National Library of Energy BETA

Sample records for ur3 ur4 payload

  1. G-1 Payload

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Payload List of instruments provided by the Research Aircraft Facility. Instrument Weight (lbs) Size (inches) (19" panel or other) Power Required (watts, amperes) Type of power (volts DC, AC) External Sensor/Probe Requirements Check to Select Permanent RAF Instruments GPS (TANS & DSM) Fuselage & Data Rack 28VDC 12VDC Fuselage top antennas Particle size (PCASP-300) 40 On Nose Boom 215 W 180 W 28 VDC 110 VAC Nose boom Temperature (Rosemount Pt) In Power Rack 3 W 28 VDC Fuselage

  2. Modular Countermine Payload for Small Robots (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Modular Countermine Payload for Small Robots Citation Details In-Document Search Title: Modular Countermine Payload for Small Robots Payloads for small robotic platforms have ...

  3. Modular Countermine Payload for Small Robots (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Modular Countermine Payload for Small Robots Citation Details In-Document Search Title: Modular Countermine Payload for Small Robots You are accessing a document from the ...

  4. Payload Communications Interface for CubeSat Platform: Design Review

    SciTech Connect (OSTI)

    Akins, Alexander Brooks

    2015-08-10

    Primary Goal: Send important sensor data from payload to SV following an event trigger as quickly as possible with high data integrity

  5. ARM-UAV TWP-ICE Payload Instrumentation Details

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Payload Instrumentation Details McCoy, Robert Sandia National Laboratories Tooman, Tim Sandia National Laboratories McFarquhar, Greg University of Illinois Category: Field ...

  6. High payload six-axis load sensor

    DOE Patents [OSTI]

    Jansen, John F.; Lind, Randall F.

    2003-01-01

    A repairable high-payload six-axis load sensor includes a table, a base, and at least three shear-pin load transducers removably mounted between the table and the base. Removable mounting permits easy replacement of damaged shear pins. Preferably, the shear-pin load transducers are responsive to shear forces imparted along the two axes perpendicular to an axis of minimum sensitivity characteristic of the transducer. Responsive to an applied shear force, each shear-pin load transducer can produce an electrical signal proportional to the reaction force. The load sensor can further include a structure for receiving the proportional electrical signals and computing the applied load corresponding to the proportional electrical signals. The computed load can be expressed in terms of a three-dimensional XYZ Cartesian coordinate system.

  7. Control system and method for payload control in mobile platform cranes

    SciTech Connect (OSTI)

    Robinett, III, Rush D.; Groom, Kenneth N.; Feddema, John T.; Parker, Gordon G.

    2002-01-01

    A crane control system and method provides a way to generate crane commands responsive to a desired payload motion to achieve substantially pendulation-free actual payload motion. The control system and method apply a motion compensator to maintain a payload in a defined payload configuration relative to an inertial coordinate frame. The control system and method can further comprise a pendulation damper controller to reduce an amount of pendulation between a sensed payload configuration and the defined payload configuration. The control system and method can further comprise a command shaping filter to filter out a residual payload pendulation frequency from the desired payload motion.

  8. On-orbit support of DARPA-301 payload. Final report

    SciTech Connect (OSTI)

    Imhof, W.L.; Datlowe, D.W.; Mobilia, J.; Nakano, G.H.; Gaines, E.E.

    1984-09-28

    This report covers the DARPA-301 payload on the P78-1 satellite. Several gamma-ray detectors with high sensitivity continue to perform well and are completely capable of fulfilling the mission objectives. These objectives are: (1) Provide the technical planning and liaison with the Air Force Satellite Control Facility and other government agencies as required for the on-orbit satellite support of the DARPA-301 payload; (2) Assess the on-orbit operation and quality of data from the DARPA-301 payload on the P78-1 satellite; (3) Provide support, including quick-look analysis and interactions with the Air Force Satellite Control Facility, for a regional event; and, (4) Perform regular analyses of the on-orbit data to maintain updated evaluations of the sensitivities and optimum configurations of the payload for mapping gamma-ray sources.

  9. Optical Payload for the STARE Mission (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Title: Optical Payload for the STARE Mission Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) is a nano-sat based mission designed to better determine the ...

  10. High Frequency Mechanical Pyroshock Simulations for Payload Systems

    SciTech Connect (OSTI)

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; CAP,JEROME S.; NUSSER,MICHAEL A.

    1999-12-15

    Sandia National Laboratories (SNL) designs mechanical systems with components that must survive high frequency shock environments including pyrotechnic shock. These environments have not been simulated very well in the past at the payload system level because of weight limitations of traditional pyroshock mechanical simulations using resonant beams and plates. A new concept utilizing tuned resonators attached to the payload system and driven with the impact of an airgun projectile allow these simulations to be performed in the laboratory with high precision and repeatability without the use of explosives. A tuned resonator has been designed and constructed for a particular payload system. Comparison of laboratory responses with measurements made at the component locations during actual pyrotechnic events show excellent agreement for a bandwidth of DC to 4 kHz. The bases of comparison are shock spectra. This simple concept applies the mechanical pyroshock simulation simultaneously to all components with the correct boundary conditions in the payload system and is a considerable improvement over previous experimental techniques and simulations.

  11. Expert System for Building TRU Waste Payloads - 13554

    SciTech Connect (OSTI)

    Bruemmer, Heather; Slater, Bryant

    2013-07-01

    The process for grouping TRU waste drums into payloads for shipment to the Waste Isolation Pilot Plant (WIPP) for disposal is a very complex process. Transportation and regulatory requirements must be met, along with striving for the goals of shipment efficiency: maximize the number of waste drums in a shipment and minimize the use of empty drums which take up precious underground storage space. The restrictions on payloads range from weight restrictions, to limitations on flammable gas in the headspace, to minimum TRU alpha activity concentration requirements. The Overpack and Payload Assistant Tool (OPAT) has been developed as a mixed-initiative intelligent system within the WIPP Waste Data System (WDS) to guide the construction of multiple acceptable payloads. OPAT saves the user time while at the same time maximizes the efficiency of shipments for the given drum population. The tool provides the user with the flexibility to tune critical factors that guide OPAT's operation based on real-time feedback concerning the results of the execution. This feedback complements the user's external knowledge of the drum population (such as location of drums, known challenges, internal shipment goals). This work demonstrates how software can be utilized to complement the unique domain knowledge of the users. The mixed-initiative approach combines the insight and intuition of the human expert with the proficiency of automated computational algorithms. The result is the ability to thoroughly and efficiently explore the search space of possible solutions and derive the best waste management decision. (authors)

  12. CRC handbook of NASA future missions and payloads

    SciTech Connect (OSTI)

    Hord, M.

    1986-01-01

    The author presents a detailed and quantitative description of all of the programs, systems, sensors and experiments associated with the next 30 years of space endeavors by the National Aeronautics and Space Administration. Derived from the fifth issue of the NASA Space Systems Technology Model, the missions and payloads are categorized by applications area: solar system exploration, astrophysics, earth sciences, communications, space transportation and utilization of the space environment. Far-term missions are described as opportunity missions and landmark missions, for the distant future. Technology requirements are collected by discipline: power, propulsion, materials, structures, information systems, navigation, guidance and control. Payload technology requirements are organized by instrument sensing range. This information defines in quantitative terms, the opportunities and limits for future civilian space system capabilities.

  13. The sheath structure around a negatively charged rocket payload

    SciTech Connect (OSTI)

    Neubert, T.; Gilchrist, B.E.; Banks, P.M.; Williamson, P.R. ); Mandell, M.J.; Katz, I. ); Sasaki, S.; Oyama, K.I. ); Raitt, W.J.; Meyers, N.B. )

    1990-05-01

    The sheath structure around a rocket payload charged up to 460 V negative relative to the ambient ionospheric plasma is investigated experimentally and by computer simulations. In one of the experimental modes, the voltage between the payloads was increased linearly from 0 to 460 V in 2.5 s. In this case the tethered mother/daughter functioned as a double probe, the negative probe (mother) reaching large negative potentials, while the positive probe (daughter) stayed close to the ambient plasma potential. A floating probe array was mounted on the mother with probes located, 25, 50, 75, and 100 cm from the rocket surface. The internal impedance of the array was smaller than the probe/plasma impedance, which influenced the potential measurements. However, the measurements contain signatures, which the authors interpret as resulting from the outward expansion of the ion sheath with increasing negative mother potential. This conclusion is substantiated by NASCAP/LEO computer simulations of space charge limited flow. At high potentials, the observed ion current flowing to the mother increased more strongly with bias potential than found from the simulations. It is suggested that the enhancement of the current is generated by secondary electrons emitted by the ions bombarding the payload skin. The effects of the motion of the mother (540-580 m/s) and of the ambient magnetic field have been assessed by the code. It was estimated that the ion current to the mother was increased by 20% relative to a stationary payload, while the incorporation of a magnetic field had no practical influence on the simulation results.

  14. TRU waste certification and TRUPACT-2 payload verification

    SciTech Connect (OSTI)

    Hunter, E.K. . Waste Isolation Pilot Plant Project Office); Johnson, J.E. . Waste Isolation Div.)

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) established a policy that requires each waste shipper to verify that all waste shipments meet the requirements of the Waste Acceptance Criteria (WAC) prior to being shipped. This verification provides assurance that transuranic (TRU) wastes meet the criteria while still retained in a facility where discrepancies can be immediately corrected. Each Department of Energy (DOE) TRU waste facility planning to ship waste to the Waste Isolation Pilot Plant (WIPP) is required to develop and implement a specific program including Quality Assurance (QA) provisions to verify that waste is in full compliance with WIPP's WAC. This program is audited by a composite DOE and contractor audit team prior to granting the facility permission to certify waste. During interaction with the Nuclear Regulatory Commission (NRC) on payload verification for shipping in TRUPACT-II, a similar system was established by DOE. The TRUPACT-II Safety Analysis Report (SAR) contains the technical requirements and physical and chemical limits that payloads must meet (like the WAC). All shippers must plan and implement a payload control program including independent QA provisions. A similar composite audit team will conduct preshipment audits, frequent subsequent audits, and operations inspections to verify that all TRU waste shipments in TRUPACT-II meet the requirements of the Certificate of Compliance issued by the NRC which invokes the SAR requirements. 1 fig.

  15. Dynamic modelling of a double-pendulum gantry crane system incorporating payload

    SciTech Connect (OSTI)

    Ismail, R. M. T. Raja; Ahmad, M. A.; Ramli, M. S.; Ishak, R.; Zawawi, M. A.

    2011-06-20

    The natural sway of crane payloads is detrimental to safe and efficient operation. Under certain conditions, the problem is complicated when the payloads create a double pendulum effect. This paper presents dynamic modelling of a double-pendulum gantry crane system based on closed-form equations of motion. The Lagrangian method is used to derive the dynamic model of the system. A dynamic model of the system incorporating payload is developed and the effects of payload on the response of the system are discussed. Extensive results that validate the theoretical derivation are presented in the time and frequency domains.

  16. LLNL Compliance Plan for TRUPACT-2 Authorized Methods for Payload Control

    SciTech Connect (OSTI)

    1995-03-01

    This document describes payload control at LLNL to ensure that all shipments of CH-TRU waste in the TRUPACT-II (Transuranic Package Transporter-II) meet the requirements of the TRUPACT-II SARP (safety report for packaging). This document also provides specific instructions for the selection of authorized payloads once individual payload containers are qualified for transport. The physical assembly of the qualified payload and operating procedures for the use of the TRUPACT-II, including loading and unloading operations, are described in HWM Procedure No. 204, based on the information in the TRUPACT-II SARP. The LLNL TRAMPAC, along with the TRUPACT-II operating procedures contained in HWM Procedure No. 204, meet the documentation needs for the use of the TRUPACT-II at LLNL. Table 14-1 provides a summary of the LLNL waste generation and certification procedures as they relate to TRUPACT-II payload compliance.

  17. The use of filtered bags to increase waste payload capacity

    SciTech Connect (OSTI)

    Dustin, D.F.; Thorp, D.T.; Rivera, M.A.

    1998-03-03

    For the past few years, the Department of Energy has favored the direct disposal of low plutonium content residue materials from Rocky Flats rather than engage in expensive and time consuming plutonium recovery operations. One impediment to direct disposal has been the wattage limit imposed by the Waste Isolation Pilot Plant on hydrogenous materials such as combustibles and sludges. The issue of concern is the radiolytic generation and accumulation of hydrogen and other explosive gases in waste containers. The wattage limits that existed through 1996 restricted the amount of plutonium bearing hydrogenous materials that could be packaged in a WIPP bound waste drum to only a fraction of the capacity of a drum. Typically, only about one kilogram of combustible residue could be packaged in a waste drum before the wattage limit was exceeded resulting in an excessively large number of drums to be procured, stored, shipped, and interred. The Rocky Flats Environmental Technology Site has initiated the use of filtered plastic bags (called bag-out bags) used to remove transuranic waste materials from glove box lines. The bags contain small, disk like HEPA filters which are effective in containing radioactively contaminated particulate material but allow for the diffusion of hydrogen gas. Used in conjunction with filtered 55 gallon drums, filtered bag-out bags were pursued as a means to increase the allowable wattage limits for selected residue materials. In February 1997, the Nuclear Regulatory Commission approved the use of filtered bag-out bags for transuranic waste materials destined for WIPP. The concomitant increase in wattage limits now allows for approximately four times the payload per waste drum for wattage limited materials.

  18. Estimating payload internal temperatures and radiator size for multimegawatt space platforms

    SciTech Connect (OSTI)

    Dobranich, D.

    1987-08-01

    A conceptual space platform consists of a payload, a power conditioning unit (PCU), and two radiators: the main radiator and a secondary radiator. A computer program was written to determine the required size of the two radiators and the temperatures of the PCU and payload for a given platform power level. An iterative approach is necessary because the required size of the main radiator depends on the size of the secondary radiator and vice versa. Also, the temperatures of the payload and PCU depend on the size of the radiators. The program user can subdivide the two radiators into any number of nodes to increase the accuracy of the radiant heat transfer solution. The use of more nodes also allows better prediction of the nonlinear temperature drop that occurs across the radiators as the working fluid deposits the platform's waste heat in the radiator. View factor expressions are automatically calculated for different choices of the number of nodes. The user can also select different separation distances between the various platform structures. A model is included to couple the radiant and conduction heat transfer that occurs between the payload and its meteoroid shell and between the PCU and its shell. Also, the program allows the use of a refrigerator to cool the payload. If a refrigerator is used, the program determines the amount of additional thermal power needed to run the refrigerator. The results of parametric calculations are included to demonstrate the use of the program.

  19. The effect of maximum-allowable payload temperature on the mass of a multimegawatt space-based platform

    SciTech Connect (OSTI)

    Dobranich, D.

    1987-08-01

    Calculations were performed to determine the mass of a space-based platform as a function of the maximum-allowed operating temperature of the electrical equipment within the platform payload. Two computer programs were used in conjunction to perform these calculations. The first program was used to determine the mass of the platform reactor, shield, and power conversion system. The second program was used to determine the mass of the main and secondary radiators of the platform. The main radiator removes the waste heat associated with the power conversion system and the secondary radiator removes the waste heat associated with the platform payload. These calculations were performed for both Brayton and Rankine cycle platforms with two different types of payload cooling systems: a pumped-loop system (a heat exchanger with a liquid coolant) and a refrigerator system. The results indicate that increases in the maximum-allowed payload temperature offer significant platform mass savings for both the Brayton and Rankine cycle platforms with either the pumped-loop or refrigerator payload cooling systems. Therefore, with respect to platform mass, the development of high temperature electrical equipment would be advantageous. 3 refs., 24 figs., 7 tabs.

  20. Design and analysis of a high-performance shipping container for large payloads

    SciTech Connect (OSTI)

    York, A.R. II; Slavin, A.M.

    1995-05-01

    The packaging, designated the H1636A is a high-performing packageing for large payloads. The H1636A is 50 in. in diameter and 113 in. in length and weighs approximately 4600 lb when empty. The design objective was to meet 1996 proposed IAEA Type C criteria for air transport of large quantities of radioactive material (RAM). That is, the package should survive the standard Type B tests and more severe tests such as an impact onto an unyielding target at 280 ft/s and a one-hour jet fuel fire. The packaging consists of a large double-walled stainless steel outer drum filled with uniform density polyurethane foam. A stainless steel containment vessel (CV) with an inside diameter of 23 in. and a length of 78 in. carries the RAM. The CV has a nominal thickness of 0.375 in. and seals with two elastomeric 0-rings. The lid of the CV is joined to the body with a unique closure called a tape joint. The tape joint utilizes interlocking features preloaded with wedges and can withstand significant deformation.

  1. Compatibility issues of potential payloads for the USA/9904/B(U)F-85 RTG transportation system (RTGTS) for the 'Pluto Express' mission

    SciTech Connect (OSTI)

    Miller, Roger G.; Barklay, Chadwick D.; Howell, Edwin I.; Frazier, Timothy A.

    1997-01-10

    The specific electric power system for the 'Pluto Express' mission has yet to be specified. However, electric power will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The selected radioisotopic power system will also be transported using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). As a result, all of the potential payloads present uniquely different environmental and physical configuration requirements. This paper presents the major compatibility issues of the potential payloads for the USA/9904/B(U)F-85 RTG Transportation System for the 'Pluto Express' mission.

  2. Compatibility issues of potential payloads for the USA/9904/B(U)F-85 RTG transportation system (RTGTS) for the {open_quotes}Pluto Express{close_quotes} mission

    SciTech Connect (OSTI)

    Miller, R.G.; Barklay, C.D.; Howell, E.I.; Frazier, T.A.

    1997-01-01

    The specific electric power system for the {open_quotes}Pluto Express{close_quotes} mission has yet to be specified. However, electric power will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The selected radioisotopic power system will also be transported using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). As a result, all of the potential payloads present uniquely different environmental and physical configuration requirements. This paper presents the major compatibility issues of the potential payloads for the USA/9904/B(U)F-85 RTG Transportation System for the {open_quotes}Pluto Express{close_quotes} mission. {copyright} {ital 1997 American Institute of Physics.}

  3. Optical Payload for the STARE Mission (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Space-based Telescopes for Actionable Refinement of Ephemeris (STARE) is a nano-sat based mission designed to better determine the trajectory of satellites and space debris ...

  4. Central Characterization Program (CCP) Transuranic Authorized Methods for Payload Control

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  5. Contact-Handled Transuranic Waste Authorized Methods for Payload...

    Office of Environmental Management (EM)

    This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the ...

  6. Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH TRAMPAC)

    Broader source: Energy.gov [DOE]

    Supporting Technical Document for the Radiological Release Accident Investigation Report (Phase II Report)

  7. Q

    Office of Scientific and Technical Information (OSTI)

    Q LA-UR- " " " 3 tos Alamos National Laboratoty is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. TITLE: Klystron ...

  8. Modeling Techniques Used to Analyze Safety of Payloads for Generic Missile Type Weapons Systems During an Indirect Lightning Strike

    SciTech Connect (OSTI)

    Perkins, M P; Ong, M M; Crull, E W; Brown Jr., C G

    2009-07-21

    During lightning strikes buildings and other structures can act as imperfect Faraday Cages, enabling electromagnetic fields to be developed inside the facilities. Some equipment stored inside these facilities may unfortunately act as antenna systems. It is important to have techniques developed to analyze how much voltage, current, or energy dissipation may be developed over valuable components. In this discussion we will demonstrate the modeling techniques used to accurately analyze a generic missile type weapons system as it goes through different stages of assembly. As work is performed on weapons systems detonator cables can become exposed. These cables will form different monopole and loop type antenna systems that must be analyzed to determine the voltages developed over the detonator regions. Due to the low frequencies of lightning pulses, a lumped element circuit model can be developed to help analyze the different antenna configurations. We will show an example of how numerical modeling can be used to develop the lumped element circuit models used to calculate voltage, current, or energy dissipated over the detonator region of a generic missile type weapons system.

  9. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    SciTech Connect (OSTI)

    N. D. Jerred; T. M. Howe; S. D. Howe; A. Rajguru

    2014-02-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.

  10. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-04-04

    This procedure provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP).

  11. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-04-13

    This procedure provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP).

  12. CH Packaging Operations for High Wattage Waste

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-01-06

    This document provides instructions for assembling the following CH packaging payload: Drum payload assembly Standard Waste Box (SWB) assembly Ten-Drum Overpack (TDOP)

  13. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-06-26

    Introduction - This procedure provides instructions for assembling the following CH packaging payload: -Drum payload assembly -Standard Waste Box (SWB) assembly -Ten-Drum Overpack (TDOP).

  14. Recommendations and Justifications To Remove Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office Federal Facility Agreement and Consent Order, Revision 0

    SciTech Connect (OSTI)

    Birney, Cathleen; Krauss, Mark J

    2013-09-01

    This document is part of an effort to reevaluate 37 FFACO and Administrative URs against the current Soils Risk-Based Corrective Action Evaluation Process. After reviewing 37 existing FFACO and Administrative URs, 3 URs addressed in this document have sufficient information to determine that these current URs may be removed, based on the RBCA criteria. This document presents recommendations on modifications to existing URs that will be consistent with the RBCA criteria.

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...UAV Payload McCoy, R.F, Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The ARM-UAV payload is ...

  16. uav_scie

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... UAV capable of carrying a 100-kg payload to a maximum altitude of 7 km. The Gnat was first operated in a checkout flight at Edwards Air Force Base with a basic radiometric payload ...

  17. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    SciTech Connect (OSTI)

    Ferrell, P.C.

    1996-04-18

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  18. Passive orientation apparatus

    DOE Patents [OSTI]

    Spletzer, Barry L.; Fischer, Gary J.; Martinez, Michael A.

    2001-01-01

    An apparatus that can return a payload to a known orientation after unknown motion, without requiring external power or complex mechanical systems. The apparatus comprises a faceted cage that causes the system to rest in a stable position and orientation after arbitrary motion. A gimbal is mounted with the faceted cage and holds the payload, allowing the payload to move relative to the stable faceted cage. The payload is thereby placed in a known orientation by the interaction of gravity with the geometry of the faceted cage, the mass of the system, and the motion of the payload and gimbal. No additional energy, control, or mechanical actuation is required. The apparatus is suitable for use in applications requiring positioning of a payload to a known orientation after arbitrary or uncontrolled motion, including remote sensing and mobile robot applications.

  19. OSTIblog Articles in the Pluto Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    and more capable scientific payload compared to the solar power alternative NASA studied. ... missions to explore seven planets in the solar system, including the current New ...

  20. OSTIblog Articles in the MMRTG Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    and more capable scientific payload compared to the solar power alternative NASA studied. ... missions to explore seven planets in the solar system, including the current New ...

  1. OSTIblog Articles in the space battery Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    and more capable scientific payload compared to the solar power alternative NASA studied. ... missions to explore seven planets in the solar system, including the current New ...

  2. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    and more capable scientific payload compared to the solar power alternative NASA studied. ... missions to explore seven planets in the solar system, including the current New ...

  3. OSTIblog Articles in the Mars rover Topic | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    and more capable scientific payload compared to the solar power alternative NASA studied. ... missions to explore seven planets in the solar system, including the current New ...

  4. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan (Program...

    Office of Scientific and Technical Information (OSTI)

    The aircraft payload also includes instrumentation for solarinfrared radiation measurements. This research is supported by the U.S. Department of Energy's ARM Climate Research ...

  5. OSTIblog Articles in the New Horizons Topic | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    and more capable scientific payload compared to the solar power alternative NASA studied. ... missions to explore seven planets in the solar system, including the current New ...

  6. DOE Awards $10 Million to Small Businesses for Fossil Energy...

    Office of Environmental Management (EM)

    ... airborne laser scanner for routine mapping of terrain from unmanned aircraft. The compact sensor payload for unmanned aircraft this program will develop represents an economical ...

  7. ARM_AVP_SHIS_Taylor_Turner_pdf.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    each with significantly different instrument operating environments. * The S-HIS was initially designed to fly on an unmanned aircraft vehicle (UAV) with limited payload capacity. ...

  8. ARM - AMF3 Baseline Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Profiling Balloon-Borne Sounding System (SONDE) Tether Balloons, with instrument payloads Unmanned Aerial Systems (UAS), specification being determined Clouds ...

  9. Autonomous Realtime Threat-Hunting Robot (ARTHR

    ScienceCinema (OSTI)

    INL

    2009-09-01

    Idaho National Laboratory researchers developed an intelligent plug-and-play robot payload that transforms commercial robots into effective first responders for deadly chemical, radiological and explosive threats.

  10. Y-12 employees experience their connection to national security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Malmstrom Air Force Base near Great Falls, Montana, witnessing firsthand the active missiles whose nuclear payloads begin as materials and shapes in Y-12's production facilities. ...

  11. 03-01-2010 NNSA-B-10-0110

    National Nuclear Security Administration (NNSA)

    10 Sandia National LaboratoriesNew Mexico (SNLNM) proposes to conduct testing that would ... and Integration Facility (KSPIF). Sandia Site Office Payload 2 Integration and ...

  12. Microsoft Word - Inspection of TRUPACT-III Changes.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as removing a concrete pad, installing a hood ventilation system, bolting robot, bolt and coverlid rack, pallet dispenser, payload transfer station, and VOC monitoring ...

  13. OSTIblog Articles in the Curiosity Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    ... and more capable scientific payload compared to the solar power alternative NASA studied. ... and longevity unmatched by any other NASA spacecraft power system."1 The New ...

  14. Acceptance Criteria - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G and I clarified requirements throughout the appendices. Appendix I, Table I-1 in the Waste Acceptance Criteria for the "Payload Container Description" removed "208-L (55 gal)...

  15. VELA_COMP_OUT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as experimental payloads on the Space Shuttle, the Space Station, and other spacecraft. ... December 1960 USAF, NASA, and AEC representatives meet to define satellite system to ...

  16. Water-soluble carbon nanotube compositions for drug delivery and medicinal applications

    DOE Patents [OSTI]

    Tour, James M.; Lucente-Schultz, Rebecca; Leonard, Ashley; Kosynkin, Dmitry V.; Price, Brandi Katherine; Hudson, Jared L.; Conyers, Jr., Jodie L.; Moore, Valerie C.; Casscells, S. Ward; Myers, Jeffrey N.; Milas, Zvonimir L.; Mason, Kathy A.; Milas, Luka

    2014-07-22

    Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.

  17. Pendulation control system and method for rotary boom cranes

    DOE Patents [OSTI]

    Robinett, III, Rush D.; Groom, Kenneth N.; Feddema, John T.; Parker, Gordon G.

    2002-01-01

    A command shaping control system and method for rotary boom cranes provides a way to reduce payload pendulation caused by real-time input signals, from either operator command or automated crane maneuvers. The method can take input commands and can apply a command shaping filter to reduce contributors to payload pendulation due to rotation, elevation, and hoisting movements in order to control crane response and reduce tangential and radial payload pendulation. A filter can be applied to a pendulation excitation frequency to reduce residual radial pendulation and tangential pendulation amplitudes.

  18. MODIFICATIONS TO THE WIPP PANEL CLOSURE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in Panel 4 than in Panel 3. Please compare the waste inventories in Panels 3 and 4 ... to WIPP." This category consists of high-wattage (i.e., high decay heat) payload ...

  19. Autonomous Realtime Threat-Hunting Robot (ARTHR)

    ScienceCinema (OSTI)

    Idaho National Laboratory - David Bruemmer, Curtis Nielsen

    2010-01-08

    Idaho National Laboratory researchers developed an intelligent plug-and-play robot payload that transforms commercial robots into effective first responders for deadly chemical, radiological and explosive threats. To learn more, visit

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... supplies without breeding tritium in the water blanket. less Full Text Available April ... have run parameter studies for the baseline roundtrip (RT) to Mars with a 100-ton payload. ...

  1. Summary - ARROW-PAK Container

    Office of Environmental Management (EM)

    generate hydrogen gas that exceeds the limits set by the Nuclear Regulatory Commission (NRC). The ARROW-PAK container was designed to provide a payload container for high-wattage...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation for the AMR-UAV Payload McCoy, R.F., Tooman, T.T., and Bolton, W.B., Sandia National Laboratories Thirteenth Atmospheric Radiation Measurement (ARM) Science Team ...

  3. ARM-UAV TWP-ICE Activities and Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The instrument operational status, data availability and daily flight details for the ARM-UAV Proteus payload flown during the TWP-ICE experiment are presented. Data was also ...

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The upward looking radiometers on the ARM-UAV payload are mounted on a stabilized ... Radiometer Data from the ARM-UAV Fall 2002 flight series along with platform performances ...

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible. November 2015 , Springer, New York, ...

  6. Methods of and system for swing damping movement of suspended objects

    DOE Patents [OSTI]

    Jones, James F.; Petterson, Ben J.; Strip, David R.

    1991-01-01

    A payload suspended from a gantry is swing damped in accordance with a control algorithm based on the periodic motion of the suspended mass or by servoing on the forces induced by the suspended mass.

  7. OSTI, US Dept of Energy Office of Scientific and Technical Information...

    Office of Scientific and Technical Information (OSTI)

    ... the torpedoes used at Pearl Harbor, and dropped her single payload, a plutonium bomb weighing 10,000 pounds and nicknamed Fat Man. Three square miles of the city were destroyed. ...

  8. Methods of and system for swing damping movement of suspended objects

    DOE Patents [OSTI]

    Jones, J.F.; Petterson, B.J.; Strip, D.R.

    1991-03-05

    A payload suspended from a gantry is swing damped in accordance with a control algorithm based on the periodic motion of the suspended mass or by servoing on the forces induced by the suspended mass. 13 figures.

  9. Transportation system benefits of early deployment of a 75-ton multipurpose canister system

    SciTech Connect (OSTI)

    Wankerl, M.W.; Schmid, S.P.

    1995-12-31

    In 1993 the US Civilian Radioactive Waste Management System (CRWMS) began developing two multipurpose canister (MPC) systems to provide a standardized method for interim storage and transportation of spent nuclear fuel (SNF) at commercial nuclear power plants. One is a 75-ton concept with an estimated payload of about 6 metric tons (t) of SNF, and the other is a 125-ton concept with an estimated payload of nearly 11 t of SNF. These payloads are two to three times the payloads of the largest currently certified US rail transport casks, the IF-300. Although is it recognized that a fully developed 125-ton MPC system is likely to provide a greater cost benefit, and radiation exposure benefit than the lower-capacity 75-ton MPC, the authors of this paper suggest that development and deployment of the 75-ton MPC prior to developing and deploying a 125-ton MPC is a desirable strategy. Reasons that support this are discussed in this paper.

  10. Microsoft Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    WIPP Approved Yes Overpack No Internal Volume (m3) 1.89 Payload Volume (m3) 1.89 Steel Density (kgm3) 153.5 Plastic Density (kgm3) 1.2 Lead Density (kgm3) 0 Cellulosics Density...

  11. Solar wind samples give insight into birth of solar system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar wind samples Solar wind samples give insight into birth of solar system Most of the Genesis payload consisted of fragile solar-wind collectors, which had been exposed to the ...

  12. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  13. Operator in-the-loop control of rotary cranes

    SciTech Connect (OSTI)

    Parker, G.G.; Robinett, R.D.; Driessen, B.J.; Dohrmann, C.R.

    1996-03-01

    An open-loop control method is presented for reducing the oscillatory motion of rotary crane payloads during operator commanded maneuvers. A typical rotary crane consists of a multiple degree-of-freedom platform for positioning a spherical pendulum with an attached payload. The crane operator positions the Payload by issuing a combination of translational and rotational commands to the platform as well as load-line length changes. Frequently, these pendulum modes are time-varying and exhibit low natural frequencies. Maneuvers are therefore performed at rates sufficiently slow so as not to excite oscillation. The strategy presented here generates crane commands which suppress vibration of the payload without a priori knowledge of the desired maneuver. Results are presented for operator in-the-loop positioning using a real-time dynamics simulation of a three-axis rotary crane where the residual sway magnitude is reduced in excess of 4OdB.

  14. OSTIblog Articles in the New Horizons Topic | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    The MMRTG "can go farther, travel to more places, and power and heat a larger and more capable scientific payload compared to the solar power alternative NASA studied. The ...

  15. OSTIblog Articles in the space battery Topic | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    The MMRTG "can go farther, travel to more places, and power and heat a larger and more capable scientific payload compared to the solar power alternative NASA studied. The ...

  16. OSTIblog Articles in the Mars rover Topic | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    The MMRTG "can go farther, travel to more places, and power and heat a larger and more capable scientific payload compared to the solar power alternative NASA studied. The ...

  17. OSTIblog Articles in the Pluto Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    The MMRTG "can go farther, travel to more places, and power and heat a larger and more capable scientific payload compared to the solar power alternative NASA studied. The ...

  18. OSTIblog Articles in the plutonium Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    ... The MMRTG "can go farther, travel to more places, and power and heat a larger and more capable scientific payload compared to the solar power alternative NASA studied. The ...

  19. OSTIblog Articles in the MMRTG Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    The MMRTG "can go farther, travel to more places, and power and heat a larger and more capable scientific payload compared to the solar power alternative NASA studied. The ...

  20. OSTIblog Articles in the Curiosity Topic | OSTI, US Dept of Energy...

    Office of Scientific and Technical Information (OSTI)

    ... The MMRTG "can go farther, travel to more places, and power and heat a larger and more capable scientific payload compared to the solar power alternative NASA studied. The ...

  1. CX-002265: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Payload 2 Integration and Environmental Testing at Kirtland Air Force BaseCX(s) Applied: B3.6Date: 03/01/2010Location(s): New MexicoOffice(s): NNSA-Headquarters, Sandia Site Office

  2. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Change Is in the Air" as Scientists Evaluate Data Collection with Unmanned Aircraft Bookmark and Share Data gathered during ERASMUS are already available to compare with conventional data The larger Pilatus unmanned aerial system carries a larger instrument payload than the DataHawks and measures temperature, humidity, pressure, winds, aerosols, and radiation. The larger Pilatus unmanned aerial system carries a larger instrument payload than the DataHawks and measures temperature,

  3. Advancing Climate Science with Global Research Facilities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Climate Science with Global Research Facilities Advancing Climate Science with Global Research Facilities April 24, 2014 - 3:23pm Addthis This Gulfstream-1 research plane carries a payload of more than 30 scientific instruments to measure smoke from forest fires and other biomass burns. | Image courtesy of Pacific Northwest National Laboratory. This Gulfstream-1 research plane carries a payload of more than 30 scientific instruments to measure smoke from forest fires and other biomass

  4. ATOMISTIC MODELING OF ELECTRODE MATERIALS | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Full Document and Summary Versions are available for download ARROW-PAK Report (1.17 MB) Summary - ARROW-PAK Container (55.7 KB) More Documents & Publications Compilation of ETR Summaries Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH TRAMPAC) Central Characterization Program (CCP) Transuranic Authorized Methods for Payload Control Department of Energy

    Greg Flach ASCEM Site Applications Team Performance & Risk Assessment Community of Practice

  5. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, Stanley R.

    1985-01-01

    A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

  6. Thermal evaluation of alternative shipping cask for irradiated experiments

    SciTech Connect (OSTI)

    Guillen, Donna Post

    2015-06-01

    Results of a thermal evaluation are provided for a new shipping cask under consideration for transporting irradiated experiments between the test reactor and post-irradiation examination (PIE) facilities. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for PIE. To date, the General Electric (GE)-2000 cask has been used to transport experiment payloads between these facilities. However, the availability of the GE-2000 cask to support future experiment shipping is uncertain. In addition, the internal cavity of the GE-2000 cask is too short to accommodate shipping the larger payloads. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled payloads. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. Furthermore, from a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask for shipping irradiated experiment payloads.

  7. THERMAL EVALUATION OF ALTERNATE SHIPPING CASK FOR IRRADIATED EXPERIMENTS

    SciTech Connect (OSTI)

    Donna Post Guillen

    2015-06-01

    Results of a thermal evaluation are provided for a new shipping cask under consideration for transporting irradiated experiments between the test reactor and post-irradiation examination (PIE) facilities. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for PIE. To date, the General Electric (GE)-2000 cask has been used to transport experiment payloads between these facilities. However, the availability of the GE-2000 cask to support future experiment shipping is uncertain. In addition, the internal cavity of the GE-2000 cask is too short to accommodate shipping the larger payloads. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled payloads. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. From a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask for shipping irradiated experiment payloads.

  8. Extracting hidden messages in steganographic images

    SciTech Connect (OSTI)

    Quach, Tu-Thach

    2014-07-17

    The eventual goal of steganalytic forensic is to extract the hidden messages embedded in steganographic images. A promising technique that addresses this problem partially is steganographic payload location, an approach to reveal the message bits, but not their logical order. It works by finding modified pixels, or residuals, as an artifact of the embedding process. This technique is successful against simple least-significant bit steganography and group-parity steganography. The actual messages, however, remain hidden as no logical order can be inferred from the located payload. This paper establishes an important result addressing this shortcoming: we show that the expected mean residuals contain enough information to logically order the located payload provided that the size of the payload in each stego image is not fixed. The located payload can be ordered as prescribed by the mean residuals to obtain the hidden messages without knowledge of the embedding key, exposing the vulnerability of these embedding algorithms. We provide experimental results to support our analysis.

  9. Extracting hidden messages in steganographic images

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Quach, Tu-Thach

    2014-07-17

    The eventual goal of steganalytic forensic is to extract the hidden messages embedded in steganographic images. A promising technique that addresses this problem partially is steganographic payload location, an approach to reveal the message bits, but not their logical order. It works by finding modified pixels, or residuals, as an artifact of the embedding process. This technique is successful against simple least-significant bit steganography and group-parity steganography. The actual messages, however, remain hidden as no logical order can be inferred from the located payload. This paper establishes an important result addressing this shortcoming: we show that the expected mean residualsmore » contain enough information to logically order the located payload provided that the size of the payload in each stego image is not fixed. The located payload can be ordered as prescribed by the mean residuals to obtain the hidden messages without knowledge of the embedding key, exposing the vulnerability of these embedding algorithms. We provide experimental results to support our analysis.« less

  10. A unique gun application for both high velocity and low velocity projectiles in a standard 155mm long tom gun

    SciTech Connect (OSTI)

    Garcia, J.R.

    1990-01-01

    The Terminal Ballistics Facility at Sandia National Laboratores in Albuquerque, New Mexico has developed an inexpensive and reliable capability for environmental testing of nuclear and kinetic energy weapon systems using the standard military 155 mm long tom gun. An unusual priming technique and charge configuration developed by Sandia National laboratories provides repeatable results such that payloads may be launched outside of the normal operating regime (both high and low) for the 155 mm gun. A 15 pound payload was reliably launched at 1000 fps with a breech pressure of 3000 psi. Another 20 pound payload was reliably launched to 5000 fps with a breech pressure of 50000 psi. A detailed description of charge configuration and test results is presented. 21 figs., 4 tabs.

  11. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    SciTech Connect (OSTI)

    Sakakibara, Y.; Yamamoto, K.; Chen, D.; Tokoku, C.; Uchiyama, T.; Ohashi, M.; Kuroda, K.; Kimura, N.; Suzuki, T.; Koike, S.

    2014-01-29

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  12. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Adkins, H.E.; Bearden, T.E.

    1990-10-01

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

  13. Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 1: April 2, 2012 Heavy Trucks Move Freight Efficiently Fact #721: April 2, 2012 Heavy Trucks Move Freight Efficiently Though discussions of vehicle efficiency are often centered on a measurement of miles per gallon, it is also important to consider how efficiently a vehicle carries its payload. Although heavy vehicles like buses or class 8 trucks get much fewer miles per gallon than cars, a greater percentage of their mass is payload which means that they are much more efficient at

  14. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-05-06

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  15. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-08-28

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  16. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-03-21

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  17. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-10-17

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  18. CH Packaging Operations for High Wattage Waste at LANL

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-12-18

    This procedure provides instructions for assembling the following contact-handled (CH) packaging payloads: - Drum payload assembly - Standard Waste Box (SWB) assembly - Ten-Drum Overpack (TDOP) In addition, this procedure also provides operating instructions for the TRUPACT-II CH waste packaging. This document also provides instructions for performing ICV and OCV preshipment leakage rate tests on the following packaging seals, using a nondestructive helium (He) leak test: - ICV upper main O-ring seal - ICV outer vent port plug O-ring seal - OCV upper main O-ring seal - OCV vent port plug O-ring seal.

  19. ZEST flight test experiments, Kauai Test Facility, Hawaii. Test report

    SciTech Connect (OSTI)

    Cenkci, M.J.

    1991-07-01

    The Strategic Defense Initiative Organization (SDIO) is proposing to execute two ZEST flight experiments to obtain information related to the following objectives: validation of payload modeling; characterization of a high energy release cloud; and documentation of scientific phenomena that may occur as a result of releasing a high energy cloud. The proposed action is to design, develop, launch, and detonate two payloads carrying high energy explosives. Activities required to support this proposal include: (1) execution of component assembly tests at Space Data Division (SDD) in Chandler, Arizona and Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, and (2) execution of pre-flight flight test activities at Kauai Test Facility.

  20. Container for radioactive materials

    DOE Patents [OSTI]

    Fields, S.R.

    1984-05-30

    A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

  1. System and method to improve the power output and longetivity of a radioisotope thermoelectric generator

    DOE Patents [OSTI]

    Mowery, Jr., Alfred L.

    1993-01-01

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

  2. AlGaN UV LED and Photodiodes Radiation Hardness and Space Qualifications and Their Applications in Space Science and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K. X.

    2011-05-31

    This presentation provides an overview of robust, radiation hard AlGaN optoelectronic devices and their applications in space exploration & high energy density physics. Particularly, deep UV LED and deep UV photodiodes are discussed with regard to their applications, radiation hardness and space qualification. AC charge management of UV LED satellite payload instruments, which were to be launched in late 2012, is covered.

  3. The Antarctic Impulsive Transient Antenna ultra-high energy neutrino detector: Design, performance, and sensitivity for 2006-2007 balloon flight

    SciTech Connect (OSTI)

    Gorham, P. W.; Allison, P.; Barwick, S. W.; Beatty, J. J.; Besson, D. Z.; Binns, W. R.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dowkontt, P. F.; DuVernois, M. A.; Field, R. C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C. L.; Hoover, S.; Israel, M. H.; Learned, J. G.

    2009-05-23

    In this article, we present a comprehensive report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity.

  4. Shippingport Spent Fuel Canister (SSFC) Design Report Project W-518

    SciTech Connect (OSTI)

    JOHNSON, D.M.

    2000-01-27

    The SSFC Design Report Describes A spent fuel canister for Shippingport Core 2 blanket fuel assemblies. The design of the SSFC is a minor modification of the MCO. The modification is limited to the Shield Plug which remains unchanged with regard to interfaces with the canister shell. The performance characteristics remain those for the MCO, which bounds the payload of the SSFC.

  5. Sway control method and system for rotary cranes

    SciTech Connect (OSTI)

    Robinett, Rush D.; Parker, Gordon G.; Feddema, John T.; Dohrmann, Clark R.; Petterson, Ben J.

    1999-01-01

    Methods and apparatuses for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory .gamma.(t), which includes a jib angular acceleration .gamma., a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle .theta.(t) and a radial rotation angle .phi.(t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular .gamma. and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach.

  6. Sway control method and system for rotary cranes

    DOE Patents [OSTI]

    Robinett, R.D.; Parker, G.G.; Feddema, J.T.; Dohrmann, C.R.; Petterson, B.J.

    1999-06-01

    Methods and apparatuses are disclosed for reducing the oscillatory motion of rotary crane payloads during operator-commanded or computer-controlled maneuvers. An Input-shaping filter receives input signals from multiple operator input devices and converts them into output signals readable by the crane controller to dampen the payload tangential and radial sway associated with rotation of the jib. The input signals are characterized by a hub rotation trajectory [gamma](t), which includes a jib angular acceleration [gamma], a trolley acceleration x, and a load-line length velocity L. The system state variables are characterized by a tangential rotation angle [theta](t) and a radial rotation angle [phi](t) of the load-line. The coupled equations of motion governing the filter are non-linear and configuration-dependent. In one embodiment, a filter is provided between the operator and the crane for filtering undesired frequencies from the angular [gamma] and trolley x velocities to suppress payload oscillation. In another embodiment, crane commands are computer generated and controlled to suppress vibration of the payload using a postulated asymmetrical shape for the acceleration profiles of the jib, which profiles are uniquely determined by a set of parameters (including the acceleration pulse amplitude and the duration and coast time between pulses), or a dynamic programming approach. 25 figs.

  7. Applications of Robust, Radiation Hard AlGaN Optoelectronic Devices in Space Exploration and High Energy Density Physics

    SciTech Connect (OSTI)

    Sun, K.

    2011-05-04

    This slide show presents: space exploration applications; high energy density physics applications; UV LED and photodiode radiation hardness; UV LED and photodiode space qualification; UV LED AC charge management; and UV LED satellite payload instruments. A UV LED satellite will be launched 2nd half 2012.

  8. Thermal evaluation of alternative shipping cask for irradiated experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guillen, Donna Post

    2015-06-01

    Results of a thermal evaluation are provided for a new shipping cask under consideration for transporting irradiated experiments between the test reactor and post-irradiation examination (PIE) facilities. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for PIE. To date, the General Electric (GE)-2000 cask has been used to transport experiment payloads between these facilities. However, the availability of the GE-2000 cask to support future experiment shipping is uncertain. In addition, the internal cavitymore » of the GE-2000 cask is too short to accommodate shipping the larger payloads. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled payloads. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. Furthermore, from a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask for shipping irradiated experiment payloads.« less

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. CH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  4. CH-TRU Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  6. CH-TRU Waste Content Codes (CH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. STARS MDT-II targets mission

    SciTech Connect (OSTI)

    Sims, B.A.; White, J.E.

    1997-08-01

    The Strategic Target System (STARS) was launched successfully on August 31, 1996 from the Kauai Test Facility (KTF) at the Pacific Missile Range Facility (PMRF). The STARS II booster delivered a payload complement of 26 vehicles atop a post boost vehicle. These targets were designed and the mission planning was achieved to provide for a dedicated mission for view by the Midcourse Space Experiment (MSX) Satellite Sensor Suite. Along with the MSX Satellite, other corollary sensors were involved. Included in these were the Airborne Surveillance Test Bed (AST) aircraft, the Cobra Judy sea based radar platform, Kwajalein Missile Range (KMR), and the Kiernan Reentry Measurements Site (KREMS). The launch was a huge success from all aspects. The STARS Booster flew a perfect mission from hardware, software and mission planning respects. The payload complement achieved its desired goals. All sensors (space, air, ship, and ground) attained excellent coverage and data recording.

  11. Calibration Monitor for Dark Energy Experiments

    SciTech Connect (OSTI)

    Kaiser, M. E.

    2009-11-23

    The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.

  12. Results of the 1990 NASA/JPL balloon flight solar cell calibration program

    SciTech Connect (OSTI)

    Anspaugh, B.E.; Weiss, R.S.

    1990-11-01

    The 1990 solar cell calibration balloon flight consisted of two flights, one on July 20, 1990 and the other on September 6, 1990. A malfunction occurred during the first flight, which resulted in a complete loss of data and a free fall of the payload from 120,000 ft. After the tracker was rebuilt, and several solar cell modules were replaced, the payload was reflown. The September flight was successful and met all the objectives of the program. Forty-six modules were carried to an altitude of 118,000 ft (36.0 km). Data telemetered from the modules was corrected to 28 C and to 1 a.u. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.

  13. High-speed, intra-system networks

    SciTech Connect (OSTI)

    Quinn, Heather M; Graham, Paul S; Manuzzato, Andrea; Fairbanks, Tom; Dallmann, Nicholas; Desgeorges, Rose

    2010-06-28

    Recently, engineers have been studying on-payload networks for fast communication paths. Using intra-system networks as a means to connect devices together allows for a flexible payload design that does not rely on dedicated communication paths between devices. In this manner, the data flow architecture of the system can be dynamically reconfigured to allow data routes to be optimized for the application or configured to route around devices that are temporarily or permanently unavailable. To use intra-system networks, devices will need network controllers and switches. These devices are likely to be affected by single-event effects, which could affect data communication. In this paper we will present radiation data and performance analysis for using a Broadcom network controller in a neutron environment.

  14. Design and testing of Spec 7A containers for packaging radioactive wastes

    SciTech Connect (OSTI)

    Roberts, R.S.; Perkins, C.L.

    1982-11-19

    For a variety of reasons, the containers that have or currently are being used for packaging radioactive waste have drawbacks which has motivated LLNL to investigate, design and destructively test different Type A containers. The result of this work is manifested in the TX-4, which is comparatively lightweight, increases the net payload, and the simplicity of the design and ease in handling have proved to be timesaving. The TX-4 is readily available, relatively inexpensive and practical to use. It easily meets Type A packaging specifications with a gross payload of 7000 pounds. Although no tests were performed at a higher weight, we feel that the TX-4 could pass the tests at higher gross weights if the need arises. 20 figures.

  15. OPPORTUNITIES IN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OPPORTUNITIES IN or more than 50 years Los Alamos National Laboratory has designed, built, and analyzed data from instrumentation for space missions both near and far: * satellites circling Earth to help ensure our nation's security; * discovering the processes that govern the space environments of the Sun, Earth, and planets * discovering the composition of the Moon, Mars, and asteroids * capturing the most distant, most powerful cosmic explosions. Los Alamos space payloads and ground-based

  16. U.S. DEPARTMENT OF ENERGY * SAVANNAH RIVER SITE * AIKEN * SC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Orangutank TM : The Pipe Traveler The Pipe Traveler (Orangutank TM ) is a remote controlled, tethered robotic platform for traveling from one pipe to another using a network of vertical pipes for support. The Orangutank is designed to deliver payloads for various applications including, but not limited to; sampling equipment, spray nozzles, radiological analysis equipment, or other equipment for cleanup and remediation activities. Versatile Design The Orangutank TM combines specialized robotic

  17. Holistic Interactions of Shallow Clouds,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems Research Instrumentation HI-SCALE will utilize the ARM Aerial Facility's Gulfstream-159 (G-1), as well as ground instrumentation located at the SGP megasite. 7e G-1 will complete transects over the site at multiple altitudes within the boundary layer, within clouds, and above clouds. 7e payload on the G-1 includes: * high frequency meteorological and radiation (both up and downwelling) measurements that also permit computing

  18. Improving haul truck productivity

    SciTech Connect (OSTI)

    Fiscor, S.

    2007-06-15

    The paper reviews developments in payload management and cycle times. These were discussed at a roundtable held at the Haulage and Loading 2007 conference held in May in Phoenix, AZ, USA. Several original equipment manufacturers (OEMs) explaind what their companies were doing to improve cycle times for trucks, shovels and excavators used in surface coal mining. Quotations are given from Dion Domaschenz of Liebherr and Steve Plott of Cat Global Mining. 4 figs.

  19. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multifilter Radiometer Added to Cessna Payload Bookmark and Share Back at the hangar in Ponca City, a multifilter radiometer is positioned inside the Cessna's new starboard wingtip extension. Downward-facing multifilter radiometers (MFR) are instruments used to measure the intensity and distribution of reflected energy from different surfaces, such as grass or dirt. The relative amount of reflected energy-also called "surface spectral albedo"-is important for determining the amount of

  20. US Air Force Launches Satellite Carrying NNSA-provided Nuclear Detonation

    National Nuclear Security Administration (NNSA)

    Detection Sensors | National Nuclear Security Administration | (NNSA) US Air Force Launches Satellite Carrying NNSA-provided Nuclear Detonation Detection Sensors May 22, 2014 WASHINGTON, D.C. - On Friday, May 16, with the support of the National Nuclear Security Administration (NNSA), a U.S. Air Force Delta IV rocket lifted off from Cape Canaveral. Hosted onboard was a GPS IIF navigation satellite and a Global Burst Detector (GBD) payload designed to detect, identify and precisely locate

  1. Limited Test Ban Treaty | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Limited Test Ban Treaty US Air Force Launches Satellite Carrying NNSA-provided Nuclear Detonation Detection Sensors WASHINGTON, D.C. - On Friday, May 16, with the support of the National Nuclear Security Administration (NNSA), a U.S. Air Force Delta IV rocket lifted off from Cape Canaveral. Hosted onboard was a GPS IIF navigation satellite and a Global Burst Detector (GBD) payload designed to detect, identify

  2. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homeland and Nuclear Security: Remote Sensing and Verification Programs Remote Sensing and Verification Remote Sensing and Verification Image We extend Sandia's 60-year heritage in nuclear detonation detection to develop, deliver, and provide mission expertise for advanced remote sensing systems to monitor worldwide activities of consequence to national security. We design and build satellite sensor payloads and ground-based systems for the detection of nuclear detonations. We develop and

  3. Environmental effects of the US Antarctic Program`s use of balloons in Antarctica

    SciTech Connect (OSTI)

    McCold, L.N.; Eddlemon, G.K.; Blasing, T.J.

    1995-06-01

    The USAP uses balloons in Antarctica to conduct scientific research, to facilitate safe air transport, and to provide data for global weather predictions. However, there is the possibility that balloons or their payloads may adversely affect Antarctic fauna or flora. The purpose of this study is to provide background information upon which the USAP may draw when complying with its responsibilities under the National Environmental Policy Act of 1969, the Antarctic Treaty, and the Madrid Protocol.

  4. vitko-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM-UAV: The Next Phase J. Vitko, Jr. and T. P. Tooman Sandia National Laboratories Livermore, California R. G. Ellingson University of Maryland College Park, Maryland Introduction The Atmospheric Radiation Measurement-Unmanned Aerospace Vehicle (ARM-UAV) Program was initiated in 1993 to develop a capability to provide radiation and cloud measurements at the top of the troposphere, thereby capping the top of the grid cell above ARM sites. To date, ARM-UAV has developed the necessary payloads and

  5. Microsoft PowerPoint - Stephens-talk.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earl Res lts from Clo dSat Earl Res lts from Clo dSat Early Results from CloudSat Early Results from CloudSat Graeme Stephens Cast of many - incredible dedicated incredible dedicated teams, JPL, Ball, algs, DPC, etc ARM CloudSat Partners Data processing Mission management & payload development CIRA Spacecraft Radar subsystem development, SMC SPACE TEST SPACE TEST PROGRAM PROGRAM SPACE TEST SPACE TEST PROGRAM PROGRAM Ground operations system + Northrupp Grumman Radar subsystem development,

  6. Microsoft Word - FACT SHEET AMWTP Seismic.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed Waste Treatment Project vs. Nuclear Power Plants Implications of Japanese earthquake and tsunami Treatment - 1 Characterization - 4 Retrieval - 2 Payload - 5 Storage - 3 Shipping - 6 The recent earthquake, tsunami, and subsequent nuclear crises in Japan have renewed focus and concerns regarding the safety of the nuclear industry. The U.S. Department of Energy and Bechtel BWXT Idaho take these concerns very seriously and are confident in the safety of the Advanced Mixed Waste Treatment

  7. Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission

    SciTech Connect (OSTI)

    Schock, Alfred

    1993-10-01

    The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

  8. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 1, Rev. 14

    SciTech Connect (OSTI)

    1994-10-01

    The condensed version of the TRUPACT-II Contact Handled Transuranic Waste Safety Analysis Report for Packaging (SARP) contains essential material required by TRUPACT-II users, plus additional contents (payload) information previously submitted to the U.S. Nuclear Regulatory Commission. All or part of the following sections, which are not required by users of the TRUPACT-II, are deleted from the condensed version: (i) structural analysis, (ii) thermal analysis, (iii) containment analysis, (iv) criticality analysis, (v) shielding analysis, and (vi) hypothetical accident test results.

  9. High Energy Instrumentation Efforts in Turkey

    SciTech Connect (OSTI)

    Kalemci, Emrah

    2011-09-21

    This work summarizes the efforts in Turkey to build a laboratory capable of building and testing high energy astrophysics detectors that work in space. The EC FP6 ASTRONS project contributed strongly to these efforts, and as a result a fully operational laboratory at Sabanci University have been developed. In this laboratory we test and develop Si and CdZnTe based room temperature semiconductor strip detectors and develop detector and electronics system to be used as a payload on potential small Turkish satellites.

  10. SP-100 planetary mission/system preliminary design study. Final report, technical information report

    SciTech Connect (OSTI)

    Jones, R.M.

    1986-02-01

    This report contains a discussion on many aspects of a nuclear electric propulsion planetary science mission and spacecraft using the proposed SP-100 nuclear power subsystem. A review of the science rationale for such missions is included. A summary of eleven nuclear electric propulsion planetary missions is presented. A conceptual science payload, mission design, and spacecraft design is included for the Saturn Ring Rendezvous mission. Spacecraft and mission costs have been estimated for two potential sequences of nuclear electric propulsion planetary missions. The integration issues and requirements on the proposed SP-100 power subsystems are identified.

  11. Newsletter Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ANL/EVS/NL-07-09 Technical Contact: Brad W. Orr Phone: 630-252-8665 Email: brad.orr@anl.gov Editor: Donna J. Holdridge Contributor: Lynne Roeder Website: http://www.arm.gov ACRF Southern Great Plains Newsletter is published by Argonne National Laboratory, managed by UChicago Argonne, LLC, for the U.S. Department of Energy under contract number DE-AC02-06CH11357. Multifilter Radiometer Added to Cessna Payload Downward-facing multifilter radiometers (MFRs) are instruments used to measure the

  12. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    SciTech Connect (OSTI)

    Satoh, J.A.

    1994-11-09

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3.

  13. Productivity considerations for shovels and excavators

    SciTech Connect (OSTI)

    Fiscor, S.

    2007-09-15

    During Haulage and Loading 2007, the Engineering and Mining Journal organized an OEM round table discussion with the theme 'Reducing cycle times'. Seven panelists identified areas where they could improve cycle times for open-pit mining. Although the discussions focused mainly on haud trucks, two panelists discussed shovel productivity as it relates to cycle times. Topics ranged from truck-shovel pass matching to payload management. A clear message came through that all the minutes saved per cycle meant nothing if the mine did not have a properly trained operator. The article reports on the discussions. 4 figs.

  14. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect (OSTI)

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  15. UAVs in climate research: The ARM Unmanned Aerospace Vehicle Program

    SciTech Connect (OSTI)

    Bolton, W.R.

    1994-05-01

    In the last year, a Department of Energy/Strategic Environmental Research and Development Program project known as ``ARM-UAV`` has made important progress in developing and demonstrating the utility of unmanned aerospace vehicles as platforms for scientific measurements. Recent accomplishments include a series of flights using an atmospheric research payload carried by a General Atomics Gnat UAV at Edwards AFB, California, and over ground instruments located in north-central Oklahoma. The reminder of this discussion will provide background on the program and describe the recent flights.

  16. A New Vision for Fusion Energy Research: Fusion Rocket Engines for Planetary Defense

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.; Parks, P. B.; Evans, T. E.; Cohen, S. A.; Cassibry, J. T.; Campbell, E. M.

    2015-11-16

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We also lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. Deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass is also be possible.

  17. RH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2007-07-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits

  18. RH-TRU Waste Content Codes (RH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits

  19. Suspected Chinese missile sale overshadows US trade visit

    SciTech Connect (OSTI)

    Wolfsthal, J.

    1992-12-01

    The State Department is investigating reports that China has delivered 24 short-range M-11 missiles to Pakistan in apparent violation of pledges to the United States to abide by the Missile Technology Control Regime (MTCR). The MTCR is an informal export control agreement that prohibits the transfer to non-MTCR states of supporting equipment and missiles capable of delivering 500 kilogram payloads more than 300 kilometers. Reports of the Chinese deliveries came just two weeks before Commerce Secretary Barbara Franklin traveled to China to advance US commercial interests' there.

  20. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 5, 2015 [Feature Stories and Releases] Icy Arctic Proves Hot for Climate Data Bookmark and Share ARM-ACME V wraps-up field campaign in Alaska ARM-ACME V Principal Investigator Sébastien Biraud in the cabin of the G-1 aircraft next to the greenhouse-gas-monitoring instruments. Image courtesy of John Hubbe, AAF Payload Director. ARM-ACME V Principal Investigator Sébastien Biraud in the cabin of the G-1 aircraft next to the greenhouse-gas-monitoring instruments. Image courtesy of John

  1. Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight The gross weight of a vehicle (GVW) is the weight of the empty vehicle plus the weight of the maximum payload that the vehicle was designed to carry. In cars and small light trucks, the difference between the empty weight of the vehicle and the GVW is not significantly different (1,000 to 1,500 lbs). The largest trucks and tractor-trailers,

  2. Microgel particles for the delivery of bioactive materials

    DOE Patents [OSTI]

    Frechet, Jean M.; Murthy, Niren

    2006-06-06

    Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.

  3. Microgel particles for the delivery of bioactive materials

    DOE Patents [OSTI]

    Frechet, Jean M. J.; Murthy Niren

    2010-03-23

    Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.

  4. A new vision for fusion energy research: Fusion rocket engines for planetary defense

    SciTech Connect (OSTI)

    Wurden, G. A.; Weber, T. E.; Turchi, P. J.; Parks, P. B.; Evans, T. E.; Cohen, S. A.; Cassibry, J. T.; Campbell, E. M.

    2015-11-16

    Here, we argue that it is essential for the fusion energy program to identify an imagination-capturing critical mission by developing a unique product which could command the marketplace. We lay out the logic that this product is a fusion rocket engine, to enable a rapid response capable of deflecting an incoming comet, to prevent its impact on the planet Earth, in defense of our population, infrastructure, and civilization. As a side benefit, deep space solar system exploration, with greater speed and orders-of-magnitude greater payload mass would also be possible.

  5. Breeder Reactor Program: T-3 cask

    SciTech Connect (OSTI)

    Krupar, J.J.; Berger, J.D.; Berg, J.D.; Weber, E.T.

    1980-01-01

    A shipping cask system was developed for shipment of irradiated fuels and materials from the Fast Flux Test Facility (FFTF) to participating Hot Cell Examination Facilities. The development work included techniques for remote packaging and cask loading of the materials prior to shipment. The remote handling systems were developed for both horizontal and vertical loading/unloading of various payloads. The T-3 cask was licensed by the United States Nuclear Regulatory Commmission (US NRC) showing compliance with Title 10 of the Code of Federal Regulations, Part 71 (10-CFR-71).

  6. Scalable end-to-end ATM encryption test results

    SciTech Connect (OSTI)

    Pierson, L.G.

    1995-10-01

    Customers of Asynchronous Transfer Mode (ATM) services may need a variety of data authenticity and privacy assurances. Cryptographic methods can be used to assure authenticity and privacy, but are hard to scale for implementation at high speed. The incorporation of these methods into computer networks can severely impact functionality, reliability, and performance. To study these trade-offs, a prototype encryptor/decryptor was developed. This effort demonstrated the viability of implementing certain encryption techniques in high speed networks. The research prototype processes ATM cells in a SONET OC-3 payload. This paper describes the functionality, reliability, security, and performance design trade-offs investigated with the prototype.

  7. Final Report for the Scaled Asynchronous Transfer Mode (ATM) Encryption Laboratory Directed Research and Development Project

    SciTech Connect (OSTI)

    Pierson, L.G.; Witzke, E.L.

    1999-01-01

    This effort studied the integration of innovative methods of key management crypto synchronization, and key agility while scaling encryption speed. Viability of these methods for encryption of ATM cell payloads at the SONET OC- 192 data rate (10 Gb/s), and for operation at OC-48 rates (2.5 Gb/s) was shown. An SNL-Developed pipelined DES design was adapted for the encryption of ATM cells. A proof-of-principle prototype circuit board containing 11 Electronically Programmable Logic Devices (each holding the equivalent of 100,000 gates) was designed, built, and used to prototype a high speed encryptor.

  8. Appendix DATA Attachment B: WIPP Waste Containers and Emplacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Attachment B: WIPP Waste Containers and Emplacement United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Appendix DATA-2014 Attachment B: WIPP Waste Containers and Emplacement Table of Contents DATA-B-1.0 Authorized Waste Emplacement Containers DATA-B-1.1 Container Descriptions DATA-B-1.2 Dunnage Containers DATA-B-1.3 Payload Descriptions DATA-B-1.4 Emplacement Configurations DATA-B-2.0 References List of Figures Figure DATA-B- 1. 55-gal Drum

  9. Visit to Y-12 a real eye-opener for crew of USS Tennessee | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Complex Visit to Y-12 a real ... Visit to Y-12 a real eye-opener for crew of USS Tennessee Posted: July 25, 2016 - 5:00pm Director of Assembly/Disassembly Operations Abe Mathews (left) gives the USS Tennessee sailors a behind the scenes look at Y-12. When the USS Tennessee patrols the world's oceans, stealthily submerged to depths unknown, the Ohio Class ballistic missile submarine is capable of carrying a payload of Trident II missiles tipped with W76 or W88 warheads. The

  10. Space nuclear reactor shields for manned and unmanned applications

    SciTech Connect (OSTI)

    McKissock, B.I.; Bloomfield, H.S.

    1994-09-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances, and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. Shield design tradeoffs presented in this study include the effects of: Higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station, and advanced manned lunar base.

  11. Improving ISR Radar Utilization (How I quit blaming the user and made the radar easier to use).

    SciTech Connect (OSTI)

    Doerry, Armin W.

    2014-08-01

    In modern multi - sensor multi - mode Intelligence, Surveillance, and Reconnaissance ( ISR ) platforms, the plethora of options available to a sensor/payload operator are quite large, leading to an over - worked operator often down - selecting to favorite sensors an d modes. For example, Full Motion Video (FMV) is justifiably a favorite sensor at the expense of radar modes, even if radar modes can offer unique and advantageous information. The challenge is then to increase the utilization of the radar modes in a man ner attractive to the sensor/payload operator. We propose that this is best accomplished by combining sensor modes and displays into 'super - modes'. - 4 - Acknowledgements This report is the result of a n unfunded research and development activity . Sandia Natio nal Laboratories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL850 00.

  12. Monolithic ballasted penetrator

    DOE Patents [OSTI]

    Hickerson, Jr., James P.; Zanner, Frank J.; Baldwin, Michael D.; Maguire, Michael C.

    2001-01-01

    The present invention is a monolithic ballasted penetrator capable of delivering a working payload to a hardened target, such as reinforced concrete. The invention includes a ballast made from a dense heavy material insert and a monolithic case extending along an axis and consisting of a high-strength steel alloy. The case includes a nose end containing a hollow portion in which the ballast is nearly completely surrounded so that no movement of the ballast relative to the case is possible during impact with a hard target. The case is cast around the ballast, joining the two parts together. The ballast may contain concentric grooves or protrusions that improve joint strength between the case and ballast. The case further includes a second hollow portion; between the ballast and base, which has a payload fastened within this portion. The penetrator can be used to carry instrumentation to measure the geologic character of the earth, or properties of arctic ice, as they pass through it.

  13. Recent Simulation Conclusions for Damped-Oscillation Control

    SciTech Connect (OSTI)

    Kress, R.L.

    2001-02-19

    When suspended payloads are moved with an overhead crane, pendulum like oscillations are naturally introduced. This presents a problem any time a crane is used, especially when expensive and/or delicate objects are moved, when moving in a cluttered and/or hazardous environment, and when objects are to be placed in tight locations. For example, one nuclear waste-handling operation examined by the U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) is the transportation of heavy objects such as waste storage casks or barrels from one location to another through cluttered process facility environments or storage facilities. Typically, an object is lifted by a crane hook on the end of a cable, creating a pendulum that is free to swing during transit. This swinging motion makes remote positioning of casks or barrels difficult to control precisely and is potentially destructive to facility equipment and to other storage containers. Typically, a crane operator moves objects slowly to minimize induced swinging and allow time for oscillations to dampen, maintaining safety but greatly decreasing the efficiency of operations. Using damped-oscillation control algorithms is one approach to solving this problem. This paper summarizes recent simulation results in damped-oscillation-type control algorithms. It also discusses practical implementation issues including control algorithm robustness to payload length changes, hardware requirements for implementation of the control algorithms, and system limits on Coulomb friction.

  14. ARM Airborne Carbon Measurements VI (ACME VI) Science Plan

    SciTech Connect (OSTI)

    Biraud, S

    2015-12-01

    From October 1 through September 30, 2016, the Atmospheric Radiation Measurement (ARM) Aerial Facility will deploy the Cessna 206 aircraft over the Southern Great Plains (SGP) site, collecting observations of trace-gas mixing ratios over the ARM’s SGP facility. The aircraft payload includes two Atmospheric Observing Systems, Inc., analyzers for continuous measurements of CO2 and a 12-flask sampler for analysis of carbon cycle gases (CO2, CO, CH4, N2O, 13CO2, 14CO2, carbonyl sulfide, and trace hydrocarbon species, including ethane). The aircraft payload also includes instrumentation for solar/infrared radiation measurements. This research is supported by the U.S. Department of Energy’s ARM Climate Research Facility and Terrestrial Ecosystem Science Program and builds upon previous ARM Airborne Carbon Measurements (ARM-ACME) missions. The goal of these measurements is to improve understanding of 1) the carbon exchange at the SGP site, 2) how CO2 and associated water and energy fluxes influence radiative forcing, convective processes and CO2 concentrations over the SGP site, and 3) how greenhouse gases are transported on continental scales.

  15. THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE

    SciTech Connect (OSTI)

    Gupta, N.; Abramczyk, G.

    2012-03-26

    The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

  16. Remote-Handled Transuranic Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2006-12-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits

  17. RH-TRU Waste Content Codes (RH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2007-05-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits

  18. Survivable pulse power space radiator

    DOE Patents [OSTI]

    Mims, J.; Buden, D.; Williams, K.

    1988-03-11

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometerorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length. 5 figs.

  19. Apparatus for simultaneously disreefing a centrally reefed clustered parachute system

    DOE Patents [OSTI]

    Johnson, D.W.

    1988-06-21

    A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing. 13 figs.

  20. Radiation Effects In Space

    SciTech Connect (OSTI)

    Tripathi, Ram K.

    2011-06-01

    Protecting space missions from severe exposures from radiation, in general, and long duration/deep space human missions, in particular, is a critical design driver, and could be a limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues and microelectronic devices. One is required to know how every element (and all isotopes of each element) in the periodic table interacts and fragments on every other element in the same table as a function of kinetic energy ranging over many decades. In addition, the accuracy of the input information and database, in general and nuclear data in particular, impacts radiation exposure health assessments and payload penalty. After a brief review of effects of space radiation on materials and electronics, human space missions to Mars is discussed.

  1. Vacuum mechatronics first international workshop

    SciTech Connect (OSTI)

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. )

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  2. TRUPACT-II 157 Examination Report

    SciTech Connect (OSTI)

    Barry H. O'Brien; Jeffrey M. Lacy; Kip E. Archibald

    2003-12-01

    This report presents the results of examination and recovery activities performed on the TRUPACT-II 157 shipping container. The container was part of a contact-handled transuranic waste shipment being transported on a truck to the Waste Isolation Pilot Plant in New Mexico when an accident occurred. Although the transport vehicle sustained only minor damage, airborne transuranic contamination was detected in air samples extracted from inside TRUPACT-II 157 at the Waste Isolation Pilot Plant. Consequently, the shipping container was rejected, resealed, and returned to the Idaho National Engineering and Environmental Laboratory where the payload was disassembled, examined, and recovered for subsequent reshipment to the Waste Isolation Pilot Plant. This report documents the results of those activities.

  3. Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report

    SciTech Connect (OSTI)

    Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

    2001-12-01

    The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

  4. Apparatus for simultaneously disreefing a centrally reefed clustered parachute system

    DOE Patents [OSTI]

    Johnson, Donald W.

    1988-01-01

    A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing.

  5. Final report on evaluation of cyclocraft support of oil and gas operations in wetland areas

    SciTech Connect (OSTI)

    Eggington, W.J.; Stevens, P.M.; John, C.J.; Harder, B.J.; Lindstedt, D.M.

    1994-10-01

    The cyclocraft is a proven hybrid aircraft, capable of VTOL, lifting heavy and bulky loads, highly controllable, having high safety characteristics and low operating costs. Mission Research Corporation (MRC), under Department of Energy sponsorship, is evaluating the potential use of cyclocraft in the transport of drill rigs, mud, pipes and other materials and equipment, in a cost effective and environmentally safe manner, to support oil and gas drilling, production, and transportation operations in wetland areas. Based upon the results of an earlier parametric study, a cyclocraft design, having a payload capacity of 45 tons and designated H.1 Cyclocraft, was selected for further study, including the preparation of a preliminary design and a development plan, and the determination of operating costs. This report contains all of the results derived from the program to evaluate the use of cyclocraft in the support of oil and gas drilling and production operations in wetland areas.

  6. Stepped nozzle

    DOE Patents [OSTI]

    Sutton, George P.

    1998-01-01

    An insert which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment.

  7. Reduction of solvent emissions within a paint booth

    SciTech Connect (OSTI)

    Zirps, N.A.; Wiener, R.K.; Shaver, D.K.

    1988-12-31

    ICF Technology is currently performing a waste minimization study at Vandenberg Air Force Base. As part of the study, ICF has been examining planned freon-113 usage operations within Martin Marietta`s new Titan fairing paint booths. The booths are to be used for painting payload fairing (PLF) for Titan II and Titan IV vehicles. Approximately 1,050 gallons of Freon-113 are planned for use within the paint booths. The following alternatives have been examined to reduce emissions: substitution of the primary coating with an alternative coating such as powder, waterborne, or high solids; recovery of Freon-113 vapors using carbon adsorption or condensation; and use of a different application method.

  8. Mission hazard assessment for STARS Mission 1 (M1) in the Marshall Islands area

    SciTech Connect (OSTI)

    Outka, D.E.; LaFarge, R.A.

    1993-07-01

    A mission hazard assessment has been performed for the Strategic Target System Mission 1 (known as STARS M1) for hazards due to potential debris impact in the Marshall Islands area. The work was performed at Sandia National Laboratories as a result of discussion with Kwajalein Missile Range (KMR) safety officers. The STARS M1 rocket will be launched from the Kauai Test Facility (KTF), Hawaii, and deliver two payloads to within the viewing range of sensors located on the Kwajalein Atoll. The purpose of this work has been to estimate upper bounds for expected casualty rates and impact probability or the Marshall Islands areas which adjoin the STARS M1 instantaneous impact point (IIP) trace. This report documents the methodology and results of the analysis.

  9. Survivable pulse power space radiator

    DOE Patents [OSTI]

    Mims, James; Buden, David; Williams, Kenneth

    1989-01-01

    A thermal radiator system is described for use on an outer space vehicle, which must survive a long period of nonuse and then radiate large amounts of heat for a limited period of time. The radiator includes groups of radiator panels that are pivotally connected in tandem, so that they can be moved to deployed configuration wherein the panels lie largely coplanar, and to a stowed configuration wherein the panels lie in a stack to resist micrometeorite damage. The panels are mounted on a boom which separates a hot power source from a payload. While the panels are stowed, warm fluid passes through their arteries to keep them warm enough to maintain the coolant in a liquid state and avoid embrittlement of material. The panels can be stored in a largely cylindrical shell, with panels progressively further from the boom being of progressively shorter length.

  10. Infrared source test

    SciTech Connect (OSTI)

    Ott, L.

    1994-11-15

    The purpose of the Infrared Source Test (IRST) is to demonstrate the ability to track a ground target with an infrared sensor from an airplane. The system is being developed within the Advance Technology Program`s Theater Missile Defense/Unmanned Aerial Vehicle (UAV) section. The IRST payload consists of an Amber Radiance 1 infrared camera system, a computer, a gimbaled mirror, and a hard disk. The processor is a custom R3000 CPU board made by Risq Modular Systems, Inc. for LLNL. The board has ethernet, SCSI, parallel I/O, and serial ports, a DMA channel, a video (frame buffer) interface, and eight MBytes of main memory. The real-time operating system VxWorks has been ported to the processor. The application code is written in C on a host SUN 4 UNIX workstation. The IRST is the result of a combined effort by physicists, electrical and mechanical engineers, and computer scientists.

  11. In the Face of Cybersecurity How the Common Information Model can be used

    SciTech Connect (OSTI)

    Skare, Paul M.; Falk, Herbert; Rice, Mark J.; Winkel, Jens

    2016-01-01

    Efforts are underway to combine smart grid information, devices, networking, and emergency response information to create messages that are not dependent on specific standards development organizations (SDOs). This supports a future-proof approach of allowing changes in the canonical data models (CDMs) going forward without having to perform forklift replacements of solutions that use the messages. This also allows end users (electric utilities) to upgrade individual components of a larger system while keeping the message payload definitions intact. The goal is to enable public and private information sharing securely in a standards-based approach that can be integrated into existing operations. We provide an example architecture that could benefit from this multi-SDO, secure message approach. This article also describes how to improve message security

  12. Estimates of particulate mass in multi-canister overpacks

    SciTech Connect (OSTI)

    SLOUGHTER, J.P.

    1999-02-25

    High, best estimate, and low values are developed for particulate inventories within MCO baskets that have been loaded with freshly cleaned fuel assemblies and scrap. These per-basket estimates are then applied to all anticipated MCO payload configurations to identify which configurations are bounding for each type of particulate. Finally the resulting bounding and nominal values for residual particulates are combined with corresponding values [from other documents] for particulate that may be generated by corrosion of exposed uranium after the fuel has been cleaned. The resulting rounded nominal estimate for a typical MCO after 40 years of storage is 8 kg. The estimate for a bounding total particulate case MCO is that it may contain up to 64 kg of particulate after 40 years of storage.

  13. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-07-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  14. Launch vehicle integration requirements for SP-100

    SciTech Connect (OSTI)

    Shaw, L.T. Jr.; Womack, J.R.

    1984-01-31

    SP-100 is the designation for a nuclear reactor-based power plant being developed for both civil and military missions beginning in the 1990s for such potential space applications as communication satellites, space radar, electric propulsion and space stations. Typically, a system using the SP-100 along with a selected upper stage system would be launched by the National Space Transportation System (NSTS) Space Shuttle System into a near-earth orbit, deployed, and through upper stage propulsion burn(s) be inserted/transferred to its mission orbit. The nature of the advanced design SP-100 gives rise to a set of issues that require special attention to assure that payloads using this power plant are physically and functionally compatible with the NSTS and meet the safety requirements thereof. The purpose of this document is to define and present the requirements and interface provisions that, when satisfied, will ensure technical compability between SP-100 systems and the NSTS.

  15. Launch vehicle integration requirements for SP-100. Technical information report

    SciTech Connect (OSTI)

    Shaw, L.T. Jr.; Womack, J.R.

    1984-03-01

    SP-100 is the designation for a nuclear reactor-based power plant being developed for both civil and military missions beginning in the 1990s for such potential space applications as communication satellites, space radar, electric propulsion and space stations. Typically, a system using the SP-100 along with a selected upper stage system would be launched by the National Space Transportation System (NSTS) Space Shuttle System into a near-earth orbit, deployed, and through upper stage propulsion burn(s) be inserted/transferred to its mission orbit. The nature of the advanced design SP-100 payloads using this power plant are physically and functionally compatible with the NSTS and meet the safety requirements thereof. The purpose of this document is to define and present the requirements and interface provisions that, when satisfied, will ensure technical compatibility between SP-100 systems and the NSTS.

  16. FORTE spacecraft vibration mitigation. Final report

    SciTech Connect (OSTI)

    Maly, J.R.

    1996-02-01

    This report documents work that was performed by CSA Engineering, Inc., for Los Alamos National Laboratory (LANL), to reduce vibrations of the FORTE spacecraft by retrofitting damped structural components into the spacecraft structure. The technical objective of the work was reduction of response at the location of payload components when the structure is subjected to the dynamic loading associated with launch and proto-qualification testing. FORTE is a small satellite that will be placed in orbit in 1996. The structure weighs approximately 425 lb, and is roughly 80 inches high and 40 inches in diameter. It was developed and built by LANL in conjunction with Sandia National Laboratories Albuquerque for the United States Department of Energy. The FORTE primary structure was fabricated primarily with graphite epoxy, using aluminum honeycomb core material for equipment decks and solar panel substrates. Equipment decks were bonded and bolted through aluminum mounting blocks to adjoining structure.

  17. Capacitance probe for detection of anomalies in non-metallic plastic pipe

    DOE Patents [OSTI]

    Mathur, Mahendra P.; Spenik, James L.; Condon, Christopher M.; Anderson, Rodney; Driscoll, Daniel J.; Fincham, Jr., William L.; Monazam, Esmail R.

    2010-11-23

    The disclosure relates to analysis of materials using a capacitive sensor to detect anomalies through comparison of measured capacitances. The capacitive sensor is used in conjunction with a capacitance measurement device, a location device, and a processor in order to generate a capacitance versus location output which may be inspected for the detection and localization of anomalies within the material under test. The components may be carried as payload on an inspection vehicle which may traverse through a pipe interior, allowing evaluation of nonmetallic or plastic pipes when the piping exterior is not accessible. In an embodiment, supporting components are solid-state devices powered by a low voltage on-board power supply, providing for use in environments where voltage levels may be restricted.

  18. SAFETY ANALYSIS REPORT FOR PACKAGING, MODEL 9977, ADDENDUM 3, JUSTIFICATION FOR SMALL GRAM QUANTITY CONTENTS

    SciTech Connect (OSTI)

    Abramczyk, G.

    2011-10-31

    This Addendum establishes a new family of content envelopes consisting of small quantities of radioactive materials. These content envelopes and specific packing configurations are shown to be subcritical. However, the dose rates of some payloads must be measured and shown to comply with applicable radiation limits. Authorization for shipment of the content envelop requires acceptance of this Addendum by the DOE-HQ certifying official as a supplement to the 9977 SARP Revision 2 and DOE-HQ's subsequent revision of the CoC Revision 10 (which is based on SARP Addendum 2 and SARP Addendum 4) to authorize the additional content envelope. The Small Gram Quantity Content Envelopes and packing configurations will be incorporated in the next revision of the 9977 SARP.

  19. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOE Patents [OSTI]

    Frechet, Jean M. J.; Standley, Stephany M.; Jain, Rachna; Lee, Cameron C.

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  20. Stepped nozzle

    DOE Patents [OSTI]

    Sutton, G.P.

    1998-07-14

    An insert is described which allows a supersonic nozzle of a rocket propulsion system to operate at two or more different nozzle area ratios. This provides an improved vehicle flight performance or increased payload. The insert has significant advantages over existing devices for increasing nozzle area ratios. The insert is temporarily fastened by a simple retaining mechanism to the aft end of the diverging segment of the nozzle and provides for a multi-step variation of nozzle area ratio. When mounted in place, the insert provides the nozzle with a low nozzle area ratio. During flight, the retaining mechanism is released and the insert ejected thereby providing a high nozzle area ratio in the diverging nozzle segment. 5 figs.

  1. On-orbit flight results from the reconfigurable cibola flight experiment satellite (CFEsat)

    SciTech Connect (OSTI)

    Caffrey, Michael; Morgan, Keith; Roussel-dupre, Diane; Robinson, Scott; Nelson, Anthony; Salazar, Anthony; Wirthlin, Michael; Howes, William; Richins, Daniel

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite developed at the Los Alamos National Laboratory to demonstrate the feasibility of using FPGA-based reconfigurable computing for sensor processing in a space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.

  2. NREL Highlight: Truck Platooning Testing; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-21

    NREL's fleet test and evaluation team assesses the fuel savings potential of semi-automated truck platooning of line-haul sleeper cabs with modern aerodynamics. Platooning reduces aerodynamic drag by grouping vehicles together and safely decreasing the distance between them via electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously. In 2014, the team conducted track testing of three SmartWay tractor - two platooned tractors and one control tractor—at varying steady-state speeds, following distances, and gross vehicle weights. While platooning improved fuel economy at all speeds, travel at 55 mph resulted in the best overall miles per gallon. The lead truck demonstrated fuel savings up to 5.3% while the trailing truck saved up to 9.7%. A number of conditions impact the savings attainable, including ambient temperature, distance between lead and trailing truck, and payload weight. Future studies may look at ways to optimize system fuel efficiency and emissions reductions.

  3. Completion processing for data communications instructions

    DOE Patents [OSTI]

    Blocksome, Michael A; Kumar, Sameer; Parker, Jeffrey J

    2014-05-20

    Completion processing of data communications instructions in a distributed computing environment, including receiving, in an active messaging interface (`AMI`) data communications instructions, at least one instruction specifying a callback function; injecting into an injection FIFO buffer of a data communication adapter, an injection descriptor, each slot in the injection FIFO buffer having a corresponding slot in a pending callback list; listing in the pending callback list any callback function specified by an instruction, incrementing a pending callback counter for each listed callback function; transferring payload data as per each injection descriptor, incrementing a transfer counter upon completion of each transfer; determining from counter values whether the pending callback list presently includes callback functions whose data transfers have been completed; calling by the AMI any such callback functions from the pending callback list, decrementing the pending callback counter for each callback function called.

  4. Completion processing for data communications instructions

    DOE Patents [OSTI]

    Blocksome, Michael A.; Kumar, Sameer; Parker, Jeffrey J.

    2014-06-03

    Completion processing of data communications instructions in a distributed computing environment, including receiving, in an active messaging interface (`AMI`) data communications instructions, at least one instruction specifying a callback function; injecting into an injection FIFO buffer of a data communication adapter, an injection descriptor, each slot in the injection FIFO buffer having a corresponding slot in a pending callback list; listing in the pending callback list any callback function specified by an instruction, incrementing a pending callback counter for each listed callback function; transferring payload data as per each injection descriptor, incrementing a transfer counter upon completion of each transfer; determining from counter values whether the pending callback list presently includes callback functions whose data transfers have been completed; calling by the AMI any such callback functions from the pending callback list, decrementing the pending callback counter for each callback function called.

  5. ACRV instrumentation plan for NMD HTK light gas gun tests

    SciTech Connect (OSTI)

    Dobie, D W

    1999-04-12

    In support of the NMD Hit-To-Kill Program for the US Army, twenty scaled tests on simulated nuclear targets are planned. The AEDC Light Gas Gun operated by Sverdrup Technology (SVT) in Tullahoma, TN will launch the scaled NMD projectile into scaled targets. The target for all the tests is a 1/4-scale version of the Attitude Controlled Re-Entry Vehicle (ACRV). The targets were designed and fabricated by Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratory (LLNL). ITT Systems (ITT) is the integrating contractor for coordination of the multiple contractors involved in these tests. The targets are inert and contain no hazardous materials. The payloads have been instrumented to aid in post-test evaluation of the functional status of the postulated weapon systems. This document describes the instrumentation methods to be used on these tests.

  6. FIRST IMAGES FROM THE FOCUSING OPTICS X-RAY SOLAR IMAGER

    SciTech Connect (OSTI)

    Krucker, Sm; Glesener, Lindsay; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; Lin, Robert; Christe, Steven; Ishikawa, Shin-nosuke; Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee; Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya; Tanaka, Takaaki; White, Stephen

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November2, producing the first focused images of the Sun above 5keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  7. Getting waste ready for shipment to the WIPP: integration of characterization and certification activities

    SciTech Connect (OSTI)

    Sinkule, B.; Knudsen, K.; Rogers, P.

    1996-06-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC) serve as the primary directive for assuring the safe handling, transportation, and disposal of transuranic (TRU) waste generated at Department of Energy (DOE) sites. The WIPP WAC address fulfillment of WIPP`s operational safety and performance assessment criteria, compliance with Resource Conservation and Recovery Act (RCRA) requirements, and preparation of waste packages that meet all transportation criteria. At individual generator sites, preparation of transuranic waste for final disposal at WIPP includes characterizing the waste to meet the requirements of the transuranic Waste Characterization Quality Assurance Program Plan (QAPP) and certifying waste containers to meet the WIPP WAC and the Transuranic Package Transporter-II Authorized Methods for Payload Control (TRAMPAC). This paper compares the quality assurance and quality control requirements specified in the WIPP WAC, QAPP, and TRAMPAC and discusses the potential to consolidate activities to comply with the TRU waste characterization and certification program requirements.

  8. Quality Assurance Program Plan for TRUPACT-II Gas Generation Test Program

    SciTech Connect (OSTI)

    Carlsbad Field Office

    2002-03-01

    The Gas Generation Test Program (GGTP), referred to as the Program, is designed to establish the concentration of flammable gases and/or gas generation rates in a test category waste container intended for shipment in the Transuranic Package Transporter-II (TRUPACT-II). The phrase "gas generationtesting" shall refer to any activity that establishes the flammable gas concentration or the flammable gas generation rate. This includes, but is not limited to, measurements performed directly on waste containers or during tests performed on waste containers. This Quality Assurance Program Plan (QAPP) documents the quality assurance (QA) and quality control (QC) requirements that apply to the Program. The TRUPACT-II requirements and technical bases for allowable flammable gas concentration and gas generation rates are described in the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC).

  9. PAT-1 safety analysis report addendum author responses to request for additional information.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.; Akin, Lili A.; Miller, David Russell; Knorovsky, Gerald Albert; Yoshimura, Richard Hiroyuki; Lopez, Carlos; Harding, David Cameron; Jones, Perry L.; Morrow, Charles W.

    2010-09-01

    The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The National Nuclear Security Administration (NNSA) submitted SAND Report SAND2009-5822 to NRC that documented the incorporation of plutonium (Pu) metal as a new payload for the PAT-1 package. NRC responded with a Request for Additional Information (RAI), identifying information needed in connection with its review of the application. The purpose of this SAND report is to provide the authors responses to each RAI. SAND Report SAND2010-6106 containing the proposed changes to the Addendum is provided separately.

  10. Safety Evaluation for Packaging for onsite Transfer of plutonium recycle test reactor ion exchange columns

    SciTech Connect (OSTI)

    Smith, R.J.

    1995-09-11

    The purpose of this Safety Evaluation for Packaging (SEP) is to authorize the use of three U.S. Department of Transportation (DOT) 7A, Type A metal boxes (Capital Industries Part No. S 0600-0600-1080- 0104) to package 12 Plutonium Recycle Test Reactor (PRTR) ion exchange columns as low-level waste (LLW). The packages will be transferred from the 309 Building in the 300 Area to low level waste burial in the 200 West Area. Revision 1 of WHC-SD-TP-SEP-035 (per ECN No. 621467) documents that the boxes containing ion exchange columns and grout will maintain the payload under normal conditions of transport if transferred without the box lids

  11. Implementation of Revision 19 of the TRUPACT-II Safety Analysis Report at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    D'Amico, E.; O'Leary, J.; Bell, S.; Djordjevic, S.; Givens, C,; Shokes, T.; Thompson, S.; Stahl, S.

    2003-02-25

    The U.S. Nuclear Regulatory Commission on July 27, 2001 approved Revision 19 of the TRUPACT-II Safety Analysis Report (SAR) and the associated TRUPACT-II Authorized Methods for Payload Control (TRAMPAC). Key initiatives in Revision 19 included matrix depletion, unlimited mixing of shipping categories, a flammability assessment methodology, and an alternative methodology for the determination of flammable gas generation rates. All U.S. Department of Energy (DOE) sites shipping transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) were required to implement Revision 19 methodology into their characterization and waste transportation programs by May 20, 2002. An implementation process was demonstrated by the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The three-part process used by RFETS included revision of the site-specific TRAMPAC, an evaluation of the contact-handled TRU waste inventory against the regulations in Revision 19, and design and development of software to facilitate future inventory analyses.

  12. CMMAD Usability Case Study in Support of Countermine and Hazard Sensing

    SciTech Connect (OSTI)

    Victor G. Walker; David I. Gertman

    2010-04-01

    During field trials, operator usability data were collected in support of lane clearing missions and hazard sensing for two robot platforms with Robot Intelligence Kernel (RIK) software and sensor scanning payloads onboard. The tests featured autonomous and shared robot autonomy levels where tasking of the robot used a graphical interface featuring mine location and sensor readings. The goal of this work was to provide insights that could be used to further technology development. The efficacy of countermine systems in terms of mobility, search, path planning, detection, and localization were assessed. Findings from objective and subjective operator interaction measures are reviewed along with commentary from soldiers having taken part in the study who strongly endorse the system.

  13. Estimates of Particulate Mass in Multi Canister Overpacks (MCO)

    SciTech Connect (OSTI)

    SLOUGHTER, J.P.

    2000-02-16

    High, best estimate, and low values are developed for particulate inventories within MCO baskets that have been loaded with freshly cleaned fuel assemblies and scrap. These per-basket estimates are then applied to all anticipated MCO payload configurations to identify which configurations are bounding for each type of particulate. Finally the resulting bounding and nominal values for residual particulates are combined with corresponding values [from other documents] for particulates that may be generated by corrosion of exposed uranium after the fuel has been cleaned. The resulting rounded nominal estimate for a typical MCO after 40 years of storage is 8 kg. The estimate for a bounding total particulate case MCO is that it may contain up to 64 kg of particulate after 40 years of storage.

  14. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    SciTech Connect (OSTI)

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs require wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.

  15. Feasibility Study for an Autonomous UAV -Magnetometer System -- Final Report on SERDP SEED 1509:2206

    SciTech Connect (OSTI)

    Roelof Versteeg; Mark McKay; Matt Anderson; Ross Johnson; Bob Selfridge; Jay Bennett

    2007-09-01

    associated with a low stand off distance autonomous UAV magnetometer platform and to investigate whether these challenges can be resolved successfully such that a successful UAV magnetometer platform can be constructed. The primary challenges which were identified and investigated include: 1. The feasibility of assembling a payload package which integrates magnetometers, accurate positioning systems (DGPS, height above ground measurement), obstacle avoidance systems, power infrastructure, communications and data storage as well as auxiliary flight controls 2. The availability of commercial UAV platforms with autonomous flight capability which can accommodate this payload package 3. The feasibility of integrating obstacle avoidance controls in UAV platform control 4. The feasibility of collecting high quality magnetic data in the vicinity of an UAV.

  16. TU-F-12A-01: Quantitative Non-Linear Compartment Modeling of 89Zr- and 124I- Labeled J591 Monoclonal Antibody Kinetics Using Serial Non-Invasive Positron Emission Tomography Imaging in a Pre-Clinical Human Prostate Cancer Mouse Model

    SciTech Connect (OSTI)

    Fung, EK; Cheal, SM; Chalasani, S; Fareedy, SB; Punzalan, B; Humm, JL; Osborne, JR; Larson, SM; Zanzonico, PB; Otto, B; Bander, NH

    2014-06-15

    Purpose: To examine the binding kinetics of human IgG monoclonal antibody J591 which targets prostate-specific membrane antigen (PSMA) in a pre-clinical mouse cancer model using quantitative PET compartmental analysis of two radiolabeled variants. Methods: PSMA is expressed in normal human prostate, and becomes highly upregulated in prostate cancer, making it a promising therapeutic target. Two forms of J591, radiolabeled with either {sup 89}Zr or {sup 124}I, were prepared. {sup 89}Zr is a radiometal that becomes trapped in the cell upon internalization by the antigen-antibody complex, while radioiodine leaves the cell. Mice with prostate cancer xenografts underwent non-invasive serial imaging on a Focus 120 microPET up to 144 hours post-injection of J591. A non-linear compartmental model describing the binding and internalization of antibody in tumor xenograft was developed and applied to the PET-derived time-activity curves. The antibody-antigen association rate constant (ka), total amount of antigen per gram tumor (Ag-total), internalization rate of antibody-antigen complex, and efflux rate of radioisotope from tumor were fitted using the model. The surface-bound and the internalized activity were also estimated. Results: Values for ka, Ag-total, and internalization rate were found to be similar regardless of radiolabel payload used. The efflux rate, however, was ∼ 9-fold higher for {sup 124}I-J591 than for {sup 89}Zr-J591. Time-dependent surface-bound and internalized radiotracer activity were similar for both radiolabels at early times post-injection, but clearly differed beyond 24 hours. Conclusion: Binding and internalization of J591 to PSMA-expressing tumor xenografts were similar when radiolabeled with either {sup 89}Zr or {sup 124}I payload. The difference in efflux of radioactivity from tumor may be attributable to differential biological fate intracellularly of the radioisotopes. This has great significance for radioimmunotherapy and antibody

  17. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed

  18. Deep PDF parsing to extract features for detecting embedded malware.

    SciTech Connect (OSTI)

    Munson, Miles Arthur; Cross, Jesse S.

    2011-09-01

    The number of PDF files with embedded malicious code has risen significantly in the past few years. This is due to the portability of the file format, the ways Adobe Reader recovers from corrupt PDF files, the addition of many multimedia and scripting extensions to the file format, and many format properties the malware author may use to disguise the presence of malware. Current research focuses on executable, MS Office, and HTML formats. In this paper, several features and properties of PDF Files are identified. Features are extracted using an instrumented open source PDF viewer. The feature descriptions of benign and malicious PDFs can be used to construct a machine learning model for detecting possible malware in future PDF files. The detection rate of PDF malware by current antivirus software is very low. A PDF file is easy to edit and manipulate because it is a text format, providing a low barrier to malware authors. Analyzing PDF files for malware is nonetheless difficult because of (a) the complexity of the formatting language, (b) the parsing idiosyncrasies in Adobe Reader, and (c) undocumented correction techniques employed in Adobe Reader. In May 2011, Esparza demonstrated that PDF malware could be hidden from 42 of 43 antivirus packages by combining multiple obfuscation techniques [4]. One reason current antivirus software fails is the ease of varying byte sequences in PDF malware, thereby rendering conventional signature-based virus detection useless. The compression and encryption functions produce sequences of bytes that are each functions of multiple input bytes. As a result, padding the malware payload with some whitespace before compression/encryption can change many of the bytes in the final payload. In this study we analyzed a corpus of 2591 benign and 87 malicious PDF files. While this corpus is admittedly small, it allowed us to test a system for collecting indicators of embedded PDF malware. We will call these indicators features throughout

  19. The Atmospheric Dynamics Mission on the International Space Station--A new technique for observing winds in the atmosphere

    SciTech Connect (OSTI)

    Ingmann, P.; Readings, C. J.; Knott, K.

    1999-01-22

    For the post-2000 time-frame two general classes of Earth Observation missions have been identified to address user requirements (see e.g. ESA, 1995), namely Earth Watch and Earth Explorer missions. One of the candidate Earth Explorer Missions selected for Phase A study is the Atmospheric Dynamics Mission which is intended to exploit a Doppler wind lidar, ALADIN, to measure winds in clear air (ESA, 1995 and ESA, 1996). It is being studied as a candidate for flight on the International Space Station (ISS) as an externally attached payload. The primary, long-term objective of the Atmospheric Dynamics Mission is to provide observations of wind profiles (e.g. radial wind component). Such data would be assimilated into numerical forecasting models leading to an improvement in objective analyses and hence in Numerical Weather Prediction. The mission would also provide data needed to address some of the key concerns of the World Climate Research Programme (WCRP) i.e. quantification of climate variability, validation and improvement of numerical models and process studies relevant to climate change. The newly acquired data would also help realize some of the objectives of the Global Climate Observing System (GCOS)

  20. Small space reactor power systems for unmanned solar system exploration missions

    SciTech Connect (OSTI)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  1. Performance enhancement using power beaming for electric propulsion earth orbital transporters

    SciTech Connect (OSTI)

    Dagle, J.E.

    1991-08-01

    An electric propulsion Earth orbital transport vehicle (EOTV) can effectively deliver large payloads using much less propellant than chemical transfer methods. By using an EOTV instead of a chemical upper stage, either a smaller launch vehicle can be used for the same satellite mass or larger satellite can be deployed using the same launch vehicle. However, the propellant mass savings from using the higher specific impulse of electric propulsion may not be enough to overcome the disadvantage of the added mass and cost of the electric propulsion power source. Power system limitations have been a major factor delaying the acceptance and use of electric propulsion. This paper outlines the power requirements of electric propulsion technology being developed today, including arcjets, magnetoplasmadynamic (MPD) thrusters, and ion engines. Power supply characteristics are discussed for nuclear, solar, and power-beaming systems. Operational characteristics are given for each, as are the impacts of the power supply alternative on the overall craft performance. Because of its modular nature, the power-beaming approach is able to meet the power requirements of all three electric propulsion types. Also, commonality of approach allows different electric propulsion approaches to be powered by a single power supply approach. Power beaming exhibits better flexibility and performance than on-board nuclear or solar power systems.

  2. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    SciTech Connect (OSTI)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  3. Advanced robot locomotion.

    SciTech Connect (OSTI)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

    2007-01-01

    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  4. Extension of the quantum-kinetic model to lunar and Mars return physics

    SciTech Connect (OSTI)

    Liechty, D. S.; Lewis, M. J.

    2014-02-15

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high-mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. A recently introduced molecular-level chemistry model, the quantum-kinetic, or Q-K, model that predicts reaction rates for gases in thermal equilibrium and non-equilibrium using only kinetic theory and fundamental molecular properties, is extended in the current work to include electronic energy level transitions and reactions involving charged particles. Like the Q-K procedures for neutral species chemical reactions, these new models are phenomenological procedures that aim to reproduce the reaction/transition rates but do not necessarily capture the exact physics. These engineering models are necessarily efficient due to the requirement to compute billions of simulated collisions in direct simulation Monte Carlo (DSMC) simulations. The new models are shown to generally agree within the spread of reported transition and reaction rates from the literature for near equilibrium conditions.

  5. DYNA3D analysis of the DT-20 shipping container

    SciTech Connect (OSTI)

    Logan, R.W.; Lovejoy, S.C.

    1991-08-22

    A DYNA3D model of the DT-20 shipping container was constructed. Impact onto a rigid steel surface at a velocity of 44 ft/sec (30 foot gravity drop) was studied. The orientation of most interest was a side-drop, but end and corner drops were also studied briefly. The assembly for the baseline side impact contained a 150 lb. payload. During this drop, the outer drum sustains plastic strains of up to 0.15, with most the deformation near the rim. The plywood/Celotex packing is crushed about 3 inches. The inner sealed can sees significant stresses, but barely reaches the onset of yielding in some local areas. Based on hand calculations, the bolts joining the can halves could see stresses near 50 ksi. It is felt that overall, the container should survive this drop. However, detailed modeling of the rim closure and the center bolted joint was not possible due to time constraints. Furthermore, better material models and properties are needed for the Celotex, plywood, and honeycomb in particular. 39 figs., 1 tab.

  6. Technical and economical aspects of large-scale CO{sub 2} storage in deep oceans

    SciTech Connect (OSTI)

    Sarv, H.; John, J.

    2000-07-01

    The authors examined the technical and economical feasibility of two options for large-scale transportation and ocean sequestration of captured CO{sub 2} at depths of 3000 meters or greater. In one case, CO{sub 2} was pumped from a land-based collection center through six parallel-laid subsea pipelines. Another case considered oceanic tanker transport of liquid carbon dioxide to an offshore floating platform or a barge for vertical injection through a large-diameter pipe to the ocean floor. Based on the preliminary technical and economic analyses, tanker transportation and offshore injection through a large-diameter, 3,000-meter vertical pipeline from a floating structure appears to be the best method for delivering liquid CO{sub 2} to deep ocean floor depressions for distances greater than 400 km. Other benefits of offshore injection are high payload capability and ease of relocation. For shorter distances (less than 400 km), CO{sub 2} delivery by subsea pipelines is more cost-effective. Estimated costs for 500-km transport and storage at a depth of 3000 meters by subsea pipelines or tankers were under 2 dollars per ton of stored CO{sub 2}. Their analyses also indicates that large-scale sequestration of captured CO{sub 2} in oceans is technologically feasible and has many commonalities with other strategies for deepsea natural gas and oil exploration installations.

  7. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  8. Computer predictions of ground storage effects on performance of Galileo and ISPM generators*

    SciTech Connect (OSTI)

    Chmielewski, A.

    1983-08-01

    It is very important to accurately predict the electrical power available to the spacecraft at its destination. Too conservative an estimate would prevent one from using all the scientific instruments that otherwise could have been included in the payload. Too optimistic estimates, on the other hand, could result in under-powering the instruments on board, or worse--failing the mission. Galileo mission to Jupiter and International Solar Polar Mission (ISPM) will use Radioisotope Thermoelectric Generators (RTG) to supply the electric power to the spacecraft. Both missions have been delayed several times from their original launch dates by a few years. As a result, the RTG's will have to be ground stored for several thousands of hours before the launch. Different degradation mechanisms that occur during storage can substantially lower the RTG flight performance. To assess the effect of storage, JPL has modified a computer program that simulates all known degradation mechanisms that occur in an RTG during storage and flight. The paper describes the modeling of these mechanisms and their impact on RTG performance.

  9. PbTe/TAGS RTG Mars Environmental Survey (MESUR) mission

    SciTech Connect (OSTI)

    Schock, A. )

    1993-01-10

    The paper describes the results of studies on an RTG option for powering the global network of unmanned landers for NASA's Mars Environmental Survey (MESUR) mission. RTGs are essentially unaffected by diurnal and seasonal variations, Martian sandstorms, and landing site latitudes, and their waste heat can stabilize the temperatures of the landers and their payload. The RTG designs described in this paper are based on PbTe/TAGS thermoelectric elements, in contast to the SiGe-based RTGs the author described in previous publications. The presently described RTGs differ not only in the choice of thermoelectric materials but also in the use of much lower operating temperatures, conductive rather than radiative heat transfer, an inert cover gas instead of vacuum in the RTG's converter, and fibrous instead of multifoil thermal insulation. As in a previous Teledyne design, the Fairchild designs described in this paper employ flight-proven General Purpose Source modules and Close-Pack Arrays of thermoelectric converter modules. Illustrative point designs of RTGs producing 41 and 51 watts(e) at 28 volts are presented. The presented performance parameters were derived by detailed thermal, thermoelectric, and electrical analyses (including radiator geometry optimization) described in the paper. The Fairchild study showed that, with appropriate modifications, the Teledyne design can be scaled up to higher power levels, and it identified solutions to ensure adequate fuel clad ductility at launch temperatures and adequate thermal conductance from the thermoelectric cold ends to the RTG housing.

  10. Uniform Fin Sizes versus Uniform Fin Root Temperatures for Unsymmetrically Obstructed Solar Probe RTGs

    SciTech Connect (OSTI)

    Schock, Alfred; Or, Chuen T; Noravian, Heros

    1991-08-01

    Paper presented at the 26th IECEC, August 4-9, 1991 in Boston, MA. The Solar Probe will approach the sun within four solar radii or 0.02 AU. Because of that proximity, the spacecraft must be protected by a thermal shield. The protected umbra is a cone of 4 m diameter and 7.5 m height, and all temperature-sensitive flight components must fit within that cone. Therefore, the RTGs which power the Solar probe cannot be separated from each other and from other payload components by deploying them on long booms. They must be located near and thermally isolated from the spacecraft's paylod. This paper compares the performance of such variable-fin RTGs with that of uniform-fin RTGs. It derives the fin dimensions required for circumferential isothermicity, identifies a design that maximizes the RTGs specific power, and proves the practicality of that design option. However, detailed thermal and electrical analyses led to the somewhat surprising conclusion that (for a given thermal power) the non-uniform-fin design results in the same power output, at a higher maximum hot-junction temperature, as the standard uniform-fin design, despite the latter's nonuniform cold-junction temperatures. There are three copies in the file.

  11. Recommissioning the K-1600 Seismic Test Facility

    SciTech Connect (OSTI)

    Wynn, C.C. ); Brewer, D.W. )

    1991-10-01

    The Center of Natural Phenomena Engineering (CNPE) was established under the technical direction of Dr. James E. Beavers with a mandate to assess, by analyses and testing, the seismic capacity of building structures that house sensitive processes at the Oak Ridge Y-12 Plant. This mandate resulted in a need to recommission the K-1600 Seismic Test Facility (STF) at the Oak Ridge K-25 Site, which had been shutdown for 6 years. This paper documents the history of the facility and fives some salient construction, operation, and performance details of its 8-ton, 20-foot center of gravity payload bi-axial seismic simulator. A log of activities involved in the restart of this valuable resource is included as Table 1. Some of problems and solutions associated with recommissioning the facility under a relatively limited budget are included. The unique attributes of the shake table are discussed. The original mission and performance requirements are compared to current expanded mission and performance capabilities. Potential upgrades to further improve the capabilities of the test facility as an adjunct to the CNPE are considered. Additional uses for the facility are proposed, including seismic qualification testing of devices unique to enrichment technologies and associated hazardous waste treatment and disposal processes. In summary, the STF restart in conjunction with CNPE has added a vital, and unique facility to the list of current national resources utilized for earthquake engineering research and development. 3 figs., 1 tab.

  12. The TRUPACT-II Matrix Depleton Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Djordjevic, S.M.; Loehr, C.A.; Smith, M.C.; Banjac, V.; Lyon, W.F.

    1995-12-01

    Contact-handled transuranic (CH-TRU) wastes will be shipped and disposed at the Waste Isolation Pilot Plant (WIPP) repository in the Transuranic Package Transporter-II (TRUPACT-II) shipping package. A primary transportation requirement for the TRUPACT-II is that the concentration of potentially flammable gases (i.e., hydrogen and methane) must not exceed 5 percent by volume in the package or the payload during a 60-day shipping period. Decomposition of waste materials by radiation, or radiolysis, is the predominant mechanism of gas generation during transport. The gas generation potential of a target waste material is characterized by a G-value, which is the number of molecules of gas generated per 100 eV of ionizing radiation absorbed by the target material. To demonstrate compliance with the flammable gas concentration requirement, theoretical worst-case calculations were performed to establish allowable wattage (decay heat) limits for waste containers. The calculations were based on the G-value for the waste material with the highest potential for flammable gas generation. The calculations also made no allowances for decreases of the G-value over time due to matrix depletion phenomena that have been observed by many experimenters. Matrix depletion occurs over time when an alpha-generating source particle alters the target material (by evaporation, reaction, or decomposition) into a material of lower gas generating potential. The net effect of these alterations is represented by the ``effective G-value.``

  13. TRUPACT-II Hydrogen G-Valve Program Test Plan

    SciTech Connect (OSTI)

    Mroz, Eugene J.

    1999-01-01

    This test plan describes the objectives, scope, participants, and components of the Transuranic Package Transporter-II (TRUPACT-II) Hydrogen G-Value Program (GH2P). The GH2P builds on the experience, results, and experimental setup of the TRUPACT-II Matrix Depletion Program (MDP) to establish effective hydrogen G-values (G-values) for additional waste matrices. This plan details the experimental design and test matrices for experiments to measure the G-value for additional waste matrices, including first- and second-stage sludges at the Idaho National Engineering and Environmental Laboratory, and molten salt extraction residues with varying amounts of residual moisture (i.e., unbound water). Data collected from the GH2P will be used to support an application to the US Nuclear Regulatory Commission for G-values and corresponding wattage limits for the TRUPACT-II payloads containing these waste matrices. The testing will also evaluate the ability to determine G-values on a waste stream basis.

  14. Mitigation of cache memory using an embedded hard-core PPC440 processor in a Virtex-5 Field Programmable Gate Array.

    SciTech Connect (OSTI)

    Learn, Mark Walter

    2010-02-01

    Sandia National Laboratories is currently developing new processing and data communication architectures for use in future satellite payloads. These architectures will leverage the flexibility and performance of state-of-the-art static-random-access-memory-based Field Programmable Gate Arrays (FPGAs). One such FPGA is the radiation-hardened version of the Virtex-5 being developed by Xilinx. However, not all features of this FPGA are being radiation-hardened by design and could still be susceptible to on-orbit upsets. One such feature is the embedded hard-core PPC440 processor. Since this processor is implemented in the FPGA as a hard-core, traditional mitigation approaches such as Triple Modular Redundancy (TMR) are not available to improve the processor's on-orbit reliability. The goal of this work is to investigate techniques that can help mitigate the embedded hard-core PPC440 processor within the Virtex-5 FPGA other than TMR. Implementing various mitigation schemes reliably within the PPC440 offers a powerful reconfigurable computing resource to these node-based processing architectures. This document summarizes the work done on the cache mitigation scheme for the embedded hard-core PPC440 processor within the Virtex-5 FPGAs, and describes in detail the design of the cache mitigation scheme and the testing conducted at the radiation effects facility on the Texas A&M campus.

  15. Atmospheric Radiation Measurement Program facilities newsletter, January 2000

    SciTech Connect (OSTI)

    Sisterson, D.L.

    2000-02-16

    The subject of this newsletter is the ARM unmanned aerospace vehicle program. The ARM Program's focus is on climate research, specifically research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisticated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in the atmosphere. The Department of Energy and the Department of Defense joined together to use a high-tech, high-altitude, long-endurance class of unmanned aircraft known as the unmanned aerospace vehicle (UAV). A UAV is a small, lightweight airplane that is controlled remotely from the ground. A pilot sits in a ground-based cockpit and flies the aircraft as if he were actually on board. The UAV can also fly completely on its own through the use of preprogrammed computer flight routines. The ARM UAV is fitted with payload instruments developed to make highly accurate measurements of atmospheric flux, radiance, and clouds. Using a UAV is beneficial to climate research in many ways. The UAV puts the instrumentation within the environment being studied and gives scientists direct measurements, in contrast to indirect measurements from satellites orbiting high above Earth. The data collected by UAVs can be used to verify and calibrate measurements and calculated values from satellites, therefore making satellite data more useful and valuable to researchers.

  16. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    SciTech Connect (OSTI)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  17. Unmanned airships for near earth remote sensing missions

    SciTech Connect (OSTI)

    Hochstetler, R.D.

    1996-10-01

    In recent years the study of Earth processes has increased significantly. Conventional aircraft have been employed to a large extent in gathering much of this information. However, with this expansion of research has come the need to investigate and measure phenomena that occur beyond the performance capabilities of conventional aircraft. Where long dwell times or observations at very low attitudes are required there are few platforms that can operate safely, efficiently, and cost-effectively. One type of aircraft that meets all three parameters is the unmanned, autonomously operated airship. The UAV airship is smaller than manned airships but has similar performance characteristics. It`s low speed stability permits high resolution observations and provides a low vibration environment for motion sensitive instruments. Maximum airspeed is usually 30mph to 35mph and endurance can be as high as 36 hours. With scientific payload capacities of 100 kilos and more, the UAV airship offers a unique opportunity for carrying significant instrument loads for protracted periods at the air/surface interface. The US Army has operated UAV airships for several years conducting border surveillance and monitoring, environmental surveys, and detection and mapping of unexploded ordinance. The technical details of UAV airships, their performance, and the potential of such platforms for more advanced research roles will be presented. 3 refs., 5 figs.

  18. Solar-powered unmanned aerial vehicles

    SciTech Connect (OSTI)

    Reinhardt, K.C.; Lamp, T.R.; Geis, J.W.; Colozza, A.J.

    1996-12-31

    An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time of year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.

  19. Concept and realization of unmanned aerial system with different modes of operation

    SciTech Connect (OSTI)

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech; Niezabitowski, Michał; Czornik, Adam; Błachuta, Marian

    2014-12-10

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of the system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.

  20. Extragalactic Inverse Compton Light from Dark Matter annihilation and the Pamela positron excess

    SciTech Connect (OSTI)

    Profumo, Stefano; Jeltema, Tesla E. E-mail: tesla@ucolick.org

    2009-07-01

    We calculate the extragalactic diffuse emission originating from the up-scattering of cosmic microwave photons by energetic electrons and positrons produced in particle dark matter annihilation events at all redshifts and in all halos. We outline the observational constraints on this emission and we study its dependence on both the particle dark matter model (including the particle mass and its dominant annihilation final state) and on assumptions on structure formation and on the density profile of halos. We find that for low-mass dark matter models, data in the X-ray band provide the most stringent constraints, while the gamma-ray energy range probes models featuring large masses and pair-annihilation rates, and a hard spectrum for the injected electrons and positrons. Specifically, we point out that the all-redshift, all-halo inverse Compton emission from many dark matter models that might provide an explanation to the anomalous positron fraction measured by the Pamela payload severely overproduces the observed extragalactic gamma-ray background.

  1. Kauai Test Facility two experiment rocket campaign. [Kauai Test Facility; Two Experiment Rocket Campaign

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The Kauai Test Facility (KTF) is a Department of Energy (DOE) owned facility located at Barking Sands, on the west coast of the island of Kauai, Hawaii. The KTF has a rocket preparation and launching capability for both rail-launched and vertical-launched capability for both rail-launched and vertical-launched rockets. Launches primarily support high altitude scientific research and re-entry vehicle systems and carry experimental non-nuclear payloads. This environmental assessment (EA) has been prepared for the Two Experiment Rocket Campaign, during which the STRYPI/LACE (STRYPI is not an acronym -- its the name of the rocket; LACE is the acronym for Low Altitude Compensation Experiment) and the RAP-501 (Rocket Accelerated Penetration) will be flown in conjunction from the KTF in February 1991 to reduce costs. There have been numerous rocket campaigns at the KTF in prior years that have used the same motors to be used in the current two experiment rocket campaign. The main difference noted in this environmental documentation is that the two rockets have not previously been flown in conjunction. Previous National Environmental Policy Act (NEPA) approvals of launches using these motors were limited to different and separate campaigns with diverse sources of funding. 2 figs., 5 tabs.

  2. Strategic Target Systems (STARS) environmental assessment. Supplement. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-07-01

    The Strategic Target System program (STARS) uses a three-stage solid propellant guided missile. The missile integrates selected parts of the Navy retired Polaris A3 fleet ballistic missile with a substantial number of newly developed subsystems. STARS will be used for testing various developmental elements of the Strategic Defense Initiative System. STARS will fly a payload of either single or multiple reentry vehicles to the Broad Ocean Area or will be targeted for impact or for reentry. As part of the STARS development process, an EA was prepared. It concluded with a finding of no significant impact (FNSI). The Army determined that the STARS program would have no significant environmental impacts and that any potential impacts could be mitigated. However, as a result of lawsuits the court ordered that a supplemental study be conducted of the potential effects on the Kauai environment from hydrogen chloride released during STARS launches and that a determination be made as to whether the release of freon from the second stage of the STARS would violate the Hawaii Ozone Layer Protection Statute.

  3. Goodwill missions for castoff missiles

    SciTech Connect (OSTI)

    Florini, A.M. ); Potter, W.C.

    1990-11-01

    US and Soviet arms control negotiators were able to agree, with relative ease, on the general outline for deep reductions in strategic arms (START). But it has proved more difficult for them to decide what to do with all the missiles that will be decommissioned as a consequence of the treaty. Neither the US nor the Soviet Union is inclined to follow the INF Treaty precedent in which all the costly intermediate-range missiles were destroyed - a wasteful, if straightforward and readily verifiable, approach. Instead, START negotiators are considering plans to convert treaty-prohibited missiles into peaceful space-lauch vehicles. To date, however, the two sides have been unable to agree on what constitutes peaceful uses. An increasingly sharp dispute has arisen over whether the START missiles should be used only for civilian purposes, or whether some military uses would be permitted. There is little doubt about the technical and economic feasibility of conversion. Converted missiles have carried non-weapons payloads into space from the dawn of the space age. Despite the extensive experience both superpowers have in converting military missiles to space launchers, no missile conversion has yet been undertaken as a consequence of any arms reduction accord. 7 refs.

  4. SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) 2013

    SciTech Connect (OSTI)

    Gordon Rueff; Lyle Roybal; Denis Vollmer

    2013-01-01

    There is a significant need to protect the nation’s energy infrastructures from malicious actors using cyber methods. Supervisory, Control, and Data Acquisition (SCADA) systems may be vulnerable due to the insufficient security implemented during the design and deployment of these control systems. This is particularly true in older legacy SCADA systems that are still commonly in use. The purpose of INL’s research on the SCADA Protocol Anomaly Detection Utilizing Compression (SPADUC) project was to determine if and how data compression techniques could be used to identify and protect SCADA systems from cyber attacks. Initially, the concept was centered on how to train a compression algorithm to recognize normal control system traffic versus hostile network traffic. Because large portions of the TCP/IP message traffic (called packets) are repetitive, the concept of using compression techniques to differentiate “non-normal” traffic was proposed. In this manner, malicious SCADA traffic could be identified at the packet level prior to completing its payload. Previous research has shown that SCADA network traffic has traits desirable for compression analysis. This work investigated three different approaches to identify malicious SCADA network traffic using compression techniques. The preliminary analyses and results presented herein are clearly able to differentiate normal from malicious network traffic at the packet level at a very high confidence level for the conditions tested. Additionally, the master dictionary approach used in this research appears to initially provide a meaningful way to categorize and compare packets within a communication channel.

  5. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 2, Rev. 14

    SciTech Connect (OSTI)

    1994-10-01

    This appendix determines the effective G values for payload shipping categories of contact handled transuranic (CH-TRU) waste materials, based on the radiolytic G values for waste materials that are discussed in detail in Appendix 3.6.8 of the Safety Analysis Report for the TRUPACT-II Shipping Package. The effective G values take into account self-absorption of alpha decay energy inside particulate contamination and the fraction of energy absorbed by nongas-generating materials. As described in Appendix 3.6.8, an effective G value, G{sub eff}, is defined by: G{sub eff} - {Sigma}{sub M} (F{sub M} x G{sub M}) F{sub M}-fraction of energy absorbed by material maximum G value for a material where the sum is over all materials present inside a waste container. The G value itself is determined primarily by the chemical properties of the material and its temperature. The value of F is determined primarily by the size of the particles containing the radionuclides, the distribution of radioactivity on the various materials present inside the waste container, and the stopping distance of alpha particles in air, in the waste materials, or in the waste packaging materials.

  6. PAT-1 safety analysis report addendum.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.; Akin, Lili A.; Miller, David Russell; Knorovsky, Gerald Albert; Yoshimura, Richard Hiroyuki; Lopez, Carlos; Harding, David Cameron; Jones, Perry L.; Morrow, Charles W.

    2010-09-01

    The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The purpose of this SAR Addendum is to incorporate plutonium (Pu) metal as a new payload for the PAT-1 package. The Pu metal is packed in an inner container (designated the T-Ampoule) that replaces the PC-1 inner container. The documentation and results from analysis contained in this addendum demonstrate that the replacement of the PC-1 and associated packaging material with the T-Ampoule and associated packaging with the addition of the plutonium metal content are not significant with respect to the design, operating characteristics, or safe performance of the containment system and prevention of criticality when the package is subjected to the tests specified in 10 CFR 71.71, 71.73 and 71.74.

  7. THERMAL EVALUATION OF ALTERNATE SHIPPING CASK FOR GTRI EXPERIMENTS

    SciTech Connect (OSTI)

    Donna Post Guillen

    2014-06-01

    The Global Threat Reduction Initiative (GTRI) has many experiments yet to be irradiated in support of the High Performance Research Reactor fuels development program. Most of the experiments will be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL), then later shipped to the Hot Fuel Examination Facility (HFEF) located at the Materials and Fuels Complex for post irradiation examination. To date, the General Electric (GE)-2000 cask has been used to transport GTRI experiments between these facilities. However, the availability of the GE-2000 cask to support future GTRI experiments is at risk. In addition, the internal cavity of the GE-2000 cask is too short to accommodate shipping the larger GTRI experiments. Therefore, an alternate shipping capability is being pursued. The Battelle Energy Alliance, LLC, Research Reactor (BRR) cask has been determined to be the best alternative to the GE-2000 cask. An evaluation of the thermal performance of the BRR cask is necessary before proceeding with fabrication of the newly designed cask hardware and the development of handling, shipping, and transport procedures. This paper presents the results of the thermal evaluation of the BRR cask loaded with a representative set of fueled and non-fueled experiments. When analyzed with identical payloads, experiment temperatures were found to be lower with the BRR cask than with the GE-2000 cask. From a thermal standpoint, the BRR cask was found to be a suitable alternate to the GE-2000 cask.

  8. A system architecture for long duration free floating flight for military applications

    SciTech Connect (OSTI)

    Epley, L.E. )

    1990-08-31

    Accessibility is today's space frontier. Our need for wide-band global communications, earth imaging an sensing, atmospheric measurements and military reconnaissance is endless but growing dependence on space-based systems raises concerns about potential vulnerability. Military commanders want space assets more accessible and under direct local control. As a result, a robust and low cost access to space-like capability has become a national priority. Buoyant vehicles, free floating in the middle stratosphere could provide the kind of cost effective access to space-like capability needed for a verity of missions. These vehicles are inexpensive, invisible and easily launched. Developments in payload electronics, atmospheric wind modeling and materials combined with ever-improving communications and navigation infrastructure are making balloon-borne concepts more attractive. The fundamental question is whether a free floating balloon, used in a pseudo-satellite role, has value in a military system. Flight tests are ongoing under NASA sponsorship. Following these tests NASA intends to use the vehicles for research in the Antarctic. The concept is being reviewed by other agencies interested in stratospheric research. We believe that LDFFF systems have applications in areas of communications, surveillance and other traditional satellite missions. Dialogue with the broader community of space users is needed to expand the applications. This report reviews the status of the recent flight tests and presents an overview of the concept of Long Duration Free Floating Flight for military applications. 12 refs., 13 figs.

  9. Cactus and Visapult: An ultra-high performance grid-distributedvisualization architecture using connectionless protocols

    SciTech Connect (OSTI)

    Bethel, E. Wes; Shalf, John

    2002-08-31

    This past decade has seen rapid growth in the size,resolution, and complexity of Grand Challenge simulation codes. Thistrend is accompanied by a trend towards multinational, multidisciplinaryteams who carry out this research in distributed teams, and thecorresponding growth of Grid infrastructure to support these widelydistributed Virtual Organizations. As the number and diversity ofdistributed teams grow, the need for visualization tools to analyze anddisplay multi-terabyte, remote data becomes more pronounced and moreurgent. One such tool that has been successfully used to address thisproblem is Visapult. Visapult is a parallel visualization tool thatemploys Grid-distributed components, latency tolerant visualization andgraphics algorithms, along with high performance network I/O in order toachieve effective remote analysis of massive datasets. In this paper wediscuss improvements to network bandwidth utilization and responsivenessof the Visapult application that result from using connectionlessprotocols to move data payload between the distributed Visapultcomponents and a Grid-enabled, high performance physics simulation usedto study gravitational waveforms of colliding black holes: The Cactuscode. These improvements have boosted Visapult's network efficiency to88-96 percent of the maximum theoretical available bandwidth onmulti-gigabit Wide Area Networks, and greatly enhanced interactivity.Such improvements are critically important for future development ofeffective interactive Grid applications.

  10. Operator control systems and methods for swing-free gantry-style cranes

    DOE Patents [OSTI]

    Feddema, J.T.; Petterson, B.J.; Robinett, R.D. III

    1998-07-28

    A system and method are disclosed for eliminating swing motions in gantry-style cranes while subject to operator control. The present invention comprises an infinite impulse response (IIR) filter and a proportional-integral (PI) feedback controller. The IIR filter receives input signals (commanded velocity or acceleration) from an operator input device and transforms them into output signals in such a fashion that the resulting motion is swing free (i.e., end-point swinging prevented). The parameters of the IIR filter are updated in real time using measurements from a hoist cable length encoder. The PI feedback controller compensates for modeling errors and external disturbances, such as wind or perturbations caused by collision with objects. The PI feedback controller operates on cable swing angle measurements provided by a cable angle sensor. The present invention adjusts acceleration and deceleration to eliminate oscillations. An especially important feature of the present invention is that it compensates for variable-length cable motions from multiple cables attached to a suspended payload. 10 figs.