Sample records for upper snake river

  1. Draft Inventory Upper Snake Province

    E-Print Network [OSTI]

    Draft Inventory Upper Snake Province Submitted To The Northwest Power and Conservation Council Portland, Oregon Prepared by December 2004 #12;BOI043620012.DOC/KG ii Contents Section Page Inventory

  2. Upper Snake Provincial Assessment May 2004 APPENDIX 4-1--UPPER SNAKE PROVINCE PROJECT INVENTORY

    E-Print Network [OSTI]

    Upper Snake Provincial Assessment May 2004 1 APPENDIX 4-1--UPPER SNAKE PROVINCE PROJECT INVENTORY The purpose of the project inventory is to provide a generalized picture of the types of fish and wildlife team participants through the project inventory website or through direct submission. Additional

  3. Draft Management Plan Upper Snake Province

    E-Print Network [OSTI]

    .......................................................................................4-5 Consistency with Idaho's Water Quality Management Plan...........................4-5 303(dDraft Management Plan Upper Snake Province Submitted To The Northwest Power and Conservation Quality Anti-Degradation Policy (39-3603) ............................................4-8 ESA and CWA

  4. Fact Sheet - Myths & Facts about the lower Snake River dams ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Myths and facts about the lower Snake River dams MYTH: The four lower Snake River dams are low value. FACT: It costs about 5 per megawatt-hour to produce power at the dams. The...

  5. Snake and Columbia Rivers Sediment Sampling Project

    SciTech Connect (OSTI)

    Pinza, M. R.; Word, J. Q.; Barrows, E. S.; Mayhew, H. L.; Clark, D. R. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1992-12-01T23:59:59.000Z

    The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

  6. Effect of spill on adult salmon passage delay at Columbia River and Snake River dams

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Effect of spill on adult salmon passage delay at Columbia River and Snake River dams W. Nicholas dams in the Columbia/Snake River hydrosystem may delay the upstream passage of the adults. To evaluate-to-day variations of spill and upstream fish passage at the eight dams of the Columbia/Snake river hydrosystem

  7. Power benefits of the lower Snake River dams - FACT SHEET

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I n the 1960s and early 1970s, the federal government built four large dams on the Snake River. This is the last set of major dams to have been built in the Federal Columbia River...

  8. Upper Snake Provincial Assessment May 2004 6. Participants and Affiliations

    E-Print Network [OSTI]

    for the Upper Snake Provincial Assessment Idaho Department of Fish and Game: Gregg Servheen Jon Beals Lance Chad Colter Shoshone-Bannock Tribes Larry Dickerson US Fish and Wildlife Service John Fred Shoshone-Bannock Tribes Jim Fredericks Idaho Fish and Game Dan Garren Idaho Fish and Game Lauri Hanauska-Brown Idaho Fish

  9. Lower Snake River Subbasin Management Plan WDFW March 2004 1

    E-Print Network [OSTI]

    Lower Granite pool and the Palouse and Tucannon Rivers join near the midpoint of Lower Monumental Ecoregion. Subbasin Land Ownership Palouse Lower Snake Tucannon Asotin Walla Walla Total Federal Lands 1 68

  10. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1997 Annual Report.

    SciTech Connect (OSTI)

    Muir, William D.; Connor, William P.; Arnsberg, Billy D.

    1999-03-01T23:59:59.000Z

    In 1997, the National Marine Fisheries Service, the U.S. Fish and Wildlife Service, and the Nez Perce Tribe completed the third year of research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin.

  11. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    SciTech Connect (OSTI)

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.; Bleich, Matthew D.; Titzler, P. Scott; Fu, Tao

    2006-01-30T23:59:59.000Z

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004 plus a brief one-week period in 2005 of Lower Monumental, Little Goose, and Lower Granite Reservoirs. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are sufficiently capable of matching diurnal and long term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the 3-D model Flow3-D. This model was used to better understand mixing processing and entrainment. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake discharge. Simulation results were also linked with the particle tracking model FINS to better understand alterations of integrated metrics due to alternative operation schemes. These findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir and may have a significant impact on the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.

  12. LSRCP Response to ISRP Snake River Fall Chinook Program Review

    E-Print Network [OSTI]

    M & E needs necessary to obtain an ESA section 10 permit to operate Lyons Ferry Hatchery. LSRCP assumes that the Section 10 permit will be consistent with the Snake River Fall Chinook Recovery Plan when Plans (HGMPs) and received ESA Section 10 Permit coverage. 2. Evaluate hatchery/wild salmon interactions

  13. Snake River Fall Chinook Salmon Productivity Nez Perce Tribe

    E-Print Network [OSTI]

    Snake River Fall Chinook Salmon Productivity Jay Hesse Nez Perce Tribe Department of Fisheries salmon abundance and productivity have been and continue to be influenced by construction and operation related to productivity; (1) adult abundance, (2) hatchery programs, (3) management actions, and (4

  14. Phase II Water Rental Pilot Project: Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    SciTech Connect (OSTI)

    Stovall, Stacey H.

    1994-08-01T23:59:59.000Z

    The Idaho Water Rental Pilot Project was implemented in 1991 as part of the Non-Treaty Storage Fish and Wildlife Agreement between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to quantify resident fish and wildlife impacts resulting from salmon flow augmentation releases made from the upper Snake River Basin. Phase I summarized existing resource information and provided management recommendations to protect and enhance resident fish and wildlife habitat resulting from storage releases for the I improvement of an adromous fish migration. Phase II includes the following: (1) a summary of recent biological, legal, and political developments within the basin as they relate to water management issues, (2) a biological appraisal of the Snake River between American Falls Reservoir and the city of Blackfoot to examine the effects of flow fluctuation on fish and wildlife habitat, and (3) a preliminary accounting of 1993--1994 flow augmentation releases out of the upper Snake, Boise, and Payette river systems. Phase III will include the development of a model in which annual flow requests and resident fish and wildlife suitability information are interfaced with habitat time series analysis to provide an estimate of resident fish and wildlife resources.

  15. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  16. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    SciTech Connect (OSTI)

    Cook, C.; Dibrani, B.; Richmond, M.; Bleich, M.; Titzler, P..; Fu, T. [Pacific Northwest National Laboratory

    2006-01-01T23:59:59.000Z

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004. Although temperature, and hence density, differences during flow augmentation periods between the Clearwater and Snake rivers were approximately equal (7-12 C) for all four years, the discharge ratio varied which resulted in significant differences in entrainment of cooler Clearwater River water into the Lower Granite Reservoir epilimnion. However, as a direct result of system management, Lower Granite Dam tailrace temperatures were maintained near 20 C during all years. Primary differences in the other three lower Snake River reservoirs were therefore a result of meteorological conditions and dam operations, which produced variations in wind setup and surface heating. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are capable of matching diurnal and long-term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the three-dimensional non-hydrostatic model Flow3D. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake river discharge. Simulation results were linked with the particle tracking model FINS to develop reservoir-integrated metrics that varied due to these alternative operation schemes. Findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir, which may also impact the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.

  17. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    SciTech Connect (OSTI)

    Faler, Michael P. [U.S. Fish and Wildlife Service; Mendel, Glen; Fulton, Carl [Washington Department of Fish and Wildlife

    2008-11-20T23:59:59.000Z

    The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.

  18. EIS-0163-S: Supplemental EIS/1993 Interim Columbia and Snake Rivers Flow Improvement Measures for Salmon

    Broader source: Energy.gov [DOE]

    The U.S. Army Corps of Engineers – Walla Walla District has prepared this statement to assess alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. The U.S. Department of Energy’s Bonneville Power Administration served as a cooperating agency in developing this supplement due to its key role in direct operation of the integrated and coordinated Columbia-Snake River System, and adopted this statement in March of 1993. This statement supplements the 1992 Columbia River Salmon Flow Measures Options Analysis Environmental Impact Statement, which evaluated ways to alter water management operations in 1992 on the lower Columbia and Snake rivers to enhance the survival of wild Snake River salmon.

  19. Upper Snake Provincial Assessment May 2004 APPENDIX 3-1--OVERVIEW OF THE MAJOR CAUSES LIMITING THE

    E-Print Network [OSTI]

    , Upper Snake­Rock, Portneuf, Blackfoot, Willow, Teton, Beaver­Camas, and the Upper and Lower Henrys Fork province. (Source: ICBEMP 1997.) Major Hydrologic Unit (Watershed)a Snake Headwaters Subbasin Relative province. (Source GAP II, Scott et al. 2002) Focal Habitat Type High Low Medium Very High Very Low Riparian

  20. EA-0956: South Fork Snake River/Palisades Wildlife Mitigation Project, Bonneville County, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration proposal to fund the implementation of the South Fork Snake River Programmatic...

  1. The costs of breaching the four lower Snake River dams - BPA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shing groups recently released their analysis of breaching the four lower Snake River dams. The authors of "Revenue Stream" did not seek input from BPA or other federal agencies...

  2. Fact Sheet - The Snake River Dam Study-Then and Now - November...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 2002, evaluated four alternatives to help Snake River fall chinook get through the dams. The independent peer-reviewed study concluded that dam breaching by itself would not...

  3. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2004 Annual Report.

    SciTech Connect (OSTI)

    Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

    2005-11-01T23:59:59.000Z

    We sampled and released 313 bull trout (Salvelinus confluentus) from the Tucannon River in 2004. Passive Integrated Transponder (PIT) tags were inserted in 231 of these individuals, and we detected existing PIT tags in an additional 44 bull trout. Twenty-five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Ten bull trout that were radio-tagged in 2003 were known to survive and carry their tags through the spring of 2004. One of these fish outmigrated into the Snake River in the fall, and remained undetected until February, when it's tag was located near the confluence of Alkali Flat Creek and the Snake River. The remaining 9 fish spent the winter between Tucannon River miles 2.1 (Powers Road) and 36.0 (Tucannon Fish Hatchery). Seven of these fish retained their tags through the summer, and migrated to known spawning habitat prior to September 2004. During June and July, radio-tagged bull trout again exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. As in past years, we observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October, suggesting post spawning outmigrations. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from river mile 42 at Camp Wooten downstream to river mile 17, near the Highway 12 bridge. As in previous years, we did not collect data associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the vicinity of the hydropower dams on the main stem Snake River. Transmission tests of submerged Lotek model NTC-6-2 nano-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20, 30, and 40 ft. We were able to maintain tag detection and code separation at all depths from both a boat and 200 ft. above water surface in a helicopter. However, we lost detection capability from 40 ft. water depth when we passed 700 ft. above the water surface in a helicopter. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we reduced the size of the radio tags that we implanted, and delayed most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

  4. Effects of Jackson Lake Dam on the Snake River and its floodplain, Grand Teton National Park, Wyoming, USA

    E-Print Network [OSTI]

    Marston, Richard A.

    Effects of Jackson Lake Dam on the Snake River and its floodplain, Grand Teton National Park In 1906, the Bureau of Reclamation created Jackson Lake Dam on the Snake River in what later became Grand Teton National Park. The geomorphic, hydrologic and vegetation adjustments downstream of the dam have

  5. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

    2003-06-01T23:59:59.000Z

    We collected, radio-tagged, and PIT-tagged 41 bull trout at the Tucannon River Hatchery trap from May 17, through June 14, 2002. An additional 65 bull trout were also collected and PIT tagged by June 24, at which time we ceased PIT tagging operations because water temperatures were reaching 16.0 C or higher on a regular basis. Six radio-tags were recovered shortly after tagging, and as a result, 35 remained in the river through November 30, 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon Subbasin. We began to observe some downstream movements of radio-tagged bull trout in mid to late September and throughout October. These movements appeared to be associated with post spawning migrations. As of November 30, radio tagged bull trout were relatively stationary, and distributed from the headwaters downstream to river mile 11.3, near Pataha Creek. None of the radio-tagged bull trout left the Tucannon Subbasin and entered the federal hydropower system on the mainstem Snake River. We conducted some initial transmission tests of submerged radio tags at depths of 25, 35, 45, and 55 ft. in Lower Monumental Pool to test our capability of detection at these depths. Equipment used included Lotek model MCFT-3A transmitters, an SRX 400 receiver, a 4 element Yagi antenna, and a Lotek ''H'' antenna. Test results indicated that depth transmission of these tags was poor; only the transmitter placed at 25 ft. was audibly detectable.

  6. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1997 Annual Report.

    SciTech Connect (OSTI)

    Hoefs, Nancy (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-02-01T23:59:59.000Z

    During 1997 the first phase of the Nez Perce Tribe White Sturgeon Project was completed and the second phase was initiated. During Phase I the ''Upper Snake River White Sturgeon Biological Assessment'' was completed, successfully: (1) compiling regional white sturgeon management objectives, and (2) identifying potential mitigation actions needed to rebuild the white sturgeon population in the Snake River between Hells Canyon and Lower Granite dams. Risks and uncertainties associated with implementation of these potential mitigative actions could not be fully assessed because critical information concerning the status of the population and their habitat requirements were unknown. The biological risk assessment identified the fundamental information concerning the white sturgeon population that is needed to fully evaluate the effectiveness of alternative mitigative strategies. Accordingly, a multi-year research plan was developed to collect specific biological and environmental data needed to assess the health and status of the population and characterize habitat used for spawning and rearing. In addition, in 1997 Phase II of the project was initiated. White sturgeon were captured, marked, and population data were collected between Lower Granite Dam and the mouth of the Salmon River. During 1997, 316 white sturgeon were captured in the Snake River. Of these, 298 were marked. Differences in the fork length frequency distributions of the white sturgeon were not affected by collection method. No significant differences in length frequency distributions of sturgeon captured in Lower Granite Reservoir and the mid- and upper free-flowing reaches of the Snake River were detected. The length frequency distribution indicated that white sturgeon between 92 and 183 cm are prevalent in the reaches of the Snake River that were sampled. However, white sturgeon >183 have not changed markedly since 1970. I would speculate that some factor other than past over-fishing practices is limiting the recruitment of white sturgeon into larger size classes (>183 cm). Habitat, food resources, and migration have been severely altered by the impoundment of the Snake River and it appears that the recruitment of young may not be severely affected as recruitment of fish into size classes > 183 cm.

  7. Monitoring the Migrations of Wild Snake River Spring and Summer Chinook Salmon Smolts, 1992 Annual Report.

    SciTech Connect (OSTI)

    Achord, Stephen; Marsh, Douglas M.; Kamikawa, Daniel J. (Northwest and Alaska Fisheries Center, Coastal Zone and Estuarine Division, Seattle, WA)

    1994-09-01T23:59:59.000Z

    We PIT tagged wild spring and summer chinook salmon parr in the Snake River Basin in 1991, and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, and McNary Dams during spring and summer 1992. This report details our findings.

  8. Migration and bioenergetics of juvenile Snake River fall Chinook salmon Daniel Widener

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Migration and bioenergetics of juvenile Snake River fall Chinook salmon Daniel Widener A thesis: Aquatic and Fishery Sciences #12;#12;University of Washington Abstract Migration and Bioenergetics are still poorly understood. This thesis describes a complex of individually-based bioenergetic

  9. SOURCE AND EFFECT OF ACID ROCK DRAINAGE IN THE SNAKE RIVER WATERSHED, SUMMIT COUNTY, COLORADO

    E-Print Network [OSTI]

    SOURCE AND EFFECT OF ACID ROCK DRAINAGE IN THE SNAKE RIVER WATERSHED, SUMMIT COUNTY, COLORADO Belanger, Laura (M.S., Civil, Environmental and Architectural Engineering) Source and Effect of Acid Rock (the weathering of disseminated pyrite) sources of acid rock drainage (ARD). Stream waters

  10. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    SciTech Connect (OSTI)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

    2009-09-15T23:59:59.000Z

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  11. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

    2004-04-01T23:59:59.000Z

    We collected 279 adult bull trout (Salvelinus confluentus) in the Tucannon River during the Spring and Fall of 2003. Passive Integrated Transponder (PIT) tags were inserted in 191 of them, and we detected existing PIT tags in an additional 31bull trout. Thirty five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Fourteen radio-tags were recovered shortly after tagging, and as a result, 21 remained in the river through December 31, 2003. Four bull trout that were radio-tagged in spring 2002 were known to survive and carry their tags through the spring and/or summer of 2003. One of these fish spent the winter near river mile (RM) 13.0; the other 3 over-wintered in the vicinity of the Tucannon Hatchery between RM 34 and 36. Twenty-one radio tags from bull trout tagged in 2002 were recovered during the spring and summer, 2003. These tags became stationary the winter of 2002/2003, and were recovered between RM 11 and 55. We were unable to recover the remaining 15 tags from 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. We observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from the headwaters downstream to river mile 6.4, near Lower Monumental Pool. As in 2002, we did not conduct work associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the Federal hydropower system on the mainstem Snake River. Transmission tests of submerged ATS model F1830 radio-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20 and 30 ft. Tests were conducted using an ATS R-4000 Receiver equipped with an ''H'' antenna at 200 and 700 feet above water surface from a helicopter. Audible detection and frequency separation were possible at both elevations. Two years of high tag loss, particularly after spawning, has prevented us from documenting fall and winter movements with an adequate sample of radio tagged bull trout. The high transmitter loss after spawning may be a reflection of high natural mortality for large, older age fish that we have been radio tagging to accommodate the longer life transmitters. Therefore, we are planning to reduce the size of the radio tags that we implant, and delay most of our collection and tagging of bull trout until after spawning. These changes are a new approach to try to maximize the number of radio tagged bull trout available post spawning to adequately document fall and winter movements and any use of the Snake River by bull trout from the Tucannon River.

  12. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    SciTech Connect (OSTI)

    Kohler, Andre E. [Shoshone-Bannock Tribes; Griswold, Robert G. [Biolines Environmental Consulting; Taki, Doug [Shoshone-Bannock Tribes

    2009-07-31T23:59:59.000Z

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (8) assist IDFG with captive broodstock production activities.

  13. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1999 Annual Report.

    SciTech Connect (OSTI)

    Baker, Dan J,; Heindel, Jeff A.; Kline, Paul A. (Idaho Department of Fish and Game, Boise, ID)

    2005-08-01T23:59:59.000Z

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1999 and December 31, 1999 are presented in this report. In 1999, seven anadromous sockeye salmon returned to the Sawtooth Valley and were captured at the adult weir located on the upper Salmon River. Four anadromous adults were incorporated in the captive broodstock program spawning design for year 1999. The remaining three adults were released to Redfish Lake for natural spawning. All seven adults were adipose and left ventral fin-clipped, indicating hatchery origin. One sockeye salmon female from the anadromous group and 81 females from the captive broodstock group were spawned at the Eagle Fish Hatchery in 1999. Spawn pairings produced approximately 63,147 eyed-eggs with egg survival to eyed-stage of development averaging 38.97%. Eyed-eggs (20,311), presmolts (40,271), smolts (9,718), and adults (21) were planted or released into Sawtooth Valley waters in 1999. Supplementation strategies involved releases to Redfish Lake, Redfish Lake Creek, upper Salmon River (below the Sawtooth Fish Hatchery weir), Alturas Lake, and Pettit Lake. During this reporting period, four broodstocks and three production groups were in culture at the Eagle Fish Hatchery. Two of the four broodstocks were incorporated into the 1999 spawning design and one broodstock was terminated following the completion of spawning.

  14. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    SciTech Connect (OSTI)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01T23:59:59.000Z

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; and (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  15. Monitoring and mapping selected riparian habitat along the lower Snake River

    SciTech Connect (OSTI)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01T23:59:59.000Z

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  16. Oxbow Fish Hatchery Snake River Sockeye Salmon Smolt Program, 2008 Annual Report.

    SciTech Connect (OSTI)

    Banks, Duane D. [Oregon Department of Fish and Wildlife

    2009-11-14T23:59:59.000Z

    This contract proposal is in response to the Federal Columbia River Power System Biological Opinion Implementation Plan/Update Proposed Action (UPA) associated with increasing the number of Snake River sockeye smolts by 150,000. To accomplish this proposal the cooperation and efforts of three government entities has been planned (e.g., Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), and the National Marine Fisheries Service (NMFS)). Improvements at the IDFG Eagle Fish Hatchery and NMFS Burley Creek Hatchery will focus on increasing sockeye salmon captive broodstock and egg production. Improvements at the ODFW Oxbow Fish Hatchery will be made to accommodate the incubation, hatching and rearing of 150,000 sockeye salmon smolts for release into Idaho's Sawtooth Valley, Upper Salmon River near IDFG's Sawtooth Fish Hatchery and/or Redfish Lake Creek 1.4 km downstream of Redfish Lake. Modifications to Oxbow Fish Hatchery (ODFW) will include retro-fit existing pond drains so pond cleaning effluent water can be routed to the pollution abatement pond, and modifications to the abatement pond. Also included in this project as an added phase, was the rerouting of the hatchery building effluent water to meet state DEQ guidelines for the use of formalin to treat salmonid eggs. Some additional funding for the described Oxbow Hatchery modifications will come from Mitchell Act Funding. All personnel costs associated with this project will come from Mitchell Act funding. Due to heavy work load issues, being under staffed, and two emergency projects in the spring and summer of 2006, ODFW engineers were not able to complete all plans and get them out for bid in 2006. As a result of these circumstances retro-fitting pond drains and modifications to the abatement pond was carried over into fiscal year 2007-2008. A no cost time extension to the contract was approved by BPA. The format for this report will follow the standard format for Statement of Work Report (SOW), which includes sub-categories Work Element (WE), and within the WE the Milestone Titles.

  17. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Ward, David L.; Kern, J. Chris; Hughes, Michele L. (Oregon Department of Fish and Wildlife)

    2004-02-01T23:59:59.000Z

    We report on our progress from April 2002 through March 2003 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  18. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2001 Annual Report.

    SciTech Connect (OSTI)

    Kline, Paul A.; Willard, Catherine; Baker, Dan J. (Idaho Department of Fish and Game, Boise, ID)

    2003-08-01T23:59:59.000Z

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2001 and December 31, 2001 for the hatchery element of the program are presented in this report. In 2001, 26 anadromous sockeye salmon returned to the Sawtooth Basin. Twenty-three of these adults were captured at adult weirs located on the upper Salmon River and on Redfish Lake Creek. Three of the anadromous sockeye salmon that returned were observed below the Sawtooth Fish Hatchery weir and allowed to migrate upstream volitionally (following the dismantling of the weir on October 12, 2001). Nine anadromous adults were incorporated into the captive broodstock program spawning design in 2001. The remaining adults were released to Redfish Lake for natural spawning. Based on their marks, returning adult sockeye salmon originated from a variety of release options. Two sockeye salmon females from the anadromous group and 152 females from the brood year 1998 captive broodstock group were spawned at the Eagle Hatchery in 2001. Spawn pairings produced approximately 118,121 eyed-eggs with egg survival to eyed stage of development averaging 42.0%. Presmolts (106,166), smolts (13,915), and adults (79) were planted or released into Stanley Basin waters in 2001. Supplementation strategies involved releases to Redfish Lake, Redfish Lake Creek, Alturas Lake, and Pettit Lake. During this reporting period, five broodstocks and two unique production groups were in culture at Idaho Department of Fish and Game facilities (Eagle Fish Hatchery and Sawtooth Fish Hatchery). Two of the five broodstocks were incorporated into the 2001 spawning design, and one broodstock was terminated following the completion of spawning.

  19. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2002 Annual Report.

    SciTech Connect (OSTI)

    Willard, Catherine; Baker, Dan J.; Heindel, Jeff A. (Idaho Department of Fish and Game, Boise, ID)

    2003-12-01T23:59:59.000Z

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2002 and December 31, 2002 for the hatchery element of the program are presented in this report. n 2002, 22 anadromous sockeye salmon returned to the Sawtooth Valley. Fifteen of these adults were captured at adult weirs located on the upper Salmon River and on Redfish Lake Creek. Seven of the anadromous sockeye salmon that returned were observed below the Sawtooth Fish Hatchery weir and allowed to migrate upstream volitionally (following the dismantling of the weir on September 30, 2002). All adult returns were released to Redfish Lake for natural spawning. Based on their marks, returning adult sockeye salmon originated from a variety of release options. Sixty-six females from brood year 1999 and 28 females from brood year 2000 captive broodstock groups were spawned at the Eagle Hatchery in 2002. Spawn pairings produced approximately 65,838 eyed-eggs with egg survival to eyed stage of development averaging 55.1%. Presmolts (140,410), smolts (38,672), and adults (190) were planted or released into Sawtooth Valley waters in 2002. Reintroduction strategies involved releases to Redfish Lake, Redfish Lake Creek, Alturas Lake, and Pettit Lake. During this reporting period, five broodstocks and three unique production groups were in culture at Idaho Department of Fish and Game facilities (Eagle Fish Hatchery and Sawtooth Fish Hatchery). Three of the five broodstocks were incorporated into the 2002 spawning design, and one broodstock was terminated following the completion of spawning.

  20. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    SciTech Connect (OSTI)

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01T23:59:59.000Z

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399) downstream to the upper end of Lower Granite Reservoir near rkm 240. We randomly selected 14 fall Chinook salmon spawning locations as study sites, which represents 25% of the most used spawning areas throughout the HCR. Interactions between river water and pore water within the riverbed (i.e., hyporheic zone) at each site were quantified through the use of self-contained temperature and water level data loggers suspended inside of piezometers. Surrounding the piezometer cluster at each site were 3 artificial egg pockets. In mid-November 2002, early-eyed stage fall Chinook salmon eggs were placed inside of perforated polyvinyl chloride (PVC) tubes, along with a temperature data logger, and buried within the egg pockets. Fall Chinook salmon eggs were also incubated in the laboratory for the purpose of developing growth curves that could be used as indicators of emergence timing. The effects of discharge on vertical hydrologic exchange between the river and riverbed were inferred from measured temperature gradients between the river and riverbed, and the application of a numerical model. The hydrologic regime during the 2002-2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures suggested that there was significant vertical hydrologic exchange during all time periods. The combined results of temperature monitoring and numerical modeling indicate that only 2 of 14 sites were significantly affected by short-term (hourly to daily) large magnitude changes in discharge. Although the two sites exhibited acute flux reversals between river water and hyporheic water resulting from short-term large magnitude

  1. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2002 Annual Report.

    SciTech Connect (OSTI)

    McAuley, W. Carlin; Maynard, Desmond J. (National Marine Fishereis Service, Northwest Fisheries Science Center, Seattle, WA)

    2003-03-01T23:59:59.000Z

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs were intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA, provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates designed to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2002, NMFS cultured 1996, 1997, 1998, 1999, and 2000 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2001 to August 31, 2002.

  2. Snake River Spring/Summer Chinook Captive Broodstock Rearing and Research, 2003 Annual Report.

    SciTech Connect (OSTI)

    Maynard, Desmond J.; McAuley, W. Carlin (National Marine Fisheries Service, Northwest Fisheries Science Center, Resource Enhancement and Utilization, Seattle, WA)

    2004-08-01T23:59:59.000Z

    In 1995, the National Marine Fisheries Service (NMFS), in cooperation with the Idaho Department of Fish and Game (IDFG), the Oregon Department of Fish and Wildlife (ODFW), and the Bonneville Power Administration (BPA) established captive broodstock programs to aid in the recovery of Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) listed as endangered under the U.S. Endangered Species Act (ESA). These programs are intended to provide safety nets for Salmon and Grande Ronde River Basins spring/summer chinook salmon stocks. They also provide a basis of examining the efficacy of captive rearing and captive breeding programs as tools for recovering listed salmonid populations. In years when no or few naturally produced fish return from the sea, captive fish and their progeny can be used to maintain populations in these two Snake River Basin tributaries. The NMFS facility at Manchester, WA provides the crucial seawater environment needed to culture anadromous salmonids during the marine phase of their life cycle. At the Manchester Research Station, the fish are cultured in 6.1m diameter circular tanks housed in a fully enclosed and secure building. The tanks are supplied with seawater that has been processed to eliminate most marine pathogens. The fish are fed a commercially prepared diet and held at densities and loading rates intended to maximize fish quality. When fish begin to mature, they are transferred to ODFW or IDFG freshwater facilities in Oregon and Idaho for final maturation. The states then release the mature fish (Idaho) or their progeny (Oregon) back into their native Snake River tributary waters in restoration efforts. In FY 2003, NMFS cultured 1998, 1999, 2000, and 2001 broodyear fish at its Manchester Facility. This report addresses program activities from September 1, 2002 to August 31, 2003.

  3. Envir202b Earth, Air, Water: the Human Context Winter 2003 F. Stahr The River Dammed: Proposed Removal of the Lower Snake River Dams A Case Study

    E-Print Network [OSTI]

    Envir202b ­ Earth, Air, Water: the Human Context Winter 2003 F. Stahr The River Dammed: Proposed Removal of the Lower Snake River Dams ­ A Case Study Assignment & Schedule for Day 2 We will next work as your group will be asked to answer the following questions: 1) What changes (if any) to the dams

  4. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2007.

    SciTech Connect (OSTI)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; McMichael, Geoffrey A. [Pacific Northwest National Laboratory

    2009-08-21T23:59:59.000Z

    In 2007, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. Monthly releases of radio-tagged fish ({approx}95/month) were made from May through October and releases of 122-149/month acoustic-tagged fish per month were made from August through October. We compared the size at release of our tagged fish to that which could have been obtained at the same time from in-river, beach seine collections made by the Nez Perce Tribe. Had we relied on in-river collections to obtain our fish, we would have obtained very few in June from the free-flowing river but by late July and August over 90% of collected fish in the transition zone were large enough for tagging. Detection probabilities of radio-tagged subyearlings were generally high ranging from 0.60 (SE=0.22) to 1.0 (SE=0) in the different study reaches and months. Lower detection probabilities were observed in the confluence and upper reservoir reaches where fewer fish were detected. Detection probabilities of acoustic-tagged subyearlings were also high and ranged from 0.86 (SE=0.09) to 1.0 (SE=0) in the confluence and upper reservoir reaches during August through October. Estimates of the joint probability of migration and survival generally declined in a downstream direction for fish released from June through August. Estimates were lowest in the transition zone (the lower 7 km of the Clearwater River) for the June release and lowest in the confluence area for July and August releases. The joint probability of migration and survival in these reaches was higher for the September and October releases, and were similar to those of fish released in May. Both fish weight and length at tagging were significantly correlated with the joint probability of migrating and surviving for both radio-tagged and acoustic-tagged fish. For both tag types, fish that were heavier at tagging had a higher probability of successfully passing through the confluence (P=0.0050 for radio-tagged fish; P=0.0038 for acoustic-tagged fish). Radio-tagged fish with greater weight at tagging also had a higher probability of migrating and surviving through both the lower free-flowing reach (P=0.0497) and the transition zone (P=0.0007). Downstream movement rates of radio-tagged subyearlings were highest in free-flowing reaches in every month and decreased considerably with impoundment. Movement rates were slowest in the transition zone for the June and August release groups, and in the confluence reach for the July release group. For acoustic-tagged subyearlings, the slowest movement rates through the confluence and upper reservoir reaches were observed for the September release group. Radio-tagged fish released in August showed the greatest delay in the transition zone, while acoustic-tagged fish released in September showed the greatest delay in the transition zone and confluence reaches. Across the monthly release groups from July through September, the probability of delaying in the transition zone and surviving there declined throughout the study. All monthly release groups of radio-tagged subyearlings showed evidence of mortality within the transition zone, with final estimates (across the full 45-d detection period) ranging from 0.12 (SE not available) for the May release group to 0.58 (SE = 0.06) for the June release group. The May and September release groups tended to have lower mortality in the transition zone than the June, July, and August release groups. Live fish were primarily detected away from shore in the channel, whereas all dead fish were located along shorelines with most being located in the vicinity of the Memorial Bridge and immediately upstream. During the May detection period, before the implementation of summer flow augmentation, temperatures in the Clearwater River and Snake River arms of Lower Granite Reservoir and the downstream boundary of the confluence ranged from 8 to 17 C. During the June-August detection periods, however, temperatures in

  5. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    SciTech Connect (OSTI)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01T23:59:59.000Z

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  6. Floristic study of the Upper Frio River, Texas 

    E-Print Network [OSTI]

    Swihart, Theresa Irene

    2006-08-16T23:59:59.000Z

    Vascular plant collections and field data compiled during a one and a half year period for the upper Frio River, Texas, produced a flora that comprises 78 families, 223 genera and 319 species. Vascular plants were collected ...

  7. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    SciTech Connect (OSTI)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy (Idaho Department of Fish and Game, Boise, ID)

    2006-05-01T23:59:59.000Z

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred to Eagle Fish Hatchery on September 14, 2004 and later incorporated into hatchery spawn matrices. Nine anadromous females, 102 captive females from brood year 2001, and one captive female from brood year 2000 broodstock groups were spawned at the Eagle Hatchery in 2004. Spawn pairings produced approximately 140,823 eyed-eggs with egg survival to eyed stage of development averaging 72.8%. Eyed-eggs (49,134), presmolts (130,716), smolts (96), and adults (241) were planted or released into Sawtooth Valley waters in 2004. Reintroduction strategies involved releases to Redfish Lake, Alturas Lake, and Pettit Lake. During this reporting period, five broodstocks and five unique production groups were in culture at Idaho Department of Fish and Game (Eagle Fish Hatchery and Sawtooth Fish Hatchery) and Oregon Department of Fish and Wildlife (Oxbow Fish Hatchery) facilities. Two of the five broodstocks were incorporated into the 2004 spawning design.

  8. Factors influencing the road mortality of snakes on the Upper Snake River Plain, Idaho

    E-Print Network [OSTI]

    Jochimsen, Denim M.

    2005-01-01T23:59:59.000Z

    education throughout the Palouse region. Her educationcenter planner for the Palouse Clearwater Environmental

  9. Population dynamics of the Concho water snake

    E-Print Network [OSTI]

    Mueller, James Michael

    1990-01-01T23:59:59.000Z

    on the Colorado River, Texas 24 14 Model A' estimates and standard errors for the 1987 age class of a Concho water snake population at the lower Elm Creek study site, near Ballinger, Texas. 25 15 Model A' estimates and standard errors for the 1988 age class... of a Concha water snake population at the lower Elm Creek study site, near Ballinger, Texas. 25 16 Jolly-Seber estimates and standard errors for the 1988 age class of a Concha water snake population at the upper Elm Creek study site, near Ballinger...

  10. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-03-01T23:59:59.000Z

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  11. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    SciTech Connect (OSTI)

    Faulkner, James R.; Smith, Steven G.; Muir, William D. [Northwest Fisheries Science Center

    2009-06-23T23:59:59.000Z

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here. Survival and detection probabilities were estimated precisely for most of the 2008 yearling Chinook salmon and steelhead migrations. Hatchery and wild fish were combined in some of the analyses. For yearling Chinook salmon, overall percentages for combined release groups used in survival analyses in the Snake River were 80% hatchery-reared and 20% wild. For steelhead, the overall percentages were 65% hatchery-reared and 35% wild. Estimated survival from the tailrace of Lower Granite Dam to the tailrace of Little Goose Dam averaged 0.939 for yearling Chinook salmon and 0.935 for steelhead.

  12. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1998 Annual Report.

    SciTech Connect (OSTI)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2002-03-01T23:59:59.000Z

    In 1998 white sturgeon (Acipenser transmontanus) were captured, marked, and population data were collected in the Snake River between Lower Granite Dam and the mouth of the Salmon River. A total of 13,785 hours of setline effort and 389 hours of hook-and-line effort was employed in 1998. Of the 278 white sturgeon captured in the Snake River, 238 were marked for future identification. Three sturgeon were captured in the Salmon River and none were captured in the Clearwater River. Since 1997, 6.9% of the tagged fish have been recovered. Movement of recaptured white sturgeon ranged from 98.5 kilometers downstream to 60.7 kilometers upstream, however, less than 25% of the fish moved more than 16 kilometers (10 miles). In the Snake River, white sturgeon ranged in total length from 51.5 cm to 286 cm and averaged 118.9 cm. Differences were detected in the length frequency distributions of sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). In addition, the proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 37% since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir were slightly larger than white sturgeon in the free-flowing Snake River.

  13. Recommendations for Amendments--Mainstem Columbia/Snake Rivers Elements of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program

    E-Print Network [OSTI]

    to operate the FCRPS to maximize energy revenue so Bonneville can pay its nuclear power plant gambling debtsRecommendations for Amendments--Mainstem Columbia/Snake Rivers Elements of the Northwest Power to the Northwest Power Planning Council's March 14, 2001 request for recommended amendments to the mainstem

  14. Snake River Sockeye Salmon Captive Broodstock Program : Hatchery Element : Annual Progress Report, 2000.

    SciTech Connect (OSTI)

    Kline, Paul A.; Willard, Catherine

    2001-04-01T23:59:59.000Z

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 2000 and December 31, 2000 are presented in this report.

  15. E.2. Electronic Appendix -Food Web Elements of the Fraser River Upper River (above rkm 210)

    E-Print Network [OSTI]

    1 E.2. Electronic Appendix - Food Web Elements of the Fraser River Basin Upper River (above rkm 210) Food webs: Microbenthic algae (periphyton), detritus from riparian vegetation and littoral insects tributaries. Collector-gatherers (invertebrates feeding on fine particulate organic material) are the most

  16. Floristic study of the Upper Frio River, Texas

    E-Print Network [OSTI]

    Swihart, Theresa Irene

    2006-08-16T23:59:59.000Z

    of the floras of North Central Texas, Madison County, Robertson County and the La Copita Research Area. A total of 9 species endemic to Texas were collected along the upper Frio River. Throughout the northern portion of the study area there is exposed bedrock...

  17. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2005 Annual Report.

    SciTech Connect (OSTI)

    Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.; Rocklage, S.J.; Groves, P.A.

    2006-10-01T23:59:59.000Z

    Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2005; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U.S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2005 was funded by the Bonneville Power Administration and Idaho Power Company.

  18. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2007 Annual Report.

    SciTech Connect (OSTI)

    Garcia, A.P.; Bradbury, S. [U.S. Fish and Wildlife Service; Arnsberg, B.D. [Nez Perce Tribe; Groves, P.A. [Idaho Power Company

    2008-11-25T23:59:59.000Z

    Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2007; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches counted upstream of Lower Granite Dam into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2007 was funded by the Bonneville Power Administration and Idaho Power Company.

  19. Impacts of the Snake River drawdown experiment on fisheries resources in Little Goose and Lower Granite Reservoirs, 1992

    SciTech Connect (OSTI)

    Dauble, D D; Geist, D R

    1992-09-01T23:59:59.000Z

    In March 1992, the US Army Corps of Engineers initiated a test to help evaluate physical and environmental impacts resulting from the proposed future drawdown of Snake River reservoirs. Drawdown would reduce water levels in Snake River reservoirs and is being proposed as a solution to decrease the time it takes for salmon and steelhead smolts to migrate to the ocean. The Pacific Northwest Laboratory evaluated impacts to specific fisheries resources during the drawdown experiment by surveying Lower Granite Reservoir to determine if fall chinook salmon (Oncorhynchus tshawytscha) spawning areas and steelhead (0. mykiss) access to tributary creeks were affected. In addition, shoreline areas of Little Goose Reservoir were monitored to evaluate the suitability of these areas for spawning by fall chinook salmon. Relative abundance of fish species in nearshore areas was also determined during the drawdown, and stranded resident fish and other aquatic organisms were observed.

  20. CHEMICAL AND HYDROLOGIC DATA FROM THE CEMENT CREEK AND UPPER ANIMAS RIVER CONFLUENCE AND

    E-Print Network [OSTI]

    CHEMICAL AND HYDROLOGIC DATA FROM THE CEMENT CREEK AND UPPER ANIMAS RIVER CONFLUENCE AND MIXING.S. Geological Survey #12;CHEMICAL AND HYDROLOGIC DATA FROM THE CEMENT CREEK AND UPPER ANIMAS RIVER CONFLUENCE.H., Schemel, L.E., 2007, Chemical and hydrologic data form the Cement Creek and upper Animas River confluence

  1. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Rien, Thomas A.; Hughes, Michele L.; Kern, J. Chris (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2006-03-01T23:59:59.000Z

    We report on our progress from April 2004 through March 2005 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  2. White Sturgeon Mitgation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Rein, Thomas A.; Hughes, Michele L.; Kern, J. Chris (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2005-08-01T23:59:59.000Z

    We report on our progress from April 2003 through March 2004 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  3. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    SciTech Connect (OSTI)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01T23:59:59.000Z

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  4. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    SciTech Connect (OSTI)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01T23:59:59.000Z

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat, and exacerbating adverse water quality conditions. A reduction in carry over can lead to seasonal reductions in instream flows, which may also negatively affect fish, wildlife, and recreation in Idaho. The Idaho Water Rental Pilot Project does provide opportunities to protect and enhance resident fish and wildlife habitat by improving water quality and instream flows. Control of point sources, such as sewage and industrial discharges, alone will not achieve water quality goals in Idaho reservoirs and streams. Slow, continuous releases of rented water can increase and stabilize instream flows, increase available fish and wildlife habitat, decrease fish displacement, and improve water quality. Island integrity, requisite for waterfowl protection from mainland predators, can be maintained with improved timing of water releases. Rebuilding Snake River salmon and steelhead runs requires a cooperative commitment and increased flexibility in system operations to increase flow velocities for fish passage and migration. Idaho's resident fish and wildlife resources require judicious management and a willingness by all parties to liberate water supplies equitably.

  5. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    SciTech Connect (OSTI)

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

    2014-02-01T23:59:59.000Z

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

  6. Effects of Marine Mammals on Columbia River Salmon Listed under the Endangered Species Act : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 3 of 11.

    SciTech Connect (OSTI)

    Park, Donn L.

    1993-06-01T23:59:59.000Z

    Most research on the Columbia and Snake Rivers in recent years has been directed to downstream migrant salmon (Oncorhynchus spp.) losses at dams. Comparatively little attentions has been given to adult losses. Recently an estimated 378,4000 adult salmon and steelhead (O. mykiss) were unaccounted-for from Bonneville Dam to terminal areas upstream. It is now apparent that some of this loss was due to delayed mortality from wounded by marine mammals. This report reviews the recent literature to define predatory effects of marine mammals on Columbia River salmon.

  7. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008

    SciTech Connect (OSTI)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E. [Fish Ecology Division, Northwest Fisheries Science Center

    2009-07-09T23:59:59.000Z

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008 are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m2) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.

  8. Cooperator Report: Habitat Requirements of Steelhead in the Upper Salinas River

    E-Print Network [OSTI]

    Thompson, Lisa C.

    Cooperator Report: Habitat Requirements of Steelhead in the Upper Salinas River Watershed Jenna L the abundance, distribution, and habitat requirements of steelhead in the upper Salinas River watershed. We, and reproduce (Thompson & Larsen 2004). The Salinas River and its tributaries have been designated

  9. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2000 Annual Report.

    SciTech Connect (OSTI)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fishereis Resource Management, Lapwai, ID)

    2003-03-01T23:59:59.000Z

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2000 annual report covers the fourth year of sampling of this multi-year study. In 2000 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 53,277 hours of setline effort and 630 hours of hook-and-line effort was employed in 2000. A total of 538 white sturgeon were captured and tagged in the Snake River and 25 in the Salmon River. Since 1997, 32.8 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 48 cm to 271 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 103 cm to 227 cm and averaged 163 cm. Using the Jolly-Seber open population estimator, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,725 fish, with a 95% confidence interval of 1,668-5,783. A total of 10 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 54.7 km (34 miles) downstream to 78.8 km (49 miles) upstream; however, 43.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 31 percent since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir had a higher relative weight factor than white sturgeon in the free-flowing Snake River. A von Bertalanffy growth curve was fitted to 138 aged white sturgeon. The results suggests fish are currently growing faster than fish historically inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate mats were used to document white sturgeon spawning. A total of 34 white sturgeon eggs were recovered: 27 in the Snake River, and seven in the Salmon River.

  10. Post-Release Performance of Natural and Hatchery Subyearling Fall Chinook Salmon in the Snake and Clearwater Rivers.

    SciTech Connect (OSTI)

    Connor, William P.

    2008-04-01T23:59:59.000Z

    In 2006, we continued a multi-year study to compare smolt-to-adult return rate (SAR) ratios between two groups of Snake River Basin fall Chinook salmon Oncorhynchus tshawytscha that reached the sea through a combination of either (1) transportation and inriver migration or (2) bypass and inriver migration. We captured natural subyearlings rearing along the Snake and Clearwater rivers and implanted them with passive integrated transponder (PIT) tags, but knew in advance that sample sizes of natural fish would not be large enough for precise comparisons of SAR ratios. To increase sample sizes, we also cultured Lyons Ferry Hatchery subyearlings under a surrogate rearing strategy, implanted them with PIT tags, and released them into the Snake and Clearwater rivers to migrate seaward. The surrogate rearing strategy involved slowing growth at Dworshak National Fish Hatchery to match natural subyearlings in size at release as closely as possible, while insuring that all of the surrogate subyearlings were large enough for tagging (i.e., 60-mm fork length). Surrogate subyearlings were released from late May to early July 2006 to coincide with the historical period of peak beach seine catch of natural parr in the Snake and Clearwater rivers. We also PIT tagged a large representative sample of hatchery subyearlings reared under a production rearing strategy and released them into the Snake and Clearwater rivers in 2006 as part of new research on dam passage experiences (i.e., transported from a dam, dam passage via bypass, dam passage via turbine intakes or spillways). The production rearing strategy involved accelerating growth at Lyons Ferry Hatchery, sometimes followed by a few weeks of acclimation at sites along the Snake and Clearwater rivers before release from May to June. Releasing production subyearlings has been suggested as a possible alternative for making inferences on the natural population if surrogate fish were not available. Smoltto-adult return rates are not reported here, but will be presented in future reports written after workshops and input by federal, state, and tribal researchers. In this report, we compared the postrelease performance of natural subyearlings to the postrelease performance of surrogate and production subyearlings. We made this comparison to help the fisheries community determine which of the two hatchery rearing strategies produced fish that were more similar to natural subyearlings. We compared the following attributes of postrelease performance (1) detection dates at dams, (2) detections during the implementation of summer spill, (3) travel times, (4) migrant sizes, and (5) the joint probability of migration and survival. Overall, we found that postrelease performance was more similar between natural and surrogate subyearlings than between natural and production subyearlings. Further, the similarity between natural and surrogate subyearlings was greater in 2006 than in 2005, partly as the result of changes in incubation and early rearing practices we recommended based on 2005 results.

  11. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2001 Annual Report.

    SciTech Connect (OSTI)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2003-03-01T23:59:59.000Z

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2001 annual report covers the fifth year of sampling of this multi-year study. In 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 45,907 hours of setline effort and 186 hours of hook-and-line effort was employed in 2001. A total of 390 white sturgeon were captured and tagged in the Snake River and 12 in the Salmon River. Since 1997, 36.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 42 cm to 307 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 66 cm to 235 cm and averaged 160 cm. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. An additional 10 white sturgeon were fitted with radio-tags during 2001. The locations of 17 radio-tagged white sturgeon were monitored in 2001. The movement of these fish ranged from 38.6 km (24 miles) downstream to 54.7 km (34 miles) upstream; however, 62.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 30 percent since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir had a higher relative weight factor than white sturgeon in the free-flowing Snake River. A von Bertalanffy growth curve was fitted to 309 aged white sturgeon. The results suggest fish are currently growing faster than fish historically inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate mats were used to document white sturgeon spawning. A total of 14 white sturgeon eggs were recovered in the Snake River in 2001.

  12. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1997 Annual Report.

    SciTech Connect (OSTI)

    Kline, Paul A.; Heindel, Jeff A.; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

    2003-08-01T23:59:59.000Z

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1997 and December 31, 1997 are presented in this report. One hundred twenty-six female sockeye salmon from one captive broodstock group were spawned at the Eagle Fish Hatchery in 1997. Successful spawn pairings produced approximately 148,781 eyed-eggs with a cumulative mean survival to eyed-egg rate of 57.3%. Approximately 361,600 sockeye salmon were released to Sawtooth basin waters in 1997. Reintroduction strategies included eyed-eggs (brood year 1997), presmolts (brood year 1996), and prespawn adults for volitional spawning (brood year 1994). Release locations included Redfish Lake, Alturas Lake, and Pettit Lake. During this reporting period, four broodstocks and two unique production groups were in culture at the Eagle Fish Hatchery. Two of the four broodstocks were incorporated into the 1997 spawning design, and one broodstock was terminated following the completion of spawning.

  13. Long-term, One-dimensional Simulation of Lower Snake River Temperatures for Current and Unimpounded Conditions

    SciTech Connect (OSTI)

    Perkins, William A.; Richmond, Marshall C.

    2001-02-15T23:59:59.000Z

    The objective of the study was to compare water temperatures in the Lower Snake River for current (impounded) and unimpounded conditions using a mathematical model of the river system. A long-term analysis was performed using the MASS1 one-dimensional (1D) hydrodynamic and water quality model. The analysis used historical flows and meteorological conditions for a 35-year period spanning between 1960 and 1995. Frequency analysis was performed on the model results to calculate river temperatures at various percent of time exceeded levels. Results were are also analyzed to compute the time when, during the year, water temperatures rose above or fell below various temperature levels. The long-term analysis showed that the primary difference between the current and unimpounded river scenarios is that the reservoirs decrease the water temperature variability. The reservoirs also create a thermal inertia effect which tends to keep water cooler later into the spring and warmer later into the fall compared to the unimpounded river condition. Given the uncertainties in the simulation model, inflow temperatures, and meteorological conditions the results show only relatively small differences between current and unimpounded absolute river temperatures.

  14. Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.

    SciTech Connect (OSTI)

    Cramer, Steven P.; Neeley, Doug

    1993-06-01T23:59:59.000Z

    We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model to estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.

  15. Determining Columbia and Snake River Project Tailrace and Forebay Zones of Hydraulic Influence using MASS2 Modeling

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

    2010-12-01T23:59:59.000Z

    Although fisheries biology studies are frequently performed at US Army Corps of Engineers (USACE) projects along the Columbia and Snake Rivers, there is currently no consistent definition of the ``forebay'' and ``tailrace'' regions for these studies. At this time, each study may use somewhat arbitrary lines (e.g., the Boat Restriction Zone) to define the upstream and downstream limits of the study, which may be significantly different at each project. Fisheries researchers are interested in establishing a consistent definition of project forebay and tailrace regions for the hydroelectric projects on the lower Columbia and Snake rivers. The Hydraulic Extent of a project was defined by USACE (Brad Eppard, USACE-CENWP) as follows: The river reach directly upstream (forebay) and downstream (tailrace) of a project that is influenced by the normal range of dam operations. Outside this reach, for a particular river discharge, changes in dam operations cannot be detected by hydraulic measurement. The purpose of this study was to, in consultation with USACE and regional representatives, develop and apply a consistent set of criteria for determining the hydraulic extent of each of the projects in the lower Columbia and Snake rivers. A 2D depth-averaged river model, MASS2, was applied to the Snake and Columbia Rivers. New computational meshes were developed most reaches and the underlying bathymetric data updated to the most current survey data. The computational meshes resolved each spillway bay and turbine unit at each project and extended from project to project. MASS2 was run for a range of total river flows and each flow for a range of project operations at each project. The modeled flow was analyzed to determine the range of velocity magnitude differences and the range of flow direction differences at each location in the computational mesh for each total river flow. Maps of the differences in flow direction and velocity magnitude were created. USACE fishery biologists requested data analysis to determine the project hydraulic extent based on the following criteria: 1) For areas where the mean velocities are less than 4 ft/s, the water velocity differences between operations are not greater than 0.5 ft/sec and /or the differences in water flow direction are not greater than 10 degrees, 2) If mean water velocity is 4.0 ft/second or greater the boundary is determined using the differences in water flow direction (i.e., not greater than 10 degrees). Based on these criteria, and excluding areas with a mean velocity of less than 0.1 ft/s (within the error of the model), a final set of graphics were developed that included data from all flows and all operations. Although each hydroelectric project has a different physical setting, there were some common results. The downstream hydraulic extent tended to be greater than the hydraulic extent in the forebay. The hydraulic extent of the projects tended to be larger at the mid-range flows. At higher flows, the channel geometry tends to reduce the impact of project operations.

  16. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    SciTech Connect (OSTI)

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01T23:59:59.000Z

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal.

  17. Evaluate Potenial Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2002 Annual Report.

    SciTech Connect (OSTI)

    Everett, Scott R.; Tuell, Michael A.; Hesse, Jay A. (Nez Perce Tribe, Department of Fisheries Management, Lapwai, ID)

    2004-02-01T23:59:59.000Z

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This report presents a summary of results from the 1997-2002 Phase II data collection and represents the end of phase II. From 1997 to 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon. A total of 1,785 white sturgeon were captured and tagged in the Snake River and 77 in the Salmon River. Since 1997, 25.8 percent of the tagged white sturgeon have been recaptured. Relative density of white sturgeon was highest in the free-flowing segment of the Snake River, with reduced densities of fish in Lower Granite Reservoir, and low densities the Salmon River. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir, the free-flowing Snake River and the Salmon River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 30 percent since the 1970's. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. Total annual mortality rate was estimated to be 0.14 (95% confidence interval of 0.12 to 0.17). A total of 35 white sturgeon were fitted with radio-tags during 1999-2002. The movement of these fish ranged from 53 km (33 miles) downstream to 77 km (48 miles) upstream; however, 38.8 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir had a higher relative weight factor than white sturgeon in the free-flowing Snake River. The results suggest fish are currently growing faster than fish historically inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate egg mats documented white sturgeon spawning in four consecutive years. A total of 49 white sturgeon eggs were recovered in the Snake River from 1999-2002, and seven from the Salmon River during 2000.

  18. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Smith, Steven G.; Muir, William D.; Marsh, Douglas M. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2006-05-01T23:59:59.000Z

    In 2005, the National Marine Fisheries Service and the University of Washington completed the thirteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 18,439 hatchery steelhead, 5,315 wild steelhead, and 6,964 wild yearling Chinook salmon at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the ''single-release model''). Primary research objectives in 2005 were: (1) Estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon O. tshawytscha and steelhead O. mykiss. (2) Evaluate relationships between survival estimates and migration conditions. (3) Evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2005 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here.

  19. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Smith, Steven G.; Muir, William D.; Marsh, Douglas M. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2005-10-01T23:59:59.000Z

    In 2004, the National Marine Fisheries Service and the University of Washington completed the twelfth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder tags (PIT tags). We PIT tagged and released a total of 19,621 hatchery steelhead, 8,128 wild steelhead, and 9,227 wild yearling Chinook salmon at Lower Granite Dam. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2004 were to (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon O. tshawytscha and steelhead O. mykiss; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2004 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures; details on methodology and statistical models used are provided in previous reports cited here. Survival and detection probabilities were estimated precisely for most of the 2004 yearling Chinook salmon and steelhead migrations. Hatchery and wild fish were combined in some of the analyses. Overall, the percentages for combined release groups used in survival analyses were 68% hatchery-reared yearling Chinook salmon and 32% wild. For steelhead, the overall percentages were 73% hatchery-reared and 27% wild. Estimated survival from the tailrace of Lower Granite Dam to the tailrace of Little Goose Dam averaged 0.923 for yearling Chinook salmon and 0.860 for steelhead. Respective average survival estimates for yearling Chinook salmon and steelhead were 0.875 and 0.820 from Little Goose Dam tailrace to Lower Monumental Dam tailrace; 0.818 and 0.519 from Lower Monumental Dam tailrace to McNary Dam tailrace (including passage through Ice Harbor Dam); and 0.809 and 0.465 from McNary Dam tailrace to John Day Dam tailrace. Survival for yearling Chinook salmon from John Day Dam tailrace to Bonneville Dam tailrace (including passage through The Dalles Dam) was 0.735. We were unable to estimate survival through this reach for steelhead during 2004 because too few fish were detected at Bonneville Dam due to operation of the new corner collector at the second powerhouse. Combining average estimates from the Snake River smolt trap to Lower Granite Dam, from Lower Granite Dam to McNary Dam, and from McNary Dam to Bonneville Dam, estimated annual average survival through the entire hydropower system from the head of Lower Granite reservoir to the tailrace of Bonneville Dam (eight projects) was 0.353 (s.e. 0.045) for Snake River yearling Chinook salmon. We could not empirically estimate survival through the entire system for steelhead in 2004 because of low detection rates for this species at Bonneville Dam. For yearling spring Chinook salmon released in the Upper Columbia River, estimated survival from point of release to McNary Dam tailrace was 0.484 (s.e. 0.005) for fish released from Leavenworth Hatchery, 0.748 (s.e. 0.015) for fish released from Entiat Hatchery, 0.738 (s.e. 0.036) for fish released from Winthrop Hatchery, and 0.702 (s.e. 0.048) and 0.747 (s.e.0.047) for those from Methow Hatchery, Chewuch Pond and

  20. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1999 Annual Report.

    SciTech Connect (OSTI)

    Tuell, Michael A.; Everett, Scott R. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2003-03-01T23:59:59.000Z

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 1999 annual report covers the third year of sampling of this multi-year study. In 1999 white sturgeon were captured, marked and population data were collected in the Snake and Salmon rivers. A total of 33,943 hours of setline effort and 2,112 hours of hook-and-line effort was employed in 1999. A total of 289 white sturgeon were captured and tagged in the Snake River and 29 in the Salmon River. Since 1997, 11.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 27 cm to 261 cm and averaged 110 cm. In the Salmon River, white sturgeon ranged in total length from 98 cm to 244 cm and averaged 183.5 cm. Using the Jolly-Seber model, the abundance of white sturgeon < 60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 1,823 fish, with a 95% confidence interval of 1,052-4,221. A total of 15 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 6.4 km (4 miles) downstream to 13.7 km (8.5 miles) upstream; however, 83.6 percent of the detected movement was less than 0.8 kilometers (0.5 miles). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 29 percent since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir were slightly larger than white sturgeon in the free-flowing Snake River. A von Bertalanffy growth curve was fitted to 49 aged white sturgeon. The results suggests the fish are currently growing faster than fish historicly inhabiting the study area, as well as other Columbia River basin white sturgeon populations. Artificial substrate mats were used to document white sturgeon spawning. Five white sturgeon eggs were recovered in the Snake River.

  1. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    SciTech Connect (OSTI)

    Spaulding, Scott

    1993-05-01T23:59:59.000Z

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.

  2. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Kern, J. Chris; Ward, David L.; Farr, Ruth A. (Oregon Department of Fish and Wildlife)

    2002-02-01T23:59:59.000Z

    We report on our progress from April 2000 through March 2001 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), the U.S. Fish and Wildlife Service (USFWS; Report E), and Oregon State University (OSU; Report F). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 2000 through March 2001 are listed.

  3. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    SciTech Connect (OSTI)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

    2007-11-13T23:59:59.000Z

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat suitability criteria to measured and modeled habitat data from the Snake River study areas. Channel morphology data from the Wanapum reference reach and the Snake River study areas were evaluated to identify geomorphically suitable fall Chinook salmon spawning habitat. The results of this study indicate that a majority of the Ice Harbor and Lower Granite study areas contain suitable fall Chinook salmon spawning habitat under existing hydrosystem operations. However, a large majority of the currently available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study areas is of low quality. The potential for increasing, through modifications to hydrosystem operations (i.e., minimum pool elevation of the next downstream dam), the quantity or quality of fall Chinook salmon spawning habitat appears to be limited. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Ice Harbor study area decreased as the McNary Dam forebay elevation was lowered from normal to minimum pool elevation. Estimates of the amount of potential fall Chinook salmon spawning habitat in the Lower Granite study area increased as the Little Goose Dam forebay elevation was lowered from normal to minimum pool elevation; however, 97% of the available habitat was categorized within the range of lowest quality. In both the Ice Harbor and Lower Granite study areas, water velocity appears to be more of a limiting factor than water depth for fall Chinook salmon spawning habitat, with both study areas dominated by low-magnitude water velocity. The geomorphic suitability of both study areas appears to be compromised for fall Chinook salmon spawning habitat, with the Ice Harbor study area lacking significant bedforms along the longitudinal thalweg profile and the Lower Granite study area lacking cross-sectional topographic diversity. To increase the quantity of available fall Chinook salmon spawning habitat in the Ice Harbor and Lower Granite study area, modifications to hydroelectric dam operations beyond those evaluated in this study likely would be necessary. M

  4. Metals in fish from the Upper Benue River and lakes Geriyo and Njuwa in northeastern Nigeria

    SciTech Connect (OSTI)

    Eromosele, C.O.; Eromosele, I.C.; Muktar, S.L.M.; Birdling, S.A. [Federal Univ. of Technology, Yola (Nigeria)

    1995-01-01T23:59:59.000Z

    Lakes Geriyo and Njuwa occupy natural depressions near the upper Benue River in northeastern Nigeria. The lakes are flooded by the river during the rainy season spanning the months of May to September. Fishing activities on the lakes and river provide fish for consumption by the local communities. Industrial activity around the upper Benue River and the lakes is low and there is no information on other activities with the potential for polluting the Benue River as it flows from neighboring Cameroon. However, an unconfirmed report indicated high levels of lead in the upper Benue River, generally speculated as arising from biogeometrical factors. Trace elements, some of which are toxic, may accumulate in edible marine organisms to levels which may be deleterious to human health. For the upper Benue River and its associate lakes, Geriyo and Njuwa, there is yet no report of a systematic study to assess the levels of metals in fish found in these waters. This paper presents the results of a study on metal levels in fish collected from Lakes Geriyo and Njuwa and upper Benue River in northeastern Nigeria. 7 refs., 1 fig., 2 tabs.

  5. Demonstration Sites of Best Management Practices: A Manual for the Upper Etowah River Alliance

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    Demonstration Sites of Best Management Practices: A Manual for the Upper Etowah River Alliance and the Institute of Ecology #12;UERA BMPs Demonstation Sites Manual 2 of 2 Demonstration Sites of Best Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 iii. Best Management Practices

  6. Microsoft Word - Upper Jocko River Final Draft CX 7-15-2013.docx

    Broader source: Energy.gov (indexed) [DOE]

    Upper Jocko River Property funding Fish and Wildlife Project No. and Contract No.: 2002-003-00, BPA-007168 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021):...

  7. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River : Annual Report 1999.

    SciTech Connect (OSTI)

    Tiffan, Kenneth F.; Rondorf, Dennis W.

    2001-01-01T23:59:59.000Z

    This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dam that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.

  8. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Achond, Stephen; Hockersmith, Eric E.; Sandford, Benjamin P. (National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA)

    2003-07-01T23:59:59.000Z

    This report details the 2002 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these differences in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers. In 1991, the Bonneville Power Administration began a cooperative effort with NMFS to expand tagging and interrogation of wild fish. Project goals were to characterize the outmigration timing of these fish, to determine whether consistent migration patterns would emerge, and to investigate the influence of environmental factors on the timing and distribution of these migrations. In 1992, the Oregon Department of Fish and Wildlife (ODFW) began an independent program of PIT tagging wild chinook salmon parr in the Grande Ronde and Imnaha River Basins in northeast Oregon. Since then, ODFW has reported all tagging, detection, and timing information on fish from these streams. However, with ODFW concurrence, NMFS will continue to report arrival timing of these fish at Lower Granite Dam.

  9. FLUCTUATION IN TRAP-NET CATCHES IN THE UPPER MISSISSIPPI RIVER

    E-Print Network [OSTI]

    FLUCTUATION IN TRAP-NET CATCHES IN THE UPPER MISSISSIPPI RIVER if; Marine Biological LabofdiuryKay, Secretary Fish and Wildlife Service, Albert M. Day, Director FLUCTUATION IN TRAP NET CATCHES IN THE UPPER Gear used 3 Methods 5 Statistical considerations 5 Season trends in catch of trap nets 6 Black crappie

  10. Evaluation of a Prototype Surface Flow Bypass for Juvenile Salmon and Steelhead at the Powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    SciTech Connect (OSTI)

    Johnson, Gary E.; Anglea, Steven M.; Adams, Noah S.; Wik, Timothy O.

    2005-02-28T23:59:59.000Z

    A surface flow bypass provides a route in the upper water column for naturally, surface-oriented juvenile salmonids to safely migrate through a hydroelectric dam. Surface flow bypasses were recommended in several regional salmon recovery plans as a means to increase passage survival of juvenile salmonids at Columbia and Snake River dams. A prototype surface flow bypass, called the SBC, was retrofit on Lower Granite Dam and evaluated from 1996 to 2000 using biotelemetry and hydroacoustic techniques. In terms of passage efficiency, the best SBC configurations were a surface skimmer (99 m3/s [3,500 cfs], three entrances 5 m wide, 5 m deep and one entrance 5 m wide, 15 m deep) and a single chute (99 m3/s, one entrance 5 m wide, 8.5 m deep). They each passed 62 ? 3% (95% confidence interval) of the total juvenile fish population that entered the section of the dam with the SBC entrances (Turbine Units 4-5). Smooth entrance shape and concentrated surface flow characteristics of these configurations are worth pursuing in designs for future surface flow bypasses. In addition, a guidance wall in the Lower Granite Dam forebay diverted the following percentages of juvenile salmonids away from Turbine Units 1-3 toward other passage routes, including the SBC: run-at-large 79 ? 18%; hatchery steelhead 86%; wild steelhead 65%; and yearling chinook salmon 66%. When used in combination with spill or turbine intake screens, a surface flow bypass with a guidance wall can produce a high level (> 90% of total project passage) of non-turbine passage and provide operational flexibility to fisheries managers and dam operators responsible for enhancing juvenile salmonid survival.

  11. Barge Transportation of Juvenile Salmonids on the Columbia and Snake Rivers, 1977

    E-Print Network [OSTI]

    mortality: I) Gas bubble disease caused by supersat- uration of the river with atmospheric gas, 2) passage offish through turbines, and 3) delays in migration through reservoirs (Ebel and Raymond, 1976; Collins

  12. Biological Evaluation of the Behavioral Guidance Structure at Lower Granite Dam on the Snake River, Washington in 1998

    SciTech Connect (OSTI)

    Adams, Noah (U.S. Geological Survey, Biological Resource Division); Johnson, Gary E. (BATTELLE (PACIFIC NW LAB)); Rondorf, Dennis W. (VISITORS); Anglea, Steven M. (BATTELLE (PACIFIC NW LAB)); Wik, Timothy O. (U.S. Army Corps of Engineers - Walla Walla District)

    2001-01-01T23:59:59.000Z

    In 1998 a behavioral guidance structure (BGS; a steel wall 330m long and 17-24 m deep) was installed in the forebay of Lower Granite Dam on the Snake River, Washington. The purpose of the BGS was to change the horizontal distribution of downstream migrants approaching the south half of the powerhouse by guiding them toward the surface bypass and collector attached to the dam upstream of the north half of the powerhouses. The effectiveness of the BGS was evaluated with biotelemetry and hydroacoustics. The BGS was designed to be movable, thereby allowing a comparison between the horizontal distribution of the fish when the BGS was deployed as a diversion device and when the BGS was moved 800 m upstream of the dam and no longer influenced fish movements immediately upstream of the powerhouse. Radio telemetry and hydroacoustic techniques showed that about 80% of the fish migrating toward Turbines 1-3 were successfully diverted north. Radio telemetry data revealed that the mean residence times of chinook salmon, hatchery steelhead, and wild steelhead were 1.6, 1.7, and 2.4 times longer, respectively, when the BGS was out compared to when it was in. And overall fish passage efficiency was significantly higher when the BGS was in (93.7%) than out (91.2%).

  13. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008 Report of Research.

    SciTech Connect (OSTI)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E. [Northwest Fisheries Science Center

    2009-05-26T23:59:59.000Z

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008 are listed below: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m{sup 2}) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.

  14. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Zabel, Richard; Williams, John G.; Smith, Steven G. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2002-06-01T23:59:59.000Z

    In 2001, the National Marine Fisheries Service and the University of Washington completed the ninth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from passive integrated transponder (PIT)-tagged fish. We PIT tagged and released at Lower Granite Dam a total of 17,028 hatchery and 3,550 wild steelhead. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream of the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using the Single-Release Model. Primary research objectives in 2001 were to: (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2001 for PIT-tagged yearling chinook salmon and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures with a minimum of text. More details on methodology and statistical models used are provided in previous reports cited in the text. Results for summer-migrating chinook salmon will be reported separately.

  15. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; Annual Progress Report, April 2007 - March 2008.

    SciTech Connect (OSTI)

    Mallette, Christine [Oregon Department of Fish and Wildlife

    2009-07-28T23:59:59.000Z

    We report on our progress from April 2007 through March 2008 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), Columbia River Inter-Tribal Fish Commission (CRITFC; Report C), and Montana State University (MSU; Report D). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  16. Survival of Subyearling Fall Chinook Salmon in the Free-flowing Snake River and Lower Snake River Reservoirs in 2003 and from McNary Dam Tailrace to John Day Dam Tailrace in the Columbia River from 1999 to 2002, 1999-2003 Technical Report.

    SciTech Connect (OSTI)

    Muir, William D.; Axel, Gordon A.; Smith, Steven G. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-12-01T23:59:59.000Z

    We report results from an ongoing study of survival and travel time of subyearling fall Chinook salmon in the Snake River during 2003 and in the Columbia River during 1999-2002. Earlier years of the study included serial releases of PIT-tagged hatchery subyearling Chinook salmon upstream from Lower Granite Dam, but these were discontinued in 2003. Instead, we estimated survival from a large number of PIT-tagged fish released upstream from Lower Granite Dam to evaluate transportation from Snake River Dams. During late May and early June 2003, 68,572 hatchery-reared subyearling fall Chinook salmon were PIT tagged at Lyons Ferry Hatchery, trucked upstream, acclimated, and released at Couse Creek and Pittsburg Landing in the free-flowing Snake River. We estimated survival for these fish from release to Lower Granite Dam tailrace. In comparison to wild subyearling fall Chinook salmon PIT tagged and released in the free-flowing Snake River, the hatchery fish we released traveled faster and had higher survival to Lower Granite Dam, likely because of their larger size at release. For fish left in the river to migrate we estimated survival from Lower Granite Dam tailrace to McNary Dam tailrace. Each year, a small proportion of fish released are not detected until the following spring. However, the number of fish released in 2003 that overwintered in the river and were detected as they migrated seaward as yearlings in 2004 was small (<1.0%) and had minimal effect on survival estimates. We evaluated a prototype floating PIT-tag detector deployed upstream from Lower Granite reservoir to collect data for use in partitioning travel time and survival between free-flowing and reservoir habitats. The floating detector performed poorly, detecting only 27 PIT tags in 340 h of operation from a targeted release of 68,572; far too few to partition travel time and survival between habitats. We collected river-run subyearling Chinook salmon (mostly wild fish from the Hanford Reach) at McNary Dam, PIT tagged them, and released them to the tailrace as part of an evaluation of transportation from McNary Dam in 2002. Estimated survival in 2002 from the tailrace of McNary Dam to the tailrace of John Day Dam was 0.746 (s.e. 0.036). For migration years 1999-2002, we found that in the reach from McNary to John Day Dam reach, travel time was shorter (migration rate was greater) and survival probabilities were greater when flow volume was greater. Survival was also correlated with water temperature: warmer water was associated with decreased survival, and there was an apparent survival threshold at about 19.3 C (above this temperature survival decreased substantially).

  17. Survival of Seaward-Migrating PIT and Acoustic-Tagged Juvenile Chinook Salmon in the Snake and Columbia Rivers: An Evaluation of Length-Specific Tagging Effects

    SciTech Connect (OSTI)

    Brown, Richard S.; Oldenburg, Eric W.; Seaburg, Adam; Cook, Katrina V.; Skalski, John R.; Eppard, M. B.; Deters, Katherine A.

    2013-06-12T23:59:59.000Z

    Studies examining the survival of juvenile salmon as they emigrate to the ocean provide important information regarding the management of regulated river systems. Acoustic telemetry is a widely used tool for evaluating the behavior and survival of juvenile salmonids in the Columbia River basin. Thus, it is important to understand how the surgical tagging process and the presence of a transmitter affect survival so any biases can be accounted for or eliminated. This study evaluated the effects of fish length and tag type on the survival of yearling and subyearling Chinook salmon during their seaward migrations through the Snake and Columbia rivers during 2006, 2007, and 2008. Fish were collected at Lower Granite Dam on the Snake River (river kilometer 695) and implanted with either only a passive integrated transponder (PIT) tag (PIT fish) or both a PIT tag and an acoustic transmitter (AT fish). Survival was estimated from release at Lower Granite Dam to multiple downstream locations (dams) using the Cormack–Jolly–Seber single release model, and analysis of variance was used to test for differences among length-classes and between tag types. No length-specific tag effect was detected between PIT and AT fish (i.e., length affected the survival of PIT fish in a manner similar to which it affected the survival of AT fish). Survival among the smallest length class (i.e., 80–89 mm) of both PIT and AT subyearling Chinook salmon was markedly low (i.e., 4%). Fish length was positively correlated with the survival of both PIT and AT fish. Significant differences in survival were detected between tag types; the survival of PIT fish was generally greater than that of AT fish. However, confounding variables warrant caution in making strong inferences regarding this factor. Further, results suggest that tag effects may be due to the process of surgically implanting the transmitter rather than the presence of the transmitter.

  18. Stochastic Models Applied to Operation of Reservoirs in the Upper Colorado River Basin in Texas

    E-Print Network [OSTI]

    Clark, R. A.; O'Connor, G. E.; Curry, G. L.; Helm, J. C.

    TR-47 1973 Stochastic Models Applied to Operation of Reservoirs in the Upper Colorado River Basin in Texas R.A. Clark G.E. O?Connor G.L. Curry J.C. Helm Texas Water Resources Institute Texas A...

  19. Evolution of the Upper Rhone River discharge and suspended sediment load during the last 80 years

    E-Print Network [OSTI]

    Gilli, Adrian

    Versoix, Switzerland Key words: Sediment rating curve, sediment load, dam, deep water lake. ABSTRACTEvolution of the Upper Rhone River discharge and suspended sediment load during the last 80 years in amplitude and frequency. From the available literature data, sediment rating curves have been calculated

  20. Evaluation of shrub encroachment and brush control on water availability in the Upper Guadalupe River watershed

    E-Print Network [OSTI]

    Afinowicz, Jason David

    2004-09-30T23:59:59.000Z

    ............................................................................................... 99 VITA ........................................................................................................... 102 x LIST OF FIGURES FIGURE Page 2-1 A comparison of the same area as viewed from (a) a 30-m spatial resolution..., and light brush in the Upper Guadalupe River watershed as determined by remote sensing shown by dark regions?.. ................................................................................... 21 3-1 The location and stream network...

  1. Lake Level Controlled Sedimentological I Heterogenity of Oil Shale, Upper Green River

    E-Print Network [OSTI]

    Gani, M. Royhan

    Chapter 3 Lake Level Controlled Sedimentological 1:'_i 'I I Heterogenity of Oil Shale, Upper Green email: mgani@uno.edu t",. The Green River Formation comprises the world's largest deposit of oil-shale characterization of these lacustrine oil-shale deposits in the subsurface is lacking. This study analyzed ~300 m

  2. Upper Middle Mainstem Columbia River Subbasin Focal Species Information, Red-winged Blackbird

    E-Print Network [OSTI]

    Appendix C Upper Middle Mainstem Columbia River Subbasin Focal Species Information, Red-winged Blackbird Introduction The red-winged black bird is one of the most abundant birds in North America (Marshall et al. 2003). Red-winged Blackbirds are extremely adaptable; successfully colonizing many small

  3. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    SciTech Connect (OSTI)

    L. D. Cecil; L. L. Knobel; J. R. Green (USGS); S. K. Frape (University of Waterloo)

    2000-06-01T23:59:59.000Z

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water.

  4. Factors Affecting Route Selection and Survival of Steelhead Kelts at Snake River Dams in 2012 and 2013

    SciTech Connect (OSTI)

    Harnish, Ryan A.; Colotelo, Alison HA; Li, Xinya; Ham, Kenneth D.; Deng, Zhiqun

    2014-12-15T23:59:59.000Z

    In 2012 and 2013, Pacific Northwest National Laboratory conducted a study that summarized the passage proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged-kelts. Kelts were also tagged with Passive Integrated Transponder tags to monitor passage through juvenile bypass systems and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify individual, behavioral, environmental and dam operation variables that were related to passage and survival of steelhead kelts that passed through FCRPS dams. Bayesian model averaging of multivariable logistic regression models was used to identify the environmental, temporal, operational, individual, and behavioral variables that had the highest probability of influencing the route of passage and the route-specific survival probabilities for kelts that passed Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams in 2012 and 2013. The posterior probabilities of the best models for predicting route of passage ranged from 0.106 for traditional spill at LMN to 0.720 for turbine passage at LGS. Generally, the behavior (depth and near-dam searching activity) of kelts in the forebay appeared to have the greatest influence on their route of passage. Shallower-migrating kelts had a higher probability of passing via the weir and deeper-migrating kelts had a higher probability of passing via the JBS and turbines than other routes. Kelts that displayed a higher level of near-dam searching activity had a higher probability of passing via the spillway weir and those that did less near-dam searching had a higher probability of passing via the JBS and turbines. The side of the river in which kelts approached the dam and dam operations also affected route of passage. Dam operations and the size and condition of kelts were found to have the greatest effect on route-specific survival probabilities for fish that passed via the spillway at LGS. That is, longer kelts and those in fair condition had a lower probability of survival for fish that passed via the spillway weir. The survival of spillway weir- and deep-spill passed kelts was positively correlated with the percent of the total discharge that passed through turbine unit 4. Too few kelts passed through the traditional spill, JBS, and turbine units to evaluate survival through these routes. The information gathered in this study describes Snake River steelhead kelt passage behavior, rates, and distributions through the FCRPS as well as provide information to biologists and engineers about the dam operations and abiotic conditions that are related to passage and survival of steelhead kelts.

  5. Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study

    SciTech Connect (OSTI)

    McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Dolloff, Dr. Charles A [USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech; Mathews, David C [Tennessee Valley Authority (TVA)

    2013-01-01T23:59:59.000Z

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.

  6. EFFECT OF CLIMATE CHANGE ON WATERSHED RUNOFF FLOW - UPPER COOSA RIVER BASIN UPSTREAM FROM PLANT HAMMOND

    SciTech Connect (OSTI)

    Chen, K.

    2011-10-24T23:59:59.000Z

    The ability of water managers to maintain adequate supplies in the coming decades depends on future weather conditions, as climate change has the potential to reduce stream flows from their current values due to potentially less precipitation and higher temperatures, and possibly rendering them unable to meet demand. The upper Coosa River basin, located in northwest Georgia, plays an important role in supplying water for industry and domestic use in northern Georgia, and has been involved in water disputes in recent times. The seven-day ten-year low flow (7Q10 flow) is the lowest average flow for seven consecutive days that has an average recurrence interval of 10 years. The 7Q10 flow is statistically derived from the observed historical flow data, and represents the low flow (drought) condition for a basin. The upper Coosa River basin also supplies cooling water for the 935MW coal-fired Hammond plant, which draws about 65% of the 7Q10 flow of the upper Coosa River to dissipate waste heat. The water is drawn through once and returned to the river directly from the generator (i.e., no cooling tower is used). Record low flows in 2007 led to use of portable cooling towers to meet temperature limits. Disruption of the Plant Hammond operation may trigger closure of area industrial facilities (e.g. paper mill). The population in Georgia is expected to double from 9 million to 18 million residents in the next 25 years, mostly in the metropolitan Atlanta area. Therefore, there will be an even greater demand for potable water and for waste assimilation. Climate change in the form of persistent droughts (causing low flows) and high ambient temperatures create regulatory compliance challenges for Plant Hammond operating with a once-through cooling system. Therefore, the Upper Coosa River basin was selected to study the effect of potential future weather change on the watershed runoff flow.

  7. Insect community structure and function in Upper Three Runs, Savannah River Site, South Carolina

    SciTech Connect (OSTI)

    Morse, J.C.; English, W.R. [Clemson Univ., SC (United States). Dept. of Entomology; Looney, B.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-07-08T23:59:59.000Z

    A project to document the insect species in the upper reaches of Upper Three Runs at the Savannah River site was recently completed. This research was supported by the US Department of Energy under the National Environmental Research Park Program. The work was performed by the Department of Entomology at Clemson University in clemson, SC, by John C. Morse (principal investigator), William R. English and their colleagues. The major output from this study was the dissertation of Dr. William R. English entitled ``Ecosystem Dynamics of a South Carolina Sandhills Stream.`` He investigated selected environmental resources and determined their dynamics and the dynamics of the aquatic invertebrate community structure in response to them.

  8. Technical Review of Lower Snake River Juvenile Salmon Migration Feasibility Report / Environmental Impact Statement Appendix I Economics

    E-Print Network [OSTI]

    in and interpretation of the EA. 3.1 Power System Impacts The effects on electricity generation and its costs are in those areas. · According to BPA, the lower Snake dams provide voltage control or reactive power. · There are two potential problems in the electricity reserves analysis. The first is the valuation of lost

  9. Numerically Simulating the Hydrodynamic and Water Quality Environment for Migrating Salmon in the Lower Snake River, 2002-2003 Technical Report.

    SciTech Connect (OSTI)

    Cook, C.; Richmond, M.; Coleman, A. (Pacific Northwest National Laboratory)

    2003-06-01T23:59:59.000Z

    Summer temperatures in the Lower Snake River can be altered by releasing cold waters that originate from deep depths within Dworshak Reservoir. These cold releases are used to lower temperatures in the Clearwater and Lower Snake Rivers and to improve hydrodynamic and water quality conditions for migrating aquatic species. This project monitored the complex three-dimensional hydrodynamic and thermal conditions at the Clearwater and Snake River confluence and the processes that led to stratification of Lower Granite Reservoir (LGR) during the late spring, summer, and fall of 2002. Hydrodynamic, water quality, and meteorological conditions around the reservoir were monitored at frequent intervals, and this effort is continuing in 2003. Monitoring of the reservoir is a multi-year endeavor, and this report spans only the first year of data collection. In addition to monitoring the LGR environment, a three-dimensional hydrodynamic and water quality model has been applied. This model uses field data as boundary conditions and has been applied to the entire 2002 field season. Numerous data collection sites were within the model domain and serve as both calibration and validation locations for the numerical model. Errors between observed and simulated data varied in magnitude from location to location and from one time to another. Generally, errors were small and within expected ranges, although, as additional 2003 field data becomes available, model parameters may be improved to minimize differences between observed and simulated values. A two-dimensional, laterally-averaged hydrodynamic and water quality model was applied to the three reservoirs downstream of LGR (the pools behind Little Goose, Lower Monumental, and Ice Harbor Dams). A two-dimensional model is appropriate for these reservoirs because observed lateral thermal variations during summer and fall 2002 were almost negligible; however, vertical thermal variations were quite large (see USACE 2003). The numerical model was applied to each reservoir independently to simulate the time period between May 1 and October 1, 2002. Differences between observed and simulated data were small, although improvements to model coefficients may be performed as additional thermal data, collected in the reservoirs during 2003, becomes available.

  10. Anadronous Fish Habitat Enhancement for the Middle Fork and Upper Salmon River, 1988 Annual Report.

    SciTech Connect (OSTI)

    Andrews, John ( US Forest Service, Intermountain Region, Boise, ID)

    1990-01-01T23:59:59.000Z

    The wild and natural salmon and steelhead populations in the Middle Fork and Upper Salmon River are at a critical low. Habitat enhancement through decreasing sediment loads, increasing vegetative cover, removing passage barriers, and providing habitat diversity is imperative to the survival of these specially adapted fish, until passage problems over the Columbia River dams are solved. Personnel from the Boise and Sawtooth National Forests completed all construction work planned for 1988. In Bear Valley, 1573 feet of juniper revetment was constructed at eleven sites, cattle were excluded from 1291 feet of streambanks to prevent bank breakdown, and a small ephemeral gully was filled with juniper trees. Work in the Upper Salmon Drainage consisted of constructing nine rock sills/weirs, two rock deflectors, placing riprap along forty feet of streambank, construction of 2.1 miles of fence on private lands, and opening up the original Valley Creek channel to provide spring chinook passage to the upper watershed. A detailed stream survey of anadromous fish habitat covering 72.0 miles of streams in the Middle Fork Sub-basin was completed.

  11. Rating curves and estimation of average water depth at the upper Negro River based on satellite altimeter data and modeled discharges

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Rating curves and estimation of average water depth at the upper Negro River based on satellite for 21 ``virtual gauge stations'' located at the upper Negro River (Amazon Basin, Brazil). A virtual station can be defined as any crossing of water body surface (i.e., large rivers) by radar altimeter

  12. INEEL Subregional Conceptual Model Report; Volume 1 - Summary of Existing Knowledge of Natural and Anthropogenic Influences Governing Subsurface Contaminant Transport in the INEEL Subregion of the Eastern Snake River Plain

    SciTech Connect (OSTI)

    Wichlacz, Paul Louis; Orr, Brennan

    2002-08-01T23:59:59.000Z

    The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual models of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of underflow into the subregion. Both conceptual models extend approximately 25 miles to the southwest of the INEEL, a distance sufficient to include known concentrations of contaminant tracers. Several hypotheses have been developed concerning the effective thickness of the SRPA at the INEEL. The USGS model has defined the effective thickness from electrical resistivity and borehole data to be as much as 2,500 ft in the eastern part of the subregion and as much as 4,000 ft in the southwestern part. The WAG-10 model has developed two alternatives using aquifer-temperature and electrical resistivity data. The ''thick'' aquifer interpretation utilizes colder temperature data and includes a northtrending zone in which the thickness exceeds 1,300 ft and with a maximum thickness of 1,700 ft. The ''thin'' aquifer interpretation minimizes aquifer thickness, with thickness ranging from 328 to 1,300 ft. Facility-specific models generally have focused efforts on the upper 250 ft of saturation. Conceptual models have utilized a stratigraphic data set to define geohydrologic units within the INEEL subregion. This data set, compiled from geophysical logs and cores from boreholes, correlates the thick, complex stack of basalt flows across the subregion. Conceptual models generally concur that the upper geohydrologic unit consists of a section of highly fractured, multiple, thin basalt flows and sedimentary interbeds. Beneath this unit is an areally extensive, thick, unfractured basalt flow that rises above the water table southwest of the INEEL. The bottom unit consists of a thick section of slightly- to moderately-altered basalt. A key objective of the DOE water-integration project at the INEEL is to coordinate development of a subregional conceptual model of groundwater flow and contaminant transport that is based on the best available understanding of geologic and hydrologic features. The first step in this process is to compile and summarize the current conceptual models of groundwater flow and contaminant transport at the INEEL that have been developed from extensive geohydrologic studies con

  13. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina

    SciTech Connect (OSTI)

    Specht, W.L.

    1991-10-01T23:59:59.000Z

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

  14. Conceptual Spawning Habitat Model to Aid in ESA Recovery Plans for Snake River Fall Chinook Salmon, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Geist, David (Pacific Northwest National Laboratory)

    2005-09-01T23:59:59.000Z

    The goal of this project is to develop a spawning habitat model that can be used to determine the physical habitat factors that are necessary to define the production potential for fall chinook salmon that spawn in large mainstem rivers like the Columbia River's Hanford Reach and Snake River. This project addresses RPA 155 in the NMFS 2000 Biological Opinion: Action 155: BPA, working with BOR, the Corps, EPA, and USGS, shall develop a program to: (1) Identify mainstem habitat sampling reaches, survey conditions, describe cause-and-effect relationships, and identify research needs; (2) Develop improvement plans for all mainstem reaches; and (3) Initiate improvements in three mainstem reaches. During FY 2003 we continued to collect and analyze information on fall chinook salmon spawning habitat characteristics in the Hanford Reach that will be used to address RPA 155, i.e., items 1-3 above. For example, in FY 2003: (1) We continued to survey spawning habitat in the Hanford Reach and develop a 2-dimensional hydraulic and habitat model that will be capable of predicting suitability of fall chinook salmon habitat in the Hanford Reach; (2) Monitor how hydro operations altered the physical and chemical characteristics of the river and the hyporheic zone within fall chinook salmon spawning areas in the Hanford Reach; (3) Published a paper on the impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon (Dauble et al. 2003). This paper was made possible with data collected on this project; (4) Continued to analyze data collected in previous years that will ultimately be used to identify cause-and-effect relationships and identify research needs that will assist managers in the improvement of fall chinook habitat quality in main-stem reaches. During FY 2004 we plan to: (1) Complete preliminary reporting and submit papers based on the results of the project through FY 2004. Although we have proposed additional analysis of data be conducted in FY 2005, we anticipate a significant number of key papers being prepared and submitted in FY 2004 which will go toward identifying the data gaps this RPA is intended to address; (2) Make available data from this project for use on Project 2003-038-00 ('Evaluate restoration potential of Snake River fall chinook salmon') which is a BPA-funded project that will start in FY 2004; and (3) Present results of our work at regional and national meetings in order to facilitate technology transfer and information sharing. The objective of this project is to define the production potential of fall chinook salmon that spawn in the Hanford Reach. We will provide fisheries and resource managers with the information they need to determine if the Hanford Reach fall chinook salmon population is indeed healthy, and whether this population will be capable of seeding other satellite populations in the future. We will accomplish this purpose by continuing our on-going research at determining the carrying capacity of the Hanford Reach for producing fall chinook salmon under current operational scenarios, and then begin an assessment of whether the Reach is functioning as a model of a normative river as is widely believed. The product of our research will be a better understanding of the key habitat features for mainstem populations of anadromous salmonids, as well as a better understanding of the measures that must be taken to ensure long-term protection of the Hanford Reach fall chinook population. Although the project was originally funded in FY 1994, it was significantly redefined in FY 2000. At that time five tasks were proposed to accomplish the project objective. The purpose of this progress report is to briefly describe the activities that have been completed on each of the five tasks from FY 2000 through FY 2003.

  15. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River; 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-02-01T23:59:59.000Z

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001.

  16. Results of 2001 Groundwater Sampling in Support of Conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the Vicinity of the INTEC at the INEEL

    SciTech Connect (OSTI)

    Meachum, Teresa Ray

    2002-04-01T23:59:59.000Z

    This report summarizes the results of sampling five groundwater monitoring wells in the vicinity of the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory in 2001. Information on general sampling practices, quality assurance practices, parameter concentrations, representativeness of sampling results, and cumulative cancer risk are presented. The information is provided to support a conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the vicinity of the Idaho Nuclear Technology and Engineering Center.

  17. Results of 2001 Groundwater Sampling in Support of Conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the Vicinity of the Idaho Nuclear Technology and Engineering Center

    SciTech Connect (OSTI)

    Meachum, T.R.

    2002-04-26T23:59:59.000Z

    This report summarizes the results of sampling five groundwater monitoring wells in the vicinity of the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory in 2001. Information on general sampling practices, quality assurance practices, parameter concentrations, representativeness of sampling results, and cumulative cancer risk are presented. The information is provided to support a conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the vicinity of the Idaho Nuclear Technology and Engineering Center.

  18. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    SciTech Connect (OSTI)

    Rien, Thomas A.; Beiningen, Kirk T. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-07-01T23:59:59.000Z

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  19. All Over the Map: The Diversity of Western Water Plans

    E-Print Network [OSTI]

    Casado-Pérez, Vanessa; Cain, Bruce E.; Hui, Iris; Abbott, Coral; Doson, Kaley; Lebow, Shane

    2015-01-01T23:59:59.000Z

    Colorado River (1948), Amended Bear River, (1978), Belle Fourche River (1943), Snake River (1949), Upper Niobrara

  20. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River, Annual Report 1998.

    SciTech Connect (OSTI)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.; Burge, Howard L.

    1999-12-01T23:59:59.000Z

    This report summarizes results of research activities conducted primarily in 1997 and 1998. This report communicates significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin.

  1. Towards application of a climate-index for Case study in the Citarum upper river basin Indonesia

    E-Print Network [OSTI]

    Haak, Hein

    Indonesia Ramon van Bruggen De Bilt, 2013 | Internal report; IR-2013-06 #12;#12;Towards application of a climate-index for dengue incidence Case study in the Citarum upper river basin Indonesia Master Thesis during this work and for their warm welcome during my stay in Indonesia. At last my thanks go

  2. Fluvial facies architecture in small-scale river systems in the Upper Dupi Tila Formation, northeast Bengal Basin, Bangladesh

    E-Print Network [OSTI]

    Kulp, Mark

    Fluvial facies architecture in small-scale river systems in the Upper Dupi Tila Formation small-scale fining-upward cycles (average 4.5 m thick). Facies architectural elements include channel. Understanding of facies architecture and sand body geometry of this Formation is crucial in examining the issue

  3. Middle Snake Subbasins Inventory

    E-Print Network [OSTI]

    Middle Snake Subbasins Inventory May 2004 Compiled by Ecovista Contracted by Shoshone-Paiute Tribes #12;Middle Snake Subbasins Inventory i May 2004 Table of Contents 1 INTRODUCTION

  4. Ocean Carrying Capacity : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 6 of 11.

    SciTech Connect (OSTI)

    Lichatowich, Jim

    1993-06-01T23:59:59.000Z

    The northeast Pacific is comprised of four fishery production domains: The gulf of Alaska, a coastal downwelling zone, a coastal upwelling zone and a transition zone. Salmon from the Columbia River enter the sea in the upwelling zone. Marine survival of coho salmon in the Oregon Production Index area has been the subject of extensive study. Variability in marine survival of coho salmon appears to be determined in the first month at sea while the fish are still in local marine areas in the upwelling zone. There is stronger evidence that upwelling might influence vulnerability to predation. A broader ecosystem view which considers salmon as a member of a complex marine community offers additional insight and raises new questions regarding the marine mortality of salmon. The pelagic fish community in the upwelling zone has undergone dramatic change in the last 50 years. That change is consistent with the historical record, however, the system has not completed a full cycle of change (as it has in the past) since the stocks have been subjected to intense commercial and sport exploitation. Salmon seem to be responding to shifts in productivity in the coastal upwelling zone.

  5. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    SciTech Connect (OSTI)

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07T23:59:59.000Z

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the Snake River Basin averaged 0.45% (SE=0.11%), including age-1-ocean returns, for release years 1996 through 2003. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2003), it was estimated that on average approximately 86% of the total integrated mortality for nontransported, tagged hatchery spring and summer Chinook, and 74% for steelhead, occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the systemwide T/I are weighted averages of the dam-specific T/I ratios for each transport dam (with {ge} 5,000 tagged fish transported), weighted by the probabilities of being transported at each dam. The systemwide T/I compares the observed SAR under the existing transportation system with the expected SAR if the transportation system had not been operated. Estimates of 1.0 indicate that the systemwide transportation program has no effect on SAR, while estimates > 1.0 indicate that the transportation program increases SAR. Excluding the 2001 release group, the geometric mean of the systemwide T/I estimates for hatchery spring Chinook salmon from the Snake River Basin was 1.15 (SE=0.03) for release years 1997 through 2003. The geometric mean of the systemwide T/I estimates for hatchery summer Chinook salmon from the Snake River Basin was 1.28 (SE=0.13) for release years 1997 through 2000 and 2003. Estimates were much higher for the 2001 release groups. These estimates reflect transportation from Lower Granite and/or Little Goose for most release years, depending on the number of tagged smolts actually transported at each dam during each release year. Differential post-Bonneville mortality (D) is the ratio of post-Bonneville survival to Lower Granite Dam of transported fish to that of nontransported ('inriver') fish. Excluding the 2001 release year, the geometric mean of the D estimates for hatchery spring Chinook salmon from the Snake River Basin

  6. THE SNAKE RIVER PLAIN AQUIFER THE SNAKE RIVER...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the complex to be found in the aquifer are volatile organic contaminants - particularly carbon tetrachloride ("carbon tet"). The carbon tet found in the aquifer is attributed to...

  7. THE SNAKE RIVER PLAIN AQUIFER THE SNAKE RIVER PLAIN AQUIFER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...SuccessSurprisingSynchrotronsPlasma

  8. Food web architecture in natural and impounded rivers of the Upper Parana drainage basin, Brazil

    E-Print Network [OSTI]

    Hoeinghaus, David Joseph

    2007-04-25T23:59:59.000Z

    Freshwater ecosystems are some of the most threatened on the planet. Efforts to conserve, restore, or otherwise manage large rivers and the services they provide are hindered by limited understanding of the functional dynamics of these systems...

  9. Abundance of the Louisiana Black Bear in the Upper Atchafalaya River Basin

    E-Print Network [OSTI]

    Gray, Matthew

    125 PSB Arkansas Background/Justification the `Delta' · Mississippi River Alluvial Valley of being captured not realistic! M d l t l thi ti Behavior Model -trap happy/shy Heterogeneity Model -age

  10. Essays on the Upper Mississippi River and Illinois Waterway and U.S. grain market 

    E-Print Network [OSTI]

    Yu, Tun-Hsiang

    2005-08-29T23:59:59.000Z

    producers and authorities that maintain and manage the lock system on the River. It is particularly critical today due to the controversies regarding the expansion of the aged lock system on the River. Economic benefits from inland waterway... schemes, including segment tolls, locking fees, and congestion tolls. They believe such a scheme to be economically and politically feasible and to surpass fuel taxes and license fees as means of generating 14 revenues. Case and Lave applied...

  11. Energy - Water Nexus -- Meeting the Energy and Water Needs of the Snake/Columbia River Basin in the 21st CenturyScience and Technology SummitConference Results

    SciTech Connect (OSTI)

    Paul L. Wichlacz; Gerald Sehlke

    2008-02-01T23:59:59.000Z

    In June 2007, representatives from federal, state, and academic institutions met to discuss the role of innovative science, technology, and policy in meeting future energy and water demands in the Snake-Columbia River Basin. Conference members assessed the state-of-the-science, technology, and associated research to develop cost-effective and environmentally sound methodologies and technologies to maximize the production of energy and availability of water and to minimize the consumption of both water and energy in the Snake-Columbia River system. Information on all phases of science and technology development, theoretical analysis, laboratory experiments, pilot tests, and field applications were relevant topics for discussion. An overview of current management needs was presented the first day. On the second day, five focus groups were created: ? Energy Generation and Use ? Water Allocation and Use ? Energy/Water Storage ? Environmental Considerations ? Social, Economic, Political, and Regulatory Considerations. Each group started with a list of status items and trends, and discussed the future challenges and research needed to reach four goals: ? Balance energy production and resource consumption ? Balance water availability and competing needs ? Balance water consumption/energy production and competing needs ? Balance environmental impacts and water use/energy production ? Balance costs and benefits of water use. The resulting initiatives were further broken down into three categories of importance: critical, important, and nice to do but could be delayed. Each initiative was assigned a number of dots to show a more refined ranking. The results of each focus group are given in the pages that follow. These results are intended to help local and regional researchers 1. Develop a technical strategy for developing cost-effective science and technology to predict, measure, monitor, purify, conserve, and store water and to maximize power generation, storage, and efficiency in the region 2. Evaluate methods and technologies for reducing the impacts of energy and water development and use on the environment.

  12. Biological monitoring of Upper Three Runs Creek, Savannah River Site, Aiken County, South Carolina, March 1990--July 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Runs Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F/H area effluent on the creek, the study included qualitative and quantitative macroinvertebrate stream surveys at five sites (see map), chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. In a March 1990 study of the potential impact of F/H Area effluent on the macroinvertebrate communities of Upper Three Runs Creek was extended, with reductions in the number of sites to be sampled and in the frequency of water chemistry sampling. This report presents the results of macroinvertebrate stream surveys at three sites, chronic toxicity testing of the effluent and water chemistry analysis of the three stream sites and the effluent from March 1990 to July 1991.

  13. Tracer Study of Mixing and Transport in the Upper Hudson River

    E-Print Network [OSTI]

    Ho, David

    ; Peter Schlosser2 ; and David T. Ho3 Abstract: In October 2001, 0.2 mol of SF6 was injected reduce longitudinal dispersion below the value expected in a natural channel with the same discharge. SF6, and gas exchange in a river by means of a deliberately released tracer, sulfur hexafluoride SF6

  14. Upper Middle Mainstem Columbia River Subbasin Water Quality Parameters Affected by Hydropower Production

    E-Print Network [OSTI]

    by Hydropower Production Total Dissolved Gas Total dissolved gas (TDG) supersaturation often occurs during periods of high runoff and spill at hydropower projects and can be harmful to fish. Supersaturation occurs of hydropower projects on Columbia River water temperature has been to delay the time when thermal maximums

  15. Developing a Successful Riparian-Wetland Grazing Management Plan for the Upper Ruby River Cattle

    E-Print Network [OSTI]

    . In 1990 the Beaverhead National Forest started to prepare an Environmental Impact Statement (EIS) for the allotment. The draft EIS became a focal point for the various groups. The major concern with the Upper Ruby Statement (EIS) for the Allotment. The draft EIS became a focal point for the various groups. All sides

  16. Gunboat and musket: Civil War on the upper Mississippi River, 1861-1862

    E-Print Network [OSTI]

    Koch, Karl William

    1971-01-01T23:59:59.000Z

    's secessionist State Guard had been pushed west, the struggle for the Mississippi commenced in the southeastern regions of the state. Major General Leonidas Polk, commanding the Confederate river forces, and Major General John C. Fremont, commander... of the Union's western department, jockeyed for control of southeastern Missouri. During 1861 neither side ac- complished much, militarily speaking. A Confederate invasion of the area in the summer fizzled for want of firm direction from General Polk...

  17. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.

    SciTech Connect (OSTI)

    Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

    2008-12-03T23:59:59.000Z

    The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in this series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon release groups were pooled across the entire Snake River Basin upstream of Lower Granite Dam for this report. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.92% with an estimated standard error (dSE) of 0.25% for wild spring and summer Chinook salmon for tagged groups released from 1996 through 2004, omitting age-1-ocean (jack) returns. Only for the 1999 and 2000 release years did the wild Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for wild steelhead from the Snake River Basin averaged 0.63% (dSE = 0.15%), including age-1-ocean returns, for release years 1996 through 2004. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2004), it was estimated that on average approximately 83% of the total integrated mortality for nontransported, tagged wild spring and summer Chinook, and 78% for steelhead (omitting the 2001 release year), occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the dam-specific T/I for Lower Granite Dam were available for the 2003 and 2004 release years for both wild Chinook salmon and wild steelhead. The estimated T/I for Lower Granite was significantly > 1.0 for Chinook in 2004 (P < 0.0001) and for steelhead in both 2003 (P < 0.0001) and 2004 (P < 0.0001), indicating that for these release years, wild fish transported at Lower Granite returned there in higher proportions than fish that were returned to the river at Lower Granite, or that passed Lower Granite without detection as juveniles. Annual estimates of the dam-specific T/I for Little Goose Dam were available for wild Chinook salmon for both 2003 and 2004. The estimated T/I for Little Goose was significantly > 1.0 for wild Chinook in 2004 (P = 0.0024), but not in 2003 (P = 0.1554). Differential post-Bonneville mortality (D) is the ratio of pos

  18. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    SciTech Connect (OSTI)

    Lewis, Claudia J [Los Alamos National Laboratory; Mcdonald, Eric [NON LANL; Sancho, Carlos [NON LANL; Pena, Jose- Luis [NON LANL

    2008-01-01T23:59:59.000Z

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-} 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.

  19. The Columbia River System: Inside Story

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxbow Bypass Unity Wolf Creek Lower Snake Basin Federal with Power Little Goose Lower Granite Ice Harbor Lower Monumental Dworshak Federal without Power Lower Pine Lake Upper Bear...

  20. Contaminant concentrations and biomarker response in great blue heron eggs from 10 colonies on the upper Mississippi River, USA

    SciTech Connect (OSTI)

    Custer, T.W.; Hines, R.K. [National Biological Service, LaCrosse, WI (United States). Upper Mississippi Science Center; Melancon, M.J.; Hoffman, D.J. [National Biological Service, Laurel, MD (United States). Patuxent Wildlife Research Center; Wickliffe, J.K.; Bickham, J.W. [Texas A and M Univ., College Station, TX (United States). Dept. of Wildlife and Fisheries; Martin, J.W.; Henshel, D.S. [Indiana Univ., Bloomington, IN (United States). School of Public and Environmental Affairs

    1997-02-01T23:59:59.000Z

    In 1993, great blue heron (Ardea herodias; GBH) eggs were collected from 10 colonies on the upper Mississippi River (UMR). They were then artificially incubated until pipping and analyzed for mercury, selenium, and organochlorines. Livers of embryos were analyzed for hepatic microsomal ethoxyresorufin-O-dealkylase (EROS) activity and four measures of oxidative stress. Brains were measured for asymmetry and blood was measured for the coefficient of variation of DNA (DNA CV). Organochlorine concentrations were generally low (geometric mean DDE = 1.3 {micro}g/g wet weight; polychlorinated biphenyl [PCB] = 3.0 {micro}g/g; 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD] = 11.5 pg/g). Eggshell thickness was negatively correlated with DDE concentrations. Mercury (geometric mean = 0.8 {micro}g/g dry weight) and selenium (3.1 {micro}g/g dry weight) concentrations in GBH eggs were within background levels. EROD activity was not correlated with total PCBs, TCDD, or toxic equivalents (TEQs), based on the relative contribution of individual PCB congeners, dibenzodioxins (PCDDs), and dibenzofurans (PCDFs) to total calculated TEQs. Three of the four measures of oxidative stress were correlated with mercury concentrations. Twenty of 43 (47%) embryo brains were asymmetrical and the embryos with asymmetrical brains had higher EROD concentrations in the liver and higher DNA CV in the blood than embryos with symmetrical brains.

  1. Snakes and Their Control

    E-Print Network [OSTI]

    Texas Wildlife Services

    2008-04-15T23:59:59.000Z

    - tivewaysofdiscouragingthem.Eliminatingrock piles, brush piles, tall grass, etc., will cause snakes to seek a more suitable habitat. Lumber, wood piles and other debris around the home should be stored at least 18 inches off the ground. Controlling insect and rodent popula... must be sealed. Since snakes normally enter a building at or below ground level, all openings around water pipes, electrical outlets, doors and windows should be closed. Holes in masonry foundations around the home should be sealed with mortar. Hardware...

  2. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  3. Biodiversity and the Recovery of Threatened and Endangered Salmon Species in the Columbia River Basin : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report of 8 of 11.

    SciTech Connect (OSTI)

    Steward, C. R. (Cleveland R.)

    1993-06-01T23:59:59.000Z

    The stated purpose of the Endangered Species Act is to provide a means whereby the ecosystem upon which endangered species and threatened species depend may be conserved. Conservation of the Columbia River ecosystem and the diversity of gene pools, life histories, species, and communities that comprise it, should become a major objective of species recovery and fish and wildlife management programs in the Columbia River Basin. Biodiversity is important to both species and ecosystem health, and is a prerequisite to long-term sustainability of biological resources. In this paper, I provide an overview of various approaches to defining, measuring, monitoring, and protecting biodiversity. A holistic approach is stressed that simultaneously considers diverse species and resource management needs. Emphasis is on threatened and endangered species of salmon and their associated habitat.

  4. Polycyclic Aromatic Hydrocarbons and n-alkanes in sediments of the Upper Scheldt River Basin: contamination levels and source apportionment

    E-Print Network [OSTI]

    Boyer, Edmond

    Author manuscript, published in "Journal of Environmental Monitoring 11, 5 (2009) 1086-1093" DOI : 10 and Antwerp. Anthropogenic activities including textile and chemical industries, transport, coal mining, paper) has been developing an integrated and coordinated water management plan for the whole river basin

  5. Snake Hells Canyon Subbasin Inventory

    E-Print Network [OSTI]

    Snake Hells Canyon Subbasin Inventory May 2004 Prepared for the Northwest Power and Conservation .................................................................................................................. 1 1.1 The Subbasin Inventory and the Subbasin Planning Process Subbasin Inventory i May 2004 #12;LIST OF FIGURES FIGURE 1.LAND MANAGEMENT IN THE SNAKE HELLS CANYON

  6. SRO -NERP-1 THE SAVANNAH RIVER PLANT

    E-Print Network [OSTI]

    Georgia, University of

    AND TREATMENT by Whit Gibbons Savannah River Ecology Laboratory Aiken , South Carolina A PUBLICATION OF EROA 'S SAVANNAH RIVER NATIONAL ENVIRONMENTAL RESEARCH PARK -SEPTEMBER 1977 COPIES MAY BE OBTAINEO FROM SAVANNAHSRO -NERP-1 SNAKES OF THE SAVANNAH RIVER PLANT WITH INFORMATION ABOUT SNAKEBITE PREVENTION

  7. Lower Snake River I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) WindLow Voltage CablesWellsI Jump to:

  8. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-10-15T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day.

  9. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-04-15T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This semi-annual Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 2003 through March 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

  10. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-12-27T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This Final Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 1998 through December 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

  11. Observations on the Anterior Testicular Ducts in Snakes With Emphasis on Sea Snakes and

    E-Print Network [OSTI]

    Sever, David M.

    and Ultrastructure in the Yellow-Bellied Sea Snake, Pelamis platurus David M. Sever* and Layla R. Freeborn Department, Pelamis platurus, only the third such study on snakes. The anterior testicular ducts are similar in his

  12. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2004-03-02T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Previous Semi-Annual Technical Progress Reports presented the following: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Analyses of data conducted during the period from April 1, 2003 through September 30, 2003 are presented in this Semi-Annual Technical Progress Report. Report Revision No. 1 includes the additions or removals of text presented in the previous version of this report.

  13. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5)DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock

    2003-04-30T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), with a goal of characterizing the ambient fine particulate in this region, including examination of urban/rural variations, correlations between PM{sub 2.5} and gaseous pollutants, and influences of artifacts on PM{sub 2.5} measurements in this region. Two urban and two rural monitoring sites were included in the UORVP. The four sites selected were all part of existing local and/or state air quality programs. One urban site was located in the Lawrenceville section of Pittsburgh, Pennsylvania at an air quality monitoring station operated by the Allegheny County Health Department. A second urban site was collocated at a West Virginia Division of Environmental Protection (WVDEP) monitoring station at the airport in Morgantown, West Virginia. One rural site was collocated with the Pennsylvania Department of Environmental Protection (PADEP) at a former NARSTO-Northeast site near Holbrook, Greene County, Pennsylvania. The other rural site was collocated at a site operated by the Ohio Environmental Protection Agency (OHEPA) and managed by the Ohio State Forestry Division in Gifford State Forest near Athens, Ohio. Analysis of data collected to date show that: (1) the median mass and composition of PM{sub 2.5} are similar for both Lawrenceville and Holbrook, suggesting that the sites are impacted more by the regional than by local effects; (2) there was no significant differences in the particulate trending and levels observed at both sites within seasons; (3) sulfate levels predominate at both sites, and (4) PM{sub 2.5} and PM{sub 10} mass concentration levels are consistently higher in summer than in winter, with intermediate levels being observed in the fall and spring. Data analysis focusing on relating the aerometric measurements to local and regional scale emissions of sources of primary and secondary fine particles using receptor-based air quality models will follow.

  14. Upper Snake Provincial Assessment May 2004 5 References

    E-Print Network [OSTI]

    Grouse Committee, Twin Falls, ID. 42 pp. Bailey, J.E. 1952. Life history and ecology of the sculpin Cottus bairdi punctulatus in southwestern Montana. Copeia (4):243­255. Bailey, R.M., J.E. Fitch, E. 150 pp. Balliette, J.F., K.C. McDaniel, and M.K. Wood. 1986. Infiltration and sediment production

  15. Upper Snake Provincial Assessment May 2004 3 Biological Resources

    E-Print Network [OSTI]

    agricultural practices, placer and dredge mining, dam construction, and stream channelization. The ICBEMP Alteration of channel structure Loss of floodplain access alters hydrology by preventing energy dissipation of high flows, reduces organic matter input from riparian interaction Change in pool to riffle ratio

  16. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina. Final report on macroinvertebrate stream assessments for F/H area ETF effluent discharge, July 1987--February 1990

    SciTech Connect (OSTI)

    Specht, W.L.

    1991-10-01T23:59:59.000Z

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F?H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

  17. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    SciTech Connect (OSTI)

    Cochnauer, Tim; Claire, Christopher [Idaho Department of Fish and Game

    2009-05-07T23:59:59.000Z

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

  18. Prospects & Overviews Snake venom: From fieldwork to

    E-Print Network [OSTI]

    Jackson, Kate

    -throughput screening systems offer greatly increased speed and efficiency in identifying and extract- ing snakes'', and characterized by the possession of a venom-delivery system or components of such a system, snake venom metalloproteinase; 3FTX, three- finger toxin. Bioessays 33: 269­279,ß 2011 WILEY Periodicals

  19. Genetic and Phenotypic Catalog of Native Resident Trout of the Interior Columbia River Basin; Populations of the Upper Yakima Basin, 1997-1998 Annual Report.

    SciTech Connect (OSTI)

    Trotter, Patrick C. (Fishery Science Consultant, Seattle, WA); McMillan, Bill; Gayeski, Nick (Washington Trout, Duvall, WA)

    1999-10-01T23:59:59.000Z

    The objective of this project is to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique.

  20. Federally-Recognized Tribes of the Columbia-Snake Basin.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration

    1997-11-01T23:59:59.000Z

    This is an omnibus publication about the federally-recognized Indian tribes of the Columbia-Snake river basin, as presented by themselves. It showcases several figurative and literal snapshots of each tribe, bits and pieces of each tribe`s story. Each individual tribe or tribal confederation either submitted its own section to this publication, or developed its own section with the assistance of the writer-editor. A federally-recognized tribe is an individual Indian group, or confederation of Indian groups, officially acknowledged by the US government for purposes of legislation, consultation and benefits. This publication is designed to be used both as a resource and as an introduction to the tribes. Taken together, the sections present a rich picture of regional indian culture and history, as told by the tribes.

  1. Evaluation of the Life History of Native Salmonids in the Malheur River Basin; Cooperative Bull Trout/Redband Trout Research Project, 2000-2001 Annual Report.

    SciTech Connect (OSTI)

    Gonzales, Dan; Schwabe, Lawrence; Wenick, Jess (Burns Paiute Tribe, Department of Fish and Wildlife, Burns, OR)

    2001-08-01T23:59:59.000Z

    The Malheur basin lies within southeastern Oregon. The Malheur River is a tributary to the Snake River, entering at about River Kilometer (RK) 595. The hydrological drainage area of the Malheur River is approximately 12,950 km{sup 2} and is roughly 306 km in length. The headwaters of the Malheur River originate in the Blue Mountains at elevations of 6,500 to 7,500 feet, and drops to an elevation of 2000 feet at the confluence with the Snake River near Ontario, Oregon. The climate of the Malheur basin is characterized by hot dry summers, occasionally exceeding 38 C and cold winters that may drop below -29 C. Average annual precipitation is 300 centimeters and ranges from 100 centimeters in the upper mountains to less than 25 centimeters in the lower reaches (Gonzalez 1999). Wooded areas consist primarily of mixed fir and pine forest in the higher elevations. Sagebrush and grass communities dominate the flora in the lower elevations. Efforts to document salmonid life histories, water quality, and habitat conditions have continued in fiscal year 2000. The Burns Paiute Tribe (BPT), United States Forest Service (USFS), and Oregon Department of Fish and Wildlife (ODFW), have been working cooperatively to achieve this common goal. Bull trout ''Salvenlinus confluentus'' have specific environmental requirements and complex life histories making them especially susceptible to human activities that alter their habitat (Howell and Buchanan 1992). Bull trout are considered to be a cold-water species and are temperature dependent. This presents a challenge for managers, biologists, and private landowners in the Malheur basin. Because of the listing of bull trout under the Endangered Species Act as threatened and the current health of the landscape, a workgroup was formed to develop project objectives related to bull trout. This report will reflect work completed during the Bonneville Power contract period starting 1 April 2000 and ending 31 March 2001. The study area will include the North Fork Malheur River and the Upper Malheur River from Warm Springs Reservoir upstream to the headwaters.

  2. Lateral undulation of a snake-like robot

    E-Print Network [OSTI]

    Gupta, Amit

    2007-01-01T23:59:59.000Z

    Snake robots have been studied by many researchers but historically more on a theoretical basis. Recently, more and more robotic snakes have been realized in hardware. This thesis presents a design process for the electrical, ...

  3. Snake River Geothermal Project - Innovative Approaches to Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    for approval of ICDP cost-share commitment - Partners * International Continental Drilling Program, Southern Methodist University, Boise State University, University of...

  4. Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

  5. The Snake River Geothermal Drilling Project - Innovative Approaches...

    Open Energy Info (EERE)

    a complete record of the volcanic stratigraphy that can be used in complementary science projects. This project will function in tandem with Project Hotspot, a continental...

  6. Snake River Plain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG26588°, -89.4742177° ShowSmyth County,

  7. Snake River Plain Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSloughCreekRhode Island:Wind

  8. Snake River Plain Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation SlimSloughCreekRhode Island:WindPlain

  9. New Hydropower Turbines to Save Snake River Steelhead | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan -DepartmentDepartment ofDevelopment |Energy Voith

  10. The Snake River Geothermal Drilling Project - Innovative Approaches to

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:Uncertainty

  11. The INL and the Snake River Plain Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafetyTed5,AuditThe FiveBiofuelsGEThe TheTheTheThe

  12. New Hydropower Turbines to Save Snake River Steelhead | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREof Energy InvestigatesEnvironment |ofDepartment

  13. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  14. Aquatic Supplement Hood River Subbasin

    E-Print Network [OSTI]

    of Oregon and Washington stream temperature data Figure 4 and 5. Herman Creek (Oxbow Hatchery): 7-Day Moving.7 (10 cfs) 50 powerhouse discharge river mile 4.51 (20 cfs) Upper Lenz or Odell cr no info Davis water

  15. advanced snakes superfamily: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for snakes wquote " Well within my King, Richard B. 12 A PROPOSAL FOR THE PIRSF (PIR SUPERFAMILY) CLASSIFICATION SYSTEM Biology and Medicine Websites Summary: A PROPOSAL...

  16. MIDDLE SNAKE SUBBASINS MANAGEMENT PLAN SUPPLEMENT PRIORITIZED IMPLEMENTATION

    E-Print Network [OSTI]

    MIDDLE SNAKE SUBBASINS MANAGEMENT PLAN SUPPLEMENT ­ PRIORITIZED IMPLEMENTATION NOVEMBER 24, 2004/Browsing..........................................................................................9 Key Limiting Factor #5: Water Quality............................................................................................................................11 Management Plan Considerations

  17. Reading color barcodes using visual snakes.

    SciTech Connect (OSTI)

    Schaub, Hanspeter (ORION International Technologies, Albuquerque, NM)

    2004-05-01T23:59:59.000Z

    Statistical pressure snakes are used to track a mono-color target in an unstructured environment using a video camera. The report discusses an algorithm to extract a bar code signal that is embedded within the target. The target is assumed to be rectangular in shape, with the bar code printed in a slightly different saturation and value in HSV color space. Thus, the visual snake, which primarily weighs hue tracking errors, will not be deterred by the presence of the color bar codes in the target. The bar code is generate with the standard 3 of 9 method. Using this method, the numeric bar codes reveal if the target is right-side-up or up-side-down.

  18. Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho: Annual Report 2001.

    SciTech Connect (OSTI)

    Cochnauer, Tim; Claire, Christopher

    2002-12-01T23:59:59.000Z

    Recent decline of Pacific lamprey Lampetra tridentata adult migrants to the Snake River drainage has focused attention on the species. Adult Pacific lamprey counted passing Ice Harbor Dam fishway averaged 18,158 during 1962-69 and 361 during 1993-2000. Human resource manipulations in the Snake River and Clearwater River drainages have altered ecosystem habitat in the last 120 years, likely impacting the productive potential of Pacific lamprey habitat. Timber harvest, stream impoundment, road construction, grazing, mining, and community development have dominated habitat alteration in the Clearwater River system and Snake River corridor. Hydroelectric projects in the Snake River corridor impact juvenile/larval Pacific lamprey outmigrants and returning adults. Juvenile and larval lamprey outmigrants potentially pass through turbines, turbine bypass/collection systems, and over spillway structures at the four lower Snake River hydroelectric dams. Clearwater River drainage hydroelectric facilities have impacted Pacific lamprey populations to an unknown degree. The Pacific Power and Light Dam on the Clearwater River in Lewiston, Idaho, restricted chinook salmon Oncorhynchus tshawytscha passage in the 1927-1940 period, altering the migration route of outmigrating Pacific lamprey juveniles/larvae and upstream adult migrants (1927-1972). Dworshak Dam, completed in 1972, eliminated Pacific lamprey spawning and rearing in the North Fork Clearwater River drainage. Construction of the Harpster hydroelectric dam on the South Fork of the Clearwater River resulted in obstructed fish passage 1949-1963. Through Bonneville Power Administration support, the Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage in 2001. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River drainage. Forty-three sites in Red River, South Fork Clearwater River, and their tributaries were electrofished in 2001. Sampling yielded a total of 442 juvenile/larval Pacific lamprey. Findings indicate Pacific lamprey juveniles/larvae are not numerous or widely distributed. Pacific lamprey distribution in the South Fork of the Clearwater River drainage was confined to lower reaches of Red River and the South Fork Clearwater River.

  19. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    SciTech Connect (OSTI)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01T23:59:59.000Z

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.

  20. EIS-0163: 1992 Columbia River Salmon Flow Measures Options Analysis/EIS

    Broader source: Energy.gov [DOE]

    The U.S. Army Corps of Engineers – Walla Walla District prepared this statement to analyze four general alternatives to modify the flow of water in the lower Columbia-Snake River in order to help anadromous fish migrate past eight multipurpose Federal dams. The U.S. Department of Energy’s Bonneville Power Administration served as a cooperating agency due to its key role in direct operation of the integrated and coordinated Columbia-Snake River System, and adopted this statement on February 10, 1992.

  1. Virtual Chassis for Snake Robots: Definition and Applications

    E-Print Network [OSTI]

    Choset, Howie

    Full paper Virtual Chassis for Snake Robots: Definition and Applications David Rollinson*, Austin Buchan and Howie Choset The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue the motion of a snake robot is difficult. This is in part because the internal shape changes that the robot

  2. Analysis, Reconstruction and Manipulation using Arterial Snakes Hanlin Zheng

    E-Print Network [OSTI]

    Mitra, Niloy J.

    a reconstructed model. The extracted high-level shape representation enables easy, intuitive, yet powerfulAnalysis, Reconstruction and Manipulation using Arterial Snakes Guo Li Ligang Liu Hanlin Zheng arterial snake network edited model Figure 1: Starting from a noisy raw scan with large parts missing our

  3. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    SciTech Connect (OSTI)

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole [Pacific Northwest National Laboratory

    2008-03-17T23:59:59.000Z

    This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

  4. Simulating Sustainability: Conjunctive Land and Water Management in the Upper

    E-Print Network [OSTI]

    Fay, Noah

    a series of micro-basins that function similarly to a multi-reservoir river system for water management arrangements for water management, and integration of geospatial information into "sustainability scenariosSimulating Sustainability: Conjunctive Land and Water Management in the Upper Santa Cruz River

  5. Morphological and ecological convergence in two natricine snakes

    E-Print Network [OSTI]

    Hibbitts, Toby Jarrell

    2000-01-01T23:59:59.000Z

    indicated the long snout morphology evolved independently in T. rufipunctatus and N. harteri. Head morphology was not correlated with locomotor performance (e.g., swimming in a current) in these snakes. However the long snout resulted in reduced hydrodynamic...

  6. Molecular Systematics and Evolution of Regina and the Thamnophiine Snakes

    E-Print Network [OSTI]

    Arnold, Stevan J.

    Received January 18, 2001; revised May 25, 2001 Snakes of the tribe Thamnophiini represent an eco of these genera to other taxa is unclear (Varkey, 1979; Lawson, 1987). The relation- ships among the crayfish

  7. Visual servoing using statistical pressure snakes.

    SciTech Connect (OSTI)

    Schaub, Hanspeter (ORION International Technologies, Albuquerque, NM)

    2004-05-01T23:59:59.000Z

    A nonlinear visual servoing steering law is presented which is used to align a camera view with a visual target. A full color version of statistical pressure snakes is used to identify and track the target with a series of video frames. The nonlinear steering law provides camera-frame centric speed commands to a velocity based servo sub-system. To avoid saturating the subsystem, the commanded speeds are smoothly limited to remain within a finite range. Analytical error analysis is also provided illustrating how the two control gains contribute to the stiffness of the control. The algorithm is demonstrated on a pan and tilt camera system. The control law is able to smoothly realign the camera to point at the target.

  8. Platte River Basin Flow Information Web-based Resources

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Platte River Basin Flow Information Web-based Resources Gary Stone, Extension Educator, University://www.wrds.uwyo.edu/wrds/nrcs/snowprec/snowprec.html - the University of Wyoming Water Resources Data System - scroll down to the Upper and Lower North Platte River. Seminoe is the first reservoir on the North Platte River in central Wyoming. Glendo is the second

  9. SNAKE SPECIES RICHNESS IN RELATION TO HABITAT IN THE POST OAK SAVANNAH OF EAST CENTRAL TEXAS

    E-Print Network [OSTI]

    Putegnat, John

    2006-07-11T23:59:59.000Z

    This project examined snake species richness and relative abundances in a heterogeneous landscape within the post oak savannah of East Central Texas. Snakes were sampled using funnel traps (with drift fences for terrestrial species) and hand capture...

  10. Grays River Watershed Geomorphic Analysis

    SciTech Connect (OSTI)

    Geist, David R.

    2005-04-30T23:59:59.000Z

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

  11. Natural Salt Pollution and Water Supply Reliability in the Brazos River Basin

    E-Print Network [OSTI]

    Wurbs, Ralph A.; Karama, Awes S.; Saleh, Ishtiaque; Ganze, C. Keith

    The Brazos River Basin is representative of several major river basins in the Southwestern United States in regard to natural salt pollution. Geologic formations underlying portions of the upper watersheds of the Brazos, Colorado, Pecos, Canadian...

  12. Upper Snake Provincial Assessment May 2004 APPENDIX 1-1--LIST OF TERRESTRIAL VERTEBRATE SPECIES WITHIN

    E-Print Network [OSTI]

    Number: 10) Tiger salamander Ambystoma tigrinum G5/S5 Yes Yes Long-toed salamander Ambystoma macrodactylum G5/S5 Yes Yes Inland tailed frog Ascaphus montanus G5/SNA Yes Great Basin spadefoot Scaphiopus intermontanus G4/S3 Yes Yes Western toad Bufo boreas G5/S4 Yes Yes Pacific chorus (tree) frog Pseudacris regilla

  13. THE FALLACY OF UPPER SNAKE FLOW AUGMENTATION THERE IS NO NEED TO DRAIN IDAHO FOR SALMON

    E-Print Network [OSTI]

    .......................................................................................................................... 7 Historical Stream Flow Records ...................................................................................... 31 Management Options

  14. 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus...

    Open Energy Info (EERE)

    Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously...

  15. african snake fish: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    african snake fish First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 SPORT-FISHING USE AND VALUE: LOWER...

  16. LITTLE MCBRIDE SPR.& EXCLOSURE Snake, Mid (Boise) Ongoing 1998

    E-Print Network [OSTI]

    ) Ongoing 1998 Bureau of Land Management Potential Impact of Water Quality: POSITIVE LOW/SURFACE WATER Creeks) Snake, Mid (Boise) Ongoing 1998 Bureau of Land Management Potential Impact of Water Quality 1998 Bureau of Land Management Potential Impact of Water Quality: POSITIVE MEDIUM/SURFACE WATER

  17. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company

    SciTech Connect (OSTI)

    Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-03-26T23:59:59.000Z

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  18. Negotiating nature : expertise and environment in the Klamath River Basin

    E-Print Network [OSTI]

    Buchanan, Nicholas Seong Chul

    2010-01-01T23:59:59.000Z

    "Negotiating Nature" explores resource management in action and the intertwined roles of law and science in environmental conflicts in the Upper Klamath River Basin in southern Oregon. I follow disputes over the management ...

  19. OkanoganRiver Summer/FallChinookSalmon

    E-Print Network [OSTI]

    AND GENETIC MANAGEMENT PLAN (HGMP) Hatchery Program: Species or Hatchery Stock: Agency/Operator: Watershed B.5 Tribal Incidental Take Thresholds for ESA-Listed 98 Upper Columbia River Steelhead Table B.6

  20. Upper arun hydroelectric project feasibility study (phase 1). Volume 2. Appendix. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1987-09-01T23:59:59.000Z

    The report was prepared for Nepal Electricity Authority (NEA). The primary objective of the study was to compare several alternative development schemes to drive an optimum development plan for exploiting the hydroelectric potential of the Upper Arun River, to be further investigated in phase 2 of the feasibility study. The report presents the result of the phase I studies investigations recommends the alternatives to be pursued to develop the Upper Arun River. Volume 2 contains tables, figures and other supporting materials.

  1. GRADUAL GENERALIZATION OF NAUTICAL CHART CONTOURS WITH A B-SPLINE SNAKE METHOD

    E-Print Network [OSTI]

    New Hampshire, University of

    ...............................................................................................37 II. Background Theory...................................................................................................................38 2.1.1 B-spline Curve Definition....................................................................................................................40 2.2.1 Snake Method Definition...............................................

  2. NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER

    E-Print Network [OSTI]

    NOAA Technical Memorandum NWS HYDRO 39 PROBABLE MAXIMUM PRECIPITATION FOR THE UPPER DEERFIELD RIVER The Office of Hydrology (HYDRO) of the National Weather Service (NWS) develops procedures for making river agencies, and conducts pertinent research and development. NOAA Technical Memorandums in the NWS HYDRO

  3. Pennsylvania Scenic Rivers Program

    Broader source: Energy.gov [DOE]

    Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the...

  4. History of Artificial Propagation of Coho Salmon, Oncorhynchus kisutch, in the Mid-Columbia River System

    E-Print Network [OSTI]

    History of Artificial Propagation of Coho Salmon, Oncorhynchus kisutch, in the Mid-Columbia River System ROY J. WAHLE and ROGER E. PEARSON Figure I. - Middle and upper portion of the Columbia River Basin, artificial propagation was attempted. The first hatcheries in the mid- Columbia section (Fig. 1) of the river

  5. Observations on the Sexual Segment of the Kidney of Snakes with Emphasis on

    E-Print Network [OSTI]

    Sever, David M.

    in the Yellow-Bellied Sea Snake, Pelamis platurus DAVID M. SEVER,1 * JUSTIN L. RHEUBERT,1,2 JILLIAN GAUTREAUX,1 of the SSK of the sea snake, Pelamis platurus. The SSK of L. dulcis does not include the ureter but does

  6. A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer

    E-Print Network [OSTI]

    Bennett, Albert F.

    A Scaleless Snake: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer Reprinted: Tests of the Role of Reptilian Scales in Water Loss and Heat Transfer A unique specimen of gopher snake of pulmocutaneous water loss and heat transfer, no difference was observed between the scale- less animal

  7. Upper Los Alamos Canyon Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upper Los Alamos Canyon Cleanup The Upper Los Alamos Canyon Project involves cleaning up hazardous materials left over from some of the Laboratory's earliest activities. Contact...

  8. EIS-0351: Operation of Flaming Gorge Dam, Colorado River Storage Project, Colorado River, UT

    Broader source: Energy.gov [DOE]

    The Secretary of the United States Department of the Interior (Secretary), acting through the Bureau of Reclamation (Reclamation), is considering whether to implement a proposed action under which Flaming Gorge Dam would be operated to achieve the flow and temperature regimes recommended in the September 2000 report Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam (2000 Flow and Temperature Recommendations), published by the Upper Colorado River Endangered Fish Recovery Program (Recovery Program).

  9. OkanoganRiver SpringChinookSalmon

    E-Print Network [OSTI]

    : Species or Hatchery Stock: Agency/Operator: Watershed and Region: Date Submitted: Date Last Updated: NOTE Chinook Above Wells Dam Table 3. Tribal Incidental Take Thresholds for ESA-Listed 44 Upper Columbia River Steelhead Table 4. Tribal & Recreational Incidental Take Thresholds 45 for Unmarked Spring Chinook Table 5

  10. Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company. Final report

    SciTech Connect (OSTI)

    Paller, M. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-03-26T23:59:59.000Z

    Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

  11. Effect of Multiple Turbine Passage on Juvenile Snake River Salmonid Survival

    SciTech Connect (OSTI)

    Ham, Kenneth D.; Anderson, James J.; Vucelick, Jessica A.

    2005-10-14T23:59:59.000Z

    This report describes a study conducted by Pacific Northwest National Laboratory to identify populations of migrating juvenile salmonids with a potential to be impacted by repeated exposure to turbine passage conditions. This study is part of a research program supported by the U.S. Department of Energy Wind/Hydropower Program. The program's goal is to increase hydropower generation and capacity while enhancing environmental performance. Our study objective is to determine whether the incremental effects of turbine passage during downstream migration impact populations of salmonids. When such a potential is found to exist, a secondary objective is to determine what level of effect of passing multiple turbines is required to decrease the number of successful migrants by 10%. This information will help identify whether future laboratory or field studies are feasible and design those studies to address conditions that present the greatest potential to improve dam survival and thus benefit fish and power generation.

  12. Boron isotopic variations in NW USA rhyolites: Yellowstone, Snake River Plain, Eastern Oregon

    E-Print Network [OSTI]

    Lee, Cin-Ty Aeolus

    multiplier laser ablation-ICP-MS. 11 B values are systematically lighter in SRPY rhyolites (-5.6 to -8, and could reflect melting of juvenile basalt-derived protoliths in the crust. B isotope ratios of low-18 O originally metasediments, it is likely that bulk B and 11 B were selectively removed by metamorphic

  13. Research, Monitoring and Evaluation Lower Snake River tributaries Prepared by: Washington Department of Fish and Wildlife

    E-Print Network [OSTI]

    is inadequate. This plan will therefore, serve as an interim set of guidelines that will assure a systematic of known quality (accuracy and precision) #12;- Validate EDT model as a reliable measure of habitat

  14. DoE/..A South Fork Snake RiverPalisades Wildlife Mitigation Project

    Broader source: Energy.gov (indexed) [DOE]

    habitat due to hydroelectric development at Palisades Dam; The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993. This plan recommends land...

  15. New Snake River sockeye hatchery to produce up to 1 million smolts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    later, the plight of Lonesome Larry is becoming a distant memory as the Springfield Fish Hatchery opened Sept. 6 in Idaho. More than 140 people gathered to watch the dedication...

  16. Snake rivers. The Council also believes the changes would provide greater flexibility to

    E-Print Network [OSTI]

    . The same month, the Bonneville Power Administration predicted it would lose more than $250 million spending poli- cies, the Bonneville Power Administra- tion could help relieve its financial crisis Commission's proposed Standard Market Design Rule for wholesale power markets was "seriously flawed

  17. Well Log Techniques At Snake River Plain Region (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED Jump to:Ohio: EnergyWebGenWelcome Sample

  18. Field Mapping At Snake River Plain Region (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania:57427°,Ferry County,Glass Buttes Area (DOE

  19. Reflection Survey At Snake River Plain Region (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ | Roadmap Jump to:bJumpRedSeismic Imaging, Majer,

  20. Slim Holes At Snake River Plain Region (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformation Slim HolesNewberry Caldera

  1. Ground Gravity Survey At Snake River Plain Region (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000) ExplorationAl.,OpenInformation

  2. Micro-Earthquake At Snake River Plain Geothermal Region (1976) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc Jump to:Michigan/WindOpenInformationEnergy

  3. Microearthquake surveys of Snake River plain and Northwest Basin and Range

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole Inc JumpMicroPlanet Ltd Jump to:

  4. Compound and Elemental Analysis At Snake River Plain Region (DOE GTP) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia,2005) | Open(Thompson,2006) | Open2009) |Open

  5. Core Analysis At Snake River Plain Region (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands Jump|

  6. Refraction Survey At Snake River Plain Region (DOE GTP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRayreview

  7. Flow Test At Snake River Plain Region (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOE GTP)

  8. Grouting project to protect Snake River Plain Aquifer completed ahead of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed- Deep Vadose Zoneschedule DOE

  9. Vertical Seismic Profiling At Snake River Plain Region (DOE GTP) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter Logging Jump to: navigation, searchOpen

  10. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    SciTech Connect (OSTI)

    Ashley, Paul

    2004-01-01T23:59:59.000Z

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

  11. GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE

    SciTech Connect (OSTI)

    Mikkelsen, K.; Næss, S. K.; Eriksen, H. K., E-mail: kristin.mikkelsen@astro.uio.no [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)

    2013-11-10T23:59:59.000Z

    We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3) better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N{sub par}. One of the main goals of the present paper is to determine how large N{sub par} can be, while still maintaining reasonable computational efficiency; we find that N{sub par} = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme.

  12. Geology of the upper James River area Mason County, Texas 

    E-Print Network [OSTI]

    White, Dixon Nesbit

    1961-01-01T23:59:59.000Z

    of tbe Riley foraation ~ ~ ~ ~ . ~ ~ ~ i 19 XV. Weathered surfaoo of bish' exhibiting typioal eoabbago- bead stru001zo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ ~ ~ V, Rfohera @bish ooours 1n ths. aiddlo of tho Poiat Peak shale aeabor, Tho biobera bas Man... froa the outcrop aad lies in an 0'1eFCRI$04 positions ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ VI, Point peak shale on the nest bask of Roy Crmk near the northern interseotion of Rey Creek and the Jaaes RiVsr Roadp ' ~ ~ ~ ~ ~ ~ i...

  13. SOIL MOISTURE CHARACTERISTICS IN UPPER PART OF HINDON RIVER CATCHMENT

    E-Print Network [OSTI]

    Kumar, C.P.

    of the contribution of various parts of a watershed to the ground water storage. Convenient and reliable techniques for the water demand of the vegetation, as well as for the recharge of the ground water storage. A fair into ground water aquifers. For analytical studies on soil moisture regime, critical review and accurate

  14. Geoarchaeological investigations of the upper Lampasas River, Texas

    E-Print Network [OSTI]

    Pearl, Frederic B

    1997-01-01T23:59:59.000Z

    . . . . . . . . . . . . Previous Archaeological Investigations . . The Landslide Site. The Youngsport Site Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 7 11 15 15 17 18 CHAPTER II GEOARCHAEOLOGICAL INVESTIGATIONS. 20 Bedrock Geoloay... that alluvial settings will provide us with perhaps the best chances of discovering discreet cultural events, isolated above and below by sterile sedimentary layers. By identifying potential areas of buried deposits, Black's third regional archaeological...

  15. Geology of the upper James River area Mason County, Texas

    E-Print Network [OSTI]

    White, Dixon Nesbit

    1961-01-01T23:59:59.000Z

    of tbe Riley foraation ~ ~ ~ ~ . ~ ~ ~ i 19 XV. Weathered surfaoo of bish' exhibiting typioal eoabbago- bead stru001zo ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ ~ ~ V, Rfohera @bish ooours 1n ths. aiddlo of tho Poiat Peak shale aeabor, Tho biobera bas Man... froa the outcrop aad lies in an 0'1eFCRI$04 positions ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ VI, Point peak shale on the nest bask of Roy Crmk near the northern interseotion of Rey Creek and the Jaaes RiVsr Roadp ' ~ ~ ~ ~ ~ ~ i...

  16. Acquisition of fish and wildlife habitat along Upper Yakima River

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    factsheet The Bonneville Power Admin- istration is working with the Yakama Nation to acquire and manage a 105 acre parcel in Kittitas County, Washington. BPA funds the acquisition...

  17. Resistivity sections, Upper Arkansas River Basin, Colorado | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze - Making the PathInformation Log

  18. Upper Saddle River, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperativeCROSS-VALIDATION OFNyack, New York:Saddle

  19. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994.

    SciTech Connect (OSTI)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1996-08-01T23:59:59.000Z

    Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improve red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.

  20. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS : Appendices.

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices.

  1. Coho Salmon Master Plan, Clearwater River Basin.

    SciTech Connect (OSTI)

    Nez Perce Tribe; FishPro

    2004-10-01T23:59:59.000Z

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these uncertainties, the Nez Perce Tribe proposes to utilize a phased approach for coho reintroductions. This Master Plan seeks authorization and funding to move forward to Step 2 in the Northwest Power and Conservation Council 3-Step review process to further evaluate Phase I of the coho reintroduction program, which would focus on the establishment of a localized coho salmon stock capable of enduring the migration to the Clearwater River subbasin. To achieve this goal, the Nez Perce Tribe proposes to utilize space at existing Clearwater River subbasin hatchery facilities in concert with the construction of two low-tech acclimation facilities, to capitalize on the higher survival observed for acclimated versus direct stream released coho. In addition, Phase I would document the natural productivity of localized coho salmon released in two targeted tributaries within the Clearwater River subbasin. If Phase I is successful at establishing a localized coho salmon stock in an abundance capable of filling existing hatchery space, the rates of natural productivity are promising, and the interspecific interactions between coho and sympatric resident and anadromous salmonids are deemed acceptable, then Phase II would be triggered. Phase II of the coho reintroduction plan would focus on establishing natural production in a number of Clearwater River subbasin tributaries. To accomplish this goal, Phase II would utilize existing Clearwater River subbasin hatchery facilities, and expand facilities at the Nez Perce Tribal Hatchery Site 1705 facility to rear approximately 687,700 smolts annually for use in a rotating supplementation schedule. In short, this document identifies a proposed alternative (Phase I), complete with estimates of capital, operations and maintenance, monitoring and evaluation, and permitting that is anticipated to raise average smolt replacement rates from 0.73 (current) to 1.14 using primarily existing facilities, with a limited capital investment for low-tech acclimation facilities. This increase in survival is expected to provide the opportunity for the establishm

  2. Red River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

  3. Level 2 Diagnosis and Project Inventory, Lower Snake Tributaries Prepared by: Mobrand Biometrics, Inc.

    E-Print Network [OSTI]

    Level 2 Diagnosis and Project Inventory, Lower Snake Tributaries Prepared by: Mobrand Biometrics for Almota steelhead, and Figure 2 is a combined Level 2 Diagnosis/Project Inventory for Deadman Creek

  4. Exact periodic solutions of the Liouville equation and the "snake" of density in JET

    E-Print Network [OSTI]

    Spineanu, F

    2004-01-01T23:59:59.000Z

    The "snake" is a persistent density perturbation at the rational q-surfaces after pellet injection. Together with other phenomena (density pinch and profile resiliancy) it can be traced back to the extremum of an action functional for line-vortices in 3D. In a field theoretical formulation this leads to the Liouville equation. We provide explicit method of calculating solutions to the Liouville eq. on periodic domains and obtain, in particular, localised perturbations similar to the experimentally observed "snakes".

  5. Maine Rivers Policy (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

  6. Wabash River Heritage Corridor (Indiana)

    Broader source: Energy.gov [DOE]

    The Wabash River Heritage Corridor, consisting of the Wabash River, the Little River, and the portage between the Little River and the Maumee River, is considered a protected area, where...

  7. Reducing Agricultural Nitrate Losses in the Embarras River Watershed through Bioreactors, Constructed Wetlands, and Outreach

    E-Print Network [OSTI]

    David, Mark B.

    Reducing Agricultural Nitrate Losses in the Embarras River Watershed through Bioreactors chip tile bioreactors to reduce nitrate losses in the upper Embarras River watershed in east. Three tile bioreactors will be installed in various locations in the watershed, again for determining

  8. Grid-based exploration of cosmological parameter space with Snake

    E-Print Network [OSTI]

    Mikkelsen, K; Eriksen, H K

    2012-01-01T23:59:59.000Z

    We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the "curse of dimensionality" problem plaguing standard grid-based parameter estimation simply by disregarding grid-cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings MCMC methods include 1) trivial extraction of arbitrary conditional distributions; 2) direct access to Bayesian evidences; 3) better sampling of the tails of the distribution; and 4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N_par. One of the main goals of the present paper is to determine how large N_pa...

  9. The use of snakes as symbols has been popular throughout the ages. Egyptian Pharaohs wore the likeness of a poisonous

    E-Print Network [OSTI]

    the likeness of a poisonous asp on their headdresses in the belief that this protected them from harm and gave and squeezes, causing death by suffocation. Poisonous snakes have the most specialized method of killing their prey. These snakes strike an animal and inject poison through long hollow teeth or fangs. After killing

  10. Schlumberger soundings in the Upper Raft River and Raft River Valleys,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAir Jump to: navigation,Delta Jump

  11. Passage Distribution and Federal Columbia River Power System Survival for Steelhead Kelts Tagged Above and at Lower Granite Dam, Year 2

    SciTech Connect (OSTI)

    Colotelo, Alison HA; Harnish, Ryan A.; Jones, Bryan W.; Hanson, Amanda C.; Trott, Donna M.; Greiner, Michael J.; McMichael, Geoffrey A.; Ham, Kenneth D.; Deng, Zhiqun; Brown, Richard S.; Weiland, Mark A.; Li, X.; Fu, Tao

    2014-03-28T23:59:59.000Z

    Steelhead (Oncorhynchus mykiss) populations have declined throughout their range in the last century and many populations, including those of the Snake River Basin are listed under the Endangered Species Act of 1973. The reasons for their decline are many and complex, but include habitat loss and degradation, overharvesting, and dam construction. The 2008 Biological Opinion calls for an increase in the abundance of female steelhead through an increase in iteroparity (i.e., repeat spawning) and this can be realized through a combination of reconditioning and in-river survival of migrating kelts. The goal of this study is to provide the data necessary to inform fisheries managers and dam operators of Snake River kelt migration patterns, survival, and routes of dam passage. Steelhead kelts (n = 487) were captured and implanted with acoustic transmitters and passive integrated transponder (PIT)-tags at the Lower Granite Dam (LGR) Juvenile Fish Facility and at weirs located in tributaries of the Snake and Clearwater rivers upstream of LGR. Kelts were monitored as they moved downstream through the Federal Columbia River Power System (FCRPS) by 15 autonomous and 3 cabled acoustic receiver arrays. Cabled receiver arrays deployed on the dam faces allowed for three-dimensional tracking of fish as they approached the dam face and were used to determine the route of dam passage. Overall, 27.3% of the kelts tagged in this study successfully migrated to Martin Bluff (rkm 126, as measured from the mouth of the Columbia River), which is located downstream of all FCRPS dams. Within individual river reaches, survival per kilometer estimates ranged from 0.958 to 0.999; the lowest estimates were observed in the immediate forebay of FCRPS dams. Steelhead kelts tagged in this study passed over the spillway routes (spillway weirs, traditional spill bays) in greater proportions and survived at higher rates compared to the few fish passed through powerhouse routes (turbines and juvenile bypass systems). The results of this study provide information about the route of passage and subsequent survival of steelhead kelts that migrated through the Snake and Columbia rivers from LGR to Bonneville Dam in 2013. These data may be used by fisheries managers and dam operators to identify potential ways to increase the survival of kelts during their seaward migrations.

  12. Stream Restoration in the Upper Midwest, U.S.A. Gretchen G. Alexander1

    E-Print Network [OSTI]

    Allan, David

    Stream Restoration in the Upper Midwest, U.S.A. Gretchen G. Alexander1 and J. David Allan1,2 Abstract Restoration activities intended to improve the condition of streams and rivers are widespread types of activities and their effectiveness. We developed a database of 1,345 stream restoration

  13. FY 2007 Progress Report for Upper Columbia United Tribes' Regional Coordination.

    SciTech Connect (OSTI)

    Michel, D.R.

    2008-12-15T23:59:59.000Z

    This report is a summary of activities conducted over the fiscal year 2007 contract period to fulfill requirements to coordinate Upper Columbia United Tribes (UCUT) interests within the Columbia River Basin. This coordination was specific to the implementation of portions of the Integrated Fish and Wildlife Program within the purview of the Northwest Power and Conservation Council and Bonneville Power Administration.

  14. Pecos River Compact (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

  15. Canadian River Compact (Texas)

    Broader source: Energy.gov [DOE]

    The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by the member states, the Compact was subsequently...

  16. First test of the Siberian snake magnet arrangement to overcome depolarizing resonances in a circular accelerator

    SciTech Connect (OSTI)

    Krisch, A.D.; Mane, S.R.; Raymond, R.S.; Roser, T.; Stewart, J.A.; Terwilliger, K.M.; Vuaridel, B. (Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109 (US)); Goodwin, J.E.; Meyer, H.; Minty, M.G.; and others

    1989-09-11T23:59:59.000Z

    We studied the {ital G}{gamma}=2 imperfection depolarizing resonance at 108 MeV, both with and without a Siberian snake, by varying the resonance strength while storing beams of 104- and 120-MeV polarized protons at the Indiana University Cooler Ring. We used a cylindrically symmetric polarimeter to simultaneously study the effect of a depolarizing resonance on both the vertical and radial components of the polarization. AT 104 MeV we found that the Siberian snake eliminated the effect of the nearby {ital G}{gamma}=2 depolarizing resonance.

  17. Platte River Cooperative Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY, CO, DOE...

  18. SNAKES manipulator and ARD sluicer testing -- April 1997

    SciTech Connect (OSTI)

    Berglin, E.J.

    1997-05-29T23:59:59.000Z

    Long reach arms represent one of the options available for deployment of end effectors which can be used in the retrieval of radioactive waste, from the Hanford single shell tanks. The versatility of an arm based deployment system is such that it has the potential to improve the performance of a wide range of end effectors compared with stand-alone or other deployment methods. The long term reliability and availability of the deployment system is central to the timely completion of a waste retrieval program. However, concerns have been expressed over the dynamic performance of long reach arms and it is essential that an arm based system can cope with operational dynamic loads generated by end effectors. The test program conducted set out to measure static and dynamic loads and responses from a representative arm and sluicer, with the objective of extrapolating the data to a long reach arm system, that can be used for in-tank waste retrieval. As an arm with an appropriate reach was not available, the test program was undertaken to measure dynamic characteristics of a Magnox Electric 18 ft multi-link, hydraulically actuated SNAKES manipulator. This is the longest reach unit in service, albeit only one third of the 50 ft length required for in-tank waste retrieval. In addition operational performance and loading measurements were obtained from a low pressure confined system sluicer under development by ARD Environmental, to add to the end effector data base. When subject to impulse loading, the arm was found to behave in a repeatable manner having fundamental natural frequencies in the vertical and transverse directions of 1 Hz. There were also a large number of higher natural frequencies measured up to 100 Hz.

  19. Columbia River Treaty History and 2014/2024 Review

    SciTech Connect (OSTI)

    None

    2009-02-01T23:59:59.000Z

    The Columbia River, the fourth largest river on the continent as measured by average annual ?ow, generates more power than any other river in North America. While its headwaters originate in British Columbia, only about 15 percent of the 259,500 square miles of the Columbia River Basin is actually located in Canada. Yet the Canadian waters account for about 38 percent of the average annual volume, and up to 50 percent of the peak ?ood waters, that ?ow by The Dalles Dam on the Columbia River between Oregon and Washington. In the 1940s, of?cials from the United States and Canada began a long process to seek a joint solution to the ?ooding caused by the unregulated Columbia River and to the postwar demand for greater energy resources. That effort culminated in the Columbia River Treaty, an international agreement between Canada and the United States for the cooperative development of water resources regulation in the upper Columbia River Basin. It was signed in 1961 and implemented in 1964.

  20. Biostratigraphy of the upper cretaceous Austin Group, Travis County, Texas

    E-Print Network [OSTI]

    Harris, William Maurice

    1982-01-01T23:59:59.000Z

    Formation is on the San Gabriel River at the Jonah-Hutto roadcrossing in Williamson County. At the type locality, the upper 35 feet of the Jonah is exposed; the lower 50 feet is exposed two-thirds of a mile upstream. 1he Jonah Formation ranges fr om 120... Forma- tion at Vinson Creek is 25 feet thick and the limestone beds are skeletal packstones. The thinning of the Jonah Formation is caused by the positive influence of the San Marcos Arch during deposition. 20 The contact between the Jonah Formation...

  1. Development of a forestry plan for the upper catchment of the South Esk to provide options for socio-economic benefits and taking account of stakeholder participation 

    E-Print Network [OSTI]

    Lew, Siew Yan

    for landowners and land managers within the upper catchment, as well as develop a preliminary forestry plan with suggestions about appropriate planting models to be applied in different areas within the upper catchment of the South Esk river, and to study...

  2. MAGNETIC DESIGN OF A SUPERCONDUCTING AGS SNAKE* , A. Luccio, G. Morgan+

    E-Print Network [OSTI]

    Gupta, Ramesh

    . Power, T. Roser, E. Willen, Brookhaven National Laboratory, Upton, NY 11973 USA M. Okamura, RIKEN of the beam on its orbit through the Snake, a careful balancing of the coil parameters is necessary, a solenoid winding is planned inside the main coils to compensate for the axial component of the field

  3. A Study of Snake-like Locomotion Through the Analysis of a Flexible Robot Model

    E-Print Network [OSTI]

    Giancarlo Cicconofri; Antonio DeSimone

    2014-09-13T23:59:59.000Z

    We examine the problem of snake-like locomotion by studying a system consisting of a planar inextensible elastic rod that is able to control its spontaneous curvature. Using a Cosserat model we derive, through variational principles, the equations of motion for two special cases: one in which the system is confined inside a frictionless channel, and one in which it is placed in an anisotropic frictional environment, modeling the dynamical setting of the slithering of snakes on flat surfaces. The presence of constraints in both cases leads to non-standard boundary conditions, that allow us to close the equations of motion reducing them to a differential and an integro-differential equation, respectively, for one end point (the tail) of the active rod. For the snake-like case we also provide analytic solutions for a special class of motions. We highlight the role of the spontaneous curvature in the pushing (and the steering, in the snake-like setting) needed to power locomotion. Comparisons with available experiments confirm that the model is able to capture many of the essential findings in the zoological literature. The complete solvability and the existence of analytic solutions offers a tool that may prove valuable for the design of bio-inspired soft robots.

  4. DESIGN AND MODELING OF A SERIES ELASTIC ELEMENT FOR SNAKE ROBOTS

    E-Print Network [OSTI]

    Choset, Howie

    , and it is able to achieve mechanical compliance and energy storage that is an order of magnitude greater than needs to have excellent energy storage and ultimate strength, fit in an extremely small de- sign space, pipes, poles, and trees. This makes snake robots applicable to a diverse set of tasks such as urban

  5. Geothermal significance of magnetotelluric sounding in the eastern Snake

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell Testing and EvaluationRiver

  6. Design and control of a gravity-assisted underactuated snake robot with application to aircraft wing assembly

    E-Print Network [OSTI]

    Roy, Binayak, 1979-

    2008-01-01T23:59:59.000Z

    We present the design and control of a hyper-articulated robot arm comprising just a few active joints driving a multitude of passive joints. This underactuated arm design was motivated by the need for a compact snake-like ...

  7. Saving a Dwindling River

    E-Print Network [OSTI]

    Wythe, Kathy

    2007-01-01T23:59:59.000Z

    information on this research is available by downloading TWRI Technical Report 291, ?Reconnaissance Survey of Salt Sources and Loading into the Pecos River,? at http://twri.tamu.edu/reports.php. The research team has also compared flow and salinity data from... Water Act, Section 319 from the U.S. Environmental Protection Agency. ?The river?s importance?historically, biologically, hydrologically and economically?to the future of the entire Pecos River Basin and the Rio Grande is huge,? said Will Hatler, project...

  8. Reclamation of abandoned mined lands along th Upper Illinois Waterway using dredged material

    SciTech Connect (OSTI)

    Van Luik, A; Harrison, W

    1982-01-01T23:59:59.000Z

    Sediments were sampled and characterized from 28 actual or proposed maintenance-dredging locations in the Upper Illinois Waterway, that is, the Calumet-Sag Channel, the Des Plaines River downstream of its confluence with the Calumet-Sag Channel, and the Illinois River from the confluence of the Kankakee and Des Plaines rivers to Havana, Illinois. Sufficient data on chemical constituents and physical sediments were obtained to allow the classification of these sediments by currently applicable criteria of the Illinois Environmental Protection Agency for the identification of hazardous, persistent, and potentially hazardous wastes. By these criteria, the potential dredged materials studied were not hazardous, persistent, or potentially hazardous; they are a suitable topsoil/ reclamation medium. A study of problem abandoned surface-mined land sites (problem lands are defined as being acidic and/or sparsely vegetated) along the Illinois River showed that three sites were particularly well suited to the needs of the Corps of Engineers (COE) for a dredged material disposal/reclamation site. Thes sites were a pair of municipally owned sites in Morris, Illinois, and a small corporately owned site east of Ottawa, Illinois, and adjacent to the Illinois River. Other sites were also ranked as to suitability for COE involvement in their reclamation. Reclamation disposal was found to be an economically competitive alternative to near-source confined disposal for Upper Illinois Waterway dredged material.

  9. Sabine River Compact (Multiple States)

    Broader source: Energy.gov [DOE]

    The Sabine River Compact Commission administers the Sabine River Compact to ensure that Texas receives its equitable share of quality water from the Sabine River and its tributaries as apportioned...

  10. Review of historical monitoring data on Techa River contamination

    SciTech Connect (OSTI)

    Vorobiova, M.I.; Degteva, M.O.; Burmistrov, D.S.; Safronova, N.G.; Kozheurov, V.P. (Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation)); Anspaugh, L.R. (Univ. of Utah, Salt Lake City, UT (United States)); Napier, B.A. (Pacific Northwest National Lab., Richland, WA (United States))

    1999-06-01T23:59:59.000Z

    The Mayak Production Association was the first Russian site for the production and separation of plutonium. The extensive increase in plutonium production during 1948--1955, as well as the absence of reliable waste-management technology, resulted in significant releases of liquid radioactive effluent into the rather small Techa River. This resulted in chronic external and internal exposure of about 30,000 residents of riverside communities; these residents from the cohort of an epidemiologic investigation. Analysis of the available historical monitoring data indicates that the following reliable data sets can be used for reconstruction of doses received during the early periods of operation of the Mayak Production Association: temporal pattern of specific beta activity of river water for several sites in the upper Techa region since July 1951; average annual values of specific beta activity of river water and bottom sediments as a function of downstream distance for the whole river since 1951; external gamma-exposure rates near the shoreline as a function of downstream distance for the whole Techa River since 1952; and external gamma-exposure rate as a function of distance from the shoreline for several sites in the upper and middle Techa since 1951.

  11. River Edge Redevelopment Zone (Illinois)

    Broader source: Energy.gov [DOE]

    The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

  12. Geology of the South Mason-Llano River area, Texas 

    E-Print Network [OSTI]

    Duvall, Victor Martin

    1953-01-01T23:59:59.000Z

    ILLUSTRATIONS Plate Page I. Geologic Map of the South Mason-Llano River Area, Mason County, Texas. . . . . II. Structure secttons. pocket pocket III. Index map of the South Mason-Llano River Area, Mason County, Texas. following page iv IV. Fig. 1: Tufa... VIII. Fig. 1: Pebbles in basal Hickory sand- stone. Fig. 2: Intraformational conglomerate in upper Hickory. following page 23 IX. Fig. 1: Shale xone in middle Hickory. . . Fig. 2: Cross-bedding in Hickory sand- stone. following page 24 X. Fig. 1...

  13. Initial RattleSnake Calculations of the Hot Zero Power BEAVRS

    SciTech Connect (OSTI)

    M. Ellis; J. Ortensi; Y. Wang; K. Smith; R.C. Martineau

    2014-01-01T23:59:59.000Z

    The validation of the Idaho National Laboratory's next generation of reactor physics analysis codes is an essential and ongoing task. The validation process requires a large undertaking and includes detailed, realistic models that can accurately predict the behavior of an operational nuclear reactor. Over the past few years the INL has developed the RattleSnake application and supporting tools on the MOOSE framework to perform these reactor physics calculations. RattleSnake solves the linearized Boltzmann transport equation with a variety of solution meth­ ods. Various traditional reactor physics benchmarks have already been performed, but a more realistic light water reactor comparison was needed to solidify the status of the code and deter­ mine its fidelity. The INL team decided to use the Benchmark for Evaluation and Validation of Reactor Simulations, which was made available in early 2013. This benchmark is a one­ of-a-kind document assembled by the Massachusetts Institute of Technology, which includes two cycles of detailed, measured PWR operational data. The results from this initial study of the hot zero power conditions show the current INL analysis procedure with DRAGON4 cross section preparation and using the low order diffusion solver in RattleSnake for the whole core calculations yield very encouraging results for PWR analysis. The radial assembly power distributions, radial detector measurements and control rod worths were computed with good accuracy. The computation of the isothermal temperature coefficients of reactivity require further study.

  14. Comparative assessment of three approaches for deriving stream power plots along long profiles in the upper Hunter

    E-Print Network [OSTI]

    Comparative assessment of three approaches for deriving stream power plots along long profiles in the upper Hunter River catchment, New South Wales, Australia Vikrant Jain a,*, Nicholas Preston b , Kirstie, Australia b School of Earth Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New

  15. Updates to topics discussed in "Snake River SpillTransport Review" ISAB (20085) Howard Schaller and Steve Haeseker

    E-Print Network [OSTI]

    accountedfor: 60% 48% 73% Smolt survival #12;0.550.6 0.65 0.7 0.75 0.8 5 10 15 20 0 10 20 30 40 50 0.15 0.25 0.35 0.45 0.55 0.65 0.75 5 10 15 20 0 10 20 30 40 50 wild Chinook wild & hatchery steelhead LGRMCN Water

  16. Mineral Chemistry of Basalts Recovered from Hotspot Snake River Scientific Drilling Project, Idaho: Source and Crystallization Characteristics

    E-Print Network [OSTI]

    Seamons, Kent E.

    between these two sources (deep or shallow mantle). Whole rock compositions were corrected for plagioclase: Source and Crystallization Characteristics Richard W. Bradshaw A thesis submitted to the faculty, Idaho: Source and Crystallization Characteristics Richard W. Bradshaw Department of Geological Sciences

  17. Pollution of the River Niger and its main tributaries

    SciTech Connect (OSTI)

    Nwokedi, G.I.C.; Obodo, G.A. (Univ. of Nigeria, Nsukka (Nigeria))

    1993-08-01T23:59:59.000Z

    The River Niger system, with a length of about 4200 kilometers, and a discharge volume of 190 cubic kilometers, per year is the third largest river in Africa, and the largest in West Africa. It serves as an important waterway for the transportation of goods and provides rich agricultural flood basins for the cultivation of food and vegetables. Also it is a major source of animal proteins in form of fishes, snails and other aquatics. Above all the River and its tributaries represent the main source of domestic water supply for the rural communities, and water for irrigation. Therefore there is a need to establish the nature and present levels of pollutants in the river, and the contribution made by the tributaries to the gross pollution level. A number of studies have been reported. Martins reported on the geochemistry of the River Niger while Nriagu; Livingstone; and Imevbore provided some chemical data on the upper reaches around and above its confluence with River Benue at Lokoja. Ajayi and Osibanjo reported on the chemical properties of some tributaries above the confluence of the Niger and the Benue. So far no work has been reported on the lower reaches of the Niger where contributions of the Benue and other major tributaries are significant, and where there are large settlements on its banks and the banks of the tributaries. This work aims at establishing base-line levels of the various pollutants and their sources. 12 refs., 1 fig., 2 tabs.

  18. Upper arun hydroelectric project feasibility study (phase 1). Volume 1. Report. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1987-09-01T23:59:59.000Z

    The report was prepared for Nepal Electricity Authority (NEA). The primary objective of the study was to compare several alternative development schemes to drive an optimum development plan for exploiting the hydroelectric potential of the Upper Arun River, to be further investigated in phase 2 of the feasibility study. The scope of work included reviewing the original project concepts establishing development alternatives investigations in the following fields: Toposurvey Mapping; Geology Geotechnics; Hydrology; Power Market; and Plan formulations.

  19. Extending the Upper Temperature Limit for Life

    E-Print Network [OSTI]

    Lovley, Derek

    ) un- der N2-CO2 (80:20) in sealed culture tubes that con- tained formate (10 mM) as the electron donor that permit strain 121 to grow at such high temperatures are unknown. It is gen- erally assumed that the upperExtending the Upper Temperature Limit for Life Kazem Kashefi and Derek R. Lovley* The upper

  20. On tropospheric rivers

    E-Print Network [OSTI]

    Hu, Yuanlong, 1964-

    2002-01-01T23:59:59.000Z

    In this thesis, we investigate atmospheric water vapor transport through a distinct synoptic phenomenon, namely, the Tropospheric River (TR), which is a local filamentary structure on a daily map of vertically integrated ...

  1. Upper Los Alamos Canyon Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon TalksDigitalRevisionof EnergyUpper Los

  2. EIS-0500: Crystal Springs Hatchery Program; Bingham, Custer, and Lemhi Counties, Idaho

    Broader source: Energy.gov [DOE]

    DOE’s Bonneville Power Administration is preparing an EIS that will assess potential environmental impacts of funding a proposal of the Shoshone-Bannock Tribes of the Fort Hall Reservation of Idaho to construct and operate a hatchery for spring/summer Chinook salmon in the Salmon River subbasin and Yellowstone cutthroat trout in the Upper Snake River subbasin on Fort Hall Reservation.

  3. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  4. Yellowstone River Compact (North Dakota)

    Broader source: Energy.gov [DOE]

    The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as...

  5. P. Julien S. Ikeda River Engineering and

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 P. Julien S. Ikeda River Engineering and Stream Restoration Pierre Y. Julien Hong Kong - December 2004 River Engineering and Stream Restoration I - Stream Restoration Objectives Brief overview of River Engineering and Stream Restoration with focus on : 1. River Equilibrium; 2. River Dynamics; 3. River

  6. Pecos River Ecosystem Monitoring Project

    E-Print Network [OSTI]

    McDonald, A.; Hart, C.

    2004-01-01T23:59:59.000Z

    TR- 272 2004 Pecos River Ecosystem Monitoring Project C. Hart A. McDonald Texas Water Resources Institute Texas A&M University - 146 - 2003 Pecos River Ecosystem Monitoring Project... Charles R. Hart, Extension Range Specialist, Fort Stockton Alyson McDonald, Extension Assistant – Hydrology, Fort Stockton SUMMARY The Pecos River Ecosystem Project is attempting to minimize the negative impacts of saltcedar on the river ecosystem...

  7. Rio Grande River

    E-Print Network [OSTI]

    Hills Photo Shop

    2011-09-05T23:59:59.000Z

    FORKS BIRDBEAR-NISKU JEFFERSON GROUP DUPEROW O (IJ o BEAVER HILL LAKE GR UP ELK POINT GROUP SOURIS RIVER Ist. RED BED DAWSON BAY 2ll(IRED BED PRAIRIE EVAP WI NI ASHERN INTERLAKE STONY MOUNTAIN RED RIVER WINN IP EG Figure 3... and is bounded by the Sioux Arch, the Black Hills Uplift, the Miles City Arch, and the Bowdoin Dome. The structural trends within the basin parallel the major structural trends of the Rocky Mountain Belt. The Williston Basin is characterized by gently...

  8. Muddy River Restoration Project Begins

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Muddy River Restoration Project Begins Page 5 #12;2 YANKEE ENGINEER February 2013 Yankee Voices of the Muddy River Restoration project. Inset photo: Flooding at the Muddy River. Materials provided by Mike Project Manager, on the passing of his father in law, Francis James (Jim) Murray, Jan. 9. ... to Laura

  9. FLOOD WARNING SYSTEM JOHNSTONE RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    Warning Centre in Brisbane. The system provides early warning of heavy rainfall and river risesFLOOD WARNING SYSTEM for the JOHNSTONE RIVER This brochure describes the flood warning system ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings and River Height Bulletins Flood

  10. FLOOD WARNING SYSTEM NERANG RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    ALERT System The Nerang River ALERT flood warning system was completed in the early 1990's as a coFLOOD WARNING SYSTEM for the NERANG RIVER This brochure describes the flood warning system operated Nerang ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings and River Height Bulletins

  11. Biological Survey of the Upper Purgatoire Watershed

    E-Print Network [OSTI]

    Biological Survey of the Upper Purgatoire Watershed Las Animas County, CO John Carney Colorado ...............................................................................................................9 Management Urgency Ranks ........................................................................................................10 POTENTIAL CONSERVATION SITE PLANNING BOUNDARIES........................................12 Off

  12. Upper Cumberland EMC- Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Upper Cumberland Electric Membership Corporation (UCEMC), in collaboration with the Tennessee Valley Authority, offers incentives for its customers to purchase and install energy efficient...

  13. Bedrock erosion in the lower Big Wood River channel, southcentral Idaho

    SciTech Connect (OSTI)

    Maley, T.S.; Oberlindacher, P. (Bureau of Land Management, Boise, ID (United States))

    1993-04-01T23:59:59.000Z

    The Big Wood River, which is fed from the mountains to the north of the Snake River Plain, cuts through 0.8 m.y. old basalt in an area north and east of Shoshone, Idaho. The basalt channel carved by the Big Wood River exhibits remarkable and unusual bedrock erosional features. Approximately 10,000 years ago, nearby Black Butte shield volcano erupted basaltic lave which rerouted the Big Wood River. At the time the new river channel formed 10,000 years ago, alpine glaciers in the mountains were also beginning to melt. High flows of water from the melting glaciers during the next few thousand years carried large sediment loads and were instrumental in developing the spectacular potholes now found in the channel. Most of the scouring agents are pebbles and cobbles derived from quartzite, granitic, and gneissic rocks. As potholes began to develop, they were closely spaced and generally less than 1 m apart. However, as the potholes enlarged and expanded both horizontally and vertically, they coalesced with one another. The merging process occurred when the walls of two or more adjacent potholes were breached by the outward expansion of each pothole. The deeper of the two potholes captured the pebbles of the adjacent pothole. When pebbles are captured, pothole growth is terminated and the more shallow pothole was gradually cannibalized. All of the features within the channel are overprinted with a strong asymmetry caused by the current-driven pebbles against the upstream side of the features. Consequently, the upstream side of the features tends to be smooth, convex and rounded; whereas, the downstream side tends to be concave with the leading edge of the feature pointing in the downstream direction.

  14. 100 Area Columbia River sediment sampling

    SciTech Connect (OSTI)

    Weiss, S.G. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-09-08T23:59:59.000Z

    Forty-four sediment samples were collected from 28 locations in the Hanford Reach of the Columbia River to assess the presence of metals and man-made radionuclides in the near shore and shoreline settings of the Hanford Site. Three locations were sampled upriver of the Hanford Site plutonium production reactors. Twenty-two locations were sampled near the reactors. Three locations were sampled downstream of the reactors near the Hanford Townsite. Sediment was collected from depths of 0 to 6 in. and between 12 to 24 in. below the surface. Samples containing concentrations of metals exceeding the 95 % upper threshold limit values (DOE-RL 1993b) are considered contaminated. Contamination by arsenic, chromium, copper, lead, and zinc was found. Man-made radionuclides occur in all samples except four collected opposite the Hanford Townsite. Man-made radionuclide concentrations were generally less than 1 pCi/g.

  15. Neuron, Vol. 32, 173176, October 25, 2001, Copyright 2001 by Cell Press Of Snakes, Snails, and Surrogates

    E-Print Network [OSTI]

    Kasher, Roni

    by four disulfides. The "long" -neurotoxins,of acetylcholine receptors (Corringer et al., 2000; KarlinNeuron, Vol. 32, 173­176, October 25, 2001, Copyright 2001 by Cell Press Previews Of Snakes, Snails's venom contains the tutes. A neuronal nicotinic receptor that binds -bun- garotoxin is a homopentamer

  16. Savannah River Site Robotics

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  17. Savannah River Site Robotics

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

  18. Rainfall-River Forecasting

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

  19. Annual Report on Wildlife Activities, September 1985-April 1986, Action Item 40.1, Columbia River Basin Fish and Wildlife Program.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1986-04-01T23:59:59.000Z

    This annual report addresses the status of wildlife projects Bonneville Power Administration (BPA) has implemented from September 1985 to April 1986. This report provides a brief synopsis, review, and discussion of wildlife activities BPA has undertaken. BPA's effort has gone towards implementing wildlife planning. This includes measure 1004 (b)(2), loss statements and measure 1004 (b)(3), mitigation plans. Loss statements have been completed for 14 facilities in the Basin with 4 additional ones to be completed shortly. Mitigation plans have been completed for 5 hydroelectric facilities in Montana. The Northwest Power Planning Council is presently considering two mitigation plans (Hungry Horse and Libby) for amendment into the Program. Currently, mitigation plans are being prepared for the 8 Federal hydroelectric facilities in the Willamette River Basin in Oregon, Grand Coulee Dam in the state of Washington, and Palisades Dam on the Snake River in Idaho.

  20. Hydrodynamic Simulation of the Columbia River, Hanford Reach, 1940--2004

    SciTech Connect (OSTI)

    Waichler, Scott R.; Perkins, William A.; Richmond, Marshall C.

    2005-06-15T23:59:59.000Z

    Many hydrological and biological problems in the Columbia River corridor through the Hanford Site require estimates of river stage (water surface elevation) or river flow and velocity. Systematic collection of river stage data at locations in the Hanford Reach began in 1991, but many environmental projects need river stage information at unmeasured locations or over longer time periods. The Modular Aquatic Simulation System 1D (MASS1), a one-dimensional, unsteady hydrodynamic and water quality model, was used to simulate the Columbia River from Priest Rapids Dam to McNary Dam from 1940 to 2004, providing estimates of water surface elevation, volumetric flow rate, and flow velocity at 161 locations on the Hanford Reach. The primary input data were bathymetric/topographic cross sections of the Columbia River channel, flow rates at Priest Rapids Dam, and stage at McNary Dam. Other inputs included Yakima River and Snake River inflows. Available flow data at a gaging station just below Priest Rapids Dam was mean daily flow from 1940 to 1986 and hourly thereafter. McNary dam was completed in 1957, and hourly stage data are available beginning in 1975. MASS1 was run at an hourly timestep and calibrated and tested using 1991--2004 river stage data from six Hanford Reach locations (areas 100B, 100N, 100D, 100H, 100F, and 300). Manning's roughness coefficient in the Reach above each river recorder location was adjusted using an automated genetic algorithm and gradient search technique in three separate calibrations, corresponding to different data subsets, with minimization of mean absolute error as the objective. The primary calibration was based on 1999, a representative year, and included all locations. The first alternative calibration also used all locations but was limited in time to a high-flow period during spring and early summer of 1997. The second alternative calibration was based on 1999 and included only 300 Area stage data. Model goodness-of-fit for all years with data was high in the primary calibration and indicated little bias caused by selecting 1999. The alternative calibrations led to improved goodness-of-fit for their limited time and locations, but degraded goodness-of-fit overall. Overall, the simulations were very accurate and even highlighted some probable data problems, as evidenced by systematic shifts in the data. Further improvements in simulating the historic period would depend on correcting these inferred data problems. For all years and locations, the mean absolute error in the primary calibration was 14.8 cm, the mean error was 1 mm, and model efficiency was 0.988. The MASS1 output for 1940--2004 can be used to reconstruct historical river elevations at Hanford or to build scenarios of future river elevations for solving environmental problems such as groundwater-river interaction or fish habitat inventories. Model output and additional processing services are available from the authors. Longer-term scenarios extending more than a few decades from now should also consider the impacts of climate change and reservoir operation change. Once defined, these impacts could be used to drive new simulations with MASS1.

  1. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2013-03-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  2. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  3. Florida Nuclear Profile - Crystal River

    U.S. Energy Information Administration (EIA) Indexed Site

    Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  4. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  5. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  6. South Carolina Scenic Rivers Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The goal of the Scenic Rivers Act is to protect selected rivers or river segments of the State with outstanding scenic, recreational, geologic, botanical, fish, wildlife, historic, or cultural...

  7. Ohio River Greenway Development Commission (Indiana)

    Broader source: Energy.gov [DOE]

    The Ohio River Greenway Development Commission administers the Ohio River Greenway Project, which is a park along a 7-mile stretch of the Ohio River. The Commission developed a master plan for the...

  8. Savannah River National Laboratory (SRNL) Environmental Sciences...

    Office of Environmental Management (EM)

    Savannah River National Laboratory (SRNL) Environmental Sciences and Biotechnology Support of Waste Isolation Pilot Plant (WIPP) Savannah River National Laboratory (SRNL)...

  9. Independent Activity Report, Washington River Protection Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington River Protection Solutions, LLC - October 2011 October 2011 Industrial Hygiene Surveillance of the Washington River Protection Solutions, LLC Industrial Hygiene...

  10. Enforcement Letter, Westinghouse Savannah River Company - November...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Site On November 14, 2003, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Westinghouse Savannah River Company related to...

  11. Independent Oversight Activity Report, Savannah River Site -...

    Office of Environmental Management (EM)

    Activity Report, Savannah River Site - February 2014 February 2014 Operational Awareness Visit of the Savannah River Site HIAR-SRS-2014-02-25 This Independent Activity...

  12. Independent Oversight Inspection, Savannah River Site - January...

    Energy Savers [EERE]

    2010 More Documents & Publications Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 Enterprise Assessments Review, Savannah River Site 2014...

  13. Great River (1973)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite Reactor 'In the- EnergyGreat-River

  14. area upper engadine: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Niles; Adam Pease 2001-01-01 18 An Upper Bound on Overflow Probability in Transient Source Systems Engineering Websites Summary: An Upper Bound on Overflow Probability in...

  15. FLOOD WARNING SYSTEM HAUGHTON RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfall and river rises in the catchment and enables moreFLOOD WARNING SYSTEM for the HAUGHTON RIVER This brochure describes the flood warning system Flooding Flood Forecasting Local Information Haughton ALERT System Flood Warnings and Bulletins

  16. FLOOD WARNING SYSTEM BURDEKIN RIVER

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfall and river rises in the catchment below the DamFLOOD WARNING SYSTEM for the BURDEKIN RIVER This brochure describes the flood warning system Local Information Burdekin ALERT System Flood Warnings and Bulletins Interpreting Flood Warnings

  17. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    SciTech Connect (OSTI)

    Geist, David R.

    1999-05-01T23:59:59.000Z

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to year. The tendency to spawn in clusters suggests fall chinook salmon's use of spawning habitat is highly selective. Hydraulic characteristics of the redd clusters were significantly different than the habitat surrounding them. Velocity and lateral slope of the river bottom were the most important habitat variables in predicting redd site selection. While these variables explained a large proportion of the variance in redd site selection (86 to 96%), some unmeasured factors still accounted for a small percentage of actual spawning site selection. Chapter three describes the results from an investigation into the hyporheic characteristics of the two spawning areas studied in chapter two. This investigation showed that the magnitude and chemical characteristics of hyporheic discharge were different between and within two spawning areas. Apparently, fall chinook salmon used chemical and physical cues from the discharge to locate spawning areas. Finally, chapter four describes a unique method that was developed to install piezometers into the cobble bed of the Columbia River.

  18. Hood River Passive House

    SciTech Connect (OSTI)

    Hales, D.

    2014-01-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  19. Updated flood frequencies and a canal breach on the upper Klamath River

    E-Print Network [OSTI]

    Fahey, Dan

    2006-01-01T23:59:59.000Z

    developments for hydroelectric power and irrigation furtherPower Canal and Slope Failure December 2005 and Coordination with Agencies at the Klamath Hydroelectricpower demands, the higher percentage at the gauge below the JC Boyle hydroelectric

  20. Gunboat and musket: Civil War on the upper Mississippi River, 1861-1862 

    E-Print Network [OSTI]

    Koch, Karl William

    1971-01-01T23:59:59.000Z

    adviser to Governor Yates, arrived to arrange the transfer of the 10, 000 35 Adamson, Rebel lion in Missouri, 32. 21 36 spare arms to Illinois. Stokes informed Lyon that the steamer City of Alton was just upriver waiting to come down for the pickup... the steamer, it was discovered with horror that the tremendous weight had grounded her. Union troops hurriedly shif ted 200 crates and the ship finally floated free. As his craft drifted 36 Ibid. , 34. Ibid. , 35. Ib id. , 36. 22 into the channel...

  1. Rubber tappers of the Upper Juruá River, Brazil: the making of a forest peasant economy

    E-Print Network [OSTI]

    Barbosa de Almeida, Mauro William

    1993-03-16T23:59:59.000Z

    This thesis studies the forest labour process of seringueiros (rubber tappers) in the contemporary Amazon. It investigates labour processes from a Marxist anthropological perspective, focusing on value and exploitation on the capitalist periphery...

  2. NOAA Technical Memorandum ERL GLERL-24 UPPER ST. LAWRENCE RIVER HYDRAULIC TRANSIENT MODEL

    E-Print Network [OSTI]

    of the St. Lawrence Seaway in 1959. Operation of the power dam is governed by the water level in Lake interests of national and international power, navigation, recreation, industrial, and domestic users

  3. Evaluation of shrub encroachment and brush control on water availability in the Upper Guadalupe River watershed 

    E-Print Network [OSTI]

    Afinowicz, Jason David

    2004-09-30T23:59:59.000Z

    lesser effects on hydrology than other criteria. Large quantities of deep recharge simulated by the model raise questions concerning measurement of ET in the Edwards Plateau region and the extent of deep water recharge to the Trinity Aquifer....

  4. An early history of pure shear in the upper plate of the raft river

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo,TransmissionOperations atmetamorphic

  5. EA-1367: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    White Sturgeon Mitigation and Restoration in the Columbia & Snake River Upstream from Bonneville Dam

  6. EA-1367: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam, Washington

  7. Bruce A. Measure Dick Wallace

    E-Print Network [OSTI]

    of Snake River migrants that were collected and transported from mainstem Snake River hydropower dams survival for Snake River yearling Chinook salmon and steelhead through the hydropower system (Snake River hydropower system survival for yearling Chinook was 54.8%, which is higher than the average of 49

  8. Upper Mahiao Binary GEPP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperativeCROSS-VALIDATION OF SWERA'sUpperUpperMahiao

  9. SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY

    E-Print Network [OSTI]

    Georgia, University of

    OF THE SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY NATIONAL of the Savannah River Site National Environmental Research Park Program Publication number: SRO-NERP-2S Printed OF THE SAVANNAH RIVER SITE BY CHARLES E. DAVIS AND LAURA L. JANECEK A PUBLICATION OF THE SAVANNAH RIVER SITE

  10. The Pecos River Ecosystem Project Progress Report

    E-Print Network [OSTI]

    Hart, C.

    planting saltcedar for stream bank erosion control along such rivers as the Pecos River in New Mexico. The plant has spread down the Pecos River into Texas and is now known to occur along the river south of Interstate 10. More recently the plant has become...

  11. Grays River Watershed and Biological Assessment Final Report 2006.

    SciTech Connect (OSTI)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04T23:59:59.000Z

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  12. Grays River Watershed and Biological Assessment, 2006 Final Report.

    SciTech Connect (OSTI)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01T23:59:59.000Z

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

  13. The Upper Atmosphere of HD17156b

    E-Print Network [OSTI]

    T. T. Koskinen; A. D. Aylward; S. Miller

    2008-11-28T23:59:59.000Z

    HD17156b is a newly-found transiting extrasolar giant planet (EGP) that orbits its G-type host star in a highly eccentric orbit (e~0.67) with an orbital semi-major axis of 0.16 AU. Its period, 21.2 Earth days, is the longest among the known transiting planets. The atmosphere of the planet undergoes a 27-fold variation in stellar irradiation during each orbit, making it an interesting subject for atmospheric modelling. We have used a three-dimensional model of the upper atmosphere and ionosphere for extrasolar gas giants in order to simulate the progress of HD17156b along its eccentric orbit. Here we present the results of these simulations and discuss the stability, circulation, and composition in its upper atmosphere. Contrary to the well-known transiting planet HD209458b, we find that the atmosphere of HD17156b is unlikely to escape hydrodynamically at any point along the orbit, even if the upper atmosphere is almost entirely composed of atomic hydrogen and H+, and infrared cooling by H3+ ions is negligible. The nature of the upper atmosphere is sensitive to to the composition of the thermosphere, and in particular to the mixing ratio of H2, as the availability of H2 regulates radiative cooling. In light of different simulations we make specific predictions about the thermosphere-ionosphere system of HD17156b that can potentially be verified by observations.

  14. Upper bounds for Steklov eigenvalues on surfaces

    E-Print Network [OSTI]

    Girouard, Alexandre

    2012-01-01T23:59:59.000Z

    We give explicit isoperimetric upper bounds for all Steklov eigenvalues of a compact orientable surface with boundary, in terms of the genus, the length of the boundary, and the number of boundary components. Our estimates generalize a recent result of Fraser-Schoen, as well as the classical inequalites obtained by Hersch-Payne-Schiffer, whose approach is used in the present paper.

  15. POSTGRADUATE Upper Level, Otto Beit Building

    E-Print Network [OSTI]

    Jarrett, Thomas H.

    FUNDING YOUR POSTGRADUATE STUDIES AT UCT Upper Level, Otto Beit Building University Avenue North, the Postgraduate Funding Office and Postgraduate Centre were established at the University of Cape Town to provide apply for funding from both the University and from as many other sources of support as possible

  16. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Subbasin, Annual Report 2008 : Project Period 1 February 2008 to 31 January 2009.

    SciTech Connect (OSTI)

    Yanke, Jeffrey A.; Alfonse, Brian M.; Bratcher, Kyle W. [Oregon Department of Fish and Wildlife

    2009-07-31T23:59:59.000Z

    This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon Oncorhynchus tshawytscha and summer steelhead O. mykiss in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia River hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.

  17. Massachusetts Rivers Protection Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    The law creates a 200-foot riverfront area that extends on both sides of rivers and streams. The riverfront area is 25 feet in the following municipalities: Boston, Brockton, Cambridge, Chelsea,...

  18. Case Studies in River Management

    E-Print Network [OSTI]

    Julien, Pierre Y.

    of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Site Description and Background --History of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Aggradation of Abandoned Channels Cheongmi Stream and Mangyeong River Cheongmi Stream South Korea In Collaboration

  19. Niobrara Scenic River Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act establishes the Niobrara Council, to assist in all aspects of the management of the Niobrara scenic river corridor and promulgate rules and regulations related to the preservation of the...

  20. Dayao County Yupao River BasDayao County Yupao River Basin Hydro...

    Open Energy Info (EERE)

    Dayao County Yupao River BasDayao County Yupao River Basin Hydro electricity Development Co Ltd in Jump to: navigation, search Name: Dayao County Yupao River BasDayao County Yupao...

  1. EA-1692: Red River Environmental Products, LLC Activated Carbon...

    Office of Environmental Management (EM)

    2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

  2. Zgoubi-ing AGS : spin motion with snakes and jump-quads,G? = 43.5 through G? = 46.5 and beyond

    SciTech Connect (OSTI)

    Meot, F.; Ahrens, L.; Glenn, J.; Huang, H.; Luccio, A.; MacKay, W. W.; Roser, T.; Tsoupas, N.

    2009-10-01T23:59:59.000Z

    This Note reports on the first, and successful, simulations of particle and spin dynamics in the AGS in presence of the two helical snakes and of the tune-jump quadrupoles, using the ray-tracing code Zgoubi. It includes DA tracking in the absence or in the presence of the two helical snakes, simulation of particle and spin motion in the snakes using their magnetic field maps, spin flipping at integer resonances in the 36+Qy depolarizing resonance region, with and without tune-jump quadrupole gymnastics. It also includes details on the setting-up of Zgoubi input data files and on the various numerical methods of concern in and available from Zgoubi.

  3. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

  4. Sediment transport and topographic evolution of a coupled river and river plume system

    E-Print Network [OSTI]

    Sediment transport and topographic evolution of a coupled river and river plume system inundation from storms, hurricanes, and tsunamis [Tornqvist et al., 2007; Blum and Roberts, 2009; Jerolmack

  5. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    SciTech Connect (OSTI)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01T23:59:59.000Z

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  6. Spin tracking simulations in AGS based on ray-tracing methods - bare lattice, no snakes -

    SciTech Connect (OSTI)

    Meot, F.; Ahrens, L.; Gleen, J.; Huang, H.; Luccio, A.; MacKay, W. W.; Roser, T.; Tsoupas, N.

    2009-09-01T23:59:59.000Z

    This Note reports on the first simulations of and spin dynamics in the AGS using the ray-tracing code Zgoubi. It includes lattice analysis, comparisons with MAD, DA tracking, numerical calculation of depolarizing resonance strengths and comparisons with analytical models, etc. It also includes details on the setting-up of Zgoubi input data files and on the various numerical methods of concern in and available from Zgoubi. Simulations of crossing and neighboring of spin resonances in AGS ring, bare lattice, without snake, have been performed, in order to assess the capabilities of Zgoubi in that matter, and are reported here. This yields a rather long document. The two main reasons for that are, on the one hand the desire of an extended investigation of the energy span, and on the other hand a thorough comparison of Zgoubi results with analytical models as the 'thin lens' approximation, the weak resonance approximation, and the static case. Section 2 details the working hypothesis : AGS lattice data, formulae used for deriving various resonance related quantities from the ray-tracing based 'numerical experiments', etc. Section 3 gives inventories of the intrinsic and imperfection resonances together with, in a number of cases, the strengths derived from the ray-tracing. Section 4 gives the details of the numerical simulations of resonance crossing, including behavior of various quantities (closed orbit, synchrotron motion, etc.) aimed at controlling that the conditions of particle and spin motions are correct. In a similar manner Section 5 gives the details of the numerical simulations of spin motion in the static case: fixed energy in the neighboring of the resonance. In Section 6, weak resonances are explored, Zgoubi results are compared with the Fresnel integrals model. Section 7 shows the computation of the {rvec n} vector in the AGS lattice and tuning considered. Many details on the numerical conditions as data files etc. are given in the Appendix Section, pages A and sqs.

  7. Pattern Alteration: Upper Arm Sleeve Width

    E-Print Network [OSTI]

    2006-08-04T23:59:59.000Z

    in the upper arm are unbecoming and may form excess vertical folds (Fig. 2). The Personal Measurement Chart (line 10) shows how much to alter. Figure 1. Tight sleeve Figure 2. Loose sleeve 2... ................................................................................................................................................................................. Figure 3. Tissue paper Figure 4. Sleeve Sleeve Figure 5. Sleeve Sleeve Figure 6. Figure 7. Sleeve Figure 8. Spread Lap Spread Lap Cut away Tissue Tissue Basic and raglan style garments 1. Trace the cutting line of the set-in sleeve cap on tissue...

  8. Report on the Predation Index, Predator Control Fisheries, and Program Evaluation for the Columbia River Basin Experimental Northern Pikeminnow Management Program, 2008 Annual Report.

    SciTech Connect (OSTI)

    Porter, Russell [Pacific States Marine Fisheries Commission].

    2009-09-10T23:59:59.000Z

    This report presents results for year seventeen in the basin-wide Experimental Northern Pikeminnow Management Program to harvest northern pikeminnow1 (Ptychocheilus oregonensis) in the Columbia and Snake Rivers. This program was started in an effort to reduce predation by northern pikeminnow on juvenile salmonids during their emigration from natal streams to the ocean. Earlier work in the Columbia River Basin suggested predation by northern pikeminnow on juvenile salmonids might account for most of the 10-20% mortality juvenile salmonids experience in each of eight Columbia River and Snake River reservoirs. Modeling simulations based on work in John Day Reservoir from 1982 through 1988 indicated that, if predator-size northern pikeminnow were exploited at a 10-20% rate, the resulting restructuring of their population could reduce their predation on juvenile salmonids by 50%. To test this hypothesis, we implemented a sport-reward angling fishery and a commercial longline fishery in the John Day Pool in 1990. We also conducted an angling fishery in areas inaccessible to the public at four dams on the mainstem Columbia River and at Ice Harbor Dam on the Snake River. Based on the success of these limited efforts, we implemented three test fisheries on a system-wide scale in 1991 - a tribal longline fishery above Bonneville Dam, a sport-reward fishery, and a dam-angling fishery. Low catch of target fish and high cost of implementation resulted in discontinuation of the tribal longline fishery. However, the sport-reward and dam-angling fisheries were continued in 1992 and 1993. In 1992, we investigated the feasibility of implementing a commercial longline fishery in the Columbia River below Bonneville Dam and found that implementation of this fishery was also infeasible. Estimates of combined annual exploitation rates resulting from the sport-reward and dam-angling fisheries remained at the low end of our target range of 10-20%. This suggested the need for additional effective harvest techniques. During 1991 and 1992, we developed and tested a modified (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system-wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale. In 1994, we investigated the use of trap nets and gillnets at specific locations where concentrations of northern pikeminnow were known or suspected to occur during the spring season (i.e., March through early June). In addition, we initiated a concerted effort to increase public participation in the sport-reward fishery through a series of promotional and incentive activities. In 1995, 1996, and 1997, promotional activities and incentives were further improved based on the favorable response in 1994. Results of these efforts are subjects of this annual report. Evaluation of the success of test fisheries in achieving our target goal of a 10-20% annual exploitation rate on northern pikeminnow is presented in Report C of this report. Overall program success in terms of altering the size and age composition of the northern pikeminnow population and in terms of potential reductions in loss of juvenile salmonids to northern pikeminnow predation is also discussed in Report C. Program cooperators include the Pacific States Marine Fisheries Commission (PSMFC), Oregon Department of Fish and Wildlife (ODFW), and Washington Department of Fish and Wildlife (WDFW), and the U. S. Department of Agriculture (USDA), Animal Damage Unit as a contractor to test Dam Angling. The PSMFC was responsible for coordination and administration of the program; PSMFC subcontracted various tasks and activities to ODFW and WDFW based on the expertise each brought to the tasks involved in implementing the program and dam angling to the USDA.

  9. An Integrated Geophysical Analysis Of The Upper Crust Of The...

    Open Energy Info (EERE)

    Of The Upper Crust Of The Southern Kenya Rift Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Integrated Geophysical Analysis Of The Upper...

  10. Upper internals arrangement for a pressurized water reactor

    DOE Patents [OSTI]

    Singleton, Norman R; Altman, David A; Yu, Ching; Rex, James A; Forsyth, David R

    2013-07-09T23:59:59.000Z

    In a pressurized water reactor with all of the in-core instrumentation gaining access to the core through the reactor head, each fuel assembly in which the instrumentation is introduced is aligned with an upper internals instrumentation guide-way. In the elevations above the upper internals upper support assembly, the instrumentation is protected and aligned by upper mounted instrumentation columns that are part of the instrumentation guide-way and extend from the upper support assembly towards the reactor head in hue with a corresponding head penetration. The upper mounted instrumentation columns are supported laterally at one end by an upper guide tube and at the other end by the upper support plate.

  11. Enterprise Assessments Review, Savannah River Site 2014 Site...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Independent Oversight Inspection, Savannah River Site - January 2010 Independent Oversight Review, Savannah River Site Tritium Facilities - December...

  12. Elm Fork of the Trinity River Floodplain Management Study

    E-Print Network [OSTI]

    Tickle, Greg; Clary, Melinda

    2001-01-01T23:59:59.000Z

    ELM FORK OF THE TRINITY RIVER FLOODPLAIN MANAGEMENT STUDYof the Elm Fork of the Trinity River, Dallas County, Dallas,

  13. Yakima River Spring Chinook Enhancement Study, Fisheries Resource Management, Yakima Indian Nation1983 Annual Report.

    SciTech Connect (OSTI)

    Wasserman, Larry

    1984-02-01T23:59:59.000Z

    The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook to the Yakima River system. In January, 1983, 100,000 fish raised at Leavenworth National Fish Hatchery were transported to Nile Springs Rearing Ponds on the Naches River. These fish were allowed a volitional release as smolts in April. An additional 100,000 smolts were transported from Leavenworth Hatchery in April and immediately released to the Upper Yakima River. Relative survival of smolts from their points of release to a trap at Prosser (RM48) was 1.69:1 for fish from Nile Springs, versus the trucked smolts. The fish from Nile Springs arrived at Prosser and McNary Dam approximately 1 week earlier than the transported fish. To better determine the magnitude and location of releases, distribution and abundance studies were undertaken. There is a decrease in abundance from upstream areas over time, indicating a general downstream movement. In the Naches System, the lower Naches River is heavily utilized by juvenile spring chinook during the early summer. A preliminary study evaluated physical limitations of production. On a single evening 67 fish were killed on diversion screens at Chandler Canal. This constituted 5.7% of the wild spring chinook entering the canal and 8.2% of the fall chinook. The larger hatchery spring chinook sustained a 2.3% loss. Adult returns resulted in 443 redds in the Yakima System, with 360 in the Yakima River and 83 in the Naches System.

  14. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    March 19, 2002 Issued to Westinghouse Savannah River Company related to Safety Basis and Radiation Protection Violations at the Savannah River Site, On March 19, 2002, the U.S....

  15. Lakes and Rivers Improvement Act (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Lakes and Rivers Improvement Act proscribes the management, protection, preservation and use of the waters of the lakes and rivers of Ontario and the land under them. The Act also details...

  16. An Inside Look at River Corridor

    Broader source: Energy.gov [DOE]

    In the seventh chapter of The Handford Story, the Energy Department takes a look at the River Corridor -- a 50-mile stretch of the Columbia River that flows through the Hanford site in southeast...

  17. Preliminary Notice of Violation, Westinghouse Savannah River...

    Broader source: Energy.gov (indexed) [DOE]

    December 5, 1997 Issued to Westinghouse Savannah River Company, related to an Unplanned Radioactive Material Intake at the Savannah River Site, (EA-97-12) On December 5, 1997, the...

  18. Belle Fourche River Compact (South Dakota)

    Broader source: Energy.gov [DOE]

    The Belle Fourche River Compact, agreed to by South Dakota and Wyoming, seeks to provide for the most efficient use of the waters of the Belle Fourche River Basin for multiple purposes, and to...

  19. Youghiogheny Wild and Scenic River (Maryland)

    Broader source: Energy.gov [DOE]

    Portions of the Youghiogheny River are protected under the Scenic and Wild Rivers Act, and development on or near these areas is restricted. COMAR section 08.15.02 addresses permitted uses and...

  20. River System Hydrology in Texas

    E-Print Network [OSTI]

    Wurbs, R.; Zhang, Y.

    2014-01-01T23:59:59.000Z

    ,700 86,700 Proctor Leon River USACE 1963 59,400 54,702 310,100 Belton Leon River USACE 1954 457,600 432,978 640,000 Stillhouse Hollow Lampasas River USACE 1968 235,700 224,279 390,660 Georgetown San Gabriel R USACE 1980 37,100 36,980 87,600 Granger... San Gabriel R USACE 1980 65,500 50,540 162,200 Somerville Yequa Creek USACE 1967 160,110 154,254 337,700 Hubbard Creek Hubbard Creek WCTMWD 1962 317,750 317,750 í Post NF Double Mt WRMWD proposed 57,420 í í Alan Henry SF Double Mt Lubbock 1993 115...

  1. South Platte River Compact and U.S. Supreme Court Decree for North Platte River

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    1 South Platte River Compact and U.S. Supreme Court Decree for North Platte River J. Michael Jess Platte, and Arkansas rivers, for example, have been resolved through litigation brought before the U and Kansas are examples. In the Platte River watershed the State of Nebraska has experience allocating water

  2. Prepared in cooperation with the Platte River Recovery Implementation Program River Channel Topographic Surveys Collected Prior

    E-Print Network [OSTI]

    Prepared in cooperation with the Platte River Recovery Implementation Program River Channel Topographic Surveys Collected Prior to and Following Elevated Flows in the Central Platte River, Spring 2008 Flows in the Central Platte River, Nebraska, Spring 2008 By Paul J. Kinzel Prepared in cooperation

  3. Historical Ecology of the lower santa clara river, Ventura river, and oxnard Plain

    E-Print Network [OSTI]

    Historical Ecology of the lower santa clara river, Ventura river, and oxnard Plain: an analysis. Historical ecology of the lower Santa Clara River,Ventura River, and Oxnard Plain: an analysis of terrestrial layers are available on SFEI's website, at www.sfei.org/projects/VenturaHE. Permissions rights for images

  4. Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)

    Broader source: Energy.gov [DOE]

    Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

  5. The river model of black holes

    E-Print Network [OSTI]

    Andrew J. S. Hamilton; Jason P. Lisle

    2006-08-31T23:59:59.000Z

    This paper presents an under-appreciated way to conceptualize stationary black holes, which we call the river model. The river model is mathematically sound, yet simple enough that the basic picture can be understood by non-experts. %that can by understood by non-experts. In the river model, space itself flows like a river through a flat background, while objects move through the river according to the rules of special relativity. In a spherical black hole, the river of space falls into the black hole at the Newtonian escape velocity, hitting the speed of light at the horizon. Inside the horizon, the river flows inward faster than light, carrying everything with it. We show that the river model works also for rotating (Kerr-Newman) black holes, though with a surprising twist. As in the spherical case, the river of space can be regarded as moving through a flat background. However, the river does not spiral inward, as one might have anticipated, but rather falls inward with no azimuthal swirl at all. Instead, the river has at each point not only a velocity but also a rotation, or twist. That is, the river has a Lorentz structure, characterized by six numbers (velocity and rotation), not just three (velocity). As an object moves through the river, it changes its velocity and rotation in response to tidal changes in the velocity and twist of the river along its path. An explicit expression is given for the river field, a six-component bivector field that encodes the velocity and twist of the river at each point, and that encapsulates all the properties of a stationary rotating black hole.

  6. Columbia River Component Data Evaluation Summary Report

    SciTech Connect (OSTI)

    C.S. Cearlock

    2006-08-02T23:59:59.000Z

    The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

  7. Relationships between detoxifying enzymes in several snake species and the occurrence of these species in clean and pesticide-contaminated ecosystems

    E-Print Network [OSTI]

    Stafford, Duane Paul

    1973-01-01T23:59:59.000Z

    of di. amond-backed water snakes (Matrix 4 btf ) d d- *d tl (~yd ~ft ) by insecticides near a cotton field. Mosquitofish (Gambusia affinis) containing about 890 ppm (parts per million) endrin were fed to various predators (Rosato and Ferguson 1968...

  8. The Columbia River Estuary the Columbia River Basin

    E-Print Network [OSTI]

    River estuary was a high-energy environment dominated by physical forces, with extensive sand Riddell November 28, 2000 ISAB 2000-5 #12;ISAB 2000-5 Estuary Report i EXECUTIVE SUMMARY The Northwest to an informed response to the Council. Consequently, this report has been prepared as a preliminary reply

  9. FLOOD WARNING SYSTEM LOGAN & ALBERT RIVERS

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfalls and river rises throughout the catchment and enablesFLOOD WARNING SYSTEM for the LOGAN & ALBERT RIVERS This brochure describes the flood warning system of Meteorology operates a flood warning system for the Logan and Albert River catchments based on a rainfall

  10. Recommendations of the State of Oregon for the Mainstem Columbia and Snake Rivers to be Adopted as Amendments to the Northwest

    E-Print Network [OSTI]

    by the federal agencies regarding long-term configuration of the hydrosystem have been deferred for at least-term, alternative strategies such as breaching of dams identified by the federal agencies may be necessary to meet Northwest Electric Power Planning and Conservation Act (Power Act) mitigation requirements. In the long

  11. Sedimentary parameters of upper Barataria Bay, Louisiana

    E-Print Network [OSTI]

    Siegert, Rudolf B

    1961-01-01T23:59:59.000Z

    SEDIMENTARY PARAMETERS OF UPPER BARATARIA BAY, LOUISIANA A Thesis Rudolf Bernhardt Siegert Submitted to the Graduate School of the Agricultural snd Mechanical College of Texas in partial fulfillment of the reGulremente for the d. agree... of MASTER OF SCIENCE August 1961 Ma)or Sub)ect GeologP SEDYIKNTARY PARAI'ZTEHS OF DT'PBR BARATARIA BAY, LOUISIANA A Thesis By Rudolf Bernhardt Siegert Approved as to style and content by: Chairman of C 'tice Bea of Department or Student Advisor...

  12. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    SciTech Connect (OSTI)

    Trotter, Patrick C.

    2001-10-01T23:59:59.000Z

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  13. Radionuclide limits for vault disposal at the Savannah River Site

    SciTech Connect (OSTI)

    Cook, J.R.

    1992-02-04T23:59:59.000Z

    The Savannah River Site is developing a facility called the E-Area Vaults which will serve as the new radioactive waste disposal facility beginning early in 1992. The facility will employ engineered below-grade concrete vaults for disposal and above-grade storage for certain long-lived mobile radionuclides. This report documents the determination of interim upper limits for radionuclide inventories and concentrations which should be allowed in the disposal structures. The work presented here will aid in the development of both waste acceptance criteria and operating limits for the E-Area Vaults. Disposal limits for forty isotopes which comprise the SRS waste streams were determined. The limits are based on total facility and vault inventories for those radionuclides which impact groundwater, and or waste package concentrations for those radionuclides which could affect intruders.

  14. HANFORD SITE RIVER CORRIDOR CLEANUP

    SciTech Connect (OSTI)

    BAZZELL, K.D.

    2006-02-01T23:59:59.000Z

    In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

  15. OxfordRoadOxfordRoadOxfordRoad UpperBrookStreetUpperBrookStreet

    E-Print Network [OSTI]

    Lane Platt Lane UpperLloydStreet HartLane Claremont Road Mauldeth RoadMauldeth Road West Albert Road Coupland Chapel 43. Roby URC 44. Quadria Jilamia Islamic Centre 45. Platt Lane Methodist Church 46. Holy Trinity, Platt Church of England 47. Platt Fields Park, open space with a lake. 48. Allen Hall 49. The Islah

  16. Greater Green River basin well-site selection

    SciTech Connect (OSTI)

    Frohne, K.H. [USDOE Morgantown Energy Technology Center, WV (United States); Boswell, R. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

    1993-12-31T23:59:59.000Z

    Recent estimates of the natural gas resources of Cretaceous low-permeability reservoirs of the Greater Green River basin indicate that as much as 5000 trillion cubic feet (Tcf) of gas may be in place (Law and others 1989). Of this total, Law and others (1989) attributed approximately 80 percent to the Upper Cretaceous Mesaverde Group and Lewis Shale. Unfortunately, present economic conditions render the drilling of many vertical wells unprofitable. Consequently, a three-well demonstration program, jointly sponsored by the US DOE/METC and the Gas Research Institute, was designed to test the profitability of this resource using state-of-the-art directional drilling and completion techniques. DOE/METC studied the geologic and engineering characteristics of ``tight`` gas reservoirs in the eastern portion of the Greater Green River basin in order to identify specific locations that displayed the greatest potential for a successful field demonstration. This area encompasses the Rocks Springs Uplift, Wamsutter Arch, and the Washakie and Red Desert (or Great Divide) basins of southwestern Wyoming. The work was divided into three phases. Phase 1 consisted of a regional geologic reconnaissance of 14 gas-producing areas encompassing 98 separate gas fields. In Phase 2, the top four areas were analyzed in greater detail, and the area containing the most favorable conditions was selected for the identification of specific test sites. In Phase 3, target horizons were selected for each project area, and specific placement locations were selected and prioritized.

  17. An integrated model for the fate and bioaccumulation of PCBs in the Hudson River estuary

    SciTech Connect (OSTI)

    Farley, K.J.; Thomann, R.V. [Manhattan Coll., Riverdale, NY (United States). Environmental Engineering Dept.

    1995-12-31T23:59:59.000Z

    An integrated mass transport model with a five component food chain calculation was developed for predicting PCB accumulation in sediments, lower trophic species, and striped bass. The model was originally applied to PCB homologues and calibrated using field data through 1987. Results of this work indicated that, under a no-action alternative, 50% of the striped bass would be below the FDA limit of 2 {micro}g of PCB/g of fish (wet weight) by 1992 and 95% of the striped bass would be below the FDA limit by 2004. An initial post-audit evaluation of the model showed that predicted PCB concentrations in striped bass compared well to field measurements. Some deviation in predicted and observed concentrations however were noted in the upper portion of the estuary and are believed to be related to a transient PCB load from the upper Hudson. Further evaluations are presently being performed to addressed: (1) how have Hudson River sediments and striped bass responded to decreasing PCB loads; (2) what are the relative contributions of PCB loads from the upper Hudson, from contaminated estuarine sediments, and from wastewater discharges into the lower estuary on present PCB levels in fish; and (3) what role does congener structure play in determining the fate and bioaccumulation of PCBs in the Hudson River estuary.

  18. Understanding nuclei in the upper sd - shell

    SciTech Connect (OSTI)

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)

    2014-08-14T23:59:59.000Z

    Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ? 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  19. GIS Framework for Large River Geomorphic Classification to Aid in the Evaluation of Flow-Ecology Relationships

    SciTech Connect (OSTI)

    Vernon, Christopher R.; Arntzen, Evan V.; Richmond, Marshall C.; McManamay, R. A.; Hanrahan, Timothy P.; Rakowski, Cynthia L.

    2013-02-01T23:59:59.000Z

    Assessing the environmental benefits of proposed flow modification to large rivers provides invaluable insight into future hydropower project operations and relicensing activities. Providing a means to quantitatively define flow-ecology relationships is integral in establishing flow regimes that are mutually beneficial to power production and ecological needs. To compliment this effort an opportunity to create versatile tools that can be applied to broad geographic areas has been presented. In particular, integration with efforts standardized within the ecological limits of hydrologic alteration (ELOHA) is highly advantageous (Poff et al. 2010). This paper presents a geographic information system (GIS) framework for large river classification that houses a base geomorphic classification that is both flexible and accurate, allowing for full integration with other hydrologic models focused on addressing ELOHA efforts. A case study is also provided that integrates publically available National Hydrography Dataset Plus Version 2 (NHDPlusV2) data, Modular Aquatic Simulation System two-dimensional (MASS2) hydraulic data, and field collected data into the framework to produce a suite of flow-ecology related outputs. The case study objective was to establish areas of optimal juvenile salmonid rearing habitat under varying flow regimes throughout an impounded portion of the lower Snake River, USA (Figure 1) as an indicator to determine sites where the potential exists to create additional shallow water habitat. Additionally, an alternative hydrologic classification useable throughout the contiguous United States which can be coupled with the geomorphic aspect of this framework is also presented. This framework provides the user with the ability to integrate hydrologic and ecologic data into the base geomorphic aspect of this framework within a geographic information system (GIS) to output spatiotemporally variable flow-ecology relationship scenarios.

  20. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.)

    1989-01-01T23:59:59.000Z

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  1. Crust and Upper Mantle P Wave Velocity Structure Beneath Valles...

    Open Energy Info (EERE)

    Crust and Upper Mantle P Wave Velocity Structure Beneath Valles Caldera, New Mexico- Results from the Jemez Teleseismic Tomography Experiment Jump to: navigation, search OpenEI...

  2. Upper crustal structure of an obliquely extending orogen, central...

    Open Energy Info (EERE)

    eastern California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Upper crustal structure of an obliquely extending orogen, central...

  3. The River Runs Dry: Examining Water Shortages in the Yellow River Basin

    E-Print Network [OSTI]

    Zusman, Eric

    2000-01-01T23:59:59.000Z

    Runs Dry: Examining Water Shortages in the Yellow Riverof the severity of water shortages in the river’s basin. Ina median level of runoff water shortages in the basin would

  4. New Columbia River Estuary purchases benefit salmon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the mouth of the Columbia River to permanently protect riverside habitat for Northwest fish and wildlife, including threatened and endangered salmon and steelhead. The...

  5. Project Management Institute Highlights Savannah River Nuclear...

    Office of Environmental Management (EM)

    employee Matthew Gay uses critical electronic rounds to take a reading at the Savannah River National Laboratory. In one Continuous Improvement initiative, SRNS switched to...

  6. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  7. Savannah River Laboratory monthly report, July 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  8. PIA - Savannah River Nuclear Solutions Electronic Safeguards...

    Energy Savers [EERE]

    System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) More Documents & Publications PIA - 10th International Nuclear Graphite...

  9. Lumbee River EMC- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Lumbee River EMC (LREMC) offers rebates to its residential customers who purchase and install qualified energy efficient products or services. Rebates are available for water heaters, refrigerator...

  10. The Columbia River System Inside Story

    SciTech Connect (OSTI)

    none,

    2001-04-01T23:59:59.000Z

    The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

  11. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  12. Savannah River Laboratory monthly report, August 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  13. South River EMC- Energy Efficient Rebate Program

    Broader source: Energy.gov [DOE]

    South River EMC offers a variety of rebates encouragings its members to invest in energy efficient appliances, equipment, and home upgrades. Incentives are available for clothes washers,...

  14. Wild and Scenic Rivers Act (Maryland)

    Broader source: Energy.gov [DOE]

    It is state policy to protect the outstanding scenic, geologic, ecologic, historic, recreational, agricultural, fish, wildlife, cultural, and other similar values of certain rivers and adjacent...

  15. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. (comp.)

    1991-01-01T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  16. Savannah River Laboratory monthly report, September 1991

    SciTech Connect (OSTI)

    Ferrell, J.M. [comp.

    1991-12-31T23:59:59.000Z

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  17. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Violation, Westinghouse Savannah River Company - EA-2000-08 Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the...

  18. Preliminary Notice of Violation, Westinghouse Savannah River...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Westinghouse Savannah River Company - EA-2000-08 More Documents & Publications Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the...

  19. Sandia National Laboratories: river current energy converters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team includes a partnership between...

  20. Comparative Evaluation of Generalized River/Reservoir System Models

    E-Print Network [OSTI]

    Wurbs, Ralph A.

    This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

  1. Upper bounds for multiphase composites in any dimension

    E-Print Network [OSTI]

    Luis Silvestre

    2010-10-12T23:59:59.000Z

    We prove a rigorous upper bound for the effective conductivity of an isotropic composite made of several isotropic components in any dimension. This upper bound coincides with the Hashin Shtrikman bound when the volume ratio of all phases but any two vanish.

  2. New Bedford Harbor Superfund Project: Acushnet River Estuary engineering feasibility study of dredging and dredged-material disposal alternatives. Report 2. Sediment and contaminant hydraulic transport investigations. Technical report, February 1986-July 1987

    SciTech Connect (OSTI)

    Teeter, A.M.

    1988-12-01T23:59:59.000Z

    This report documents the evaluation of hydraulic conditions and sediment migration associated with the dredging and dredged material disposal alternatives proposed for the upper Acushnet River Estuary upstream of New Bedford Harbor, Massachusetts. Dredging and onsite disposal is one remedial measure being considered by the US Environmental Protection Agency. Assessments of sediment and contaminant migration beyond the upper New Bedford Harbor from proposed dredging and disposal alternatives were made based on field, laboratory, and various model studies. The upper estuary was found to be depositional and a reasonably efficient sediment trap. Total suspended material (TSM) concentrations were very low in the system.

  3. Lesson Learned by Savannah River Site Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

  4. Steelhead Supplementation Studies; Steelhead Supplementation in Idaho Rivers, Annual Report 2002.

    SciTech Connect (OSTI)

    Byrne, Alan

    2003-03-01T23:59:59.000Z

    The Steelhead Supplementation Study (SSS) has two broad objectives: (1) investigate the feasibility of supplementing depressed wild and natural steelhead populations using hatchery populations, and (2) describe the basic life history and genetic characteristics of wild and natural steelhead populations in the Salmon and Clearwater Basins. Idaho Department of Fish and Game (IDFG) personnel stocked adult steelhead from Sawtooth Fish Hatchery into Frenchman and Beaver creeks and estimated the number of age-1 parr produced from the outplants since 1993. On May 2, 2002, both Beaver and Frenchman creeks were stocked with hatchery adult steelhead. A SSS crew snorkeled the creeks in August 2002 to estimate the abundance of age-1 parr from brood year (BY) 2001. I estimated that the yield of age-1 parr per female stocked in 2001 was 7.3 and 6.7 in Beaver and Frenchman creeks, respectively. SSS crews stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 in the Red River drainage to assess which life stage produces more progeny when the adults return to spawn. In 2002, Clearwater Fish Hatchery personnel operated the Red River weir to trap adults that returned from these stockings. Twelve PIT-tagged adults from the smolt releases and one PIT-tagged adult from fingerling releases were detected during their migration up the mainstem Columbia and Snake rivers, but none from either group were caught at the weir. The primary focus of the study has been monitoring and collecting life history information from wild steelhead populations. An adult weir has been operated annually since 1992 in Fish Creek, a tributary of the Lochsa River. The weir was damaged by a rain-on-snow event in April 2002 and although the weir remained intact, some adults were able to swim undetected through the weir. Despite damage to the weir, trap tenders captured 167 adult steelhead, the most fish since 1993. The maximum likelihood estimate of adult steelhead escapement was 242. A screw trap has been operated annually in Fish Creek since 1994 to estimate the number of emigrating parr and smolts. I estimated that 18,687 juvenile steelhead emigrated from Fish Creek in 2002, the lowest number of migrants since 1998. SSS crews snorkeled three streams in the Selway River drainage and 10 streams in the Lochsa River drainage to estimate juvenile steelhead densities. The densities of age-1 steelhead parr declined in all streams compared to the densities observed in 2001. The age-1 densities in Fish Creek and Gedney Creek were the lowest observed since this project began monitoring those populations in 1994. The SSS crews and other cooperators tagged more than 12,000 juvenile steelhead with passive integrated transponder (PIT) tags in 2002. In 2002, technicians mounted and aged steelhead scales that were collected from 1998 to 2001. A consensus was reached among technicians for age of steelhead juveniles from Fish Creek. Scales that were collected in other streams were aged by at least one reader; however, before a final age is assigned to these fish, the age needs to be verified by another reader and any age differences among readers resolved. Dr. Jennifer Nielsen, at the U.S. Geological Survey Alaska Biological Science Center, Anchorage continued the microsatellite analysis of the steelhead tissue samples that were collected from Idaho streams in 2000. Two thousand eighteen samples from 40 populations were analyzed. The analysis of the remaining 39 populations is continuing.

  5. Benthic Assemblage Variability in the Upper San Francisco Estuary: A 27-Year Retrospective

    E-Print Network [OSTI]

    Peterson, Heather A; Vayssieres, Marc

    2010-01-01T23:59:59.000Z

    which lead from the Pacific Ocean to an inland river delta,San Joaquin River Pacific Ocean 10 m 16 km Water Export

  6. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  7. Savannah River Field Office | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Us Our Operations Management and Budget Office of Civil Rights Workforce Statistics Savannah River Field Office Savannah River Field Office FY15 Semi Annual Report...

  8. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  9. alligator rivers region: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  10. aliakmon river greece: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  11. allegheny river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  12. almendares river havana: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  13. amu dar river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

  14. amazon river system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land Use in indigenous and Colonist Communities of the Palcazu Basin, Peruvian Amazon McClain, Michael 159 Charlotte, Manatee River, Sarasota, Hardee, and Peace River Soil Biology...

  15. Ventilation System to Improve Savannah River Site's Liquid Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ventilation System to Improve Savannah River Site's Liquid Waste Operations Ventilation System to Improve Savannah River Site's Liquid Waste Operations August 28, 2014 - 12:00pm...

  16. Preliminary Notice of Violation,Savannah River Nuclear Solutions...

    Office of Environmental Management (EM)

    Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2012-04 Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2010-05...

  17. PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditati...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site Apps. Accreditation Boundary PIA - Savannah River Nuclear Solution IBARS Srs Site...

  18. John C. Barnes of Savannah River Operations named 2012 Facility...

    Office of Environmental Management (EM)

    right, discusses a transuranic (TRU) waste container with Charles Fairburn of Savannah River Nuclear Solutions. The TRU waste container was repackaged in the Savannah River Site...

  19. PIA - Savannah River Nuclear Solution SRNS ProRad Environment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management...

  20. Independent Oversight Review, Savannah River Field Office Tritium...

    Broader source: Energy.gov (indexed) [DOE]

    River Site (SRS) tritium facilities implemented at the activity-level by Savannah River Nuclear Solutions, LLC and its subcontractors. The review was performed by the...

  1. Enterprise Assessments Review of the Savannah River Site Salt...

    Energy Savers [EERE]

    the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste...

  2. PIA - Savannah River Nuclear Solutions Training Records and Informatio...

    Office of Environmental Management (EM)

    Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River...

  3. Savannah River Remediation Donates $10,000 to South Carolina...

    Broader source: Energy.gov (indexed) [DOE]

    Savannah River Remediation Donates 10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates 10,000 to South Carolina State Nuclear...

  4. Letter from Commonwealth to Mirant Potomac River Concerning Serious...

    Energy Savers [EERE]

    to Mirant Potomac River Concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide Letter from Commonwealth to Mirant Potomac River Concerning...

  5. Savannah River National Laboratory Meets with Historically Black...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River National Laboratory Meets with Historically Black Colleges and Universities Savannah River National Laboratory Meets with Historically Black Colleges and...

  6. Independent Oversight Follow-up Review, Savannah River National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of...

  7. assessment columbia river: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and disturbances may be ineffective are being spent in the United States on river and stream restoration projects. In the Columbia River basin Montgomery, David R. 311 A...

  8. GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...

    Open Energy Info (EERE)

    RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER...

  9. The investigation of anomalous magnetization in the Raft River...

    Open Energy Info (EERE)

    River valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: The investigation of anomalous magnetization in the Raft River...

  10. Savannah River Site's Liquid Waste Operations Adds Multi-Functional...

    Office of Environmental Management (EM)

    Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory Savannah River Site's Liquid Waste Operations Adds Multi-Functional Laboratory January 28, 2015 -...

  11. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - June 2012 June 2012 Review of the Savannah River Site Tritium Facilities Implementation...

  12. Independent Oversight Review, Savannah River Site Tritium Facilities...

    Energy Savers [EERE]

    Savannah River Site Tritium Facilities - December 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 December 2012 Review of Site...

  13. PIA - Savannah River Nuclear Solutions Badge Request and Site...

    Office of Environmental Management (EM)

    Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear...

  14. Ecotoxicology | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasRelease Date:research community -- hostedEconomicSavannah River

  15. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,Cubic Feet)FuelDecade Year-0InputYear Jan FebtotalRiver

  16. Caney River | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind IICaney River Jump to: navigation,

  17. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA)

    2003-05-01T23:59:59.000Z

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second in a series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2002 and March 31, 2003. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2002) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. Each chapter of this report deals with monitoring phenotypic and demographic traits of Yakima River basin spring chinook comparing hatchery and wild returns in 2002; the second year of adult hatchery returns. The first chapter deals specifically with adult traits of American River, Naches basin (excluding the American River), and upper Yakima River spring chinook, excluding gametes. The second chapter examines the gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish. In the third chapter, we describe work begun initially in 2002 to characterize and compare redds of naturally spawning wild and hatchery fish in the upper Yakima River.

  18. The State of the Columbia River Basin

    E-Print Network [OSTI]

    the Council to serve as a comprehensive planning agency for energy policy and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish and wildlife issues and involve Energy, Fish, Wildlife: The State of the Columbia River Basin, 2013

  19. FLOOD WARNING SYSTEM BREMER RIVER TO IPSWICH

    E-Print Network [OSTI]

    Greenslade, Diana

    . The system provides early warning of heavy rainfalls and river rises throughout the catchment and enables. Flood ALERT System The initial Ipswich Creeks ALERT flood warning system was completed in the earlyFLOOD WARNING SYSTEM for the BREMER RIVER TO IPSWICH This brochure describes the flood warning

  20. The Kootenai Tribe's Kootenai River Ecosystem

    E-Print Network [OSTI]

    The Kootenai Tribe's Kootenai River Ecosystem Restoration Project 1994-2012 Project # 199404900 · PURPOSE: TO ADDRESS FISHERIES RELATED PROBLEMS AT AN ECOSYSTEM LEVEL AND PROVIDE RESTORATION SOLUTIONS Kootenai River OBJ-2: Restore Ecosystem Productivity OBJ-3: Restore Ecosystem Productivity to Kootenay Lake

  1. RiverFalls,Wisconsin SolarinSmall

    E-Print Network [OSTI]

    ), which services approximately 5,800 customers, the largest being UW-RF.ii Together, the utility are solar (most are biogas and wind), the program has helped to raise awareness and interest in renewable energy within the community.v Bringing Solar to River Falls The success of the River Falls Renewable

  2. Pecos River Watershed Protection Plan Update

    E-Print Network [OSTI]

    Gregory, L.; Hauck, L.; Blumenthal, B.; Brown, M.; Porter, A.

    2013-01-01T23:59:59.000Z

    Implementation of the Pecos River Watershed Protection Plan (WPP) began in November 2009 upon acceptance of the WPP by EPA. The primary goals of implementing the plan are to improve the health of the Pecos River watershed and instream water quality...

  3. Restoring our Rivers By Bridget Avila

    E-Print Network [OSTI]

    Palmer, Margaret A.

    , the first-ever comprehensive database of more than 37,000 stream and restoration projects nationwideRestoring our Rivers By Bridget Avila Maryland has the largest number of river restoration projects restoration and conservation. On a sweltering July afternoon, an assortment of men and women clad in T

  4. California's Russian River: A Conservation Partnership

    E-Print Network [OSTI]

    . Improve weather and river flow forecasting to maximize water captured for reservoirs and fisheries support forecast-based reservoir operations and allow for improved water management. It may also provide's Russian River Habitat Blueprint #12;Restore floodplain habitat through reclamation of abandoned gravel

  5. Prospective Climate Change Impact on Large Rivers

    E-Print Network [OSTI]

    Julien, Pierre Y.

    1 Prospective Climate Change Impact on Large Rivers in the US and South Korea Pierre Y. Julien Dept. of Civil and Environ. Eng. Colorado State University Seoul, South Korea August 11, 2009 Climate Change and Large Rivers 1. Climatic changes have been on-going for some time; 2. Climate changes usually predict

  6. Savannah River Site Environmental Report for 1998

    SciTech Connect (OSTI)

    Arnett, M.

    1999-06-09T23:59:59.000Z

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  7. Survey of Potential Hanford Site Contaminants in the Upper Sediment for the Reservoirs at McNary, John Day, The Dalles, and Bonneville Dams, 2003

    SciTech Connect (OSTI)

    Patton, Gregory W.; Priddy, M; Yokel, Jerel W.; Delistraty, Damon A.; Stoops, Thomas M.

    2005-02-01T23:59:59.000Z

    This report presents the results from a multi-agency cooperative environmental surveillance study. of the study looked at sediment from the pools upstream from dams on the Columbia River that are downstream from Hanford Site operations. The radiological and chemical conditions existing in the upper-level sediment found in the pools upstream from McNary Dam, John Day Dam, The Dalles Lock and Dam, and Bonneville Dam were evaluated. This study also evaluated beach sediment where available. Water samples were collected at McNary Dam to further evaluate potential Hanford contaminants in the lower Columbia River. Samples were analyzed for radionuclides, chemicals, and physical parameters. Results from this study were compared to background values from sediment and water samples collect from the pool upstream of Priest Rapids Dam (upstream of the Hanford Site) by the Hanford Site Surface Environmental Surveillance Project.

  8. Statistical Confirmation of a Stellar Upper Mass Limit

    E-Print Network [OSTI]

    M. S. Oey; C. J. Clarke

    2005-01-07T23:59:59.000Z

    We derive the expectation value for the maximum stellar mass (m_max) in an ensemble of N stars, as a function of the IMF upper-mass cutoff (m_up) and N. We statistically demonstrate that the upper IMF of the local massive star census observed thus far in the Milky Way and Magellanic Clouds clearly exhibits a universal upper mass cutoff around 120 - 200 M_sun for a Salpeter IMF, although the result is more ambiguous for a steeper IMF.

  9. Upper bounds on minimum distance of nonbinary quantum stabilizer codes

    E-Print Network [OSTI]

    Kumar, Santosh

    2005-11-01T23:59:59.000Z

    The most popular class of quantum error correcting codes is stabilizer codes. Binary quantum stabilizer codes have been well studied, and Calderbank, Rains, Shor and Sloane (July 1998) have constructed a table of upper bounds on the minimum distance...

  10. Characterization of Sea Turtle Nesting on the Upper Texas Coast

    E-Print Network [OSTI]

    Hughes, Christi Lynn

    2014-05-06T23:59:59.000Z

    Nearly annual record Kemp’s ridley sea turtle (Lepidochelys kempii) nesting activity on the upper Texas coast (UTC; defined as beaches from Sabine Pass to Matagorda Peninsula), where scientifically verifiable nesting commenced in 2002, has occurred...

  11. Improvable upper bounds to the piezoelectric polaron ground state energy

    E-Print Network [OSTI]

    A. V. Soldatov

    2014-12-31T23:59:59.000Z

    It was shown that an infinite sequence of improving non-increasing upper bounds to the ground state energy (GSE) of a slow-moving piezoeletric polaron can be devised.

  12. Hydrology and Glaciers in the Upper Indus Basin

    E-Print Network [OSTI]

    Yu, Winston

    Examines the state of the science associated with the snow and ice hydrology in the Upper Indus Basin (IUB), reviewing the literature and data available on the present and projected role of glaciers, snow fields, and stream ...

  13. Annual Tour Ready to Explore New Mexico's Lower Pecos River

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Annual Tour Ready to Explore New Mexico's Lower Pecos River By Steve Ress The itinerary is set and the seats have been filled for an early June bus tour to New Mexico's lower Pecos River basin compacts on Nebraska's Republican River and New Mexico's Pecos River to see what can be learned from

  14. Independent Oversight Inspection, Savannah River Site, Summary Report- February 2004

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site

  15. River Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2006-08-01T23:59:59.000Z

    This data package documents the technical basis for selecting physical and hydraulic parameters and input values that will be used in river modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc. and revised as part of the Characterization of Systems Project managed by PNNL for DOE. The river data package provides calculations of flow and transport in the Columbia River system. The module is based on the legacy code for the Modular Aquatic Simulation System II (MASS2), which is a two-dimensional, depth-averaged model that provides the capability to simulate the lateral (bank-to-bank) variation of flow and contaminants. It simulates river hydrodynamics (water velocities and surface elevations), sediment transport, contaminant transport, biotic transport, and sediment-contaminant interaction, including both suspended sediments and bed sediments. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River. MASS2 requires data on the river flow rate, downstream water surface elevation, groundwater influx and contaminants flux, background concentrations of contaminants, channel bathymetry, and the bed and suspended sediment properties. Stochastic variability for some input parameters such as partition coefficient (kd) values and background radionuclide concentrations is generated by the Environmental Stochastic Preprocessor. River flow is randomized on a yearly basis. At this time, the conceptual model does not incorporate extreme flooding (for example, 50 to 100 years) or dam removal scenarios.

  16. Chinook Salmon Adult Abundance Monitoring; Hydroacoustic Assessment of Chinook Salmon Escapement to the Secesh River, Idaho, 2002-2004 Final Report.

    SciTech Connect (OSTI)

    Johnson, R.; McKinstry, C.; Mueller, R.

    2004-01-01T23:59:59.000Z

    Accurate determination of adult salmon spawner abundance is key to the assessment of recovery actions for wild Snake River spring/summer Chinook salmon (Onchorynchus tshawytscha), a species listed as 'threatened' under the Endangered Species Act (ESA). As part of the Bonneville Power Administration Fish and Wildlife Program, the Nez Perce Tribe operates an experimental project in the South Fork of the Salmon River subbasin. The project has involved noninvasive monitoring of Chinook salmon escapement on the Secesh River between 1997 and 2000 and on Lake Creek since 1998. The overall goal of this project is to accurately estimate adult Chinook salmon spawning escapement numbers to the Secesh River and Lake Creek. Using time-lapse underwater video technology in conjunction with their fish counting stations, Nez Perce researchers have successfully collected information on adult Chinook salmon spawner abundance, run timing, and fish-per-redd numbers on Lake Creek since 1998. However, the larger stream environment in the Secesh River prevented successful implementation of the underwater video technique to enumerate adult Chinook salmon abundance. High stream discharge and debris loads in the Secesh caused failure of the temporary fish counting station, preventing coverage of the early migrating portion of the spawning run. Accurate adult abundance information could not be obtained on the Secesh with the underwater video method. Consequently, the Nez Perce Tribe now is evaluating advanced technologies and methodologies for measuring adult Chinook salmon abundance in the Secesh River. In 2003, the use of an acoustic camera for assessing spawner escapement was examined. Pacific Northwest National Laboratory, in a collaborative arrangement with the Nez Perce Tribe, provided the technical expertise to implement the acoustic camera component of the counting station on the Secesh River. This report documents the first year of a proposed three-year study to determine the efficacy of using an acoustic camera to count adult migrant Chinook salmon as they make their way to the spawning grounds on the Secesh River and Lake Creek. A phased approach to applying the acoustic camera was proposed, starting with testing and evaluation in spring 2003, followed by a full implementation in 2004 and 2005. The goal of this effort is to better assess the early run components when water clarity and night visibility preclude the use of optical techniques. A single acoustic camera was used to test the technology for enumerating adult salmon passage at the Secesh River. The acoustic camera was deployed on the Secesh at a site engineered with an artificial substrate to control the river bottom morphometry and the passage channel. The primary goal of the analysis for this first year of deployment was to validate counts of migrant salmon. The validation plan involved covering the area with optical video cameras so that both optical and acoustic camera images of the same viewing region could be acquired simultaneously. A secondary test was contrived after the fish passage was complete using a controlled setting at the Pacific Northwest National Laboratory in Richland, Washington, in which we tested the detectability as a function of turbidity levels. Optical and acoustic camera multiplexed video recordings of adult Chinook salmon were made at the Secesh River fish counting station from August 20 through August 29, 2003. The acoustic camera performed as well as or better than the optical camera at detecting adult Chinook salmon over the 10-day test period. However, the acoustic camera was not perfect; the data reflected adult Chinook salmon detections made by the optical camera that were missed by the acoustic camera. The conditions for counting using the optical camera were near ideal, with shallow clear water and good light penetration. The relative performance of the acoustic camera is expected to be even better than the optical camera in early spring when water clarity and light penetration are limited. Results of the laboratory tests at the Pacific North

  17. Geology, volcanology and geochemistry Drainage pattern and regional morphostructure at Melka Kunture (Upper Awash, Ethiopia) ........................83

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    at Melka Kunture (Upper Awash, Ethiopia) ........................83 Guillaume Bardin, Jean-Paul Raynal, Guy Kieffer Volcanic markers in coarse alluvium at Melka Kunture (Upper Awash, Ethiopia (Upper Awash, Ethiopia) ....................................................103 Gérard Poupeau, Guy

  18. Exploring the Potential Impact of Reforestation on the Hydrology of the Upper Tana River Catchment and the Masinga Dam, Kenya

    E-Print Network [OSTI]

    Catchment and the Masinga Dam, Kenya Jennifer Jacobs, Jay Angerer, Jeff Vitale Raghavan Srinivasan, Robert of the most critical resource areas of Kenya. The Masinga Reservoir, at the outlet of the basin, provides, collaborating technical policy analysts working for key government institutions in Kenya identified the need

  19. A Study of Selected Chemical and Biological Conditions of the Lower Trinity River and the Upper Trinity Bay

    E-Print Network [OSTI]

    Baldauf, R. J.

    will serve as an effective barrier to salt water. Approximately 12,500 acres of marsh behind the dam will be come a freshwater conservation pool. The marsh area below the dam (8,200 acres) will also be modified through changes in the freshwater flow...

  20. The Dry Susie Creek Site: Site Structure of Middle Archaic Habitation Features from the Upper Humboldt River Area, Nevada

    E-Print Network [OSTI]

    Smith, Craig S; Reust, Thomas P

    1995-01-01T23:59:59.000Z

    The Archaeology of James Creek Shelter. University of UtahIn: The Archaeology of James Creek Shelter, Robert G. Elston244-266 (1995). The Dry Susie Creek Site: Site Structure of

  1. Water quality improvements in the Upper North Bosque River watershed due to phosphorous export through turfgrass sod

    E-Print Network [OSTI]

    Stewart, George Russell

    2005-02-17T23:59:59.000Z

    these problems, Texas A&M University researchers have developed a turfgrass sod Best Management Practice (BMP) to remove excess nutrients from impaired watersheds. Turfgrass harvest of manure fertilized sod removes a thin layer of topsoil with most... of the manure applied P. Plot and field scale research has demonstrated the effectiveness of turfgrass to remove manure phosphorus (P). In order to assess the impact of the turfgrass BMP on a watershed scale, the Soil and Water Assessment Tool (SWAT) was used...

  2. Interpretation of Geological Correlation Borings 1, 2, 3 in the A/M Area of the Savannah River Site, South Carolina

    SciTech Connect (OSTI)

    Wyatt, D.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Cumbest, R.J.; Aadland, R.K.; Syms, F.H.; Stephenson, D.E.; Sherrill, J.C.

    1997-06-01T23:59:59.000Z

    The Geophysical Correlation Boring (GCB) Program was organized to provide a comprehensive correlation capability between geological core and advanced borehole geophysical data, surface high resolution reflection seismic information and, when available, borehole geochemical and cone penetrometer data. This report provides results and initial geological interpretations of borings one, two, and three (GCB-1, GCB-2, GCB-3) located within the Upper Three Runs Watershed (A/M Area) of the Savannah River Site.

  3. Baseline mapping study of the Steed Pond aquifer and vadose zone beneath A/M Area, Savannah River Site, Aiken, South Carolina

    SciTech Connect (OSTI)

    Jackson, D.G. Jr.

    2000-01-27T23:59:59.000Z

    This report presents the second phase of a baseline mapping project conducted for the Environmental Restoration Department (ERD) at Savannah River Site. The purpose of this second phase is to map the structure and distribution of mud (clay and silt-sized sediment) within the vadose zone beneath A/M Area. The results presented in this report will assist future characterization and remediation activities in the vadose zone and upper aquifer zones in A/M Area.

  4. EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

  5. Natural resource management activities at the Savannah River Site. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This environmental assessment (EA) reviews the environmental consequences of ongoing natural resource management activities on the Savannah River Site (SRS). Appendix A contains the Natural Resources Management Plant (NRMP). While several SRS organizations have primary responsibilities for different elements of the plan, the United States Department of Agriculture (USDA), Forest Service, Savannah River Forest Station (SRFS) is responsible for most elements. Of the river scenarios defined in 1985, the High-Intensity Management alternative established the upper bound of environmental consequences; it represents a more intense level of resource management than that being performed under current resource management activities. This alternative established compliance mechanisms for several natural resource-related requirements and maximum practical timber harvesting. Similarly, the Low-Intensity Management alternative established the lower bound of environmental consequences and represents a less intense level of resource management than that being performed under current resource management activities. This alternative also established compliance mechanisms, but defined a passively managed natural area. The Proposed Action of this EA describes the current level of multiple-natural resource management. This EA reviews the proposed action, and the high and low intensity alternative scenarios.

  6. Sediment quality and ecorisk assessment factors for a major river system

    SciTech Connect (OSTI)

    Johnson, V.G. [Westinghouse Hanford Co., Richland, WA (United States); Wagner, J.J. [Pacific Northwest Lab., Richland, WA (United States); Cutshall, N.H. [Oak Ridge National Lab., TN (United States)

    1993-08-01T23:59:59.000Z

    Sediment-related water quality and risk assessment parameters for the Columbia River were developed using heavy metal loading and concentration data from Lake Roosevelt (river km 1120) to the mouth and adjacent coastal zone. Correlation of Pb, Zn, Hg, and Cd concentrations in downstream sediments with refinery operations in British Columbia suggest that solutes with K{sub d}`s > 10{sup 5} reach about 1 to 5 {mu}g/g per metric ton/year of input. A low-suspended load (upriver avg. <10 mg/L) and high particle-surface reactivity account for the high clay-fraction contaminant concentrations. In addition, a sediment exposure path was demonstrated based on analysis of post-shutdown biodynamics of a heavy metal radiotracer. The slow decline in sediment was attributed to resuspension, bioturbation, and anthropogenic disturbances. The above findings suggest that conservative sediment quality criteria should be used to restrict additional contaminant loading in the upper drainage basin. The issuance of an advisory for Lake Roosevelt, due in part to Hg accumulation in large sport fish, suggests more restrictive controls are needed. A monitoring strategy for assessing human exposure potential and the ecological health of the river is proposed.

  7. River Data Package for the 2004 Composite Analysis

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2004-08-01T23:59:59.000Z

    Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

  8. Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota)

    Broader source: Energy.gov [DOE]

    The State aims to preserve and protect Minnesota rivers and adjacent lands with outstanding scenic, recreational, natural, historical, scientific and similar values. Chapter 103F defines...

  9. acute non-variceal upper: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upper layer model Computer Technologies and Information Sciences Websites Summary: Evaluation 65 Chapter 4 OSI Upper Layer Architecture and Model: Evaluation In this chapter the...

  10. This letter is in response to Council staff recommendation for lamprey project # 2007165000 in particular and BPA's lamprey program in general.

    E-Print Network [OSTI]

    of these dams to improve salmon runs and restore this part of the Snake River ecosystem. I would gladly

  11. The Ecology of the Navasota River, Texas

    E-Print Network [OSTI]

    Clark, W. J.

    COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-44 1973 The Ecology of the Navasota River, Texas By: William J. Clark Texas Water Resources Institute Technical Report No. 44 Texas A&M University System...

  12. Math 360 Sample Project: River Crossing

    E-Print Network [OSTI]

    Linner, Anders

    corresponding to the east-west difference between the entry and the exit points at the river. Assume the crossing is from north to south, so g is positive if the exit point is east of the entry point

  13. Think water : reconditioning the Malden River

    E-Print Network [OSTI]

    Oda, Kazuyo, 1969-

    2003-01-01T23:59:59.000Z

    The purpose of this thesis is to link water, history and culture through architectural and urban design by researching the potential for the rejuvenation of a neglected industrial site at the edge of a river. The Malden ...

  14. The Ecohydrology of South American Rivers

    E-Print Network [OSTI]

    McClain, Michael

    The Ecohydrology of South American Rivers and Wetlands edited by Michael E. McClain Department research integrating the physical processes of hydrology with the biological processes of ecology. Together

  15. Savannah River Site Environmental Report for 1997

    SciTech Connect (OSTI)

    Arnett, M.W.; Mamatey, A.R. [eds.

    1998-08-01T23:59:59.000Z

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  16. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  17. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  18. River Falls Municipal Utilities- Distributed Solar Tariff

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special...

  19. Microsoft Word - CX_Okanogan_River.docx

    Broader source: Energy.gov (indexed) [DOE]

    Confederated Tribes for the purchase of two parcels of land along the Okanogan River. Fish and Wildlife Project No.: 2007-224-00 Categorical Exclusion Applied (from Subpart D, 10...

  20. Lower Columbia River Estuary Partnership. The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of land on the north side of the Columbia River in Cowlitz County, Wash., to protect fish habitat. An additional 75 acres of land will be donated by the Port of Longview. BPA...

  1. Clinch River MRS Task Force Recommendations

    Broader source: Energy.gov [DOE]

    The Clinch River HRS Task Force was appointed in July 1985 by the Roane County Executive and the Oak Ridge City Council to evaluate the Monitored Retrievable Storage (MRS) facility proposed by the...

  2. Radionuclide transport in the Yenisei River

    E-Print Network [OSTI]

    S. M. Vakulovsky; E. G. Tertyshnik; A. I. Kabanov

    2012-11-15T23:59:59.000Z

    Data characterizing the pollution of the Yenisei River (water and bottom sediment) by radionuclide resulting from the use of the river water for cooling industrial reactors in the Mining-Chemical Complex are presented. Studies have been made of the contamination of the river during the period when reactors with direct flow cooling were used and after these were shut down. Distinctive features of the migration of radionuclide in the Yenisei are noted, in particular, their distribution between the solid and liquid phases. The amounts of 137Cs, 65Zn, 60Co, 54Mn, and 152Eu in the channel are determined from the effluent discharge site to Dudinka port. The rate of continuous self removal of 137Cs is estimated to be 0.19 1/year, corresponding to a half purification time of 3.6 years for a 600 km long segment of the river bed.

  3. Savannah River Site environmental data for 1995

    SciTech Connect (OSTI)

    Arnett, M.W. [ed.

    1995-12-31T23:59:59.000Z

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs. An attempt also has been made to include all available data from environmental research programs.

  4. Flint River Drought Protection Act (Georgia)

    Broader source: Energy.gov [DOE]

    The purpose of the Flint River Drought Protection Act is to maintain in-stream flow in times of drought by providing incentives for farmers to take acres out of irrigation. It allows Environmental...

  5. Lumbee River EMC- Residential Weatherization Loan Program

    Broader source: Energy.gov [DOE]

    Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help its residential members increase the energy efficiency of their homes. Loans up to $10,000 are available for...

  6. Columbia River White Sturgeon (Acipenser Transmontanus) Early Life History and Genertics Study, August 1, 1984 to December 31, 1985 Final Report.

    SciTech Connect (OSTI)

    Brannon, Ernest L.

    1985-12-01T23:59:59.000Z

    Research on Columbia River white sturgeon has been directed at their early life history as it may apply to production and enhancement strategies for management of the species. The river environment in which sturgeon historically migrated, spawned, and reared has changed through development. Habitat changes are expected to precipitate genetic changes in the fish, as well as reduce the fitness in populations. Genetic analysis of samples taken from various locations over the length of the Columbia River have indicated that observed gene frequencies in all areas sampled were not in Hardy-Weinburg equilibrium, which could suggest that the general population is experiencing perturbation in the system. Analysis thus far has exposed few differences between samples from the lower, middle, and upper portions of the system. Allelic differences were identified in fish from the Roosevelt Lake, which may be evidence of unique characteristics among fish from that general area.

  7. Seismic interpretation of the Wind River Mountains

    E-Print Network [OSTI]

    Van Voorhis, David

    1982-01-01T23:59:59.000Z

    SEISMIC INTERPBETATICN OF THE BIND RIVER MOUNTAINS A Thesis DAVID VAN VOORHIS Submitted to the Graduate College of Texas ACM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Auqust 'l982 Majcr Subject...: Geophysics SEISNIC INTERFRETATION OF THE HIND RIVER NOUNTAINS A Thes is by DAVID VAN VOORBIS Approved as to style and content by: (Chairman cf. Committee) (N em ber } m (Head of Department) August l 982 ABSTRACT Seismic Interpretation of the Wind...

  8. Salmon River Habitat Enhancement, 1990 Annual Report.

    SciTech Connect (OSTI)

    Rowe, Mike

    1991-12-01T23:59:59.000Z

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  9. Columbia River Component Data Gap Analysis

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2007-10-23T23:59:59.000Z

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  10. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  11. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15T23:59:59.000Z

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

  12. Modeling Storm Water Runoff and Soil Interflow in a Managed Forest, Upper Coastal Plain of the Southeast US.

    SciTech Connect (OSTI)

    Callahan, T.J.; Cook, J.D.; Coleman, Mark D.; Amatya, Devendra M.; Trettin, Carl C.

    2004-08-01T23:59:59.000Z

    The Forest Service-Savannah River is conducting a hectare-scale monitoring and modeling study on forest productivity in a Short Rotation Woody Crop plantation at the Savannah River Site, which is on Upper Coastal Plain of South Carolina. Detailed surveys, i.e., topography, soils, vegetation, and dainage network, of small (2-5 ha) plots have been completed in a 2 square-km watershed draining to Fourmile Creek, a tributary of the Savannah River. We wish to experimentally determine the relative importance of interflow on water yield and water quality at this site. Interflow (shallow subsurface lateral flow) can short-circuit rainfall infiltration, preventing deep seepage and resulting in water and chemical residence times in the watershed much shorter than that if deep seepage were the sole component of infiltration. The soil series at the site (Wagram, Dothan, Fuquay, Ogeechee, and Vaucluse) each have a clay-rich B horizon of decimeter-scale thickness at depths of 1-2 m below surface. As interflow is affected by rainfall intensity and duration and soil properties such as porosity, permeability, and antecedent soil moisture, our calculations made using the Green and Ampt equation show that the intensity and duration of a storm event must be greater than about 3 cm per hour and 2 hours, respectively, in order to initiate interflow for the least permeable soils series (Vaucluse). Tabulated values of soil properties were used in these preliminary calculations. Simulations of the largest rainfall events from 1972-2002 data using the Green and Ampt equation provide an interflow: rainfall ratio of 0 for the permeable Wagram soil series (no interflow) compared to 0.46 for the less permeable Vaucluse soil series. These initial predictions will be compared to storm water hydrographs of interflow collected at the outflow point of each plot and refined using more detailed soil property measurements.

  13. Hydropower production and river rehabilitation: A case study on an alpine river

    E-Print Network [OSTI]

    Hydropower production and river rehabilitation: A case study on an alpine river M. Fette & C. Weber # Springer Science + Business Media B.V. 2006 Abstract Despite the numerous benefits of hydropower production. Hydropeaks, caused by short-term changes in hydropower operation, result in a negative impact on both habitat

  14. Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)

    SciTech Connect (OSTI)

    Paller, M.

    1990-11-01T23:59:59.000Z

    Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985. The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.

  15. Achieving Accelerated Cleanup of Cesium Contaminated Stream at the Savannah River Site; Collaboration between Stakeholders, Regulators, and the Federal Government - 13182

    SciTech Connect (OSTI)

    Bergren, Chris; Flora, Mary; Socha, Ron; Burch, Joseph [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Freeman, Candice; Hennessey, Brian [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)] [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site and is a large black water stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 36 kilometer stretch of Lower Three Runs Stream that narrows providing a limited buffer of US DOE property along the stream and flood plain. Based on data collected during 2009 and 2010 under Recover Act Funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. As efficiencies were realized within the SRS Recovery Act Program, funding was made available to design, permit and execute remediation of the LTR. This accelerated Project allowed for the remediation of 36 kilometers of LTR in only nine months from inception to completion, contributing significantly to the Foot Print Reduction of SRS. The scope consisted of excavation and disposal of more than 2064 cubic meters of contaminated soil, and installing 11 kilometers of fence and 2,000 signs at 1000 locations. Confirmatory sampling and analysis, and radiological surveying were performed demonstrating that soil concentrations met the cleanup goals. The project completed with a very good safety record considering the harsh conditions including, excessive rain in the early stages of the project, high summer temperatures, swampy terrain, snakes, wild boar, insects and dense vegetation. The regulatory approval process was compressed by over 75% and required significant efforts from SRS's stakeholders including the regulators, U. S. Environmental Protection Agency (US EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC), and the public including local property owners and the SRS Citizens Advisory Board. Stakeholder buy-in was critical in the up-front planning in order to achieve this challenging cleanup. (authors)

  16. Upper tropospheric jet streams over North America during summer 1988

    E-Print Network [OSTI]

    Landers, David Edward

    1991-01-01T23:59:59.000Z

    UPPER TROPOSPHERIC JET STREAMS OVER NORTH AMERICA DURING SUMMER 1988 A Thesis by DAVID EDWARD LANDERS Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfuillment of the requirements for the degree of MASTER... OF SCIENCE August 1991 Ma j or Sub j ect: Meteorology UPPER TROPOSPHERIC JET STREAMS OVER NORTH AMERICA SUMMER 1988 A Thesis by DAVID EDWARD LANDERS Approved as to style and Content by: Dusan Djuric (Co-Chairman) James P. McGuirk (Co...

  17. Szlenk Index, Upper Estimates, and Embedding in Banach Spaces

    E-Print Network [OSTI]

    Causey, Ryan Michael

    2014-08-07T23:59:59.000Z

    and the topology of the space. But Enflo's famous example of a Banach space failing the approximation property [8] is also a Banach space failing to have either a Schauder basis or a finite dimensional decomposition. For this reason, one often wishes to determine... subsequential U upper tree estimates, then X embeds into Y . 8 (ii) If U, V are as in Theorem 1.2, then there exists a reflexive Banach space Z with FDD F satisfying subsequential V lower and subsequential U upper block estimates in Z such that if X ? REFL...

  18. Upper Hot Creek Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperativeCROSS-VALIDATION OF SWERA'sUpperUpper Hot

  19. Upper Hot Creek Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperativeCROSS-VALIDATION OF SWERA'sUpperUpper

  20. MODELING THE FATE AND TRANSPORT OF ATRAZINE IN THE UPPER CHESAPEAKE BAY

    E-Print Network [OSTI]

    Frei, Allan

    for agrochemicals in the Upper Chesapeake Bay. Keywords: Chesapeake Bay, hydrodynamic model, atrazine, photolysis