Powered by Deep Web Technologies
Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Steam turbine upgrades: A utility based approach  

SciTech Connect

In the increasingly competitive power generation markets utilities must strive towards lower electricity generation costs, whilst relying on an aging steam turbine fleet. By the year 2000 more than 25% of the global steam turbine capacity will be older than 30 years. The heat rate of such units is generally considerably higher than that of equivalent new plant, and such equipment can be further disadvantaged by increased maintenance costs and forced outage rates. Over the past decade steam turbine conversion, modification, and upgrade packages have become an increasingly important part of the European steam turbine market. Furthermore, many utilities now realize that enhanced cost-effectiveness can often be obtained by moving away from the original equipment manufacturer (OEM), and the upgrading of other manufacturers' plant is now routine within the steam turbine industry. By working closely with customers, GE has developed a comprehensive range of steam turbine upgrade packages, including advanced design steampaths which can increase the performance of existing turbine installations to levels comparable with new plant. Such packages are tailor-made to the requirements of each customer, to ensure that the most cost-effective engineering solution is identified. This paper presents an overview of GE's state-of-the-art steam turbine technology, and continues to describe typical economic models for turbine upgrades.

Wakeley, G.R.

1998-07-01T23:59:59.000Z

2

National Utility Rate Database: Preprint  

SciTech Connect

When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

Ong, S.; McKeel, R.

2012-08-01T23:59:59.000Z

3

Odorization system upgrades gas utility`s pipelines  

SciTech Connect

Mountain Fuel Supply Co., a subsidiary of Questar Corp., salt Lake City, is a natural gas holding company with $1.6 billion in assets. From 1929 to 1984, Mountain Fuel Supply Co. owned and operated many natural gas wells, gathering systems, and transmission pipelines to serve its Utah and Wyoming customers. Gas is odorized at convenient points on the transmission lines and at each downstream location where unodorized gas entered the system. Since 40 to 60% of the gas delivered to the company`s customers passes through Coalville Station, it was vital that a reliable, state-of-the-art odorant station be constructed at this site. Construction began during the summer of 1994 and the system came on line Sept. 1, 1994. The station odorized 435 MMcfd with 330 lbs. of odorant during last winter`s peak day, a mild winter. Mountain Fuel is subject to Department of Transportation (DOT) codes which mandate that gas be readily detectable at one fifth the lower explosive limit (LEL), or about 1% gas in air. However, the company strives to maintain a readily detectable odor at 0.25% of gas in air as measured by odormeter tests throughout the distribution system. Experience has shown that maintaining an odorant injection rate of 0.75 lbs/MMcf provides adequate odor levels. A blend of odorant consisting of 50% tertiary butyl mercaptan (TBM) and 50% tetrahydrothiophene (THT) was used for many years by Questar Pipeline. Presently, it is used at all Mountain Fuel stations. This paper reviews the design and operation of this odorization station.

Niebergall, B. [Mountain Fuel Supply, Salt Lake City, UT (United States)

1995-07-01T23:59:59.000Z

4

utility rate | OpenEI Community  

Open Energy Info (EERE)

utility rate utility rate Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 June, 2012 - 09:30 Increasing ask query limit developer utility rate An NREL user who is trying to use the utility rate service was having an issue. He writes "I noticed that any rates past 10,000 are not accessible via json. For example, this query only returns two entries:

5

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: API Type Term Title Author Replies Last Post sort icon Blog entry API The utility rate database version 1 API is now deprecated Rmckeel 6 Sep 2013 - 14:00 Blog entry API Lighting Electricity Rates on OpenEI Sfomail 31 May 2013 - 12:04 Blog entry API Utility Rates API Version 2 is Live! Sfomail 17 May 2013 - 11:14 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis

6

Utility Rates | OpenEI Community  

Open Energy Info (EERE)

Utility Rates Utility Rates Home Rmckeel's picture Submitted by Rmckeel(297) Contributor 6 September, 2013 - 14:00 The utility rate database version 1 API is now deprecated API Utility Rates There comes a time in every API version's lifecycle when it needs to be deprecated. OpenEI's utility rate database version 1 API has been in use since the inception of the database in 2010. As Illinois State University has taken a commanding lead of the project and its data curation, we have updated the schema and API to version 2 to present a richer spectrum of utility rate data. Rmckeel's picture Submitted by Rmckeel(297) Contributor 11 June, 2013 - 09:33 Tip for working with approvals on OpenEI EZFeed Utility Rates The "ApprovedRevs" extension is the feature on OpenEI that allows

7

OpenEI Community - utility rate  

Open Energy Info (EERE)

Rates API Rates API Version 2 is Live! http://en.openei.org/community/blog/utility-rates-api-version-2-live Smart meterAfter several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at util_rates">http://en.openei.org/services/doc/rest/util_ratesutility-rates-api-version-2-live" target="_blank">read more

8

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: developer Type Term Title Author Replies Last Post sort icon Blog entry developer Utility Rates API Version 2 is Live! Sfomail 17 May 2013 - 11:14 Discussion developer Utility rate change propagation is now much faster Rmckeel 1 21 Mar 2013 - 09:11 Blog entry developer OpenEI maintenance March 8-9, 2013 Rmckeel 8 Mar 2013 - 14:23 Blog entry developer Semantic Mediawiki Semantic Forms update Rmckeel 22 Oct 2012 - 07:23 Discussion developer Increasing ask query limit Rmckeel 1 28 Jun 2012 - 14:35 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank...

9

Utility Rate Discounts | Open Energy Information  

Open Energy Info (EERE)

Discounts Discounts Jump to: navigation, search A few electric utilities offer rate discounts to encourage residential energy efficiency. For homes that meet certain energy efficiency criteria, such as those established by the federal Energy Star program, the owner or tenant is awarded a percentage discount on each month’s electric bill. [1] Contents 1 Utility Rate Discount Incentives 2 References Utility Rate Discount Incentives CSV (rows 1 - 14) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Cleco Power - Power Miser New Home Program (Louisiana) Utility Rate Discount Louisiana Residential Building Insulation Central Air conditioners Clothes Washers Comprehensive Measures/Whole Building Doors Duct/Air sealing Furnaces Heat pumps

10

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: challenge Type Term Title Author Replies Last Post sort icon Discussion challenge 2013 Civic Hacking Day Ideas Rmckeel 1 22 May 2013 - 08:23 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis Rmckeel Sfomail Recent members: MSiira Apin101 Lissacoffey Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne

11

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: American Clean Skies Foundation Type Term Title Author Replies Last Post sort icon Blog entry American Clean Skies Foundation Nominations open for $250,000 Multimedia Clean Energy prizes Graham7781 2 Oct 2012 - 13:01 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis Rmckeel Sfomail Recent members: MSiira Apin101 Lissacoffey Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman

12

OpenEI Community - Utility Rates  

Open Energy Info (EERE)

The utility rate The utility rate database version 1 API is now deprecated http://en.openei.org/community/blog/utility-rate-database-version-1-api-now-deprecated There comes a time in every API version's lifecycle when it needs to be deprecated.OpenEI's utility rate database version 1 API has been in use since the inception of the database in 2010.  As Illinois State University has taken a commanding lead of the project and its data curation, we have updated the schema and API to version 2 to present a richer spectrum of utility rate data.

13

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Ewilson FYI, OpenEI now accommodates t... Posted by: Ewilson 20 Sep 2013 - 11:58 99thin Very useful information. Thank... Posted by: 99thin 9 Sep 2013 - 00:19 Rmckeel The utility rate database version 1 API is now deprecated Posted by: Rmckeel 6 Sep 2013 - 14:00 There comes a time in every API version's lifecycle when it needs to be deprecated. OpenEI's utility rate database version 1 API has been in use since the inception of the database in 2010. As... Tags: API, Utility Rates NickL Glad I could help get you on t... Posted by: NickL 4 Sep 2013 - 07:41 Glad I could help get you on the right track Myles. There is not as simple

14

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: data Type Term Title Author Replies Last Post sort icon Blog entry data Commercial and Residential Hourly Load Data Now Available on OpenEI! Sfomail 17 May 2013 - 12:03 Blog entry data IRENA launches global atlas of renewable energy potential Graham7781 11 Feb 2013 - 15:18 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis

15

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Utility Rate > Posts by term Content Group Activity By term Q & A Feeds American Clean Skies Foundation (1) API (3) Apps (1) bug (1) building load (1) building load data (1) challenge (1) clean energy (1) commercial load (1) data (2) dataset (1) datasets (1) developer (5) DOE (1) EIA (1) electric load data (1) energy efficiency (1) Energy Visions Prize (1) EZFeed (1) FOA (1) funding (1) Global Atlas (1) hackathon (1) Illinois State University (1) Incentives and Policies (1) 1 2 3 next › last » Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated

16

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Groups > Groups > Utility Rate Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in order to post into this group. Groups Menu You must login in order to post into this group. Group members (28) Managers: Dloomis Rmckeel Sfomail Recent members: MSiira Apin101 Lissacoffey Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis Rmckeel Sfomail

17

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Replies Last Post sort icon Blog entry Database Announcing New Utility Rate Database and API Features Ewilson 1 21 Jul 2014 - 15:48 Groups Menu You must login in order to post...

18

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: energy efficiency Type Term Title Author Replies Last Post sort icon Blog entry energy efficiency FOA aimed at growing expansive database of Renewable Energy and Energy Efficiency Incentives and Policies Graham7781 12 Dec 2012 - 11:30 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion

19

Utility Rate Discount | Open Energy Information  

Open Energy Info (EERE)

Discount Discount Jump to: navigation, search A few electric utilities offer rate discounts to encourage residential energy efficiency. For homes that meet certain energy efficiency criteria, such as those established by the federal Energy Star program, the owner or tenant is awarded a percentage discount on each month’s electric bill. [1] Utility Rate Discount Incentives CSV (rows 1 - 14) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Cleco Power - Power Miser New Home Program (Louisiana) Utility Rate Discount Louisiana Residential Building Insulation Central Air conditioners Clothes Washers Comprehensive Measures/Whole Building Doors Duct/Air sealing Furnaces Heat pumps Water Heaters Windows Yes Dominion North Carolina Power - Energy Saver Home Plus (North Carolina) Utility Rate Discount North Carolina Residential Water Heaters

20

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Utility Rate Utility Rate Home > Groups Content Group Activity By term Q & A Feeds Share your own status updates, and follow the updates & activities of others by creating your own account. Or, remember to log in If you already have an account. Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis Rmckeel Sfomail Recent members: MSiira Apin101 Lissacoffey Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng 429 Throttled (bot load)

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Property:OpenEI/UtilityRate/Utility | Open Energy Information  

Open Energy Info (EERE)

Utility Utility Jump to: navigation, search This is a property of type Page. Name: Utility Subproperties This property has the following 1 subproperty: A Data:Add4bb7f-e6bd-4427-a614-3a92bd5ba15d Pages using the property "OpenEI/UtilityRate/Utility" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + Prairie Land Electric Coop Inc + 000086db-7a5e-4356-9c57-c912f7d1622e + Talquin Electric Coop, Inc + 0003a8b3-04b9-4ecb-b06d-6022e7f0f009 + Central Electric Membership Corporation + 000470c7-df04-47aa-bdd2-d70f0a2c52b3 + New London Electric&Water Util + 000b6dfa-a541-428a-9029-423006e22a34 + City of Plymouth, Wisconsin (Utility Company) + 000db36e-b548-43e7-a283-d37ecc77cef1 + Surprise Valley Electrification Corp. +

22

Energy-Efficient Capacity Upgrade in Optical Networks with Mixed Line Rates  

Science Journals Connector (OSTI)

We investigate the energy-efficient network upgrade problem. The traffic growth in a mixed-line-rate (10/40/100 Gbps) optical network is supported through both non-disruptive and...

Nag, Avishek; Tornatore, Massimo; Wang, Ting; Mukherjee, Biswanath

23

The feasibility of replacing or upgrading utility distribution transformers during routine maintenance  

SciTech Connect

It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformers may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124(c) of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on was to achieve the potential energy savings.

Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Cohn, S.M.; Purucker, S.L.

1995-04-01T23:59:59.000Z

24

Utility rate change propagation is now much faster | OpenEI Community  

Open Energy Info (EERE)

rate change propagation is now much faster rate change propagation is now much faster Home > Groups > Utility Rate Rmckeel's picture Submitted by Rmckeel(297) Contributor 19 March, 2013 - 16:30 developer Semantic Mediawiki Utility Rates Good news, everyone! Changes to the utility rate template or fields cause small updates on all 29K+ utility rates on OpenEI, which takes time to process. Older versions of mediawiki and semantic mediawiki were not as efficient at handling these. Preliminary results after changing a field and tweaking job run speeds shows a ~60X improvement in speed. Changes to utility rates can now be propagated to the entire database in approximately 35 minutes - before it took more than one day. We are hopeful we will keep seeing various benefits from the upgrade process.

25

Asymptotic Cellular Growth Rate as the Effective Information Utilization Rate  

E-Print Network (OSTI)

We study the average asymptotic growth rate of cells in randomly fluctuating environments. Using a game-theoretic perspective, we show that any response strategy has an asymptotic growth rate, which is the sum of: (i) the maximal growth rate at the worst possible distribution of environments, (ii) relative information between the actual distribution of environments to the worst one, and (iii) information utilization rate which is the information rate of the sensory devices minus the "information dissipation rate", the amount of information not utilized by the cell for growth. In non-stationary environments, the optimal strategy is the time average of the instantaneous optimal strategy and the optimal switching times are evenly spaced in the statistical (Fisher) metric.

Pugatch, Rami; Tlusty, Tsvi

2013-01-01T23:59:59.000Z

26

Widget:UtilityRateEntryHelperVideo | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search This widget displays the utility rate database form helper video. For example: Widget:UtilityRateEntryHelperVideo Retrieved from "http:...

27

Category:Utility Rates | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Utility Rates Jump to: navigation, search Add a new Utility Rate Pages in category "Utility Rates" The following 200 pages are in this category, out of 42,539 total. (previous 200) (next 200) 0 Data:0000827d-84d0-453d-b659-b86869323897 Data:000086db-7a5e-4356-9c57-c912f7d1622e Data:0003a8b3-04b9-4ecb-b06d-6022e7f0f009 Data:000470c7-df04-47aa-bdd2-d70f0a2c52b3 Data:000b6dfa-a541-428a-9029-423006e22a34 Data:000db36e-b548-43e7-a283-d37ecc77cef1 Data:000e60f7-120d-48ab-a1f9-9c195329c628 Data:00101108-073b-4503-9cd4-01769611c26f Data:001361ca-50d2-49bc-b331-08755a2c7c7d

28

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

clean energy clean energy Type Term Title Author Replies Last Post sort icon Blog entry clean energy Nominations open for $250,000 Multimedia Clean Energy prizes Graham7781 2 Oct 2012 - 13:01 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis Rmckeel Sfomail Recent members: MSiira Apin101 Lissacoffey Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

29

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

DOE DOE Type Term Title Author Replies Last Post sort icon Blog entry DOE FOA aimed at growing expansive database of Renewable Energy and Energy Efficiency Incentives and Policies Graham7781 12 Dec 2012 - 11:30 Groups Menu You must login in order to post into this group. Recent content There is currently no way to s... ranking of utilities by demand charge? FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated more Group members (28) Managers: Dloomis Rmckeel Sfomail Recent members: MSiira Apin101 Lissacoffey Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng 429 Throttled (bot load) Error 429 Throttled (bot load)

30

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

dataset dataset Type Term Title Author Replies Last Post sort icon Blog entry dataset Commercial and Residential Hourly Load Data Now Available on OpenEI! Sfomail 17 May 2013 - 12:03 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Nsbowde Rmbot Ewilson 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

31

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

commercial load commercial load Type Term Title Author Replies Last Post sort icon Blog entry commercial load Commercial and Residential Hourly Load Data Now Available on OpenEI! Sfomail 17 May 2013 - 12:03 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Nsbowde Rmbot Ewilson 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

32

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

datasets datasets Type Term Title Author Replies Last Post sort icon Blog entry datasets Commercial and Residential Hourly Load Data Now Available on OpenEI! Sfomail 17 May 2013 - 12:03 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Nsbowde Rmbot Ewilson 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

33

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Global Atlas Global Atlas Type Term Title Author Replies Last Post sort icon Blog entry Global Atlas IRENA launches global atlas of renewable energy potential Graham7781 11 Feb 2013 - 15:18 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Nsbowde Rmbot Ewilson 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

34

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

electric load data electric load data Type Term Title Author Replies Last Post sort icon Blog entry electric load data Commercial and Residential Hourly Load Data Now Available on OpenEI! Sfomail 17 May 2013 - 12:03 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Nsbowde Rmbot Ewilson 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

35

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

load data load data Type Term Title Author Replies Last Post sort icon Blog entry building load data Commercial and Residential Hourly Load Data Now Available on OpenEI! Sfomail 17 May 2013 - 12:03 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Nsbowde Rmbot Ewilson 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

36

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Energy Visions Prize Energy Visions Prize Type Term Title Author Replies Last Post sort icon Blog entry Energy Visions Prize Nominations open for $250,000 Multimedia Clean Energy prizes Graham7781 2 Oct 2012 - 13:01 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Nsbowde Rmbot Ewilson 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

37

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

load load Type Term Title Author Replies Last Post sort icon Blog entry building load Commercial and Residential Hourly Load Data Now Available on OpenEI! Sfomail 17 May 2013 - 12:03 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Nsbowde Rmbot Ewilson 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

38

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

FOA FOA Type Term Title Author Replies Last Post sort icon Blog entry FOA FOA aimed at growing expansive database of Renewable Energy and Energy Efficiency Incentives and Policies Graham7781 12 Dec 2012 - 11:30 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Nsbowde Rmbot Ewilson 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

39

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Incentives and Policies Incentives and Policies Type Term Title Author Replies Last Post sort icon Blog entry Incentives and Policies Semantic Mediawiki Semantic Forms update Rmckeel 22 Oct 2012 - 07:23 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Nsbowde Rmbot Ewilson 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

40

Utility Rate | OpenEI Community  

Open Energy Info (EERE)

funding funding Type Term Title Author Replies Last Post sort icon Blog entry funding FOA aimed at growing expansive database of Renewable Energy and Energy Efficiency Incentives and Policies Graham7781 12 Dec 2012 - 11:30 Groups Menu You must login in order to post into this group. Recent content FYI, OpenEI now accommodates t... Very useful information. Thank... The utility rate database version 1 API is now deprecated Glad I could help get you on t... Nick, Thanks very much! That... more Group members (25) Managers: Dloomis Rmckeel Sfomail Recent members: Denizurla Bazouing Gdavis Shehant Anapettirossi Abkatzman BijouLulla Vbugnion Marklane Cbonsig Verdel3c Wisconsin Weatherall Windows Payne Nlong Wzeng Nsbowde Rmbot Ewilson 429 Throttled (bot load) Error 429 Throttled (bot load)

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Widget:UtilityRatesByCompany | Open Energy Information  

Open Energy Info (EERE)

Widget Edit History Facebook icon Twitter icon Widget:UtilityRatesByCompany Jump to: navigation, search This widget aids the user in finding utility rates for a given company....

42

Widget:UtilityRateFinder | Open Energy Information  

Open Energy Info (EERE)

Widget Edit History Facebook icon Twitter icon Widget:UtilityRateFinder Jump to: navigation, search This widget aids the user in finding a utility rate. Semantic auto-complete...

43

Front-end utility rate updates | OpenEI Community  

Open Energy Info (EERE)

Front-end utility rate updates Front-end utility rate updates Home > Groups > Utility Rate Rmckeel's picture Submitted by Rmckeel(297) Contributor 13 February, 2013 - 14:28 Utility Rates A few utility rate updates worth noting. We used to have a limit of 100 for results returned on the utility gateway. That has been increased, along with a few UI updates. There is now a 15em height window (sorry if that's too technical) to browse results, so all the hundreds of results don't extend the page. For the naming page however, perhaps the long list is preferred? I'm willing to tweak these heights, as well as have separate heights if it is requested for the public view and the editor view. Improvement to have results show within the block instead of outside of. Minor increase in results width on editor page.

44

Utility Rate Design Revision - A Frisbee Full of Boomerangs  

E-Print Network (OSTI)

Rising electricity prices have prompted investigation of utility rates and proposals for changed in their design. The purpose of this paper is to discuss the current design of electric rates, changes proposed, actual trends, and predictable results...

Dannenmaier, J. H.

1979-01-01T23:59:59.000Z

45

Recent content in Utility Rate | OpenEI Community  

Open Energy Info (EERE)

Recent content in Utility Rate Recent content in Utility Rate Home Name Post date sort icon Type How do I Build Apps with Utility Rate Data (that is continuously updating)? Kch 23 Apr 2012 - 10:31 Discussion Town Hall Meeting Rmckeel 12 Jun 2012 - 09:01 Event "Ghost" entries Rmckeel 19 Jun 2012 - 08:04 Discussion How do I Build Apps with Utility Rate Data (that is continuously updating)? Kch 22 Jun 2012 - 07:44 Question With the developer in mind,... Rmckeel 22 Jun 2012 - 07:45 Answer NREL does have an existing web... Sfomail 22 Jun 2012 - 07:46 Answer List of utility company aliases Ewilson 22 Jun 2012 - 09:05 Question Increasing ask query limit Rmckeel 22 Jun 2012 - 09:30 Discussion Hey Ewilson, great question. ... Rmckeel 22 Jun 2012 - 09:47 Answer

46

upgrade | OpenEI Community  

Open Energy Info (EERE)

4 4 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142235354 Varnish cache server upgrade Home Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 October, 2012 - 07:23 Semantic Mediawiki Semantic Forms update developer Incentives and Policies Semantic Mediawiki upgrade Utility Rates We have just updated Semantic Forms on OpenEI to version 2.4 to enable some upgrades to the utility rate forms (thanks Teresa!). If you see any problems in forms you use on OpenEI, please notify us by commenting on this

47

Utility Rate - Q & A | OpenEI Community  

Open Energy Info (EERE)

Utility Rate - Q & A Utility Rate - Q & A Home > Utility Rate Content Group Activity By term Q & A Feeds Question Post date Answers OpenEI-specific tutorial for Semantic search? 30 Aug 2013 - 13:09 4 Require selection of units? 20 Jun 2013 - 12:31 3 Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. 2 May 2013 - 11:29 1 JSON shows incomplete info 1 Mar 2013 - 16:56 2 NREL/Ventyx Utility Rates: What is included? 27 Feb 2013 - 16:25 1 "Show Preview" button is not working; gives error 3 Jan 2013 - 09:52 1 Problems with interface change 10 Dec 2012 - 16:50 3 Tiered time-of-use rates 23 Sep 2012 - 20:52 2 Does the Utility Rates service on OpenEI return/display the latest data or only approved data? 11 Jul 2012 - 13:53 2

48

Utility Rate API v2 | OpenEI Community  

Open Energy Info (EERE)

Rate API v2 Rate API v2 Home > Groups > Utility Rate Rmckeel's picture Submitted by Rmckeel(297) Contributor 11 September, 2012 - 07:35 There are updates coming through the pipe for the utility rate form. When these updates are deployed to production, then will allow ISU and anyone entering utility rates the ability to define and access richer data. This will cause some changes at the API level. Jordan from ISU is currently working on this. In an email, he noted: "I am working on the API and making sure that it will keep version 1 and make a version 2 to represent the new data. I am also working on a way to automatically convert the version 1 data into a format that version 2 can use and a way to make the data entered in the new version available in version 1 of the API. As

49

Effect of nuclear ownership on utility bond ratings and yields  

SciTech Connect

The major objective of this study was to test the hypothesis that investors have required an additional interest rate premium before purchasing bonds of utilities with large investments in nuclear facilities. The study required several tasks. First, the literature relating to firm bankruptcy and default was reviewed. Second, the failing financial health of the electric utility industry was assessed in terms of construction problems, the impact of federal and state regulations, and the impact of Three Mile Island. Finally, data were collected on 63 electric utilities. This allowed statistical estimation of the magnitude of the risk premium associated with utility involvement in nuclear power. The effect of this involvement on a utility's bond ratings was also examined. Multiple regression was the statistical tool used for the statistical testing and estimation.

Nesse, R.J.

1982-02-01T23:59:59.000Z

50

Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Rate | Open Energy  

Open Energy Info (EERE)

Rate" Rate" Showing 13 pages using this property. 4 4b524791-bef2-49b1-850b-458730755203 + 5 +, 6 +, 3 +, ... 4b524791-bef2-49b1-850b-458730755203 + 6 + 4b524791-bef2-49b1-850b-458730755203 + 3 + 4b524791-bef2-49b1-850b-458730755203 + 7 + 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 8 + 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 6 + 4b524791-bef2-49b1-850b-458730755203 + 6 + E E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 1 + E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 1 + E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 1 + Retrieved from "http://en.openei.org/w/index.php?title=Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Rate&oldid=53975

51

An initial study on feasible treatment of Serbian lignite through utilization of low-rank coal upgrading technologies  

Science Journals Connector (OSTI)

Abstract Despite benefiting from vast fuel reserves, combustion of low-rank coals is commonly characterized by low thermal efficiency and high pollutant emissions, partly due to high moisture content of the coals in question. Thus, removal of moisture from low-rank coals is deemed an important quality upgrading method. The paper provides an overview of the current status of low-rank coal upgrading technologies, particularly with respect to utilization of drying and dewatering procedures. In order to examine the influence of relevant parameters on the moisture removal process, a model of convective coal drying in a packed, as well as in a fluid bed combustion arrangement, is developed and presented. Product-specific data (intraparticle mass transfer, gassolid moisture equilibrium) related to the coal variety addressed herein (lignite) are obtained through preliminary investigations. Effective thermal conductivity of the packed bed as defined by Zehner/Bauer/Schlnder is used to define heat transfer mechanisms occurring in the packed bed. Similar two-phase fluidization model has been validated for different types of biomaterials.

Milan Staki?; Dejan Cvetinovi?; Predrag kobalj; Vuk Spasojevi?

2014-01-01T23:59:59.000Z

52

Why did someone delete the Utility Rate Database Page? | OpenEI...  

Open Energy Info (EERE)

Why did someone delete the Utility Rate Database Page? Home > Groups > Utility Rate Can someone fix this? I can't access the Utility Rate Database Page It looks like someone...

53

Utility Rates API Version 2 is Live! | OpenEI Community  

Open Energy Info (EERE)

Utility Rates API Version 2 is Live! Utility Rates API Version 2 is Live! Home > Groups > Utility Rate Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates The new API includes support for the latest V2 Utility Rates input fields (including tiered time-of-use rates, tiered demand charges, new category for lighting, and many more improvements). Just a reminder that you can view (And contribute!) rate database entries

54

Property:OpenEI/UtilityRate/Source | Open Energy Information  

Open Energy Info (EERE)

Source Source Property Type Text Pages using the property "OpenEI/UtilityRate/Source" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + http://www.prairielandelectric.com/Rates_PDF/MKEC%20Rates.pdf 000086db-7a5e-4356-9c57-c912f7d1622e + http://www.talquinelectric.com/rates_elec.aspx 0003a8b3-04b9-4ecb-b06d-6022e7f0f009 + http://www.centralelectriconline.com/page.php?p=7&s=80 000470c7-df04-47aa-bdd2-d70f0a2c52b3 + http://psc.wi.gov/apps40/tariffs/viewfile.aspx?type=electric&id=4130 000b6dfa-a541-428a-9029-423006e22a34 + http://psc.wi.gov/apps40/tariffs/viewfile.aspx?type=electric&id=4740 000db36e-b548-43e7-a283-d37ecc77cef1 + http://www.surprisevalleyelectric.org/_uploads/SVECratecar122011.pdf

55

Utility Rate Structures and the Impact of Energy Efficiency and...  

Office of Environmental Management (EM)

* Review a mock energy efficiency and renewable energy project with three different utilities with differing tariffs * Summary Federal Utility Partnership Working Group November...

56

U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) |  

Open Energy Info (EERE)

Utility Companies and Rates: Look-up by Zipcode (Feb 2011) Utility Companies and Rates: Look-up by Zipcode (Feb 2011) Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB)

57

NREL/Ventyx Utility Rates: What is included? | OpenEI Community  

Open Energy Info (EERE)

NREL/Ventyx Utility Rates: What is included? NREL/Ventyx Utility Rates: What is included? Home > Groups > Utility Rate Does anyone know what pieces of electric rates are included in the NREL/Ventyx database of rates by utility, i.e. is it supply only or does the file include supply, transmission & distribution costs? Thanks! Submitted by Vbugnion on 27 February, 2013 - 16:25 1 answer Points: 1 Hi Vbugnion, Just to clarify, you're not asking about the OpenEI utility rates, but rather the Ventyx rates found here: http://developer.nrel.gov/doc/api/georeserv/service/utility_rates If so, then the Ventyx rates do include all bundled rates (which includes supply, trans, and distr costs). However, there's a small but non-zero possibility that a few energy-only or delivery-only rates may not have been cleaned

58

Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Adjustment | Open  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Adjustment Jump to: navigation, search This is a property of type Number. Pages using the property "OpenEI/UtilityRate/DemandRateStructure/Tier6Adjustment" Showing 13 pages using this property. 4 4b524791-bef2-49b1-850b-458730755203 + 8 + 4b524791-bef2-49b1-850b-458730755203 + 8 +, 9 +, 67 +, ... 4b524791-bef2-49b1-850b-458730755203 + 9 + 4b524791-bef2-49b1-850b-458730755203 + 2 + 4b524791-bef2-49b1-850b-458730755203 + 67 + 4b524791-bef2-49b1-850b-458730755203 + 2 + 4b524791-bef2-49b1-850b-458730755203 + 89 + 4b524791-bef2-49b1-850b-458730755203 + 3 + 4b524791-bef2-49b1-850b-458730755203 + 3 + 4b524791-bef2-49b1-850b-458730755203 + 3 +

59

Property:OpenEI/UtilityRate/EnergyRateStructure/Period | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:OpenEI/UtilityRate/EnergyRateStructure/Period Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/EnergyRateStructure/Period" Showing 25 pages using this property. (previous 25) (next 25) 0 000b6dfa-a541-428a-9029-423006e22a34 + 1 +, 2 + 000b6dfa-a541-428a-9029-423006e22a34 + 1 + 000b6dfa-a541-428a-9029-423006e22a34 + 2 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 +

60

Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Rate | Open Energy  

Open Energy Info (EERE)

Rate" Rate" Showing 25 pages using this property. (previous 25) (next 25) 0 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.227 + 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.227 + 00c88d6d-e3b0-4128-ad3e-a93f686cf6e3 + 0.227 + 019be14c-4635-4529-af90-799cbf5d7865 + 0.0335 + 019be14c-4635-4529-af90-799cbf5d7865 + 0.0335 + 02b061e1-f065-421e-9ebc-76aef4734486 + 0.079 + 02b061e1-f065-421e-9ebc-76aef4734486 + 0.079 + 02fc76fd-35ff-44c3-bc85-1fb1918f125b + 0.0978 + 02fc76fd-35ff-44c3-bc85-1fb1918f125b + 0.0978 + 0402cc99-ab16-40cc-83e7-2c5910a825a1 + 0.061 + 0402cc99-ab16-40cc-83e7-2c5910a825a1 + 0.061 + 041466a9-81ca-4fce-90e3-e718159347a9 + 0.0587 +, 0.044 + 041466a9-81ca-4fce-90e3-e718159347a9 + 0.044 + 041466a9-81ca-4fce-90e3-e718159347a9 + 0.0587 + 047086c9-976d-4a05-90d5-b67afaf60851 + 0.0583 +

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

15 - Biogas upgrading to biomethane  

Science Journals Connector (OSTI)

Abstract: Compared with other utilization paths of biogas, upgrading of biogas to biomethane offers several advantages and has thus become of increased relevance in the last decade. This chapter describes past developments as well as the current state of upgrading, especially in Europe. Specifics of biogas cleaning combined with biogas upgrading will be described. The chapter focuses on technical aspects of upgrading and off-gas treatment methods as well as on economic aspects of biomethane provision.

Michael Beil; Wiebke Beyrich

2013-01-01T23:59:59.000Z

62

How do I Build Apps with Utility Rate Data (that is continuously...  

Open Energy Info (EERE)

Rate Kch's picture Submitted by Kch(24) Member 23 April, 2012 - 10:31 utility rate web services There's a need among our users to incorporate the electricity rates from the...

63

How do I Build Apps with Utility Rate Data (that is continuously updating)?  

Open Energy Info (EERE)

How do I Build Apps with Utility Rate Data (that is continuously updating)? How do I Build Apps with Utility Rate Data (that is continuously updating)? Home > Groups > Utility Rate There's a need among our users to incorporate the electricity rates from the URDB into new apps. For example, we recently had this question: Is there a way that I can utilize your platform to find energy rates per kWh (residential, ideally final price to consumer)? Is there a way that we can design our database (which is currently organized by zip code,) to continually be updated by your information? Submitted by Kch on 22 June, 2012 - 07:44 2 answers Points: 1 With the developer in mind, here are some sample calls for utility rate data. Please post to my status to contact me if you have more specific questions about utility rate web services coming from OpenEI! If I create

64

How do I Build Apps with Utility Rate Data (that is continuously updating)?  

Open Energy Info (EERE)

How do I Build Apps with Utility Rate Data (that is continuously updating)? How do I Build Apps with Utility Rate Data (that is continuously updating)? Home > Groups > Utility Rate There's a need among our users to incorporate the electricity rates from the URDB into new apps. For example, we recently had this question: Is there a way that I can utilize your platform to find energy rates per kWh (residential, ideally final price to consumer)? Is there a way that we can design our database (which is currently organized by zip code,) to continually be updated by your information? Submitted by Kch on 22 June, 2012 - 07:44 2 answers Points: 1 With the developer in mind, here are some sample calls for utility rate data. Please post to my status to contact me if you have more specific questions about utility rate web services coming from OpenEI! If I create

65

How do I Build Apps with Utility Rate Data (that is continuously updating)?  

Open Energy Info (EERE)

How do I Build Apps with Utility Rate Data (that is continuously updating)? How do I Build Apps with Utility Rate Data (that is continuously updating)? Home > Groups > Utility Rate There's a need among our users to incorporate the electricity rates from the URDB into new apps. For example, we recently had this question: Is there a way that I can utilize your platform to find energy rates per kWh (residential, ideally final price to consumer)? Is there a way that we can design our database (which is currently organized by zip code,) to continually be updated by your information? Submitted by Kch on 22 June, 2012 - 07:44 2 answers Points: 1 With the developer in mind, here are some sample calls for utility rate data. Please post to my status to contact me if you have more specific questions about utility rate web services coming from OpenEI! If I create

66

How do I Build Apps with Utility Rate Data (that is continuously updating)?  

Open Energy Info (EERE)

How do I Build Apps with Utility Rate Data (that is continuously updating)? How do I Build Apps with Utility Rate Data (that is continuously updating)? Home > Groups > Utility Rate Kch's picture Submitted by Kch(24) Member 23 April, 2012 - 10:31 utility rate web services There's a need among our users to incorporate the electricity rates from the URDB into new apps. For example, we recently had this question: Is there a way that I can utilize your platform to find energy rates per kWh (residential, ideally final price to consumer)? Is there a way that we can design our database (which is currently organized by zip code,) to continually be updated by your information? Groups: Utility Rate Developer Login to post comments Comments Rmckeel Rmckeel1 year 28 weeks ago Moved to Q&A! We have an awesome new feature on OpenEI community called Q&A. I've

67

U.S. Electric Utility Companies and Rates: Look-up by Zipcode...  

Open Energy Info (EERE)

Ventyx U.S. Electric Utility ... Dataset Activity Stream U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) This dataset, compiled by NREL and Ventyx,...

68

EIA officially recognizes utility rate database on OpenEI | OpenEI  

Open Energy Info (EERE)

EIA officially recognizes utility rate database on OpenEI EIA officially recognizes utility rate database on OpenEI Home > Groups > Utility Rate Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 12:42 EIA OpenEI Utility Rates OpenEI and U.S. Energy Information Administration (EIA) Good news, everyone! The U.S. Energy Information Administration (EIA) now officially recognizes the OpenEI utility rate database. Up until just a few months ago, the EIA website stated: "EIA does not collect or publish data on electricity rates, or tariffs, for the sale or purchase of electricity, or on demand charges for electricity service, nor does EIA publish retail electricity rates or prices for peak or off-peak periods (sometimes referred to as time-of-use-rates)... EIA is not aware of a publicly available source for

69

The utility rate database version 1 API is now deprecated | OpenEI  

Open Energy Info (EERE)

The utility rate database version 1 API is now deprecated The utility rate database version 1 API is now deprecated Home > Groups > Utility Rate Rmckeel's picture Submitted by Rmckeel(297) Contributor 6 September, 2013 - 14:00 API Utility Rates There comes a time in every API version's lifecycle when it needs to be deprecated. OpenEI's utility rate database version 1 API has been in use since the inception of the database in 2010. As Illinois State University has taken a commanding lead of the project and its data curation, we have updated the schema and API to version 2 to present a richer spectrum of utility rate data. A quick history - version 2 data fields came out in early December, 2012. The version 2 API to access this new data was then launched in early May, 2013. Now that it is September, 2013, we are providing a limited,

70

Rate enhancement for catalytic upgrading coal naphthas. Quarterly report, April--June 1993  

SciTech Connect

In this report, we compare the activities of unsupported molybdenum nitride and unsupported molybdenum sulfide for the hydrotreatment of a real feedstock, naphtha derived from Illinois No. 6 coal. Two sets of conditions were employed for the hydrotreatment of the Illinois No. 6 naphtha. In the first condition, heteroatom removal was obtained for the temperatures of 200 to 400{degrees}C. The temperature was varied while holding constant the total pressure (600 psig), weight hourly space velocity (WHSV = 1), and hydrogen to naphtha g-mole ratio (2.6). The catalyst activities for HDN and HDS reactions were compared and the activation energies of these two reactions were determined for different catalysts. In the second condition, the weight hourly space velocity at 350 {degrees}C was varied to compare the reaction rate of N and S removal. Results are discussed.

Not Available

1993-11-01T23:59:59.000Z

71

Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Max | Open Energy  

Open Energy Info (EERE)

Max" Max" Showing 13 pages using this property. 4 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 5 + 4b524791-bef2-49b1-850b-458730755203 + 6 + 4b524791-bef2-49b1-850b-458730755203 + 7 + 4b524791-bef2-49b1-850b-458730755203 + 3 +, 4 +, 5 +, ... 4b524791-bef2-49b1-850b-458730755203 + 9 + 4b524791-bef2-49b1-850b-458730755203 + 3 + 4b524791-bef2-49b1-850b-458730755203 + 30 + 4b524791-bef2-49b1-850b-458730755203 + 4 + 4b524791-bef2-49b1-850b-458730755203 + 36 + E E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 200 + E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 200 + E40880ac-c27b-4cbf-a011-b0d7d6e10fe9 + 200 + Retrieved from "http://en.openei.org/w/index.php?title=Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Max&oldid=539747

72

Historic utility retail rate information | OpenEI Community  

Open Energy Info (EERE)

rate (kWh) in North Carolina since 2001 is already graphed here: http:apps1.eere.energy.govsledNorth%20Carolina35.9940329-78.898619?cityDurham&abvNC§ionele...

73

Help:Utility Rate Data Entry | Open Energy Information  

Open Energy Info (EERE)

remaining issues that need to be documented. Data dictionary documentation for U.S. URDB API and data usage Demand Charges Fixed Monthly Charge Time of Use Tiered Rate Energy...

74

MURDAM1.0. Minority Utility Rate Design Assessment Model  

SciTech Connect

Econometric model simulates consumer demand response to various user-supplied, two-part tariff electricity rate designs and assesses their economic welfare impact on black, hispanic, poor and majority households.

Poyer, D.A.; Butler, J.G. [Argonne National Lab., IL (United States)

1993-01-20T23:59:59.000Z

75

Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont  

E-Print Network (OSTI)

As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...

Williams, M. M.

1981-01-01T23:59:59.000Z

76

Ten Ways to Lower Perceived Risk and Finance Rates within Utility Contract  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ten Ways to Lower Perceived Risk and Finance Rates within Utility Ten Ways to Lower Perceived Risk and Finance Rates within Utility Contract Ten Ways to Lower Perceived Risk and Finance Rates within Utility Contract October 7, 2013 - 2:29pm Addthis Federal agencies can use the following 10 methods during project negotiations to lower perceived project risk and finance rates to get the best value from utility energy service contracts (UESCs). 1. Time is Money Money can be saved anywhere you reduce processing time and facilitate quick closure of your deal. A short turnaround reduces the administrative cost for the utility and subcontractor teams. Delays also impact the interest rate especially as finance companies lose the ability to hold interest rates during grace periods. The sooner the project is implemented, the sooner it begins saving energy and money for your facility. Every delay is

77

Property:OpenEI/UtilityRate/DemandRateStructure/Period | Open Energy  

Open Energy Info (EERE)

Period Period Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/DemandRateStructure/Period" Showing 25 pages using this property. (previous 25) (next 25) 0 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 +

78

Nationwide Utility Rates Available on OpenEI | OpenEI Community  

Open Energy Info (EERE)

Nationwide Utility Rates Available on OpenEI Nationwide Utility Rates Available on OpenEI Home > Groups > Utility Rate Wzeng's picture Submitted by Wzeng(50) Contributor 3 July, 2012 - 10:50 Utility Rates Electric utility rates for U.S. companies are now available to view and download on en.openei.org, an energy information website hosted by the National Renewable Energy Laboratory (NREL) and the Department of Energy. The information will allow towards homeowners and businesses to make informed decisions and investments regarding energy usage and choose the most economical combination of traditional energy and generating energy through renewable methods. The information can also help in planning energy usage in the near future. For those interested further in the topic, NREL will also hold a town hall

79

Considering removing "Show Preview" button on utility rate form edit |  

Open Energy Info (EERE)

Considering removing "Show Preview" button on utility rate form edit Considering removing "Show Preview" button on utility rate form edit Home > Groups > Utility Rate Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 April, 2013 - 13:55 Utility Rates I'm considering removing the "Show Preview" button, since it does not work (javascript validation issue that could be fixed), and it doesn't make sense. The reason to remove it would be that this form's output is nearly identical to the form itself. Showing a preview does not add any value. Or does it? Opening the discussion in case anyone has feedback on it. Thanks! Ryan Groups: Utility Rate Login to post comments Comments Dloomis Dloomis34 weeks 6 days ago Show Preview If "show changes" stays around, I think we can do without the "show

80

Method for enhancing microbial utilization rates of gases using perfluorocarbons  

DOE Patents (OSTI)

A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

Turick, Charles E. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

C. Jean Bustard

2003-12-01T23:59:59.000Z

82

Impact of Utility Rates on PV Economics - Digital Appendix | Open Energy  

Open Energy Info (EERE)

Impact of Utility Rates on PV Economics - Digital Appendix Impact of Utility Rates on PV Economics - Digital Appendix Jump to: navigation, search Welcome to the Digital Appendix for The Impacts of Utility Rates and Building Type on the Economics of Commercial Photovoltaic Systems. This digital appendix contains supplement material for the NREL technical report, The Impacts of Utility Rates and Building Type on the Economics of Commercial Photovoltaic Systems. Detailed results for each building type, location, and rate structure are provided in this appendix. Users may browse either by building type, or location using one of the two links in the "Detailed Charts and Data" section. Summary tables are also provided for reference. Summary Results Tables The summary tables provide overview results for all locations and building

83

Heart Rate Dynamics in Patients With Stable Angina Pectoris and Utility of  

E-Print Network (OSTI)

Heart Rate Dynamics in Patients With Stable Angina Pectoris and Utility of Fractal and Complexity- ties in heart rate (HR) behavior that are not easily de- tectable with conventional statistical.05). The short-term fractal scaling ex- ponent performed better than other heart rate variability parameters

84

Does anyone have access to 2012 average residential rates by utility  

Open Energy Info (EERE)

Does anyone have access to 2012 average residential rates by utility Does anyone have access to 2012 average residential rates by utility company? I'm seeing an inconsistency between the OpenEI website and EIA 861 data set. Home > Groups > Utility Rate I'm interested in getting a spreadsheet of the most recent EIA average residential utility rates as per the calculation on the http://en.openei.org/wiki/Gateway:Utilities page that generates average rates for utilities, for example: Los Angeles Department of Water & Power (utility ID #11208): EIA Average Rates: Residential: 12.6 cents/kWh Commercial: 12.5 cents/kWh Industrial: 10.9 cents/kWh The site references taking revenue divided by sales from the EIA 861 data set (most recent is 2011) but the calculation I get by dividing revenue by sales from their File2_2011.xls spreadsheet is 12.8 cents/kWh. I spot

85

Please take our Utility Rate Database survey! | OpenEI Community  

Open Energy Info (EERE)

Ewilson's blog Latest blog posts Ewilson Announcing New Utility Rate Database and API Features Posted: 21 Jul 2014 - 15:34 by Ewilson 1 comment(s) Allandaly California PG&E...

86

Help:US Utility Rate Database API Tutorial | Open Energy Information  

Open Energy Info (EERE)

Help page Edit History Facebook icon Twitter icon Help:US Utility Rate Database API Tutorial Jump to: navigation, search Contents 1 Using the OpenEI Application Programming...

87

Ten Ways to Lower Perceived Risk and Finance Rates within Utility Contract  

Energy.gov (U.S. Department of Energy (DOE))

Federal agencies can use the following 10 methods during project negotiations to lower perceived project risk and finance rates to get the best value from utility energy service contracts (UESCs).

88

Stocking rate and weight gain with three forages utilized in sequence  

E-Print Network (OSTI)

) (Member) August 1977 ABSTRACT STOCKING RATE AND WEIGHT GAIN WITH THREE FORAGES UTILIZED IN SEQUENCE (August 1977) Andres Garcia, Ing. Zoot. Univ. Aut. de Chihuahua (Mexico) Chairman of Advisory Committee g T. CD Cartwright Twenty seven steers were...) (Member) August 1977 ABSTRACT STOCKING RATE AND WEIGHT GAIN WITH THREE FORAGES UTILIZED IN SEQUENCE (August 1977) Andres Garcia, Ing. Zoot. Univ. Aut. de Chihuahua (Mexico) Chairman of Advisory Committee g T. CD Cartwright Twenty seven steers were...

Garcia Jurado, Andres

2012-06-07T23:59:59.000Z

89

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

Kenneth E. Baldrey

2003-01-01T23:59:59.000Z

90

arXiv:1308.0623v1[physics.bio-ph]2Aug2013 Asymptotic Cellular Growth Rate as the Effective Information Utilization Rate  

E-Print Network (OSTI)

Information Utilization Rate R. Pugatch,1 N. Barkai,2 and T. Tlusty1 1 School of Natural Sciences, Simons

Tlusty, Tsvi

91

Dynamic or Tiered Rates? Utility or Customer-Controlled Event Automation?  

NLE Websites -- All DOE Office Websites (Extended Search)

Dynamic or Tiered Rates? Utility or Customer-Controlled Event Automation? Dynamic or Tiered Rates? Utility or Customer-Controlled Event Automation? Speaker(s): Karen Herter Date: September 27, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page SMUD's 2011-2012 Residential Summer Solutions Study investigated the effects of real-time energy data and TOU-CPP rates in the presence of utility or customer controlled thermostat automation. Of the four rate and automation options offered, the TOU-CPP rate + customer-controlled automation provided the greatest savings, with 4% energy savings, daily weekday peak savings of more than 30%, and an average event peak load shed of nearly 60%. Effects of real-time information on these impacts were modest (1-7%), but in many cases statistically significant. On average,

92

Does the Utility Rates service on OpenEI return/display the latest data or  

Open Energy Info (EERE)

Does the Utility Rates service on OpenEI return/display the latest data or Does the Utility Rates service on OpenEI return/display the latest data or only approved data? Home > Groups > Utility Rate I'm using SAM to download OpenEI utility rates and was wondering if I'm downloading the latest rates that have been entered, or only downloading the rates that have been approved. Submitted by Sfomail on 11 July, 2012 - 13:53 2 answers Points: 1 The web service at http://en.openei.org/services/, which is used by SAM, currently uses the "ask query" method of accessing OpenEI data. That runs through http://en.openei.org/wiki/Special:Ask. In the future (2013 or after?) we may use a different method of back-end data access through our SPARQL endpoint - time will tell. Performing a test on this data, I discovered that Special:Ask, and thus OpenEI utility rate services and SAM,

93

Does the Utility Rates service on OpenEI return/display the latest data or  

Open Energy Info (EERE)

Does the Utility Rates service on OpenEI return/display the latest data or Does the Utility Rates service on OpenEI return/display the latest data or only approved data? Home > Groups > Utility Rate I'm using SAM to download OpenEI utility rates and was wondering if I'm downloading the latest rates that have been entered, or only downloading the rates that have been approved. Submitted by Sfomail on 11 July, 2012 - 13:53 2 answers Points: 1 The web service at http://en.openei.org/services/, which is used by SAM, currently uses the "ask query" method of accessing OpenEI data. That runs through http://en.openei.org/wiki/Special:Ask. In the future (2013 or after?) we may use a different method of back-end data access through our SPARQL endpoint - time will tell. Performing a test on this data, I discovered that Special:Ask, and thus OpenEI utility rate services and SAM,

94

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-05-01T23:59:59.000Z

95

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

Kenneth E. Baldrey

2001-09-01T23:59:59.000Z

96

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

Kenneth E. Baldrey

2003-02-01T23:59:59.000Z

97

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

Kenneth E. Baldrey

2002-01-01T23:59:59.000Z

98

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

Kenneth E. Baldrey

2003-07-30T23:59:59.000Z

99

ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS  

SciTech Connect

The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

Kenneth E. Baldrey

2002-07-01T23:59:59.000Z

100

The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to better understand the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems.

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Category:Utility Rate Impacts on PV Economics By Location | Open Energy  

Open Energy Info (EERE)

Utility Rate Impacts on PV Economics By Location Utility Rate Impacts on PV Economics By Location Jump to: navigation, search Impact of Utility Rates on PV Economics Montgomery, AL Little Rock, AR Flagstaff, AZ Phoenix, AZ Tucson, AZ Arcata, CA LA, CA San Francisco, CA Boulder, CO Eagle County, CO Pueblo, CO Bridgeport, CT Wilmington, DE Miami, FL Tampa, FL Atlanta, GA Savannah, GA Des Moines, IA Mason, IA Boise, ID Chicago, IL Springfield, IL Indianapolis, IN Goodland, KS Wichita, KS Lexington, KY New Orleans, LA Shreveport, LA Boston, MA Baltimore, MD Caribou, ME Portland, ME Detroit, MI Houghton-Lake, MI Traverse City, MI International Falls, MN Minneapolis, MN Kansas City, MO Jackson, MS Billings, MT Greensboro, NC Wilmington, NC Bismarck, ND Minot, ND Omaha, NE Concord, NH Atlantic City, NJ Albuquerque, NM Las Vegas, NV Reno, NV New York, NY

102

User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates  

SciTech Connect

SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

1982-05-01T23:59:59.000Z

103

Utility Service Renovations  

Energy.gov (U.S. Department of Energy (DOE))

Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

104

Guidance on Utility Rate Estimations and Weather Normalization in an ESPC  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidance on Utility Rate Estimations and Weather Normalization in an ESPC Guidance on Utility Rate Estimations and Weather Normalization in an ESPC Subject: The use of estimated energy rates 1 and normalized weather 2 data in determining contractor (ESCO) payments under an energy savings performance contract (ESPC). Summary: As explained below, the use of estimated energy rates and normalized weather data is permitted when determining ESCO payments under an ESPC. Authority: The authority for ESPCs is established in the National Energy Conservation Policy Act (NECPA), as amended. (42 U.S.C. 8287 et seq.) Implementing regulations for ESPCs are at 10 CFR Part 436 subpart B. Guidance: Section 801(a)(2)(B) of NECPA requires that "[a]aggregate annual payments by an agency ... may not exceed the amount ... the agency would have paid (as estimated

105

Guidance on Utility Rate Estimations and Weather Normalization in an ESPC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance on Utility Rate Estimations and Weather Normalization in an ESPC Guidance on Utility Rate Estimations and Weather Normalization in an ESPC Subject: The use of estimated energy rates 1 and normalized weather 2 data in determining contractor (ESCO) payments under an energy savings performance contract (ESPC). Summary: As explained below, the use of estimated energy rates and normalized weather data is permitted when determining ESCO payments under an ESPC. Authority: The authority for ESPCs is established in the National Energy Conservation Policy Act (NECPA), as amended. (42 U.S.C. 8287 et seq.) Implementing regulations for ESPCs are at 10 CFR Part 436 subpart B. Guidance: Section 801(a)(2)(B) of NECPA requires that "[a]aggregate annual payments by an agency ... may not exceed the amount ... the agency would have paid (as estimated

106

Global Scratch Upgrade in Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Scratch Gets Global Scratch Gets an Upgrade Global Scratch Gets an Upgrade Improvements Will Include Higher Data Output Rates, Connection to PDSF October 29, 2013 The most used file system at the National Energy Research Scientific Computing Center (NERSC)-global scratch-just got an upgrade. As a result, some users may see their data output to global scratch reach up to 80 gigabytes per second. Although users will probably not see their 20-terabyte storage quotas increase, the upgrade ensures that global scratch remains flexible and paves the way for PDSF to eventually use the file system Because of the upgrade, users will also be able to better access their temporary data files or "scratch data" from any NERSC system, not just the one that generated it. Prior to the upgrade, Global scratch typically

107

Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review  

SciTech Connect

Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

Lesh, Pamela G.

2009-10-15T23:59:59.000Z

108

The Impacts of Utility Rates and Building Type on the Economics of  

Open Energy Info (EERE)

Impacts of Utility Rates and Building Type on the Economics of Impacts of Utility Rates and Building Type on the Economics of Commercial Photovoltaic Systems Jump to: navigation, search Impacts of Regional Electricity Prices and Building Type on the Economics of Commercial Photovoltaic Systems[1] Authors:Sean Ong, Clinton Campbell, and Nathan Clark National Renewable Energy Laboratory, 2012. Abstract To identify the impacts of regional electricity prices and building type on the economics of solar photovoltaic (PV) systems, 207 rate structures across 77 locations and 16 commercial building types were evaluated. Results for expected solar value are reported for each location and building type. Aggregated results are also reported, showing general trends across various impact categories. The digital appendix is available with results for the different locations

109

Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy  

SciTech Connect

Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

Fuller, Merrian C.

2010-09-20T23:59:59.000Z

110

Jade Sky Technologies Partners with CLTC on LED Replacement Lamp Upgrade Project UC Davis' California Lighting Technology Center will utilize Jade Sky Technologies' driver ICs to help spur  

E-Print Network (OSTI)

Jade Sky Technologies Partners with CLTC on LED Replacement Lamp Upgrade Project UC Davis of cost-effective, easy-to-use LED lighting solutions Milpitas, Calif. ­ October 15, 2013 ­ Jade Sky Technologies (JST), a clean-tech start-up manufacturer of driver ICs for LED lighting applications, announces

California at Davis, University of

111

Property:OpenEI/UtilityRate/TOUWeekendSchedule | Open Energy Information  

Open Energy Info (EERE)

TOUWeekendSchedule TOUWeekendSchedule Jump to: navigation, search This is a property of type Text. Name: TOU Weekend Schedule Pages using the property "OpenEI/UtilityRate/TOUWeekendSchedule" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 000086db-7a5e-4356-9c57-c912f7d1622e + 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

112

Property:OpenEI/UtilityRate/TOUWeekdaySchedule | Open Energy Information  

Open Energy Info (EERE)

TOUWeekdaySchedule TOUWeekdaySchedule Jump to: navigation, search This is a property of type Text. Name: TOU Weekday Schedule Pages using the property "OpenEI/UtilityRate/TOUWeekdaySchedule" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 000086db-7a5e-4356-9c57-c912f7d1622e + 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111

113

Category:Utility Rate Impacts on PV Economics By Building Type | Open  

Open Energy Info (EERE)

Rate Impacts on PV Economics By Building Type Rate Impacts on PV Economics By Building Type Jump to: navigation, search Impact of Utility Rates on PV Economics Full Service Restaurant Hospital Large Hotel Large Office Medium Office Midrise Apartment Outpatient Primary School Quick Service Restaurant Secondary School Small Hotel Small Office Stand-alone Retail Strip Mall Supermarket Warehouse Subcategories This category has the following 16 subcategories, out of 16 total. F [×] FullServiceRestaurant‎ 1 pages H [×] Hospital‎ L [×] LargeHotel‎ [×] LargeOffice‎ M [×] MediumOffice‎ [×] MidriseApartment‎ O [×] OutPatient‎ P [×] PrimarySchool‎ Q [×] QuickServiceRestaurant‎ S [×] SecondarySchool‎ [×] SmallHotel‎ [×] SmallOffice‎ S cont. [×] StandAloneRetail‎ [×] StripMall‎ [×] Supermarket‎ W [×] Warehouse‎

114

Upgraded Coal Interest Group  

SciTech Connect

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

115

Community based outreach strategies in residential energy upgrade programs  

E-Print Network (OSTI)

Home energy upgrades can reduce residential energy consumption and improve indoor conditions, thereby realizing environmental, economic, health and other social benefits. Utilities, government and other actors have established ...

McEwen, Brendan (Brendan Carl Francis)

2012-01-01T23:59:59.000Z

116

Property:OpenEI/UtilityRate/FlatDemandMonth8 | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:OpenEI/UtilityRate/FlatDemandMonth8 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth8" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 +

117

Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy  

E-Print Network (OSTI)

a Product Developer at Xcel Energy who is working with theby the areas two utilities, Xcel Energy and CenterPointstandards. Product Developer at Xcel Energy who is working

Fuller, Merrian C.

2011-01-01T23:59:59.000Z

118

Property:OpenEI/UtilityRate/DemandChargePeriod2 | Open Energy Information  

Open Energy Info (EERE)

Pages using the property "OpenEI/UtilityRate/DemandChargePeriod2" Pages using the property "OpenEI/UtilityRate/DemandChargePeriod2" Showing 25 pages using this property. (previous 25) (next 25) 0 0044fc17-f119-47eb-ae5d-0f489e09b203 + 12.94 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 3.49 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 10.865 + 00fb7dca-d0a6-4b11-b7de-791c2fb9f2e1 + 8.15 + 00ff280d-1664-4b09-979b-5ee1e370b704 + 0.26 + 018673f0-093a-4a53-869d-3ac77d260efb + 0 + 01dd3bae-411e-40ee-b067-b2a0430baba3 + 6.75 + 01f6f9b2-3658-45e2-aa3e-f7afaf9b481d + 17.96 + 024ac306-1e30-4870-94f8-ef12908abe23 + 16.89 + 0253037f-3371-4224-b225-523d48a5e4c8 + 0.0267 + 02f09bc0-ae05-47af-a5ec-0074226c199b + 4.03 + 0385ea12-8fa5-45aa-8fc9-05df0358cd07 + 23.65 + 05146a64-a5a4-4271-a5ad-cb3a9a1e9345 + 33.94 + 05490683-8158-4d2f-ad96-66d5e4980890 + 0 +

119

Property:OpenEI/UtilityRate/DemandChargePeriod5 | Open Energy Information  

Open Energy Info (EERE)

Pages using the property "OpenEI/UtilityRate/DemandChargePeriod5" Pages using the property "OpenEI/UtilityRate/DemandChargePeriod5" Showing 25 pages using this property. 0 0934dd86-7cbe-437a-8cc5-47f469d3a745 + 8.516 + 0cbf0ab5-6819-42a2-bec6-1474dedf49c7 + 12.05 + 1 15d745ce-504b-4b58-8398-bd0feecd6cd3 + 12.08 + 16c96f08-175e-4914-b959-38a16682f377 + 12.178 + 1f892ab7-b5e8-4c7d-9e3d-d8fd46472ccc + 1.66 + 2 243d213c-25ea-4709-b421-6ff602b22d53 + 11.89 + 3 3436a635-b3b2-43a5-93ea-e0df37ef26c0 + 15.42 + 37ba48cd-8228-413b-b67c-8924492a64ce + 12.34 + 4 479553d6-3efc-4773-88d7-7c87804c0a65 + 0.27 + 4bc8edda-d0e1-40ee-aac2-c2b32603a6b4 + 0.408 + 4d4a192d-b047-4a30-b719-27b28886d52b + 0 + 6 6431b6d0-4fce-4b94-ac92-b8e1634e144f + 1.66 + 9 98c27d12-986e-49f2-bba0-c6a507f49195 + 13.1 + A A8443e10-6622-42f0-ad0b-5dbf429bf993 + 11.778 +

120

Property:OpenEI/UtilityRate/EndDate | Open Energy Information  

Open Energy Info (EERE)

EndDate EndDate Jump to: navigation, search This is a property of type Date. Name: End Date Subproperties This property has the following 1 subproperty: 1 Data:1be26ba6-8ade-4326-ba5a-3d3d2c018a57 Pages using the property "OpenEI/UtilityRate/EndDate" Showing 25 pages using this property. (previous 25) (next 25) 0 0040547f-b53d-4f32-9d99-4332fa248212 + 20 June 2012 + 0043b3de-5af2-4e22-81dc-0b5970af00a8 + 14 May 2014 + 00600334-b991-4883-b549-e6482dd21f02 + 30 September 2012 + 013319c0-4652-4e81-af0b-98dc9628c4aa + 30 September 2013 + 01ab2ed6-82b0-431e-bb72-800dd8ab3cbe + 30 September 2013 + 01dd3bae-411e-40ee-b067-b2a0430baba3 + 20 March 2013 + 0220efd9-0912-4a8c-bb85-36bb6acae860 + 10 July 2012 + 039a3e5e-2f58-41c1-aaa7-a50d3f42fa0e + 30 June 2012 +

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Recent Upgrade of the Klystron Modulator at SLAC  

SciTech Connect

The SLAC National Accelerator Laboratory employs 244 klystron modulators on its two-mile-long linear accelerator that has been operational since the early days of the SLAC establishment in the sixties. Each of these original modulators was designed to provide 250 kV, 262 A and 3.5 {mu}S at up to 360 pps using an inductance-capacitance resonant charging system, a modified type-E pulse-forming network (PFN), and a pulse transformer. The modulator internal control comprised of large step-start resistor-contactors, vacuum-tube amplifiers, and 120 Vac relays for logical signals. A major, power-component-only upgrade, which began in 1983 to accommodate the required beam energy of the SLAC Linear Collider (SLC) project, raised the modulator peak output capacity to 360 kV, 420 A and 5.0 {mu}S at a reduced pulse repetition rate of 120 pps. In an effort to improve safety, performance, reliability and maintainability of the modulator, this recent upgrade focuses on the remaining three-phase AC power input and modulator controls. The upgrade includes the utilization of primary SCR phase control rectifiers, integrated fault protection and voltage regulation circuitries, and programmable logic controllers (PLC) -- with an emphasis on component physical layouts for safety and maintainability concerns. In this paper, we will describe the design and implementation of each upgraded component in the modulator control system. We will also report the testing and present status of the modified modulators.

Nguyen, M.N.; Burkhart, C.P.; Lam, B.K.; Morris, B.; /SLAC

2011-11-04T23:59:59.000Z

122

Property:OpenEI/UtilityRate/FlatDemandMonth2 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth2 FlatDemandMonth2 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth2" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 2 +

123

Property:OpenEI/UtilityRate/FlatDemandMonth4 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth4 FlatDemandMonth4 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth4" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 2 +

124

Property:OpenEI/UtilityRate/FlatDemandMonth7 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth7 FlatDemandMonth7 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth7" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 1 +

125

Property:OpenEI/UtilityRate/FlatDemandMonth1 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth1 FlatDemandMonth1 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth1" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 2 +

126

Property:OpenEI/UtilityRate/StartDate | Open Energy Information  

Open Energy Info (EERE)

Date. Date. Name: Start Date Subproperties This property has the following 3 subproperties: 3 Data:3b30c6ad-8e21-4b82-a0c6-fdd209e0c401 4 Data:42e028e3-2489-485e-a4b1-c2abf1b556bb B Data:B539eb8f-20ff-4da6-bfbc-a329b7eb4859 Pages using the property "OpenEI/UtilityRate/StartDate" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 14 January 2010 + 0003a8b3-04b9-4ecb-b06d-6022e7f0f009 + 1 January 2010 + 000470c7-df04-47aa-bdd2-d70f0a2c52b3 + 1 July 2009 + 000b6dfa-a541-428a-9029-423006e22a34 + 22 December 2011 + 000db36e-b548-43e7-a283-d37ecc77cef1 + 1 December 2011 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 15 January 2013 + 00101108-073b-4503-9cd4-01769611c26f + 1 January 2012 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 31 May 2010 +

127

Property:OpenEI/UtilityRate/DemandChargePeriod2FAdj | Open Energy  

Open Energy Info (EERE)

Fuel Adj Fuel Adj Pages using the property "OpenEI/UtilityRate/DemandChargePeriod2FAdj" Showing 25 pages using this property. (previous 25) (next 25) 0 02317cd6-a0ec-4111-8627-09664a2c083c + 0.84 + 1 13087919-93aa-4ea4-a980-9651069273c7 + 7.31 + 16aa4028-86d4-4e27-be38-fe817b497238 + 0.497 + 1a72490d-bb6a-4115-99a7-7dbc54cb1824 + 11.49 + 2 2367240f-bd28-4b73-ae88-b8f1d7ed70c1 + 0.497 + 24f48897-8a68-4ae0-99d9-ecc0281f7ece + 8.73 + 3 3bbd220c-c3da-4420-99dc-f2eeb44ce2e3 + 0.0295 + 4 448aa8c8-e896-439a-82c8-b61a66a80429 + 0.412 + 479553d6-3efc-4773-88d7-7c87804c0a65 + 0.91 + 4bc8edda-d0e1-40ee-aac2-c2b32603a6b4 + 6.5e-4 + 4d4a192d-b047-4a30-b719-27b28886d52b + 1.5 + 4e7a224a-8960-4bbf-8843-321a81d7c3a8 + 0.888 + 4f0014b5-64b1-4487-8c74-3e19564df58e + 0.402 +

128

Property:OpenEI/UtilityRate/FlatDemandMonth6 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth6 FlatDemandMonth6 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth6" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 1 +

129

Property:OpenEI/UtilityRate/FlatDemandMonth5 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth5 FlatDemandMonth5 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth5" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 1 +

130

Property:OpenEI/UtilityRate/FixedDemandChargeMonth1 | Open Energy  

Open Energy Info (EERE)

Fixed Demand Charge Month 1 Fixed Demand Charge Month 1 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth1" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 8.28 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 3.35 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

131

Property:OpenEI/UtilityRate/DemandReactivePowerCharge | Open Energy  

Open Energy Info (EERE)

DemandReactivePowerCharge DemandReactivePowerCharge Jump to: navigation, search This is a property of type Number. Pages using the property "OpenEI/UtilityRate/DemandReactivePowerCharge" Showing 25 pages using this property. (previous 25) (next 25) 0 00b7ccdc-c7e0-40d2-907f-acb6ae828292 + 0.25 + 00e0b930-90c6-43c2-971a-91dade33f76a + 0.32 + 00e2a43f-6844-417a-b459-edf32d33b051 + 0.0092 + 00fb7dca-d0a6-4b11-b7de-791c2fb9f2e1 + 2.7 + 01a64840-7edc-4193-8073-ed5604e098ca + 0.83 + 035f3d22-3650-47cc-a427-bb35170db128 + 0.3 + 042f06f4-6a5b-424f-a31f-8e1c5a838700 + 0.27 + 0479cd85-894d-412b-b2ce-3b96912e9014 + 0.2 + 04bab597-fe1e-4507-8d90-144980aeba73 + 0.3 + 05211bd7-b6d3-425c-9f96-0845b7828c3c + 0.27 + 052fbe23-ac02-4195-b76d-e572cc53f669 + 0.68 + 05490683-8158-4d2f-ad96-66d5e4980890 + 0.25 +

132

Property:OpenEI/UtilityRate/FixedDemandChargeMonth11 | Open Energy  

Open Energy Info (EERE)

Name: Fixed Demand Charge Month 11 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth11" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 8.28 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 3.35 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

133

Property:OpenEI/UtilityRate/FixedDemandChargeMonth12 | Open Energy  

Open Energy Info (EERE)

Name: Fixed Demand Charge Month 12 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth12" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 8.28 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 3.35 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

134

Property:OpenEI/UtilityRate/FixedDemandChargeMonth10 | Open Energy  

Open Energy Info (EERE)

Name: Fixed Demand Charge Month 10 Pages using the property "OpenEI/UtilityRate/FixedDemandChargeMonth10" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 7 + 00101108-073b-4503-9cd4-01769611c26f + 1.71 + 0030a241-5084-4404-9fe4-ed558aad8b59 + 10.59 + 0049111b-fba2-46ba-827d-7ce95609a1d9 + 9.51 + 0055db46-f535-4dc9-a192-920d1bdf382b + 3.2 + 0070a37f-0d41-4331-8115-df40c62e00f3 + 13.24 + 007f7b1f-0cba-450c-9023-df962aa387a4 + 5.28 + 008960d4-14ad-4822-b293-140640cf0bcf + 4.924 + 00cdded9-47a1-49b6-a217-10941ffbefc6 + 1.468 + 00e0b930-90c6-43c2-971a-91dade33f76a + 2.71 + 010f37ad-90a9-4aa8-bbdf-c55e72ee1495 + 4.74 + 017a32a0-140a-4e0b-a10c-f6f67905829c + 4.5 + 019941c8-cc3b-452c-b12e-201301099603 + 11.95 +

135

Property:OpenEI/UtilityRate/FlatDemandMonth3 | Open Energy Information  

Open Energy Info (EERE)

FlatDemandMonth3 FlatDemandMonth3 Jump to: navigation, search This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEI/UtilityRate/FlatDemandMonth3" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + 1 + 000e60f7-120d-48ab-a1f9-9c195329c628 + 1 + 00101108-073b-4503-9cd4-01769611c26f + 1 + 001361ca-50d2-49bc-b331-08755a2c7c7d + 1 + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + 1 + 00178d3d-17cb-46ed-8a58-24c816ddce96 + 1 + 001d1952-955c-411b-8ce4-3d146852a75e + 1 + 001ea8be-7a59-4bcb-a923-e8f1015946ee + 1 + 001eaca9-6ce7-4c0f-8578-44fc29654e97 + 1 + 0022e9a5-942c-4e97-94d7-600f5d315ce8 + 1 + 002661b8-2e71-48b8-b657-44ff7372f757 + 1 + 0026b4d3-dd02-4423-95e1-56430d887b28 + 2 +

136

Property:OpenEI/UtilityRate/DemandChargePeriod6 | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search This is a property of type Number. Name: Demand Charge Period 6 Pages using the property "OpenEI/UtilityRate/DemandChargePeriod6" Showing 13 pages using this property. 0 0cbf0ab5-6819-42a2-bec6-1474dedf49c7 + 4.94 + 2 243d213c-25ea-4709-b421-6ff602b22d53 + 4.94 + 3 3436a635-b3b2-43a5-93ea-e0df37ef26c0 + 0 + 37ba48cd-8228-413b-b67c-8924492a64ce + 4.94 + 4 479553d6-3efc-4773-88d7-7c87804c0a65 + 0.13 + 4bc8edda-d0e1-40ee-aac2-c2b32603a6b4 + 0.406 + 4d4a192d-b047-4a30-b719-27b28886d52b + 0 + C C65fb7a2-3639-410b-9164-fc6aa9e8e68c + 0.18 + D D21bf95c-9259-4058-ba7c-21aabd1edf31 + 0 + Df73a354-dd92-4e20-91b2-db16bde25dbb + 6 + E E0f831df-88a7-45a7-853c-d3958e41be83 + 1.2 + F F43273e8-6ef9-443f-9cee-9e20ab9b47d0 + 4.94 + F71b0b63-1b9c-4afd-8481-7af45939042a + 0 +

137

Property:OpenEI/UtilityRate/UseNetMetering | Open Energy Information  

Open Energy Info (EERE)

UseNetMetering UseNetMetering Jump to: navigation, search This is a property of type Boolean. Name: Use Net Metering Pages using the property "OpenEI/UtilityRate/UseNetMetering" Showing 25 pages using this property. (previous 25) (next 25) 0 0000827d-84d0-453d-b659-b86869323897 + false + 000086db-7a5e-4356-9c57-c912f7d1622e + false + 0003a8b3-04b9-4ecb-b06d-6022e7f0f009 + false + 000470c7-df04-47aa-bdd2-d70f0a2c52b3 + false + 000b6dfa-a541-428a-9029-423006e22a34 + false + 000db36e-b548-43e7-a283-d37ecc77cef1 + false + 000e60f7-120d-48ab-a1f9-9c195329c628 + false + 00101108-073b-4503-9cd4-01769611c26f + false + 001361ca-50d2-49bc-b331-08755a2c7c7d + false + 00141c43-a74b-4768-aacc-47357b9e7858 + false + 0015a129-b638-4018-8e5b-aa54dd07b223 + false + 0016f771-cda9-4312-afc2-63f10c8d8bf5 + false +

138

Future Upgrades | Brookhaven and the LHC  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Upgrades Future Upgrades Magnetic field inside a Nb3Sn quadropole magnet Magnetic field inside a Nb3Sn quadropole magnet. Brookhaven leads various technical coordination efforts for the upgrade of the ATLAS detector, including constructing the new silicon tracker, liquid argon electronics, and the new muon chambers. Brookhaven also contributes to the commissioning and future upgrade of the LHC itself in two areas: accelerator physics and superconducting magnets. This work is carried out as part of the U.S. LHC Accelerator Research Program (LARP) in collaboration with Fermilab, Lawrence Berkeley National Lab, and the Stanford Linear Accelerator Center. The ultimate goal of the upgrade program is to increase the rate and efficiency of particle collisions, a measure known as luminosity.

139

Bedford Energizes Other Communities to Upgrade | Department of...  

Energy Savers (EERE)

program and completed energy efficiency upgrades in their own homes, the rate of project completion was more than double the average of that across all participating...

140

Understanding Utility Rates or How to Operate at the Lowest $/BTU  

E-Print Network (OSTI)

:F.~:brP'RQJ~:Cr::::::::: ::: :::] by LONE STAR GAS COMPANY JIM PHILLIPS, P.E., CEM IEQUIPMENT D A T Ai IENERGY DAT Ai KW Gas Rate: $4.86 per MCFGenerator Size: 5"00 Coqen Rate: $3.00 Iper MCF Recoverable Heat: 4.3' MMBH I _ Fuel Consumption: 8.0 MCFH Electric Rate $6.80 per...:F.~:brP'RQJ~:Cr::::::::: ::: :::] by LONE STAR GAS COMPANY JIM PHILLIPS, P.E., CEM IEQUIPMENT D A T Ai IENERGY DAT Ai KW Gas Rate: $4.86 per MCFGenerator Size: 5"00 Coqen Rate: $3.00 Iper MCF Recoverable Heat: 4.3' MMBH I _ Fuel Consumption: 8.0 MCFH Electric Rate $6.80 per...

Phillips, J. N.

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Guidance on Utility Rate Estimations and Weather Normalization in an ESPC  

Energy.gov (U.S. Department of Energy (DOE))

Document explains how to use estimated energy rates and normalized weather data in determining an energy service company's (ESCO's) payments under a Federal energy savings performance contract (ESPC).

142

Substation voltage upgrading  

SciTech Connect

Substation voltage uprating, i.e., conversion of a substation from a lower rated voltage to a higher rated voltage without a complete substation rebuild, can lead to excellent economic benefits. Utilization of the old substation layout and/or the existing equipment, to some extent, is the practical objective of such an uprating. The objective of this project was to assess the opportunities for substation uprating in the industry, to establish feasibility for such uprating and to study methods for accomplishing it. The final aim of the project was to provide guidance to utilities interested in uprating. 56 refs., 41 figs., 18 tabs.

Panek, J.; Elahi, H.; Sublich, M. (General Electric Co., Schenectady, NY (USA). Systems Development and Engineering Dept.)

1989-08-01T23:59:59.000Z

143

Property:OpenEI/UtilityRate/SourceParent | Open Energy Information  

Open Energy Info (EERE)

SourceParent Jump to: navigation, search This is a property of type URL. Pages using the property "OpenEIUtilityRateSourceParent" Showing 25 pages using this property. (previous...

144

Irrigation Hardware Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

because the water discharge point is closer to the ground reducing wind drift of the water. Efficiency upgrades are also available for wheel line hubs and levelers. Please...

145

Capturing Energy Upgrades  

Energy.gov (U.S. Department of Energy (DOE))

Provides an overview of how to capture the value of energy efficiency upgrades in the real estate market, from CNT Energy.

146

Utilizing Distributed Temperature Sensors in Predicting Flow Rates in Multilateral Wells  

E-Print Network (OSTI)

and pressure data to determine the flow rate in real time out of a multilateral well. Temperature and pressure changes are harder to predict in horizontal laterals compared with vertical wells because of the lack of variation in elevation and geothermal...

Al Mulla, Jassim Mohammed A.

2012-07-16T23:59:59.000Z

147

List of Steam-system upgrades Incentives | Open Energy Information  

Open Energy Info (EERE)

upgrades Incentives upgrades Incentives Jump to: navigation, search The following contains the list of 100 Steam-system upgrades Incentives. CSV (rows 1 - 100) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Ameren Missouri (Gas) - Business Energy Efficiency Program (Missouri) Utility Rebate Program Missouri Commercial

148

City Utilities of Springfield - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City Utilities of Springfield - Residential Energy Efficiency City Utilities of Springfield - Residential Energy Efficiency Rebate Program City Utilities of Springfield - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Heating Heat Pumps Appliances & Electronics Maximum Rebate Varies by equipment and type of residence Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Home Performance with Energy Star: $250 - $800 Energy Star Home Rating: 50% of certification cost, up to $400 Programmable Thermostat: $15 Insulation Upgrade: 20% of cost up $300 Natural Gas Furnace: $400 Natural Gas Furnace Tune-Up: $30

149

Utility Service Renovations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Service Renovations Utility Service Renovations Utility Service Renovations October 16, 2013 - 4:59pm Addthis Renewable Energy Options for Utility Service Renovations Photovoltaics Wind Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies

150

Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Utilities Electric Utility Rates The Utilities Gateway houses OpenEI's free, community-editable utility rate repository. OpenEI users may browse, edit and add new electric utility rates to OpenEI's repository. EIA provides the authoritative list of utility companies in the United States, and thus OpenEI limits utility rates to companies listed by EIA. 43,031 rates have been contributed for 3,832 EIA-recognized utility companies. Browse rates by zip code Browse rates by utility name Create or edit a rate Number of Utility Companies by State Click on a state to view summaries for that state. See a list of all U.S. utility companies and aliases Utility Rate Database Description The Utility Rate Database (URDB) is a free storehouse of rate structure

151

Utility Metering - AGL Resources  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGL Resources AGL Resources Mike Ellis Director, AGL Energy Services Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company  Multiple LDCs with legacy metering equipment  Several use Itron 100G technology ◦ Mobile, once-a-month data collection ◦ Meter can store interval data for >30 days ◦ Meter technology could be leverage on fixed-base network, however there are no current plans for upgrade  Technology for capturing interval data is installed on case by case basis ◦ Customers on Interruptible Rate ◦ Large users  Electronic corrector installed on the meter ◦ Pressure and Temperature compensation  Typically data is retrieved once a day ◦ Transmission frequency impacts battery life

152

Biofuels : Upgraded New Solids  

Science Journals Connector (OSTI)

The main historical keywords for the three pathways are: Agglomeration: Briquettes are long-established upgraded solid fuels, especially based on coal. 1970s: first small scale pellet heating units build in t...

Dr. Marco Klemm; Ralf Schmersahl

2012-01-01T23:59:59.000Z

153

Biofuels : Upgraded New Solids  

Science Journals Connector (OSTI)

The main historical keywords for the three pathways are: Agglomeration: Briquettes are long-established upgraded solid fuels, especially based on coal. 1970s: first small scale pellet heating units build in t...

Dr. Marco Klemm; Ralf Schmersahl; Dr. Claudia Kirsten

2013-01-01T23:59:59.000Z

154

Cyclotron Institute Upgrade Project  

SciTech Connect

The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

Clark, Henry [Texas A& M University; Yennello, Sherry [Texas A& M University; Tribble, Robert [Texas A& M University

2014-08-26T23:59:59.000Z

155

UCSC EMPLOYEE HOUSING APARTMENTS APPLICATION Rental rates include: rent, refuse collection, common area utilities, groundskeeping services, and repairs and  

E-Print Network (OSTI)

area utilities, groundskeeping services, and repairs and maintenance of the Laureate Court complex. Tenants pay for their own utilities (i.e., electricity, gas, water, telephone and cable services). A $750

California at Santa Cruz, University of

156

Estimation of the Optimal Brachytherapy Utilization Rate in the Treatment of Gynecological Cancers and Comparison With Patterns of Care  

SciTech Connect

Purpose: We aimed to estimate the optimal proportion of all gynecological cancers that should be treated with brachytherapy (BT)-the optimal brachytherapy utilization rate (BTU)-to compare this with actual gynecological BTU and to assess the effects of nonmedical factors on access to BT. Methods and Materials: The previously constructed inter/multinational guideline-based peer-reviewed models of optimal BTU for cancers of the uterine cervix, uterine corpus, and vagina were combined to estimate optimal BTU for all gynecological cancers. The robustness of the model was tested by univariate and multivariate sensitivity analyses. The resulting model was applied to New South Wales (NSW), the United States, and Western Europe. Actual BTU was determined for NSW by a retrospective patterns-of-care study of BT; for Western Europe from published reports; and for the United States from Surveillance, Epidemiology, and End Results data. Differences between optimal and actual BTU were assessed. The effect of nonmedical factors on access to BT in NSW were analyzed. Results: Gynecological BTU was as follows: NSW 28% optimal (95% confidence interval [CI] 26%-33%) compared with 14% actual; United States 30% optimal (95% CI 26%-34%) and 10% actual; and Western Europe 27% optimal (95% CI 25%-32%) and 16% actual. On multivariate analysis, NSW patients were more likely to undergo gynecological BT if residing in Area Health Service equipped with BT (odds ratio 1.76, P=.008) and if residing in socioeconomically disadvantaged postcodes (odds ratio 1.12, P=.05), but remoteness of residence was not significant. Conclusions: Gynecological BT is underutilized in NSW, Western Europe, and the United States given evidence-based guidelines. Access to BT equipment in NSW was significantly associated with higher utilization rates. Causes of underutilization elsewhere were undetermined. Our model of optimal BTU can be used as a quality assurance tool, providing an evidence-based benchmark against which actual patterns of practice can be measured. It can also be used to assist in determining the adequacy of BT resource allocation.

Thompson, Stephen R., E-mail: stephen.thompson@sesiahs.health.nsw.gov.au [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia); Department of Radiation Oncology, Prince of Wales Hospital, Sydney (Australia); University of New South Wales, Sydney (Australia); Delaney, Geoff P. [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia) [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia); University of New South Wales, Sydney (Australia); University of Western Sydney, Sydney (Australia); Gabriel, Gabriel S. [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia) [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia); University of New South Wales, Sydney (Australia); Jacob, Susannah; Das, Prabir [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia)] [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia); Barton, Michael B. [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia) [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia); University of New South Wales, Sydney (Australia)

2013-02-01T23:59:59.000Z

157

Case Study - Energy Efficiency Upgrades for Fermilab Infrastructure |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Case Study - Energy Efficiency Upgrades for Fermilab Case Study - Energy Efficiency Upgrades for Fermilab Infrastructure Case Study - Energy Efficiency Upgrades for Fermilab Infrastructure October 7, 2013 - 3:29pm Addthis Utility energy service contracting provides needed plant improvements. Photo of Project Coordinator Steve Krstulovich with Fermilab's new 1400-ton, high-efficiency chiller. Project Coordinator Steve Krstulovich with Fermilab's new 1400-ton, high-efficiency chiller. Overview The U.S. Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) has replaced old equipment and reduced energy consumption through a partnership with its electric utility, Commonwealth Edison. Fermilab upgraded the centralized cooling system and separated the system into two segments - a "comfort system" to cool the employee office

158

Upgrading Below Grade Spaces  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patrick H. Huelman, Sam Breidenbach, Steve Schirber Patrick H. Huelman, Sam Breidenbach, Steve Schirber NorthernSTAR Building America Partnership Upgrading Below Grade Spaces Residential Energy Efficiency Stakeholder March 1, 2012 Austin, TX * Act 1: Technical Challenges & Opportunities - Pat Huelman, University of Minnesota * Act 2: Assessing Homeowner Priorities & Risks - Sam Breidenbach, TDS Custom Construction * Act 3: An Industry Perspective - Steve Schirber, Cocoon Act 1. Upgrade Below Grade * Basement Remodeling: It Doesn't Get Any Riskier! - Combustion safety - Foundation moisture - Radon (& other soil gases) - Biologicals (mold, dust mites, etc.) - Garage gases (if attached) * And front and center are uncontrolled... - negative pressures in basements (beyond stack)

159

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

160

Cogeneration - A Utility Perspective  

E-Print Network (OSTI)

are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition...

Williams, M.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning & Projects Planning & Projects Power Marketing Rates You are here: SN Home page > Power Marketing > RATES Rates and Repayment Services Rates Current Rates Power Revenue Requirement Worksheet (FY 2014) (Oct 2013 - Sep 2014) (PDF - 30K) PRR Notification Letter (Sep 27, 2013) (PDF - 959K) FY 2012 FP% True-Up Calculations(PDF - 387K) Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) PRR Forecast FY14-FY17 (May 23, 2013) (PDF - 100K) Forecasted Transmission Rates (May 2013) (PDF - 164K) Past Rates 2013 2012 2011 2010 2009 Historical CVP Transmission Rates (April 2013) (PDF - 287K) Rate Schedules Power - CV-F13 - CPP-2 Transmission - CV-T3 - CV-NWT5 - PACI-T3 - COTP-T3 - CV-TPT7 - CV-UUP1 Ancillary - CV-RFS4 - CV-SPR4 - CV-SUR4 - CV-EID4 - CV-GID1 Federal Register Notices - CVP, COTP and PACI

162

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

Marketing > RATES Marketing > RATES RATES Current Rates Past Rates 2006 2007 2008 2009 2010 2011 2012 Rates Schedules Power CV-F13 CPP-2 Transmissions CV-T3 CV-NWT5 PACI-T3 COTP-T3 CV-TPT7 CV-UUP1 Ancillary CV-RFS4 CV-SPR4 CV-SUR4 CV-EID4 CV-GID1 Future and Other Rates SNR Variable Resource Scheduling Charge FY12-FY16 (October 1, 2012) SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K)

163

RATES  

NLE Websites -- All DOE Office Websites (Extended Search)

RATES RATES Rates Document Library SNR Rates Process Calendar (PDF - 171K) Procedures Informal Process Transmission Action Items List (PDF - 144K) Power Action Item List updated on 4-27-10 (PDF - 155K) Power Action Item List (Quick links to relevant documents) Formal Process Rates Brochure (01/11/2011) (PDF - 900K) Appendix A - Federal Register Notice (01/03/2011) (PDF - 8000K) Appendix B - Central Valley Project Power Repayment Study (PDF - 22,322K) Appendix C - Development of the CVP Cost of Service Study (PDF - 2038K) Appendix D - Western Transmission System Facilities Map (PDF - 274K) Appendix E - Estimated FY12 FP and BR Customer (PDF - 1144K) Appendix F - Forecasted Replacements and Additions FY11 - FY16 (PDF - 491K) Appendix G - Definitions (PDF - 1758K) Appendix H - Acronyms (PDF - 720K)

164

NSLS Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilities Utilities The Utilities Group, led by project engineer Ron Beauman, is responsible for providing Utilities Engineering and Technical services to NSLS, Users, and SDL including cooling water at controlled flow rates, pressures, and temperatures, compressed air and other gases. In addition, they provide HVAC engineering, technical, and electrical services as needed. Utilities systems include cooling and process water, gas, and compressed air systems. These systems are essential to NSLS operations. Working behind the scenes, the Utilities group continuously performs preventative maintenance to ensure that the NSLS has minimal downtime. This is quite a feat, considering that the Utilities group has to maintain seven very large and independent systems that extent throughout NSLS. Part of the group's

165

Global Scratch Upgrade in Progress  

NLE Websites -- All DOE Office Websites (Extended Search)

the facility is now positioned to meet the performance demands of all its clusters. By upgrading the consolidated Global Scratch, users will be able to continue taking advantage...

166

REPOWERING BAINBRIDGE AND BREMERTON WITH UPGRADES | Department...  

Energy Savers (EERE)

with Bainbridge Island and Bremerton homeowners, utilities, and stakeholders. Seek political support. RePower saw its greatest response rates through formal calls to action,...

167

NIST Releases Test Framework for Upgrading of Smart Meters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NIST Releases Test Framework for Upgrading of Smart Meters NIST Releases Test Framework for Upgrading of Smart Meters NIST Releases Test Framework for Upgrading of Smart Meters July 12, 2012 - 10:46am Addthis The National Institute of Standards and Technology (NIST) has released a draft set of guidelines that will help utilities test their procedures for upgrading their smart meters securely from a remote location and determine whether their procedures conform with the National Electrical Manufacturers Association (NEMA) Standard for Smart Grid Upgradeability. Available now for public comment, the Advanced Metering Infrastructure Smart Meter Upgradeability Test Framework includes test procedures and detailed steps for conducting the test, reviewing results, and producing records to assess and report on these results.

168

ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES  

SciTech Connect

Air Products set out to investigate the impact of additives on the deposition rate of both ???µCSi and ???±Si-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air Products?¢???? electronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties.

Ridgeway, R.G.; Hegedus, S.S.; Podraza, N.J.

2012-08-31T23:59:59.000Z

169

Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.  

SciTech Connect

This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

2005-11-01T23:59:59.000Z

170

Pacific Direct Current Intertie (PDCI) Upgrade Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Accommodate increased power transmission - The upgrade will allow even more clean power, including hydro, wind and solar, to reach markets that need it. Upgrading and...

171

Upgrading the Vanadium Redox Battery | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

172

Proposal to upgrade the MIPP experiment  

SciTech Connect

The upgraded MIPP physics results are needed for the support of NuMI projects, atmospheric cosmic ray and neutrino programs worldwide and will permit a systematic study of non-perturbative QCD interactions. The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost scheme of upgrading the MIPP data acquisition speed to 3000 Hz. This will also enable us to measure the medium energy numi target to be used for the NOvA/MINERvA experiments. We outline the capabilities of the upgraded MIPP detector to obtain high statistics particle production data on a number of nuclei that will help towards the understanding and simulation of hadronic showers in matter. Measurements of nitrogen cross sections will permit a better understanding of cosmic ray shower systematics in the atmosphere. In addition, we explore the possibilities of providing tagged neutral beams using the MIPP spectrometer that may be crucial for validating the Particle Flow Algorithm proposed for calorimeters for the International Linear Collider detectors. Lastly, we outline the physics potential of such a detector in understanding non-perturbative QCD processes.

Isenhower, D.; Sadler, M.; Towell, R.; Watson, S.; /Abilene Christian U.; Peterson, R.J.; /Colorado U.; Baker, W.; Carey, D.; Christian, D.; Demarteau, M.; Jensen, D.; Johnstone, C.; Meyer, H.; Raja, R.; Ronzhin, A.; Solomey, N.; Wester, W.; /Fermilab; Gutbrod, H.; Peters, K.; /Darmstadt, GSI; Feldman, G.; /Harvard U.; Torun, Y.; /IIT, Chicago; Messier, M.D.; /Indiana U. /Iowa U. /Dubna, JINR /Kent State U. /Groningen, KVI /Michigan U. /St. Petersburg, INP /Purdue U. /South Carolina U. /Virginia U. /Wisconsin U., Madison

2006-09-01T23:59:59.000Z

173

Upgrade of the MAGIC telescopes  

E-Print Network (OSTI)

The MAGIC telescopes are two Imaging Atmospheric Cherenkov Telescopes (IACTs) located on the Canary island of La Palma. With 17m diameter mirror dishes and ultra-fast electronics, they provide an energy threshold as low as 50 GeV for observations at low zenith angles. The first MAGIC telescope was taken in operation in 2004 whereas the second one joined in 2009. In 2011 we started a major upgrade program to improve and to unify the stereoscopic system of the two similar but at that time different telescopes. Here we report on the upgrade of the readout electronics and digital trigger of the two telescopes, the upgrade of the camera of the MAGIC I telescope as well as the commissioning of the system after this major upgrade.

Mazin, Daniel; Garczarczyk, Markus; Giavitto, Gianluca; Sitarek, Julian

2014-01-01T23:59:59.000Z

174

Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program < Back Eligibility Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Manufacturing Sealing Your Home Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Insulation Maximum Rebate Up to 100,000 per site per year. Program Info Funding Source Conservation Program Funding Charge State Oregon Program Type Utility Rebate Program Rebate Amount A/C or Heat Pumps: $25-$100/ton Economizer Control Addition: $75/ton Air-Side Economizer Repair: $250 Evaporative Coolers: $100-$300/ton

175

User and Performance Impacts from Franklin Upgrades  

SciTech Connect

The NERSC flagship computer Cray XT4 system"Franklin" has gone through three major upgrades: quad core upgrade, CLE 2.1 upgrade, and IO upgrade, during the past year. In this paper, we will discuss the various aspects of the user impacts such as user access, user environment, and user issues etc from these upgrades. The performance impacts on the kernel benchmarks and selected application benchmarks will also be presented.

He, Yun (Helen)

2009-05-10T23:59:59.000Z

176

Plant Site Refrigeration Upgrade  

E-Print Network (OSTI)

to operate utilizing an economizer vessel. This vessel allows the high temperature liquid from the receiver vessel to be pre-cooled to an intermediate level prior to entering the low temperature recirculation vessel. As the high temperature liquid enters... the economizer vessel, which is held at an intermediate pressure level, the liquid is flashed to the corresponding saturated temperature of the operational pressure. A side port, or economizer port, on the screw compressors pulls this vapor off...

Zdrojewski, R.; Healy, M.; Ramsey, J.

177

LOWELL ADDS ENERGY EFFICIENCY TO HISTORIC UPGRADES | Department...  

Energy Savers (EERE)

LOWELL ADDS ENERGY EFFICIENCY TO HISTORIC UPGRADES LOWELL ADDS ENERGY EFFICIENCY TO HISTORIC UPGRADES LOWELL ADDS ENERGY EFFICIENCY TO HISTORIC UPGRADES Faced with the challenge of...

178

The enhanced ASDEX Upgrade pellet centrifuge launcher  

SciTech Connect

Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

Plckl, B.; Lang, P. T. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)] [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

2013-10-15T23:59:59.000Z

179

Rate making for Electric Utilities  

E-Print Network (OSTI)

Water Works Company 5 f. R. C, E, 215, 281, May 14, 1910 Arkadelphia Electric Light Company v City of Arkadelphia 137 S, W. 1093, 96 Ark, May 1, 1911 Beloit v, Beloit Water, Gas and Electric Company 7 f , B, C. R. 187,239, July 19, 1911. Columbus... Railway and Light Company v. City of Columbus No, 1206 in Equity U. S. Cir. Ct. Southern District of Ohio Eastern Division. Report of Special Master T. P. Lynn January 8, 1906 Consolidated Gas Company v. City of New York Circuit Court of U. S...

Hanson, Carl Falster

1911-01-01T23:59:59.000Z

180

Low rank coal upgrading in a flow of hot water  

SciTech Connect

Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

2009-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Field Emission and Consequences as Observed and Simulated for CEBAF Upgrade Cryomodules  

SciTech Connect

High gamma and neutron radiation levels were monitored at the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) after installation of new cavity cryomodules and initial test runs in the frame of the ongoing 12 GeV upgrade program. The dose rates scaled exponentially with cavity accelerating fields, but were independent of the presence of an electron beam in the accelerator. Hence, field emission (FE) is the source of origin. This has led to concerns regarding the high field operation (100 MV per cryomodule) in the future 12 GeV era. Utilizing supercomputing, novel FE studies have been performed with electrons tracked through a complete cryomodule. It provides a principal understanding of experimental observations as well as ways to mitigate FE as best as practicable by identification of problematic cavities.

Marhauser, Frank; Johnson, Rolland; Rodriguez, Rodolfo; Degtiarenko, Pavel; Hutton, Andrew; Kharashvili, George; Reece, Charles; Rimmer, Robert

2013-09-01T23:59:59.000Z

182

CATEGORICAL EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, EXCLUSION FOR 331 BUILDING IRRIGATION UPGRADES, 300 AREA, HANFORD SITE, RICHLAND, WASHINGTON Proposed Action: The U.S. Department of Energy (DOE), Pacific Northwest Site Office (PNSO) proposes to upgrade a landscaping irrigation system in the 300 Area. Location of Action: In the landscaped area around the 331 Building, Hanford Site Description of the Proposed Action: The proposed action is to upgrade the existing 331 Building landscaping irrigation system by using nearby aquaculture effluent instead of

183

LHC challenges and upgrade options  

Science Journals Connector (OSTI)

The presentation summarizes the key parameters of the LHC collider. Following a discussion of the main challenges for reaching the nominal machine performance the presentation identifies options for increasing the operation tolerances and the potential performance reach of the LHC by means of future hardware upgrades of the LHC and its injector complex.

O Bruning

2008-01-01T23:59:59.000Z

184

ATLAS Upgrade for sLHC Motivation  

E-Print Network (OSTI)

ATLAS Upgrade for sLHC · Motivation · LHC Upgrades · ATLAS Upgrade/schedule · R&D Variety · Russian Institutes involvement · Conclusions A.Cheplakov JINR, Dubna (on behalf of the ATLAS Collaboration) Many thanks to ATLAS colleagues for the useful information - N.Hessey, A.Loginov, A.Romaniouk, P

185

ATLAS Upgrade Week 1 November 11, 2009  

E-Print Network (OSTI)

ATLAS Upgrade Week 1 November 11, 2009 Proposal to Develop On-Detector Array-based Optical Link A. Maettig Universität Wuppertal K.K. Gan A. Pellegrino, T. Sluijk NIKHEF (LHCb) #12;ATLAS Upgrade Week 2;ATLAS Upgrade Week 3 Introduction VCSEL and PIN are available in three forms: single channel or 4

Gan, K. K.

186

utility | OpenEI Community  

Open Energy Info (EERE)

utility utility Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(2002) Super contributor 11 January, 2013 - 14:21 Swinerton Renewable Energy Awarded Contract to Construct and Operate 250 MWac K Road Moapa Solar Plant Marketwire OpenEI Renewable Energy Solar Swinerton utility Syndicate content 429 Throttled (bot load)

187

Substation voltage upgrading  

SciTech Connect

This report addresses specific issues to support sound yet not unduly conservative uprating practices for substations. The main parts of the report cover the insulation withstand and overvoltage protection aspects, environmental measurements, reliability criteria, and industry experience. First the insulation design concerns are addressed. Substation stress by a backflashover of the line insulation due to lightning in the vicinity of the substation is recognized as a critical stress. A representative part of a 550 kV BIL substation was erected at the EPRI High Voltage Transmission Research Center, where also a special test circuit was assembled to produce a fast front, slow tail (0.2/200 {mu}s) wave. The substation as well as some special configurations were tested for line-to-ground and line-to-line withstand. Computer studies were performed to complement the test results. A number of important conclusions was reached. The most prominent result in that the high frequency oscillations, as caused by reflections within the substation, do not effect the Critical Flashover Voltage (CFO). The present practice, based on the highest peak is therefore very conservative. The slow tail of the wave appears to dictate the CFO. An arrester model for computer studies to represent very fast as well as slow phenomena was derived. It is based on full scale arrester test data, made available in this project. The computer program to calculate arrester model parameters is also a part of the report. The electric environmental measurements are reported for the tested substation at the HVTRC and for the uprated substation of Public Service Company of Colorado, both before and after the uprating. The performance is satisfactory when corona free hardware is used. Insulation design criteria are analyzed based on substation reliability, the system viewpoint and consequences of the failure. Utility experience with uprated substations is reviewed.

Panek, J.; Elahi, H.; Lux, A.; Imece, A.F. (General Electric Co., Schenectady, NY (United States). Power Systems Engineering Dept.); LaPanse, R.A.; Stewart, J.R. (Public Service Co. of Colorado, Denver, CO (United States))

1992-04-01T23:59:59.000Z

188

About: Why Energy Efficiency Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Energy Efficiency Upgrades Why Energy Efficiency Upgrades Two photos side by side showing energy loss through the use of infrared technology. As part of a home energy evaluation, an energy professional can use an infrared camera to pinpoint where air leaks and drafts are occurring in your home or building. Although normally difficult to see, these infrared photos clearly show in color where energy losses are occurring in a typical house. How We Use Energy in Our Buildings How We Use Energy in Our Homes (% of Energy Consumption) A pie chart illustrating the following breakdown: Space heating 43%, space cooling 9.7%, water heating 17.1%, lighting 6.2%, refrigeration 3.9%, electronics 3%, wet cleaning 3.2%, cooking 3.1%, computers 1.6%. Source: 2010 Buildings Energy Data Book, Table 2.1.6

189

D0 Silicon Upgrade: Upgrade on Cryogenic Lines at Refrigerator  

SciTech Connect

This is an upgrade to the thermal contraction analysis sound in D0 Engineering Note: 3823.115-EN-426. In this new design, a portion of the transfer lines are consolidated into one 6-inch vacuum jacket. Since all four transfer lines follow the same path and are of equal lengths, the stress analysis is performed on only one transfer line using the design system ALGOR{reg_sign}. The GHe Cooldown Supply line is analyzed for combined pressure, thermal movement, and dead weight and all the stresses were below the allowable stress limit of 25,050 psi.

Kuwazaki, Andrew; /Fermilab

1995-09-26T23:59:59.000Z

190

Florida Public Utilities - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Utilities - Commercial Energy Efficiency Rebate Public Utilities - Commercial Energy Efficiency Rebate Programs Florida Public Utilities - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Home Weatherization Windows, Doors, & Skylights Maximum Rebate Lamp Only Lighting Upgrade: $100 Window Film: $100 Program Info State Florida Program Type Utility Rebate Program Rebate Amount Ballast and Lamp Lighting Upgrade: $0.10/watt saved Lamp Only Lighting Upgrade: $0.025/watt saved AC/Heat Pump: $100 Window Film: $0.50/sq. ft. Chiller: Up to $100/kW Provider Florida Public Utilities Florida Public Utilities offers the Energy for Life Conservation program to

191

Energy Upgrade California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Upgrade California Upgrade California Energy Upgrade California < Back Eligibility Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Manufacturing Heating Windows, Doors, & Skylights Program Info Funding Source The American Reinvestment and Recovery Act of 2009, ratepayer funds State California Program Type State Rebate Program Rebate Amount Basic Upgrade Package: 1,000 Advance Upgrade Package: 1,500 - 4,000 The Energy Upgrade California program serves as a one-stop shop for California homeowners who want to improve the energy efficiency of their homes. The program connects homeowners with qualified contractors, and helps homeowners find all the available incentives from their local

192

California Member Connects Solar Adoption With Upgrades  

Energy.gov (U.S. Department of Energy (DOE))

Studies on the connection between solar adoption and energy upgrades by Better Buildings Residential Network member Center for Sustainable Energy (CSE) in California are helping solar companies...

193

BIOREFINING COMPOUNDS AND ORGANOCATALYTIC UPGRADING METHODS ...  

NLE Websites -- All DOE Office Websites (Extended Search)

invention provides new methods for the direct umpolung self-condensation of 5-hydroxymethylfurfural (HMF) by organocatalysis, thereby upgrading the readily available substrate...

194

Upgrade Boilers with Energy-Efficient Burners  

SciTech Connect

This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

195

Metal Organic Framework Adsorbent for Biogas Upgrading  

Science Journals Connector (OSTI)

In this context, this adsorbent can be used for biogas upgrading to produce biomethane and reduce fossil-fuel CO2. ...

Simone Cavenati; Carlos A. Grande; Alrio E. Rodrigues; Christoph Kiener; Ulrich Mller

2008-07-25T23:59:59.000Z

196

Lake Worth Utilities - Energy Conservation Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lake Worth Utilities - Energy Conservation Rebate Program Lake Worth Utilities - Energy Conservation Rebate Program Lake Worth Utilities - Energy Conservation Rebate Program < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Maximum Rebate Limit one of each type of equipment per customer account Program Info State Florida Program Type Utility Rebate Program Rebate Amount Residential Energy Savings Kit: Free AC/Heat Pump: $250 Clothes Washer: $100 Dishwasher: $75 Freezer: $100 Refrigerator: $100 Programmable Thermostat: $25 Room AC: $100 Insulation Upgrade: up to $300 Commercial Commercial Lighting: up to $1,000 Insulation Upgrade: up to $1,000

197

The upgrade of the ALICE Inner Tracking System  

E-Print Network (OSTI)

ALICE is a general purpose experiment dedicated to the study of nucleus-nucleus collisions at LHC. After more than 3 years of successful operation, an upgrade of the apparatus during the second long shutdown of LHC (LS2) in 2017/18 is in preparation. One of the major goals of the proposed upgrade is to extend the physics reach for rare probes at low transverse momentum. The reconstruction of the rare probes requires a precise determination of the primary and secondary vertices that is performed in ALICE by the Inner Tracking System (ITS). The present ITS made of 6 layers of three technologies of silicon devices allows, for example, to reconstruct D mesons with the transverse momentum down to ~2 GeV/c. Further extension of this range towards lower pT requires the installation of the new ITS consisting of 7 layers of silicon detectors with significantly better single point resolution and reduced material budget. It is expected that the new system will allow to improve the impact parameter resolution by a factor of ~3. Moreover, the data rate capability of the upgraded ITS should be significantly improved in order to exploit the full expected LHC lead-lead interaction rate of 50 kHz, almost two orders of magnitude above the present readout rate. The present contribution describes first the ITS upgrade requirements followed by the conceptual design of the new system and its expected performance. Secondly, an overview of the different R&D activities from the concept towards the final detector is given.

Serhiy Senyukov for the ALICE-ITS collaboration

2013-04-04T23:59:59.000Z

198

Merging utilities handle disparate EMSs  

SciTech Connect

When two utilities merge, a major aim of the merger is to improve overall system efficiency. When Gulf States Utilities Co (GSU) and Entergy Corp became one company on Jan 1, 1994, they had already taken a giant step towards improving efficiency by consolidating their energy management systems (EMS). When merger talks started, both companies had advanced EMS, but the systems were not compatible and could not fully communicate with each other. The solution to that problem was key to setting the stage for improving combined system operations into the future. This paper describes the EMS systems before and after the merger along with planned upgrades in the future. 3 figs.

NONE

1995-08-01T23:59:59.000Z

199

Energy Efficiency Upgrades for Little Rock Air Force Base  

SciTech Connect

Little Rock Air Force Base (LRAFB), in partnership with the local utility, Entergy Services, Inc., has reduced energy costs and used savings from investments in high-efficiency equipment to maintain and improve the condition of base housing and other facilities. Three projects were completed, with over $10 million invested. Major accomplishments include replacing air-to-air heat pumps with high-efficiency ground-source heat pumps (GSHPs) in more than 1,500 base housing units, lighting modifications to 10 buildings, upgrade of HVAC equipment in the base's enlisted club, and energy-efficient lighting retrofits for LRAFB's flight simulator.

Goldman, C.; Dunlap, M.A.

2000-11-13T23:59:59.000Z

200

Utility Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Sponsored E-Source Membership Utility Potential...

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Work Authorization Document NSTX Upgrade Project  

E-Print Network (OSTI)

Work Authorization Document NSTX Upgrade Project Control Account #: 1302 Title: WBS 1.1.11 Title Functional Manager P. Heitzenroeder Approvals Signature Date NSTX-U Project Manager R. Strykowsky 4- WBS and includes design modifications and upgrade of the coil assembly stand; procedures for assembling the Center

Princeton Plasma Physics Laboratory

202

ATLAS Upgrade Week 1 November 10, 2010  

E-Print Network (OSTI)

VCSEL/PIN Irradiation Study radiation hardness of VCSEL/PIN arrays since 2006: vendors: AOC arrays (2010): see next slides AOC 10 Gb/s VCSEL (2010): see next slides #12;K.K. Gan ATLAS Upgrade/cm2: 76% consistent with NIEL hypothesis #12;K.K. Gan ATLAS Upgrade Week 9 Irradiation of AOC

Gan, K. K.

203

NSTXpool Computer Upgrade December 9, 2010  

E-Print Network (OSTI)

NSTXpool Computer Upgrade WP #1685 Bill Davis December 9, 2010 #12;Work Scope Upgrade Operating System, Application Software, and Programs that run on NSTX computers using Red Hat Enterprise Linux 3. nstxpool computers + nstxops nstxWindowsPC (Control Room Display Wall) Big Blue cluster for EFIT Selected

Princeton Plasma Physics Laboratory

204

The Bottom Line Space@Penn Upgrade  

E-Print Network (OSTI)

The Bottom Line Space@Penn Upgrade Coming Soon! A project is underway to upgrade the current that allows designated users in the field to update certain elements of their space. This project, whose: Grants & Projects ­ Used for invoice generation, overhead and revenue recognition, and award and project

Sharp, Kim

205

LHC set to halt for upgrades  

Science Journals Connector (OSTI)

... particle collider is ready to take a well-earned rest. The Large Hadron Collider (LHC) will shut down on 11February ahead of around two years of upgrade work. ... there will be no long holiday for the thousands of physicists who depend on the LHC for their data. A bruising schedule of maintenance, upgrades and forward planning will keep ...

Geoff Brumfiel

2013-02-06T23:59:59.000Z

206

Pulsed power supply for Nova Upgrade. Final report, August 1, 1991 to March 31, 1992  

SciTech Connect

This report describes work carried out at the Center for Electromechanics at The University of Texas at Austin (CEM-UT). A baseline design of the Nova Upgrade has been completed by Lawrence Livermore National Laboratory. The Nova Upgrade is an 18 beamline Nd: glass laser design utilizing fully relayed 4x4 30 cm aperture segmented optical components. The laser thus consists of 288 independent beamlets nominally producing 1.5 to 2.0 MJ of 0.35 {mu}m light in a 3 to 5 ns pulse. The laser design is extremely flexible and will allow a wide range of pulses to irradiate ICF targets. This facility will demonstrate ignition/gain and the scientific feasibility of ICF for energy and defense applications. The pulsed power requirements for the Nova Upgrade are given. CEM-UT was contracted to study and develop a design for a homopolar generator/inductor (HPG/inductor) opening switch system which would satisfy the pulsed power supply requirements of the Nova Upgrade. The Nd:glass laser amplifiers used in the Nova Upgrade will be powered by light from xenon flashlamps. The pulsed power supply for the Nova Upgrade powers the xenon flashlamps. This design and study was for a power supply to drive flashlamps.

Bacon, J.L.; Kajs, J.P.; Walls, A.; Weldon, W.F.; Zowarka, R.C. [Univ. of Texas, Austin, TX (US). Center for Electromechanics] [Univ. of Texas, Austin, TX (US). Center for Electromechanics

1992-12-31T23:59:59.000Z

207

US utilities | OpenEI  

Open Energy Info (EERE)

6489 6489 Varnish cache server US utilities Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

208

Better Buildings Neighborhood Initiative Upgrades 100,000 Buildings, Saves $730 Million on Energy Bills  

Office of Energy Efficiency and Renewable Energy (EERE)

Building on President Obamas Climate Action Plan and the Administrations Better Buildings Initiative, the Energy Department announced today that the Departments Better Buildings Neighborhood Program has helped more than 40 state and local governments upgrade more than 100,000 buildings and save families and businesses over $730 million on utility bills.

209

Comments of Utilities Telecom Council | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilities Telecom Council Utilities Telecom Council Comments of Utilities Telecom Council Urgent action is needed to address utilities communications needs. Utilities and other CII are deploying smart grid and making investments in communications upgrades now. Promoting access to spectrum will accelerate the deployment of smart grid and other CII communications, which will in turn promote larger public policy goals for energy independence, infrastructure security, environmental quality and public safety. Therefore, UTC looks forward to working with the DOE, as well as the FCC and NTIA to support the communications needs of utilities and other CII. Comments of Utilities Telecom Council More Documents & Publications NBP RFI: Communications Requirements - Reply Comments of Utilities Telecom

210

MMCR Upgrades: Present Status and Future Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

MMCR Upgrades: Present Status and Future Plans MMCR Upgrades: Present Status and Future Plans K. B. Widener and A. S. Koontz Pacific Northwest National Laboratory Richland, Washington K. P. Moran and K. A. Clark National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado C. Chander STC xxxxxxxxx M. A. Miller and K. L. Johnson Brookhaven National Laboratory Upton, New York Abstract In September 2003, the Southern Great Plains (SGP) millimeter wave cloud radar (MMCR) was upgraded to a new digital signal processor that significantly increases the temporal resolution and the processing capability of the MMCR. The Barrow MMCR upgrade will be completed in early 2004. We will discuss the hardware and software C40 upgrade to the MMCRs at SGP and Barrow and the plans

211

Research Laboratory Experiments with Energy Efficiency Upgrades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Julie McAlpin Communications Liaison, State Energy Program

212

Research Laboratory Experiments with Energy Efficiency Upgrades |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades Research Laboratory Experiments with Energy Efficiency Upgrades August 30, 2012 - 11:52am Addthis Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Energy efficiency upgrades -- such as geothermal heating and cooling, nanogel-filled windows, and lighting sensors -- will help the University of Kentucky Center for Applied Energy Research reduce energy use and save money. | Photo courtesy of the University of Kentucky. Julie McAlpin Communications Liaison, State Energy Program

213

Investment and Upgrade in Distributed Generation under Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Investment and Upgrade in Distributed Generation under Uncertainty Investment and Upgrade in Distributed Generation under Uncertainty Speaker(s): Afzal Siddiqui Karl Maribu Date: September 4, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only effciency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attractiveness of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the

214

Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades to someone by E-mail Share Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Facebook Tweet about Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Twitter Bookmark Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Google Bookmark Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Delicious Rank Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on Digg Find More places to share Better Buildings Neighborhood Program: Why Energy Efficiency Upgrades on AddThis.com... Our History Related Federal Programs Why Energy Efficiency Upgrades

215

EECBG Success Story: Energy Efficiency Upgrades Part of Winning...  

Energy Savers (EERE)

EECBG Success Story: Energy Efficiency Upgrades Part of Winning Formula for Oregon School District EECBG Success Story: Energy Efficiency Upgrades Part of Winning Formula for...

216

Federal Finance Facilities Available for Energy Efficiency Upgrades...  

Energy Savers (EERE)

Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy...

217

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Algal Lipid Extraction and Upgrading to Hydrocarbons...

218

Weatherization and Workforce Guidelines for Home Energy Upgrades...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Home Energy Upgrades Fact Sheet Weatherization and Workforce Guidelines for Home Energy Upgrades Fact Sheet This fact sheet provides essential information about the 2011...

219

Standard Work Specifications for Single-Family Home Energy Upgrades...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Single-Family Home Energy Upgrades to define the minimum requirements for high- quality residential energy upgrades. The Standard Work Specifications for Single-Family...

220

Standard Work Specifications for Single-Family Home Energy Upgrades...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Single-Family Home Energy Upgrades to define the minimum requirements for high-quality residential energy upgrades. Today, the Standard Work Specifications provide a...

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

OpenEI - US utilities  

Open Energy Info (EERE)

Electric Utility Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (Utilities" title="http://en.openei.org/wiki/Gateway:Utilities">http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

222

APS Upgrade | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

APS APS View Larger The brightness and energy of x-ray beams are critical properties for research. Higher brightness means more x-rays can be focused onto a smaller, laser-like spot, allowing researchers to gather more data in greater detail in less time. Higher energies allow x-rays to penetrate deeper inside materials to reveal crucial information about a material's structure and function. The combination of high brightness and high energy allows the observation and imaging - in real time - of fast and ultrafast technologically important processes, including fuel sprays, magnetic switching, and biological processes in living organisms. The APS Upgrade project will increase the brightness of the APS high-energy (hard) x-ray beams. This will equip researchers for the groundbreaking

223

APS Upgrade | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop on new science opportunities provided by a multi-bend achromat lattice at the APS APS-U MBA Lattice Workshop Registration is now closed. Please contact Diane Wilkinson ext. 7810 or a member of the Workshop Organizing Committee for changes or modifications to your registration. Submit Comments, Suggestions, and Ideas for MBA Lattice Workshop October 21-22 Advanced Photon Source Argonne National Lab The Advanced Photon Source Upgrade is focused on delivering a powerful, versatile facility for science using high-brightness, high-energy X-rays. At APS, and around the light source community, scientists have been developing storage ring designs that push closer to the ultimate diffraction limit for X-ray sources. A recent report by the Basic Energy Sciences Advisory Committee, which advises the Director of the U.S.

224

ATLAS Nightly Build System Upgrade  

E-Print Network (OSTI)

The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nigh...

Dimitrov, G; The ATLAS collaboration; Simmons, B; Undrus, A

2013-01-01T23:59:59.000Z

225

Flora Utilities | Open Energy Information  

Open Energy Info (EERE)

Flora Utilities Flora Utilities Jump to: navigation, search Name Flora Utilities Place Indiana Utility Id 6425 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Municipal Rate Commercial Power Acct. Rate Commercial Residential Rate Residential Average Rates Residential: $0.0958/kWh Commercial: $0.0893/kWh Industrial: $0.0805/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Flora_Utilities&oldid=410706

226

Building America Perspective and Overlay to the Energy Upgrade California Approach  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Perspective & Perspective & Overlay to the Energy Upgrade California Approach Driving demand through targeted neighborhood programs By Mark Berman, Alliance for Residential Building Innovation BA Residential Energy Efficiency Stakeholder Meeting - March 1, 2012 Austin, TX Relevant BAP Gaps & Barriers 1. Difficulty in recruiting homeowners to participate in home energy upgrade programs. (Recruitment) 2. Need to develop sustainable retrofit business models (Biz Models) - Review business models in Better Buildings Program & other programs 3. Data mining - need to analyze utility bills to get a sense of whole-house efficiency and savings (Aggregate Results) 2 Overview: Stockton CA

227

Utility Companies | OpenEI Community  

Open Energy Info (EERE)

Utility Companies Utility Companies Home Sfomail's picture Submitted by Sfomail(48) Member 17 May, 2013 - 11:14 Utility Rates API Version 2 is Live! API developer OpenEI update utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here! I encourage you to check out the V2 Utility Rates API at http://en.openei.org/services/doc/rest/util_rates Graham7781's picture Submitted by Graham7781(1992) Super contributor 29 October, 2012 - 14:46 East Coast Utilities prepare for Hurricane Sandy East Coast Hurricane Sandy OpenEI outages storm United States Utility Companies As Hurricane Sandy continues to track towards the coast of the Eastern

228

12 GeV Upgrade | Jefferson Lab  

NLE Websites -- All DOE Office Websites

Science Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. A D D I T I O N A L L I N K S: 12 GeV Home Public Interest Scientific Opportunities Hall D Status Updates Contacts Three-Year Accelerator Schedule 2014 - 2016 top-right bottom-left-corner bottom-right-corner 12 GeV Upgrade Physicists at Jefferson Lab are trying to find answers to some of nature's most perplexing questions about the universe by exploring the nucleus of the atom. Their goal is to answer such questions as: "What is the universe made of?" and "What holds everyday matter together?" In their search for answers, physicists smash electrons into atoms using

229

PHOENIX ENERGIZES LIGHT RAIL CORRIDOR WITH UPGRADES  

Energy.gov (U.S. Department of Energy (DOE))

Designed to promote energy efficiency in buildings in Phoenix, Arizonas 10-mile-long Light Rail Corridor, Energize Phoenix focused on performing energy upgrades and reducing energy use in...

230

EMPOWERING SANTA BARBARA TO INVEST IN UPGRADES  

Energy.gov (U.S. Department of Energy (DOE))

In Santa Barbara County, California, the weather is so temperate that even the least energy-efficient homes can still feel comfortable year-round. To help residents see that energy upgrades can...

231

MAST Upgrade Advancing compact fusion sources  

E-Print Network (OSTI)

as a stepping stone to greater involvement in the fusion sector and, in particular, the commercial opportunities to fusion research. MAST Upgrade will build on this progress, providing a truly world-class device capable

232

RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE  

SciTech Connect

Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

Paul Tran; 293 Highway 740; Baden, NC 28009

2013-02-28T23:59:59.000Z

233

The upgraded scheme of Hefei Light Source  

SciTech Connect

To enhance the performance of Hefei Light Source, which was designed and constructed two decades ago, an upgrade project would be carried out in the near future. The detail upgrade scheme was described in this paper. Firstly, the magnet lattice of storage ring should be reconstructed with 4 DBA cells, whose advantages are lower beam emittance and more straight section available for insertion devices. Secondly, the beam diagnostics, main power supply, transverse and longitudinal multi-bunch feedback, beam control and manipulation system would be upgrade to improve the beam orbit stability. Finally, the injection system of storage ring and injector, which is composed of electron linac and beam transfer line, would be updated in order to assure smooth beam accumulation process under new low emittance lattice. With above improvement, it is hopeful to increase the brilliance of Hefei Light Source by two orders approximately. After three-year upgrade project, the performance of HLS would meet the demands of advanced SR users.

Li Weimin; Xu Hongliang; Wang Lin; Feng Guangyao; Zhang Shancai; Hao Hao [National Synchrotron Radiation Laboratory of University of Science and Technology of China, Anhui (China)

2010-06-23T23:59:59.000Z

234

Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in  

NLE Websites -- All DOE Office Websites (Extended Search)

Honeymoons Honeymoons Lead to Upgrades in Western Vermont to someone by E-mail Share Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Facebook Tweet about Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Twitter Bookmark Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Google Bookmark Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Delicious Rank Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on Digg Find More places to share Better Buildings Neighborhood Program: Honeymoons Lead to Upgrades in Western Vermont on AddThis.com... Better Buildings Residential Network Progress

235

Nuclear safety procedure upgrade project at USEC/MMUS gaseous diffusion plants  

SciTech Connect

Martin Marietta Utility Services has embarked on a program to upgrade procedures at both of its Gaseous Diffusion Plant sites. The transition from a U.S. Department of Energy government-operated facility to U.S. Nuclear Regulatory Commission (NRC) regulated has necessitated a complete upgrade of plant operating procedures and practices incorporating human factors as well as a philosophy change in their use. This program is designed to meet the requirements of the newly written 10CFR76, {open_quotes}The Certification of Gaseous Diffusion Plants,{close_quotes} and aid in progression toward NRC certification. A procedures upgrade will help ensure increased nuclear safety, enhance plant operation, and eliminate personnel procedure errors/occurrences.

Kocsis, F.J. III

1994-12-31T23:59:59.000Z

236

High Flux Isotope Reactor power upgrade status  

SciTech Connect

A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions.

Rothrock, R.B.; Hale, R.E. [Oak Ridge National Lab., TN (United States); Cheverton, R.D. [Delta-21 Resources Inc., Oak Ridge, TN (United States)

1997-03-01T23:59:59.000Z

237

Cannelton Utilities | Open Energy Information  

Open Energy Info (EERE)

Cannelton Utilities Cannelton Utilities Jump to: navigation, search Name Cannelton Utilities Place Indiana Utility Id 2964 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting: Murcury Vapor Light, 175 Watt Lighting Rate 1: Residential Residential Rate 2: Multi-Phase Commercial Rate 2: Single Phase Commercial Rate 3: Industrial Phase II Residential Rate 3: Industrial phase I Industrial Street Lighting: Decorative Metal Halide, 175 Watt Lighting Street Lighting: High Pressure Sodium, 100 Watt Lighting

238

IPNS upgrade: A feasibility study  

SciTech Connect

Many of Argonne National Laboratory`s (ANL`s) scientific staff members were very active in R&D work related to accelerator-based spoliation sources in the 1970s and early 1980s. In 1984, the Seitz/Eastman Panel of the National Academy of Sciences reviewed U.S. materials science research facilities. One of the recommendations of this panel was that the United States build a reactor-based steady-state source, the Advanced Neutron Source (ANS), at Oak Ridge National Laboratory. Subsequently, R&D activities related to the design of an accelerator-based source assumed a lower priority. The resumption of pulsed-source studies in this country started simultaneously with design activities in Europe aimed at the European Spallation Source (ESS). The European Community funded a workshop in September 1991 to define the parameters of the ESS. Participants in this workshop included both accelerator builders and neutron source users. A consortium of European countries has proposed to build a 5-MW pulsed source, and a feasibility study is currently under way. Soon after the birth of the ESS, a small group at ANL set about bringing themselves up to date on pulsed-source information since 1984 and studied the feasibility of upgrading ANL`s Intense Pulsed Neutron Source (IPNS) to 1 MW by means of a rapidly cycling synchrotron that could be housed, along with its support facilities, in existing buildings. In early 1993, the Kohn panel recommended that (1) design and construction of the ANS should be completed according to the proposed project schedule and (2) development of competitive proposals for cost-effective design and construction of a 1-MW pulsed spallation source should be authorized immediately.

NONE

1995-04-01T23:59:59.000Z

239

rates | OpenEI  

Open Energy Info (EERE)

rates rates Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

240

Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Norwich Public Utilities (Gas) - Residential Energy Efficiency Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Program Info State Connecticut Program Type Utility Rebate Program Rebate Amount Furnaces: $400 Boilers: $600 Tankless Boiler/Water Heater Combined: $850 - $1050 Indirect Fired/Tankless Water Heaters: $250 - $450 Provider Norwich Public Utilities Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $1050 for natural gas furnaces, boilers,

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Utility Formation  

NLE Websites -- All DOE Office Websites (Extended Search)

amounts See detailed discussion of these standards. For more information regarding tribal utility formation, contact the Power Service Line Account Executives: Eastern Power...

242

Climate balance of biogas upgrading systems  

SciTech Connect

One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

Pertl, A., E-mail: andreas.pertl@boku.ac.a [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria); Mostbauer, P.; Obersteiner, G. [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria)

2010-01-15T23:59:59.000Z

243

Post Retort, Pre Hydro-treat Upgrading of Shale Oil  

SciTech Connect

Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

Gordon, John

2012-09-30T23:59:59.000Z

244

ENERGY EFFICIENCY UPGRADES FOR SANITATION FACILITIES IN SELAWIK, AK FINAL REPORT  

SciTech Connect

The Native Village of Selawik is a federally recognized Alaskan tribe, located at the mouth of the Selawik River, about 90 miles east of Kotzebue in northwest Alaska. Due to the communitys rural location and cold climate, it is common for electric rates to be four times higher than the cost urban residents pay. These high energy costs were the driving factor for Selawik pursuing funding from the Department of Energy in order to achieve significant energy cost savings. The main objective of the project was to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit. One purpose for the proposed improvements was to enable the community to realize significant savings associated with the cost of energy. Another purpose of the upgrades was to repair the vacuum sewer system on the west side of Selawik to prevent future freeze-up problems during winter months.

POLLIS, REBECCA

2014-10-17T23:59:59.000Z

245

OpenEI - rates  

Open Energy Info (EERE)

U.S. Electric Utility U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (Utilities" title="http://en.openei.org/wiki/Gateway:Utilities">http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

246

For Utilities  

Energy.gov (U.S. Department of Energy (DOE))

Utilities and energy efficiency program administrators can incorporate Superior Energy Performance (SEP) into new or existing programs to help their industrial customers meet efficiency targets. The utility can provide incentives or other support to manufacturers who decide to implement SEP or pursue capital investments in energy efficiency. Accredited verification bodies have verified the substantial energy savings that are possible with SEP.

247

Iraq and the utilities  

SciTech Connect

This article discusses the possible impact on the public utilities of the invasion of Kuwait by Iraq. The author feels the industry is in better shape to weather this than the energy crisis of 1973 and 1974. However regulatory policies that prohibit some utilities from recovering fuel costs through rate adjustments may cause distress for some. The author feels that a revision of regulatory policies is needed.

Studness, C.M.

1990-09-13T23:59:59.000Z

248

Pelican Utility | Open Energy Information  

Open Energy Info (EERE)

Pelican Utility Pelican Utility Jump to: navigation, search Name Pelican Utility Place Alaska Utility Id 29297 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.4450/kWh Commercial: $0.4450/kWh Industrial: $0.3890/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Pelican_Utility&oldid=411348

249

HERA Upgrade Project | Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

HERA Upgrade Project HERA Upgrade Project As part of the HERA luminosity upgrade, 6 superconducting Interaction Region quadrupoles were delivered, accepted, and are in service. These 6 layer magnets were designed to include the main quadrupole focus, a skew quad, a normal and skew dipole, and a final sextupole layer. Because of the physical space constraints imposed by the existing detector region components, the DESY magnets were of necessity designed to be very compact. In addition, they are also are required to operate within the solenoidal detector fields at the collision points, so all construction materials had to be non magnetic. Two types of DESY magnets were fabricated. The first, designated as G0, was a two meter long, constant radius magnet. The second, designated GG, is a

250

ATLAS upgrade June09_v3  

NLE Websites -- All DOE Office Websites (Extended Search)

ATLAS efficiency and intensity upgrade ATLAS efficiency and intensity upgrade Guy Savard and Robert V. F. Janssens June 12, 2009 The ATLAS facility is on a constant quest to improve and increase the capabilities it offers to its Users. ATLAS currently provides beams of essentially all stable isotopes at energies in the vicinity of the Coulomb barrier. These can be used in conjunction with a suite of state-of-the-art instruments such as Gammasphere, the Fragment Mass Analyzer (FMA), the Canadian Penning Trap mass spectrometer (CPT), the split-pole spectrograph, an in-flight radioactive beam line, and the recently commissioned HELIOS spectrometer. At present, these capabilities are being augmented by (1) the addition of the CARIBU upgrade, which will provide low-intensity, neutron-rich radioactive beams from Californium fission fragments in both low-energy and re-

251

Instrumentation upgrades for the Macromolecular Crystallography beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation upgrades for the Macromolecular Crystallography beamlines Instrumentation upgrades for the Macromolecular Crystallography beamlines of the Swiss Light Source Monday, October 29, 2012 - 2:00am SSRL, Bldg. 137, Rm. 322 Martin Fuchs, MX Group, Swiss Light Source; Paul Scherrer Institute (Villigen, Switzerland) A new unified diffractometer - the D3 - has been developed for the three MX beamlines. The first of the instruments is in general user operation at beamline X10SA since April 2012. The varied demands from both challenging academic research projects as well as high throughput industrial applications on today's macromolecular crystallography beamlines drive developments to both endstations and beamline optics. Recent instrumentation upgrades to the macromolecular crystallography (MX) beamlines of the Swiss Light Source therefore aimed to

252

THE SNS VACUUM CONTROL SYSTEM UPGRADE FOR THE SUPERCONDUCTING LINAC  

SciTech Connect

The superconducting linac of the Spallation Neutron Source (SNS) has 23 cryomodules whose vacuum system is monitored and controlled by custom built hardware. The original control hardware was provided by Thomas Jefferson National Accelerator Facility (JLab) and contained a variety of custom boards utilizing integrated circuits to perform logic. The need for control logic changes, a desire to increase maintainability, and a desire to increase flexibility to adapt for the future has led to a Programmable Logic Controller (PLC) based upgrade. This paper provides an overview of the commercial off-the-shelf (COTS) hardware being used in the superconducting vacuum control system. Details of the design and challenges to convert a control system during small windows of maintenance periods without disrupting beam operation will be covered in this paper.

Williams, Derrick C [ORNL] [ORNL

2009-01-01T23:59:59.000Z

253

Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels  

Science Journals Connector (OSTI)

Abstract Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrothermal liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available experimental results. The system assumed an LEA feed rate of 608dry metric tons/day and that the feedstock was converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid fuels, mainly alkanes. Performance and cost results demonstrated that HTL and upgrading is effective for converting LEA to liquid fuels. The liquid fuels annual yield was estimated to be 26.9million gallon gasoline-equivalent (GGE) and the overall energy efficiency on a higher heating value (HHV) basis was estimated to be 69.5%. The variation range of the minimum fuel selling price (MFSP) was estimated to be $2.07 to $7.11/GGE by combining the effects of selected process factors. Key factors affecting the production cost were identified to be the LEA feedstock cost, final products yields, and the upgrading equipment cost. The impact of plant scale on MFSP was also investigated.

Yunhua Zhu; Karl O. Albrecht; Douglas C. Elliott; Richard T. Hallen; Susanne B. Jones

2013-01-01T23:59:59.000Z

254

Cost-effective upgrade of a focusing system for inelastic X-ray scattering experiments under high pressure  

Science Journals Connector (OSTI)

This paper describes a scheme utilizing a set of low-cost and compact Kirkpatrick-Baez mirrors for upgrading the optical system of the Taiwan Inelastic X-ray Scattering beamline at SPring-8 for high-pressure experiments using diamond-anvil cells. The scheme as implemented improves the focus to 13 m 16 m with transmission of up to 72%.

Huang, C.-Y.

2007-12-18T23:59:59.000Z

255

Better Buildings Neighborhood Program: Energy Upgrade California Drives  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Upgrade Energy Upgrade California Drives Demand From Behind the Wheel to someone by E-mail Share Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Facebook Tweet about Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Twitter Bookmark Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Google Bookmark Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Delicious Rank Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on Digg Find More places to share Better Buildings Neighborhood Program: Energy Upgrade California Drives Demand From Behind the Wheel on

256

Missouri Water Treatment Plant Upgraded | Department of Energy  

Energy Savers (EERE)

Missouri Water Treatment Plant Upgraded Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water Treatment Plant are...

257

EECBG Success Story: Missouri Water Treatment Plant Upgraded...  

Energy Savers (EERE)

Missouri Water Treatment Plant Upgraded EECBG Success Story: Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water...

258

Bio-oils Upgrading for Second Generation Biofuels  

Science Journals Connector (OSTI)

Bio-oils Upgrading for Second Generation Biofuels ... The present review is then focused on the upgrading possibilities of renewable nonedible feedstocks, obtained from biomass fast pyrolysis or liquefaction, in petroleum refineries, toward the production of second generation biofuels. ...

Ins Graa; Jos M. Lopes; Henrique S. Cerqueira; Maria F. Ribeiro

2012-11-21T23:59:59.000Z

259

Upgrading : an alternative approach towards housing reform in China  

E-Print Network (OSTI)

The thesis is a study on urban housing upgrading in China. The main objective is to look at upgrading, which has been widely used in many developing countries, as an alternative approach to solving the existing urban housing ...

He, Fang, 1956-

1989-01-01T23:59:59.000Z

260

EECBG Success Story: HVAC Upgrade Saving Money, Protecting History...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Upgrade Saving Money, Protecting History EECBG Success Story: HVAC Upgrade Saving Money, Protecting History November 2, 2010 - 5:37pm Addthis A new heating and cooling system...

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

UPGRADE AND EVALUATION OF A LIGHTNING DETECTION SYSTEM  

E-Print Network (OSTI)

/11/2004 page 3 of 17 1 INTRODUCTION KNMI (Royal Netherlands Meteorological Institute) has upgraded itsUPGRADE AND EVALUATION OF A LIGHTNING DETECTION SYSTEM Hans Beekhuis Iwan Holleman the Netherlands

Stoffelen, Ad

262

Nuclear Materials Safeguards and Security Upgrade Project Completed...  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards and Security Upgrade Project Completed Under Budget | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering...

263

Work Authorization Document NSTX Upgrade Project  

E-Print Network (OSTI)

Work Authorization Document NSTX Upgrade Project Control Account #: 7900 Title: WBS 1.7.3 Title Functional Manager L. Dudek Approvals Signature Date NSTX-U Project Manager R. Strykowsky 4- WBS Dictionary procedures and documents to support the integrated tests, and to support performance of the pre

Princeton Plasma Physics Laboratory

264

MAST-Upgrade Advancing compact fusion sources  

E-Print Network (OSTI)

of innovation. It will also put the UK in a leading position to develop engineering systems for the future to the drive towards commercial fusion power. 1. Testing reactor concepts. MAST-Upgrade will be the first machine to include the Super-X divertor design, an innovative plasma exhaust system that, if successful

265

ATLAS Upgrades Towards the High Luminosity LHC  

E-Print Network (OSTI)

After successful LHC operation at the center-of-mass energy of 7 and 8 TeV in 2011 and 2012, plans are actively advancing for a series of upgrades, culminating roughly 10 years from now in the high luminosity LHC (HL-LHC) project, delivering of order five times the LHC nominal instantaneous luminosity along with luminosity levelling. The final goal is to extend the data set from about few hundred fb?1 expected for LHC running to 3000 fb?1 by around 2030. Current planning in ATLAS also has significant upgrades to the detector during the consolidation of the LHC to reach full LHC energy and further upgrades to accommodate running already beyond nominal luminosity this decade. The challenge of coping with HL-LHC instantaneous and integrated luminosity, along with the associated radiation levels, requires further major changes to the ATLAS detector. The designs are developing rapidly for an all-new inner-tracker, significant upgrades in the calorimeter and muon systems, as well as improved triggers and data a...

Cinca, D; The ATLAS collaboration

2014-01-01T23:59:59.000Z

266

CMS: Present status, limitations, and upgrade plans  

SciTech Connect

An overview of the CMS upgrade plans will be presented. A brief status of the CMS detector will be given, covering some of the issues we have so far experienced. This will be followed by an overview of the various CMS upgrades planned, covering the main motivations for them, and the various R&D efforts for the possibilities under study. The CMS detector has been working extremely well since the start of data-taking at the LHC as is evidenced by the numerous excellent results published by CMS and presented at this workshop and recent conferences. Less well documented are the various issues that have been encountered with the detector. In the spirit of this workshop I will cover some of these issues with particular emphasis on problems that motivate some of the upgrades to the CMS detector for this decade of data-taking. Though the CMS detector has been working extremely well and expectations are great for making the most of the LHC luminosity, there have been a number of issues encountered so far. Some of these have been described and while none currently presents a problem for physics performance, some of them are expected to become more problematic, especially at the highest Phase 1 luminosities for which the majority of the integrated luminosity will be collected. These motivate upgrades for various parts of the CMS detector so that the current excellent physics performance can be maintained or even surpassed in the realm of the highest Phase 1 luminosities.

Cheung, H.W.K.; /Fermilab; ,

2011-09-01T23:59:59.000Z

267

Work Authorization Document NSTX Upgrade Project  

E-Print Network (OSTI)

heating system. The system will be composed of an AC/DC power conversion system, gyrotron source or other operational characteristic for the system will require upgrade. Only disruption qualification The Electron Cyclotron Heating System provides breakdown and startup assist through an electron cyclotron

Princeton Plasma Physics Laboratory

268

Sustainable Energy Utility - Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Energy Utility - Residential Energy Efficiency Program Sustainable Energy Utility - Residential Energy Efficiency Program (District of Columbia) Sustainable Energy Utility - Residential Energy Efficiency Program (District of Columbia) < Back Eligibility Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Start Date 01/01/2013 Expiration Date 09/30/2013 State District of Columbia Program Type Utility Rebate Program Rebate Amount Refrigerators: $50 Clothes Washers: $50 CFL Lighting: varies by in-store discounts LED Lighting: $5-$10 The District of Columbia Sustainable Energy Utility currently offers the Residential Energy Efficiency Program. The program provides incentives to residents who complete qualifying home energy upgrades. Qualifying items include refrigerators, clothes washers, LED lighting and CFL lighting

269

Financing Energy Upgrades for K-12 School Districts  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Energy Upgrades for K-12 School Districts Financing Energy Upgrades for K-12 School Districts Page 2 Table of Contents Introduction................................................................................................................................................................................................................... 4 What This Guide Covers .................................................................................................................................................................................. 6 Chapter 1: Principles of Financing Energy Upgrades for Schools .................................................................................................. 7 Principle 1. Start with Clear Project Objectives.......................................................................................................................................... 7

270

Upgrade of CEBAF from 6 Gev To 12 Gev: Status  

SciTech Connect

The CEBAF accelerator is being upgraded from 6 GeV to 12 GeV by the US Department of Energy. The accelerator upgrade is being done within the existing tunnel footprint. The accelerator upgrade includes: 10 new srfbased high-performance cryomodules plus RF systems, doubling the 2K helium plant's capability, upgrading the existing beamlines to operate at nearly double the original performance envelope, and adding a beamline to a new experimental area. Construction is over 75% complete with final completion projected for late FY13. Details of the upgrade and status of the work will be presented.

Harwood, Leigh [Jefferson Lab, 12000 Jefferson Ave, Newport News, VA, 23606 (United States)

2013-04-19T23:59:59.000Z

271

Energy Star Building Upgrade Value Calculator | Open Energy Information  

Open Energy Info (EERE)

Energy Star Building Upgrade Value Calculator Energy Star Building Upgrade Value Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Star Building Upgrade Value Calculator (for Office Properties) Agency/Company /Organization: ENERGY STAR Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Spreadsheet Website: www.energystar.gov/index.cfm?c=comm_real_estate.building_upgrade_value The Building Upgrade Value Calculator allows practitioners to analyze the

272

Residential Solar Valuation Rates  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

273

ATU Advanced Technology Upgrading Ltd | Open Energy Information  

Open Energy Info (EERE)

ATU Advanced Technology Upgrading Ltd ATU Advanced Technology Upgrading Ltd Jump to: navigation, search Name ATU (Advanced Technology Upgrading) Ltd Place Israel Product Focused on development of rechargeable magnesium battery. References ATU (Advanced Technology Upgrading) Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. ATU (Advanced Technology Upgrading) Ltd is a company located in Israel . References ↑ "ATU (Advanced Technology Upgrading) Ltd" Retrieved from "http://en.openei.org/w/index.php?title=ATU_Advanced_Technology_Upgrading_Ltd&oldid=342420" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

274

Exploration of the Equilibrium Operating Space For NSTX-Upgrade  

SciTech Connect

This paper explores a range of high-performance equilibrium scenarios available in the NSTX-Upgrade device [J.E. Menard, submitted for publication to Nuclear Fusion]. NSTX-Upgrade is a substantial upgrade to the existing NSTX device [M. Ono, et al., Nuclear Fusion 40, 557 (2000)], with significantly higher toroidal field and solenoid capabilities, and three additional neutral beam sources with significantly larger current drive efficiency. Equilibria are computed with freeboundary TRANSP, allowing a self consistent calculation of the non-inductive current drive sources, the plasma equilibrium, and poloidal field coil current, using the realistic device geometry. The thermal profiles are taken from a variety of existing NSTX discharges, and different assumptions for the thermal confinement scalings are utilized. The no-wall and idealwall n=1 stability limits are computed with the DCON code. The central and minimum safety factors are quite sensitive to many parameters: they generally increases with large outer plasmawall gaps and higher density, but can have either trend with the confinement enhancement factor. In scenarios with strong central beam current drive, the inclusion of non-classical fast ion diffusion raises qmin, decreases the pressure peaking, and generally improves the global stability, at the expense of a reduction in the non-inductive current drive fraction; cases with less beam current drive are largely insensitive to additional fast ion diffusion. The non-inductive current level is quite sensitive to the underlying confinement and profile assumptions. For instance, for BT=1.0 T and Pinj=12.6 MW, the non-inductive current level varies from 875 kA with ITER-98y,2 thermal confinement scaling and narrow thermal profiles to 1325 kA for an ST specific scaling expression and broad profiles. This sensitivity should facilitate the determination of the correct scaling of transport with current and field to use for future fully non-inductive ST devices. Scenarios are presented which can be sustained for 8-10 seconds, or (20-30)?CR, at ?N=3.8-4.5, facilitating, for instance, the study of disruption avoidance for very long pulse. Scenarios have been documented which can operate with ?T~25% and equilibrated qmin>1. The value of qmin can be controlled at either fixed non-inductive fraction of 100% or fixed plasma current, by varying which beam sources are used, opening the possibility for feedback qmin control. In terms of quantities like collisionality, neutron emission, non-inductive fraction, or stored energy, these scenarios represent a significant performance extension compared to NSTX and other present spherical torii.

S.P. Gerhardt, R. Andre and J.E. Menard

2012-04-25T23:59:59.000Z

275

Utility Rate Database | Open Energy Information  

Open Energy Info (EERE)

processing that used to take weeks or months can now be done in seconds NREL's System Advisor Model or SAM (formerly Solar Advisor Model) has the ability to communicate with the...

276

EBR-II cover-gas cleanup system upgrade  

SciTech Connect

Technology advances in the past few years have prompted an effort at Argonne National Laboratory to replace existing equipment with high-performance digital computers and color-graphic displays. Improved operation of process systems can be achieved by utilizing state-of-the-art computer technology in the areas of process control and process monitoring. The cover-gas cleanup system (CGCS) at the Experimental Breeder Reactor II (EBR-II) is the first system to be upgraded with high-performance digital equipment. The upgrade consisted of a main control computer, a distributed control computer, a front-end input/output computer, a main graphics interface terminal, and a remote graphics interface terminal. This paper describes the main control computer and the operator interface control software. Argonne National Laboratory's EBR-II is a pool-type nuclear reactor demonstration facility that uses liquid sodium as the primary system and secondary system coolant. The primary system tank contains [approximately]330000 [ell] of liquid sodium blanketed with an argon cover gas. Despite this inert atmosphere, the primary system requires a cover-gas monitoring and cleanup system, the CGCS. The CGCS maintains low levels of impurities in the cover gas so that even small levels of impurities can be detected to flag a failed fuel element and to support mass spectrometer analysis to identify a failed fuel element. Impurities can be introduced to the argon cover gas by the failure of fuel element cladding and the subsequent release of gaseous fission products or xenon [open quotes]tag gas[close quotes] placed in the fuel elements for the purpose of signaling a fuel element breach. The CGCS consists of a main cleanup loop and a gas analysis system.

Staffon, J.D.; Carlson, R.B. (Argonne National Lab., Idaho Falls (United States))

1993-01-01T23:59:59.000Z

277

An Upgrade Proposal from the PHENIX Collaboration  

E-Print Network (OSTI)

In this document the PHENIX collaboration proposes a major upgrade to the PHENIX detector at the Relativistic Heavy Ion Collider. This upgrade, sPHENIX, enables an extremely rich jet and beauty quarkonia physics program addressing fundamental questions about the nature of the strongly coupled quark-gluon plasma (QGP), discovered experimentally at RHIC to be a perfect fluid. The startling dynamics of the QGP on fluid-like length scales is an emergent property of quantum chromodynamics (QCD), seemingly implicit in the Lagrangian but stubbornly hidden from view. QCD is an asymptotically free theory, but how QCD manifests as a strongly coupled fluid with specific shear viscosity near $T_C$, as low as allowed by the uncertainty principle, is as fundamental an issue as that of how confinement itself arises.

Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Alexander, J; Aoki, K; Apadula, N; Asano, H; Atomssa, E T; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bai, X; Bandara, N; Bannier, B; Barish, K N; Baron, O; Bassalleck, B; Bathe, S; Baublis, V; Baumgart, S; Bazilevsky, A; Beaumier, M; Beckman, S; Belmont, R; Benjamin, G; Berdnikov, A; Berdnikov, Y; Blackburn, J; Blau, D S; Bobrek, M; Bok, J; Boose, S; Boyle, K; Britton,, C L; Brooks, M L; Bryslawskyj, J; Bumazhnov, V; Butler, C; Butsyk, S; Campbell, S; Carollo, A; Chai, J -S; Chen, C -H; Chernichenko, S; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choi, S; Chollet, S; Christiansen, P; Chujo, T; Cianciolo, V; Citron, Z; Cole, B A; Cronin, N; Crossett, N; Csand, M; D'Orazio, L; Dairaku, S; Danley, D; Datta, A; Daugherity, M S; David, G; DeBlasio, K; Debraine, A; Dehmelt, K; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Ding, L; Dion, A; Diss, P B; Do, J H; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Eberle, L; Efremenko, Y V; Engelmore, T; Enokizono, A; Esumi, S; Eyser, K O; Fadem, B; Feege, N; Fields, D E; Finger, M; FingerJr., M; Fleuret, F; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fusayasu, T; Gainey, K; Gal, C; Gallus, P; Garg, P; Garishvili, A; Garishvili, I; Gastaldi, F; Ge, H; Giannotti, P; Giordarno, F; Glenn, A; Gong, X; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guragain, H; Hachiya, T; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamilton, H F; Han, S Y; Hanks, J; Hasegawa, S; Haseler, T O S; Hashimoto, K; Hayano, R; Hayashi, S; He, X; Hemmick, T K; Hester, T; Hill, J C; Hoefferkamp, M; Hollis, R S; Homma, K; Hong, B; Hori, Y; Hoshino, T; Huang, J; Huang, S; Hutchins, J R; Ichihara, T; Ikeda, Y; Imai, K; Imazu, Y; Imrek, J; Inaba, M; Iordanova, A; Isenhower, D; Isinhue, A; Isupov, A; Ivanischev, D; Ivanov, V; Jacak, B V; Jeon, S J; Jezghani, M; Jia, J; Jiang, X; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kamin, J; Kanda, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kawall, D; Kazantsev, A V; Kehayias, H -J; Key, J A; Khachatryan, V; Khandai, P K; Khanzadeev, A; Kijima, K M; Kim, C; Kim, D H; Kim, D J; Kim, E -J; Kim, H J; Kim, K -B; Kim, M; Kim, Y -J; Kim, Y K; Kimelman, B; Kiss, ; Kistenev, E; Kitamura, R; Klatsky, J; Kleinjan, D; Kline, P; Koblesky, T; Kochenda, L; Kofarago, M; Komatsu, Y; Komkov, B; Koster, J; Kotchetkov, D; Kotov, D; Kravtsov, P; Krizek, F; Kurita, K; Kuriyama, M; Kurosawa, M; Kwon, Y; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, G H; Lee, J; Lee, K B; Lee, K S; Lee, S; Lee, S H; Lefferts, R; Leitch, M J; Leite, M A L; Leitgab, M; Lewis, B; Li, X; Lim, S H; Lipski, A; Litvinenko, A; Liu, M X; Love, B; Lynch, D; Lynch, M; Maguire, C F; Makdisi, Y I; Makek, M; Malakhov, A; Manion, A; Manko, V I; Mannel, E; Maruyama, T; Masumoto, S; McCumber, M; McGaughey, P L; McGlinchey, D; McKay, R; McKinney, C; Meles, A; Mendoza, M; Menegasso, R; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Milov, A; Mishra, D K; Mitchell, J T; Miyasaka, S; Mizuno, S; Mohanty, A K; Montuenga, P; Moon, T; Morrison, D P; Moskowitz, M; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Mwai, A; Nagae, T; Nagamiya, S; Nagashima, K; Nagle, J L; Nagy, M I; Nakagawa, I; Nakagomi, H; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nattrass, C; Nederlof, A; Netrakanti, P K; Nihashi, M; Niida, T; Ninomiya, K; Nishimura, S; Northacker, D; Nouicer, R; Novak, T; Novitzky, N; Nukariya, A; Nyanin, A S; O'Brien, E; Ogilvie, C A; Oide, H; Okada, K; Koop, J D Orjuela; Osborn, J D; Oskarsson, A; sterman, L; Ozawa, K; Pancake, C; Pantuev, V; Papavassiliou, V; Park, I H; Park, J S; Park, S; Park, S K; Pate, S F; Patel, L; Patel, M; Peng, J -C; Perepelitsa, D; Perera, G D N; Peresedov, V; Peressounko, D Yu; Perry, J; Petti, R; Pinkenburg, C; Pinson, R; Pisani, R P; Popule, J; Purschke, M L; Qu, H; Radhakrishnan, S; Rak, J; Ramson, B J; Ravinovich, I; Read, K F; Reynolds, D; Reynolds, R; Riabov, V; Riabov, Y; Richardson, E; Rinn, T; Riveli, N; Roach, D; Rolnick, S D; Rosati, M; Roschin, E; Rowan, Z; Rubin, J G; Rukoyatkin, P; Ryu, M S; Safonov, A; Sahlmueller, B; Saito, N; Sakaguchi, T; Sako, H; Samsonov, V; Sano, M; Sarsour, M; Sato, S; Sawada, S; Schaefer, B; Schmoll, B K; Sedgwick, K; Seele, J; Seidl, R; Sekiguchi, Y; Sen, A; Seto, R; Sett, P; Sexton, A; Shafto, E; Sharma, D; Shaver, A; Shein, I; Shibata, T -A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sicho, P; Sickles, A; Silva, C L; Silvermyr, D; Singh, B K; Singh, C P; Singh, V; Sippach, F W; Skolnik, M; Snowball, M; Solano, S; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Soumya, M; Sourikova, I V; Stankus, P W; Steinberg, P; Stenlund, E; Stepanov, M; Ster, A; Stevens, L; Stoll, S P; Stone, M R; Sugitate, T; Sukhanov, A; Sumita, T; Sun, J; Sziklai, J; Takagui, E M

2015-01-01T23:59:59.000Z

278

CHALLENGES FOR THE SNS RING ENERGY UPGRADE  

SciTech Connect

The Oak Ridge Spallation Neutron Source accumulator ring presently operates at a beam power of about 1 MW with a beam energy of about 910 MeV. A power upgrade is planned to increase the beam energy to 1.3 GeV. For the accumulator ring this mostly involves modifications to the injection and extraction sections. A variety of modifications to the existing injection section were necessary to achieve 1 MW, and the tools developed and the lessons learned from this work are now being applied to the design of the new injection section. This paper will discuss the tools and the lessons learned, and also present the design and status of the upgrades to the accumulator ring.

Plum, Michael A [ORNL; Gorlov, Timofey V [ORNL; Holmes, Jeffrey A [ORNL; Hunter, W Ted [ORNL; Roseberry, Jr., R Tom [ORNL; Wang, Jian-Guang [ORNL

2012-01-01T23:59:59.000Z

279

The PS Upgrade Program: Recent Advances  

E-Print Network (OSTI)

The LHC Injectors Upgrade project (LIU) has been initiated to improve the performances of the existing injector complex at CERN to match the future requirements of the HL-LHC (High Luminosity LHC). In this framework, the Proton Synchrotron (PS) will undergo fundamental changes for many of its main systems: the injection energy will be increased to reduce space-charge effects, the transverse damper will be improved to cope with transverse instabilities, and the RF systems will be upgraded to accelerate higher beam intensity and brightness. These hardware improvements are triggered by a series of studies meant to identify the most critical performance bottlenecks, like space charge, impedances, longitudinal and transverse instabilities, as well as electron-cloud. Additionally, alternative production schemes for the LHC-type beams have been proposed and implemented to circumvent some of the present limitations. A summary of the most recent advances of the studies, as well as the proposed hardware improvements is...

Gilardoni, SS; Bertone, C; Biancacci, N; Blas, A; Damjanovic, S; Bodart, D; Borburgh, J; Chiggiato, P; Damerau, H; Devine, JD; Dobers, T; Gourber-Pace, M; Hancock, S; Huschauer, A; Iadarola, G; Lopez Hernandez, LA; Masi, A; Mataguez, S; Metral, E; Paoluzzi, M; Persichelli, S; Pittet, S; Rossi, C; Roesler, S; Rumolo, G; Salvant, B; Steerenberg, R; Sterbini, G; Vollaire, J; Wasef, R; Ventura, L; Yin Vallgren, C; Migliorati, M

2013-01-01T23:59:59.000Z

280

An Upgrade Proposal from the PHENIX Collaboration  

E-Print Network (OSTI)

In this document the PHENIX collaboration proposes a major upgrade to the PHENIX detector at the Relativistic Heavy Ion Collider. This upgrade, sPHENIX, enables an extremely rich jet and beauty quarkonia physics program addressing fundamental questions about the nature of the strongly coupled quark-gluon plasma (QGP), discovered experimentally at RHIC to be a perfect fluid. The startling dynamics of the QGP on fluid-like length scales is an emergent property of quantum chromodynamics (QCD), seemingly implicit in the Lagrangian but stubbornly hidden from view. QCD is an asymptotically free theory, but how QCD manifests as a strongly coupled fluid with specific shear viscosity near $T_C$, as low as allowed by the uncertainty principle, is as fundamental an issue as that of how confinement itself arises.

A. Adare; S. Afanasiev; C. Aidala; N. N. Ajitanand; Y. Akiba; R. Akimoto; J. Alexander; K. Aoki; N. Apadula; H. Asano; E. T. Atomssa; T. C. Awes; B. Azmoun; V. Babintsev; M. Bai; X. Bai; N. Bandara; B. Bannier; K. N. Barish; O. Baron; B. Bassalleck; S. Bathe; V. Baublis; S. Baumgart; A. Bazilevsky; M. Beaumier; S. Beckman; R. Belmont; G. Benjamin; A. Berdnikov; Y. Berdnikov; J. Blackburn; D. S. Blau; M. Bobrek; J. Bok; S. Boose; K. Boyle; C. L. Britton, Jr.; M. L. Brooks; J. Bryslawskyj; V. Bumazhnov; C. Butler; S. Butsyk; S. Campbell; A. Carollo; J. -S. Chai; C. -H. Chen; S. Chernichenko; C. Y. Chi; M. Chiu; I. J. Choi; J. B. Choi; S. Choi; S. Chollet; P. Christiansen; T. Chujo; V. Cianciolo; Z. Citron; B. A. Cole; N. Cronin; N. Crossett; M. Csand; L. D'Orazio; S. Dairaku; D. Danley; A. Datta; M. S. Daugherity; G. David; K. DeBlasio; A. Debraine; K. Dehmelt; A. Denisov; A. Deshpande; E. J. Desmond; O. Dietzsch; L. Ding; A. Dion; P. B. Diss; J. H. Do; M. Donadelli; O. Drapier; A. Drees; K. A. Drees; J. M. Durham; A. Durum; L. Eberle; Y. V. Efremenko; T. Engelmore; A. Enokizono; S. Esumi; K. O. Eyser; B. Fadem; N. Feege; D. E. Fields; M. Finger; M. FingerJr.; F. Fleuret; S. L. Fokin; J. E. Frantz; A. Franz; A. D. Frawley; Y. Fukao; T. Fusayasu; K. Gainey; C. Gal; P. Gallus; P. Garg; A. Garishvili; I. Garishvili; F. Gastaldi; H. Ge; P. Giannotti; F. Giordarno; A. Glenn; X. Gong; M. Gonin; Y. Goto; R. Granier de Cassagnac; N. Grau; S. V. Greene; M. Grosse Perdekamp; Y. Gu; T. Gunji; H. Guragain; T. Hachiya; J. S. Haggerty; K. I. Hahn; H. Hamagaki; H. F. Hamilton; S. Y. Han; J. Hanks; S. Hasegawa; T. O. S. Haseler; K. Hashimoto; R. Hayano; S. Hayashi; X. He; T. K. Hemmick; T. Hester; J. C. Hill; M. Hoefferkamp; R. S. Hollis; K. Homma; B. Hong; Y. Hori; T. Hoshino; J. Huang; S. Huang; J. R. Hutchins; T. Ichihara; Y. Ikeda; K. Imai; Y. Imazu; J. Imrek; M. Inaba; A. Iordanova; D. Isenhower; A. Isinhue; A. Isupov; D. Ivanischev; V. Ivanov; B. V. Jacak; S. J. Jeon; M. Jezghani; J. Jia; X. Jiang; B. M. Johnson; K. S. Joo; D. Jouan; D. S. Jumper; J. Kamin; S. Kanda; B. H. Kang; J. H. Kang; J. S. Kang; J. Kapustinsky; K. Karatsu; D. Kawall; A. V. Kazantsev; H. -J. Kehayias; J. A. Key; V. Khachatryan; P. K. Khandai; A. Khanzadeev; K. M. Kijima; C. Kim; D. H. Kim; D. J. Kim; E. -J. Kim; H. J. Kim; K. -B. Kim; M. Kim; Y. -J. Kim; Y. K. Kim; B. Kimelman; . Kiss; E. Kistenev; R. Kitamura; J. Klatsky; D. Kleinjan; P. Kline; T. Koblesky; L. Kochenda; M. Kofarago; Y. Komatsu; B. Komkov; J. Koster; D. Kotchetkov; D. Kotov; P. Kravtsov; F. Krizek; K. Kurita; M. Kuriyama; M. Kurosawa; Y. Kwon; R. Lacey; Y. S. Lai; J. G. Lajoie; A. Lebedev; G. H. Lee; J. Lee; K. B. Lee; K. S. Lee; S. Lee; S. H. Lee; R. Lefferts; M. J. Leitch; M. A. L. Leite; M. Leitgab; B. Lewis; X. Li; S. H. Lim; A. Lipski; A. Litvinenko; M. X. Liu; B. Love; D. Lynch; M. Lynch; C. F. Maguire; Y. I. Makdisi; M. Makek; A. Malakhov; A. Manion; V. I. Manko; E. Mannel; T. Maruyama; S. Masumoto; M. McCumber; P. L. McGaughey; D. McGlinchey; R. McKay; C. McKinney; A. Meles; M. Mendoza; R. Menegasso; B. Meredith; Y. Miake; T. Mibe; A. C. Mignerey; A. Milov; D. K. Mishra; J. T. Mitchell; S. Miyasaka; S. Mizuno; A. K. Mohanty; P. Montuenga; T. Moon; D. P. Morrison; M. Moskowitz; S. Motschwiller; T. V. Moukhanova; T. Murakami; J. Murata; A. Mwai; T. Nagae; S. Nagamiya; K. Nagashima; J. L. Nagle; M. I. Nagy; I. Nakagawa; H. Nakagomi; Y. Nakamiya; K. R. Nakamura; T. Nakamura; K. Nakano; C. Nattrass; A. Nederlof; P. K. Netrakanti; M. Nihashi; T. Niida; K. Ninomiya; S. Nishimura; D. Northacker; R. Nouicer; T. Novak; N. Novitzky; A. Nukariya; A. S. Nyanin; E. O'Brien; C. A. Ogilvie; H. Oide; K. Okada; J. D. Orjuela Koop; J. D. Osborn; A. Oskarsson; L. sterman; K. Ozawa; C. Pancake; V. Pantuev; V. Papavassiliou; I. H. Park; J. S. Park; S. Park; S. K. Park; S. F. Pate; L. Patel; M. Patel; J. -C. Peng; D. Perepelitsa; G. D. N. Perera; V. Peresedov; D. Yu. Peressounko; J. Perry; R. Petti; C. Pinkenburg; R. Pinson; R. P. Pisani; J. Popule; M. L. Purschke; H. Qu; S. Radhakrishnan; J. Rak; B. J. Ramson; I. Ravinovich; K. F. Read; D. Reynolds; R. Reynolds; V. Riabov; Y. Riabov; E. Richardson; T. Rinn; N. Riveli; D. Roach; S. D. Rolnick; M. Rosati; E. Roschin; Z. Rowan; J. G. Rubin; P. Rukoyatkin; M. S. Ryu; A. Safonov; B. Sahlmueller; N. Saito; T. Sakaguchi; H. Sako; V. Samsonov; M. Sano; M. Sarsour; S. Sato; S. Sawada; B. Schaefer; B. K. Schmoll; K. Sedgwick; J. Seele; R. Seidl; Y. Sekiguchi; A. Sen; R. Seto; P. Sett; A. Sexton; E. Shafto; D. Sharma; A. Shaver; I. Shein; T. -A. Shibata; K. Shigaki; M. Shimomura; K. Shoji; P. Shukla; P. Sicho; A. Sickles; C. L. Silva; D. Silvermyr; B. K. Singh; C. P. Singh; V. Singh; F. W. Sippach; M. Skolnik; M. Snowball; S. Solano; A. Soldatov; R. A. Soltz; W. E. Sondheim; S. P. Sorensen; M. Soumya; I. V. Sourikova; P. W. Stankus

2015-01-25T23:59:59.000Z

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Economics of natural gas upgrading  

SciTech Connect

Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

Hackworth, J.H.; Koch, R.W.

1995-07-01T23:59:59.000Z

282

Use of 2.5-D and 3-D technology to evaluate control room upgrades  

SciTech Connect

This paper describes an Electric Power Research Inst. (EPRI) study in which 2.5-D and 3-D visualization technology was applied to evaluate the design of a nuclear power plant control room upgrade. The study involved converting 3-D CAD flies of a planned upgrade into a photo-realistic appearing virtual model, and evaluating the value and usefulness of the model. Nuclear utility and EPRI evaluators viewed and interacted with the control room virtual model with both 2.5-D and 3-D representations. They identified how control room and similar virtual models may be used by utilities for design and evaluation purposes; assessed potential economic and other benefits; and identified limitations, potential problems, and other issues regarding use of visualization technology for this and similar applications. In addition, the Halden CREATE (Control Room Engineering Advanced Tool-kit Environment) Verification Tool was applied to evaluate features of the virtual model against US NRC NUREG 0700 Revision 2 human factors engineering guidelines (NUREG 0700) [1]. The study results are very favorable for applying 2.5-D visualization technology to support upgrading nuclear power plant control rooms and other plant facilities. Results, however, show that today's 3-D immersive viewing systems are difficult to justify based on cost, availability and value of information provided for this application. (authors)

Hanes, L. F.; Naser, J. [2023 Wickford Road, Columbus, OH 43221 Electric Power Research Inst., 3420 Hillview Ave., Palo Alto, CA 94303 (United States)

2006-07-01T23:59:59.000Z

283

Cascade Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Cascade Municipal Utilities Cascade Municipal Utilities Jump to: navigation, search Name Cascade Municipal Utilities Place Iowa Utility Id 3137 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Rate Residential City/Interdept. Rate Commercial Commercial Rate 3-phase Commercial Commercial Rate Single-phase Commercial Demand Rate Industrial Residential Rates Residential Average Rates Residential: $0.1040/kWh

284

Albertville Municipal Utils Bd | Open Energy Information  

Open Energy Info (EERE)

Albertville Municipal Utils Bd Albertville Municipal Utils Bd Jump to: navigation, search Name Albertville Municipal Utils Bd Place Alabama Utility Id 241 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate - SGSC Commercial General Power Rate - SGSD Industrial General Power Rate(Schedule GSA)-Part 1 Commercial General Power Rate(Schedule GSA)-Part 2 Commercial General Power Rate(Schedule GSA)-Part 3 Commercial Manufacturing Service Rate - SMSB Industrial Manufacturing Service Rate - SMSC Industrial

285

Upgrades to Monteburns, version 3.0  

SciTech Connect

Monteburns, a Monte Carlo burnup code which has the flexibility to model time-dependent isotopic changes for a variety of nuclear systems by linking the neutron transport code MCNP/X to a production/depletion code, has undergone several performance upgrades recently that have increased the code's capabilities. Once limited to a specific number of regions, enhancements have been implemented that afford a much greater number of burn materials, such that users will be more limited by the physical constraints of their computing environment as opposed to inherent limits built into the coding of Monteburns. In conjunction with the increase in the number of burn materials, parallel execution of a production/depletion code of choice has been implemented, such that users have the option of using CINDER90, 0RIGEN2, or the newly released version of ORIGEN. Finally, the recoverable energy per fission calculation was upgraded to include capture gamma energy deposited in all specified materials as a function of irradiation time. The sum of the prompt and delayed recoverable energies from fission was obtained as before. These upgrades were first tested on a rigorous 1/8 core model of a Pressurized Water Reactor with fresh, once- and twice-burned fuel. We can now model several orders of magnitude more materials using Monte Carlo techniques, which is a significant advance in the reactor modeling world. (authors)

Galloway, J. D.; Trellue, H. R. [Los Alamos National Laboratory, 30 Bikini Atoll Rd., Los Alamos, NM 87545-0001 (United States)

2012-07-01T23:59:59.000Z

286

Waupun Utilities | Open Energy Information  

Open Energy Info (EERE)

Waupun Utilities Waupun Utilities Jump to: navigation, search Name Waupun Utilities Place Wisconsin Utility Id 20213 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Single Phase Commercial Commercial Three Phase Commercial Renewable Energy Residential Residential Small Power Industrial Average Rates Residential: $0.1060/kWh Commercial: $0.0968/kWh Industrial: $0.0770/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

287

GeOx/Reduced Graphene Oxide Composite as an Anode for Li-ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance  

SciTech Connect

A self-assembled GeOx/reduced graphene oxide (GeOx/RGO) composite, where GeOx nanoparticles were grown directly on reduced graphene oxide sheets, was synthesized via a facile one-step reduction approach and studied by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy loss spectroscopy elemental mapping, and other techniques. Electrochemical evaluation indicates that incorporation of reduced graphene oxide enhances both the rate capability and reversible capacity of GeOx, with the latter being due to the RGO enabling reversible utilization of Li2O. The composite delivers a high reversible capacity of 1600 mAhg-1 at a current density of 100 mAg-1, and still maintains a capacity of 410 mAhg-1 at a high current density of 20 Ag-1. Owing to the flexible reduced graphene oxide sheets enwrapping the GeOx particles, the cycling stability of the composite was also improved significantly. To further demonstrate its feasibility in practical applications, the synthesized GeOx/RGO composite anode was successfully paired with a high voltage LiNi0.5Mn1.5O4 cathode to form a full cell, which showed good cycling and rate performance.

Lv, Dongping; Gordin, Mikhail; Yi, Ran; Xu, Terrence (Tianren); Song, Jiangxuan; Jiang, Yingbing; Choi, Daiwon; Wang, Donghai

2014-09-01T23:59:59.000Z

288

Chapter 11 - Hydrothermal Upgradation of Algae into Value-added Hydrocarbons  

Science Journals Connector (OSTI)

Abstract Energy security, increasing oil prices, fossil resource depletion, and climate change are some of the greatest challenges faced by mankind at present. Third-generation biofuel feedstock and micro-and macroalgae have many advantages over the first and second generations of biofuels. In addition, defatted algae can also be used as a feedstock for production of hydrocarbons. Thermochemical methods are more efficient than any other routes for conversion of algae. Among thermochemical methods, hydrothermal upgradation is the most promising because it can process feedstock such as algae with very high moisture content. Various reactors, catalysts, and operating parameters have been tested to valorize algae by liquefaction and gasification, and promising results have been obtained. Breakthroughs in reactors and/or catalysts for hydrothermal upgradation, proper utilization of the side products obtained, and integration with various other methods to extract high-value hydrocarbons/products from algae would help make algal biorefinery economical and sustainable.

Rawel Singh; Thallada Bhaskar; Bhavya Balagurumurthy

2014-01-01T23:59:59.000Z

289

Design of generic coal conversion facilities: Process release---Refining and upgrading  

SciTech Connect

The refinery and upgrade process development unit (PDU) is designed to upgrade liquid hydrocarbon products from the direct and indirect liquefaction PDU's to transportation fuels. The refinery will comprise of the following reactor systems: (a) Hydrotreating (b) Hydrocracking (c) Reforming. The three reactor systems will share common feed preparation, product separation and fractionation sections. The refinery is being designed to operate independently of the other PDU's. The use of common feed and product handling systems will permit operation of one process reactor system at a time in the refinery. In addition, the hydrotreater and hydrocracker will be operable in series. The process is designed to utilize intermediate storage and maximize the use of equipment.

Not Available

1991-09-01T23:59:59.000Z

290

Design of generic coal conversion facilities: Process release---Refining and upgrading  

SciTech Connect

The refinery and upgrade process development unit (PDU) is designed to upgrade liquid hydrocarbon products from the direct and indirect liquefaction PDU`s to transportation fuels. The refinery will comprise of the following reactor systems: (a) Hydrotreating (b) Hydrocracking (c) Reforming. The three reactor systems will share common feed preparation, product separation and fractionation sections. The refinery is being designed to operate independently of the other PDU`s. The use of common feed and product handling systems will permit operation of one process reactor system at a time in the refinery. In addition, the hydrotreater and hydrocracker will be operable in series. The process is designed to utilize intermediate storage and maximize the use of equipment.

Not Available

1991-09-01T23:59:59.000Z

291

Shakopee Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Shakopee Public Utilities Comm Shakopee Public Utilities Comm Jump to: navigation, search Name Shakopee Public Utilities Comm Place Minnesota Website www.ci.shakopee.mn.us/ind Utility Id 16971 Utility Location Yes Ownership M NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial service rate Commercial Large general service rate Industrial Large industrial service rate Industrial Residential service rate Residential Residential service rate - senior citizens Residential Average Rates Residential: $0.1080/kWh Commercial: $0.0946/kWh Industrial: $0.0805/kWh

292

Tipton Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Tipton Municipal Electric Util Tipton Municipal Electric Util Jump to: navigation, search Name Tipton Municipal Electric Util Place Indiana Utility Id 18942 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Electric Service Residential Rate B- Commercial Electric Service Commercial Rate C- General and Industrial Power Service, Single Phase Industrial Rate C- General and Industrial Power Service, Three Phase Industrial Rate CG- Cogeneration Commercial Rate D- Primary Power and Lighting Service

293

Winner Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Winner Municipal Utility Winner Municipal Utility Jump to: navigation, search Name Winner Municipal Utility Place South Dakota Utility Id 20823 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Rate Commercial Mutiple Dwelling Rate Residential Residential Rate Residential Security Lighting Rate Lighting Small Commercial Rate Commercial Average Rates Residential: $0.0929/kWh Commercial: $0.0845/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

294

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technology Improves Upgrading Process for Unconventional Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology.

295

County Aims to Save with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Aims to Save with Upgrades County Aims to Save with Upgrades County Aims to Save with Upgrades August 5, 2010 - 6:50pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Fulton County, Georgia is an example of how large-scale energy upgrades can save local governments millions of dollars and develop a new green workforce. A retrofit program, funded by an $814,300 Energy Efficiency and Conservation Block Grant (EECBG) through the American Recovery and Reinvestment Act, was the topic of a recent video. Under the program, more than a dozen county facilities are being upgraded with equipment such as occupancy sensors, digital thermostats and LED exit signs. County workers will also be trained on how to conduct the upgrades and keep buildings energy efficient.

296

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Improves Upgrading Process for Unconventional Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil

297

Energy Efficiency Upgrades: Benefiting Homeowners and the Environment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Upgrades: Benefiting Homeowners and the Upgrades: Benefiting Homeowners and the Environment Energy Efficiency Upgrades: Benefiting Homeowners and the Environment May 10, 2013 - 4:37pm Addthis Energy efficient upgrades helped Margie Garmey save money while reducing her impact on the planet. | Photo courtesy of Margie Garmey. Energy efficient upgrades helped Margie Garmey save money while reducing her impact on the planet. | Photo courtesy of Margie Garmey. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Looking for ways to save energy? Learn how to do a DIY home energy audit to help you identify and prioritize some energy efficiency upgrades. Check out Energy Saver for tips and advice on ways to save energy and money. When Margie Garmey and her partner bought their newly constructed two-story

298

County Aims to Save with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aims to Save with Upgrades Aims to Save with Upgrades County Aims to Save with Upgrades August 5, 2010 - 6:50pm Addthis Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Fulton County, Georgia is an example of how large-scale energy upgrades can save local governments millions of dollars and develop a new green workforce. A retrofit program, funded by an $814,300 Energy Efficiency and Conservation Block Grant (EECBG) through the American Recovery and Reinvestment Act, was the topic of a recent video. Under the program, more than a dozen county facilities are being upgraded with equipment such as occupancy sensors, digital thermostats and LED exit signs. County workers will also be trained on how to conduct the upgrades and keep buildings energy efficient.

299

Methods and apparatuses for preparing upgraded pyrolysis oil  

DOE Patents (OSTI)

Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

2013-10-01T23:59:59.000Z

300

electric rates | OpenEI  

Open Energy Info (EERE)

electric rates electric rates Dataset Summary Description This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011. Source NREL and Ventyx Date Released February 24th, 2012 (2 years ago) Date Updated Unknown Keywords electric rates rates US utilities Data text/csv icon IOU rates by zipcode (csv, 1.7 MiB) text/csv icon Non-IOU rates by zipcode (csv, 2.1 MiB)

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Employee-Focused Structure Helps Produce Upgrades for Contractor...  

Energy Savers (EERE)

Progressive Energy Solutions around three pillars: employee ownership; development of energy efficiency best practices; and superior energy upgrade work. "We all have a real...

302

Office of Energy Policy and Systems Analysis Site Upgrade  

Energy.gov (U.S. Department of Energy (DOE))

Office of Energy Policy and Systems Analysis site is currently being upgraded to better serve on audience. Please check back shortly.

303

EECBG Success Story: County Partners with Siemens on Energy Upgrades...  

Office of Environmental Management (EM)

Block Grant (EECBG) to develop projects including a solar photovoltaic energy system, LED lighting at municipal buildings, boiler upgrades, energy efficiency retrofits at the...

304

Conversion Technologies for Advanced Biofuels ? Bio-Oil Upgrading  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of bio-oils. Focus on process development activities and underlying science for biofuels production. Bio-oil Upgrading - Presenter Information Energy Efficiency & Renewable...

305

THREE VIRGINIA PROGRAMS OVERCOME BARRIERS TO UPGRADES | Department...  

Energy Savers (EERE)

upgrades. RREA used a home energy makeover contest to educate homeowners and drive demand. RREA also engaged faith-based institutions and neighborhood associations in its...

306

New Science on the Horizon as Upgraded Particle Accelerator Meets...  

Office of Science (SC) Website

New Science on the Horizon as Upgraded Particle Accelerator Meets Commissioning Milestones Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP...

307

Jefferson Lab's upgraded Free-Electron Laser produces first ligh...  

NLE Websites -- All DOE Office Websites (Extended Search)

upgraded Free-Electron Laser produces first light June 18, 2003 Researchers at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility have produced first...

308

Upgrading of Pitch Produced by Mild Gasification of Subbituminous Cal  

Science Journals Connector (OSTI)

Upgrading of Pitch Produced by Mild Gasification of Subbituminous Cal ... Structural Characterization of Coal Tar Pitches Obtained by Heat Treatment under Different Conditions ...

Robert L. McCormick; Mahesh C. Jha

1994-03-01T23:59:59.000Z

309

EA-1190: Wastewater Treatment Capability Upgrade, Amarillo, Texas  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed upgrade of the U.S. Department of Energy Pantex Plant Wastewater Treatment Plant in Amarillo, Texas.

310

PHOENIX ENERGIZES LIGHT RAIL CORRIDOR WITH UPGRADES | Department...  

Energy Savers (EERE)

duct sealing; heating, ventilation, and air conditioning (HVAC) upgrades; sunscreens; and solar water heaters. Energize Phoenix eventually expanded its service area beyond the...

311

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study 11: Commercial Kitchen Equipment (Brochure), Federal Energy...

312

Ribbon cutting marks chemistry laboratory upgrades at Northern...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ribbon cutting marks chemistry laboratory upgrades at Northern New Mexico College Community Connections: Your link to news and opportunities from Los Alamos National Laboratory...

313

Plains & Eastern Clean Line Project Proposal for New or Upgraded...  

Office of Environmental Management (EM)

Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Plains & Eastern Clean Line Project...

314

Utilities must do more communicating  

SciTech Connect

The dramatic changes within the electric-utility industry over the past decade require them to do a greater and more effective job of communicating with their customers. When the revenues and advertising burgets for investor-owned electric utilities over a six-year period are compared with the revenues and ad dollars of other large industries and selected companies, the discrepancy is apparent. The ad costs for just one brand of cigarette are three-fourths of all utility ad spending. The utilities need to use advertising to explain new service programs and rate strategies to the public. 3 figures.

Uhler, R.G.

1981-01-01T23:59:59.000Z

315

The value of steam turbine upgrades  

SciTech Connect

Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

Potter, K.; Olear, D.; [General Physics Corp. (United States)

2005-11-01T23:59:59.000Z

316

Syngas Upgrading to Hydrocarbon Fuels Technology Pathway  

Energy.gov (U.S. Department of Energy (DOE))

This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

317

ATLAS Tile Calorimeter Electronics and Future Upgrade  

E-Print Network (OSTI)

The Tile Calorimeter (TileCal) of the ATLAS experiment is the hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. An overview of the on-detector and off-detector TileCal electronics used for ATLAS data taking is given. Upgrade plans for TileCal electronics for the High Luminosity LHC programme in 2024 are discussed, together with R&D activities at different laboratories that target different parts of the TileCal electronics. In particular, a demonstrator prototype for TileCal electronics to be installed during the long shutdown in 2014 is described.

Usai, G; The ATLAS collaboration

2014-01-01T23:59:59.000Z

318

MCNPX graphics and arithmetic tally upgrades  

SciTech Connect

The MCNPX MCPLOT package is the tool used to plot tallies and cross-sections. We report on an assortment of upgrades to MCPLOT that are intended to improve the appearance of two-dimensional tally and cross-section plots. We have also expanded the content and versatility of the MCPLOT 'help' command. Finally, we describe the initial phase of capability implementation to post-process tally data using arithmetic operations. These improvements will enable users to better display and manipulate simulation results.

Durkee, Joe W [Los Alamos National Laboratory; James, Michael R [Los Alamos National Laboratory; Waters, Laurie S [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

319

Sharyland Utilities LP | Open Energy Information  

Open Energy Info (EERE)

Sharyland Utilities LP Sharyland Utilities LP Jump to: navigation, search Name Sharyland Utilities LP Place Texas Utility Id 17008 Utility Location Yes Ownership I NERC ERCOT Yes NERC SPP Yes ISO Ercot Yes RTO SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial (Rate Codes 550, 552, and 559) Commercial Competitive Service Rider Commercial Cotton Gin (Rate Codes 671 and 672) Commercial General Service Bundled Service (Rate Codes 110, 111, 112, 113, 114, and 115) Commercial Irrigation (Rate Code 440) Commercial Large Power Primary (Rate Codes 660 and 668) Commercial

320

Trenton Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Trenton Municipal Utilities Trenton Municipal Utilities Jump to: navigation, search Name Trenton Municipal Utilities Place Missouri Utility Id 19150 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church Rate Commercial Commercial All Electric Rate Commercial Commercial General Electric Rate Commercial Commercial Power Rate Commercial Grundy Electric Rate for City Line Usage Commercial

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Stillwater Utilities Authority | Open Energy Information  

Open Energy Info (EERE)

Stillwater Utilities Authority Stillwater Utilities Authority Jump to: navigation, search Name Stillwater Utilities Authority Place Oklahoma Utility Id 18125 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ELECTRIC RATE BLOCK BILLING SERVICE Residential ELECTRIC RATE ENERGY EFFICIENT RESIDENTIAL SERVICES Residential ELECTRIC RATE GENERAL SERVICE Commercial ELECTRIC RATE GROUND SOURCE HEAT PUMP RATE Commercial

322

Modeling the Water Scrubbing Process and Energy Requirements for CO2 Capture to Upgrade Biogas to Biomethane  

Science Journals Connector (OSTI)

Water scrubbing is the most widely used technology for removing CO2 from biogas and landfill gas. This work developed a rate-based mass transfer model of the CO2water system for upgrading biogas in a packed bed absorption column. The simulated results ...

William J. Nock; Mark Walker; Rimika Kapoor; Sonia Heaven

2014-07-10T23:59:59.000Z

323

Slinger Utilities | Open Energy Information  

Open Energy Info (EERE)

Slinger Utilities Slinger Utilities Jump to: navigation, search Name Slinger Utilities Place Wisconsin Utility Id 17324 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Single-Phase- Time-of-Day Commercial General Service- Three-Phase Commercial General Service- Three-Phase- Time-of-Day Commercial Industrial Power- Time-of-Day Industrial Large Power- Time-of-Day Commercial Ornamental Street Lighting- 150W HPS Lighting Overhead Street Lighting- 150W HPS Lighting

324

Decatur Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Decatur Utilities Place Alabama Utility Id 4958 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial - BILL CODE 50 Commercial Commercial - Bill Code 40 Commercial Residential - Bill Code 22 Residential Security Light 100 W HPS (No Pole) Lighting Security Light 100 W HPS (With Pole) Lighting Security Light 250 W HPS (No Pole) Lighting Security Light 250 W HPS (With Pole) Lighting

325

Dalton Utilities | Open Energy Information  

Open Energy Info (EERE)

Dalton Utilities Dalton Utilities Jump to: navigation, search Name Dalton Utilities Place Georgia Utility Id 4744 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 100 - Watt Sodium Vapor Lighting 1000 - Watt Metal Halide Directional Type Lighting 150 Watt Mercury Vapor Underground Service Lighting 150 Watt Sodium Vapor Underground Service Lighting 175 - Watt Mercury Vapor Lighting 175 - Watt Sodium Vapor Lighting

326

Maryville Utilities | Open Energy Information  

Open Energy Info (EERE)

Maryville Utilities Maryville Utilities Jump to: navigation, search Name Maryville Utilities Place Tennessee Utility Id 11789 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Schedule GSA-1 Commercial Commercial- Schedule GSA-2 Commercial Commercial- Schedule GSA-3 Commercial Outdoor Light- 100W HP Sodium Security Light Lighting Outdoor Light- 175W Mercury Vapor Lighting Outdoor Light- 250W HP Sodium Flood Light Lighting Outdoor Light- 250W HP Sodium Security Light Lighting Outdoor Light- 400W Mercury Vapor Lighting

327

Oconomowoc Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Oconomowoc Utilities Place Wisconsin Utility Id 13963 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership

328

Sheffield Utilities | Open Energy Information  

Open Energy Info (EERE)

Utilities Utilities Jump to: navigation, search Name Sheffield Utilities Place Alabama Utility Id 17033 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Security Light 100 W HPS Openbottom Lighting Security Light 150 W HPS Cobrahead Lighting Security Light 150 W HPS Decorative Light Lighting Security Light 1500 W MH Floodlight Lighting Security Light 175 W MV Openbottom Lighting Security Light 250 W HPS Cobrahead Lighting Security Light 250 W HPS Decorative Light Lighting Security Light 250 W HPS Floodlight Lighting

329

OpenEI - electric rates  

Open Energy Info (EERE)

U.S. Electric Utility U.S. Electric Utility Companies and Rates: Look-up by Zipcode (Feb 2011) http://en.openei.org/datasets/node/899 This dataset, compiled by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities. Note: the file includes average rates for each utility, but not the detailed rate structure data found in the database available via the zip-code look-up feature on the OpenEI Utilities page (Utilities" title="http://en.openei.org/wiki/Gateway:Utilities">http://en.openei.org/wiki/Gateway:Utilities). The data was released by NREL/Ventyx in February 2011.

330

ATLAS Upgrade Instrumentation in the US  

E-Print Network (OSTI)

Planned upgrades of the LHC over the next decade should allow the machine to operate at a center of mass energy of 14 TeV with instantaneous luminosities in the range 5--7e34 cm^-2 s^-1. With these parameters, ATLAS could collect 3,000 fb^-1 of data in approximately 10 years. However, the conditions under which this data would be acquired are much harsher than those currently encountered at the LHC. For example, the number of proton-proton interactions per bunch crossing will rise from the level of 20--30 per 50 ns crossing observed in 2012 to 140--200 every 25 ns. In order to deepen our understanding of the newly discovered Higgs boson and to extend our searches for physics beyond that new particle, the ATLAS detector, trigger, and readout will have to undergo significant upgrades. In this whitepaper we describe R&D necessary for ATLAS to continue to run effectively at the highest luminosities foreseen from the LHC. Emphasis is placed on those R&D efforts in which US institutions are playing a leading role.

Gustaaf Brooijmans; Hal Evans; Abe Seiden

2013-07-22T23:59:59.000Z

331

ATLAS Upgrade Instrumentation in the US  

E-Print Network (OSTI)

Planned upgrades of the LHC over the next decade should allow the machine to operate at a center of mass energy of 14 TeV with instantaneous luminosities in the range 5--7e34 cm^-2 s^-1. With these parameters, ATLAS could collect 3,000 fb^-1 of data in approximately 10 years. However, the conditions under which this data would be acquired are much harsher than those currently encountered at the LHC. For example, the number of proton-proton interactions per bunch crossing will rise from the level of 20--30 per 50 ns crossing observed in 2012 to 140--200 every 25 ns. In order to deepen our understanding of the newly discovered Higgs boson and to extend our searches for physics beyond that new particle, the ATLAS detector, trigger, and readout will have to undergo significant upgrades. In this whitepaper we describe R&D necessary for ATLAS to continue to run effectively at the highest luminosities foreseen from the LHC. Emphasis is placed on those R&D efforts in which US institutions are playing a leadin...

Brooijmans, Gustaaf; Seiden, Abe

2013-01-01T23:59:59.000Z

332

CEBAF Upgrade: Cryomodule Performance And Lessons Learned  

SciTech Connect

The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. This increase in beam energy will be due in large part to the addition of ten C100 cryomodules plus associated new RF in the CEBAF linacs. The C100 cryomodules are designed to deliver 100 MeV per installed cryomodule. Each C100 cryomodule is built around a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100MV per cryomodule is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. Cryomodule production started in December 2010. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to complete commissioning by September 2013. Performance during Commissioning has ranged from 104 MV to 118 MV. In May, 2012 a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs.

Drury, Michael A.; Davis, G. Kirk; Hogan, John P.; Hovater, J. Curt; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joe; Reece, Charles E.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

2014-02-01T23:59:59.000Z

333

The NIR Upgrade to the SALT Robert Stobie Spectrograph  

E-Print Network (OSTI)

The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the visible arm. The RSS/NIR is a low to medium resolution spectrograph with broadband imaging, spectropolarimetric, and Fabry-Perot imaging capabilities. The visible and NIR arms can be used simultaneously to extend spectral coverage from approximately 3200 A to 1.6 um. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera is designed around a 2048x2048 HAWAII-2RG detector housed in a cryogenic dewar. The Epps optical design of the camera consists of 6 spherical elements, providing sub-pixel rms image sizes of 7.5 +/- 1.0 um over all wavelengths and field angles. The exact long wavelength cutoff is yet to be determined in a detailed thermal analysis and will depend on the semi-warm instrument cooling scheme. Initial estimates place instrument limiting magnitudes at J = 23.4 and H(1.4-1.6 um) = 21.6 for S/N = 3 in a 1 hour exposure well below the sky noise.

Andrew I. Sheinis; Marsha J. Wolf; Matthew A. Bershady; David A. H. Buckley; Kenneth H. Nordsieck; Ted B. Williams

2006-06-05T23:59:59.000Z

334

Public Utilities (Florida) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities (Florida) Utilities (Florida) Public Utilities (Florida) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Florida Program Type Generating Facility Rate-Making Provider Florida Public Service Commission Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the state's support for incorporating cogenerators and small power producers into the grid, and directs the Public Service Commission to establish regulations and

335

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway  

Energy.gov (U.S. Department of Energy (DOE))

This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

336

Secure upgrade of hardware security modules in bank networks  

Science Journals Connector (OSTI)

We study the secure upgrade of critical components in wide networked systems, focussing on the case study of PIN processing Hardware Security Modules (HSMs). These tamper-resistant devices, used by banks to securely transmit and verify the PIN typed ... Keywords: PIN processing, hardware security modules, security APIs, upgrade strategies

Riccardo Focardi; Flaminia L. Luccio

2010-03-01T23:59:59.000Z

337

Recent ASDEX Upgrade Research in Support of ITER and DEMO  

E-Print Network (OSTI)

Energy Conference, OV2/2, St. Petersburg, Russia, 13.10.2014 · ASDEX Upgrade: machine and programme allowed (?) Virtually no disruptions #12;ASDEX Upgrade has a powerful H&CD system Neutral Beam Injection;Stagnation of core density build-up due to fuelling limit (source shifts to SOL) High SOL density leads

338

Health and Safety Plan for NSTX Upgrade Project Tasks  

E-Print Network (OSTI)

Health and Safety Plan for NSTX Upgrade Project Tasks in the NSTX Test Cell PRINCETON PLASMA....~_____...L....,L....q..l:::::.......:.J Larry Dudek, NSTX Center Stack Manager Reviewed by: I( Jer evine, Environment, Safety, Health and S This document describes the structure and implementation of the Health and Safety Plan for the NSTX Upgrade

Princeton Plasma Physics Laboratory

339

Health and Safety Plan for NSTX Upgrade Project Tasks  

E-Print Network (OSTI)

Draft 0 6/17/11 1 Health and Safety Plan for NSTX Upgrade Project Tasks in the NSTX Test Cell: _____________________________________________________________ Jerry Levine, Environment, Safety, Health and Security Head Reviewed by describes the structure and implementation of the Health and Safety Plan for the NSTX Upgrade Project work

Princeton Plasma Physics Laboratory

340

Properties of Upgraded Shengli Lignite and Its Behavior for Gasification  

Science Journals Connector (OSTI)

Low-rank coals (LRCs, i.e., brown coal and lignite) have an estimated proportion of 45% of the worlds coal reserves and constitute a significant resource for both energy and chemical feedstocks. ... (10)Figure 15 shows the calculating results of reactivity parameters (Rmax, Rave, and R) for SL lignite and different upgraded lignites obtained by isothermal upgrading. ...

Xianjun Yang; Cheng Zhang; Peng Tan; Tao Yang; Qingyan Fang; Gang Chen

2013-10-29T23:59:59.000Z

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

LHC accelerator R&D and upgrade scenarios  

Science Journals Connector (OSTI)

I report the results of a CERN task force set up to investigate a possible staged upgrade of the LHC and of its injectors, with a view...34 cm2 s1 to 1035 cm2 s1. Scenarios for an LHC energy upgrade by nearly...

F. Ruggiero

2004-07-01T23:59:59.000Z

342

Federal Utility Partnership Working Group Utility Partners  

Energy.gov (U.S. Department of Energy (DOE))

Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

343

Delano Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Delano Municipal Utilities Place Minnesota Utility Id 5015 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commerical Rate Commercial Industrial Rate Industrial Residential Rate Residential Average Rates Residential: $0.1060/kWh Commercial: $0.0995/kWh Industrial: $0.0854/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

344

Kenyon Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Kenyon Municipal Utilities Kenyon Municipal Utilities Jump to: navigation, search Name Kenyon Municipal Utilities Place Minnesota Utility Id 10179 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Rate Commercial Large Commercial/Demand Service Rate Commercial Residential Service Rate Residential Security Lights Lighting Street Lights Lighting Average Rates Residential: $0.1200/kWh Commercial: $0.1100/kWh

345

Henderson City Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Henderson City Utility Comm Henderson City Utility Comm Jump to: navigation, search Name Henderson City Utility Comm Place Kentucky Utility Id 8449 Utility Location Yes Ownership M NERC Location serc NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Demand Rate Schedule Schedule D Industrial General Service Rate Schedule Schedule GS-Single Phase- Commercial Commercial General Service Rate Schedule Schedule GS-Single Phase- Industrial Industrial General Service Rate Schedule Schedule GS-Three Phase- Commercial

346

Easley Combined Utility System | Open Energy Information  

Open Energy Info (EERE)

Easley Combined Utility System Easley Combined Utility System Jump to: navigation, search Name Easley Combined Utility System Place South Carolina Utility Id 6709 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church electric service rate (Inside city limits) Commercial Church electric service rate (Outside city limits) Commercial Residential service rate (Inside city limits) Residential Residential service rate (Outside city limits) Residential

347

REPOWERING BAINBRIDGE AND BREMERTON WITH UPGRADES  

Energy.gov (U.S. Department of Energy (DOE))

Faced with a utility system capacity challenge that would have required a new substation and additional power lines across their community, the environmentally conscious residents of Bainbridge...

348

features Utility Generator  

E-Print Network (OSTI)

#12;#12;#12;#12;features function utility Training Pool Utility Generator Per-frame function content utility classes utility classes utility Tree Decision Generator Module Utility Clustering Adaptive Content Classification Loop features content VO selection & Utility Selector content features Real

Chang, Shih-Fu

349

Unique Solar Thermal Laboratory Gets an Upgrade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade September 10, 2010 - 2:54pm Addthis This “power tower” is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories This "power tower" is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories Lorelei Laird Writer, Energy Empowers The National Solar Thermal Test Facility at Sandia National Laboratories is unique - and in demand. The Facility has been instrumental in NASA tests, national defense programs and concentrated solar technology development.

350

EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Idaho National Engineering Laboratory Sewer System Upgrade 7: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho EA-0907: Idaho National Engineering Laboratory Sewer System Upgrade Project, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of a proposal to upgrade the Sewer System at the U.S. Department of Energy's Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The proposed action would include activities conducted at the Central Facilities Area, Test Reactor Area, and the Containment Test Facility at the Test Area North at INEL. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 1, 1994 EA-0907: Finding of No Significant Impact Idaho National Engineering Laboratory Sewer System Upgrade Project

351

Energy Efficiency Upgrades Help Retired Military Officers Save Money |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Upgrades Help Retired Military Officers Save Energy Efficiency Upgrades Help Retired Military Officers Save Money Energy Efficiency Upgrades Help Retired Military Officers Save Money May 7, 2013 - 12:50pm Addthis A retirement community in San Antonio worked with a local Better Buildings Neighborhood Program partner, CPS Energy Saver, to make energy efficiency upgrades to 189 single-family cottages. | Photo courtesy of CPS Energy. A retirement community in San Antonio worked with a local Better Buildings Neighborhood Program partner, CPS Energy Saver, to make energy efficiency upgrades to 189 single-family cottages. | Photo courtesy of CPS Energy. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs What are the key facts? A retirement community in San Antonio worked with a local Better

352

Energy Efficiency Upgrades Help Retired Military Officers Save Money |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Upgrades Help Retired Military Officers Save Efficiency Upgrades Help Retired Military Officers Save Money Energy Efficiency Upgrades Help Retired Military Officers Save Money May 7, 2013 - 12:50pm Addthis A retirement community in San Antonio worked with a local Better Buildings Neighborhood Program partner, CPS Energy Saver, to make energy efficiency upgrades to 189 single-family cottages. | Photo courtesy of CPS Energy. A retirement community in San Antonio worked with a local Better Buildings Neighborhood Program partner, CPS Energy Saver, to make energy efficiency upgrades to 189 single-family cottages. | Photo courtesy of CPS Energy. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs What are the key facts? A retirement community in San Antonio worked with a local Better

353

Energy Efficiency Upgrades Help Build Better Neighborhoods | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Upgrades Help Build Better Neighborhoods Efficiency Upgrades Help Build Better Neighborhoods Energy Efficiency Upgrades Help Build Better Neighborhoods May 6, 2013 - 4:55pm Addthis In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. | Photo by Ed Hancock, NREL. In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. | Photo by Ed Hancock, NREL. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

354

Energy Efficiency Upgrades Help Build Better Neighborhoods | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Upgrades Help Build Better Neighborhoods Energy Efficiency Upgrades Help Build Better Neighborhoods Energy Efficiency Upgrades Help Build Better Neighborhoods May 6, 2013 - 4:55pm Addthis In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. | Photo by Ed Hancock, NREL. In neighborhoods all across the country, the Energy Department's Better Buildings Neighborhood Program is helping families and business owners make energy efficiency upgrades that are saving them money and improving the comfort of our buildings. | Photo by Ed Hancock, NREL. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs

355

Utility Sounding Board  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports, Publications, and Research Utility Toolkit Sponsored E-Source Membership Utility Potential Calculator EE Maximization Tool Conduit Utility Sounding Board Residential...

356

E-Print Network 3.0 - asdex upgrade edge Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Upgrade Team presented by Sibylle Gnter MPI fr Plasmaphysik, D-85748 Garching, Germany, EURATOM... collaborating institutes: 12;ASDEX Upgrade programme ... Source:...

357

E-Print Network 3.0 - asdex upgrade h-mode Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Upgrade Team presented by Sibylle Gnter MPI fr Plasmaphysik, D-85748 Garching, Germany, EURATOM... collaborating institutes: 12;ASDEX Upgrade programme ... Source:...

358

E-Print Network 3.0 - asdex upgrade team Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Upgrade Team presented by Sibylle Gnter MPI fr Plasmaphysik, D-85748 Garching, Germany, EURATOM... Overview of ASDEX Upgrade Results - Development of integrated operating...

359

EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmissio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Midway-Moxee Rebuild and Midway-Grandview Upgrade Transmission Line, Benton and Yakima Counties, Washington EA-1951: Midway-Moxee Rebuild and Midway-Grandview Upgrade...

360

EIA - Natural Gas Pipeline Network - Pipeline Capacity and Utilization  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline Utilization & Capacity Pipeline Utilization & Capacity About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipeline Capacity & Utilization Overview | Utilization Rates | Integration of Storage | Varying Rates of Utilization | Measures of Utilization Overview of Pipeline Utilization Natural gas pipeline companies prefer to operate their systems as close to full capacity as possible to maximize their revenues. However, the average utilization rate (flow relative to design capacity) of a natural gas pipeline system seldom reaches 100%. Factors that contribute to outages include: Scheduled or unscheduled maintenance Temporary decreases in market demand Weather-related limitations to operations

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Categorical Exclusion 4598: Security Upgrade Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Form Determination Form Proposed Action Title: Security Upgrade Project (4598) Program or Field Office~ Y·12 Site Office LocationCs) CCjty/County/State): Oak Ridge. Anderson County, Tennessee Proposed Action Description: PAGE 04 / 04 r~:·:~~s ·'-u ~'irllO:.'~~b ., .. y " ~e ··· ., ;:;;,il ,;: ; I·;;;:;;,; ;I ,' .: :~~. ,U,Illll\;: , "':ll ,l3~ . ~~~~ 1 ~; The proposed action is to add fence posts and run razor wire in various fence locations throughout the site. This project will not require excavation. This activity will disturb gravel but will not remove gravel and soil from post holes which will be placed back in the same area. Cat.eg,orieal Exc!usion(s) ,Mp!i.cd: 81.3- Routine maintenance

362

Upgrading the TFTR Transrex Power Supplies  

SciTech Connect

In order to provide improved and expanded experimental capabilities, the existing Transrex power supplies at PPPL are to be upgraded and modernized. Each of the 39 power supplies consists of two six pulse silicon controlled rectifier sections forming a twelve pulse power supply. The first modification is to split each supply into two independent six pulse supplies by replacing the existing obsolete twelve pulse firing generator with two commercially available six pulse firing generators. The second change replaces the existing control link with a faster system, with greater capacity, which will allow for independent control of all 78 power supply sections. The third change replaces the existing Computer Automated Measurement and Control (CAMAC) based fault detector with an Experimental Physics and Industrial Control System (EPICS) compatible unit, eliminating the obsolete CAMAC modules. Finally the remaining relay logic and interfaces to the "Hardwired Control System" will be replaces with a Programmable Logic Controller (PLC).

J. E. Lawson, R. Marsala, S. Ramakrishnan, X. Zhao, P. Sichta

2009-05-29T23:59:59.000Z

363

LCLS LLRF Upgrades to the SLAC Linac  

SciTech Connect

The Linac Coherent Light Source (LCLS) at SLAC will be the brightest X-ray laser in the world when it comes on line. In order to achieve the brightness a 200fS length electron bunch is passed through an undulator. To create the 200fS, 3kA bunch, a 10pS electron bunch, created from a photo cathode in an RF gun, is run off crest on the RF to set up a position to energy correlation. The bunch is then compressed by chicanes. The stability of the RF system is critical in setting up the position to energy correlation. Specifications derived from simulations require the RF system to be stable to below 200fS in several critical injector stations and the last kilometer of linac. The SLAC linac RF system is being upgraded to meet these requirements.

Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Hong, B.; Kotturi, K.; Krejcik, P.; Wu, J.; /SLAC; Byrd, J.; /LBL, Berkeley

2007-10-04T23:59:59.000Z

364

Steam turbine upgrading: low-hanging fruit  

SciTech Connect

The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

Peltier, R.

2006-04-15T23:59:59.000Z

365

Springfield Utility Board - Residential Energy Efficiency Loan Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Springfield Utility Board - Residential Energy Efficiency Loan Springfield Utility Board - Residential Energy Efficiency Loan Program Springfield Utility Board - Residential Energy Efficiency Loan Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Heat Pumps Windows, Doors, & Skylights Maximum Rebate Heat Pumps: $7,000 Weatherization: $4,000 Program Info State Oregon Program Type Utility Loan Program Rebate Amount Heat Pumps: up to $7,000 Weatherization: up to $4,000 Provider Springfield Utility Board The Springfield Utility Board offers qualifying customers a 0% loan for the purchase of qualifying energy-efficient heat pumps, insulation upgrades, duct sealing, and energy efficient windows. For the Heat Pump Loan Program, qualifying systems must have a programmable

366

Canby Utility Board | Open Energy Information  

Open Energy Info (EERE)

Canby Utility Board Canby Utility Board Place Oregon Utility Id 2955 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes ISO Other Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE Commercial GENERAL SERVICE - Primary Voltage Commercial GENERAL SERVICE THREE PHASE Commercial GENERAL SERVICE THREE PHASE - Primary Voltage Commercial LIGHTING RATE 1000W Lighting LIGHTING RATE 150W Lighting LIGHTING RATE 175W Lighting LIGHTING RATE 200W Lighting LIGHTING RATE 250W Lighting

367

Athens Utility Board | Open Energy Information  

Open Energy Info (EERE)

Athens Utility Board Athens Utility Board Place Tennessee Utility Id 947 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Power Rates - Residential Residential General Power Rate - Schedule GSA: Commercial General Power Rate - Schedule GSA: Demand 1000KW-5000KW Commercial General Power Rate - Schedule GSA: Demand 50KW-1000KW Commercial General Power Rate-Schedule GSB Industrial Outdoor Lighting(Part A) Lighting Outdoor Lighting: High Pressure Sodium 1000W Lighting Outdoor Lighting: High Pressure Sodium 100W Lighting

368

Finding Utility Companies Under a Given Utility ID | OpenEI Community  

Open Energy Info (EERE)

Finding Utility Companies Under a Given Utility ID Finding Utility Companies Under a Given Utility ID Home > Groups > Developer Jayhuggins's picture Submitted by Jayhuggins(15) Member 22 June, 2012 - 09:39 Utility+Utility Access Map Here's a quick way to find all the utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: [[Category:Utility Companies]][[EiaUtilityId::15248]] substituting your utility id of interest for 15248, and click "Find results". Groups: Developer Login to post comments Jayhuggins's blog Latest blog posts Rmckeel The utility rate database version 1 API is now deprecated Posted: 6 Sep 2013 - 14:00 by Rmckeel Jweers New Robust References! Posted: 7 Aug 2013 - 18:23 by Jweers 1 comment(s) 1 of 10 ›› Groups Menu You must login in order to post into this group.

369

Utilization Analysis Page 1 UTILIZATION ANALYSIS  

E-Print Network (OSTI)

Utilization Analysis Page 1 UTILIZATION ANALYSIS Section 46a-68-40 and HIRING/PROMOTION GOALS utilized in the Health Center's workforce, the numbers of protected classes in the workforce must conducted for each occupational category and position classification. The Utilization Analysis was performed

Oliver, Douglas L.

370

utility functions scaling profiles utility-fair  

E-Print Network (OSTI)

bandwidth utility functions scaling profiles utility-fair I. INTRODUCTION The emerging MPEG-4 video. This can result in a significant increase in the utilization of network capacity [1]. These techniques. Bandwidth utility functions [9] can be used to characterize an application's capability to adapt over

Chang, Shih-Fu

371

Utility Energy Service Contracts - Lessons Learned  

NLE Websites -- All DOE Office Websites (Extended Search)

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

372

Inventories and capacity utilization in general equilibrium  

E-Print Network (OSTI)

.-Util. Speci cation. : : : : : : : : 106 VI Correlation Matrix: Sep.-Util. Speci cation. : : : : : : : : : : : : : : 106 VII Rate of Capital Utilization: Coe cients of Autocorrelation. : : : : : 106 VIII Relative Standard Deviations: CEE Speci cation.... : : : : : : : : : : : 107 IX Correlation Matrix: CEE Speci cation. : : : : : : : : : : : : : : : : : 107 X Relative Standard Deviations: General Vs Benchmark. : : : : : : : : 108 XI Correlation Matrix: General Speci cation. : : : : : : : : : : : : : : : 108 ix LIST...

Trupkin, Danilo Rogelio

2009-05-15T23:59:59.000Z

373

Utility Energy Service Contracts - Lessons Learned  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Service Contracts-Lessons Learned Service Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts ..........................................................................................................................3 Understanding Financing Factors ...........................................................................................................................................3

374

Utility Energy Savings Contract Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Energy Savings Utility Energy Savings Contract Project Redstone Arsenal, Alabama Presented by Doug Dixon, Pacific Northwest National Laboratory For Mark D. Smith, PE, CEM, CEA Energy Manager, Redstone Arsenal Federal Utility Partnership Working Group - Fall 2010 UNCLASSIFIED UNCLASSIFIED 0 50 100 150 200 250 Klbs FY09 Total Hourly Steam FY09 Total Threshold $22.76 / MMBTU (Minimum take-or-pay base rate) (Consumer Price Index) Average FY09 Natural Gas Price $5.52 / MMBTU $16.91 / MMBTU (High capacity rate) (Petroleum Price Index) Hours UNCLASSIFIED Resolution * Manage the steam load to the minimum take-or- pay thresholds under the existing contract.  Prune the distribution system by eliminating long runs with low density and high thermal losses.  Ensure summer steam loads are utilized.

375

Utility Monitor September 2010  

E-Print Network (OSTI)

Utility Monitor September 2010 Why monitor utility syntax? Enforce and Maintain Company-Wide DB2 Utility Standards. Jennifer Nelson Product Specialist, Rocket Software © 2010 IBM Corporation © 2010............................................................................................................... iv 1 Why Monitor DB2 Utility Syntax

376

UGI Utilities, Inc | Open Energy Information  

Open Energy Info (EERE)

Utilities, Inc Utilities, Inc Jump to: navigation, search Name UGI Utilities, Inc Place Pennsylvania Utility Id 19390 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0204/kWh Industrial: $0.0373/kWh The following table contains monthly sales and revenue data for UGI Utilities, Inc (Pennsylvania).

377

Lawrenceburg Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Lawrenceburg Municipal Utils Lawrenceburg Municipal Utils Jump to: navigation, search Name Lawrenceburg Municipal Utils Place Indiana Utility Id 10798 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0749/kWh Commercial: $0.1150/kWh Industrial: $0.0597/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lawrenceburg_Municipal_Utils&oldid=410978

378

Gwitchyaa Zhee Utility Co | Open Energy Information  

Open Energy Info (EERE)

Gwitchyaa Zhee Utility Co Gwitchyaa Zhee Utility Co Jump to: navigation, search Name Gwitchyaa Zhee Utility Co Place Alaska Utility Id 7833 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.2730/kWh Commercial: $0.5010/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Gwitchyaa_Zhee_Utility_Co&oldid=410787

379

Hudson Municipal Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Electric Utility Municipal Electric Utility Jump to: navigation, search Name Hudson Municipal Electric Utility Place Iowa Utility Id 8966 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Residential All-Electric Residential School Rate Commercial Average Rates Residential: $0.0993/kWh Commercial: $0.0905/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Hudson_Municipal_Electric_Utility&oldid=410846

380

Tatitlek Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Tatitlek Electric Utility Tatitlek Electric Utility Jump to: navigation, search Name Tatitlek Electric Utility Place Alaska Utility Id 18480 Utility Location Yes Ownership M NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.5470/kWh Commercial: $0.4590/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Tatitlek_Electric_Utility&oldid=411647

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mohegan Tribal Utility Auth | Open Energy Information  

Open Energy Info (EERE)

Mohegan Tribal Utility Auth Mohegan Tribal Utility Auth Jump to: navigation, search Name Mohegan Tribal Utility Auth Place Connecticut Utility Id 49826 Utility Location Yes Ownership P NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.1090/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Mohegan_Tribal_Utility_Auth&oldid=411113" Categories:

382

Truman Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Truman Public Utilities Comm Truman Public Utilities Comm Jump to: navigation, search Name Truman Public Utilities Comm Place Minnesota Utility Id 19237 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1360/kWh Commercial: $0.1410/kWh Industrial: $0.1150/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Truman_Public_Utilities_Comm&oldid=411881"

383

NET PRED UTILITY  

Energy Science and Technology Software Center (OSTI)

002602IBMPC00 Normalized Elution Time Prediction Utility http://omics.pnl.gov/software/NETPredictionUtility.php

384

Keewatin Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Keewatin Public Utilities Keewatin Public Utilities Jump to: navigation, search Name Keewatin Public Utilities Place Minnesota Utility Id 10089 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Average Rates Residential: $0.0883/kWh Commercial: $0.0889/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Keewatin_Public_Utilities&oldid=410929" Categories: EIA Utility Companies and Aliases

385

Bristol Virginia Utilities | Open Energy Information  

Open Energy Info (EERE)

Bristol Virginia Utilities Bristol Virginia Utilities Jump to: navigation, search Name Bristol Virginia Utilities Place Virginia Utility Id 2248 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate - Schedule GSA1-(<50 kW and <15,000 kWh) Commercial General Power Rate - Schedule GSA2-(>50 kW & 15,000 kWh) Industrial General Power Rate - Schedule GSA2-(>50 kW &

386

Dublin Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dublin Municipal Electric Util Dublin Municipal Electric Util Jump to: navigation, search Name Dublin Municipal Electric Util Place Indiana Utility Id 5392 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Rate OL: Outdoor Lighting (Security Lights) Lighting Rate SL: Street Lighting, All Public Street Lighting Lighting Rate SL: Street Lighting, State Highway Stoplight Lighting Residential Residential Residential: Space Heating and/or Air Conditioning Service Residential

387

Tecumseh Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Tecumseh Utility Authority Tecumseh Utility Authority Jump to: navigation, search Name Tecumseh Utility Authority Place Oklahoma Utility Id 18524 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Bright Light Service- (Any Kind) Lighting General Commercial Service Commercial High Pressure Sodium Light Lighting Large Commercial Rate Commercial Residential Rate Residential Residential Total Electric Residential Average Rates Residential: $0.1590/kWh Commercial: $0.1460/kWh References

388

Utility Regulation (Indiana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulation (Indiana) Regulation (Indiana) Utility Regulation (Indiana) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Generating Facility Rate-Making Provider Indiana Utility Regulatory Commission The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control any equipment for the production, transmission, delivery, or furnishing of heat, light,

389

F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview  

SciTech Connect

The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

1992-07-01T23:59:59.000Z

390

Superconducting RF Lab Facility Upgrades at Los Alamos  

SciTech Connect

Research and testing of multi-cell superconducting cavities demands extensive contamination control resources to achieve high-cavity fields. Facility upgrades at Los Alamos National Laboratory (LANL) included the modernization of test equipment, expanding and modernizing cleanroom facilities, improving safety, and expanding the high-pressure rinse cleaning process equipment. Each upgrade was integrated into the facility to enable users to assemble prototype cryomodules. The scope of the upgrades, the new installed capability, and budget and schedule for certain aspects of the project are discussed in this paper.

Katonak, D.J.; Rusnak, B.

1999-03-01T23:59:59.000Z

391

Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons  

DOE Patents (OSTI)

A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

Gordon, John Howard

2014-09-09T23:59:59.000Z

392

SolidLiquidVapor Equilibrium Models for Cryogenic Biogas Upgrading  

Science Journals Connector (OSTI)

In cryogenic upgrading processes involving dry ice formation, accurate predictions of solidliquid, solidvapor, and solidliquidvapor equilibria are fundamental for a correct design of the heat exchanger surface in order to achieve the desired biomethane purity. ... Moreover, the liquefied biogas production process, particularly interesting for cryogenic upgrading processes due to the low temperature of the obtained biomethane, requires an accurate knowledge of carbon dioxide solubility in liquid methane to avoid solid deposition. ... For some applications demanding a high energy content gas, namely vehicle fuels and injection in the natural gas grid, the biogas has to be upgraded into biomethane. ...

Mauro Riva; Marco Campestrini; Joseph Toubassy; Denis Clodic; Paolo Stringari

2014-10-13T23:59:59.000Z

393

Tiered Rate Methodology  

NLE Websites -- All DOE Office Websites (Extended Search)

Rate Period limit. This 23 exception is limited for the duration of this TRM to the first ten requesting utilities that 24 BP-12-A-03 Section 4 Page 46 meet the size threshold and...

394

Rochester Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Rochester Public Utilities Rochester Public Utilities Place Minnesota Utility Id 16181 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CIVIL DEFENSE SIRENS Commercial City street lighting rate Lighting General service - time-of-use rate Commercial General service rate Commercial General service(high efficiency) Commercial Highway lighting rates Lighting

395

Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption  

SciTech Connect

The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

Anna Lee Tonkovich

2008-08-11T23:59:59.000Z

396

Micromegas chambers for the ATLAS Muon Spectrometer Upgrade  

E-Print Network (OSTI)

Micromegas (Micro MEsh Gaseous Structure) chambers have been proven along the years to be reliable fast detectors with an excellent spatial resolution. The ATLAS collaboration at LHC has chosen the micromegas technology along with the small-strip Thin Gap Chambers (sTGC) for the high luminosity upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel (NSW). It employs eight layers of micromegas detectors and eight layers of sTGC. The NSW project requires fully efficient micromegas chambers with spatial resolution down to $100\\mu m$ over a total active area of $1200 m^2$ with a rate capability up to $10 kHz/cm^2$ and operation in a moderate magnetic field up to B=0.3 T. The required tracking capability is provided by the intrinsic space resolution combined with a mechanical precision at the level of $30 \\mu m$ along the precision coordinate. Moreover together with the precise tracking capability the micromegas chambers should provide a trigger signal. An extensive R&D pr...

Ntekas, Konstantinos; The ATLAS collaboration

2014-01-01T23:59:59.000Z

397

Co-processing studied for upgrading low grade feedstocks  

SciTech Connect

In the future refiners will have to consider processing bottom-of-the-barrel feedstocks to a much greater extent. A serious decline in light oil production and light oil find rates in the Western Hemisphere and in the North Sea, along with the politically-controlled availability of Middle East petroleum supplies, indicate that there is a need for technology that will give the refiner greater flexibility in feedstock selection and processability. At the American Chemical Society's Spring Conference in New York, Lummus Crest, Inc. (LCI) presented a paper on the co-processing of petroleum feedstocks with other more plentiful and less costly fuels, one route to satisfying the refiners' needs. LCI has formulated a concept for co-processing bottom-of-the-barrel oils with coal and other solid carbonaceous feedstocks to produce high quality distillate fuels. The concept is based on a two-stage approach in which the solid carbonaceous feedstocks are converted to liquids in a thermal reaction zone without any externally-supplied catalysts followed by catalytic hydroprocessing of the thermal stage products together with petroleum in an expanded-bed hydrotreater. The unconverted solids from the thermal reactor can be removed by known solids separation techniques, such as Anti-Solvent Deashing (ASDA), prior to upgrading in the expanded-bed hydrotreater. A distillate fraction from the hydrotreater can be recycled to serve as the slurry vehicle for the solid carbonaceous feedstock.

Not Available

1986-09-01T23:59:59.000Z

398

FLOATING PRESSURE CONVERSION AND EQUIPMENT UPGRADES OF TWO 3.5KW, 20K, HELIUM REFRIGERATORS  

SciTech Connect

Two helium refrigerators, each rated for 3.5 KW at 20 K, are used at NASA's Johnson Space Center (JSC) in Building No. 32 to provide cryogenic-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. New changes to the controls of these refrigerators were recently completed. This paper describes some of the control issues that necessitated the controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle floating pressure control technology. The controls philosophy change-over to the floating pressure control technology was the first application on a helium gas refrigeration system. Previous implementations of the floating pressure technology have been on 4 K liquefaction and refrigeration systems, which have stored liquid helium volumes that have level indications used for varying the pressure levels (charge) in the system for capacity modulation. The upgrades have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e. at various loads in the vacuum chambers). The performance data of the two systems, pre and post upgrading are presented.

J. Homan, V. Ganni, A. Sidi-Yekhlef, J. Creel, R. Norton, R. Linza, G. Vargas, J. Lauterbach, J. Urbin, D. Howe

2010-04-01T23:59:59.000Z

399

Upgrade fo the CMS Hadron Outer Calorimeter with SIPMs  

SciTech Connect

The CMS Hadron Outer Calorimeter (HO) is undergoing an upgrade to replace the existing photodetectors (HPDs) with SIPMs. The chosen device is the Hamamatsu 3 x 3mm 50 {mu}m pitch MPPC. The system has been developed to be a 'drop-in' replacement of the HPDs. A complete control system of bias voltage generation, leakage current monitoring, temperature monitoring, and temperature control using solid state Peltier coolers has been developed and tested. 108 channels of the system have been installed into CMS and operated for more than 2 years. The complete system of about 2200 channels is in production and will be installed in the next LHC long shutdown scheduled for 2013. The CMS central calorimeter consists of a detector inside the solenoidal magnet, HB, and a component outside the magnet, the Outer Hadron Calorimeter, HO [1]. The HO is installed inside the magnet flux return yoke and provides for typically 3{lambda} of additional absorber to the calorimetric measurement. The outer calorimeter is composed of one or more layers of scintillator with wavelength shifting fiber readout into photodetectors. Figure 1 (a) shows the schematic layout of the calorimeters in CMS and shows the location of the HO scintillator layers. The front end electronics are placed inside the CMS detector, close to the scintillators. Figure 1(b) shows a photograph of the scintillators. Note the four wavelength shifting fibers per tile. The tile size creates a projective tower with the HB. Currently the photodetector used is the HPD but for performance and operational reasons it is desired to upgrade these with SIPMs. The CMS HCAL group has developed a drop-in replacement for the HPD using SIPMs. SIPMs are very suitable for this application because of several factors: The radiation levels are modest with a lifetime expected fluence of less than 5*10{sup 11} neutrons (E > 100 KeV) per cm{sup 2}. The energy flux into HO is small, the rate of larger energy depositions is low, and the required dynamic range is modest. The HO is in the return magnetic field of up to 2KG and the photodetector needs to operate in that environment. Finally, the available physical volume for the photodetectors is small.

Anderson, Jacob; Freeman, James; Los, Sergey; Whitmore, Juliana; /Fermilab

2011-09-14T23:59:59.000Z

400

Digital I and C system upgrade integration technique  

SciTech Connect

This work developed an integration technique for digital I and C system upgrade, the utility can replace the I and C systems step by step systematically by this method. Inst. of Nuclear Energy Research (INER) developed a digital Instrumentation and Control (I and C) replacement integration technique on the basis of requirement of the three existing nuclear power plants (NPPs), which are Chin-Shan (CS) NPP, Kuo-Sheng (KS) NPP, and Maanshan (MS) NPP, in Taiwan, and also developed the related Critical Digital Review (CDR) Procedure. The digital I and C replacement integration technique includes: (I) Establishment of Nuclear Power Plant Digital Replacement Integration Guideline, (2) Preliminary Investigation on I and C System Digitalization, (3) Evaluation on I and C System Digitalization, and (4) Establishment of I and C System Digitalization Architectures. These works can be a reference for performing I and C system digital replacement integration of the three existing NPPs of Taiwan Power Company (TPC). A CDR is the review for a critical system digital I and C replacement. The major reference of this procedure is EPRI TR- 1011710 (2005) 'Handbook for Evaluating Critical Digital Equipment and Systems' which was published by the Electric Power Research Inst. (EPRI). With this document, INER developed a TPC-specific CDR procedure. Currently, CDR becomes one of the policies for digital I and C replacement in TPC. The contents of this CDR procedure include: Scope, Responsibility, Operation Procedure, Operation Flow Chart, CDR review items. The CDR review items include the comparison of the design change, Software Verification and Validation (SVandV), Failure Mode and Effects Analysis (FMEA), Evaluation of Diversity and Defense-in-depth (D3), Evaluation of Watchdog Timer, Evaluation of Electromagnetic Compatibility (EMC), Evaluation of Grounding for System/Component, Seismic Evaluation, Witness and Inspection, Lessons Learnt from the Digital I and C Failure Events. A solid review can assure the quality of the digital I and C system replacement. (authors)

Huang, H. W. [Inst. of Nuclear Energy Research (INER), No. 1000, Wenhua Road, Chiaan Village, Longtan Township, Taoyuan County, 32546, Taiwan (China); Shih, C. [Inst. of Nuclear Engineering and Science, National Tsing Hua Univ., 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan (China); Wang, J. R. [Inst. of Nuclear Energy Research (INER), No. 1000, Wenhua Road, Chiaan Village, Longtan Township, Taoyuan County, 32546, Taiwan (China); Huang, K. C. [Inst. of Nuclear Engineering and Science, National Tsing Hua Univ., 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan (China)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades  

Energy.gov (U.S. Department of Energy (DOE))

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

402

Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions  

Energy.gov (U.S. Department of Energy (DOE))

Better Buildings: Workforce, Spotlight on Maine: Contractor Sales Training Boosts Energy Upgrade Conversions

403

Find Financing for Energy Efficiency Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Find Financing for Energy Efficiency Upgrades Find Financing for Energy Efficiency Upgrades Find Financing for Energy Efficiency Upgrades Photo of a block in lower downtown Denver that is part of Living City Block, a DOE Commercial Building Partnerships participant. Financing need not be a barrier to improving energy efficiency in your commercial building. There are federal, state, and local and tax incentives for energy efficiency upgrades, and other financial opportunities to help you meet your energy goals. The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, for example, offers financial assistance opportunities to business, industry, universities, and others for the development and demonstration of energy efficiency strategies and technologies. Other methods of financing energy efficiency improvements

404

SRS upgrades helium recovery system | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

upgrades helium recovery system | National Nuclear Security upgrades helium recovery system | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > SRS upgrades helium recovery system SRS upgrades helium recovery system Posted By Office of Public Affairs Savannah River Site (SRS) Tritium Programs recently completed a project to design, build and relocate a new system for separating and capturing

405

Federal Finance Facilities Available for Energy Efficiency Upgrades and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Finance Facilities Available for Energy Efficiency Upgrades Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment "Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment" is a resource guide that lists the various federal financing programs for which energy efficiency and clean energy qualify - meant to make it easier for state, local and tribal leaders, along with their partners in the private sector, to find capital for energy efficiency and clean energy projects. This first-edition guide is a product of a cooperative effort among seven federal agencies, including the U.S. Departments of Agriculture, Energy, Housing and Urban Development, Transportation and Treasury, along with the

406

Federal Finance Facilities Available for Energy Efficiency Upgrades and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Finance Facilities Available for Energy Efficiency Upgrades Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment "Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment" is a resource guide that lists the various federal financing programs for which energy efficiency and clean energy qualify - meant to make it easier for state, local and tribal leaders, along with their partners in the private sector, to find capital for energy efficiency and clean energy projects. This first-edition guide is a product of a cooperative effort among seven federal agencies, including the U.S. Departments of Agriculture, Energy, Housing and Urban Development, Transportation and Treasury, along with the

407

Energy Efficiency Upgrades Part of Winning Formula for Oregon School  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Upgrades Part of Winning Formula for Oregon Upgrades Part of Winning Formula for Oregon School District Energy Efficiency Upgrades Part of Winning Formula for Oregon School District August 27, 2012 - 9:45am Addthis The community of Vernonia, OR, celebrates the opening of a new energy efficient school. | Photo courtesy of April Baer, OPB. The community of Vernonia, OR, celebrates the opening of a new energy efficient school. | Photo courtesy of April Baer, OPB. Todd G. Allen Project Officer, Golden Field Office What are the key facts? Energy efficiency upgrades will reduce the Vernonia school district's energy usage by 43 percent and save taxpayers more than $62,000 a year. The school will also serve as a laboratory for forest technologies

408

EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, 37: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR EA-1937: Pacific Direct Intertie Upgrade Project, Lake, Jefferson, Crook, Deschutes, and Wasco Co, OR SUMMARY This project would replace aging equipment at BPA's Celilo converter station and to upgrade equipment on the Celilo-Sylmar 500-kilovolt (kV) transmission line from the Celilo converter station in The Dalles, Oregon to the Nevada-Oregon border. As part of the project, BPA would remove and salvage the converter terminals 1 and 2 at its Celilo converter station and install a new two-converter terminal. A 20-acre expansion of the existing substation would accommodate the new terminal equipment. About 265 miles of transmission towers on the Celilo-Sylmar 500-kV transmission line would be

409

NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC's Franklin NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability NERSC's Franklin Supercomputer Upgraded to Double Its Scientific Capability July 20, 2009 OCEAN EDDIES: This image comes from a computer simulation modeling eddies in the ocean. An interesting feature is the abundance of eddies away from the equator, which is shown in the center of the image at y=0. This research collaboration led by Paola Cessi of the Scripps Institute of Oceanography performed over 15,000 years worth of deep ocean circulation simulations with 1.6 million processor core hours on the upgraded Franklin system. The Department of Energy's (DOE) National Energy Research Scientific Computing (NERSC) Center has officially accepted a series of upgrades to its Cray XT4 supercomputer, providing the facility's 3,000 users with twice

410

Lowell, Massachusetts, Preserves Historic Home Through Energy Upgrades  

Energy.gov (U.S. Department of Energy (DOE))

Artist James MacNeil Whistler's birthplace home in Lowell, Massachusetts, was built in 1823 and now houses the Lowell Art Association. The house was in need of a series of upgrades that improved energy efficiency while catering to the specific needs of a historic home and museum. Through the BetterBuildings Lowell Energy Upgrade program, the historic house will receive upgrades that include a high-velocity, small-duct HVAC system, updated storm windows, and attic insulation. These upgrades will reduce humidity in order to preserve the artwork displayed, and catch up to modern electrical demand without sacrificing the home's historic characteristicsall while providing energy savings of more than 30%. To learn more about how the project was financed and further details on the innovative HVAC equipment, read the original post from Lowell's Office of the Mayor's blog.

411

Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading  

Energy.gov (U.S. Department of Energy (DOE))

Algal lipid upgrading is one of eight priority pathways chosen to convert biomass into hydrocarbon fuels by the Bioenergy Technologies Office. These pathways were down-selected from an initial list of 18.

412

Financing Energy Upgrades for K-12 School Districts  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 11, 2013 and dealing with how to finance energy efficiency upgrades for K-12 school districts.

413

CHICAGO HOUSE PARTIES SHOW WAYS TO UPGRADE | Department of Energy  

Energy Savers (EERE)

created Energy Impact Illinois (EI2) to promote home energy upgrades in single-family homes, multifamily housing units, and commercial buildings to help the region meet its 2008...

414

EECBG Success Story: Michigan County's Energy Upgrades Back on...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the 'middle of the mitten,' is using over 300,000 in Recovery Act funds to perform ene Michigan County's Energy Upgrades Back on Track EECBG Success Story: The Jury's In:...

415

Office of Science Approves Critical Decision 1 for APS Upgrade...  

NLE Websites -- All DOE Office Websites (Extended Search)

2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Office of Science Approves Critical Decision 1 for APS Upgrade Project SEPTEMBER 15, 2011...

416

Financing; A Cost Effective Alternative When Upgrading Energy Efficient Systems  

E-Print Network (OSTI)

in order to effectively compete in the marketplace. One obvious method of reducing costs and improving productivity is to upgrade old, antiquated equipment such as lighting to more modern energy efficient systems. Most projects provide a return...

Ertle, J. M.

417

Energy Upgrade California Drives Demand From Behind the Wheel  

Energy.gov (U.S. Department of Energy (DOE))

With a goal of "energy efficiency or bust," theCalifornia Center for Sustainable Energy (CCSE) recently completed a statewide tour of its ongoing Energy Upgrade California Roadshow. The mobile...

418

Capturing Energy Efficiency Upgrades in the Real Estate Transaction  

Energy.gov (U.S. Department of Energy (DOE))

"Capturing Energy Efficiency Upgrades in the Real Estate Transaction," by Residential Energy Efficiency Solutions, July 10, 2012. Describes the concept of a residential MPG number as a simple way of describing a homes energy consumption.

419

Idaho: Nez Perce Tribe Energy-Efficient Facilities Upgrade |...  

Office of Environmental Management (EM)

adding insulation and motion sensors. As a result of the upgrades, the Tribe's electrical energy consumption is estimated to be reduced by 30%, thereby reducing the cost to operate...

420

BEST OFFER EVER ACCELERATED TEXAS UPGRADES | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Reported Data Data Dashboard Stories & Case Studies "Homeowners Go Deeper in the Heart of Texas and Save With Austin Energy" Best Offer Ever Produces Upgrades in Record Time...

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Case study details the Exchange (formerly the Army and Air Force Exchange Service), which took a leadership role in kitchen appliance upgrades to improve water efficiency by integrating water efficiency concepts into the organization's overall sustainability plan and objectives.

422

J.R. Simplot: Burner Upgrade Project Improves Performance and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho. J.R. Simplot: Burner Upgrade Project Improves...

423

EECBG Success Story: Energy Upgrades to Save Small Arizona Town...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Related Articles An aerial shot of Oro Valley, Ariz.'s town hall campus shows proposed solar locations. | Photo courtesy of Oro Valley Energy Upgrades to Save Small Arizona Town...

424

City of Lompoc Utilities - Residential Energy Efficient Appliance Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficient Appliance Residential Energy Efficient Appliance Rebate Program City of Lompoc Utilities - Residential Energy Efficient Appliance Rebate Program < Back Eligibility Low-Income Residential Residential Savings Category Appliances & Electronics Other Program Info State California Program Type Utility Rebate Program Rebate Amount Clothes Washer: $120 Dishwasher: $50 LED Holiday Lights: $4 - $8 Refrigerator Replacement Rebate: $144 Refrigerator Buy-Back Program: $35 Custom: $0.15/watt saved Provider Utility Conservation City of Lompoc Utilities (CLU) offers incentives to its residential customers for upgrading the energy efficiency of home appliances. CLU provides rebates paid monthly as credits on utility bills to customers who replace old clothes washers and dish washers with Energy Star labeled

425

Screening of processing and upgrading schemes  

SciTech Connect

The RFP was predicated on DOE's desire to enhance the development of advanced transportation fuels made from coal via a program to process mild coal gasification (MCG) liquids into high volumetric energy density (HEDF) test fuels. The desired product fuels were to be cost effectively manufactured, have high volumetric energy density, and be hydrocarbon-based for existing and prototype turbine and diesel engines. The sources for these special fuels consist of the abundant and secure indigenous energy resources of coal. Comparison studies were also to be made using other non-petroleum fossil fuels such as shale oil and tar sands bitumen. METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in 1-, 2-, and 3-ring aromatics.

Not Available

1991-10-01T23:59:59.000Z

426

Optical Link ASICs for the LHC Upgrade  

E-Print Network (OSTI)

We have designed three ASICs for possible applications in the optical links of a new layer of pixel detector in the ATLAS experiment for the first phase of the LHC luminosity upgrade. The ASICs include a high-speed driver for the VCSEL, a receiver/decoder to decode the signal received at the PIN diode to extract the data and clock, and a clock multiplier to produce a higher frequency clock to serialize the data for transmission. These ASICs were designed using a 130 nm CMOS process to enhance the radiation-hardness. We have characterized the fabricated ASICs and the submission has been mostly successful. We irradiated the ASICs with 24 GeV/c protons at CERN to a dosage of 70 Mrad. We observed no significant degradation except the driver circuit in the VCSEL driver fabricated using the thick oxide process in order to provide sufficient voltage to drive a VCSEL. The degradation is due to a large threshold shifts in the PMOS transistors used.

K. K. Gan; H. P. Kagan; R. D. Kass; J. R. Moore; D. S. Smith

2009-11-23T23:59:59.000Z

427

Recent BES results and the BESIII upgrade  

E-Print Network (OSTI)

Using 58 million $J/\\psi$ and 14 million $\\psi(2S)$ events collected by the BESII detector at the BEPC, branching fractions or upper limits for the decays $J/\\psi$ and $\\psi(2S) \\to \\Lambda \\bar{\\Lambda} \\pi^0$ and $\\Lambda \\bar{\\Lambda} \\eta$ are measured, and the decays of $J/\\psi$ and $\\psi(2S)$ to $n K^0_S \\bar{\\Lambda}+c.c.$ are observed and measured for the first time. Finally, $R$ measurement data taken with the BESII detector at center-of-mass energies between 3.7 and 5.0 GeV are fitted to determine resonance parameters of the high mass charmonium states, $\\psi(3770)$, $\\psi(4040)$, $\\psi(4160)$, and $\\psi(4415)$. The Beijing Electron Collider is being upgraded to a two-ring collider (BEPCII) with a design luminosity of $1 \\times 10^{33}$cm$^{-2}$ s$^{-1}$ at 3.89 GeV and will operate between 2 and 4.2 GeV in the center of mass. With this luminosity, the new BESIII detector will beable to collect, for example, 10 billion $J/\\psi$ events in one year of running. BEPCII and BESIII are currently nearing completion, and commissioning of both is expected to begin in mid-2008.

Frederick A. Harris

2007-12-17T23:59:59.000Z

428

Status of the SPIRAL I upgrade at GANIL  

SciTech Connect

The upgrade of the ''Systeme de Production d'Ions Radioactifs en Ligne'' phase I (SPIRAL I) installed at the ''Grand Accelerateur National d'Ions Lourds'' (GANIL) situated at Caen, France, is in progress and should be ready by 2014. In parallel, the first part of SPIRAL II facility is currently under construction. The global status of the upgrade is presented: goal, radioactive ion production systems, modification of the production cave and impact of the current safety re-evaluation of GANIL.

Jardin, P.; Bajeat, O.; Delahaye, P.; Dubois, M.; Feierstein, C.; Pellemoine, F.; Lecomte, P.; Leherissier, P.; Maunoury, L.; Saint-Laurent, M. G.; Traykov, E. [GANIL, Grand Accelerateur National d'Ions Lourds, CEA-DSM/CNRS-IN2P3, Blvd. H. Becquerel, BP 55027 14076 Caen Cedex 5 (France); Couratin, C. [LPC, Laboratoire de Physique Corpusculaire, CNRS-IN2P3/Universite de Caen Basse-Normandie/ENSICaen, Blvd. Marechal Juin, 14050 Caen Cedex (France)

2012-02-15T23:59:59.000Z

429

Town of Merrimac, Massachusetts (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Merrimac, Massachusetts (Utility Company) Merrimac, Massachusetts (Utility Company) Jump to: navigation, search Name Town of Merrimac Place Massachusetts Utility Id 12296 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RATE B- RESIDENTIAL SERVICE RATE Residential RATE C- RESIDENTIAL TOTAL ELECTRIC RATE Residential RATE E- MUNICIPAL RATE RATE F- SMALL COMMERCIAL Commercial RATE F-1 LIGHT COMMERCIAL Commercial RATE F-2 COMMERCIAL INDUSTRIAL RATE Commercial RATE G- OUTDOOR LIGHTING (MERCURY VAPOR 400 W Installation A) Lighting

430

Innovative Rates Program. Final report  

SciTech Connect

Title II of the Energy Conservation and Production Act (ECPA) as amended by the Public Utility Regulatory Policies Act (PURPA) provided financial assistance to state utility regulatory commissions, nonregulated electric utilities, and the Tennessee Valley Authority through the Innovative Rates Program. The financial assistance was to be used to plan or carry out electric utility regulatory rate reform initiatives relating to innovative rate structures that encourage conservation of energy, electric utility efficiency and reduced costs, and equitable rates to consumers. The Federal and local objectives of the project are described. Activities planned and accomplishments are summarized for the following: project management, data collection, utility bill evaluation, billing enclosure/mailing evaluation, media program evaluation, display evaluation, rate study sessions evaluation, speakers bureau evaluation, and individual customer contacts. A timetable/milestone chart and financial information are included. (MHR)

Not Available

1982-06-21T23:59:59.000Z

431

Barbourville Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Barbourville Utility Comm Barbourville Utility Comm Jump to: navigation, search Name Barbourville Utility Comm Place Kentucky Utility Id 1201 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rate Commercial Large Power Electric Commercial Residential Electric Service Residential Average Rates Residential: $0.0778/kWh Commercial: $0.0757/kWh Industrial: $0.0626/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from

432

Bancroft Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Bancroft Municipal Utilities Bancroft Municipal Utilities Jump to: navigation, search Name Bancroft Municipal Utilities Place Iowa Utility Id 1172 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Rates Commercial Schedule 1 Residential Schedule 2 Commercial Schedule 3 Residential Average Rates Residential: $0.1020/kWh Commercial: $0.0990/kWh Industrial: $0.0932/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

433

Indianola Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Indianola Municipal Utilities Indianola Municipal Utilities Jump to: navigation, search Name Indianola Municipal Utilities Place Iowa Utility Id 9275 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rates Commercial Electric Heat Source Commercial Government Commercial Large Industrial Industrial Outside City Limits Residential Residential Rates Residential Small Industrial Industrial

434

Clinton Combined Utility Sys | Open Energy Information  

Open Energy Info (EERE)

Clinton Combined Utility Sys Clinton Combined Utility Sys Jump to: navigation, search Name Clinton Combined Utility Sys Place South Carolina Utility Id 3804 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Large General Service Commercial General Electric Service Commercial Residential Rate Residential Average Rates Residential: $0.1250/kWh Commercial: $0.1140/kWh Industrial: $0.0851/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

435

Lassen Municipal Utility District | Open Energy Information  

Open Energy Info (EERE)

Municipal Utility District Municipal Utility District Jump to: navigation, search Name Lassen Municipal Utility District Place California Utility Id 10724 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Pumping Commercial Domestic Residential General Service (Non-Demand) Commercial General Service Metered Demand Commercial Industrial Industrial Outdoor Area Lighting 100W Lighting Outdoor Area Lighting 200W Lighting Standby Reactive Rate Commercial Average Rates

436

Hibbing Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Hibbing Public Utilities Comm Hibbing Public Utilities Comm Jump to: navigation, search Name Hibbing Public Utilities Comm Place Minnesota Utility Id 8543 Utility Location Yes Ownership M NERC Location MRO NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png -POWER SERVICE Commercial Commercial Security Lighting Rate - 100 Watt H.P.S Lighting Commercial Security Lighting Rate - 250 Watt H.P.S Lighting General Service - Single Phase Commercial General Service - Three Phase Commercial

437

Willmar Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Municipal Utilities Municipal Utilities Jump to: navigation, search Name Willmar Municipal Utilities Place Minnesota Website wmu.willmar.mn.us/main/ Utility Id 20737 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General service rate Commercial Heat pump rate Commercial Industrial(≥500KW;Primary Service) Industrial Industrial;≥500KW(Secondary Service) Industrial

438

Utility Theory Social Intelligence  

E-Print Network (OSTI)

Utility Theory Social Intelligence Daniel Polani Utility Theory ­ p.1/15 Utilities: Motivation Consider: game scenario For Instance: 2-or-more players Necessary: development of concept for utilities decisions sequential decisions (time) games Utility The Prototypical Scenario Consider: agent that can take

Polani, Daniel

439

Gowrie Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Gowrie Municipal Utilities Gowrie Municipal Utilities Jump to: navigation, search Name Gowrie Municipal Utilities Place Iowa Utility Id 7424 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Average Rates Residential: $0.0976/kWh Commercial: $0.0900/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Gowrie_Municipal_Utilities&oldid=41075

440

Nome Joint Utility Systems | Open Energy Information  

Open Energy Info (EERE)

Joint Utility Systems Joint Utility Systems Jump to: navigation, search Name Nome Joint Utility Systems Place Alaska Utility Id 13642 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electrical Charge Residential Power Cost Equalization Average Rates Residential: $0.3600/kWh Commercial: $0.3310/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Nome_Joint_Utility_Systems&oldid=411195

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cairo Public Utility Company | Open Energy Information  

Open Energy Info (EERE)

Cairo Public Utility Company Cairo Public Utility Company Jump to: navigation, search Name Cairo Public Utility Company Place Illinois Utility Id 2776 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Average Rates Residential: $0.1160/kWh Commercial: $0.1140/kWh Industrial: $0.0654/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Cairo_Public_Utility_Company&oldid=409150

442

Lanesboro Public Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Lanesboro Public Utility Comm Lanesboro Public Utility Comm Jump to: navigation, search Name Lanesboro Public Utility Comm Place Minnesota Utility Id 10685 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Phase 2 Commercial Commercial- Three Phase Commercial Residential Residential Average Rates Residential: $0.1140/kWh Commercial: $0.1090/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Lanesboro_Public_Utility_Comm&oldid=410975

443

City of Stanhope, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Stanhope, Iowa (Utility Company) Stanhope, Iowa (Utility Company) Jump to: navigation, search Name City of Stanhope Place Iowa Utility Id 27269 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate #5 (Single Phase) Composite Rate Commercial Commercial Rate #5 (Single Phase) Tiered Rate Commercial Commercial Rate #5 (three Phase) Composite Rate Commercial Commercial Rate #5 (three Phase) Tiered Rate Commercial Commercial Rate#20 (referred to as coop elec-1) Composite Commercial Commercial Rate#20 (referred to as coop elec-1) Tiered Commercial

444

Town of Chalmers, Indiana (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Chalmers, Indiana (Utility Company) Chalmers, Indiana (Utility Company) Jump to: navigation, search Name Town of Chalmers Place Indiana Utility Id 3323 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Purpose Residential Rate - A: Inside Residential All Purpose Residential Rate - A: Outside Residential General Service Rate - GS Commercial Large Power Service Rate - LP Industrial Security Lighting Rate SL- Rate 1 Lighting Security Lighting Rate SL- Rate 2 Lighting Security Lighting Rate SL- Rate 3 Lighting

445

Clarksdale Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Clarksdale Public Utilities Clarksdale Public Utilities Jump to: navigation, search Name Clarksdale Public Utilities Place Mississippi Utility Id 3702 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes NERC SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church and Fraternal Commercial Church and Fraternal-All Electric Commercial Commercial All Electric/Governmental All Electric/Utility All Electric Commercial Commercial Small/Governmental Small/Utility Small\ Commercial

446

Web System Upgrading with Transaction Failure and Strategic This paper considers pricing and web system upgrading problems for an online retailer  

E-Print Network (OSTI)

1 Web System Upgrading with Transaction Failure and Strategic Customers Abstract: This paper considers pricing and web system upgrading problems for an online retailer facing a group of strategic period and identify the optimal policy for web system upgrading: there exists a threshold for each period

Xie, Jinxing

447

Recent upgrades of the Fragment Mass Analyzer  

NLE Websites -- All DOE Office Websites (Extended Search)

rates has been constructed and is currently undergoing tests. The FMA implantation-decay station was equipped with a digital data acquisition system to accommodate high event...

448

Monroe County Extension Saves $2,000 Annually on Utility Bills  

E-Print Network (OSTI)

antiquated tube boilers with new, high-efficiency, condensing boilers. Projected Savings Over $2,000 per year% efficiency, were replaced with 95%-efficiency condensing boilers. The new boilers use 70% less water, operateMonroe County Extension Saves $2,000 Annually on Utility Bills Heating Efficiency Upgrades Lower

Keinan, Alon

449

detonation rate  

Science Journals Connector (OSTI)

detonation rate, detonation velocity, velocity of detonation, V.O.D., detonating velocity, rate of detonation, detonating rate ? Detonationsgeschwindigkeit f

2014-08-01T23:59:59.000Z

450

City of Hermann, Missouri (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hermann, Missouri (Utility Company) Hermann, Missouri (Utility Company) Jump to: navigation, search Name City of Hermann Place Missouri Utility Id 8493 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Electric Rates- Light Rate Demand Lighting Commercial Service Electric Rates- Light Rate No Demand Lighting Commercial Service Electric Rates- Power Rate II Commercial Commercial Service Electric Rates-Power Rate I Commercial Dusk to Dawn Lights Lighting Residential Service Electric Rates Residential

451

New Ulm Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Ulm Public Utilities Comm Ulm Public Utilities Comm Jump to: navigation, search Name New Ulm Public Utilities Comm Place Minnesota Utility Id 13488 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png INDUSTRIAL SERVICE RATE Industrial LARGE COMMERCIAL SERVICE RATE Commercial MUNICIPAL-CITY SERVICE RATE Commercial MUNICIPAL-PUC SERVICE RATE Commercial RESIDENTIAL SERVICE RATE Residential SMALL COMMERCIAL SERVICE RATE Commercial WHOLE HOUSE HEATING RATE Residential

452

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

453

Fort Collins Utilities - Residential On-Bill Financing Program Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fort Collins Utilities - Residential On-Bill Financing Program Fort Collins Utilities - Residential On-Bill Financing Program Program (Colorado) Fort Collins Utilities - Residential On-Bill Financing Program Program (Colorado) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Commercial Heating & Cooling Heating & Cooling Heating Heat Pumps Water Heating Solar Maximum Rebate $15,000 Program Info State Colorado Program Type Utility Loan Program Rebate Amount $1,000 - $15,000 Fort Collins offers its residential customers low-interest loans that may be used to finance a variety of projects including adding insulation, replacing a furnace, upgrading water and space heating systems, and

454

Shakopee Public Utilities - Commercial and Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shakopee Public Utilities - Commercial and Industrial Energy Shakopee Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program Shakopee Public Utilities - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Agricultural Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 50% of total project cost Program Info Expiration Date 12/15/2012 State Minnesota Program Type Utility Rebate Program Rebate Amount New Lighting and Upgrade: $1 - $130/fixture; varies greatly, see program website for specific details Custom Project: $0.05/kWh saved up to 50% of cost Ductless Heat Pump: $100 Geothermal Heat Pump: $100 PTHP Heat Pump: $35 Chiller: $40/ton

455

Orlando Utilities Commission - Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orlando Utilities Commission - Commercial Energy Efficiency Rebate Orlando Utilities Commission - Commercial Energy Efficiency Rebate Program (Florida) Orlando Utilities Commission - Commercial Energy Efficiency Rebate Program (Florida) < Back Eligibility Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Insulation Design & Remodeling Water Heating Maximum Rebate Custom projects: $50,000 per project and $100,000 per customer Program Info State Florida Program Type Utility Rebate Program Rebate Amount Window Film or Solar Screen: $1/sq. ft. Energy Star Windows: $2/sq. ft. Cool/Reflective Roof: $0.14/sq. ft. Block Wall Insulation: $0.66/sq. ft. Ceiling Insulation Upgrade: $0.14 sq. ft.

456

Hustisford Utilities | Open Energy Information  

Open Energy Info (EERE)

Hustisford Utilities Hustisford Utilities Jump to: navigation, search Name Hustisford Utilities Place Wisconsin Utility Id 9124 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service between 50kW and 200kW Demand with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service between 50kW and 200kW Demand Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional Time-of-Day Service Industrial Cp-1 TOD Small Power Service between 50kW and 200kW Demand Optional

457

Adrian Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Comm Public Utilities Comm Jump to: navigation, search Name Adrian Public Utilities Comm Place Minnesota Utility Id 150 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial - LC Commercial Residential - RL Residential Residential Electric Heat Residential Security Lights - SL Commercial Small Commercial - SC Single-Phase Commercial Small Commercial - SC Three-Phase Commercial Average Rates Residential: $0.0955/kWh Commercial: $0.0980/kWh Industrial: $0.1120/kWh References

458

Canton Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Canton Municipal Utilities Canton Municipal Utilities Jump to: navigation, search Name Canton Municipal Utilities Place Mississippi Utility Id 2974 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png E01 RESIDENTIAL ALL ELECTRIC Residential E04 COMMERCIAL ELECTRIC Commercial E08 LARGE INDUSTRIAL ELECTRIC Industrial E09 RESIDENTIAL ELECTRIC Residential E12 SMALL INDUSTRIAL ELECTRIC Industrial E13 ELECTRIC WATER HEATER Commercial Average Rates Residential: $0.0978/kWh

459

Hawley Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Hawley Public Utilities Comm Hawley Public Utilities Comm Jump to: navigation, search Name Hawley Public Utilities Comm Place Minnesota Utility Id 8307 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 3 PHASE COMMERCIAL ELECTRIC Commercial COMMERCIAL ELECTRIC Commercial ELECTRIC VARIANCE Commercial GENERATOR RATE Commercial GROUND SOURCE HEAT PUMP - RESIDENTIAL Residential LARGE COMMERCIAL ELECTRIC Commercial MINNKOTA WIND SURCHARGE - COMMERCIAL Commercial MINNKOTA WIND SURCHARGE - RESIDENTIAL Residential

460

Waverly Municipal Elec Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Elec Utility Municipal Elec Utility Jump to: navigation, search Name Waverly Municipal Elec Utility Place Iowa Utility Id 20214 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Commercial and Municipal time of Use Service Commercial Electric Heat Rate for Residential Service Residential General Service General and Minicipal Demand Time of Use Service Commercial

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Springfield Public Utils Comm | Open Energy Information  

Open Energy Info (EERE)

Springfield Public Utils Comm Springfield Public Utils Comm Place Minnesota Utility Id 17836 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Power Commercial Residential Residential Residential with Electric Heating Residential Street Lighting Lighting Average Rates Residential: $0.1180/kWh Commercial: $0.0998/kWh Industrial: $0.0979/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Springfield_Public_Utils_Comm&oldid=411601

462

Ketchikan Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Ketchikan Public Utilities Ketchikan Public Utilities Jump to: navigation, search Name Ketchikan Public Utilities Place Alaska Utility Id 10210 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential and Community Facilities Residential Average Rates Residential: $0.1020/kWh Commercial: $0.0974/kWh Industrial: $0.0877/kWh

463

Chillicothe Municipal Utils | Open Energy Information  

Open Energy Info (EERE)

Chillicothe Municipal Utils Chillicothe Municipal Utils Jump to: navigation, search Name Chillicothe Municipal Utils Place Missouri Utility Id 3486 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes Operates Generating Plant Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL (NON DEMAND)SERVICE SCHEDULE - CO Commercial LARGE COMMERCIAL SERVICE SCHEDULE - LP Commercial LARGE INDUSTRIAL SERVICE SCHEDULE - LI-01 Industrial RESIDENTIAL SERVICE SCHEDULE Residential SMALL INDUSTRIAL (NON DEMAND) SERVICE SCHEDULE - CO-06 Industrial Average Rates

464

Litchfield Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Public Utilities Jump to: navigation, search Name Litchfield Public Utilities Place Minnesota Utility Id 11064 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single Phase General Service- Three Phase Commercial Large Power Commercial Residential Residential Rural Residential Small Power Commercial Wind Power Commercial Average Rates Residential: $0.0876/kWh Commercial: $0.0932/kWh Industrial: $0.0686/kWh

465

Easton Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Utilities Comm Utilities Comm Jump to: navigation, search Name Easton Utilities Comm Place Maryland Utility Id 5625 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LARGE GENERAL SERVICE Commercial LARGE GENERAL SERVICE(Primary Metering) Commercial PRIMARY GENERAL SERVICE Commercial RESIDENTIAL RATE Residential SMALL GENERAL SERVICE Commercial SMALL GENERAL SERVICE(Primary Metering) Commercial

466

Brainerd Public Utilities | Open Energy Information  

Open Energy Info (EERE)

Brainerd Public Utilities Brainerd Public Utilities Jump to: navigation, search Name Brainerd Public Utilities Place Minnesota Utility Id 2138 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel (Space Heating) Commercial Commercial Dual Fuel (Space Heating) Industrial Industrial Dual Fuel (Space Heating) Residential Residential General Service Demand Commercial General Service Rate Commercial Industrial Power Industrial Industrial Power 2% Discount Industrial

467

Fort Valley Utility Comm | Open Energy Information  

Open Energy Info (EERE)

Utility Comm Utility Comm Jump to: navigation, search Name Fort Valley Utility Comm Place Georgia Utility Id 6617 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Buying Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL: #20 Commercial INDUSTRIAL LARGE POWER: #26/28 Industrial INSTITUTIONAL: #14 Commercial Industrial Small Power Industrial RESIDENTIAL: #10 Residential SMALL COMMERCIAL: #22 Commercial Average Rates Residential: $0.0787/kWh Commercial: $0.1030/kWh Industrial: $0.0772/kWh References

468

Proctor Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Proctor Public Utilities Comm Proctor Public Utilities Comm Jump to: navigation, search Name Proctor Public Utilities Comm Place Minnesota Utility Id 15460 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric- Demand Metering Commercial Commercial Electric- Single Phase Commercial Commercial Electric- Three Phase Commercial Residential Electric Residential Residential- Duel Fuel Residential Residential- ETS Residential Average Rates Residential: $0.0866/kWh Commercial: $0.0849/kWh Industrial: $0.0825/kWh

469

Rock Rapids Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Rapids Municipal Utility Rapids Municipal Utility Jump to: navigation, search Name Rock Rapids Municipal Utility Place Iowa Utility Id 16206 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Power (Single-Phase) Commercial Commercial Power (Three-Phase) Commercial Residential Power Residential Average Rates Residential: $0.0807/kWh Commercial: $0.0633/kWh Industrial: $0.0899/kWh

470

Fairmont Public Utilities Comm | Open Energy Information  

Open Energy Info (EERE)

Public Utilities Comm Public Utilities Comm Jump to: navigation, search Name Fairmont Public Utilities Comm Place Minnesota Utility Id 6151 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ALL ELECTRIC RATE Industrial COMMERCIAL SERVICE Commercial GENERAL SERVICE Industrial INDUSTRIAL SERVICE Industrial INDUSTRIAL SERVICE - PRIMARY VOLTAGE Industrial RESIDENTIAL HEAT Residential RESIDENTIAL SERVICE Residential RURAL SERVICE Residential

471

La Porte City Utilities | Open Energy Information  

Open Energy Info (EERE)

Porte City Utilities Porte City Utilities Jump to: navigation, search Name La Porte City Utilities Place Iowa Utility Id 10542 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Commercial Horsepower Commercial Municipal Electric Service Commercial Residential Electric Service Charge Residential Average Rates Residential: $0.1010/kWh Commercial: $0.0964/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

472

Tillamook Peoples Utility Dist | Open Energy Information  

Open Energy Info (EERE)

Peoples Utility Dist Peoples Utility Dist Jump to: navigation, search Name Tillamook Peoples Utility Dist Place Oregon Utility Id 18917 Utility Location Yes Ownership P NERC Location WSCC NERC WECC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png AREA LIGHTING 100 watt high pressure sodium Lighting AREA LIGHTING 200 watt high pressure sodium Lighting AREA LIGHTING 200 watt wide angle high pressure sodium Lighting AREA LIGHTING 400 watt high pressure sodium Lighting AREA LIGHTING 400 watt wide angle high pressure sodium Lighting AREA LIGHTING Flat Rate Services Lighting

473

Gainesville Regional Utilities | Open Energy Information  

Open Energy Info (EERE)

Gainesville Regional Utilities Gainesville Regional Utilities Jump to: navigation, search Name Gainesville Regional Utilities Place Florida Utility Id 6909 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric - Regular Service Residential Electric - Time-of-Use Service Residential General Service Demand Industrial General Service Non-Demand Commercial Large Power Service Industrial Average Rates

474

Edinburg Municipal Utilities | Open Energy Information  

Open Energy Info (EERE)

Edinburg Municipal Utilities Edinburg Municipal Utilities Jump to: navigation, search Name Edinburg Municipal Utilities Place Indiana Utility Id 5655 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electric Residential and Farm Residential Electric Commercial Commercial Electric General Power Industrial Industrial Power(Transformer capacity Greater than 999kVA) Industrial Residential Residential Rural Commercial Commercial Rural Residential and Farm Residential Average Rates Residential: $0.0912/kWh

475

Fort Pierce Utilities Auth | Open Energy Information  

Open Energy Info (EERE)

Utilities Auth Utilities Auth Jump to: navigation, search Name Fort Pierce Utilities Auth Place Florida Utility Id 6616 Utility Location Yes Ownership M NERC Location FRCC NERC FRCC Yes ISO Other Yes Operates Generating Plant Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Demand Commercial Commercial General Service High Load Factor Industrial General Service Large Demand Industrial Non-Demand Commercial Single Phase Commercial Non-Demand Commercial Three Phase Commercial Residential Residential Average Rates Residential: $0.1440/kWh

476

West Point Utility System | Open Energy Information  

Open Energy Info (EERE)

System System Jump to: navigation, search Name West Point Utility System Place Iowa Utility Id 20396 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service and Municipal Institutional service Large General Service Commercial Rural Resident and Farm All-Electric Residential Rural Resident and Farm Rate Residential Security Light - 150 Watt HPS Customer Owned Pole Lighting Security Light - 150 Watt HPS Utility Owned Pole Lighting Urban All-Electric Residential Rate Residential

477

A Case Study of Danville Utilities: Utilizing Industrial Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing...

478

EFFICIENCY MAINE DIRECT INSTALLS INCREASE UPGRADE PACE  

Energy.gov (U.S. Department of Energy (DOE))

Although Maine has one of the United States highest homeownership rates, more than one-third of the states residents qualify for low-income programs. In addition, Maine residents in all types of...

479

Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts  

SciTech Connect

Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

2011-02-04T23:59:59.000Z

480

Forsyth County Slashes Energy Bills with Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades Forsyth County Slashes Energy Bills with Upgrades September 30, 2010 - 12:04pm Addthis A new energy management system in Forsyth County’s 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County A new energy management system in Forsyth County's 52,057 square foot courthouse is expected to save about $9,000 annually. | Photo courtesy of Forsyth County Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Four large projects funded through Recovery Act grant Energy efficient retrofits to save county about $72,000 annually Forsyth County, Georgia has been among the nation's fastest growing counties for the past ten years. Given the growth, officials are working

Note: This page contains sample records for the topic "upgrade utility rates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

County Partners with Siemens on Energy Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partners with Siemens on Energy Upgrades Partners with Siemens on Energy Upgrades County Partners with Siemens on Energy Upgrades July 9, 2010 - 11:11am Addthis What does this project do? Allows McHenry County to install cutting edge technology to reduce our energy costs. When you're really committed to energy efficiency and looking at $118,000 in potential energy savings annually, you want to share it. That's the view in McHenry County, Ill., which partnered with Siemens Building Technologies to launch mchenrycounty-eecbg.net to let residents understand the connection between recent energy efficiency projects and C02 emissions. The county, located outside the Chicago metropolitan area, was awarded $2,475,900 in Energy Efficiency and Conservation Block Grant (EECBG) funds through the Recovery Act in November. Through the Recovery Act-funded

482

Tax Incentives for Energy Efficiency Upgrades in Commercial Buildings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Upgrades in Commercial Energy Efficiency Upgrades in Commercial Buildings Tax Incentives for Energy Efficiency Upgrades in Commercial Buildings On this page you'll find information about the tax deductions available for improving the energy efficiency of commercial buildings, as well as links to qualified software available for calculating these savings. The Energy Policy Act of 2005 (EPACT) offered businesses tax deductions for the costs of improving the energy efficiency of commercial buildings. The Emergency Economic Stabilization Act of 2008 extended provisions in EPACT. The following tax incentives are available under this act. Deduction of the Cost of Energy-Efficient Property Installed in Commercial Buildings Make quick calculations of the estimated energy cost savings from

483

Non-Profit Brighter After Upgrade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Profit Brighter After Upgrade Non-Profit Brighter After Upgrade Non-Profit Brighter After Upgrade September 21, 2010 - 11:09am Addthis Loretta Prencipe Senior Communications Analyst, Office of Energy Efficiency & Renewable Energy In the Spring of 2010, the Arizona State Energy Program awarded Recovery Act funds to 14 non-profit organizations throughout the state for energy projects. One of the recipients, St. Vincent de Paul, is a human services organization that assists people in need throughout Central and Northern Arizona. The nonprofit partnered with Glendale, Arizona-based Natural Lighting Company to install skylights at the facility. In the above video, find out how this project is helping both the nonprofit and the local company. The video was created by Jim Arwood, an independent producer and former

484

Cool Roofs: An Easy Upgrade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cool Roofs: An Easy Upgrade Cool Roofs: An Easy Upgrade Cool Roofs: An Easy Upgrade December 14, 2010 - 9:25am Addthis Cathy Zoi Former Assistant Secretary, Office of Energy Efficiency & Renewable Energy What does this mean for me? Dark roofs can be 50 degrees hotter than light roofs. Combined with dark roads and parking lots, dark roofs lead to the 'urban heat island' effect: cities tend to be 2-5 degrees hotter. A cooler roof means energy bills that are up to 10-15% lower because your air conditioner doesn't have to work as hard. Check out Google Earth - the 'view from above' of your favorite American city. And look at the roofs of the office buildings, warehouses, shopping centers, and even the homes. Most of them are probably pretty dark in color - and this means they heat up a lot when the weather is warm -

485

When Energy Efficiency Upgrades and Ghost Stories Meet | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

When Energy Efficiency Upgrades and Ghost Stories Meet When Energy Efficiency Upgrades and Ghost Stories Meet When Energy Efficiency Upgrades and Ghost Stories Meet October 31, 2011 - 5:21pm Addthis Homewood Public Library at Night | Photo Courtesy of Homewood Public Library Homewood Public Library at Night | Photo Courtesy of Homewood Public Library Tertia Speiser Project Officer, Golden Field Office What are the key facts? New heating and cooling equipment has saved the Homewood Public Library thousands of dollars a year. It hasn't done anything about the ghosts, though. I've always thought that the best ghost stories are found in books. But what happens when the building where the books are kept is also a ghost story? Such may be the case with the award-winning public library in Homewood, Alabama, a city of 23,000 just south of Birmingham.

486

Disneyland's Dry Cleaning Gets an Energy Efficient Upgrade | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disneyland's Dry Cleaning Gets an Energy Efficient Upgrade Disneyland's Dry Cleaning Gets an Energy Efficient Upgrade Disneyland's Dry Cleaning Gets an Energy Efficient Upgrade March 16, 2011 - 2:58pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this project do? In three hours, enough energy is recovered from the TMC to heat 15 loads of water for L&N's largest-capacity washing machine, and enough water is recovered to fill 1-1/2 loads of that same machine. As the provider of laundry and dry cleaning services for Disneyland Resort's costumes and hospitality supply items, L&N Costume and Linen Service knows a little something about both quantity and quality. Now, with the help of the Gas Technology Institute (GTI) and the Department of Energy, this forward-looking enterprise is embracing new, clean energy

487

County Partners with Siemens on Energy Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Partners with Siemens on Energy Upgrades County Partners with Siemens on Energy Upgrades County Partners with Siemens on Energy Upgrades July 9, 2010 - 11:11am Addthis What does this project do? Allows McHenry County to install cutting edge technology to reduce our energy costs. When you're really committed to energy efficiency and looking at $118,000 in potential energy savings annually, you want to share it. That's the view in McHenry County, Ill., which partnered with Siemens Building Technologies to launch mchenrycounty-eecbg.net to let residents understand the connection between recent energy efficiency projects and C02 emissions. The county, located outside the Chicago metropolitan area, was awarded $2,475,900 in Energy Efficiency and Conservation Block Grant (EECBG) funds through the Recovery Act in November. Through the Recovery Act-funded

488

Secretary of Energy Announces Approval and Funding for Facilities Upgrade  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Approval and Funding for Facilities Announces Approval and Funding for Facilities Upgrade at the Thomas Jefferson National Lab and Highlights Lab's Successful Education Programs Secretary of Energy Announces Approval and Funding for Facilities Upgrade at the Thomas Jefferson National Lab and Highlights Lab's Successful Education Programs February 22, 2006 - 12:09pm Addthis NEWPORT NEWS , VA - Secretary of Energy Samuel W. Bodman today announced that President Bush's Fiscal Year 2007 budget request includes $7 million for the upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at Department of Energy's (DOE) Thomas Jefferson National Accelerator Facility. The secretary also visited with students and teachers from the Newport News area who participate in the lab's highly successful Becoming Enthusiastic about Math and Science (BEAMS) educational

489

Builder Brings Tradition to Efficient Home Upgrades | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Builder Brings Tradition to Efficient Home Upgrades Builder Brings Tradition to Efficient Home Upgrades Builder Brings Tradition to Efficient Home Upgrades October 15, 2009 - 5:51pm Addthis Joshua DeLung When Tom Wade's grandfather started building single-family homes, he may not have imagined how far his grandson would take the practice. Tom's father followed in the family footsteps and founded Artistic Homes in Albuquerque, N.M., in the mid-1980s. Now, Tom has led the company from simply building quality, affordable homes to innovating ones that are highly energy-efficient. "My grandfather would absolutely love what we're doing today because he had an incredible passion for - and an interest in - craftsmanship and improving the product, which in this case is the home," Tom says. "The fact that we're using science and technology is something he would

490

Energy Upgrade Program Revitalizing Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Upgrade Program Revitalizing Oregon Energy Upgrade Program Revitalizing Oregon Energy Upgrade Program Revitalizing Oregon May 28, 2010 - 2:38pm Addthis Joshua DeLung What does this project do? Local businesses in 13 communities are getting energy makeovers in an effort to help business owners save hundreds of dollars each year and revitalize downtown areas. 'Main streets' in Clackamas County, Oregon, are undergoing a makeover - an energy-efficiency makeover. As part of the Clackamas County Energy Efficiency on Main Street Program, local businesses in 13 communities are getting energy makeovers in an effort to help business owners save hundreds of dollars each year and revitalize downtown areas. First to save The program needed a guinea pig to be the first to receive a free energy audit and found a willing par