or indirectly due to the production of organic acid metabolites. The radionuclides and toxic metals released into solution are immobilized by enzymatic reductive precipitation, biosorption and redistribution with stable mineral phases in the waste. Non-hazardous bulk components of the waste such as Ca, Fe, K, Mg and Na released into solution are removed, thus reducing the waste volume. In the second process uranium and toxic metals are removed from wastes or contaminated soils by extracting with the complexing agent citric acid. The citric-acid extract is subjected to biodegradation to recover the toxic metals, followed by photochemical degradation of the uranium citrate complex which is recalcitrant to biodegradation. The toxic metals and uranium are recovered in separate fractions for recycling or for disposal. The use of combined chemical and microbiological treatment process is more efficient than present methods and should result in considerable savings in clean-up and disposal costs.

  17. Influence of Acidic and Alkaline Waste Solution Properties on Uranium Migration in Subsurface Sediments

    SciTech Connect (OSTI)

    Szecsody, James E.; Truex, Michael J.; Qafoku, Nikolla; Wellman, Dawn M.; Resch, Charles T.; Zhong, Lirong

    2013-08-01T23:59:59.000Z

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments has significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH 2) resulted in a rapid (< 10 h) increase in aqueous carbonate (with Ca2+, Mg2+) and phosphate and a slow (100s of hours) increase in silica, Al3+, and K+, likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH 13) resulted in a rapid (< 10 h) increase in carbonate, followed by a slow (10s to 100s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity.

  18. Review of uranium bioassay techniques

    SciTech Connect (OSTI)

    Bogard, J.S.

    1996-04-01T23:59:59.000Z

    A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

  19. The geochemistry of uranium in the Orca Basin

    E-Print Network [OSTI]

    Weber, Frederick Fewell

    1979-01-01T23:59:59.000Z

    no uranium enrichment, with concentrations ranging from 2. 1 to 4. gppm, reflective of normal Gulf of Mexico sediments. This is the result of two dominant processes operating within the basin. First, the sharp pycnocline at the brine/seawater interface... . . . . . . . . , . . . , 37 xi Figure Page 16 Ores Basin Seismic Reflection Profile A 40 17 Ores Basin Seismic Reflection Profile B 42 18 Proposed Mechanism of Uranium Uptake in the Atlantis II Deep 59 INTRODUCTION Economic Status of Uranium in the United States...

  20. WISE Uranium Project - Fact Sheet

    E-Print Network [OSTI]

    Hazards From Depleted

    t in the depleted uranium. For this purpose, we first need to calculate the mass balance of the enrichment process. We then calculate the inhalation doses from the depleted uranium and compare the dose contributions from the nuclides of interest. Mass balance for uranium enrichment at Paducah [DOE_1984, p.35] Feed Product Tails Other Mass [st] 758002 124718 621894 11390 Mass fraction 100.00% 16.45% 82.04% 1.50% Concentration of plutonium in tails (depleted uranium) from enrichment of reprocessed uranium, assuming that all plutonium were transfered to the tails: Concentration of neptunium in tails from enrichment of reprocessed uranium uranium, assuming that all neptunium were transfered to the tails: - 2 - Schematic of historic uranium enrichment process at Paducah [DOE_1999b] - -7 For comparison, we first calculate the inhalation dose from depleted uranium produced from natural uranium. We assume that the short-lived decay products have reached secular equilibrium with th

  1. E-Print Network 3.0 - a-769662 activates ampk Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Collection: Biology and Medicine 38 Cell Metabolism Hypothalamic Fatty Acid Metabolism Mediates Summary: as the mechanism activated by ghrelin. RESULTS Fasting...

  2. E-Print Network 3.0 - activated shape memory Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Sample search results for: activated shape memory Page: << < 1 2 3 4 5 > >> 1 Cognitive Brain Research 17 (2003) 7582 www.elsevier.comlocatecogbrainres Summary: Distinct...

  3. E-Print Network 3.0 - activity optical Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search results for: activity optical Page: << < 1 2 3 4 5 > >> 1 27 Jan 2003 Smart Optics Faraday Partnership 1 Smart Optics Summary: Components Wavefront Modulator (WFM)...

  4. E-Print Network 3.0 - active fracture model Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fracture model Search Powered by Explorit Topic List Advanced Search Sample search results for: active fracture model Page: << < 1 2 3 4 5 > >> 1 THELEADINGEDGESeptember2007Vol.26,...

  5. E-Print Network 3.0 - active neutron scanner Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Sample search results for: active neutron scanner Page: << < 1 2 3 4 5 > >> 1 The Neutron Scattering Society www.neutronscattering.org Summary: techniques; and service and...

  6. E-Print Network 3.0 - activity water intake Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water intake Search Powered by Explorit Topic List Advanced Search Sample search results for: activity water intake Page: << < 1 2 3 4 5 > >> 1 Gestational and early postnatal...

  7. E-Print Network 3.0 - active water management Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water management Search Powered by Explorit Topic List Advanced Search Sample search results for: active water management Page: << < 1 2 3 4 5 > >> 1 Regional Water Management:...

  8. E-Print Network 3.0 - active oxygen species Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powered by Explorit Topic List Advanced Search Sample search results for: active oxygen species Page: << < 1 2 3 4 5 > >> 1 Ecological requirements of damselflies in Dutch...

  9. E-Print Network 3.0 - active oxygen control Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powered by Explorit Topic List Advanced Search Sample search results for: active oxygen control Page: << < 1 2 3 4 5 > >> 1 Oxygen Modulation via Microfluidic Devices Oxygen...

  10. E-Print Network 3.0 - activation chemistry Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemistry Search Powered by Explorit Topic List Advanced Search Sample search results for: activation chemistry Page: << < 1 2 3 4 5 > >> 1 Chemistry -Bachelor of Science (SCHUG)...

  11. E-Print Network 3.0 - activated carbon Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF ENERGY Summary: to look at the impact of recently observed climate change on soil carbon sequestration activities Results... that 5% of the soil carbon sequestered from...

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site in Lakeview, Oregon

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site in Lake view, Oregon evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site.

  13. E-Print Network 3.0 - area uranium stabilization Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Powered by Explorit Topic List Advanced Search Sample search results for: area uranium stabilization Page: << < 1 2 3 4 5 > >> 1 geology and Ranger 1 open-pit uranium...

  14. E-Print Network 3.0 - australian uranium projects Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powered by Explorit Topic List Advanced Search Sample search results for: australian uranium projects Page: << < 1 2 3 4 5 > >> 1 geology and Ranger 1 open-pit uranium mine in...

  15. E-Print Network 3.0 - australian uranium mining Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powered by Explorit Topic List Advanced Search Sample search results for: australian uranium mining Page: << < 1 2 3 4 5 > >> 1 geology and Ranger 1 open-pit uranium mine in...

  16. activation state protects: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Sciences and Ecology Websites Summary: are strictly limited to uranium mill tailings pilesimpoundments that actively receive mill tailings from uranium recovery...

  17. The uranium cylinder assay system for enrichment plant safeguards

    SciTech Connect (OSTI)

    Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Rael, Carlos D [Los Alamos National Laboratory; Iwamoto, Tomonori [JNFL; Tamura, Takayuki [JNFL; Aiuchi, Syun [JNFL

    2010-01-01T23:59:59.000Z

    Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

  18. Development and demonstration of biosorbents for clean-up of uranium in water. CRADA final report

    SciTech Connect (OSTI)

    Faison, B.D.; Hu, M.Z.C.; Norman, J.M.; Reeves, M.E.; Williams, L.; Schmidt-Kuster, W.; Darnell, K. [Oak Ridge National Lab., TN (United States)]|[Ogden Environmental Service, Oak Ridge, TN (United States)

    1997-08-01T23:59:59.000Z

    Pseudomonas aeruginosa strain CSU, a nongenetically engineered bacterial strain known to bind dissolved hexavalent uranium, shows particular promise as the basis of an immobilized-cell process for removal of dissolved uranium from contaminated wastewaters. It was characterized with respect to its sorptive active. Living, heat-killed, permeabilized, and unreconstituted lyophilized cells were all capable of binding uranium. The uranium biosorption equilibrium could be described by the Langmuir isotherm. The rate of uranium adsorption increased following permeabilization of the outer and/or cytoplasmic membrane by organic solvents such as acetone. P. aeruginosa CSU biomass was significantly more sorptive toward uranium than certain novel, patented biosorbents derived from algal or fungal biomass sources. P. aeruginosa CSU biomass was also competitive with commercial cation-exchange resins, particularly in the presence of dissolved transition metals. Uranium binding by P. aeruginosa was clearly pH dependent. Uranium loading capacity increased with increasing pH under acidic conditions, presumably as a function of uranium speciation and due to the H{sup +} competition at some binding sites. Nevertheless, preliminary evidence suggests that this microorganism is also capable of binding anionic hexavalent uranium complexes. Ferric iron was a strong inhibitor of uranium binding to P. aeruginosa CSU biomass, and the presence of uranium also decreased the Fe{sup 3+} loading when the biomass was not saturated with Fe{sup 3+}, suggesting that Fe{sup 3+} and uranium may share the same binding sites on biomass.

  19. Reports on investigations of uranium anomalies. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Goodknight, C.S.; Burger, J.A. (comps.) [comps.

    1982-10-01T23:59:59.000Z

    During the National Uranium Resource Evaluation (NURE) program, conducted for the US Department of Energy (DOE) by Bendix Field Engineering Corporation (BFEC), radiometric and geochemical surveys and geologic investigations detected anomalies indicative of possible uranium enrichment. Data from the Aerial Radiometric and Magnetic Survey (ARMS) and the Hydrogeochemical and Stream-Sediment Reconnaissance (HSSR), both of which were conducted on a national scale, yielded numerous anomalies that may signal areas favorable for the occurrence of uranium deposits. Results from geologic evaluations of individual 1/sup 0/ x 2/sup 0/ quadrangles for the NURE program also yielded anomalies, which could not be adequately checked during scheduled field work. Included in this volume are individual reports of field investigations for the following six areas which were shown on the basis of ARMS, HSSR, and (or) geologic data to be anomalous: (1) Hylas zone and northern Richmond basin, Virginia; (2) Sischu Creek area, Alaska; (3) Goodman-Dunbar area, Wisconsin; (4) McCaslin syncline, Wisconsin; (5) Mt. Withington Cauldron, Socorro County, New Mexico; (6) Lake Tecopa, Inyo County, California. Field checks were conducted in each case to verify an indicated anomalous condition and to determine the nature of materials causing the anomaly. The ultimate objective of work is to determine whether favorable conditions exist for the occurrence of uranium deposits in areas that either had not been previously evaluated or were evaluated before data from recent surveys were available. Most field checks were of short duration (2 to 5 days). The work was done by various investigators using different procedures, which accounts for variations in format in their reports. All papers have been abstracted and indexed.

  20. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, Alvin B. (Cincinnati, OH)

    1983-01-01T23:59:59.000Z

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  1. Method for the recovery of uranium values from uranium tetrafluoride

    DOE Patents [OSTI]

    Kreuzmann, A.B.

    1982-10-27T23:59:59.000Z

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  2. Uranium mine and mill tailings - Liabilities in the European Union

    SciTech Connect (OSTI)

    Hilden, Wolfgang; Murphy, Simon [European Commission, Maison de l'Europe, L-2920 (Luxembourg); Vrijen, Jan [KARUWEEG BV, Leliendaalsedreef 9, 4333 JZ Middelburg (Netherlands)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: Uranium mining and milling has taken place on large scale in the Member States of the European Union (EU) for some 60 years. Although, compared to mining, milling activities are normally concentrated in fewer locations, this can still result in a relatively large number of disposal sites for the tailings, compared to other radioactive wastes. In addition these sites are also quite large, in terms of both volume and surface area. Coupled with the residual uranium in the tailings together with other radionuclides, heavy metals, chemicals etc this results in an environmental legacy continuing far into the future. Often during production no or little provision has been made for the closure, remediation and future supervision of such sites. In 1996 the European Commission funded an inventory of uranium mining and milling liabilities in nine Central and Eastern European Countries. Additionally, pilot projects were funded to carry out remediation activities at several sites. Almost ten years later the Commission has identified the need to address the situation of these large liabilities in all EU Member States and to assess the progress made in remediation of the sites, especially in view of the closure of almost all mining activities in Europe. The Commission study has identified the current tailings liabilities in Europe, their status, the future plans for these sites and the hazards that continue to be associated with them. It is clear that although considerable progress has been made in recent years, much work remains to be carried out in the areas of remediation, and ensuring the long-term safety of many of the identified objects. The paper presents the main findings of the study, as well as the challenges identified to ensure long-term safety of these wastes. (authors)

  3. Uranium series disequilibrium in the Bargmann property area of Karnes County, Texas

    SciTech Connect (OSTI)

    Davidson, J.R.

    1998-02-01T23:59:59.000Z

    Historical evidence is presented for natural uranium series radioactive disequilibrium in uranium bearing soils in the Bargmann property area of karnes County on the Gulf Coastal Plain of south Texas. The early history of uranium exploration in the area is recounted and records of disequilibrium before milling and mining operations began are given. The property contains an open pit uranium mine associated with a larger ore body. In 1995, the US Department of Energy (DOE) directed Oak Ridge National Laboratory (ORNL) to evaluate the Bargmann tract for the presence of uranium mill tailings (ORNL 1996). There was a possibility that mill tailings had washed onto or blown onto the property from the former tailings piles in quantities that would warrant remediation under the Uranium Mill Tailings Remediation Action Project. Activity ratios illustrating disequilibrium between {sup 226}Ra and {sup 238}U in background soils during 1986 are listed and discussed. Derivations of uranium mass-to-activity conversion factors are covered in detail.

  4. Uranium Enrichment Decontamination and Decommissioning Fund's...

    Broader source: Energy.gov (indexed) [DOE]

    Uranium Enrichment Decontamination and Decommissioning Fund's Fiscal Year 2008 and 2007 Financial Statement Audit Uranium Enrichment Decontamination and Decommissioning Fund's...

  5. CHAPTER 6. BIBLIOGRAPHY AAPG 2005--American Association of Petroleum Geologists. Recent Uranium Industry Developments,

    E-Print Network [OSTI]

    Industry Developments, Exploration, Mining and Environmental Programs in the U.S. and Overseas. Uranium-Solution Mining. Uranium 1 (1978): 37-52. Burghardt 2003--Burghardt. J. Capitol Reef National Park (Utah): Rainy Day and Duchess Uranium Mines-Site Characterization (September 2002) Summary results presented at U

  6. Process for electrolytically preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A. (Knoxville, TN)

    1989-01-01T23:59:59.000Z

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  7. Controlling uranium reactivity March 18, 2008

    E-Print Network [OSTI]

    Meyer, Karsten

    for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

  8. Evaporation of Enriched Uranium Solutions Containing Organophosphates

    SciTech Connect (OSTI)

    Pierce, R.A.

    1999-03-18T23:59:59.000Z

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The preliminary SRTC data, in conjunction with information in the literature, is promising. However, very few experiments have been run, and none of the results have been confirmed with repeat tests. As a result, it is believed that insufficient data exists at this time to warrant Separations making any process or program changes based on the information contained in this report. When this data is confirmed in future testing, recommendations will be presented.

  9. Decarburization of uranium via electron beam processing

    SciTech Connect (OSTI)

    McKoon, R H

    1998-10-23T23:59:59.000Z

    For many commercial and military applications, the successive Vacuum Induction Melting of uranium metal in graphite crucibles results in a product which is out of specification in carbon. The current recovery method involves dissolution of the metal in acid and chemical purification. This is both expensive and generates mixed waste. A study was undertaken at Lawrence Livermore National Laboratory to investigate the feasibility of reducing the carbon content of uranium metal using electron beam techniques. Results will be presented on the rate and extent of carbon removal as a function of various operating parameters.

  10. Synthesis of Uranium Trichloride for the Pyrometallurgical Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; J.C. Price; R.D. Mariani

    2011-11-01T23:59:59.000Z

    The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results and conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.

  11. Uranium-titanium-niobium alloy

    DOE Patents [OSTI]

    Ludtka, Gail M. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    1990-01-01T23:59:59.000Z

    A uranium alloy having small additions of Ti and Nb shows improved strength and ductility in cross section of greater than one inch over prior uranium alloy having only Ti as an alloying element.

  12. Uranium hexafluoride handling. Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  13. E-Print Network 3.0 - activated factor viia Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Sample search results for: activated factor viia Page: << < 1 2 3 4 5 > >> 1 GENOMICS 36, 440448 (1996) ARTICLE NO. 0489 Summary: GENOMICS 36, 440-448 (1996) ARTICLE NO....

  14. E-Print Network 3.0 - atp activates map Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    map Search Powered by Explorit Topic List Advanced Search Sample search results for: atp activates map Page: << < 1 2 3 4 5 > >> 1 Nucleotide Specificity of the Enzymatic and...

  15. E-Print Network 3.0 - atp hydrolysis activity Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Powered by Explorit Topic List Advanced Search Sample search results for: atp hydrolysis activity Page: << < 1 2 3 4 5 > >> 1 Biochemistry 1989, 28, 5871-5881 5871...

  16. E-Print Network 3.0 - actin assembly activity Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search results for: actin assembly activity Page: << < 1 2 3 4 5 > >> 1 R728 Current Biology Vol 10 No 20 Cellular regulation of Summary: R728 Current Biology Vol 10 No 20 Primer...

  17. E-Print Network 3.0 - activated white cell Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    white cell Search Powered by Explorit Topic List Advanced Search Sample search results for: activated white cell Page: << < 1 2 3 4 5 > >> 1 Bistable expression of WOR1, a master...

  18. E-Print Network 3.0 - activity heart rate Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heart rate Search Powered by Explorit Topic List Advanced Search Sample search results for: activity heart rate Page: << < 1 2 3 4 5 > >> 1 Automatic quantification of liver-heart...

  19. E-Print Network 3.0 - active heat moisture Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Powered by Explorit Topic List Advanced Search Sample search results for: active heat moisture Page: << < 1 2 3 4 5 > >> 1 Chapter 1 Introduction Page 1-1 CCHHAAPPTTEERR...

  20. E-Print Network 3.0 - active conflict zones Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    zones Search Powered by Explorit Topic List Advanced Search Sample search results for: active conflict zones Page: << < 1 2 3 4 5 > >> 1 Proactive Approach for Reducing Non-Value...

  1. E-Print Network 3.0 - active ovarian cancer Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ovarian cancer Search Powered by Explorit Topic List Advanced Search Sample search results for: active ovarian cancer Page: << < 1 2 3 4 5 > >> 1 OVARIAN CANCER 17. OVARIAN CANCER...

  2. E-Print Network 3.0 - active laser media Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Powered by Explorit Topic List Advanced Search Sample search results for: active laser media Page: << < 1 2 3 4 5 > >> 1 1.0 INTRODUCTION The term, laser, is an acronym for...

  3. E-Print Network 3.0 - active catch tanks Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    catch tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: active catch tanks Page: << < 1 2 3 4 5 > >> 1 Tips For Residential Heating Oil Tank...

  4. E-Print Network 3.0 - active biogas process Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biogas process Search Powered by Explorit Topic List Advanced Search Sample search results for: active biogas process Page: << < 1 2 3 4 5 > >> 1 Institute for Renewable Energy Ltd...

  5. E-Print Network 3.0 - active luna tabasco Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    luna tabasco Search Powered by Explorit Topic List Advanced Search Sample search results for: active luna tabasco Page: << < 1 2 3 4 5 > >> 1 A new and morphologically distinct...

  6. Uranium and cesium diffusion in fuel cladding of electrogenerating channel

    SciTech Connect (OSTI)

    Vasilev, I. V., E-mail: fnti@mail.ru; Ivanov, A. S.; Churin, V. A. [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

  7. Derivation and implementation of an annual limit on intake and a derived air concentration value for uranium mill tailings

    SciTech Connect (OSTI)

    Reif, R.H. [Dept. of Energy, Albuquerque, NM (United States); Andrews, D.W. [RUST Federal Services, Albuquerque, NM (United States)

    1995-06-01T23:59:59.000Z

    Monitoring workers and work areas at the Department of Energy Uranium Mill Tailings Remedial Action Project sites is complex because all radionuclides in the {sup 238}U and {sup 235}U decay chains may be present in an airborne uranium mill tillings matrix. Previous monitoring practices involved isotopic analysis of the air filter to determine the activity of each radionuclide of concern and comparing the results to the specified derived air concentration. The annual limit on intake and derived air concentration values have been derived here for the uranium mill tailings matrix to simplify the procedure for evaluation of air monitoring results and assessment of the need for individual monitoring. Implementation of the derived air concentration for uranium mill tailings involves analyzing air samples for long-lived gross alpha activity and comparing the activity concentration to the derived air concentration. Health physics decisions regarding assessment of airborne concentrations is more cost-effective because isotopic analysis of air samples is not necessary. 12 refs., 2 tabs.

  8. Uranium immobilization and nuclear waste

    SciTech Connect (OSTI)

    Duffy, C.J.; Ogard, A.E.

    1982-02-01T23:59:59.000Z

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  9. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21T23:59:59.000Z

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  10. Corrosion-resistant uranium

    DOE Patents [OSTI]

    Hovis, Jr., Victor M. (Kingston, TN); Pullen, William C. (Knoxville, TN); Kollie, Thomas G. (Oak Ridge, TN); Bell, Richard T. (Knoxville, TN)

    1983-01-01T23:59:59.000Z

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  11. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium froma. Uranium

  12. Depleted uranium plasma reduction system study

    SciTech Connect (OSTI)

    Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

    1994-12-01T23:59:59.000Z

    A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

  13. Uranium potential of southwestern New Mexico (southern Hidalgo County), including observations on crystallization history of lavas and ash tuffs and the release of uranium from them. Final report

    SciTech Connect (OSTI)

    Walton, A.W.; Salter, T.L.; Zetterlund, D.

    1980-08-01T23:59:59.000Z

    Geological environments present in southwestern New Mexico include thick sequences of sedimentary rock including limestone, conglomerates, sandstone, and shale: igneous intrusions with associated metal deposits; caldera centers, margins, and outflow facies; and basins with marginal faults and thick late Cenozoic sedimentary fillings. Predominant rock types are Paleozoic carbonates, Mesozoic terrigeneous rocks and carbonates, and Cenozoic volcanic rocks and basin-filling terrigeneous rocks. Consideration of information available in Preliminary Reconnaissance Reports and in Hydrogeochemical and Stream Reconnaissance Reports together with 347 new whole rock chemical analyses points to three areas of anomalous uranium abundance in Hidalgo County, New Mexico. The area has experienced three major periods of igneous activity in Phanerozoic time: one associated with the Laramide cycle of the Late Cretaceous and early Tertiary, mid-Tertiary cycle of silicic volcanism with abundant calderas, and a late Tertiary cycle of mafic volcanism. Silicic volcanic rocks are the most common exposed rock type in the area, and the most enriched in uranium (range, 0.4 to 19 ppM). The most likely source for any uranium ore-forming solutions lies with this cycle of volcanism. Solutions might have been introduced during volcanism or formed later by groundwater leaching of cooled volcanic rocks. Results indicate that groundwater leaching of cooled volcanic rocks was not an effective means of mobilizing uranium in the area. Study of several rhyolite lava flows indicates that they were emplaced in supercooled condition and may have crystallized completely at temperatures well below their liquids, or they may have warmed as crystallization released latent heat. Statistical comparison of the uranium concentration revealed no differences between vitrophyres and associated felsites.

  14. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    SciTech Connect (OSTI)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01T23:59:59.000Z

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  15. Production of Mo-99 using low-enriched uranium silicide

    SciTech Connect (OSTI)

    Hutter, J. C.; Srinivasan, B.; Vicek, M.; Vandegrift, G. F.

    1994-09-01T23:59:59.000Z

    Over the last several years, uranium silicide fuels have been under development as low-enriched uranium (LEU) targets for Mo-99. The use of LEU silicide is aimed at replacing the UAl{sub x} alloy in the highly-enriched uranium dissolution process. A process to recover Mo-99 from low-enriched uranium silicide is being developed at Argonne National Laboratory. The uranium silicide is dissolved in alkaline hydrogen peroxide. Experiments performed to determine the optimum dissolution procedure are discussed, and the results of dissolving a portion of a high-burnup (>40%) U{sub 3}Si{sub 2} miniplate are presented. Future work related to Mo-99 separation and waste disposal are also discussed.

  16. Controlling intake of uranium in the workplace: Applications of biokinetic modeling and occupational monitoring data

    SciTech Connect (OSTI)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; McGinn, Wilson [ORNL; Meck, Dr. Robert A. [U.S. Nuclear Regulatory Commission

    2012-01-01T23:59:59.000Z

    This report provides methods for interpreting and applying occupational uranium monitoring data. The methods are based on current international radiation protection guidance, current information on the chemical toxicity of uranium, and best available biokinetic models for uranium. Emphasis is on air monitoring data and three types of bioassay data: the concentration of uranium in urine; the concentration of uranium in feces; and the externally measured content of uranium in the chest. Primary Reference guidance levels for prevention of chemical effects and limitation of radiation effects are selected based on a review of current scientific data and regulatory principles for setting standards. Generic investigation levels and immediate action levels are then defined in terms of these primary guidance levels. The generic investigation and immediate actions levels are stated in terms of radiation dose and concentration of uranium in the kidneys. These are not directly measurable quantities, but models can be used to relate the generic levels to the concentration of uranium in air, urine, or feces, or the total uranium activity in the chest. Default investigation and immediate action levels for uranium in air, urine, feces, and chest are recommended for situations in which there is little information on the form of uranium taken into the body. Methods are prescribed also for deriving case-specific investigation and immediate action levels for uranium in air, urine, feces, and chest when there is sufficient information on the form of uranium to narrow the range of predictions of accumulation of uranium in the main target organs for uranium: kidneys for chemical effects and lungs for radiological effects. In addition, methods for using the information herein for alternative guidance levels, different from the ones selected for this report, are described.

  17. Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network

    E-Print Network [OSTI]

    Blewitt, Geoffrey

    Testing for fault activity at Yucca Mountain, Nevada, using independent GPS results from the BARGEN June 2006; published 19 July 2006. [1] Data from BARGEN GPS stations around Yucca Mountain (YM) have at Yucca Mountain, Nevada, using independent GPS results from the BARGEN network, Geophys. Res. Lett., 33

  18. High loading uranium fuel plate

    DOE Patents [OSTI]

    Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

    1990-01-01T23:59:59.000Z

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  19. New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

    SciTech Connect (OSTI)

    Not Available

    2011-06-22T23:59:59.000Z

    Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amended with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.

  20. Investigation of Trace Uranium in Biological Matrices

    E-Print Network [OSTI]

    Miller, James Christopher

    2013-05-31T23:59:59.000Z

    complex. As a result, the data varies in its breadth and quality due to the variety of sources.[41-44] Additional studies have been undertaken to understand the effects of using depleted uranium munitions in war and the accompanying exposures.[45...

  1. GEOCHEMISTRY AND ISOTOPE HYDROLOGY OF GROUNDWATERS IN THE STRIPA GRANITE RESULTS AND PRELIMINARY INTERPRETATION

    E-Print Network [OSTI]

    Fritz, P.

    2011-01-01T23:59:59.000Z

    the Ca++ and Ba++ chemistry, and uranium solution is redoxchemistry samples collect dissolved gas samples collect uraniumUranium-238 Helium-4 and other noble gases. RESULTS AND DISCUSSION 3.1 Groundwater Chemistry

  2. Geodatabase of the South Texas Uranium District

    E-Print Network [OSTI]

    Mark Beaman; William Wade Mcgee

    Uranium and its associated trace elements and radionuclides are ubiquitous in the South Texas Tertiary environment. Surface mining of this resource from the 1960s through the early 1980s at over sixty locations has left an extensive anthropological footprint (Fig. 1) in the lower Nueces and San Antonio river basins. Reclamation of mining initiated after 1975 has been under the regulatory authority of the Railroad Commission of Texas (RCT). However, mines that were active before the Texas Surface Mining Act of 1975 was enacted, and never reclaimed, are now considered abandoned. The Abandoned Mine Land Section of the RCT is currently reclaiming these pre-regulation uranium mines with funding from the federal government. The RCT monitors the overall effectiveness of this process through post-reclamation radiation and vegetative cover surveys, water quality testing, slope stability and erosion control monitoring. Presently a number of graduate and postgraduate students are completing research on the watershed and reservoir distribution of trace elements and radionuclides downstream of the South Texas Uranium District. The question remains as to whether the elevated levels of uranium, its associated trace elements and radiation levels in the South Texas environment are due to mining

  3. Innovative Elution Processes for Recovering Uranium from Seawater

    SciTech Connect (OSTI)

    Wai, Chien; Tian, Guoxin; Janke, Christopher

    2014-05-29T23:59:59.000Z

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium removal from the sorbent reaches only 80% after 10 hours of leaching. Some information regarding coordination of vanadium with amidoxime molecules and elution of vanadium from amidoxime- based sorbents is also given in the report.

  4. Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide

    SciTech Connect (OSTI)

    Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.; Taylor, Harry Z.; Liao, Yu-Jung

    2012-07-31T23:59:59.000Z

    Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed to mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.

  5. Method of preparation of uranium nitride

    DOE Patents [OSTI]

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09T23:59:59.000Z

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  6. Overexpression of Active Aurora-C Kinase Results in Cell Transformation and Tumour Formation

    E-Print Network [OSTI]

    Boyer, Edmond

    Overexpression of Active Aurora-C Kinase Results in Cell Transformation and Tumour Formation Jabbar, IFR140, Rennes, France Abstract Aurora kinases belong to a conserved family of serine/threonine kinases key regulators of cell cycle progression. Aurora-A and Aurora-B are expressed in somatic cells

  7. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-11-01T23:59:59.000Z

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after {approx}30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been incorporated into the modeling. In this case, an initially small population of slow growing sulfate reducers is active from the initiation of biostimulation. Three-dimensional, variably saturated flow modeling was used to address impacts of a falling water table during acetate injection. These impacts included a significant reduction in aquifer saturated thickness and isolation of residual reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions; however, the ranges were sufficiently small to preserve general trends. Large computer memory and high computational performance were required to simulate the detailed coupled process models for multiple biogeochemical components in highly resolved heterogeneous materials for the 110-day field experiment and 50 days of post-biostimulation behavior. In this case, a highly-scalable subsurface simulator operating on 128 processor cores for 12 hours was used to simulate each realization. An equivalent simulation without parallel processing would have taken 60 days, assuming sufficient memory was available.

  8. Method for fabricating uranium foils and uranium alloy foils

    DOE Patents [OSTI]

    Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

    2006-09-05T23:59:59.000Z

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  9. Molecular Dynamics Simulation of Thermodynamic Properties in Uranium Dioxide

    SciTech Connect (OSTI)

    Wang, Xiangyu; Wu, Bin; Gao, Fei; Li, Xin; Sun, Xin; Khaleel, Mohammad A.; Akinlalu, Ademola V.; Liu, L.

    2014-03-01T23:59:59.000Z

    In the present study, we investigated the thermodynamic properties of uranium dioxide (UO2) by molecular dynamics (MD) simulations. As for solid UO2, the lattice parameter, density, and enthalpy obtained by MD simulations were in good agreement with existing experimental data and previous theoretical predictions. The calculated thermal conductivities matched the experiment results at the midtemperature range but were underestimated at very low and very high temperatures. The calculation results of mean square displacement represented the stability of uranium at all temperatures and the high mobility of oxygen toward 3000 K. By fitting the diffusivity constant of oxygen with the Vogel-Fulcher-Tamman law, we noticed a secondary phase transition near 2006.4 K, which can be identified as a strong to fragile supercooled liquid or glass phase transition in UO2. By fitting the oxygen diffusion constant with the Arrhenius equation, activation energies of 2.0 and 2.7 eV that we obtained were fairly close to the recommended values of 2.3 to 2.6 eV. Xiangyu Wang, Bin Wu, Fei Gao, Xin Li, Xin Sun, Mohammed A. Khaleel, Ademola V. Akinlalu and Li Liu

  10. E-Print Network 3.0 - activation delay time Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity Analysis and PreLayout Activity Prediction for FPGAs Summary: activity on a net changes when delays are zero (zero delay activity) versus when logic delays... are...

  11. Development and results of experimental testing of electromembrane process for liquid active waste purification

    SciTech Connect (OSTI)

    Martinov, B.V.; Smirnov, V.V.; Tugolukov, B.B.; Belyakov, Y.A. [A.A. Bochvar All Russian Scientific Research, Moscow (Russian Federation). Inst. of Inorganic Materials

    1993-12-31T23:59:59.000Z

    This paper discusses the results of studies on electromembrane purification. The concentration of salts in active wastes arising from decontamination is more than 3--5 g/l. For these investigations a solution was chosen that had arisen from the decontamination of metallic items by a two-bath method using permanganate-alkali in the first stage and nitrogen oxalic acid in the second stage. The total salt content of mixed acid and alkaline solutions was 3.0 g/l, with a pH of 8.5 and total beta-activity of 6 {times} 10{sup {minus}8} Ci/l.

  12. Uranium in granites from the southwestern United States: actinide parent-daughter systems, sites and mobilization. Second year report. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Silver, L.T.; Woodhead, J.A.; Williams, I.S.; Chappell, B.W.

    1984-09-01T23:59:59.000Z

    Results of detailed field and laboratory studies are reported on the primary distribution of uranium (and thorium and lead) in the radioactive minerals of five radioactive granite bodies in Arizona and California. This distribution was examined in a granite pluton. Granites with uranium concentrations ranging from 4 to 47 ppM, thorium concentrations from 11 to 181 ppM, and Th/U ratios of 0.6 to 16.0 were compared. Evidence for secondary mobilization, migration, fixation and/or loss of uranium, thorium and radiogenic leads was explored. Uranium distribution in radioactive granites is hosted in a far greater diversity of sites than has previously been known. Uranium and thorium distribution in primary minerals of granites is almost entirely a disequilibrium product involving local fractionation processes during magmatic crystallization. Every radioactive granite studied contains minerals that contain uranium and/or thorium as major stoichiometric components. When the granites are subject to secondary geochemical events and processes, the behavior of uranium is determined by the stability fields of the different radioactive minerals in the rocks. The two most powerful tools for evaluating uranium migration in a granite are (a) isotope dilution mass spectrometry and (b) the electron microprobe. Uranium mobilization and loss is a common feature in radioactive granites of the southwestern United States. A model for the evaluation of uranium loss from granites has been developed. The mineral zircon can be used as an independent indicator of uranium and thorium endowment. The weathering products show surprising differences in the response of different granites in arid region settings. Significant losses of primary uranium (up to 70%) has been a common occurrence. Uranium, thorium and radiogenic lead exist in labile (movable) form on surfaces of cleavages, fractures and grain boundaries in granites.

  13. 8.0 BIBLIOGRAPHY Burghardt, J. 2003. "Capitol Reef National Park (Utah): Rainy Day and Duchess Uranium

    E-Print Network [OSTI]

    .S. Department of the Interior, U.S. Geological Survey, 1996. Finch, W. 1998. Unpublished compilation of uranium Uranium Mines--Site Characterization (September 2002)." Preliminary results presented at U.S. Department Analysis of Uranium Plume Attenuation. NUREG/CR- 6705 SAND2000-2554. Washington, DC: U.S. Nuclear

  14. Uranium and its relationship to host rock mineralogy in an unoxidized roll front in the Jackson group, South Texas

    E-Print Network [OSTI]

    Prasse, Eric Martin

    1978-01-01T23:59:59.000Z

    environment produced in the over- lying rocks by the sulfate caprock of the dome. ~at ati r h Stratigraphy was a major control of uranium mineralization in south Texas. The area has a combination of uranium rich source rocks, permeable host rocks... m1d-Tertiary volcanic activ1ty in northern Mexico. This mater1al is generally thought to nave been the source of uranium for the ore deposits in the area . Source Rocks. Tuff is a good source of uranium because 1t has a h1gh original uranium...

  15. Unexpected, Stable Form of Uranium Detected | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected, Stable Form of Uranium Detected Unexpected, Stable Form of Uranium Detected Insights on underappreciated reaction could shed light on environmental cleanup options...

  16. Dissolution rates of uranium compounds in simulated lung fluid

    SciTech Connect (OSTI)

    Kalkwarf, D.R.

    1981-01-01T23:59:59.000Z

    Maximum dissolution rates of uranium into simulated lung fluid from a variety of materials were measured at 37/sup 0/in the where f/sub i/ is in order to estimate clearance rates from the deep lung. A batch procedure was utilized in which samples containing as little as 10 ..mu..g of natural uranium could be tested. The materials included: products of uranium mining, milling and refining operations, coal fly ash, an environmental sample from a site exposed to multiple uranium sources, and purified samples of (NH/sub 4/)/sub 2/U/sub 2/O/sub 7/ U/sub 3/O/sub 8/, UO/sub 2/, and UF/sub 4/. Dissolution of uranium from several materials indicated the presence of more than one type of uranium compound; but in all cases, the fraction F of uranium remaining undissolved at any time t could be represented by the sum of up to three terms in the series: F = ..sigma../sub i/f/sub i/ exp (-0.693t/UPSILON/sub i/), where f/sub i/ is the initial fraction of component i with dissolution half-time epsilon/sub i/. Values of epsilon/sub i/ varied from 0.01 day to several thousand days depending on the physical and chemical form of the uranium. Dissolution occurred predominantly by formation of the (UO/sub 2/(CO/sub 3/)/sub 3/)/sup 4 -/ ion; and as a result, tetravalent uranium compounds dissolved slowly. Dissolution rates of size-separated yellow-cake aerosols were found to be more closely correlated with specific surface area than with aerodynamic diameter.

  17. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOE Patents [OSTI]

    Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

    2001-01-01T23:59:59.000Z

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  18. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  19. Thorium and uranium redox-active ligand complexes; reversible intramolecular electron transfer in U(dpp-BIAN)2/ U(dpp-BIAN)2(THE)

    SciTech Connect (OSTI)

    Schelter, Eric John [Los Alamos National Laboratory; Wu, Ruilian [Los Alamos National Laboratory; Scott, Brian L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Batista, Enrique R [Los Alamos National Laboratory; Morris, David E [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Actinide complexes of the redox-active ligand dpp-BIAN{sup 2-} (dpp-BIAN = bis(2,6-diisopropylphenyl)acenaphthylene), An(dpp-BIAN){sub 2}(THF){sub n} (An = Th, n = 1; An = U, n = 0, 1) have been prepared. Solid-state magnetic and single-crystal X-ray data for U(dpp-BIAN){sub 2}(THF){sub n} show when n = 0, the complex exists in an f{sup 2}-{pi}*{sup 4} configuration; whereas an intramolecular electron transfer occurs for n = 1, resulting in an f{sup 3}-{pi}*{sup 3} ground configuration. The magnetic data also indicate that interconversion between the two forms of the complex is possible, limited only by the ability of THF vapor to penetrate the solid on cooling of the sample. Spectroscopic data indicate the complex exists solely in the f{sup 2}-{pi}*{sup 4} form in solution, evidenced by the appearance of only small changes in the electronic absorption spectra of the U(dpp-BIAN){sub 2} complex on titration with THF and by measurement of the solution magnetic moment m d{sub 8}-tetrahydrofuran using Evans method. Electrochemistry of the complexes is reported, with small differences observed in wave potentials between metals and in the presence of THF. These data represent the first example of a well-defined, reversible intramolecular electron transfer in an f-element complex and the second example of oxidation state change through dative interaction with a metal ion.

  20. Fundamental study on recovery uranium oxide from HEPA filters

    SciTech Connect (OSTI)

    Izumida, T. [Hitachi Ltd., Ibaraki (Japan). Hitachi Works; Matsumoto, H.; Tsuchiya, H.; Iba, H. [Hitachi Nuclear Engineering Co., Ltd., Ibaraki (Japan); Noguchi, Y. [Radioactive Waste Management Center, Tokyo (Japan)

    1993-12-31T23:59:59.000Z

    Large numbers of spent HEPA filters are produced at uranium fuel fabrication facilities. Uranium oxide particles have been collected on these filters. Then, a spent HEPA filter treatment system was developed from the viewpoint of recovering the UO{sub 2} and minimizing the volume. The system consists of a mechanical separation process and a chemical dissolution process. This paper describes the results of fundamental experiments on recovering UO{sub 2} from HEPA filters.

  1. E-Print Network 3.0 - active network analysis Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activity of coupled networks. The neurons... and activity propagation in coupled neural networks from rat cortical cells grown on a micro-electrode array... for parallel activity...

  2. 2013 Domestic Uranium Production Report

    E-Print Network [OSTI]

    Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA.S. Energy Information Administration | 2013 Domestic Uranium Production Report iii Preface The U.S. Energy://www.eia.doe.gov/glossary/. #12;U.S. Energy Information Administration | 2013 Domestic Uranium Production Report iv Contents

  3. The IMCA: A field instrument for uranium enrichment measurements

    SciTech Connect (OSTI)

    Gardner, G.H.; Koskelo, M.; Moeslinger, M. [Canberra Industries, Meriden, CT (United States); Mayer, R.L. II; McGinnis, B.R. [Lockheed Martin Utility Services, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant; Wishard, B. [International Atomic Energy Agency, Vienna (Austria)

    1996-12-31T23:59:59.000Z

    The IMCA (Inspection Multi-Channel Analyzer) is a portable gamma-ray spectrometer designed to measure the enrichment of uranium either in a laboratory or in the field. The IMCA consists of a Canberra InSpector Multi-Channel Analyzer, sodium iodide or a planar germanium detector, and special application software. The system possesses a high degree of automation. The IMCA uses the uranium enrichment meter principle, and is designed to meet the International Atomic Energy Agency (IAEA) requirements for the verification of enriched uranium materials. The IMCA is available with MGA plutonium isotopic analysis software or MGAU uranium analysis software as well. In this paper, the authors present a detailed description of the hardware and software of the IMCA system, as well as results from preliminary measurements testing compliance of IMCA with IAEA requirements using uranium standards and UF6 cylinders. Measurements performed on UF6 cylinders in the field under variable environmental conditions (temperatures ranging from 0 to 35 C) have shown that good results can be achieved. The enrichment of UF6 contained in the cylinder is determined by using calibration constants generated from an instrument calibration, using traceable uranium oxide standards, performed in the laboratory under controlled environmental conditions. The IMCA software is designed to make the necessary matrix and container corrections to ensure that accurate results are achieved in the field.

  4. Organic Separation Test Results

    SciTech Connect (OSTI)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22T23:59:59.000Z

    Separable organics have been defined as those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be no visible layer of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

  5. Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-1410. Uranium

  6. Domestic Uranium Production Report

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9, 2015Year109 AppendixCostsDistributedSep-1410. Uranium9.

  7. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from U.S.

  8. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from U.S.2.

  9. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from U.S.2.3.

  10. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from U.S.2.3.5.

  11. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from U.S.2.3.5.3.

  12. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium from

  13. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium froma. Uraniumb.

  14. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium froma. Uraniumb.7.

  15. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium froma.

  16. Uranium Marketing Annual Report -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember1. Foreign sales of uranium froma.9.

  17. Fingerprinting Uranium | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office FinalFinancingFingerprinting Uranium

  18. E-Print Network 3.0 - active trail protein Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    already declines the proteolytic activity tremendously and improves protein production... active. Hence, the solubility and accumulation level of ... Source: Groningen,...

  19. E-Print Network 3.0 - active methane weather Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry 48 Universitt Stuttgart Auslandsorientierter Studiengang Summary: Potential of Coalbed Methane Recovery during Active Coalmin- ing... Methane Recovery from Active...

  20. Development of Integrated Online Monitoring Systems for Detection of Diversion at Natural Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A [ORNL] [ORNL; Lee, Denise L [ORNL] [ORNL; Croft, Stephen [ORNL] [ORNL; McElroy, Robert Dennis [ORNL] [ORNL; Hertel, Nolan [Georgia Institute of Technology] [Georgia Institute of Technology; Chapman, Jeffrey Allen [ORNL] [ORNL; Cleveland, Steven L [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Recent work at Oak Ridge National Laboratory (ORNL) has focused on some source term modeling of uranyl nitrate (UN) as part of a comprehensive validation effort employing gamma-ray detector instrumentation for the detection of diversion from declared conversion activities. Conversion, the process by which natural uranium ore (yellowcake) is purified and converted through a series of chemical processes into uranium hexafluoride gas (UF6), has historically been excluded from the nuclear safeguards requirements of the 235U-based nuclear fuel cycle. The undeclared diversion of this product material could potentially provide feedstock for a clandestine weapons program for state or non-state entities. Given the changing global political environment and the increased availability of dual-use nuclear technology, the International Atomic Energy Agency has evolved its policies to emphasize safeguarding this potential feedstock material in response to dynamic and evolving potential diversion pathways. To meet the demand for instrumentation testing at conversion facilities, ORNL developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant. This work investigates gamma-ray signatures of UN circulating in the UNCLE facility and evaluates detector instrumentation sensitivity to UN for safeguards applications. These detector validation activities include assessing detector responses to the UN gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90g U/L of naturally enriched UN will be presented. A range of gamma-ray lines was examined and self-attenuation factors were calculated, in addition to attenuation for transmission measurement of density, concentration and enrichment. A detailed uncertainty analysis will be presented providing insights into instrumentation limitations to spoofing.

  1. Electrodic voltages accompanying stimulated bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Williams, K.H.; N'Guessan, A.L.; Druhan, J.; Long, P.E.; Hubbard, S.S.; Lovley, D.R.; Banfield, J.F.

    2009-11-15T23:59:59.000Z

    The inability to track the products of subsurface microbial activity during stimulated bioremediation has limited its implementation. We used spatiotemporal changes in electrodic potentials (EP) to track the onset and persistence of stimulated sulfate-reducing bacteria in a uranium-contaminated aquifer undergoing acetate amendment. Following acetate injection, anomalous voltages approaching -900 mV were measured between copper electrodes within the aquifer sediments and a single reference electrode at the ground surface. Onset of EP anomalies correlated in time with both the accumulation of dissolved sulfide and the removal of uranium from groundwater. The anomalies persisted for 45 days after halting acetate injection. Current-voltage and current-power relationships between measurement and reference electrodes exhibited a galvanic response, with a maximum power density of 10 mW/m{sup 2} during sulfate reduction. We infer that the EP anomalies resulted from electrochemical differences between geochemically reduced regions and areas having higher oxidation potential. Following the period of sulfate reduction, EP values ranged from -500 to -600 mV and were associated with elevated concentrations of ferrous iron. Within 10 days of the voltage decrease, uranium concentrations rebounded from 0.2 to 0.8 {mu}M, a level still below the background value of 1.5 {mu}M. These findings demonstrate that EP measurements provide an inexpensive and minimally invasive means for monitoring the products of stimulated microbial activity within aquifer sediments and are capable of verifying maintenance of redox conditions favorable for the stability of bioreduced contaminants, such as uranium.

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

  4. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    SciTech Connect (OSTI)

    REGUERA, GEMMA [Michigan State University

    2014-01-16T23:59:59.000Z

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacters conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  5. Radiological Modeling for Determination of Derived Concentration Levels of an Area with Uranium Residual Material - 13533

    SciTech Connect (OSTI)

    Perez-Sanchez, Danyl [CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain)] [CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain)

    2013-07-01T23:59:59.000Z

    As a result of a pilot project developed at the old Spanish 'Junta de Energia Nuclear' to extract uranium from ores, tailings materials were generated. Most of these residual materials were sent back to different uranium mines, but a small amount of it was mixed with conventional building materials and deposited near the old plant until the surrounding ground was flattened. The affected land is included in an area under institutional control and used as recreational area. At the time of processing, uranium isotopes were separated but other radionuclides of the uranium decay series as Th-230, Ra-226 and daughters remain in the residue. Recently, the analyses of samples taken at different ground's depths confirmed their presence. This paper presents the methodology used to calculate the derived concentration level to ensure that the reference dose level of 0.1 mSv y-1 used as radiological criteria. In this study, a radiological impact assessment was performed modeling the area as recreational scenario. The modelization study was carried out with the code RESRAD considering as exposure pathways, external irradiation, inadvertent ingestion of soil, inhalation of resuspended particles, and inhalation of radon (Rn-222). As result was concluded that, if the concentration of Ra-226 in the first 15 cm of soil is lower than, 0.34 Bq g{sup -1}, the dose would not exceed the reference dose. Applying this value as a derived concentration level and comparing with the results of measurements on the ground, some areas with a concentration of activity slightly higher than latter were found. In these zones the remediation proposal has been to cover with a layer of 15 cm of clean material. This action represents a reduction of 85% of the dose and ensures compliance with the reference dose. (authors)

  6. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30T23:59:59.000Z

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  7. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOE Patents [OSTI]

    Horton, James A. (Livermore, CA); Hayden, Jr., Howard W. (Oakridge, TN)

    1995-01-01T23:59:59.000Z

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  8. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect (OSTI)

    Ross, H.P.; Forsgren, C.K. (eds.)

    1992-04-01T23:59:59.000Z

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  9. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  10. APPENDIX J Partition Coefficients For Uranium

    E-Print Network [OSTI]

    APPENDIX J Partition Coefficients For Uranium #12;Appendix J Partition Coefficients For Uranium J.1.0 Background The review of uranium Kd values obtained for a number of soils, crushed rock and their effects on uranium adsorption on soils are discussed below. The solution pH was also used as the basis

  11. Charpy impact test results for low activation ferritic alloys irradiated to 30 dpa

    SciTech Connect (OSTI)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01T23:59:59.000Z

    Miniature specimens of six low activation ferritic alloys have been impact field tested following irradiation at 370{degrees}C to 30 dpa. Comparison of the results with those of control specimens and specimens irradiated to 10 dpa indicates that degradation in the impact behavior appears to have saturated by {approx}10 dpa in at least four of these alloys. The 7.5Cr-2W alloy referred to as GA3X appears most promising for further consideration as a candidate structural material in fusion reactor applications, although the 9Cr-1V alloy may also warrant further investigation.

  12. DEPARTMENT OF ENERGY Excess Uranium Management: Effects of DOE...

    Broader source: Energy.gov (indexed) [DOE]

    Excess Uranium Management: Effects of DOE Transfers of Excess Uranium on Domestic Uranium Mining, Conversion, and Enrichment Industries; Request for Information AGENCY: Office of...

  13. E-Print Network 3.0 - active 8b solar Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Summary: 12;Big Bear Solar Observatory 32 The Sun in XThe Sun in X--Ray LightRay Light Solar Activity MinimumSolar... Activity Minimum ----19961996 Solar Activity...

  14. E-Print Network 3.0 - activity cycles Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology 3 UNCORRECTEDPROOF 2 A method to evaluate the level of solar activity at Summary: the level of solar activity at the remainder of a progressing...

  15. E-Print Network 3.0 - active carbon process Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Point in This Process Will Payments for Offset Activities Occur? 55... as qualifying carbon offset activities in existing markets and regis- tries. Forest carbon projects......

  16. E-Print Network 3.0 - activity waste haw Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    media. These programs include regulatory and monitoring activities for ORNL site... of Air Pollution Control. Radio- active emissions are regulated by EPA under National ......

  17. E-Print Network 3.0 - activation heat Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to collect and distribute solar heat. These buildings have active solar heating systems. Active... in an ordinary fur- nace system. ... Source: North Carolina State...

  18. E-Print Network 3.0 - active chromatin marks Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure Summary: structure II. HATs are co-activatorsHDACscorepressors III. ATP-driven chromatin remodeling complexes IV... is the silent state? What is the active...

  19. E-Print Network 3.0 - activity knee motion Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -second hold in the extended position. Isometric reflex torques from the knee and ankle joint and EMG activity... and smoothed EMG activity was calculated during the hold...

  20. E-Print Network 3.0 - activated carbon cloth Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxide-Carbon Supercapacitors Summary: on synthesizing various activated carbons, aerogels, activated carbon fibers, and cloths with large surface areas... are also the same.10...

  1. E-Print Network 3.0 - active region magnetic Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AND DYNAMICS OF INTERCONNECTING LOOPS AND CORONAL HOLES IN ACTIVE LONGITUDES Summary: Sun. All hot active region loops are visible in this wavelength. Eruptions of new' and...

  2. E-Print Network 3.0 - active fault zone Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth Structure (2nd Edition), 2004 Summary: 292010 Oceanic Transform Faults and Fracture Zones Transform Fault: Active displacement. Fracture Zone: Fossil... fault, no active...

  3. E-Print Network 3.0 - actively cooled plasma Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aspects of nonlinear phenomena. The institute also has a mandate to stimulate plasma research activities... of the activated carbon into hydrophilic nature using ... Source:...

  4. E-Print Network 3.0 - active galaxy ngc Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regions and global infrared emission in the disks of these galaxies... of the phenomenology of infrared activity in galaxies. It is not clear how such activity is triggered...

  5. E-Print Network 3.0 - activated sludge flocs Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects on Waste Activated Sludge Digestion Thomas... activated sludge (WAS) from wastewater treatment plants (WWTP) demands extensive sludge dewatering... structure and are...

  6. E-Print Network 3.0 - active gate driver Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shadow driver works... Device Drivers Active mode: When drivers fail shadow driver works in active mode. Communication... notification ... Source: Pulfrey, David L. -...

  7. E-Print Network 3.0 - active solar systems Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . ACTIVE SOLAR SYSTEMS Solar collectors are designed to take advan- tage of the greenhouse effect. The flat... " solar system (Figure 2). It is called active because it requires...

  8. E-Print Network 3.0 - active solar thermal Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . ACTIVE SOLAR SYSTEMS Solar collectors are designed to take advan- tage of the greenhouse effect. The flat... " solar system (Figure 2). It is called active because it requires...

  9. E-Print Network 3.0 - activities field test Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at North Temperate Lakes-LTER Activities serve approximately 350... elementary, middle, and high school students annually Professional development activities reach 60...

  10. E-Print Network 3.0 - active filter utilizing Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSACTIONS ON POWER ELECTRONICS, VOL. 17, NO. 1, JANUARY 2002 A New Hybrid Active Power Filter (APF) Topology Summary: active power filter topology. The function of the IGBT...

  11. E-Print Network 3.0 - active duty army Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reserve 6 11 12 29 Coast Guard Active Active Duty 3 3 1 7 Coast Guard ... Source: New Hampshire, University of - Department of Electrical and Computer Engineering, Consolidated...

  12. E-Print Network 3.0 - active absorber scheme Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Neuroendocrine Tumors Summary: , this contribution could not be included under the MIRD scheme. Instead, the tumor activity was assumed... most of the 64Cu activity was...

  13. E-Print Network 3.0 - activated spent hds Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Suslick* Summary: active, affordable catalyst able to withstand the harsh hydrotreating conditions of HDS. To improve... , however, do not provide quantitative activity...

  14. E-Print Network 3.0 - active single basin Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    basins... ) existed during the Late Oligocene and Miocene when the rift basins of Thailand were active because active... into three main areas and tec- tonic provinces: 1)...

  15. E-Print Network 3.0 - active filter control Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research works have been concentrated on the active noise and vibration control with smart material systems... in the cabin. There have been many research works on the active...

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  17. Detection of uranium-based nuclear weapons using neutron-induced fission

    SciTech Connect (OSTI)

    Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P. [Los Alamos National Lab., NM (United States); Ewing, R.I.; Marlow, K.W. [Sandia National Labs., Albuquerque, NM (United States)

    1991-12-01T23:59:59.000Z

    Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

  18. Detection of uranium-based nuclear weapons using neutron-induced fission

    SciTech Connect (OSTI)

    Moss, C.E.; Byrd, R.C.; Feldman, W.C.; Auchampaugh, G.F.; Estes, G.P. (Los Alamos National Lab., NM (United States)); Ewing, R.I.; Marlow, K.W. (Sandia National Labs., Albuquerque, NM (United States))

    1991-01-01T23:59:59.000Z

    Although plutonium-based nuclear weapons can usually be detected by their spontaneous emission of neutrons and gammas, the radiation emitted by weapons based entirely on highly-enriched uranium can often be easily shielded. Verification of a treaty that limits the number of such weapons may require an active technique, such as interrogating the suspect assembly with an external neutron source and measuring the number of fission neutrons produced. Difficulties include distinguishing between source and fission neutrons, the variations in yield for different materials and geometries, and the possibility of non-nuclear weapons that may contain significant amounts of fissionable depleted uranium. We describe simple measurements that test the induced-fission technique using an isotopic Am-Li source, an novel energy-sensitive neutron detector, and several small assemblies containing {sup 235}U, {sup 238}U, lead, and polyethylene. In all cases studied, the neutron yields above the source energy are larger for the {sup 235}U assemblies than for assemblies containing only lead or depleted uranium. For more complex geometries, corrections for source transmission may be necessary. The results are promising enough to recommend further experiments and calculations using examples of realistic nuclear and non-nuclear weapons. 5 refs., 11 figs.

  19. Engineering assessment of inactive uranium mill tailings

    SciTech Connect (OSTI)

    Not Available

    1981-07-01T23:59:59.000Z

    The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

  20. United States Transuranium and Uranium Registries. Annual report February 1, 2001--January 31, 2002

    SciTech Connect (OSTI)

    Ehrhart, Susan M. (ed.); Filipy, Ronald E. (ed)

    2002-07-01T23:59:59.000Z

    This report documents the activities of the United States Transuranium and Uranium Registries (USTUR) from February 2001 through January 2002. Progress in continuing collaborations and several new collaborations is reviewed.

  1. Measurements of the spatial and energy distribution of thermal neutrons in uranium, heavy water lattices

    E-Print Network [OSTI]

    Brown, Paul S. (Paul Sherman)

    1962-01-01T23:59:59.000Z

    Intracell activity distributions were measured in three natural uranium, heavy water lattices of 1. 010 inch diameter, aluminum clad rods on triangular spacings of 4. 5 inches, 5. 0 inches, and 5. 75 inches, respectively, ...

  2. Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01T23:59:59.000Z

    Standard Test Method for Determination of Uranium, Oxygen to Uranium (O/U), and Oxygen to Metal (O/M) in Sintered Uranium Dioxide and Gadolinia-Uranium Dioxide Pellets by Atmospheric Equilibration

  3. Fernald vacuum transfer system for uranium materials repackaging

    SciTech Connect (OSTI)

    Kaushiva, Shirley; Weekley, Clint; Molecke, Martin; Polansky, Gary

    2002-02-24T23:59:59.000Z

    The Fernald Environmental Management Project (FEMP) is the site of a former Department of Energy (DOE) uranium processing plant. When production was halted, many materials were left in an intermediate state. Some of this product material included enriched uranium compounds that had to be repackaged for shipment of off-site storage. This paper provides an overview, technical description, and status of a new application of existing technology, a vacuum transfer system, to repackage the uranium bearing compounds for shipment. The vacuum transfer system provides a method of transferring compounds from their current storage configuration into packages that meet the Department of Transportation (DOT) shipping requirements for fissile materials. This is a necessary activity, supporting removal of nuclear materials prior to site decontamination and decommissioning, key to the Fernald site's closure process.

  4. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 3, Ground water hydrology report: Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1994-03-04T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent ground water contamination resulting from processing activities at inactive uranium milling sites (52 FR 36000 (1987)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, 42 USC {section}7901 et seq., the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that for Slick Rock, this assessment shall include hydrogeologic site characterization for two separate uranium processing sites, the Union Carbide (UC) site and the North Continent (NC) site, and for the proposed Burro Canyon disposal site. The water resources protection strategy that describes how the proposed action will comply with the EPA ground water protection standards is presented in Attachment 4. The following site characterization activities are discussed in this attachment: Characterization of the hydrogeologic environment, including hydrostratigraphy, ground water occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing ground water quality by comparison with background water quality and the maximum concentration limits (MCL) of the proposed EPA ground water protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of the source in relation to migration in ground water and hydraulically connected surface water. Description of local water resources, including current and future use, availability, and alternative supplies.

  5. E-Print Network 3.0 - active stall wind Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind Page: << < 1 2 3 4 5 > >> 1 Power control of a wind farm with active stall wind turbines and AC grid connection Summary: Power control of a wind farm with active stall...

  6. E-Print Network 3.0 - active duty military Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    military leave to employees who are called to active duty in accordance with the terms described below... of the two for the remainder of the active duty period. (See...

  7. E-Print Network 3.0 - active case finding Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical space. First we use a location based data mining method to find target activities... . In order to be able to map activities from the source space to a target space,...

  8. E-Print Network 3.0 - awardee names active Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: awardee names active Page: << < 1 2 3 4 5 > >> 1 National Survey to Evaluate the NIH SBIR Program Summary: -27 Activities Affected by the Granting of One or More SBIR...

  9. E-Print Network 3.0 - active matrix pixel Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    > >> 1 4.2: Design of an Improved Pixel for a Polysilicon Active Matrix Organic Light Emitting Diode Display Summary: 4.2: Design of an Improved Pixel for a Polysilicon Active...

  10. E-Print Network 3.0 - active matrix flat Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 4.2: Design of an Improved Pixel for a Polysilicon Active Matrix Organic Light Emitting Diode Display Summary: 4.2: Design of an Improved Pixel for a Polysilicon Active...

  11. E-Print Network 3.0 - active matrix organic Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    14 4.2: Design of an Improved Pixel for a Polysilicon Active Matrix Organic Light Emitting Diode Display Summary: 4.2: Design of an Improved Pixel for a Polysilicon Active...

  12. E-Print Network 3.0 - activate natural killer Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sea ice in Hudson Strait. Killer whale activity during the open water... such as the ecosystem effects of killer whale activity in Hudson Bay. The spatial and temporal occurrence...

  13. E-Print Network 3.0 - active mode locking Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering 10 40 GHz actively mode-locked erbium-doped fiber ring laser using an electro-absorption modulator and a linear optical amplifier Summary: 40 GHz actively mode-locked...

  14. E-Print Network 3.0 - active military sonar Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    powerful scooter motor will be activated to spin a wheel that will propel the tennis ball out... of the launcher tube. The circuit shown to activate this motor from the Epiphany...

  15. E-Print Network 3.0 - active video games Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activated to learn, searching for solutions, both ... Source: Larsson, Thomas - School of Innovation, Design and Engineering, Mlardalen University Collection: Computer...

  16. E-Print Network 3.0 - active xanthene dyes Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: Improved microcapsulation formulation. Dye protects active ingredient from UV degradation increasing its... (Fera) have developed a microcapsulation technology which...

  17. E-Print Network 3.0 - activated sewage sludge Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Collection: Geosciences ; Environmental Sciences and Ecology 66 Advanced Wastewater Treatment Processes Summary: Treatment Plant Conventional Activated Sludge Process...

  18. E-Print Network 3.0 - active defrost scheme Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . . . . . . . . . . . . . . . . . . . . . . . 62 6 An Active Defrost Scheme for Balancing Energy Consumption and Food Quality Loss in Supermarket... , ... Source: Skogestad, Sigurd...

  19. E-Print Network 3.0 - active natural products Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT JULYAUGUST 1998 269 SCHEDULING PROJECTS WITH REPEATING ACTIVITIES Summary: duration. This sequence includes...

  20. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  1. Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications

    E-Print Network [OSTI]

    Helmreich, Grant

    2012-02-14T23:59:59.000Z

    The sintering behavior of uranium and uranium-zirconium alloys in the alpha phase were characterized in this research. Metal uranium powder was produced from pieces of depleted uranium metal acquired from the Y-12 plant via hydriding...

  2. Use of the UNCLE Facility to Assess Integrated Online Monitoring Systems for Detection of Diversions at Uranium Conversion Facilities

    SciTech Connect (OSTI)

    Dewji, Shaheen A [ORNL; Chapman, Jeffrey Allen [ORNL; Lee, Denise L [ORNL; Rauch, Eric [Los Alamos National Laboratory (LANL); Hertel, Nolan [Georgia Institute of Technology

    2011-01-01T23:59:59.000Z

    Historically, the approach to safeguarding nuclear material in the front end of the fuel cycle was implemented only at the stage when UF6 was declared as feedstock for enrichment plants. Recent International Atomic Energy Agency (IAEA) circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exist. Oak Ridge National Laboratory has developed the Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility to simulate the full-scale operating conditions for a purified uranium-bearing aqueous stream exiting the solvent extraction process conducted in a natural uranium conversion plant (NUCP) operating at 6000 MTU/year. Monitoring instruments, including the 3He passive neutron detector developed at Los Alamos National Laboratory and the Endress+Hauser Promass 83F Coriolis meter, have been tested at UNCLE and field tested at Springfields. The field trials demonstrated the need to perform full-scale equipment testing under controlled conditions prior to field deployment of operations and safeguards monitoring at additional plants. Currently, UNCLE is testing neutron-based monitoring for detection of noncompliant activities; however, gamma-ray source term monitoring is currently being explored complementary to the neutron detector in order to detect undeclared activities in a more timely manner. The preliminary results of gamma-ray source term modeling and monitoring at UNCLE are being analyzed as part of a comprehensive source term and detector benchmarking effort. Based on neutron source term detection capabilities, alternative gamma-based detection and monitoring methods will be proposed to more effectively monitor NUCP operations in verifying or detecting deviations from declared conversion activities.

  3. Uranium- and thorium-bearing pegmatites of the United States

    SciTech Connect (OSTI)

    Adams, J.W.; Arengi, J.T.; Parrish, I.S.

    1980-04-01T23:59:59.000Z

    This report is part of the National Uranium Resource Evaluation (NURE) Program designed to identify criteria favorable for the occurrence of the world's significant uranium deposits. This project deals specifically with uranium- and thorium-bearing pegmatites in the United States and, in particular, their distribution and origin. From an extensive literature survey and field examination of 44 pegmatite localities in the United States and Canada, the authors have compiled an index to about 300 uranium- and thorium-bearing pegmatites in the United States, maps giving location of these deposits, and an annotated bibliography to some of the most pertinent literature on the geology of pegmatites. Pegmatites form from late-state magma differentiates rich in volatile constituents with an attendant aqueous vapor phase. It is the presence of an aqueous phase which results in the development of the variable grain size which characterizes pegmatites. All pegmatites occur in areas of tectonic mobility involving crustal material usually along plate margins. Those pegmatites containing radioactive mineral species show, essentially, a similar distribution to those without radioactive minerals. Criteria such as tectonic setting, magma composition, host rock, and elemental indicators among others, all serve to help delineate areas more favorable for uranium- and thorium-bearing pegmatites. The most useful guide remains the radioactivity exhibited by uranium- and thorium-bearing pegmatites. Although pegmatites are frequently noted as favorable hosts for radioactive minerals, the general paucity and sporadic distribution of these minerals and inherent mining and milling difficulties negate the resource potential of pegmatites for uranium and thorium.

  4. Gas-phase CO2 emission toward Cepheus A East: the result of shock activity?

    E-Print Network [OSTI]

    P. Sonnentrucker; E. Gonzlez-Alfonso; D. A. Neufeld; E. A. Bergin; G. J. Melnick; W. J. Forrest; J. L. Pipher; D. M. Watson

    2006-09-05T23:59:59.000Z

    We report the first detection of gas-phase CO2 emission in the star-forming region Cepheus A East, obtained by spectral line mapping of the v2 bending mode at 14.98 micron with the Infrared Spectrograph (IRS) instrument onboard the Spitzer Space Telescope. The gaseous CO2 emission covers a region about 35'' x 25'' in extent, and results from radiative pumping by 15 micron continuum photons emanating predominantly from the HW2 protostellar region. The gaseous CO2 exhibits a temperature distribution ranging from 50 K to 200 K. A correlation between the gas-phase CO2 distribution and that of H2 S(2), a tracer of shock activity, indicates that the CO2 molecules originate in a cool post-shock gas component associated with the outflow powered by HW2. The presence of CO2 ice absorption features at 15.20 micron toward this region and the lack of correlation between the IR continuum emission and the CO2 gas emission distribution further suggest that the gaseous CO2 molecules are mainly sputtered off grain mantles -- by the passage of slow non-dissociative shocks with velocities of 15-30 km/s -- rather than sublimated through grain heating.

  5. Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-zirconium Alloys for Advanced Nuclear Fuel Applications

    E-Print Network [OSTI]

    Garnetti, David J.

    2010-07-14T23:59:59.000Z

    The research in this thesis covers the design and implementation of a depleted uranium (DU) powder production system and the initial results of a DU-Zr-Mg alloy alpha phase sintering experiment where the Mg is a surrogate for Pu and Am. The powder...

  6. Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China

    E-Print Network [OSTI]

    Fayek, Mostafa

    Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern Available online 25 January 2005 Abstract We show evidence that the primary uranium minerals, uraninite-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically

  7. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public's concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  8. E-Print Network 3.0 - active comparator study Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-use studies... , diary studies, activity ... Source: Golle, Philippe - Palo Alto Research Center (PARC) Collection: Computer Technologies and Information Sciences 7...

  9. E-Print Network 3.0 - active nuclear wastes Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disposal site for transuranic (TRU) radio- active waste created during... , americium, curium, and neptunium are created during the produc- tion of nuclear weapons. Transuranic...

  10. E-Print Network 3.0 - augmented nk activity Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Tumor Metastasis in Summary: reported augmentation of NK activity following infusion of adrenaline (14-16, 27). Although species... implicated in mediating stress-induced...

  11. E-Print Network 3.0 - active heater control Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    suborder Scombroidei have independently Summary: event when the activity of the SERCA pumps was reduced. RNase protection assays revealed that heater... be under neural control....

  12. E-Print Network 3.0 - agency iaea activities Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    . On the basis of a recent published report on this topic by the International Atomic Energy Agency (IAEA 1992... measured activity in soil. However, in the ... Source: Pint,...

  13. E-Print Network 3.0 - active power method Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Nonlinear Loads Jos Mahomar, Luis Morn... active power filters. The algorithm is proved by simulation in a multibus industrial power distribution... system and...

  14. E-Print Network 3.0 - active filter system Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of them is the use of a combined system of shunt passive filters and series... load power, reducing costs and increasing overall system efficiency 4. Series active...

  15. E-Print Network 3.0 - active trial operation Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences 4 COGNITIVE NEUROSCIENCE Role of the basal ganglia in switching a planned response Summary: from frontal eye fields, an area shown to be more active for antisaccade...

  16. E-Print Network 3.0 - activity trial adapt Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biology and Medicine 6 Running Head: CONFLICT ADAPTATION FOLLOWING ERRONEOUS RESPONSE PREPARATION Summary: (Botvinick et al., 2001). Reduced ACC activation (sometimes...

  17. E-Print Network 3.0 - activity meters Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing in the Advanced Metering Infrastructure Summary: . The activities of a smart meter are coordinated by its Microcontroller Unit (MCU). The majority of work...

  18. E-Print Network 3.0 - active living study Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RH 21% Summary: All double rooms Community Based Living (CBLV): West College: Political Activism and Artistic... % Where will I end up? Below is a snapshot of where the...

  19. E-Print Network 3.0 - active nitrogen species Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    53 Impacts of Fertilization on Rates of Autotrophic N2 Fixation in Salt Marshes and Cranberry Bogs of Massachusetts Summary: reduced the activity of nitrogen fixers in salt...

  20. E-Print Network 3.0 - amine oxidase activity Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance for methanol... nanotube layers with WO"3 nanocrystals for high- electrochromic activity Short communication Source: Aksay, Ilhan A. - Department of Chemical...

  1. E-Print Network 3.0 - active urea transport Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reconstitution of the UreaNaCl-Washed PSII Membranes... with Various MSPs oxygen evolving activity sample bound MSP (%) mol of O2 (mg of ... Source: Tian, Weidong -...

  2. E-Print Network 3.0 - activated carbon effect Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tyne Collection: Materials Science 18 United States Department of Summary: as qualifying carbon offset activities in existing markets and regis- tries. Forest carbon projects......

  3. E-Print Network 3.0 - active region model Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collection: Physics 72 The main rationale In the 21st Summary: development in the ASEAN region. Chapter 3: The Space Activities of ASEAN Countries investigates the...

  4. E-Print Network 3.0 - active regions based Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on the concept of international cooperation. In order... development in the ASEAN region. Chapter 3: The Space Activities of ASEAN Countries investigates the...

  5. E-Print Network 3.0 - active gilbert cell Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Technology Abstract Significant interest... and attention have been given to the innovation activity occurring within geographic cluster regions. Despite Source: Lin,...

  6. E-Print Network 3.0 - activity centers Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CenterAllison Road Busch CampusCollege Avenue Summary: Apartments Stadium West Lot Student Activities Center Rutgers Student Center Due to scheduled events... Campus Buell...

  7. E-Print Network 3.0 - activate multiple types Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Sciences 11 Dr. Takaki Komiyama Janelia Farm Research Campus Summary: -photon calcium imaging can monitor activity of multiple, spatially defined cells in the mammalian...

  8. E-Print Network 3.0 - active edge silicon Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its... platform allows silicon photonic devices to be integrated with active optoelectronic devices more commonly... through which current can flow. A typical hybrid silicon ......

  9. E-Print Network 3.0 - active carbon stocks Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameters include the mean annual temperature, the initial soil carbon stocks... for bioenergy crops. These activities are still in their early stages, and the accuracy of...

  10. E-Print Network 3.0 - active edge sites Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    active, and those... that carbon radical sites ... Source: Popov, Branko N. - Center for Electrochemical Engineering & Department of Chemical Engineering, University of South...

  11. E-Print Network 3.0 - active galaxies chandra Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Galaxy PKS 2349-014 - Active ... Source: Brandt, William Nielsen - Department of Astronomy and Astrophysics, Pennsylvania State University Collection: Physics 3...

  12. E-Print Network 3.0 - active walk model Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transition in human gait from walking to running as walking speed Summary: the ankle plantar flexors. Despite an increase in muscle activation with walking speed, the...

  13. E-Print Network 3.0 - active living projects Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 5 > >> 41 Roberta E. Rikli, C. Jessie Jones. (1997). Assessing Physical Performance in Independent Older Adults: Issues and Guidelines. Journal of Aging and Physical Activity, 5...

  14. E-Print Network 3.0 - active human promoters Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dem- less ... Source: Collection: Biology and Medicine 8 University of Toronto Governing Council Summary: of International Projects, Agreements, and Other International Activity...

  15. E-Print Network 3.0 - active sers substrate Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biology and Medicine 16 Delivered by Ingenta to: UNIVERSIDADE SAO PAULO IF Summary: and ORC activated substrates is useful in pro- viding directives for the construction of...

  16. E-Print Network 3.0 - activity gis coding Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    code Visit... )" The Authorization Wizard will prompt you for an authorization code; enter your activated code. Support for the ArcGIS... After ... Source: Ronquist, Fredrik -...

  17. E-Print Network 3.0 - active ingredients opp Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diseases responsible for the death of people are directly linked to our diets and food Summary: of these poisons are truly EPA registered or approved; only their active...

  18. E-Print Network 3.0 - activity survey summary Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: activity survey summary Page: << < 1 2 3 4 5 > >> 1 MSU Departmental Assessment Report Spring 2009 Summary: and Spring Semester 2009. 6. A graduating senior survey summary,...

  19. E-Print Network 3.0 - activation regulate fiv Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Series Summary: -like activating enzyme UbaA in Haloferax volcanii Daniel Dixon Ionic and pH regulation in the mosquito larvae... -1 reverse transcriptase evolutionary conserved...

  20. E-Print Network 3.0 - activity based analysis Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences 4 Reasoning about Repairability of Workflows at Design Time Summary: activities can be provided by the workflow designer based on the analysis of different aspects...

  1. E-Print Network 3.0 - active chile ridge Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FORESTS: CONSERVING A GLOBAL TREASURE FRONTIER FORESTS Summary: of GFW-Chile activities and partners in Chile. GFW-Chile would also like to thank the Environmental......

  2. E-Print Network 3.0 - actively growing ataxia Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Progress in Brain Research, Vol. 140 Summary: technologies for recording high- speed activities like saccades are relatively new. De- tailed studies of hand... laboratory has found...

  3. E-Print Network 3.0 - active selective kappa Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pages 701709, Beijing, August 2010 Summary: and common user information through Kappa statistic. Finally, we calculate potential for personalization... us- ers' activities may...

  4. E-Print Network 3.0 - active region spectra Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de Madrid, Dpt. de Astrofsica, Facultad C.C. Fsicas, Madrid, Spain, dmg@astrax.fis.ucm.es, Summary: -infrared indicators of chromospheric activity. The spectra have been...

  5. E-Print Network 3.0 - active mode control Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: simple features have few features active Jan Bredereke: On Preventing FIs which are Shared-Control Mode... On Preventing Telephony Feature Interactions which are...

  6. E-Print Network 3.0 - active mri implants Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interested in participating Summary: while lying inside the MRI scanner as your brain activity is being monitored 2hrs. 1 Computer Studies 2... brains process certain...

  7. E-Print Network 3.0 - active microwave medium Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MA: Artech House, 1981... . 41 F. Ulaby, R. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, vol. 3. Norwood... Sat Passive Microwave Polarimetric...

  8. E-Print Network 3.0 - acid chaperone activity Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    they up-regulate ER-resident chaperones and other enzymatic activities to augment protein folding... with the help of chaperones. A sudden increase in unfolded proteins, a...

  9. E-Print Network 3.0 - active metal brazing Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of nonlinear phenomena. The institute also has a mandate to stimulate plasma research activities... that would develop between the metallic and insulating parts of the...

  10. E-Print Network 3.0 - active screen plasma Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gurudas Ganguli1 Summary: to note that the recent flurry of activity in dusty plasma research has been driven largely by discoveries... 29. Oscillations in a Dusty Plasma...

  11. E-Print Network 3.0 - artificial disc activ Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ; Environmental Sciences and Ecology 9 Pressuredriven outflow and magnetocentrifugal wind from a dynamo active disc Summary: Pressure-driven outflow and magneto-centrifugal...

  12. E-Print Network 3.0 - active farm management Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farm to School Procurement and Social Media Internship Summary: ) for farm to school and school garden professionals Other activities as necessary Qualifications: We... SAMPLE...

  13. E-Print Network 3.0 - active power line Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POWER DELIVERY, VOL. 23, NO. 4, OCTOBER 2008 2535 A New Mathematic Algorithm to Analyze Power Summary: . Shunt active power filter equivalent circuit. system line current is...

  14. E-Print Network 3.0 - active load voltage Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page: << < 1 2 3 4 5 > >> 41 Performance Analysis of a Hybrid Asymmetric Multilevel Inverter for High Voltage Active Power Filter Applications Summary: Performance Analysis of a...

  15. E-Print Network 3.0 - actively inflamed liver Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diverse Roles of Invariant Natural Killer T Cells in Liver Injury and Fibrosis Induced by Carbon Tetrachloride Summary: injection of iNKT activator -galactosylceramide ( -GalCer)...

  16. E-Print Network 3.0 - active flow control Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Control of Resonant Flow Inside a Supersonic Cavity Using High Bandwidth Pulsed Micro-actuators Summary: , Tallahassee, FL 32310 Active control of high speed flows has...

  17. E-Print Network 3.0 - active controls iaac Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Luc DUGARD, Olivier... future. Keywords: automotive suystems, identified models, HLPV control, semi-active, scheduling strategy... in the past years to improve vertical...

  18. E-Print Network 3.0 - activity regulates ampa Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which presy- Summary: The single-channel activity of native AMPA receptors can be stud- ied in outside-out patches excised from... (with cyclothiazide), patches containing one...

  19. E-Print Network 3.0 - activated carbon fixed Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  20. E-Print Network 3.0 - active carbons derived Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest carbon projects... straightforward way to sequester carbon and is the simplest carbon sequestration activity to account for in forest... reductions achieved by...

  1. E-Print Network 3.0 - activated carbon felts Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sible strategy also means actively withdrawing carbon dioxide from the atmosphere2 . Such carbon... sequestration faces multi-faceted chal- lenges: the net withdrawal of carbon...

  2. E-Print Network 3.0 - activate trkb signaling Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signalling downstream of TrkB. Furthermore, the TrkB-dependent calcium release requires PLC activity... signalling, we performed an epistatic ... Source: Amaya, Enrique - Healing...

  3. E-Print Network 3.0 - activation analysis uso Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REMOTO Coordenador Acadmico Summary: , A Microwave remote sensing: active and passive. Boston, MA: Artech House, 1981. v.13. Warner, T.A.; Nellis, M... .; Collins,...

  4. E-Print Network 3.0 - activating rna inhibits Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RNA (VAI RNA from adenovirus), an aptamer RNA that activates PKR, ... Source: Beal, Peter A. - Department of Chemistry, University of Utah Collection: Chemistry 23 In...

  5. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  6. Inherently safe in situ uranium recovery

    DOE Patents [OSTI]

    Krumhansl, James L; Brady, Patrick V

    2014-04-29T23:59:59.000Z

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  7. Uranium Acquisition | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Interest (EOI) to acquire up to 6,800 metric tons of Uranium (MTU) of high purity depleted uranium metal (DU) and related material and services. This request for EOI does...

  8. The End of Cheap Uranium

    E-Print Network [OSTI]

    Dittmar, Michael

    2011-01-01T23:59:59.000Z

    Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

  9. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  10. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  12. Evaluation of health effects in Sequoyah Fuels Corporation workers from accidental exposure to uranium hexafluoride

    SciTech Connect (OSTI)

    Fisher, D.R. (Pacific Northwest Lab., Richland, WA (USA)); Swint, M.J.; Kathren, R.L. (Hanford Environmental Health Foundation, Richland, WA (USA))

    1990-05-01T23:59:59.000Z

    Urine bioassay measurements for uranium and medical laboratory results were studied to determine whether there were any health effects from uranium intake among a group of 31 workers exposed to uranium hexafluoride (UF{sub 6}) and hydrolysis products following the accidental rupture of a 14-ton shipping cylinder in early 1986 at the Sequoyah Fuels Corporation uranium conversion facility in Gore, Oklahoma. Physiological indicators studied to detect kidney tissue damage included tests for urinary protein, casts and cells, blood, specific gravity, and urine pH, blood urea nitrogen, and blood creatinine. We concluded after reviewing two years of follow-up medical data that none of the 31 workers sustained any observable health effects from exposure to uranium. The early excretion of uranium in urine showed more rapid systemic uptake of uranium from the lung than is assumed using the International Commission on Radiological Protection (ICRP) Publication 30 and Publication 54 models. The urinary excretion data from these workers were used to develop an improved systemic recycling model for inhaled soluble uranium. We estimated initial intakes, clearance rates, kidney burdens, and resulting radiation doses to lungs, kidneys, and bone surfaces. 38 refs., 10 figs., 7 tabs.

  13. Modeled atmospheric radon concentrations from uranium mines

    SciTech Connect (OSTI)

    Droppo, J.G.

    1985-04-01T23:59:59.000Z

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  14. High strength uranium-tungsten alloys

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  15. High strength uranium-tungsten alloy process

    DOE Patents [OSTI]

    Dunn, Paul S. (Santa Fe, NM); Sheinberg, Haskell (Los Alamos, NM); Hogan, Billy M. (Los Alamos, NM); Lewis, Homer D. (Bayfield, CO); Dickinson, James M. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  16. URANIUM MILL TAILINGS RADON FLUX CALCULATIONS

    E-Print Network [OSTI]

    URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PI?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Inc. (Golder) was commissioned by EFRC to evaluate the operations of the uranium mill tailings storage in this report were conducted using the WISE Uranium Mill Tailings Radon Flux Calculator, as updated on November

  17. Remediation and Recovery of Uranium from Contaminated

    E-Print Network [OSTI]

    Lovley, Derek

    Remediation and Recovery of Uranium from Contaminated Subsurface Environments with Electrodes K E L that Geobacter species can effectively remove uranium from contaminated groundwater by reducing soluble U was stably precipitated until reoxidized in the presence of oxygen. When an electrode was placed in uranium

  18. Uranium Watch REGULATORY CONFUSION: FEDERALAND STATE

    E-Print Network [OSTI]

    Uranium Watch Report REGULATORY CONFUSION: FEDERALAND STATE ENFORCEMENT OF 40 C.F.R. PART 61 SUBPART W INTRODUCTION 1. This Uranium Watch Report, Regulatory Confusion: Federal and State Enforcement at the White Mesa Uranium Mill, San Juan County, Utah. 2. The DAQ, a Division of the Utah Department

  19. D Riso-R-429 Automated Uranium

    E-Print Network [OSTI]

    routinely used analytical techniques for uranium determina- tions in geological samples, fissionCM i D Riso-R-429 Automated Uranium Analysis by Delayed-Neutron Counting H. Kunzendorf, L. Løvborg AUTOMATED URANIUM ANALYSIS BY DELAYED-NEUTRON COUNTING H. Kunzendorf, L. Løvborg and E.M. Christiansen

  20. Melting characteristics of the stainless steel generated from the uranium conversion plant

    SciTech Connect (OSTI)

    Choi, W.K.; Song, P.S.; Oh, W.Z.; Jung, C.H. [Korea Atomic Energy Research Institute (Korea, Republic of); Min, B.Y. [Chungnam National University, 220 Gung-Dong, Yusung-Gu Taejon 305-764 (Korea, Republic of)

    2007-07-01T23:59:59.000Z

    The partition ratio of cerium (Ce) and uranium (U) in the ingot, slag and dust phases has been investigated for the effect of the slag type, slag concentration and basicity in an electric arc melting process. An electric arc furnace (EAF) was used to melt the stainless steel wastes, simulated by uranium oxide and the real wastes from the uranium conversion plant in Korea Atomic Energy Research Institute (KAERI). The composition of the slag former used to capture the contaminants such as uranium, cerium, and cesium during the melt decontamination process generally consisted of silica (SiO{sub 2}), calcium oxide (CaO) and aluminum oxide (Al{sub 2}O{sub 3}). Also, Calcium fluoride (CaF{sub 2} ), nickel oxide (NiO), and ferric oxide (Fe{sub 2}O{sub 3}) were added to provide an increase in the slag fluidity and oxidative potential. Cerium was used as a surrogate for the uranium because the thermochemical and physical properties of cerium are very similar to those of uranium. Cerium was removed from the ingot phase to slag phase by up to 99% in this study. The absorption ratio of cerium was increased with an increase of the amount of the slag former. And the maximum removal of cerium occurred when the basicity index of the slag former was 0.82. The natural uranium (UO{sub 2}) was partitioned from the ingot phase to the slag phase by up to 95%. The absorption of the natural uranium was considerably dependent on the basicity index of the slag former and the composition of the slag former. The optimum condition for the removal of the uranium was about 1.5 for the basicity index and 15 wt% of the slag former. According to the increase of the amount of slag former, the absorption of uranium oxide in the slag phase was linearly increased due to an increase of its capacity to capture uranium oxide within the slag phase. Through experiments with various slag formers, we verified that the slag formers containing calcium fluoride (CaF{sub 2}) and a high amount of silica were more effective for a melt decontamination of stainless steel wastes contaminated with uranium. During the melting tests with stainless steel wastes from the uranium conversion plant(UCP ) in KAERI, we found that the results of the uranium decontamination were very similar to those of the uranium oxide from the melting of stimulated metal wastes. (authors)

  1. E-Print Network 3.0 - active cascade volcano Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Living with Volcanic Risk in the Cascades U.S. Department of the Interior Summary: ash and rock potentially active volcanoes. Cascade volcanoes tend to erupt explosively, and...

  2. E-Print Network 3.0 - activator t-pa current Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vol. 91, pp. 3670-3674, April 1994 Summary: activator (tPA) requires an Intravenous infusion (1.5-3 h) became the clearance oftPA from the circulation... -normal...

  3. E-Print Network 3.0 - activated lif nanorods Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activity was examined for the CuPt nanoparticles and nanorods supported on -Al2O... Synthesis of CuPt Nanorod Catalysts with Tunable Lengths Qingsheng Liu, Zhen Yan, Nathaniel...

  4. E-Print Network 3.0 - activated anion channel Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ; Chemistry 63 Cystic fibrosis transmembrane conductance regulator in teleost fish W.S. Marshalla,*, T.D. Singerb Summary: to be eluci- Table 1 Activation by PKA and ATP of...

  5. E-Print Network 3.0 - anion channel activity Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ; Chemistry 63 Cystic fibrosis transmembrane conductance regulator in teleost fish W.S. Marshalla,*, T.D. Singerb Summary: to be eluci- Table 1 Activation by PKA and ATP of...

  6. E-Print Network 3.0 - active ion transport Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gases,2-6 or in the active... , oscillations in the electric field are damped in the bulk plasma and ion transport is governed by ion drift... , these oscillations are damped...

  7. E-Print Network 3.0 - active region evolution Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    56 The main rationale In the 21st Summary: on the evolution and recent status of the ASEAN Organization and its space activities for enhancing sustainable... development in the...

  8. E-Print Network 3.0 - activated gaas surface Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collection: Materials Science 8 Dissimilar and Nanomaterials for Optoelectronic Devices Summary: ) on GaAs Diluted-N-based QW Sb-based QW (GaInNAsSb) QD-based active...

  9. E-Print Network 3.0 - active earth pressure Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a,b Summary: is a COLLADA (COLLAborative Design Activity) model supported by Google's SketchUp tool and Google Earth. 3D... it into Google Earth for display. COLLADA is for...

  10. E-Print Network 3.0 - activate multiple p2x Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP Debra A. Cockayne1... properties. P2X3 receptors are rapidly desensitizing, activated...

  11. E-Print Network 3.0 - activity exposure rate Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the author for internal non-commercial research Summary: in activity patterns, ages, sex, and other qualities, exposure is widely used as a marker for dose... rate) affecting...

  12. E-Print Network 3.0 - active fault diagnosis Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: active fault diagnosis Page: << < 1 2 3 4 5 > >> 1 932 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 5, MAY 2007...

  13. E-Print Network 3.0 - activates apical cl- Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alone do not account for barrier function Summary: activities and protein content. CaCl2 was added to a final concentration of 30 mM, and after 15 min on ice... for the...

  14. E-Print Network 3.0 - activates crac channels Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Medicine 16 Supplementary Table 1. Solutions for whole-cell recording Name NaCl CaCl2 MgCl2 Glucose HEPES Summary: activates Ca2+ influx through CRAC channels in S2 cells....

  15. E-Print Network 3.0 - active vertical fin Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: active to tilt the caudal fin at an angle to the vertical 26. In some fish, especially those known... . Low-aspect ratio pectoral fins in sharks function to alter...

  16. E-Print Network 3.0 - alkali activated fly Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    activated fly Page: << < 1 2 3 4 5 > >> 1 Technical Report Documentation Page 1. Report No. Summary: Concrete, Coal Combustion By-Products, Fly Ash, High-Volume Fly Ash Concrete,...

  17. E-Print Network 3.0 - active methylene groups Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Technology Collection: Chemistry 84 1,4-Dimethyl-l,4,5,6-hexahydro-l,2,3,4-tetrazine. A Cyclic cis-2-Tetrazene Summary: ) are described. The decrease in activation...

  18. E-Print Network 3.0 - activity fluid intake Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between CT activity and salt intake in male... , Striegel-Moore, & Rodin, 1998; Stricker et al., 1991). NaCl intake may compensate for the fluid... (Danielson & Buggy, 1979;...

  19. E-Print Network 3.0 - active trivalent ions Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trivalent. 1.INTRODUCTION It is well known that the compoundsRBa2Cu307 (RY or rare earth ion... are redox active, and can be found in their trivalent and tetravalent oxidation...

  20. E-Print Network 3.0 - active photonic crystal Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode Summary: the active material. The photonic crystal is also used to couple pump...

  1. E-Print Network 3.0 - activate mapks ap-1 Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    j.cub.2010.01.019 MAPK Substrate Competition Summary: on transcriptional activity of Bcd and provide evidence suggesting that Bcd, a direct substrate of MAPK, decreases... of...

  2. E-Print Network 3.0 - activates dna damage Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 1998, Copyright 1998 by Cell Press Reconstitution of an SOS Response Pathway Summary: BCD enzyme facilitates the formation of an activeSummary RecA nucleoprotein filament on...

  3. E-Print Network 3.0 - active marrow absorbed Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biology and Medicine 91 Radiotherapy and Dosimetry of 64 Cu-TETA-Tyr3 Summary: MIRD techniques, and S-values (mean absorbed dose per unit cumulative activity) for 64 Cu...

  4. E-Print Network 3.0 - active galactic nuclear Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pulsars... you'd . . . Active Galactic . . . X-ray binaries Pulsars and relatives Gamma-ray bursts Gravitational... 2 of 36 Go Back Full Screen Close Quit 1. Introduction to the...

  5. E-Print Network 3.0 - active galactic nucleus Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pulsars... you'd . . . Active Galactic . . . X-ray binaries Pulsars and relatives Gamma-ray bursts Gravitational... 2 of 36 Go Back Full Screen Close Quit 1. Introduction to the...

  6. E-Print Network 3.0 - active rap2 transgenic Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Pseudomonas syringae type III effectors and coronatine Summary: genes in P. syringae pv. phaseolicola do not activate RAP2.6 promoter. RAP2.6-LUC transgenic plants were......

  7. Interaction of Uranium(VI) with Phthalic Acid

    SciTech Connect (OSTI)

    Vazquez, G.; Dodge, C; Francis, A

    2008-01-01T23:59:59.000Z

    Phthalic acid, a ubiquitous organic compound found in soil, water, and in domestic and nuclear wastes can affect the mobility and bioavailability of metals and radionuclides. We examined the complexation of uranium with phthalic acid by potentiometric titration, electrospray ionization-mass spectroscopy (ESI-MS), and extended X-ray absorption fine structure (EXAFS) analysis. Potentiometric titration of a 1:1 U/phthalic acid indicated uranyl ion bonding with both carboxylate groups of phthalic acid; above pH 5 the uranyl ion underwent hydrolysis with one hydroxyl group coordinated to the inner-sphere of uranium. In the presence of excess phthalic acid, ESI-MS analysis revealed the formation of both 1:1 and 1:2 U/phthalic acid complexes. EXAFS studies confirmed the mononuclear biligand 1:2 U/phthalic acid complex as the predominant form. These results show that phthalates can form soluble stable complexes with uranium and may affect its mobility.

  8. Method for providing uranium with a protective copper coating

    DOE Patents [OSTI]

    Waldrop, Forrest B. (Powell, TN); Jones, Edward (Knoxville, TN)

    1981-01-01T23:59:59.000Z

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  10. Preserving Ultra-Pure Uranium-233

    SciTech Connect (OSTI)

    Krichinsky, Alan M [ORNL; Goldberg, Dr. Steven A. [DOE SC - Chicago Office; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL)

    2011-10-01T23:59:59.000Z

    Uranium-233 ({sup 233}U) is a synthetic isotope of uranium formed under reactor conditions during neutron capture by natural thorium ({sup 232}Th). At high purities, this synthetic isotope serves as a crucial reference material for accurately quantifying and characterizing uranium-bearing materials assays and isotopic distributions for domestic and international nuclear safeguards. Separated, high purity {sup 233}U is stored in vaults at Oak Ridge National Laboratory (ORNL). These materials represent a broad spectrum of {sup 233}U from the standpoint of isotopic purity - the purest being crucial for precise analyses in safeguarding uranium. All {sup 233}U at ORNL is currently scheduled to be disposed of by down-blending with depleted uranium beginning in 2015. This will reduce safety concerns and security costs associated with storage. Down-blending this material will permanently destroy its potential value as a certified reference material for use in uranium analyses. Furthermore, no credible options exist for replacing {sup 233}U due to the lack of operating production capability and the high cost of restarting currently shut down capabilities. A study was commissioned to determine the need for preserving high-purity {sup 233}U. This study looked at the current supply and the historical and continuing domestic need for this crucial isotope. It examined the gap in supplies and uses to meet domestic needs and extrapolated them in the context of international safeguards and security activities - superimposed on the recognition that existing supplies are being depleted while candidate replacement material is being prepared for disposal. This study found that the total worldwide need by this projection is at least 850 g of certified {sup 233}U reference material over the next 50 years. This amount also includes a strategic reserve. To meet this need, 18 individual items totaling 959 g of {sup 233}U were identified as candidates for establishing a lasting supply of certified reference materials (CRM), all having an isotopic purity of at least 99.4% {sup 233}U and including materials up to 99.996% purity. Current plans include rescuing the purest {sup 233}U materials during a 3-year project beginning in FY 2012 in three phases involving preparations, handling preserved materials, and cleanup. The first year will involve preparations for handling the rescued material for sampling, analysis, distribution, and storage. Such preparations involve modifying or developing work control documents and physical preparations in the laboratory, which include preparing space for new material-handling equipment and procuring and (in some cases) refurbishing equipment needed for handling {sup 233}U or qualifying candidate CRM. Once preparations are complete, an evaluation of readiness will be conducted by independent reviewers to verify that the equipment, work controls, and personnel are ready for operations involving handling radioactive materials with nuclear criticality safety as well as radiological control requirements. The material-handling phase will begin in FY 2013 and be completed early in FY 2014, as currently scheduled. Material handling involves retrieving candidate CRM items from the ORNL storage facility and shipping them to another laboratory at ORNL; receiving and handling rescued items at the laboratory (including any needed initial processing, acquisition and analysis of samples from each item, and preparation for shipment); and shipping bulk material to destination labs or to a yet-to-be-designated storage location. There are seven groups of {sup 233}U identified for handling based on isotopic purity that require the utmost care to prevent cross-contamination. The last phase, cleanup, also will be completed in 2014. It involves cleaning and removing the equipment and material-handling boxes and characterizing, documenting, and disposing of waste. As part of initial planning, the cost of rescuing candidate {sup 233}U items was estimated roughly. The annualized costs were found to be $1,228K in FY 2012, $1,375K in FY 2013,

  11. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  12. Bioremediation of ground water contaminants at a uranium mill tailings site

    SciTech Connect (OSTI)

    Barton, L.L.; Nuttall, H.E.; Thomson, B.M.; Lutze, W. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    Ground water contaminated with uranium from milling operations must be remediated to reduce the migration of soluble toxic compounds. At the mill tailings site near Tuba City, Arizona (USA) the approach is to employ bioremediation for in situ immobilization of uranium by bacterial reduction of uranyl, U(VI), compounds to uraninite, U(IV). In this initial phase of remediation, details are provided to indicate the magnitude of the contamination problem and to present preliminary evidence supporting the proposition that bacterial immobilization of uranium is possible. Additionally, consideration is given to contaminating cations and anions that may be at toxic levels in ground water at this uranium mill tailing site and detoxification strategies using bacteria are addressed. A model concept is employed so that results obtained at the Tuba City site could contribute to bioremediation of ground water at other uranium mill tailings sites.

  13. Uranium effluent testing for the Oak Ridge Toxic Substances Control Act mixed waste incinerator

    SciTech Connect (OSTI)

    Shor, J.T. [Oak Ridge National Lab., TN (United States); Bostick, W.D.; Hoffmann, D.P.; Gibson, L.V. Jr. [Oak Ridge K-25 Site, TN (United States); Ho, T.C. [Lamar Univ., Beaumont, TX (United States). Dept. of Chemical Engineering

    1993-07-01T23:59:59.000Z

    The Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator has been undergoing a series of routine tests to determine uranium partitioning to the stack, scrubber waters, and bottom ash. This paper discusses the results of the most recent experiment in which relatively high rates of uranium stack gas emissions were identified: 6.11 g/h or 8 wt % based on the uranium feed. These data are compared with earlier data, and an empirical correlation is suggested between the stack emissions of uranium and the product of the uranium and chlorine concentration of the feed. This is consistent with certain findings with other metals, in which increasing chlorine feed contents led to increasing emissions.

  14. Uranium hydrogeochemical and stream sediment reconnaissance data release for the Dubois NTMS Quadrangle, Idaho/Montana, including concentrations of forty-five additional elements

    SciTech Connect (OSTI)

    LaDelfe, C.M.

    1980-08-01T23:59:59.000Z

    Totals of 1024 water samples and 1600 sediment samples were collected from 1669 locations in the Dubois quadrangle. Water samples were taken at streams, springs, and wells; sediment samples were collected from streams and springs. All field and analytical data are presented for waters in Appendix I-A and for sediments in I-B. All elemental analyses were performed at the LASL. Water samples were initially analyzed for uranium by fluorometry. All water samples containing more than the upper detection limit of uranium were reanalyzed by delayed neutron counting. Sediments were analyzed for uranium and thorium as well as aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chlorine, chromium, cobalt, copper, dysprosium, europium, gold, hafnium, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, nickel, niobium, potassium rubidium, samarium, scandium, selenium, silver, sodium, strontium, tantalum, terbium, tin, titanium, tungsten, vanadium, ytterbium, zinc and zirconium. All sediments were analyzed for uranium by delayed-neutron counting. Other elemental concentrations in sediments were determined by neutron-activation analysis for 30 elements, by x-ray fluorescence for 12 elements, and by arc-source emission spectrography for 2 elements. Analytical results for sediments are reported as parts per million.

  15. Current issues (and problems) in uranium mine and mill site remediation

    SciTech Connect (OSTI)

    Quarch, H. [DSR GmbH, Saarbruecken (Germany); Kuhlmann, J.; Zettwoog, P. [CERTAC, Auffargis (France)

    1994-12-31T23:59:59.000Z

    The environmental impact of the mining and milling of uranium ores is similar to that of traditional metal mining with the added factor of the characteristic radioactivity in uranium ores. Residues of these ores therefore generate specific potential hazards requiring special precautions on a site specific basis, as well as special regulatory procedures and controls to ensure protection of public health and safety in the long term. There are strong indications that on a global scale U-mining tailings management and remediation-activities are steadily becoming governed by the ultimate goal of sustainable stabilization and re-establishment of a healthy environment, rather than by immediate or short term needs. In Central Europe rehabilitation of uranium mining and milling districts has only started. Some problems are listed as follows: (1) Limitation, long term control and prediction of aquatic and atmospheric dispersal of contaminants from tailings impoundments, waste rock dumps and abandoned underground mines, (2) Dewatering of tailings (large volumes), (3) Design of cover systems and inhibition of microbian process, (4) Controlled flooding of extensive underground mine workings and related prognosis and control of containment dispersion, (5) Reduction of Rn-exhalation during the flooding process and after mine abandonment, in particular in areas close to densely populated regions, (6) Determination of long term radiological impacts on residents near sources of contamination and identification of natural background levels, (7) Identification of critical containment pathways that remain active, (8) Conception and implementation of a comprehensive monitoring system for all pathways which would operate on a long term basis, (9) Limitation of mine water drainage to be treated and decontaminated and of resulting sludges (in considerable quantities) to be disposed of and which would have to be classified as hazardous waste in the future due to their radionuclide content.

  16. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    SciTech Connect (OSTI)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J. [Los Alamos Technical Associates, Inc., NM (US); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (US)

    1993-04-01T23:59:59.000Z

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  17. National Uranium Resource Evaluation. Bibliographic index of Grand Junction office uranium reports

    SciTech Connect (OSTI)

    Johnson, J.B.

    1981-05-01T23:59:59.000Z

    In October 1978, Mesa College entered into subcontract with Bendix Field Engineering Corporation (BFEC) to prepare a bibliographic index of the uranium raw materials reports issued by the Grand Junction Office of the US Department of Energy (DOE). Bendix, prime contractor to the Grand Junction Office, operates the Technical Library at the DOE facility. Since the early 1950s, approximately 2700 reports have been issued by the Grand Junction Office. These reports were the results of uranium investigations conducted by federal agencies and their subcontractors. The majority of the reports cover geology, mineralogy, and metallurgy of uranium and/or thorium. No single, complete list of these reports existed. The purpose of this subcontract was to compile a comprehensive index to these reports. The Mesa College geology faculty worked with the BFEC and DOE staffs to develop the format for the index. Undergraduate geology students from Mesa compiled a master record sheet for each report. All reports issued up to January 1, 1979 were included in the bibliography. The bibliography is in preliminary, unedited form. It is being open-filed at this time, on microfiche, to make the information available to the public on a timely basis. The bibliography is divided into a master record list arranged in alpha-numeric order by report identification number, with separate indices arranged by title, author, state and county, 1/sup 0/ x 2/sup 0/ NTMS quadrangle, key words, and exploration area.

  18. Independent Activity Report, Lawrence Livermore National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    technicians, and the Alameda County Fire Department to a fire in a fume hood containing a depleted uranium part. Independent Activity Report, Lawrence Livermore National Laboratory...

  19. Disease Mutations in Rab7 Result in Unregulated Nucleotide Exchange and Inappropriate Activation

    SciTech Connect (OSTI)

    B McCray; E Skordalakes; J Taylor

    2011-12-31T23:59:59.000Z

    Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 A crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Through extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.

  20. Elucidating Bioreductive Transformations within Physically Complex Media: Impact on the Fate and Transport of Uranium and Chromium

    SciTech Connect (OSTI)

    Scott Fendorf; Chris Francis; Phil Jardine; Shawn Benner

    2009-03-01T23:59:59.000Z

    In situ stabilization (inclusive of natural attenuation) of toxic metals and radionuclides is an attractive approach for remediating many contaminated DOE sites. By immobilizing toxic metals and radionuclides in place, the removal of contaminated water to the surface for treatment as well as the associated disposal costs are avoided. To enhance in situ remediaton, microbiological reductive stabilization of contaminant metals has been, and continues to be, actively explored. It is likely that surface and subsurface microbial activity can alter the redox state of toxic metals and radionuclides, either directly or indirectly, so they are rendered immobile. Furthermore, anaerobic bacterial metabolic products will help to buffer pulses of oxidation, typically from fluxes of nitrate or molecular oxygen, and thus may stabilize reduced contaminants from oxidative mobilization. Uranium and chromium are two elements of particular concern within the DOE complex that, owing to their abundance and toxicity, appear well suited for biologically mediated reductive stabilization. Subsurface microbial activity can alter the redox state of toxic metals and radionuclides, rending them immobile. Imparting an important criterion on the probability that contaminants will undergo reductive stabilization, however, is the chemical and physical heterogeneity of the media. Our research first examined microbially induced transformation of iron (hydr)oxide minerals and their impact on contaminant attenuation. We revealed that in intricate cascade of geochemical reactions is induced by microbially produced Fe(II), and that during transformation contaminants such as U(VI) can be incorporated into the structure, and a set of Fe(II) bearing solids capable of reducing Cr(VI) and stabilizing resulting Cr(III). We also note, however, that common subsurface constituents such as phosphate can modify iron oxide transformation pathways and thus impact contaminant sequestrationaffecting both Cr and U stabilization. We extended our work to explore factors controlling the sequestration of uranium in the subsurface, with a particular emphasis on mineralogic and geochemical complexity. We reveal that one of the primary factors controlling uranium reduction, via both biological and chemical pathways, is the aqueous speciation of U(VI). Specifically, ternary calcium-uranyl-carbonato complexes stabilize U(VI) relative to reduction. However, countering the lack of reduction, we note a novel sequestration pathway in which the U(VI), as the uranate ion, is incorporated into the structure of transformation iron oxides; magnetite and goethite, both products of Fe(II) induced transformation of ferrihydrite, harbor appreciable quantities of uranium. In sum, our results provide important information on predicting and potentially controlling the migration of chromium and uranium within the DOE complex.

  1. Uranium Reduction in Sediments under Diffusion-Limited Transport of

    E-Print Network [OSTI]

    Hazen, Terry

    .TheseresultsalsosuggestthatlowUconcentrations in groundwater samples from OC-treated sediments are not necessarily indicative of pervasive U reduction because. Introduction Uranium (U) is an important subsurface contaminant at sites associated with its mining). In addition, modeling studies indicate that pulsed nutrient injection can result in more effective remediation

  2. Positive Feedback Regulation Results in Spatial Clustering and Fast Spreading of Active Signaling Molecules on a Cell Membrane

    E-Print Network [OSTI]

    Jayajit Das; Mehran Kardar; Arup K. Chakraborty

    2009-06-29T23:59:59.000Z

    Positive feedback regulation is ubiquitous in cell signaling networks, often leading to binary outcomes in response to graded stimuli. However, the role of such feedbacks in clustering, and in spatial spreading of activated molecules, has come to be appreciated only recently. We focus on the latter, using a simple model developed in the context of Ras activation with competing negative and positive feedback mechanisms. We find that positive feedback, in the presence of slow diffusion, results in clustering of activated molecules on the plasma membrane, and rapid spatial spreading as the front of the cluster propagates with a constant velocity (dependent on the feedback strength). The advancing fronts of the clusters of the activated species are rough, with scaling consistent with the Kardar-Parisi-Zhang (KPZ) equation in one dimension. Our minimal model is general enough to describe signal transduction in a wide variety of biological networks where activity in the membrane-proximal region is subject to feedback regulation.

  3. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    SciTech Connect (OSTI)

    Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

    2010-02-01T23:59:59.000Z

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  4. Annual status report on the Uranium Mill Tailings Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    This fourteenth annual status report for the Uranium Mill Tailings Remedial Action (UMTRA) Project Office summarizes activities of the Uranium Mill Tailings Remedial Action Surface (UMTRA-Surface) and Uranium Mill Tailings Remedial Action Groundwater (UMTRA-Groundwater) Projects undertaken during fiscal year (FY) 1992 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1993 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604. The DOE will continue to submit annual reports to DOE-Headquarters, the states, tribes, and local representatives through Project completion in order to inform the public of the yearly Project status. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive material (RRM) located on the inactive uranium processing sites in a safe and environmentally sound manner, and to minimize or eliminate potential health hazards. Commercial and residential properties near designated processing sites that are contaminated with material from the sites, herein referred to as ``vicinity properties (VP),`` are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated VPs located in 10 states, and the VPs associated with the Edgemont, South Dakota, uranium mill currently owned by the Tennessee Valley Authority (TVA) (Figure A.1, Appendix A).

  5. Summary report on reprocessing evaluation of selected inactive uranium mill tailings sites

    SciTech Connect (OSTI)

    Not Available

    1983-09-01T23:59:59.000Z

    Sandia National Laboratories has been assisting the Department of Energy in the Uranium Mill Tailings Remedial Actions Program (UMTRAP) the purpose of which is to implement the provisions of Title I of Public Law 95-604, Uranium Mill Tailings Radiation Control Act of 1978.'' As part of this program, there was a need to evaluate the mineral concentration of the residual radioactive materials at some of the designated processing sites to determine whether mineral recovery would be practicable. Accordingly, Sandia contracted Mountain States Research and Development (MSRD), a division of Mountain States Mineral Enterprises, to drill, sample, and test tailings at 12 sites to evaluate the cost of and the revenue that could be derived from mineral recovery. UMTRAP related environmental and engineering sampling and support activities were performed in conjunction with the MSRD operations. This summary report presents a brief description of the various activities in the program and of the data and information obtained and summarizes the results. 8 refs., 9 tabs.

  6. Ultraslow Wave Nuclear Burning of Uranium-Plutonium Fissile Medium on Epithermal Neutrons

    E-Print Network [OSTI]

    V. D. Rusov; V. A. Tarasov; M. V. Eingorn; S. A. Chernezhenko; A. A. Kakaev; V. M. Vashchenko; M. E. Beglaryan

    2014-09-29T23:59:59.000Z

    For a fissile medium, originally consisting of uranium-238, the investigation of fulfillment of the wave burning criterion in a wide range of neutron energies is conducted for the first time, and a possibility of wave nuclear burning not only in the region of fast neutrons, but also for cold, epithermal and resonance ones is discovered for the first time. For the first time the results of the investigation of the Feoktistov criterion fulfillment for a fissile medium, originally consisting of uranium-238 dioxide with enrichments 4.38%, 2.00%, 1.00%, 0.71% and 0.50% with respect to uranium-235, in the region of neutron energies 0.015-10.0eV are presented. These results indicate a possibility of ultraslow wave neutron-nuclear burning mode realization in the uranium-plutonium media, originally (before the wave initiation by external neutron source) having enrichments with respect to uranium-235, corresponding to the subcritical state, in the regions of cold, thermal, epithermal and resonance neutrons. In order to validate the conclusions, based on the slow wave neutron-nuclear burning criterion fulfillment depending on the neutron energy, the numerical modeling of ultraslow wave neutron-nuclear burning of a natural uranium in the epithermal region of neutron energies (0.1-7.0eV) was conducted for the first time. The presented simulated results indicate the realization of the ultraslow wave neutron-nuclear burning of the natural uranium for the epithermal neutrons.

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

  8. U.S. Environmental Protection Agency Evaluation of Uranium Mining TENORM Wastes-Characteristics, Occurrence, and Risks

    SciTech Connect (OSTI)

    Setlow, L.W. [U.S. Environmental Protection Agency, Office of Radiation and Indoor Air (6608J), Washington, DC (United States); Peake, R.T. [U.S. Environmental Protection Agency, Office of Radiation and Indoor Air (6608J), Washington, DC (United States)

    2007-07-01T23:59:59.000Z

    The U.S. Environmental Protection Agency is completing a multi year effort to issue technical reports and obtain stakeholder views on future programs to mitigate potential hazards associated with uranium mining Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM). The technical reports are the most comprehensive issued by the Agency on this topic, and should have utility for reclamation of abandoned uranium mines, as well as providing information for new mines proposed by the uranium mining industry. This presentation will provide principal results of the three technical reports issued, and elements of the proposed EPA program for uranium mining TENORM. (authors)

  9. E-Print Network 3.0 - actively forming gypsum Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for formation of gypsum) for the reference solution... by ICP-mass spectroscopy analysis for calcium. 4. Results and discussion Gypsum scale can form due... of...

  10. E-Print Network 3.0 - active metabolite fdump Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a result, full MRSI Source: Hall, Lawrence O. - Department of Computer Science and Engineering, University of South Florida Collection: Computer Technologies and Information...

  11. Measurements of /sup 234/U, /sup 238/U and /sup 230/Th in excreta of uranium-mill crushermen

    SciTech Connect (OSTI)

    Fisher, D.R.; Jackson, P.O.; Brodacynski, G.G.; Scherpelz, R.I.

    1982-07-01T23:59:59.000Z

    Uranium and thorium levels in excreta of uranium mill crushermen who are routinely exposed to airborne uranium ore dust were measured. The purpose was to determine whether /sup 230/Th was preferentially retained over either /sup 234/U or /sup 238/U in the body. Urine and fecal samples were obtained from fourteen active crushermen with long histories of exposure to uranium ore dust, plus four retired crushermen and three control individuals for comparison. Radiochemical procedures were used to separate out the uranium and thorium fractions, which were then electroplated on stainless steel discs and assayed by alpha spectrometry. Significantly greater activity levels of /sup 234/U and /sup 238/U were measured in both urine and fecal samples obtained from uranium mill crushermen, indicating that uranium in the inhaled ore dust was cleared from the body with a shorter biological half-time than the daughter product /sup 230/Th. The measurements also indicated that uranium and thorium separate in vivo and have distinctly different metabolic pathways and transfer rates in the body. The appropriateness of current ICRP retention and clearance parameters for /sup 230/Th in ore dust is questioned.

  12. Uranium mill tailings remedial action project real estate management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This plan summarizes the real estate requirements of the US Department of Energy`s (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence.

  13. Uranium in Hanford Site 300 Area: Extraction Data on Borehole Sediments

    SciTech Connect (OSTI)

    Wang, Guohui; Serne, R. Jeffrey; Lindberg, Michael J.; Um, Wooyong; Bjornstad, Bruce N.; Williams, Benjamin D.; Kutynakov, I. V.; Wang, Zheming; Qafoku, Nikolla

    2012-11-26T23:59:59.000Z

    In this study, sediments collected from boreholes drilled in 2010 and 2011 as part of a remedial investigation/feasibility study were characterized. The wells, located within or around two process ponds and one process trench waste site, were characterized in terms of total uranium concentration, mobile fraction of uranium, particle size, and moisture content along the borehole depth. In general, the gravel-dominated sediments of the vadose zone Hanford formation in all investigated boreholes had low moisture contents. Based on total uranium content, a total of 48 vadose zone and periodically rewetted zone sediment samples were selected for more detailed characterization, including measuring the concentration of uranium extracted with 8 M nitric acid, and leached using bicarbonate mixed solutions to determine the liable uranium (U(VI)) contents. In addition, water extraction was conducted on 17 selected sediments. Results from the sediment acid and bicarbonate extractions indicated the total concentrations of anthropogenic labile uranium in the sediments varied among the investigated boreholes. The peak uranium concentration (114.84 g/g, acid extract) in <2-mm size fractions was found in borehole 399 1-55, which was drilled directly in the southwest corner of the North Process Pond. Lower uranium concentrations (~0.32.5 g/g, acid extract) in <2-mm size fractions were found in boreholes 399-1-57, 399-1-58, and 399-1-59, which were drilled either near the Columbia River or inland and upgradient of any waste process ponds or trenches. A general trend of total uranium concentrations was observed that increased as the particle size decreased when relating the sediment particle size and acid extractable uranium concentrations in two selected sediment samples. The labile uranium bicarbonate leaching kinetic experiments on three selected sediments indicated a two-step leaching rate: an initial rapid release, followed by a slow continual release of uranium from the sediment. Based on the uranium leaching kinetic results, quasi equilibrium can be assumed after 1000-h batch reaction time in this study.

  14. Defining Conditions for Maximizing Bioreduction of Uranium

    SciTech Connect (OSTI)

    David C. White; Aaron D. Peacock; Yun-Juan Chang; Roland Geyer; Philip E. Long; Jonathan D. Istok; Amanda N.; R. Todd Anderson; Dora Ogles

    2004-03-17T23:59:59.000Z

    Correlations between modifying electron donor and acceptor accessibility, the in-situ microbial community, and bioreduction of Uranium at the FRC and UMTRA research sites indicated that significant modifications in the rate, amount and by inference the potential stability of immobilized Uranium are feasible in these environments. The in-situ microbial community at these sites was assessed with a combination of lipid and real-time molecular techniques providing quantitative insights of effects of electron donor and manipulations. Increased (9mM in 2003 vs 3mM 2002) donor amendment at the Old Rifle site resulted in the stimulation of anaerobic conditions downgradient of the injection gallery. Biomass within the test plot increased relative to the control well at 17 feet. Q-PCR specific for IRB/SRB showed increased copy numbers within the test plot and was the highest at the injection gallery. Q-PCR specific for Geobacter sp. showed increased copy numbers within the test plot but further downgradient from the injection gallery than the SRB/IRB. DNA and Lipid analysis confirm changes in the microbial community structure due to donor addition. See also the PNNL (Long) and UMASS (Anderson) posters for more information about this site.

  15. RIB Production with Photofission of Uranium

    E-Print Network [OSTI]

    Oganessian, Yu T; Kliman, J; Maslov, O D; Starodub, G Ya; Belov, A G; Tretyakova, S P

    2002-01-01T23:59:59.000Z

    The process of uranium photofission with electron beams of 20 div 50 MeV is considered in terms of the production of fission fragments. It is shown that in the interaction between an electron beam (25 MeV in energy and 20 mu A in intensity), produced by a compact accelerator of the microtron type, and a uranium target of about 40 g/cm^2 in thickness, an average of 1.5 cdot 10^11 fission events/second is generated. According to the calculations and test experiments, this corresponds to the yield of ^132 Sn and ^142 Xe isotopes of approximately 2 cdot 10^9/s. The results of experiments on the optimal design of the U-target are presented. Problems are discussed connected with the separation of isotopes and isobars for their furher acceleration up to energies of 5-18 MeV/n. The photofission reactions of a heavy nucleus are compared with other methods of RIB production of medium mass nuclei.

  16. Did biological activity in the Ionian Sea change after the Eastern Mediterranean Transient? Results from the analysis of remote

    E-Print Network [OSTI]

    , characterize and predict the effect of climate changes on the relevant aspects of ecosystem dynamics. Estimates of the supposed climate change. [4] Only two significantly long time series of remote sensing data in the visibleDid biological activity in the Ionian Sea change after the Eastern Mediterranean Transient? Results

  17. Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs

    E-Print Network [OSTI]

    Matthews, Isaac A

    2010-01-01T23:59:59.000Z

    An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

  18. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    SciTech Connect (OSTI)

    Mndez-Garca, C.; Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigacin en Materiales Avanzados, CIMAV, Miguel de Cervantes 120, 31109, Chihuahua, Chihuahua (Mexico); Renteria-Villalobos, M. [Facultad de Zootecnia y Ecologa Universidad Autnoma de Chihuahua, Periferico Francisco R. Almada Km 1, 31410, Chihuahua (Mexico); Garca-Tenorio, R. [Applied Nuclear Physics Group, University of Seville, ETS Arquitectura, Avda. Reina Mercedes s/n, 41012 Seville (Spain)

    2014-07-14T23:59:59.000Z

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. {sup 232}Th-series, {sup 238}U-series, {sup 40}K and {sup 137}Cs activity concentrations (AC, Bq kg{sup ?1}) were determined by gamma spectrometry with a high purity Ge detector. {sup 238}U and {sup 234}U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to {sup 210}Pb activities. Results were verified by {sup 137}Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High {sup 238}U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) {sup 234}U/{sup 238}U and {sup 238}U/{sup 226}Ra in sediments have values between 0.91.2, showing a behavior close to radioactive equilibrium in the entire basin. {sup 232}Th/{sup 238}U, {sup 228}Ra/{sup 226}Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.

  19. Application of electrical methods to measure microbial activity in soils: Preliminary microcosm results

    SciTech Connect (OSTI)

    Cox, B.L. Sweet, A.; Majer, E.

    1997-12-01T23:59:59.000Z

    The application of the geophysical technique known as self-potential to the measurement of microbial activity was tested on laboratory microcosms containing ferric iron and iron-reducing bacteria Shewanella alga BrY. Measurements of the electrical response of silver-coated copper electrodes distributed along a Teflon probe inserted into sterile and inoculated layers containing either ferric chloride, ferric citrate, or ferric oxide rich soil were recorded over hours or days. Strong electrical signals reached values more negative than {minus}400 mV for all types of inoculated ferric iron layers. Electric signals in sterile control layers, by contrast, rarely reached values more negative than {minus}150 mV. These preliminary experiments indicate that it may be possible to apply the self-potential geophysical method to monitor bioremediation in the field.

  20. Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths

    E-Print Network [OSTI]

    Hwang, Chiachi

    2009-01-01T23:59:59.000Z

    problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactive

  1. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01T23:59:59.000Z

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry the first critical link in the fuel supply chain for nuclear reactors is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  2. Depleted uranium disposal options evaluation

    SciTech Connect (OSTI)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

    1994-05-01T23:59:59.000Z

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

  3. L'URANIUM ET LES ARMES L'URANIUM APPAUVRI. Pierre Roussel*

    E-Print Network [OSTI]

    Boyer, Edmond

    L'URANIUM ET LES ARMES ? L'URANIUM APPAUVRI. Pierre Roussel* Institut de Physique Nucléaire, CNRS massivement dans la guerre du Golfe, des obus anti- chars ont été utilisés, avec des "charges d'uranium, avec une charge de 300 g d'uranium et tiré par des avions, l'autre de 120 mm de diamètre avec une

  4. Geochemical and Geophysical Changes during Ammonia Gas Treatment of Vadose Zone Sediments for Uranium Remediation

    SciTech Connect (OSTI)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Johnson, Timothy C.; Qafoku, Nikolla; Williams, Mark D.; Greenwood, William J.; Wallin, Erin L.; Bargar, John R.; Faurie, Danielle K.

    2012-10-30T23:59:59.000Z

    NH3 gas treatment of low water content sediments resulted in a significant decrease in aqueous and adsorbed uranium, which is attributed to incorporation into precipitates. Uranium associated with carbonates showed little change. Uranium associated with hydrous silicates such as Na-boltwoodite showed a significant decrease in mobility but no change in Na-boltwoodite concentration (by EXAFS/XANES), so is most likely caused by non-U precipitate coatings. Complex resistivity changes occurred in the sediment during NH3 and subsequent N2 gas injection, indicating ERT/IP could be used at field scale for injection monitoring.

  5. Dupoly process for treatment of depleted uranium and production of beneficial end products

    DOE Patents [OSTI]

    Kalb, Paul D. (Wading River, NY); Adams, Jay W. (Stony Brook, NY); Lageraaen, Paul R. (Seaford, NY); Cooley, Carl R. (Gaithersburg, MD)

    2000-02-29T23:59:59.000Z

    The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.

  6. Radio-Ecological Conditions of Groundwater in the Area of Uranium Mining and Milling Facility - 13525

    SciTech Connect (OSTI)

    Titov, A.V.; Semenova, M.P.; Seregin, V.A.; Isaev, D.V.; Metlyaev, E.G. [FSBU SRC A.I.Burnasyan Federal Medical Biophysical Center of FMBA of Russia, Zhivopisnaya Street, 46, Moscow (Russian Federation)] [FSBU SRC A.I.Burnasyan Federal Medical Biophysical Center of FMBA of Russia, Zhivopisnaya Street, 46, Moscow (Russian Federation); Glagolev, A.V.; Klimova, T.I.; Sevtinova, E.B. [FSESP 'Hydrospecgeologiya' (Russian Federation)] [FSESP 'Hydrospecgeologiya' (Russian Federation); Zolotukhina, S.B.; Zhuravleva, L.A. [FSHE 'Centre of Hygiene and Epidemiology no. 107' under FMBA of Russia (Russian Federation)] [FSHE 'Centre of Hygiene and Epidemiology no. 107' under FMBA of Russia (Russian Federation)

    2013-07-01T23:59:59.000Z

    Manmade chemical and radioactive contamination of groundwater is one of damaging effects of the uranium mining and milling facilities. Groundwater contamination is of special importance for the area of Priargun Production Mining and Chemical Association, JSC 'PPMCA', because groundwater is the only source of drinking water. The paper describes natural conditions of the site, provides information on changes of near-surface area since the beginning of the company, illustrates the main trends of contaminators migration and assesses manmade impact on the quality and mode of near-surface and ground waters. The paper also provides the results of chemical and radioactive measurements in groundwater at various distances from the sources of manmade contamination to the drinking water supply areas. We show that development of deposits, mine water discharge, leakages from tailing dams and cinder storage facility changed general hydro-chemical balance of the area, contributed to new (overlaid) aureoles and flows of scattering paragenetic uranium elements, which are much smaller in comparison with natural ones. However, increasing flow of groundwater stream at the mouth of Sukhoi Urulyungui due to technological water infiltration, mixing of natural water with filtration streams from industrial reservoirs and sites, containing elevated (relative to natural background) levels of sulfate-, hydro-carbonate and carbonate- ions, led to the development and moving of the uranium contamination aureole from the undeveloped field 'Polevoye' to the water inlet area. The aureole front crossed the southern border of water inlet of drinking purpose. The qualitative composition of groundwater, especially in the southern part of water inlet, steadily changes for the worse. The current Russian intervention levels of gross alpha activity and of some natural radionuclides including {sup 222}Rn are in excess in drinking water; regulations for fluorine and manganese concentrations are also in excess. Possible ways to improve the situation are considered. (authors)

  7. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1

    SciTech Connect (OSTI)

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01T23:59:59.000Z

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

  8. Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors

    SciTech Connect (OSTI)

    Bhatti, Zaki; Hyland, B.; Edwards, G.W.R. [Atomic Energy of Canada Limited, Chalk River Laboratories, 1 Plant Road, Chalk River, Ontario, K0J 1J0 (Canada)

    2013-07-01T23:59:59.000Z

    The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in the Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction ?) for coolant voiding as standard NU fuel. (authors)

  9. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailing site Maybell, Colorado. Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) has established health and environmental regulations to correct and prevent ground water contamination resulting from former uranium processing activities at inactive uranium processing sites (40 CFR Part 192 (1993)) (52 FR 36000 (1978)). According to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.), the U.S. Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has decided that each assessment will include information on hydrogeologic site characterization. The water resources protection strategy that describes the proposed action compliance with the EPA ground water protection standards is presented in Attachment 4, Water Resources Protection Strategy. Site characterization activities discussed in this section include the following: (1) Definition of the hydrogeologic characteristics of the environment, including hydrostratigraphy, aquifer parameters, areas of aquifer recharge and discharge, potentiometric surfaces, and ground water velocities. (2) Definition of background ground water quality and comparison with proposed EPA ground water protection standards. (3) Evaluation of the physical and chemical characteristics of the contaminant source and/or residual radioactive materials. (4) Definition of existing ground water contamination by comparison with the EPA ground water protection standards. (5) Description of the geochemical processes that affect the migration of the source contaminants at the processing site. (6) Description of water resource use, including availability, current and future use and value, and alternate water supplies.

  10. Dry process fluorination of uranium dioxide using ammonium bifluoride

    E-Print Network [OSTI]

    Yeamans, Charles Burnett, 1978-

    2003-01-01T23:59:59.000Z

    An experimental study was conducted to determine the practicality of various unit operations for fluorination of uranium dioxide. The objective was to prepare ammonium uranium fluoride double salts from uranium dioxide and ...

  11. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    ;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

  12. COMPUTER-BASED PROCEDURE FOR FIELD ACTIVITIES: RESULTS FROM THREE EVALUATIONS AT NUCLEAR POWER PLANTS

    SciTech Connect (OSTI)

    Oxstrand, Johanna [Idaho National Laboratory; Bly, Aaron [Idaho National Laboratory; LeBlanc, Katya [Idaho National Laboratory

    2014-09-01T23:59:59.000Z

    Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the users workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energys (DOE) Light Water Reactors Sustainability Program, researchers at Idaho National Laboratory (INL) along with partners from the nuclear industry have been investigating the design requirements for computer-based work instructions (including operations procedures, work orders, maintenance procedures, etc.) to increase efficiency, safety, and cost competitiveness of existing light water reactors.

  13. CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin [ORNL

    2009-10-01T23:59:59.000Z

    Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and related outcomes were obtained from an existing DOE-supported data base. The information provided on the individual RACs was summed to yield totals for all the Centers combined for each relevant item.

  14. Uranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium(III)

    E-Print Network [OSTI]

    Meyer, Karsten

    , we are currently investigating the coordina- tion chemistry of uranium metal centers with classicalUranium Tris-aryloxide Derivatives Supported by Triazacyclononane: Engendering a Reactive Uranium, and Karsten Meyer* Contribution from the Department of Chemistry and Biochemistry, UniVersity of California

  15. Thoron detection with an active Radon exposure meterFirst results

    SciTech Connect (OSTI)

    Irlinger, J., E-mail: josef.irlinger@helmholtz-muenchen.de; Wielunski, M.; Rhm, W. [ISS, Helmholtz Center Munich, Research Center for Environment and Health, 85764 Neuherberg (Germany)] [ISS, Helmholtz Center Munich, Research Center for Environment and Health, 85764 Neuherberg (Germany)

    2014-02-15T23:59:59.000Z

    For state-of-the-art discrimination of Radon and Thoron several measurement techniques can be used, such as active sampling, electrostatic collection, delayed coincidence method, and alpha-particle-spectroscopy. However, most of the devices available are bulky and show high power consumption, rendering them unfeasible for personal exposition monitoring. Based on a Radon exposure meter previously realized at the Helmholtz Center Munich (HMGU), a new electronic prototype for Radon/Thoron monitoring is currently being developed, which features small size and weight. Operating with pin-diode detectors, the low-power passive-sampling device can be used for continuous concentration measurements, employing alpha-particle-spectroscopy and coincidence event registration to distinguish decays originating either from Radon or Thoron isotopes and their decay products. In open geometry, preliminary calibration measurements suggest that one count per hour is produced by a 11?Bq?m{sup ?3} Radon atmosphere or by a 15?Bq?m{sup ?3} Thoron atmosphere. Future efforts will concentrate on measurements in mixed Radon/Thoron atmospheres.

  16. Criticality safety concerns of uranium deposits in cascade equipment

    SciTech Connect (OSTI)

    Plaster, M.J. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States)

    1996-12-31T23:59:59.000Z

    The Paducah and Portsmouth Gaseous Diffusion Plants enrich uranium in the {sup 235}U isotope by diffusing gaseous uranium hexafluoride (UF{sub 6}) through a porous barrier. The UF{sub 6} gaseous diffusion cascade utilized several thousand {open_quotes}stages{close_quotes} of barrier to produce highly enriched uranium (HEU). Historically, Portsmouth has enriched the Paducah Gaseous Diffusion Plant`s product (typically 1.8 wt% {sup 235}U) as well as natural enrichment feed stock up to 97 wt%. Due to the chemical reactivity of UF{sub 6}, particularly with water, the formation of solid uranium deposits occur at a gaseous diffusion plant. Much of the equipment operates below atmospheric pressure, and deposits are formed when atmospheric air enters the cascade. Deposits may also be formed from UF{sub 6} reactions with oil, UF{sub 6} reactions with the metallic surfaces of equipment, and desublimation of UF{sub 6}. The major deposits form as a result of moist air in leakage due to failure of compressor casing flanges, blow-off plates, seals, expansion joint convolutions, and instrument lines. This report describes criticality concerns and deposit disposition.

  17. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01T23:59:59.000Z

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  18. Uptake of uranium from seawater by amidoxime-based polymeric adsorbent marine testing

    SciTech Connect (OSTI)

    Tsouris, C.; Kim, J.; Oyola, Y.; Mayes, R.; Hexel, C.; Sostre Gonzalez, F.; Janke, C.; Dai, S. [Oak Ridge National Laboratory, Oak Ridge, TE 37831-618 (United States); Gill, G.; Kuo, L.J.; Wood, J.; Choe, K.Y. [Pacific Northwest National Laboratory (United States); Pourmand, A.; D'Alessandro, E. [Rosenstiel School of Marine and Atmospheric Science, University of Miami (United States); Buesseler, K.; Pike, S. [Woods Hole Oceanographic Institution (United States)

    2013-07-01T23:59:59.000Z

    Amidoxime-based polymer adsorbents in the form of functionalized fibers were prepared at the Oak Ridge National Laboratory (ORNL) and screened in laboratory experiments, in terms of uranium uptake capacity, using spiked uranium solution and seawater samples. Batch laboratory experiments conducted with 5-gallon seawater tanks provided equilibrium information. Based on results from 5-gallon experiments, the best adsorbent was selected for field-testing of uranium adsorption from seawater. Flow-through column tests have been performed at different marine sites to investigate the uranium uptake rate and equilibrium capacity under diverse biogeochemistry. The maximum amount of uranium uptake from seawater tests at Sequim, WA, was 3.3 mg U/g adsorbent after eight weeks of contact of the adsorbent with seawater. This amount was three times higher than the maximum adsorption capacity achieved in this study by a leading adsorbent developed by the Japan Atomic Energy Agency (JAEA), which was 1.1 mg U/g adsorbent at equilibrium. The initial uranium uptake rate of the ORNL adsorbent was 2.6 times higher than that of the JAEA adsorbent under similar conditions. A mathematical model derived from the mass balance of uranium was employed to describe the data. (authors)

  19. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    SciTech Connect (OSTI)

    Meyers, L A; Williams, R W; Glover, S E; LaMont, S P; Stalcup, A M; Spitz, H B

    2012-03-16T23:59:59.000Z

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.

  20. Measurement and Analysis of Fission Rates in a Spherical Mockup of Uranium and Polyethylene

    E-Print Network [OSTI]

    Tong-Hua, Zhu; Xin-Xin, Lu; Rong, Liu; Zi-Jie, Han; Li, Jiang; Mei, Wang

    2013-01-01T23:59:59.000Z

    Measurements of the reaction rate distribution were carried out using two kinds of Plate Micro Fission Chamber(PMFC). The first is a depleted uranium chamber and the second an enriched uranium chamber. The material in the depleted uranium chamber is strictly the same as the material in the uranium assembly. With the equation solution to conduct the isotope contribution correction, the fission rate of 238U and 235U were obtained from the fission rate of depleted uranium and enriched uranium. And then, the fission count of 238U and 235U in an individual uranium shell was obtained. In this work, MCNP5 and continuous energy cross sections ENDF/BV.0 were used for the analysis of fission rate distribution and fission count. The calculated results were compared with the experimental ones. The calculation of fission rate of DU and EU were found to agree with the measured ones within 10% except at the positions in polyethylene region and the two positions near the outer surface. Beacause the fission chamber was not co...

  1. Corrosion of aluminum-uranium alloys in water vapor at 200 C

    SciTech Connect (OSTI)

    Lam, P.S.; Sindelar, R.L.; Barrett, K.Y.

    1999-07-01T23:59:59.000Z

    Specimens of aluminum-uranium alloys at 10 and 18 wt.% uranium were exposed to a saturated water vapor condition at 200 C up to about 12 weeks and compared to previous results for aluminum 1100. The aluminum-uranium materials exhibited a range of initial corrosion rates and approached similar rates with the formation of a passive film of boehmite (Al{sub 2}O{sub 3}{center{underscore}dot}H{sub 2}O). The initial corrosion rates of the aluminum-uranium materials were one to four times higher than that for aluminum 1100. It is postulated that a micro-galvanic coupling between the large UAl{sub 4} particles and the aluminum matrix has caused this difference. Sectioning the exposed specimens shows different characteristics of the oxide layers. In the oxide on the aluminum-10% uranium alloy (Al-10%U), small uranium aluminide particles can be seen in a boehmite matrix and do not seem to be corroded. The oxide film on the aluminum-18% uranium alloy (Al-18%U) appears to have two distinct oxide layers. The outer layer has mass aggregates in a boehmite matrix, while the inner layer contains UAl{sub 4} particles as in the case of Al-10%U.

  2. Adsorptive Stripping Voltammetric Measurements of Trace Uranium...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements of Trace Uranium at the Bismuth Film Electrode. Abstract: Bismuth-coated carbon-fiber electrodes have been successfully applied for adsorptive-stripping...

  3. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A...

  4. Colorimetric detection of uranium in water

    DOE Patents [OSTI]

    DeVol, Timothy A. (Clemson, SC); Hixon, Amy E. (Piedmont, SC); DiPrete, David P. (Evans, GA)

    2012-03-13T23:59:59.000Z

    Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

  5. Uranium Weapons Components Successfully Dismantled | National...

    National Nuclear Security Administration (NNSA)

    Successfully Dismantled March 20, 2007 Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons...

  6. High strength and density tungsten-uranium alloys

    DOE Patents [OSTI]

    Sheinberg, Haskell (Los Alamos, NM)

    1993-01-01T23:59:59.000Z

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  7. Environmental Survey preliminary report, Portsmouth Uranium Enrichment Complex, Piketon, Ohio

    SciTech Connect (OSTI)

    Not Available

    1987-08-01T23:59:59.000Z

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Portsmouth Uranium Enrichment Complex (PUEC), conducted August 4 through August 15, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Team specialists are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at PUEC, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Argonne National Laboratory. When completed, the results will be incorporated into the PUEC Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the PUEC Survey. 55 refs., 22 figs., 21 tabs.

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The ground water project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. This report is a site specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. Currently, no one is using the ground water and therefore, no one is at risk. However, the land will probably be developed in the future and so the possibility of people using the ground water does exist. This report examines the future possibility of health hazards resulting from the ingestion of contaminated drinking water, skin contact, fish ingestion, or contact with surface waters and sediments.

  9. SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS

    SciTech Connect (OSTI)

    Oji, L; Bill Wilmarth, B; David Hobbs, D

    2008-05-30T23:59:59.000Z

    Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

  10. President Truman Increases Production of Uranium and Plutonium...

    National Nuclear Security Administration (NNSA)

    Increases Production of Uranium and Plutonium October 09, 1950 President Truman Increases Production of Uranium and Plutonium Washington, DC President Truman approves a 1.4...

  11. Atomistic Simulations of Uranium Incorporation into Iron (Hydr...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Uranium Incorporation into Iron (Hydr)Oxides. Atomistic Simulations of Uranium Incorporation into Iron (Hydr)Oxides. Abstract: Atomistic simulations were carried out to...

  12. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Environmental Management (EM)

    Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

  13. Geochemical Controls on Contaminant Uranium in Vadose Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls on Contaminant Uranium in Vadose Hanford Formation Sediments at the 200 Area and 300 Area, Hanford Site, Geochemical Controls on Contaminant Uranium in Vadose Hanford...

  14. Microbial Reduction of Uranium under Iron- and Sulfate-reducing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium under Iron- and Sulfate-reducing Conditions: Effect of Amended Goethite on Microbial Community Microbial Reduction of Uranium under Iron- and Sulfate-reducing Conditions:...

  15. Uncertainty analysis of multi-rate kinetics of uranium desorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Abstract: A...

  16. Legacy Management Work Progresses on Defense-Related Uranium...

    Broader source: Energy.gov (indexed) [DOE]

    Most recently, LM visited 84 defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global...

  17. Highly Enriched Uranium Materials Facility, Major Design Changes...

    Energy Savers [EERE]

    Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA, Dec 2010 Highly Enriched Uranium Materials Facility, Major Design Changes...

  18. Record of Decision for the Uranium Leasing Program Programmatic...

    Energy Savers [EERE]

    Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact Statement Record of Decision for the Uranium Leasing Program Programmatic Environmental Impact...

  19. DOE Extends Public Comment Period for the Draft Uranium Leasing...

    Office of Environmental Management (EM)

    Extends Public Comment Period for the Draft Uranium Leasing Program Programmatic Environmental Impact Statement DOE Extends Public Comment Period for the Draft Uranium Leasing...

  20. Sequestering Uranium from Seawater: Binding Strength and Modes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl Complexes with Glutarimidedioxime Sequestering Uranium from Seawater: Binding Strength and Modes of Uranyl...

  1. Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

    Office of Environmental Management (EM)

    Depleted Uranium Hexafluoride (DUF6) Fully Operational at the Portsmouth and Paducah Gaseous Diffusion Sites Depleted Uranium Hexafluoride (DUF6) Fully Operational at the...

  2. Joint US/Russian Studies of Population Exposures Resulting from Nuclear Production Activities in the Southern Urals

    SciTech Connect (OSTI)

    Napier, Bruce A.

    2014-02-17T23:59:59.000Z

    Beginning in 1948, the Soviet Union initiated a program for production of nuclear materials for a weapons program. The first facility for production of plutonium was constructed in the central portion of the country east of the southern Ural Mountains, about halfway between the major industrial cities of Ekaterinburg and Chelyabinsk. The facility now known as the Mayak Production Association and its associated town, now known as Ozersk, were built to irradiate uranium in reactors, separate the resulting plutonium in reprocessing plants, and prepare plutonium metal. The rush to production, coupled with inexperience in handling radioactive materials, lead to large radiation exposures, not only to the workers in the facilities, but also to the surrounding public. Fuel processing started with no controls on releases, and fuel dissolution and accidents in reactors resulted in release of about 37 PBq (1015 Bq) of 131I between 1948 and 1967. Designed disposals of low- and intermediate-level liquid radioactive wastes, and accidental releases via cooling water from tank farms of high-level liquid radioactive wastes, into the small Techa River caused significant contamination and exposures to residents of numerous small riverside villages downstream of the site. Discovery of the magnitude of the aquatic contamination in late 1951 caused revisions to the waste handling regimes, but not before over 200 PBq of radionuclides (with large contributions of 90Sr and 137Cs) were released. Liquid wastes were diverted to tiny Lake Karachay (which today holds over 4 EBq); cooling water was stopped in the tank farms. In 1957, one of the tanks in the tank farm overheated and exploded; over 70 PBq, disproportionately 90Sr, was blown over a large area to the northeast of the site; a large area was contaminated and many villages evacuated. This area today is known as the East Urals Radioactive Trace (EURT). Each of these releases was significant; together they have created a group of cohorts unrivaled in the world for their chronic, low-dose-rate radiation exposure. The 26,000 workers at Mayak were highly exposed to external gamma and inhaled plutonium. A cohort of individuals raised as children in Ozersk is under evaluation for their exposures to radioiodine. The Techa River Cohort consists of over 30,000 people who were born before the start of exposure in 1949 and lived along the Techa River. The Techa River Offspring Cohort consists of about 21,000 persons born to one or more exposed parents of this group - many of whom also lived along the contaminated river. The EURT Cohort consists of about 18,000 people who were evacuated from the EURT soon after the 1957 explosion and another 8000 who remained. These groups together are the focus of dose reconstruction and epidemiological studies funded by the US, Russia, and the European Union to address the question Are doses delivered at low dose rates as effective in producing health effects as the same doses delivered at high dose rates?

  3. Operating and life-cycle costs for uranium-contaminated soil treatment technologies

    SciTech Connect (OSTI)

    Douthat, D.M.; Armstrong, A.Q. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.; Stewart, R.N. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-09-01T23:59:59.000Z

    The development of a nuclear industry in the US required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the US Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To avoid disposal of these soils in low-level radioactive waste burial sites, increasing emphasis has been placed on the remediating soils contaminated with uranium and other radionuclides. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the DOE Office of Technology Development (OTD) evaluates and compares the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium-contaminated soils. Each technology must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

  4. Effect of Grain Size on Uranium(VI) Surface Complexation Kinetics and Adsorption Additivity

    SciTech Connect (OSTI)

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming; Zachara, John M.

    2011-07-27T23:59:59.000Z

    Laboratory experiments were performed to investigate the contribution of variable grain sizes to uranium adsorption/desorption in a sediment collected from the US DOE Hanford site. The sediment was wet-sieved into four size fractions: coarse sand (1-2 mm), medium sand (0.2-1 mm), fine sand (0.05-0.2 mm), and clay/silt fraction (< 0.05mm). For each size fraction and their composite (sediment), batch experiments were performed to determine uranium adsorption isotherms, and stirred flow-cell experiments were conducted to derive kinetic data of uranium adsorption and subsequent desorption. The results showed that uranium adsorption isotherms and adsorption/desorption kinetics were size-specific, reflecting the effects of size-specific adsorption site concentration and kinetic rate constants. The larger-size fraction had a larger mass percentage in the sediment, but with a smaller adsorption site concentration and generally a slower uranium adsorption/desorption rate. The same equilibrium surface complexation reaction and reaction constant could describe uranium adsorption isotherms for all size fractions and the composite after accounting for the effect of adsorption site concentration. Mass-weighted, linear additivity was observed for both uranium adsorption isotherms and adsorption/desorption kinetics in the composite. Our analysis also showed that uranium adsorption site concentration estimated from the adsorption isotherms was 3 orders of magnitude less than a site concentration estimated from sediment surface area and generic site density. One important implication of this study is that grain size distribution may be used to estimate uranium adsorption site, and adsorption/desorption kinetic rates in heterogeneous sediments from a common location.

  5. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas

    2011-07-07T23:59:59.000Z

    Experiments at the Department of Energys Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  6. Using complex resistivity imaging to infer biogeochemical processes associated with bioremediation of a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Orozco, A. Flores; Williams, K.H.; Long, P.E.; Hubbard, S.S.; Kemna, A.

    2011-04-01T23:59:59.000Z

    Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.

  7. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  8. Influence of uranium on corrosion of stainless steel in solutions of fluoride in nitric acid

    SciTech Connect (OSTI)

    Kurtenov, M.M.

    1985-09-01T23:59:59.000Z

    Stainless steels corrode rapidly in solutions of fluoride in nitric acid; the higher the fluoride ion content, the more intense is the corrosion. The activating effect of the fluoride ions mainly reduces to dissolution of the oxide films. Small amounts somewhat retard the cathodic reduction of HNO/sub 3/. In this report the authors provide the results of an investigation of the influence of uranium ions on the corrosion-electrochemical behavior of stainless steel 12Kh18N10T in solutions of up to 10 moles/liter of HNO/sub 3/, with fluoride ions up to 0.1 mole/liter. The authors conclude that the retardation of corrosion of stainless steel by uranium, zirconium and aluminum ions in solutions of fluorides in nitric acid is mainly due to the formation of strong complexes of these metals with fluorine ions, leading to a reduction of the number of free HF molecules in the solution. The stronger the complex of metal with fluorine, the higher the corrosion resistance of the stainless steel in a solution of fluoride in nitric acid.

  9. Annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the US Department of Energy's cultural resource activities at Colorado UMTRA Project sites, January--December 1991. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This report is a summary of the US Department of Energy's (DOE) cultural resource investigations for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE's obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Summaries of the cultural resource surveys and identified resources are provided for the UMTRA Project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. This report covers all UMTRA Project cultural resource activities in Colorado from January through December 1991.

  10. Representativeness of large sample INAA in the study of Brazilian uranium mine waste

    SciTech Connect (OSTI)

    De Nadai Fernandes, E.A. [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil); Bode, P. [Interfaculty Reactor Institute, Delft (Netherlands)

    1997-12-01T23:59:59.000Z

    Osamu Utsumi was the first uranium mine to be explored in Brazil and has been active for approximately two decades. It is located on the Poqos de Caldas plateau in the state of Minas Gerais, which is an area of the world with one of the highest levels of natural radioactivity. Mining activities were terminated in April 1996, leaving some tons of uranium at depths at which exploration is not economically viable. The decision to prematurely terminate mining activities was taken in light of the planned commissioning within 2 yr of a new mine in the state of Bahia in the Jazida da Cachoeira region, where a high-grade uranium ore is found. This paper describes the use of INAA for the analysis of wastes produced from ores.

  11. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado. Attachment 3, Groundwater hydrology report: Final report

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (40 CFR Part 192). According to the Uranium Mill Tailings Radiation Control Act of 1978, (UMTRCA) (48 CFR 590), the US Department of Energy (DOE) is responsible for assessing the inactive uranium processing sites. The DOE has determined that this assessment shall include information on hydrogeologic site characterization. The water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards is presented in Attachment 4. Site characterization activities discussed in this attachment include the following: Characterization of the hydrogeologic environment, including hydro-stratigraphy, groundwater occurrence, aquifer parameters, and areas of recharge and discharge. Characterization of existing groundwater quality by comparison with background water quality and the maximum concentration limits (MCLs) of the proposed EPA groundwater protection standards. Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability of the source in relation to migration in groundwater and hydraulically connected surface water. Description of local water resources, including current and future use and value, availability, and alternative supplies.

  12. Uranium occurrence in igneous rocks of the central Davis Mountains, west Texas

    E-Print Network [OSTI]

    Schaftenaar, Wendy Elizabeth

    1982-01-01T23:59:59.000Z

    in granite after control- led leaching, and the same phenomenon was observed as a result of in situ weathering and initial erosion of granitic rocks by Tieh and oth- ers (1980) . There is evidence that uranium loss can occur in certain acces- sory... URANIUM OCCURRENCE IN IGNEOUS ROCKS OF THE' CENTRAL DAVIS MOUNTAINS, WEST TEXAS A Thesis by WENDY ELIZABETH SCHAFTENAAR Submitted to the Graduate college of Texas ASM University in partial fulfillment of the requirement for the degree...

  13. Results of the mobile gamma scanning activities in Wayne and Pequannock Townships, New Jersey

    SciTech Connect (OSTI)

    Johnson, C.A.; Roberts, D.A.; Patania, V.P.; Foley, R.D.

    1994-01-01T23:59:59.000Z

    During the early 1980s the W. R. Grace site and the adjacent area were the focus of several radiological investigations. Radiological surveys revealed surface radionuclide concentrations greater than those acceptable under US Department of Energy (DOE) remedial action guidelines. In 1984, Congress assigned responsibility for cleanup of the W.R. Grace site to the Department of Energy. The property was redesignated as the Wayne Interim Storage Site (WISS) and in 1985 DOE began plans for survey/monitoring, and remedial action of nearby vicinity properties and the interim storage site. Evaluations of the radiological survey data in 1986 indicated radioactive contamination above current DOE guidelines at the off-site areas of parts of Township Park southwest of WISS, and parts of the Sheffield Brook area and railroad siding in Pequannock Township. Remedial action was conducted over several years of most of these areas and independent verification of remedial action was performed. A team from Oak Ridge National Laboratory conducted a mobile radiological scanning survey of a stretch of public roadway in the immediate vicinity south of the WISS, extending northwest to the Pompton turnpike. A mobile gamma scanning van with an on-board computer system was used to identify at least 24 anomalous areas, some attributable to the naturally elevated levels in concrete, asphalt, and natural granite found in streets, driveways and landscaping materials in the area. Analyses of the biased soil samples taken in the ballpark also revealed slightly elevated thorium concentrations. However, soil concentration measurements when averaged over 100 m{sup 2} fall below the limits prescribed by DOE radiological guidelines established for this site. The anomalies may result from a wide range of sources, such as ash, granite, and fertilizer as well as materials from the former Grace facility.

  14. Processing depleted uranium quad alloy penetrator rods

    SciTech Connect (OSTI)

    Bokan, S.L.

    1987-02-19T23:59:59.000Z

    Two depleted uranium (DU) quad alloys were cast, extruded and rolled to produce penetrator rods. The two alloy combinations were (1) 1 wt % molybdenum (Mo), 1 wt % niobium (Nb), and 0.75 wt % titanium (Ti); and (2) 1 wt % tantalum (Ta), 1 wt % Nb, and 0.75 wt % Ti. This report covers the processing and results with limited metallographic information available. The two alloys were each vacuum induction melted (VIM) into an 8-in. log, extruded into a 3-in. log, then cut into 4 logs and extruded at 4 different temperatures into 0.8-in. bars. From the 8 conditions (2 alloys, 4 extrusion temperatures each), 10 to 13 16-in. rods were cut for rolling and swaging. Due to cracking problems, the final processing changed from rolling and swaging to limited rolling and heat treating. The contracted work was completed with the delivery of 88 rods to Dr. Zabielski. 28 figs.

  15. Investigation of Uranium Polymorphs

    SciTech Connect (OSTI)

    Sweet, Lucas E.; Henager, Charles H.; Hu, Shenyang Y.; Johnson, Timothy J.; Meier, David E.; Peper, Shane M.; Schwantes, Jon M.

    2011-08-01T23:59:59.000Z

    The UO3-water system is complex and has not been fully characterized, even though these species are common throughout the nuclear fuel cycle. As an example, most production schemes for UO3 result in a mixture of up to six or more different polymorphic phases, and small differences in these conditions will affect phase genesis that ultimately result in measureable changes to the end product. As a result, this feature of the UO3-water system may be useful as a means for determining process history. This research effort attempts to better characterize the UO3-water system with a variety of optical techniques for the purpose of developing some predictive capability for estimating process history in polymorphic phases of unknown origin. Three commercially relevant preparation methods for the production of UO3 were explored. Previously unreported low temperature routes to ?- and ?-UO3 were discovered. Raman and fluorescence spectroscopic libraries were established for pure and mixed polymorphic forms of UO3 in addition to the common hydrolysis products of UO3. An advantage of the sensitivity of optical fluorescence microscopy over XRD has been demonstrated. Preliminary aging studies of the ? and ? forms of UO3 have been conducted. In addition, development of a 3-D phase field model used to predict phase genesis of the system was initiated. Thermodynamic and structural constants that will feed the model have been gathered from the literature for most of the UO3 polymorphic phases.

  16. Annual status report on the Uranium Mill Tailings Remedial Action Program

    SciTech Connect (OSTI)

    Not Available

    1989-12-01T23:59:59.000Z

    This eleventh annual status report summarizes activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project undertaken during Fiscal Year (FY) 1989 by the US Department of Energy (DOE) and other agencies. Project goals for FY 1990 are also presented. An annual report of this type was a statutory requirement through January 1, 1986, pursuant to the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95--604. The DOE will continue to submit an annual report through project completion in order to inform the public of yearly project status. Title I of the UMTRCA authorizes the DOE, in cooperation with affected states and Indian tribes within whose boundaries designated uranium processing sites are located, to provide a program of assessment and remedial action at such sites. The purpose of the remedial action is to stabilize and control the tailings and other residual radioactive materials located on the inactive uranium processing sites in a safe and environmentally sound manner and to minimize or eliminate potential radiation health hazards. Commercial and residential properties in the vicinity of designated processing sites that are contaminated with material from the sites, herein referred to as vicinity properties,'' are also eligible for remedial action. Included in the UMTRA Project are 24 inactive uranium processing sites and associated vicinity properties located in 10 states, and the vicinity properties associated with Edgemont, South Dakota, an inactive uranium mill currently owned by the Tennessee Valley Authority (TVA).

  17. Uranium Management - Preservation of a National Asset

    SciTech Connect (OSTI)

    Jackson, J. D.; Stroud, J. C.

    2002-02-27T23:59:59.000Z

    The Uranium Management Group (UMG) was established at the Department of Energy's (DOE's) Oak Ridge Operations in 1999 as a mechanism to expedite the de-inventory of surplus uranium from the Fernald Environmental Management Project site. This successful initial venture has broadened into providing uranium material de-inventory and consolidation support to the Hanford site as well as retrieving uranium materials that the Department had previously provided to universities under the loan/lease program. As of December 31, 2001, {approx} 4,300 metric tons of uranium (MTU) have been consolidated into a more cost effective interim storage location at the Portsmouth site near Piketon, OH. The UMG continues to uphold its corporate support mission by promoting the Nuclear Materials Stewardship Initiative (NMSI) and the twenty-five (25) action items of the Integrated Nuclear Materials Management Plan (1). Before additional consolidation efforts may commence to remove excess inventory from Environmental Management closure sites and universities, a Programmatic Environmental Assessment (PEA) must be completed. Two (2) noteworthy efforts currently being pursued involve the investigation of re-use opportunities for surplus uranium materials and the recovery of usable uranium from the shutdown Portsmouth cascade. In summary, the UMG is available as a DOE complex-wide technical resource to promote the responsible management of surplus uranium.

  18. Advective Desorption of Uranium (VI) from Contaminated Hanford Vadose Zone Sediments under Saturated and Unsaturated Conditions

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Zachara, John M.; Liu, Chongxuan; Qafoku, Nikolla; Smith, Steven C.; Forrester, Steven W.

    2008-11-03T23:59:59.000Z

    Sedimentary, hydrologic, and geochemical variations in the Hanford subsurface environment, as well as compositional differences in contaminating waste streams, have created vast differences in the migration and mobility of uranium within the subsurface environment. A series of hydraulically-saturated and -unsaturated column experiments were performed to i.) assess the effect of water content on the advective desorption and migration of uranium from contaminated sediments, and ii.) evaluate the uranium concentration that can develop in porewater and/or groundwater as a result of desorption/dissolution reactions. Flow rate and moisture content were varied to evaluate the influence of contact time, pore water velocity, and macropore desaturation on aqueous uranium concentrations. Sediments were collected from the T-TX-TY tank farm complex and the 300 Area Process Ponds located on the Hanford Site, southeastern Washington State. The sediments vary in depth, mineralogy, and in contamination events. Experiments were conducted under mildly alkaline/calcareous conditions representative of conditions commonly encountered at repository sites across the arid western United States and, in particular, the Hanford site. Results illustrate the release of uranium from these sediments is kinetically controlled and low water contents encountered within the Hanford vadose zone result in the formation of mobile-immobile water regimes, which isolate a fraction of the reactive sites within the sediments, effectively reducing the concentration of uranium released into migrating porewaters.

  19. Potential incorporation of transuranics into uranium phases

    SciTech Connect (OSTI)

    Kim, C. W.; Wronkiewicz, D. J.; Buck, E. C.

    1999-12-07T23:59:59.000Z

    The UO{sub 2} in spent nuclear fuel is unstable under moist oxidizing conditions and will be altered to uranyl oxide hydrate phases. The transuranics released during the corrosion of spent fuel may also be incorporated into the structures of secondary U{sup 6+} phases. The incorporation of radionuclides into alteration products will affect their mobility. A series of precipitation tests were conducted at either 150 or 90 C for seven days to determine the potential incorporation of Ce{sup 4+} and Nd{sup 3+} (surrogates for Pu{sup 4+} and Am{sup 3+}, respectively) into uranium phases. Ianthinite ([U{sub 2}{sup 4+}(UO{sub 2}){sub 4}O{sub 6}(OH){sub 4}(H{sub 2}O){sub 4}](H{sub 2}O){sub 5}) was produced by dissolving uranium oxyacetate in a solution containing copper acetate monohydrate as a reductant. The leachant used in these tests were doped with either 2.1 ppm cerium or 399 ppm neodymium. Inductively coupled plasma-mass spectrometer (ICP-MS) analysis of the solid phase reaction products which were dissolved in a HNO{sub 3} solution indicates that about 306 ppm Ce (K{sub d} = 146) was incorporated into ianthinite, while neodymium contents were much higher, being approximately 24,800 ppm (K{sub d} = 62). Solid phase examinations using an analytical transmission electron microscope/electron energy-loss spectrometer (AEM/EELS) indicate a uniform distribution of Nd, while Ce contents were below detection. Becquerelite (Ca[(UO{sub 2}){sub 6}O{sub 4}(OH){sub 6}]{center_dot}8H{sub 2}O) was produced by dissolving uranium oxyacetate in a solution containing calcium acetate. The leachant in these tests was doped with either 2.1 ppm cerium or 277 ppm neodymium. ICP-MS results indicate that about 33 ppm Ce (K{sub d}=16) was incorporated into becquerelite, while neodymium contents were higher, being approximately 1,300 ppm (K{sub d}=5). Homogeneous distribution of Nd in the solid phase was noted during AEM/EELS examination, and Ce contents were also below detection.

  20. IPNS enriched uranium booster target

    SciTech Connect (OSTI)

    Schulke, A.W. Jr.

    1985-01-01T23:59:59.000Z

    Since startup in 1981, IPNS has operated on a fully depleted /sup 238/U target. With the booster as in the present system, high energy protons accelerated to 450 MeV by the Rapid Cycling Synchrotron are directed at the target and by mechanisms of spallation and fission of the uranium, produce fast neutrons. The neutrons from the target pass into adjacent moderator where they slow down to energies useful for spectroscopy. The target cooling systems and monitoring systems have operated very reliably and safely during this period. To provide higher neutron intensity, we have developed plans for an enriched uranium (booster) target. HETC-VIM calculations indicate that the target will produce approx.90 kW of heat, with a nominal x5 gain (k/sub eff/ = 0.80). The neutron beam intensity gain will be a factor of approx.3. Thermal-hydraulic and heat transport calculations indicate that approx.1/2 in. thick /sup 235/U discs are subject to about the same temperatures as the present /sup 238/U 1 in. thick discs. The coolant will be light demineralized water (H/sub 2/O) and the coolant flow rate must be doubled. The broadening of the fast neutron pulse width should not seriously affect the neutron scattering experiments. Delayed neutrons will appear at a level about 3% of the total (currently approx.0.5%). This may affect backgrounds in some experiments, so that we are assessing measures to control and correct for this (e.g., beam tube choppers). Safety analyses and neutronic calculations are nearing completion. Construction of the /sup 235/U discs at the ORNL Y-12 facility is scheduled to begin late 1985. The completion of the booster target and operation are scheduled for late 1986. No enriched uranium target assembly operating at the projected power level now exists in the world. This effort thus represents an important technological experiment as well as being a ''flux enhancer''.