Sample records for upgrade utility rates

  1. Campus Utility Upgrades | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will provide essential support for the Argonne Leadership Computing Facility high performance computing upgrades, expected to occur in FY 2018. Campus utility upgrades also support...

  2. Steam turbine upgrades: A utility based approach

    SciTech Connect (OSTI)

    Wakeley, G.R.

    1998-07-01T23:59:59.000Z

    In the increasingly competitive power generation markets utilities must strive towards lower electricity generation costs, whilst relying on an aging steam turbine fleet. By the year 2000 more than 25% of the global steam turbine capacity will be older than 30 years. The heat rate of such units is generally considerably higher than that of equivalent new plant, and such equipment can be further disadvantaged by increased maintenance costs and forced outage rates. Over the past decade steam turbine conversion, modification, and upgrade packages have become an increasingly important part of the European steam turbine market. Furthermore, many utilities now realize that enhanced cost-effectiveness can often be obtained by moving away from the original equipment manufacturer (OEM), and the upgrading of other manufacturers' plant is now routine within the steam turbine industry. By working closely with customers, GE has developed a comprehensive range of steam turbine upgrade packages, including advanced design steampaths which can increase the performance of existing turbine installations to levels comparable with new plant. Such packages are tailor-made to the requirements of each customer, to ensure that the most cost-effective engineering solution is identified. This paper presents an overview of GE's state-of-the-art steam turbine technology, and continues to describe typical economic models for turbine upgrades.

  3. Bitumen utilization via partial upgrading and emulsification

    SciTech Connect (OSTI)

    Sankey, B.M.; Ghosh, M.; Chakrabarty, T. [Imperial Oil Resources Limited, Calgary, Alberta (Canada)

    1995-12-31T23:59:59.000Z

    Further development of the oil sands resources of Alberta, Canada, is constrained by the ability of downstream refineries to process the high sulfur, high viscosity, and high asphaltene content bitumen. Recent engineering studies have demonstrated that high conversion processing of bitumen to produce synthetic crude oil shows at best marginal economics. In this paper, an alternative concept of bitumen upgrading and heavy bottoms utilization is presented. The proposed method of Phased Partial Upgrading (PPU) involves, first, separation of the bitumen into a light overhead fraction and a heavy bottom fraction using conventional processes, such as distillation or solvent deasphalting. The light overhead fraction, which resembles a typical light sour crude, can be marketed directly, or can be hydrotreated to reduce sulfur and enhance quality as catalytic cracker feedstock. The PPU heavy fraction is converted to an emulsion fuel using new techniques and a proprietary surfactant formulation. This fuel can replace coal and other heavy fuels in electrical utilities. Emulsion fuel prepared in a continuous pilot unit was successfully burned in several combustion test programs.

  4. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01T23:59:59.000Z

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  5. The feasibility of replacing or upgrading utility distribution transformers during routine maintenance

    SciTech Connect (OSTI)

    Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Cohn, S.M.; Purucker, S.L.

    1995-04-01T23:59:59.000Z

    It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformers may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124(c) of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on was to achieve the potential energy savings.

  6. Asymptotic Cellular Growth Rate as the Effective Information Utilization Rate

    E-Print Network [OSTI]

    Pugatch, Rami; Tlusty, Tsvi

    2013-01-01T23:59:59.000Z

    We study the average asymptotic growth rate of cells in randomly fluctuating environments. Using a game-theoretic perspective, we show that any response strategy has an asymptotic growth rate, which is the sum of: (i) the maximal growth rate at the worst possible distribution of environments, (ii) relative information between the actual distribution of environments to the worst one, and (iii) information utilization rate which is the information rate of the sensory devices minus the "information dissipation rate", the amount of information not utilized by the cell for growth. In non-stationary environments, the optimal strategy is the time average of the instantaneous optimal strategy and the optimal switching times are evenly spaced in the statistical (Fisher) metric.

  7. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpand PowerUtility Rate Home

  8. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpand PowerUtility Rate

  9. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111JumpandbuildingRateEZFeedUtility

  10. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111JumpandbuildingRate Home >

  11. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111JumpandbuildingRate Home

  12. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111JumpandbuildingRate Homeclean

  13. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111JumpandbuildingRate HomecleanEIA

  14. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111JumpandbuildingRate

  15. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111JumpandbuildingRateEZFeed Type

  16. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111JumpandbuildingRateEZFeed

  17. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpand Power Jump to:Utility

  18. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpand PowerUtility

  19. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpand PowerUtilityAmerican

  20. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpand

  1. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpandbuilding

  2. Utility Rate Design Revision - A Frisbee Full of Boomerangs

    E-Print Network [OSTI]

    Dannenmaier, J. H.

    1979-01-01T23:59:59.000Z

    Rising electricity prices have prompted investigation of utility rates and proposals for changed in their design. The purpose of this paper is to discuss the current design of electric rates, changes proposed, actual trends, and predictable results...

  3. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpand Power Jump

  4. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpand Power Jumpdeveloper Type

  5. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpand Power Jumpdeveloper

  6. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpand Power

  7. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpandbuilding load Type Term

  8. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpandbuilding load Type

  9. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpandbuilding load TypeGlobal

  10. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpandbuilding load

  11. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpandbuilding loadEnergy

  12. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jumpandbuilding loadEnergyFOA

  13. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire AddressGRR HomeDist-WesternUtility

  14. Category:Utility Rates | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV Economics By Building Type Jump to:Category Edit

  15. Utility Rates | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbH Jump to:Rates Home Ewilson's

  16. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire AddressGRRUtility Rate Home >

  17. Considering removing "Show Preview" button on utility rate form...

    Open Energy Info (EERE)

    Rmckeel's picture Submitted by Rmckeel(297) Contributor 22 April, 2013 - 13:55 Utility Rates I'm considering removing the "Show Preview" button, since it does not work (javascript...

  18. Widget:UtilityRateEntryHelper | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit Jump to: navigation,UtilityRateEntryHelper Jump

  19. Widget:UtilityRateEntryHelperTable | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit Jump to: navigation,UtilityRateEntryHelper

  20. Widget:UtilityRateFinder | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit Jump to:UtilityRateFinder Jump to: navigation,

  1. Widget:UtilityRateNamingHelper | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit Jump to:UtilityRateFinder Jump to:

  2. Widget:UtilityRatesByCompany | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit Jump to:UtilityRateFinder Jump

  3. Ten Ways to Lower Perceived Risk and Finance Rates within Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ten Ways to Lower Perceived Risk and Finance Rates within Utility Contract Ten Ways to Lower Perceived Risk and Finance Rates within Utility Contract Federal agencies can use the...

  4. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URIInformation Rate

  5. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to: navigation, search This is aInformation Rate

  6. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier6Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to: navigation, search This isInformation Rate Jump

  7. Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URI JumpEnergyInformation Rate

  8. Property:OpenEI/UtilityRate/DemandRateStructure/Tier2Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URIInformation Rate Jump to:

  9. Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URIInformationInformation Rate

  10. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA)

    2009-06-01T23:59:59.000Z

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  11. How do I Build Apps with Utility Rate Data (that is continuously...

    Open Energy Info (EERE)

    Rate Kch's picture Submitted by Kch(24) Member 23 April, 2012 - 10:31 utility rate web services There's a need among our users to incorporate the electricity rates from the...

  12. Slow-Rate Utility-Based Resource Allocation in Wireless Networks

    E-Print Network [OSTI]

    Kuzmanovic, Aleksandar

    a network [6]. Utility-based resource allocation has recently received atten- tion both for wire-line [41 Slow-Rate Utility-Based Resource Allocation in Wireless Networks Peijuan Liu, Randall Berry are specified via a utility function that depends on the received data rate. The allocation of power across

  13. System average rates of U.S. investor-owned electric utilities : a statistical benchmark study

    E-Print Network [OSTI]

    Berndt, Ernst R.

    1995-01-01T23:59:59.000Z

    Using multiple regression methods, we have undertaken a statistical "benchmark" study comparing system average electricity rates charged by three California utilities with 96 other US utilities over the 1984-93 time period. ...

  14. Utility-Customer Rate Negotiations Blackmail or Compromise?

    E-Print Network [OSTI]

    Gilbert, J. S.

    Ion is cogeneration, where the fuel supplier can increase market share at the expense of the electric utility. There are also absorption chillers that do the same. And there are electric options that go after a fuel supplier's loads. These include heat pumps..., microwave, radIo frequency, infrared and others. There are load shaping options to reduce the cost of purchased commodities. The most obvious of these is cold water or ice based thermal storage. In these cases, the electric utility usually will have a...

  15. Guidance on Utility Rate Estimations and Weather Normalization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Weather Normalization in an ESPC Document explains how to use estimated energy rates and normalized weather data in determining an energy service company's (ESCO's)...

  16. Widget:UtilityRateEntryHelperVideo | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit Jump to:

  17. Impact of Industrial Electric Rate Structure on Energy Conservation - A Utility Viewpiont

    E-Print Network [OSTI]

    Williams, M. M.

    1981-01-01T23:59:59.000Z

    As the price of energy rises, changes in industrial electric rates will have an impact on energy usage and conservation. Utilities interested in reducing system peak demands may reflect this need in the rate structure as an incentive...

  18. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    E-Print Network [OSTI]

    Fuller, Merrian C.

    2011-01-01T23:59:59.000Z

    home energy upgrades by developing a community that supports behaviorhome energy use, beyond lighting replacements or small changes in behavior.

  19. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2003-12-01T23:59:59.000Z

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  20. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, Charles E. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  1. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, C.E.

    1997-06-10T23:59:59.000Z

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  2. Utility Rate - Q & A | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire AddressGRR HomeDist-Western INLoanRate

  3. Heart Rate Dynamics in Patients With Stable Angina Pectoris and Utility of

    E-Print Network [OSTI]

    Heart Rate Dynamics in Patients With Stable Angina Pectoris and Utility of Fractal and Complexity- ties in heart rate (HR) behavior that are not easily de- tectable with conventional statistical.05). The short-term fractal scaling ex- ponent performed better than other heart rate variability parameters

  4. Ten Ways to Lower Perceived Risk and Finance Rates within Utility Contract

    Broader source: Energy.gov [DOE]

    Federal agencies can use the following 10 methods during project negotiations to lower perceived project risk and finance rates to get the best value from utility energy service contracts (UESCs).

  5. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2003-01-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a liquid flue gas conditioning system was completed at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Two cohesivity-specific additive formulations, ADA-44C and ADA-51, will be evaluated. In addition, ammonia conditioning will also be compared.

  6. arXiv:1308.0623v1[physics.bio-ph]2Aug2013 Asymptotic Cellular Growth Rate as the Effective Information Utilization Rate

    E-Print Network [OSTI]

    Tlusty, Tsvi

    Information Utilization Rate R. Pugatch,1 N. Barkai,2 and T. Tlusty1 1 School of Natural Sciences, Simons

  7. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    utility tari?s, the electricity price may be revised only Investment and Upgrade in Distributed Generation

  8. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-05-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was underway at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. This represents the first long-term full-scale testing of this class of products. Modifications to the flue gas conditioning system at Jim Bridger, including development of alternate injection lances, was also undertaken to improve chemical spray distribution and to avoid spray deposition to duct interior surfaces. Also in this quarter, a firm commitment was received for another long-term test of the cohesivity additives. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

  9. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2001-09-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

  10. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2003-02-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, two cohesivity-specific additive formulations, ADA-44C and ADA-51, were evaluated in a full-scale trial at the American Electric Power Conesville plant. Ammonia conditioning was also evaluated for comparison. ADA-51 and ammonia conditioning significantly reduced rapping and non-rapped particulate re-entrainment based on stack opacity monitor data. Based on the successful tests to date, ADA-51 will be evaluated in a long-term test.

  11. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-01-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, installation of a flue gas conditioning system was completed at PacifiCorp Jim Bridger Power Plant. Performance testing was underway. Results will be detailed in the next quarterly and subsequent technical summary reports. Also in this quarter, discussions were initiated with a prospective long-term candidate plant. This plant fires a bituminous coal and has opacity performance issues related to fly ash re-entrainment. Ammonia conditioning has been proposed here, but there is interest in liquid additives as a safer alternative.

  12. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2003-07-30T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. This quarterly report summarizes project activity for the period April-June, 2003. In this period there was limited activity and no active field trials. Results of ash analysis from the AEP Conesville demonstration were received. In addition, a site visit was made to We Energies Presque Isle Power Plant and a proposal extended for a flue gas conditioning trial with the ADA-51 cohesivity additive. It is expected that this will be the final full-scale evaluation on the project.

  13. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2002-07-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, performance testing of flue gas conditioning was completed at the PacifiCorp Jim Bridger Power Plant. The product tested, ADA-43, was a combination resistivity modifier with cohesivity polymers. The product was effective as a flue gas conditioner. However, ongoing problems with in-duct deposition resulting from the flue gas conditioning were not entirely resolved. Primarily these problems were the result of difficulties encountered with retrofit of an existing spray humidification system. Eventually it proved necessary to replace all of the original injection lances and to manually bypass the PLC-based air/liquid feed control. This yielded substantial improvement in spray atomization and system reliability. However, the plant opted not to install a permanent system. Also in this quarter, preparations continued for a test of the cohesivity additives at the American Electric Power Conesville Plant, Unit 3. This plant fires a bituminous coal and has opacity and particulate emissions performance issues related to fly ash re-entrainment. Ammonia conditioning is employed here on one unit, but there is interest in liquid cohesivity additives as a safer alternative.

  14. Public Utility Regulatory Policies Act of 1978: Natural Gas Rate Design Study

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    First, the comments on May 3, 1979 Notice of Inquiry of DOE relating to the Gas Utility Rate Design Study Required by Section 306 of PURPA are presented. Then, comments on the following are included: (1) ICF Gas Utility Model, Gas Utility Model Data Outputs, Scenario Design; (2) Interim Model Development Report with Example Case Illustrations; (3) Interim Report on Simulation of Seven Rate Forms; (4) Methodology for Assessing the Impacts of Alternative Rate Designs on Industrial Energy Use; (5) Simulation of Marginal-Cost-Based Natural Gas Rates; and (6) Preliminary Discussion Draft of the Gas Rate Design Study. Among the most frequent comments expressed were the following: (a) the public should be given the opportunity to review the final report prior to its submission to Congress; (b) results based on a single computer model of only four hypothetical utility situations cannot be used for policy-making purposes for individual companies or the entire gas industry; (c) there has been an unobjective treatment of traditional and economic cost rate structures; the practical difficulties and potential detrimental consequences of economic cost rates are not fully disclosed; and (d) it is erroneous to assume that end users, particularly residential customers, are influenced by price signals in the rate structure, as opposed to the total bill.

  15. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  16. Understanding Utility Rates or How to Operate at the Lowest $/BTU

    E-Print Network [OSTI]

    Phillips, J. N.

    . The lower the energy rating (KW/Ton or KW/HP or KW/BTU) the more efficient the equipment and the less demand draw on the electric power plants, thereby reducing the need to build new power plants. To encourage DSM, utilities give rebates for high...: Bob Allwein, Oklahoma Natural Gas Company. Dick Landry, Gulf States Utility. Curtis Williford, Entex Gas Company. Bret McCants, Central Power and Light Company. Frank Tanner, Southern Union. Patric Coon, West Texas utilities. ESL-IE-93...

  17. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    SciTech Connect (OSTI)

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01T23:59:59.000Z

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  18. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier6Sell | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to: navigation, search This isInformation Rate

  19. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Adjustment | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URIInformation Rate Jump to:Energy

  20. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Max | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URIInformation Rate Jump

  1. Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Adjustment | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump to:URIInformation RateEnergy

  2. Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review

    SciTech Connect (OSTI)

    Lesh, Pamela G.

    2009-10-15T23:59:59.000Z

    Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

  3. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    SciTech Connect (OSTI)

    Fuller, Merrian C.

    2010-09-20T23:59:59.000Z

    Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

  4. Nationwide Utility Rates Available on OpenEI | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBus JumpEnvironmentalNationwide Utility Rates

  5. NREL/Ventyx Utility Rates: What is included? | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun JumpMuscoy, California:NewNREL/Ventyx Utility Rates:

  6. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08T23:59:59.000Z

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  7. Upgrade Your Refinery for Energy Conservation

    E-Print Network [OSTI]

    Johnnie, D. H., Jr.; Klooster, H. J.

    1983-01-01T23:59:59.000Z

    Upgrading existing refineries for efficient energy utilization imposes strict restraints upon design engineers. Present and future production requirements must be defined. Reliable operating data must be obtained from historical records and test...

  8. Community based outreach strategies in residential energy upgrade programs

    E-Print Network [OSTI]

    McEwen, Brendan (Brendan Carl Francis)

    2012-01-01T23:59:59.000Z

    Home energy upgrades can reduce residential energy consumption and improve indoor conditions, thereby realizing environmental, economic, health and other social benefits. Utilities, government and other actors have established ...

  9. Innovative Utility Partnership at Fort Lewis, Washington

    SciTech Connect (OSTI)

    Not Available

    2000-07-01T23:59:59.000Z

    Utility partnership upgrades energy system to help meet the General Services Administration's (GSA) energy-saving goals

  10. Recent Upgrade of the Klystron Modulator at SLAC

    SciTech Connect (OSTI)

    Nguyen, M.N.; Burkhart, C.P.; Lam, B.K.; Morris, B.; /SLAC

    2011-11-04T23:59:59.000Z

    The SLAC National Accelerator Laboratory employs 244 klystron modulators on its two-mile-long linear accelerator that has been operational since the early days of the SLAC establishment in the sixties. Each of these original modulators was designed to provide 250 kV, 262 A and 3.5 {mu}S at up to 360 pps using an inductance-capacitance resonant charging system, a modified type-E pulse-forming network (PFN), and a pulse transformer. The modulator internal control comprised of large step-start resistor-contactors, vacuum-tube amplifiers, and 120 Vac relays for logical signals. A major, power-component-only upgrade, which began in 1983 to accommodate the required beam energy of the SLAC Linear Collider (SLC) project, raised the modulator peak output capacity to 360 kV, 420 A and 5.0 {mu}S at a reduced pulse repetition rate of 120 pps. In an effort to improve safety, performance, reliability and maintainability of the modulator, this recent upgrade focuses on the remaining three-phase AC power input and modulator controls. The upgrade includes the utilization of primary SCR phase control rectifiers, integrated fault protection and voltage regulation circuitries, and programmable logic controllers (PLC) -- with an emphasis on component physical layouts for safety and maintainability concerns. In this paper, we will describe the design and implementation of each upgraded component in the modulator control system. We will also report the testing and present status of the modified modulators.

  11. Jade Sky Technologies Partners with CLTC on LED Replacement Lamp Upgrade Project UC Davis' California Lighting Technology Center will utilize Jade Sky Technologies' driver ICs to help spur

    E-Print Network [OSTI]

    California at Davis, University of

    ' California Lighting Technology Center will utilize Jade Sky Technologies' driver ICs to help spur adoption of cost-effective, easy-to-use LED lighting solutions Milpitas, Calif. ­ October 15, 2013 ­ Jade Sky Technologies (JST), a clean-tech start-up manufacturer of driver ICs for LED lighting applications, announces

  12. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan National Spherical Torus Experiment (NSTX) Upgrade Project Execution Plan Revision 1 October 6, 2011 Submitted by: R. Strykowsky NSTX Upgrade Project Manager _____________________________ M. Williams Associate Director, PPPL

  13. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan National Spherical Torus Experiment (NSTX) Upgrade Project Execution Plan Revision 3 October 12, 2012 Administrative Change Submitted by: ______________________________ R. Strykowsky NSTX Upgrade Project Manager Anthony Indelicato

  14. LHCb PID Upgrade Technical Design Report

    E-Print Network [OSTI]

    LHCb Collaboration

    2013-01-01T23:59:59.000Z

    The LHCb upgrade will take place in the second long shutdown of the LHC, currently scheduled to begin in 2018. The upgrade will enable the experiment to run at luminosities of $2 \\times 10^{33}cm^{-2}s^{-1}$ and will read out data at a rate of 40MHz into a exible software-based trigger. All sub-detectors of LHCb will be re-designed to comply with these new operating conditions. This Technical Design Report presents the upgrade plans of the Ring Imaging Cherenkov (RICH) system, the calorimeter system and the muon system, which together provide the particle identication capabilities of the experiment.

  15. backfed from utility-interactive PV inverters. This equation expresses this ratings requirement

    E-Print Network [OSTI]

    Johnson, Eric E.

    -interactive photovoltaic (PV) system and the electrical utility grid is an area of importance to PV system designers and installers. Due to the varying sizes of PV systems and configurations of existing service-entrance equipment, these connections vary significantly among PV systems. Differences in Section 690.64 of the 2005 and 2008 editions

  16. Capturing Energy Upgrades

    Broader source: Energy.gov [DOE]

    Provides an overview of how to capture the value of energy efficiency upgrades in the real estate market, from CNT Energy.

  17. Announcing New Utility Rate Database and API Features! | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments |AnhuiAnnetta, Texas: Energy Resources

  18. Category:Utility Rate Impacts on PV Economics By Building Type | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV Economics By Building Type Jump to: navigation,

  19. Category:Utility Rate Impacts on PV Economics By Location | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV Economics By Building Type Jump to:

  20. Utility Rates API Version 2 is Live! | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire AddressGRRUtility Rate Home >Rates

  1. Utilizing Distributed Temperature Sensors in Predicting Flow Rates in Multilateral Wells

    E-Print Network [OSTI]

    Al Mulla, Jassim Mohammed A.

    2012-07-16T23:59:59.000Z

    and pressure data to determine the flow rate in real time out of a multilateral well. Temperature and pressure changes are harder to predict in horizontal laterals compared with vertical wells because of the lack of variation in elevation and geothermal...

  2. Sharyland Utilities- Commercial Standard Offer Program (Texas)

    Broader source: Energy.gov [DOE]

    Sharyland Utilities offers the Residential and "Hard-to-Reach" Standard Offer Programs, which encourage residential customers to pursue energy saving measures and equipment upgrades in their homes....

  3. Utility Rate Structures and the Impact of Energy Efficiency and Renewable Projects

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote Access toDeploymentRate Structures and

  4. Utility rate change propagation is now much faster | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire AddressGRRUtility Rate Home

  5. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    #12;#12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan i Record;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan ii Table of Contents 1 ..............................................................................................................................1 1.2.1 DOE-approved project documents

  6. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    #12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan i Record/schedule baseline updates #12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan ii ..............................................................................................................................1 1.2.1 DOE-approved project documents

  7. Energy Upgrade California

    Broader source: Energy.gov [DOE]

    The Energy Upgrade California program serves as a one-stop shop for California homeowners who want to improve the energy efficiency of their homes. The program connects homeowners with qualified...

  8. Cyclotron Institute Upgrade Project

    SciTech Connect (OSTI)

    Clark, Henry [Texas A& M University; Yennello, Sherry [Texas A& M University; Tribble, Robert [Texas A& M University

    2014-08-26T23:59:59.000Z

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  9. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    #12;NSTX Upgrade Project Execution Plan NSTX Upgrade Project Project Execution Plan i Record 10/12/2012 Update to WBS Level 2 Threshold (top of page 20), Change DOE Federal Project Director and Deputy Federal Project Director. Various OBS changes. #12;NSTX Upgrade Project Execution Plan NSTX

  10. UCSC EMPLOYEE HOUSING APARTMENTS APPLICATION Rental rates include: rent, refuse collection, common area utilities, groundskeeping services, and repairs and

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    area utilities, groundskeeping services, and repairs and maintenance of the Laureate Court complex. Tenants pay for their own utilities (i.e., electricity, gas, water, telephone and cable services). A $750

  11. Advanced Photon Source Upgrade Project

    ScienceCinema (OSTI)

    Mitchell, John; Gibson, Murray; Young, Linda; Joachimiak, Andrzej

    2013-04-19T23:59:59.000Z

    Upgrade to Advanced Photon Source announced by Department Of Energy. Read more: http://go.usa.gov/ivZ

  12. Estimation of the Optimal Brachytherapy Utilization Rate in the Treatment of Gynecological Cancers and Comparison With Patterns of Care

    SciTech Connect (OSTI)

    Thompson, Stephen R., E-mail: stephen.thompson@sesiahs.health.nsw.gov.au [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia); Department of Radiation Oncology, Prince of Wales Hospital, Sydney (Australia); University of New South Wales, Sydney (Australia); Delaney, Geoff P. [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia) [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia); University of New South Wales, Sydney (Australia); University of Western Sydney, Sydney (Australia); Gabriel, Gabriel S. [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia) [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia); University of New South Wales, Sydney (Australia); Jacob, Susannah; Das, Prabir [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia)] [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia); Barton, Michael B. [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia) [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney (Australia); University of New South Wales, Sydney (Australia)

    2013-02-01T23:59:59.000Z

    Purpose: We aimed to estimate the optimal proportion of all gynecological cancers that should be treated with brachytherapy (BT)-the optimal brachytherapy utilization rate (BTU)-to compare this with actual gynecological BTU and to assess the effects of nonmedical factors on access to BT. Methods and Materials: The previously constructed inter/multinational guideline-based peer-reviewed models of optimal BTU for cancers of the uterine cervix, uterine corpus, and vagina were combined to estimate optimal BTU for all gynecological cancers. The robustness of the model was tested by univariate and multivariate sensitivity analyses. The resulting model was applied to New South Wales (NSW), the United States, and Western Europe. Actual BTU was determined for NSW by a retrospective patterns-of-care study of BT; for Western Europe from published reports; and for the United States from Surveillance, Epidemiology, and End Results data. Differences between optimal and actual BTU were assessed. The effect of nonmedical factors on access to BT in NSW were analyzed. Results: Gynecological BTU was as follows: NSW 28% optimal (95% confidence interval [CI] 26%-33%) compared with 14% actual; United States 30% optimal (95% CI 26%-34%) and 10% actual; and Western Europe 27% optimal (95% CI 25%-32%) and 16% actual. On multivariate analysis, NSW patients were more likely to undergo gynecological BT if residing in Area Health Service equipped with BT (odds ratio 1.76, P=.008) and if residing in socioeconomically disadvantaged postcodes (odds ratio 1.12, P=.05), but remoteness of residence was not significant. Conclusions: Gynecological BT is underutilized in NSW, Western Europe, and the United States given evidence-based guidelines. Access to BT equipment in NSW was significantly associated with higher utilization rates. Causes of underutilization elsewhere were undetermined. Our model of optimal BTU can be used as a quality assurance tool, providing an evidence-based benchmark against which actual patterns of practice can be measured. It can also be used to assist in determining the adequacy of BT resource allocation.

  13. Tevatron detector upgrades

    SciTech Connect (OSTI)

    Lipton, R.; /Fermilab

    2005-01-01T23:59:59.000Z

    The D0 and CDF experiments are in the process of upgrading their detectors to cope with the high luminosities projected for the remainder of Tevatron Run II. They discuss the expected Tevatron environment through 2009, the detector challenges due to increasing luminosity in this period, and the solutions undertaken by the two experiments to mitigate detector problems and maximize physics results.

  14. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12T23:59:59.000Z

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  15. Cogeneration - A Utility Perspective

    E-Print Network [OSTI]

    Williams, M.

    1983-01-01T23:59:59.000Z

    are discussed from a utility perspective as how they influence utility participation in future projects. The avoided cost methodology is examined, and these payments for sale of energy to the utility are compared with utility industrial rates. In addition...

  16. Anaheim Public Utilities- Green Building and New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Anaheim Public Utilities (APU) offers commercial, industrial, residential, and institutional customers the Green Building Incentives Program to offset construction, installation and upgrade costs...

  17. River Falls Municipal Utilities- Business Energy Efficiency Rebate Program (Wisconsin)

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utility (RFMU) offers a variety of rebates to business customers for implementing energy efficient equipment upgrades. Rebates are available for commercial lighting, central...

  18. City Utilities of Springfield- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    City Utilities of Springfield offers incentives for commercial customers to increase the efficiency of eligible facilities. Rebates are available for efficient lighting upgrades, controls and for...

  19. Colorado Springs Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Colorado Springs Utilities (CSU) Business Energy and Water Efficiency Rebate Program offers a variety of incentives to business customers who upgrade evaporative cooling, HVAC, irrigation,...

  20. Kentucky Utilities Company- Residential Energy Efficiency Rebate Program (Kentucky)

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  1. River Falls Municipal Utilities- Energy Star Appliance Rebates

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utility (RFMU), in conjuction with the Wisconsin Focus on Energy program, offers a variety of rebates to residential electric customers for upgrading to energy efficient...

  2. Gainesville Regional Utilities- Business Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Gainesville Regional Utilities (GRU) offers an incentive to business customers for upgrading to energy efficient equipment at eligible facilities. Incentives are available for ductwork, insulation,...

  3. Norwich Public Utilities (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential natural gas customers rebates for upgrading to energy efficient equipment in eligible homes. NPU offers rebates of between $250 - $1050 for...

  4. Global Scratch Upgrade in Progress

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the facility is now positioned to meet the performance demands of all its clusters. By upgrading the consolidated Global Scratch, users will be able to continue taking advantage...

  5. Energy Efficiency Upgrades

    SciTech Connect (OSTI)

    Roby Williams

    2012-03-29T23:59:59.000Z

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

  6. Lake Worth Utilities- Energy Conservation Rebate Program

    Broader source: Energy.gov [DOE]

    The City of Lake Worth Utilities, in conjunction with Florida Municipal Power Agency, offers a variety of rebates to residential and commercial customers for upgrading to energy saving equipment....

  7. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr. (,.Distributed Utility Associates, Livermore, CA)

    2005-11-01T23:59:59.000Z

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  8. ENHANCED GROWTH RATE AND SILANE UTILIZATION IN AMORPHOUS SILICON AND NANOCRYSTALLINE-SILICON SOLAR CELL DEPOSITION VIA GAS PHASE ADDITIVES

    SciTech Connect (OSTI)

    Ridgeway, R.G.; Hegedus, S.S.; Podraza, N.J.

    2012-08-31T23:59:59.000Z

    Air Products set out to investigate the impact of additives on the deposition rate of both ???µCSi and ???±Si-H films. One criterion for additives was that they could be used in conventional PECVD processing, which would require sufficient vapor pressure to deliver material to the process chamber at the required flow rates. The flow rate required would depend on the size of the substrate onto which silicon films were being deposited, potentially ranging from 200 mm diameter wafers to the 5.7 m2 glass substrates used in GEN 8.5 flat-panel display tools. In choosing higher-order silanes, both disilane and trisilane had sufficient vapor pressure to withdraw gas at the required flow rates of up to 120 sccm. This report presents results obtained from testing at Air Products?¢???? electronic technology laboratories, located in Allentown, PA, which focused on developing processes on a commercial IC reactor using silane and mixtures of silane plus additives. These processes were deployed to compare deposition rates and film properties with and without additives, with a goal of maximizing the deposition rate while maintaining or improving film properties.

  9. Technologies for Upgrading Light Water Reactor Outlet Temperature

    SciTech Connect (OSTI)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01T23:59:59.000Z

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  10. Multi-piconet Formation to Increase Channel Utilization in IEEE 802.15.3 High-Rate WPAN

    E-Print Network [OSTI]

    Lee, Tae-Jin

    .15.3 WPAN. 1 Introduction Recently, we have witnessed a noticeable increase of personal devices. The devices physical cables. Wireless Personal Area Networks (WPANs) can con- nect various personal devices within}@ece.skku.ac.kr {jsd, hslee75, tgkwon, chojw}@keti.re.kr Abstract. IEEE 802.15.3 high-rate Wireless Personal Area

  11. MAST Upgrade - Construction Status

    E-Print Network [OSTI]

    Milnes, Joe; Dhalla, Fahim; Fishpool, Geoff; Hill, John; Katramados, Ioannis; Martin, Richard; Naylor, Graham; O'Gorman, Tom; Scannell, Rory

    2015-01-01T23:59:59.000Z

    The Mega Amp Spherical Tokamak (MAST) is the centre piece of the UK fusion research programme. In 2010, a MAST Upgrade programme was initiated with three primary objectives, to contribute to: 1) Testing reactor concepts (in particular exhaust solutions via a flexible divertor allowing Super-X and other extended leg configurations); 2) Adding to the knowledge base for ITER (by addressing important plasma physics questions and developing predictive models to help optimise ITER performance of ITER) and 3) Exploring the feasibility of using a spherical tokamak as the basis for a fusion Component Test Facility. With the project mid-way through its construction phase, progress will be reported on a number of the critical subsystems. This will include manufacture and assembly of the coils, armour and support structures that make up the new divertors, construction of the new set coils that make up the centre column, installation of the new power supplies for powering the divertor coils and enhanced TF coil set, progr...

  12. Estimation of Optimal Brachytherapy Utilization Rate in the Treatment of Malignancies of the Uterine Corpus by a Review of Clinical Practice Guidelines and the Primary Evidence

    SciTech Connect (OSTI)

    Thompson, Stephen R. [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); Department of Radiation Oncology, Prince of Wales Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia)], E-mail: stephen.thompson@sesiahs.health.nsw.gov.au; Delaney, Geoff [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia); Gabriel, Gabriel S.; Jacob, Susannah; Das, Prabir [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); Barton, Michael [Collaboration for Cancer Outcomes Research and Evaluation, Liverpool Hospital, Sydney, NSW (Australia); University of New South Wales, Sydney, NSW (Australia)

    2008-11-01T23:59:59.000Z

    Purpose: Brachytherapy (BT) is an important treatment technique for uterine corpus malignancies. We modeled the optimal proportion of these cases that should be treated with BT-the optimal rate of brachytherapy utilization (BTU). We compared this optimal BTU rate with the actual BTU rate. Methods and Materials: Evidence-based guidelines and the primary evidence were used to construct a decision tree for BTU for malignancies of the uterine corpus. Searches of the literature to ascertain the proportion of patients who fulfilled the criteria for BT were conducted. The robustness of the model was tested by sensitivity analyses and peer review. A retrospective Patterns of Care Study of BT in New South Wales for 2003 was conducted, and the actual BTU for uterine corpus malignancies was determined. The actual BTU in other geographic areas was calculated from published reports. The differences between the optimal and actual rates of BTU were assessed. Results: The optimal uterine corpus BTU rate was estimated to be 40% (range, 36-49%). In New South Wales in 2003, the actual BTU rate was only 14% of the 545 patients with uterine corpus cancer. The actual BTU rate in 2001 was 11% in the Surveillance, Epidemiology, and End Results areas and 30% in Sweden. Conclusion: The results of this study have shown that BT for uterine corpus malignancies is underused in New South Wales and in the Surveillance, Epidemiology, and End Results areas. Our model of optimal BTU can be used as a quality assurance tool, providing an evidence-based benchmark against which can be measured actual patterns of practice. It can also be used to assist in determining the adequacy of BT resource allocation.

  13. LOWELL ADDS ENERGY EFFICIENCY TO HISTORIC UPGRADES | Department...

    Energy Savers [EERE]

    LOWELL ADDS ENERGY EFFICIENCY TO HISTORIC UPGRADES LOWELL ADDS ENERGY EFFICIENCY TO HISTORIC UPGRADES LOWELL ADDS ENERGY EFFICIENCY TO HISTORIC UPGRADES Faced with the challenge of...

  14. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctabwebinarbiooilsupgrading.pdf More...

  15. Energy Upgrade California Drives Demand From Behind the Wheel...

    Energy Savers [EERE]

    Upgrade California Drives Demand From Behind the Wheel Energy Upgrade California Drives Demand From Behind the Wheel Photo of a trailer with the Energy Upgrade California logo and...

  16. The enhanced ASDEX Upgrade pellet centrifuge launcher

    SciTech Connect (OSTI)

    Plckl, B.; Lang, P. T. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)] [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2013-10-15T23:59:59.000Z

    Pellets played an important role in the program of ASDEX Upgrade serving both for investigations on efficient particle fuelling and high density scenarios but also for pioneering work on Edge Localised Mode (ELM) pacing and mitigation. Initially designed for launching fuelling pellets from the magnetic low field side, the system was converted already some time ago to inject pellets from the magnetic high field side as much higher fuelling efficiency was found using this configuration. In operation for more than 20 years, the pellet launching system had to undergo a major revision and upgrading, in particular of its control system. Furthermore, the control system installed adjacent to the launcher had to be transferred to a more distant location enforcing a complete galvanic separation from torus potential and a fully remote control solution. Changing from a hybrid system consisting of PLC S5/S7 and some hard wired relay control to a state of the art PLC system allowed the introduction of several new operational options enabling more flexibility in the pellet experiments. This article describes the new system architecture of control hardware and software, the operating procedure, and the extended operational window. First successful applications for ELM pacing and triggering studies are presented as well as utilization for the development of high density scenarios.

  17. Field Emission and Consequences as Observed and Simulated for CEBAF Upgrade Cryomodules

    SciTech Connect (OSTI)

    Marhauser, Frank; Johnson, Rolland; Rodriguez, Rodolfo; Degtiarenko, Pavel; Hutton, Andrew; Kharashvili, George; Reece, Charles; Rimmer, Robert

    2013-09-01T23:59:59.000Z

    High gamma and neutron radiation levels were monitored at the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) after installation of new cavity cryomodules and initial test runs in the frame of the ongoing 12 GeV upgrade program. The dose rates scaled exponentially with cavity accelerating fields, but were independent of the presence of an electron beam in the accelerator. Hence, field emission (FE) is the source of origin. This has led to concerns regarding the high field operation (100 MV per cryomodule) in the future 12 GeV era. Utilizing supercomputing, novel FE studies have been performed with electrons tracked through a complete cryomodule. It provides a principal understanding of experimental observations as well as ways to mitigate FE as best as practicable by identification of problematic cavities.

  18. EFITviewer UpgradesEFITviewer Upgrades MDSplus Event Management System

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Summation System. red values indicate an alarm condition. #12;Web Tool Upgrades Different Signals may is automatic Signal names saved in a file may be pasted into Web Tool fields "Memory" of previous entries improved #12;#12;#12;Web Tools can overlay profiles #12;

  19. Low rank coal upgrading in a flow of hot water

    SciTech Connect (OSTI)

    Masato Morimoto; Hiroyuki Nakagawa; Kouichi Miura [Kyoto University, Kyoto (Japan). Department of Chemical Engineering

    2009-09-15T23:59:59.000Z

    Simultaneous hydrothermal degradation and extraction at around 350{sup o}C using flowing solvent as a reaction/extraction medium were proposed for upgrading brown coal, more specifically, for converting brown coal into several fractions having different molecular weight and chemical structure under mild conditions. When an Australian brown coal, Loy Yang coal, was treated by water at 350{sup o}C under 18 MPa, the coal was separated into four fractions: gaseous product by 8% yield, water-soluble extract at room temperature (soluble) by 23% yield, extract precipitates as solid at room temperature (deposit) by 23% yield, and residual coal (upgraded coal) by 46% yield on daf basis. The separation was found to be realized by in situ extraction of low-molecular-weight substances released from coal macromolecular structure and/or those generated by hydrothermal decomposition reactions at 350{sup o}C. The solid products obtained, deposit and upgraded coal, were characterized in detail to examine the possibility of their effective utilization as solid fuel and chemical feed stock. The upgraded coal showed higher heating value and higher gasification reactivity than the parent coal, indicating that the upgraded coal can be a better solid fuel than the parent coal. The solid extract, deposit, was found to show thermoplasticity at less than 200{sup o}C, suggesting the possibility of utilizing the deposit as a raw material of high performance carbon materials. Several variables affecting the performance of the proposed method are also examined in detail in this paper. 12 refs., 8 figs., 3 tabs.

  20. NSTX Upgrade Project Project Execution Plan

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    NSTX Upgrade Project Project Execution Plan Appendix 1 - WBS Dictionary 25 Appendix 1 - NSTX Upgrade Project Work Breakdown Structure This Work Breakdown Structure (WBS) organizes and defines the scope of the NSTX Upgrade using the WBS as established by the original NSTX project and modified

  1. ATLAS Upgrade for sLHC Motivation

    E-Print Network [OSTI]

    ATLAS Upgrade for sLHC · Motivation · LHC Upgrades · ATLAS Upgrade/schedule · R&D Variety · Russian Institutes involvement · Conclusions A.Cheplakov JINR, Dubna (on behalf of the ATLAS Collaboration) Many thanks to ATLAS colleagues for the useful information - N.Hessey, A.Loginov, A.Romaniouk, P

  2. ATLAS Upgrade Week 1 November 11, 2009

    E-Print Network [OSTI]

    Gan, K. K.

    ATLAS Upgrade Week 1 November 11, 2009 Proposal to Develop On-Detector Array-based Optical Link A. Maettig Universität Wuppertal K.K. Gan A. Pellegrino, T. Sluijk NIKHEF (LHCb) #12;ATLAS Upgrade Week 2;ATLAS Upgrade Week 3 Introduction VCSEL and PIN are available in three forms: single channel or 4

  3. Rate making for Electric Utilities

    E-Print Network [OSTI]

    Hanson, Carl Falster

    1911-01-01T23:59:59.000Z

    of a given size in Texas may be dif ferent from that of a same size town in Massachusetts. This growing demand depends upon two factors: The educating of the people to the use of electricity for light and power, and the probable growth...

  4. Upgrade of the D0 detector: The Tevatron beyond 2 fb**(-1)

    SciTech Connect (OSTI)

    Quinn, Breese; /Mississippi U.

    2005-01-01T23:59:59.000Z

    Recent performance of Fermilab's Tevatron has exceeded this year's design goals and further accelerator upgrades are underway. The high-luminosity period which follows these improvements is known as Run IIb. The D0 experiment is in the midst of a comprehensive upgrade program designed to enable it to thrive with much higher data rate and occupancy. Extensive modifications of and additions to all levels of the trigger and the silicon tracker are in progress. All upgrade projects are on schedule for installation in the 2005 shutdown.

  5. Canada's heavy oil, bitumen upgrading activity is growing

    SciTech Connect (OSTI)

    Corbett, R.A.

    1989-06-26T23:59:59.000Z

    Heavy oil and bitumen upgrading activity in Canada is surging with the recent start-up of two new upgraders and with plans to build others. These new upgraders make use of modern hydrocracking technology. Articles in this special report on upgrading focus on Canada's oil and bitumen reserves, the promising technologies that upgrade them, and present details of some of the current upgrader projects. This article covers the following areas: Canada's heavy oils; Upgrading expands; Upgrading technologies; Test results; Regional upgraders; High-quality light product.

  6. MICHIGAN SWEEPS NEIGHBORHOODS WITH ENERGY UPGRADES | Department...

    Broader source: Energy.gov (indexed) [DOE]

    on supporting local businesses and employment. BetterBuildings for Michigan developed a sustainable market for energy efficiency upgrades and thousands of qualified professionals...

  7. Jefferson Lab accelerator upgrade completed: Initial operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE to begin initial operations of the Continuous Electron Beam Accelerator Facility (CEBAF) as part of its ongoing 338 million upgrade. With the approval of Critical...

  8. Upgrade Boilers with Energy-Efficient Burners

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This revised ITP steam tip sheet on upgrading boilers provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  9. The Upgraded D0 detector

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U./Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota /Charles U. /Prague, Tech. U. /Prague, Inst. Phys. /San Francisco deQuito U. /Clermont-Ferrand U. /LPSC, Grenoble /Marseille, CPPM /Orsay, LAL /Paris U., VI-VII /DAPNIA, Saclay /Strasbourg, IReS; ,

    2005-07-01T23:59:59.000Z

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  10. Pulsed power supply for Nova Upgrade. Final report, August 1, 1991 to March 31, 1992

    SciTech Connect (OSTI)

    Bacon, J.L.; Kajs, J.P.; Walls, A.; Weldon, W.F.; Zowarka, R.C. [Univ. of Texas, Austin, TX (US). Center for Electromechanics] [Univ. of Texas, Austin, TX (US). Center for Electromechanics

    1992-12-31T23:59:59.000Z

    This report describes work carried out at the Center for Electromechanics at The University of Texas at Austin (CEM-UT). A baseline design of the Nova Upgrade has been completed by Lawrence Livermore National Laboratory. The Nova Upgrade is an 18 beamline Nd: glass laser design utilizing fully relayed 4x4 30 cm aperture segmented optical components. The laser thus consists of 288 independent beamlets nominally producing 1.5 to 2.0 MJ of 0.35 {mu}m light in a 3 to 5 ns pulse. The laser design is extremely flexible and will allow a wide range of pulses to irradiate ICF targets. This facility will demonstrate ignition/gain and the scientific feasibility of ICF for energy and defense applications. The pulsed power requirements for the Nova Upgrade are given. CEM-UT was contracted to study and develop a design for a homopolar generator/inductor (HPG/inductor) opening switch system which would satisfy the pulsed power supply requirements of the Nova Upgrade. The Nd:glass laser amplifiers used in the Nova Upgrade will be powered by light from xenon flashlamps. The pulsed power supply for the Nova Upgrade powers the xenon flashlamps. This design and study was for a power supply to drive flashlamps.

  11. Energy Efficiency Upgrades for Little Rock Air Force Base

    SciTech Connect (OSTI)

    Goldman, C.; Dunlap, M.A.

    2000-11-13T23:59:59.000Z

    Little Rock Air Force Base (LRAFB), in partnership with the local utility, Entergy Services, Inc., has reduced energy costs and used savings from investments in high-efficiency equipment to maintain and improve the condition of base housing and other facilities. Three projects were completed, with over $10 million invested. Major accomplishments include replacing air-to-air heat pumps with high-efficiency ground-source heat pumps (GSHPs) in more than 1,500 base housing units, lighting modifications to 10 buildings, upgrade of HVAC equipment in the base's enlisted club, and energy-efficient lighting retrofits for LRAFB's flight simulator.

  12. Merging utilities handle disparate EMSs

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    When two utilities merge, a major aim of the merger is to improve overall system efficiency. When Gulf States Utilities Co (GSU) and Entergy Corp became one company on Jan 1, 1994, they had already taken a giant step towards improving efficiency by consolidating their energy management systems (EMS). When merger talks started, both companies had advanced EMS, but the systems were not compatible and could not fully communicate with each other. The solution to that problem was key to setting the stage for improving combined system operations into the future. This paper describes the EMS systems before and after the merger along with planned upgrades in the future. 3 figs.

  13. SND data acquisition system upgrade

    E-Print Network [OSTI]

    A. G. Bogdanchikov; V. P. Druzhinin; A. A. Korol; S. V. Koshuba; A. I. Tekutiev; Yu. V. Usov

    2014-04-02T23:59:59.000Z

    The data acquisition (DAQ) system of the SND detector successfully operated during four data-taking seasons (2010-2013) at the e+e- collider VEPP-2000. Currently the collider is shut down for planned reconstruction, which is expected to increase the VEPP-2000 luminosity and data flow from the SND detector electronics by up to 10 times. Since current DAQ system implementation (electronics and computer part) does not have enough reserve for selection of events in the new environment without compromising quality, there arose the need for the system upgrade. Here we report on the major SND data acquisition system upgrade which includes developing new electronics for digitization and data transfer, complete redesign of the data network, increasing of the DAQ computer farm processing capacity and making the event building process concurrent. These measures will allow us to collect data flow from the most congested detector subsystems in parallel in contrast to the current situation. We would like to discuss also the possibility to implement full software trigger solution in the future.

  14. Analysis Efforts Supporting NSTX Upgrades

    SciTech Connect (OSTI)

    H.Zhang, P. Titus, P. Rogoff, A.Zolfaghari, D. Mangra, M. Smith

    2010-11-29T23:59:59.000Z

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio, spherical torus (ST) configuration device which is located at Princeton Plasma Physics Laboratory (PPPL) This device is presently being updated to enhance its physics by doubling the TF field to 1 Tesla and increasing the plasma current to 2 Mega-amperes. The upgrades include a replacement of the centerstack and addition of a second neutral beam. The upgrade analyses have two missions. The first is to support design of new components, principally the centerstack, the second is to qualify existing NSTX components for higher loads, which will increase by a factor of four. Cost efficiency was a design goal for new equipment qualification, and reanalysis of the existing components. Showing that older components can sustain the increased loads has been a challenging effort in which designs had to be developed that would limit loading on weaker components, and would minimize the extent of modifications needed. Two areas representing this effort have been chosen to describe in more details: analysis of the current distribution in the new TF inner legs, and, second, analysis of the out-of-plane support of the existing TF outer legs.

  15. NSTX Upgrade Project Project Execution Plan

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    NSTX Upgrade Project Project Execution Plan 6 PPPL Laboratory Director S.Prager Deputy Director.Gentile Centerstack Dsgn & Fab J. Chrzanowski NSTX Upgrade Project Manager R. Strykowsky Deputy and Construction Manager E. Perry Project Controls S. Langish NSTXCenterstack Manager L. Dudek NSTXNeutral Beam Manager T

  16. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Work Authorization Document NSTX Upgrade Project Control Account #: 1302 Title: WBS 1.1.11 Title Functional Manager P. Heitzenroeder Approvals Signature Date NSTX-U Project Manager R. Strykowsky 4- WBS and includes design modifications and upgrade of the coil assembly stand; procedures for assembling the Center

  17. The Bottom Line Space@Penn Upgrade

    E-Print Network [OSTI]

    Sharp, Kim

    The Bottom Line Space@Penn Upgrade Coming Soon! A project is underway to upgrade the current that allows designated users in the field to update certain elements of their space. This project, whose: Grants & Projects ­ Used for invoice generation, overhead and revenue recognition, and award and project

  18. NSTXpool Computer Upgrade December 9, 2010

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    NSTXpool Computer Upgrade WP #1685 Bill Davis December 9, 2010 #12;Work Scope Upgrade Operating System, Application Software, and Programs that run on NSTX computers using Red Hat Enterprise Linux 3. nstxpool computers + nstxops nstxWindowsPC (Control Room Display Wall) Big Blue cluster for EFIT Selected

  19. Weatherization and Workforce Guidelines for Home Energy Upgrades...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Home Energy Upgrades Fact Sheet Weatherization and Workforce Guidelines for Home Energy Upgrades Fact Sheet This fact sheet provides essential information about the 2011...

  20. Shared Space vs. In-Unit Upgrades in Multifamily Buildings |...

    Energy Savers [EERE]

    Shared Space vs. In-Unit Upgrades in Multifamily Buildings Shared Space vs. In-Unit Upgrades in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Peer...

  1. Sandia National Laboratories: Solar Test Facility Upgrades Complete...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrades Complete, Leading to Better Sandia Capabilities to Support Power Industry Solar Test Facility Upgrades Complete, Leading to Better Sandia Capabilities to Support...

  2. Federal Finance Facilities Available for Energy Efficiency Upgrades...

    Energy Savers [EERE]

    Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy Deployment Federal Finance Facilities Available for Energy Efficiency Upgrades and Clean Energy...

  3. ENERGY STAR Webinar: Financing Energy Efficient Upgrades with...

    Broader source: Energy.gov (indexed) [DOE]

    ENERGY STAR Webinar: Financing Energy Efficient Upgrades with ENERGY STAR ENERGY STAR Webinar: Financing Energy Efficient Upgrades with ENERGY STAR October 21, 2014 2:00PM to...

  4. ATLAS Nightly Build System Upgrade

    E-Print Network [OSTI]

    Dimitrov, G; The ATLAS collaboration; Simmons, B; Undrus, A

    2013-01-01T23:59:59.000Z

    The ATLAS Nightly Build System is a facility for automatic production of software releases. Being the major component of ATLAS software infrastructure, it supports more than 50 multi-platform branches of nightly releases and provides ample opportunities for testing new packages, for verifying patches to existing software, and for migrating to new platforms and compilers. The Nightly System testing framework runs several hundred integration tests of different granularity and purpose. The nightly releases are distributed and validated, and some are transformed into stable releases used for data processing worldwide. The first LHC long shutdown (2013-2015) activities will elicit increased load on the Nightly System as additional releases and builds are needed to exploit new programming techniques, languages, and profiling tools. This paper describes the plan of the ATLAS Nightly Build System Long Shutdown upgrade. It brings modern database and web technologies into the Nightly System, improves monitoring of nigh...

  5. Energy Efficiency Through Lighting Upgrades

    SciTech Connect (OSTI)

    Kara Berst; Maria Howeth

    2010-06-01T23:59:59.000Z

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year?¢????s average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  6. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  7. Resolution studies and performance evaluation of the LHCb VELO upgrade

    E-Print Network [OSTI]

    Hynds, Daniel Peter McFarlane; Soler, Paul; Parkes, Christopher

    2015-03-25T23:59:59.000Z

    The LHCb detector at CERN is scheduled to undergo an upgrade during the second long shutdown of the LHC. As part of this upgrade, the vertex detector (VELO) will be replaced with a new hybrid pixel detector, based on an evolution of the Timepix ASIC. The performance of this detector should improve upon that achieved by the current VELO, in addition to facilitating the complete detector readout at 40 MHz. As part of the preparation for this upgrade, this thesis presents the results of studies carried out on the single hit resolution of silicon hybrid pixel detectors. The development of a particle beam telescope has been carried out to allow these studies, shown to operate with track rates in excess of 45 kHz and with a pointing resolution at the device under test of less than 2 ?m. A wide range of sensor types, thicknesses and resistivities have then been tested under different operating conditions and the results presented, with single hit resolutions varying between 4 ?m and 12 ?m depending on the conditi...

  8. Energy Rating

    E-Print Network [OSTI]

    Cabec Conference; Rashid Mir P. E

    2009-01-01T23:59:59.000Z

    Consistent, accurate, and uniform ratings based on a single statewide rating scale Reasonable estimates of potential utility bill savings and reliable recommendations on cost-effective measures to improve energy efficiency Training and certification procedures for home raters and quality assurance procedures to promote accurate ratings and to protect consumers Labeling procedures that will meet the needs of home buyers, homeowners, renters, the real estate industry, and mortgage lenders with an interest in home energy ratings

  9. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    All electric utilities operating in Iowa, including those not rate-regulated by the Iowa Utilities Board (IUB), are required to offer green power options to their customers. These programs allow...

  10. Process model and capacity upgrades of the CTI-4000 liquid helium coldbox

    SciTech Connect (OSTI)

    Hansen, Benjamin; Klebaner, Arkadiy [Fermilab, P.O. Box 500, Batavia, IL 60510 (United States); Quack, Hans [Technische Universitaet Dresden, Dresden (Germany)

    2014-01-29T23:59:59.000Z

    Fermi National Accelerator Laboratory (FNAL) is in the process of re-commissioning a vintage CTI-4000 liquid helium coldbox, initially supplied by CTI-Cryogenics/Sulzer to Los Alamos in 1979. The coldbox was originally designed as a liquid helium refrigerator with capacity of ?1200 W at nominal 4-K. The process utilized LN{sub 2} precooling, in-series operation of two centrifugal gas bearing turboexpanders and final Joule-Thomson (J-T) expansion. At FNAL, the coldbox will be utilized as a liquefier to support 2-K operations. A process model was developed to aid in the upgrade decisions and used to determine the nominal capacity of the liquefier. Capacity upgrades are achieved by safely utilizing the internal LN2 precooler, the addition of a 3-inch reciprocating wet expansion engine and increasing the overall process pressure by recertifying two limiting pressure vessels to a higher MAWP.

  11. Nuclear safety procedure upgrade project at USEC/MMUS gaseous diffusion plants

    SciTech Connect (OSTI)

    Kocsis, F.J. III

    1994-12-31T23:59:59.000Z

    Martin Marietta Utility Services has embarked on a program to upgrade procedures at both of its Gaseous Diffusion Plant sites. The transition from a U.S. Department of Energy government-operated facility to U.S. Nuclear Regulatory Commission (NRC) regulated has necessitated a complete upgrade of plant operating procedures and practices incorporating human factors as well as a philosophy change in their use. This program is designed to meet the requirements of the newly written 10CFR76, {open_quotes}The Certification of Gaseous Diffusion Plants,{close_quotes} and aid in progression toward NRC certification. A procedures upgrade will help ensure increased nuclear safety, enhance plant operation, and eliminate personnel procedure errors/occurrences.

  12. RECOVERY ACT: TAPOCO PROJECT: CHEOAH UPGRADE

    SciTech Connect (OSTI)

    Paul Tran; 293 Highway 740; Baden, NC 28009

    2013-02-28T23:59:59.000Z

    Under Funding Opportunity Announcement Number: DE-FOA-0000120, Recovery Act: Hydroelectric Facility Modernization, Alcoa Power Generating Inc. (APGI), a fully owned subsidiary of Alcoa Inc., implemented major upgrades at its Cheoah hydroelectric facility near Robbinsville, North Carolina.

  13. Economic Options for Upgrading Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  14. Advanced Photon Source Upgrade Project - Materials

    ScienceCinema (OSTI)

    Gibbson, Murray;

    2013-04-19T23:59:59.000Z

    An upgrade to Advanced Photon Source announced by DOE - http://go.usa.gov/ivZ -- will help scientists break through bottlenecks in materials design in order to develop materials with desirable functions.

  15. Advanced Photon Source Upgrade Project - Energy

    ScienceCinema (OSTI)

    Gibson, Murray; Chamberlain, Jeff; Young, Linda

    2013-04-19T23:59:59.000Z

    An upgrade to the Advanced Photon Source (announced by DOE - http://go.usa.gov/ivZ) will help scientists better understand complex environments such as in catalytic reactions.

  16. High Flux Isotope Reactor power upgrade status

    SciTech Connect (OSTI)

    Rothrock, R.B.; Hale, R.E. [Oak Ridge National Lab., TN (United States); Cheverton, R.D. [Delta-21 Resources Inc., Oak Ridge, TN (United States)

    1997-03-01T23:59:59.000Z

    A return to 100-MW operation is being planned for the High Flux Isotope Reactor (HFIR). Recent improvements in fuel element manufacturing procedures and inspection equipment will be exploited to reduce hot spot and hot streak factors sufficiently to permit the power upgrade without an increase in primary coolant pressure. Fresh fuel elements already fabricated for future use are being evaluated individually for power upgrade potential based on their measured coolant channel dimensions.

  17. Page 1 of 17 NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    INFORMATION Project Title: NSTX Upgrade Project at PPPL Total Project Cost (TPC) Range: $74.7M to $92.9M CD-0 Range 2.1 Total Project Cost Range The preliminary total project cost (TPC) range is $74.7M - $92.9M. 2Page 1 of 17 NSTX Upgrade Project Acquisition Strategy April 5, 2010 #12;Page 2 of 17 Change Log

  18. CDF central preshower and crack detector upgrade

    SciTech Connect (OSTI)

    Artikov, A.; Boudagov, J.; Chokheli, D.; Drake, G.; Gallinaro, M.; Giunta, M.; Grudzinski, J.; Huston, J.; Iori, M.; Kim, D.; Kim, M.; /Dubna, JINR /Argonne /Rockefeller

    2007-02-01T23:59:59.000Z

    The CDF Central Preshower and Crack Detector Upgrade consist of scintillator tiles with embedded wavelength-shifting fibers, clear-fiber optical cables, and multi-anode photomultiplier readout. A description of the detector design, test results from R&D studies, and construction phase are reported. The upgrade was installed late in 2004, and a large amount of proton-antiproton collider data has been collected since then. Detector studies using those data are also discussed.

  19. Kansas City Board of Public Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Kansas City Board of Public Utilities provides incentives for commercial customers to install, or upgrade to, energy efficiency equipment in new and existing facilities.Rebates are available...

  20. IPNS upgrade: A feasibility study

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Many of Argonne National Laboratory`s (ANL`s) scientific staff members were very active in R&D work related to accelerator-based spoliation sources in the 1970s and early 1980s. In 1984, the Seitz/Eastman Panel of the National Academy of Sciences reviewed U.S. materials science research facilities. One of the recommendations of this panel was that the United States build a reactor-based steady-state source, the Advanced Neutron Source (ANS), at Oak Ridge National Laboratory. Subsequently, R&D activities related to the design of an accelerator-based source assumed a lower priority. The resumption of pulsed-source studies in this country started simultaneously with design activities in Europe aimed at the European Spallation Source (ESS). The European Community funded a workshop in September 1991 to define the parameters of the ESS. Participants in this workshop included both accelerator builders and neutron source users. A consortium of European countries has proposed to build a 5-MW pulsed source, and a feasibility study is currently under way. Soon after the birth of the ESS, a small group at ANL set about bringing themselves up to date on pulsed-source information since 1984 and studied the feasibility of upgrading ANL`s Intense Pulsed Neutron Source (IPNS) to 1 MW by means of a rapidly cycling synchrotron that could be housed, along with its support facilities, in existing buildings. In early 1993, the Kohn panel recommended that (1) design and construction of the ANS should be completed according to the proposed project schedule and (2) development of competitive proposals for cost-effective design and construction of a 1-MW pulsed spallation source should be authorized immediately.

  1. Booster main magnet power supply, present operation and potential future upgrades

    SciTech Connect (OSTI)

    Bajon, E.; Bannon, M.; Marneris, I.; Danowski, G.; Sandberg, J.; Savatteri, S.

    2011-03-28T23:59:59.000Z

    The Brookhaven Booster Main Magnet Power Supply (MMPS) is a 24 pulse thyristor control supply, rated at 5500 Amps, +/-2000 Volts, or 3000 Amps, +/-6000 Volts. The power supply is fed directly from the power utility and the peak magnet power is 18 MWatts. This peak power is seen directly at the incoming ac line. This power supply has been in operation for the last 18 years. This paper will describe the present topology and operation of the power supply, the feedback control system and the different modes of operation of the power supply. Since the power supply has been in operation for the last 18 years, upgrading this power supply is essential. A new power supply topology has been studied where energy is stored in capacitor banks. DC to DC converters are used to convert the dc voltage stored in the capacitor banks to pulsed DC voltage into the magnet load. This enables the average incoming power from the ac line to be constant while the peak magnet power is pulsed to +/- 18 MWatts. Simulations and waveforms of this power supply will be presented.

  2. ENERGY EFFICIENCY UPGRADES FOR SANITATION FACILITIES IN SELAWIK, AK FINAL REPORT

    SciTech Connect (OSTI)

    POLLIS, REBECCA

    2014-10-17T23:59:59.000Z

    The Native Village of Selawik is a federally recognized Alaskan tribe, located at the mouth of the Selawik River, about 90 miles east of Kotzebue in northwest Alaska. Due to the communitys rural location and cold climate, it is common for electric rates to be four times higher than the cost urban residents pay. These high energy costs were the driving factor for Selawik pursuing funding from the Department of Energy in order to achieve significant energy cost savings. The main objective of the project was to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit. One purpose for the proposed improvements was to enable the community to realize significant savings associated with the cost of energy. Another purpose of the upgrades was to repair the vacuum sewer system on the west side of Selawik to prevent future freeze-up problems during winter months.

  3. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    SciTech Connect (OSTI)

    Gordon, John

    2012-09-30T23:59:59.000Z

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

  4. Climate balance of biogas upgrading systems

    SciTech Connect (OSTI)

    Pertl, A., E-mail: andreas.pertl@boku.ac.a [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria); Mostbauer, P.; Obersteiner, G. [Institute of Waste Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Applied Life Sciences, Vienna, Muthgasse 107, A-1190 Wien (Austria)

    2010-01-15T23:59:59.000Z

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO{sub 2}.

  5. " Federal Utility Energy Service Contracts"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chiller Central Plant Comprehensive Upgrades ControlsUpgradesRepairs Distributed Generation Renewables HVACMotorsPumps InsulationBuilding Envelope Lighting Lighting and...

  6. MAVIS III -- A Windows 95/NT Upgrade

    SciTech Connect (OSTI)

    Hardwick, M.F. [Sandia National Labs., Livermore, CA (United States). GTS Engineering Dept.

    1997-12-01T23:59:59.000Z

    MAVIS (Modeling and Analysis of Explosive Valve Interactions) is a computer program that simulates operation of explosively actuated valve. MAVIS was originally written in Fortran in the mid 1970`s and was primarily run on the Sandia Vax computers in use through the early 1990`s. During the mid to late 1980`s MAVIS was upgraded to include the effects of plastic deformation and it became MAVIS II. When the Vax computers were retired, the Gas Transfer System (GTS) Development Department ported the code to the Macintosh and PC platforms, where it ran as a simple console application. All graphical output was lost during these ports. GTS code developers recently completed an upgrade that provides a Windows 95/NT MAVIS application and restores all of the original graphical output. This upgrade is called MAVIS III version 1.0. This report serves both as a user`s manual for MAVIS III v 1.0 and as a general software development reference.

  7. Bitumen and heavy oil upgrading in Canada

    SciTech Connect (OSTI)

    Chrones, J.

    1988-06-01T23:59:59.000Z

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulfur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader, now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional products, also based on hydrogenation, will use ebullated bed catalyst systems: the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.

  8. Bitumen and heavy oil upgrading in Canada

    SciTech Connect (OSTI)

    Chrones, J. (Chrones Engineering Consultants Inc., 111 Lord Seaton Road, Willowdale, Ontario (CA)); Germain, R.R. (Alberta Oil Sands Technology and Research Authority, Edmonton, AB (Canada))

    1989-01-01T23:59:59.000Z

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulphur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional projects, also based on hydrogenation, will use ebullated bed catalyst systems; the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.

  9. Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance

    SciTech Connect (OSTI)

    Not Available

    2005-04-01T23:59:59.000Z

    In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

  10. THE SNS VACUUM CONTROL SYSTEM UPGRADE FOR THE SUPERCONDUCTING LINAC

    SciTech Connect (OSTI)

    Williams, Derrick C [ORNL] [ORNL

    2009-01-01T23:59:59.000Z

    The superconducting linac of the Spallation Neutron Source (SNS) has 23 cryomodules whose vacuum system is monitored and controlled by custom built hardware. The original control hardware was provided by Thomas Jefferson National Accelerator Facility (JLab) and contained a variety of custom boards utilizing integrated circuits to perform logic. The need for control logic changes, a desire to increase maintainability, and a desire to increase flexibility to adapt for the future has led to a Programmable Logic Controller (PLC) based upgrade. This paper provides an overview of the commercial off-the-shelf (COTS) hardware being used in the superconducting vacuum control system. Details of the design and challenges to convert a control system during small windows of maintenance periods without disrupting beam operation will be covered in this paper.

  11. Unique Solar Thermal Laboratory Gets an Upgrade | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade September 10, 2010 - 2:54pm Addthis This power tower is part of the...

  12. EECBG Success Story: HVAC Upgrade Saving Money, Protecting History...

    Broader source: Energy.gov (indexed) [DOE]

    HVAC Upgrade Saving Money, Protecting History EECBG Success Story: HVAC Upgrade Saving Money, Protecting History November 2, 2010 - 5:37pm Addthis A new heating and cooling system...

  13. When Energy Efficiency Upgrades and Ghost Stories Meet | Department...

    Broader source: Energy.gov (indexed) [DOE]

    When Energy Efficiency Upgrades and Ghost Stories Meet When Energy Efficiency Upgrades and Ghost Stories Meet October 31, 2011 - 5:21pm Addthis Homewood Public Library at Night |...

  14. UPGRADE AND EVALUATION OF A LIGHTNING DETECTION SYSTEM

    E-Print Network [OSTI]

    Stoffelen, Ad

    /11/2004 page 3 of 17 1 INTRODUCTION KNMI (Royal Netherlands Meteorological Institute) has upgraded itsUPGRADE AND EVALUATION OF A LIGHTNING DETECTION SYSTEM Hans Beekhuis Iwan Holleman the Netherlands

  15. Upgrading : an alternative approach towards housing reform in China

    E-Print Network [OSTI]

    He, Fang, 1956-

    1989-01-01T23:59:59.000Z

    The thesis is a study on urban housing upgrading in China. The main objective is to look at upgrading, which has been widely used in many developing countries, as an alternative approach to solving the existing urban housing ...

  16. Advanced Photon Source Upgrade Creating a Better Quality of Life

    SciTech Connect (OSTI)

    Linda Young

    2012-11-05T23:59:59.000Z

    The upgrade will enable ultrafast X-ray pulses that could point the way to more efficient electronics and vehicles.

  17. The JLAB 12 GeV Energy Upgrade of CEBAF

    SciTech Connect (OSTI)

    Harwood, Leigh H. [JLAB

    2013-12-01T23:59:59.000Z

    This presentation should describe the progress of the 12GeV Upgrade of CEBAF at Jefferson Lab. The status of the upgrade should be presented as well as details on the construction, procurement, installation and commissioning of the magnet and SRF components of the upgrade.

  18. Guidelines for Home Energy Upgrade Professionals: Standard Work Specifications for Multifamily Energy Upgrades (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    This fact sheet provides essential information about the 2011 publication of the Workforce Guidelines for Multifamily Home Energy Upgrades, including their origin, their development with the help of industry leaders to create the standard work specifications for retrofit work.

  19. MAST-Upgrade Advancing compact fusion sources

    E-Print Network [OSTI]

    of innovation. It will also put the UK in a leading position to develop engineering systems for the future to the drive towards commercial fusion power. 1. Testing reactor concepts. MAST-Upgrade will be the first machine to include the Super-X divertor design, an innovative plasma exhaust system that, if successful

  20. Preparation for upgrading western subbituminous coal

    SciTech Connect (OSTI)

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01T23:59:59.000Z

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  1. T-Farm complex alarm upgrades

    SciTech Connect (OSTI)

    Roberts, J.B.

    1995-01-01T23:59:59.000Z

    The alarm and controls associated with the T, TX, and TY farms are located in the 242-T control room. The design data for replacement and upgrades of the alarm panels is in this document. This task was canceled previous to the 90% design review point.

  2. Work Authorization Document NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Work Authorization Document NSTX Upgrade Project Control Account #: 7900 Title: WBS 1.7.3 Title Functional Manager L. Dudek Approvals Signature Date NSTX-U Project Manager R. Strykowsky 4- WBS Dictionary procedures and documents to support the integrated tests, and to support performance of the pre

  3. Evaluation of Catalysts from Different Origin for Vapor Phase Upgrading in Biomass Pyrolysis

    SciTech Connect (OSTI)

    Zhang, X.; Mukarakate, C.; Zheng, Z.; Nimlos, M.

    2012-01-01T23:59:59.000Z

    Liquid fuels and chemicals from biomass resources arouse much interests in research and development. Fast pyrolysis of biomass has the potential to effectively change solid biomass materials into liquid products. However, bio-oil from traditional pyrolysis processes is difficult to apply in industry, because of its complicated composition, high oxygen content, low stability, etc. Upgrading or refining of the bio-oil should be performed for industrial application of biomass pyrolysis. Often, the process would be done in a separate reactor downstream of the pyrolysis process. In this paper, a laboratory scale micro test facility was constructed, wherein the pyrolysis of pine and catalytic upgrading of the resulting vapors were closely coupled in one reactor. The composition of vapor effluent was monitored with a molecular beam mass spectrometer (MBMS) for the online evaluation of the catalyst performance. Catalysts from different origin were tested and compared for the effectiveness of pyrolysis vapor upgrading, namely commercial zeolites, Ni based steam reforming catalyst, CaO, MgO, and several laboratory-made catalysts. The reaction temperature for catalytic upgrading varied between 400 and 600 centigrade, and the gaseous residence time ranged from 0.1 second to above 2 second, to simulate the conditions in industrial application. It is revealed that some catalysts are active in transform most of primary biomass pyrolysis vapors into hydrocarbons, resulting in nonoxygenated products, which is beneficial for downstream utilization. Others are not as effective, results in minor improvement compared with blank test results.

  4. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    E-Print Network [OSTI]

    Glatzer, Julian Maximilian Volker; The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of 2 with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the double amount of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to 3 different sub-detector combinations. In this contribution, we give an overview of the operational software framework of the L1CT system with particular emphasis of the configuration, controls and monitoring aspects. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition. Trigger and dead-time rates are m...

  5. Property:OpenEI/UtilityRate/Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Description URLsEndDate JumpSourceParentPage.

  6. Development of Hydrothermal Liquefaction and Upgrading Technologies for Lipid-Extracted Algae Conversion to Liquid Fuels

    SciTech Connect (OSTI)

    Zhu, Yunhua; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Jones, Susanne B.

    2013-10-01T23:59:59.000Z

    Bench-scale tests were performed for lipid-extracted microalgae (LEA) conversion to liquid fuels via hydrotreating liquefaction (HTL) and upgrading processes. Process simulation and economic analysis for a large-scale LEA HTL and upgrading system were developed based on the best available test results. The system assumes an LEA feed rate of 608 dry metric ton/day and that the feedstock is converted to a crude HTL bio-oil and further upgraded via hydrotreating and hydrocracking to produce liquid hydrocarbon fuels, mainly alkanes. Performance and cost results demonstrate that HTL would be an effective option to convert LEA to liquid fuel. The liquid fuels annual yield was estimated to be 26.9 million gallon gasoline-equivalent and the overall energy efficiency at higher heating value basis was estimated to be 69.5%. The minimum fuel selling price (MFSP) was estimated to be $0.75/L with LEA feedstock price at $33.1 metric ton at dry basis and 10% internal rate of return. A sensitivity analysis indicated that the largest effects to production cost would come from the final products yields and the upgrading equipments cost. The impact of plant scale on MFSP was also investigated.

  7. Upgrade of CEBAF from 6 Gev To 12 Gev: Status

    SciTech Connect (OSTI)

    Harwood, Leigh [Jefferson Lab, 12000 Jefferson Ave, Newport News, VA, 23606 (United States)

    2013-04-19T23:59:59.000Z

    The CEBAF accelerator is being upgraded from 6 GeV to 12 GeV by the US Department of Energy. The accelerator upgrade is being done within the existing tunnel footprint. The accelerator upgrade includes: 10 new srfbased high-performance cryomodules plus RF systems, doubling the 2K helium plant's capability, upgrading the existing beamlines to operate at nearly double the original performance envelope, and adding a beamline to a new experimental area. Construction is over 75% complete with final completion projected for late FY13. Details of the upgrade and status of the work will be presented.

  8. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to...

  9. Use of 2.5-D and 3-D technology to evaluate control room upgrades

    SciTech Connect (OSTI)

    Hanes, L. F.; Naser, J. [2023 Wickford Road, Columbus, OH 43221 Electric Power Research Inst., 3420 Hillview Ave., Palo Alto, CA 94303 (United States)

    2006-07-01T23:59:59.000Z

    This paper describes an Electric Power Research Inst. (EPRI) study in which 2.5-D and 3-D visualization technology was applied to evaluate the design of a nuclear power plant control room upgrade. The study involved converting 3-D CAD flies of a planned upgrade into a photo-realistic appearing virtual model, and evaluating the value and usefulness of the model. Nuclear utility and EPRI evaluators viewed and interacted with the control room virtual model with both 2.5-D and 3-D representations. They identified how control room and similar virtual models may be used by utilities for design and evaluation purposes; assessed potential economic and other benefits; and identified limitations, potential problems, and other issues regarding use of visualization technology for this and similar applications. In addition, the Halden CREATE (Control Room Engineering Advanced Tool-kit Environment) Verification Tool was applied to evaluate features of the virtual model against US NRC NUREG 0700 Revision 2 human factors engineering guidelines (NUREG 0700) [1]. The study results are very favorable for applying 2.5-D visualization technology to support upgrading nuclear power plant control rooms and other plant facilities. Results, however, show that today's 3-D immersive viewing systems are difficult to justify based on cost, availability and value of information provided for this application. (authors)

  10. An Upgrade Proposal from the PHENIX Collaboration

    E-Print Network [OSTI]

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Alexander, J; Aoki, K; Apadula, N; Asano, H; Atomssa, E T; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bai, X; Bandara, N; Bannier, B; Barish, K N; Baron, O; Bassalleck, B; Bathe, S; Baublis, V; Baumgart, S; Bazilevsky, A; Beaumier, M; Beckman, S; Belmont, R; Benjamin, G; Berdnikov, A; Berdnikov, Y; Blackburn, J; Blau, D S; Bobrek, M; Bok, J; Boose, S; Boyle, K; Britton,, C L; Brooks, M L; Bryslawskyj, J; Bumazhnov, V; Butler, C; Butsyk, S; Campbell, S; Carollo, A; Chai, J -S; Chen, C -H; Chernichenko, S; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choi, S; Chollet, S; Christiansen, P; Chujo, T; Cianciolo, V; Citron, Z; Cole, B A; Cronin, N; Crossett, N; Csand, M; D'Orazio, L; Dairaku, S; Danley, D; Datta, A; Daugherity, M S; David, G; DeBlasio, K; Debraine, A; Dehmelt, K; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Ding, L; Dion, A; Diss, P B; Do, J H; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Eberle, L; Efremenko, Y V; Engelmore, T; Enokizono, A; Esumi, S; Eyser, K O; Fadem, B; Feege, N; Fields, D E; Finger, M; FingerJr., M; Fleuret, F; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fusayasu, T; Gainey, K; Gal, C; Gallus, P; Garg, P; Garishvili, A; Garishvili, I; Gastaldi, F; Ge, H; Giannotti, P; Giordarno, F; Glenn, A; Gong, X; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guragain, H; Hachiya, T; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamilton, H F; Han, S Y; Hanks, J; Hasegawa, S; Haseler, T O S; Hashimoto, K; Hayano, R; Hayashi, S; He, X; Hemmick, T K; Hester, T; Hill, J C; Hoefferkamp, M; Hollis, R S; Homma, K; Hong, B; Hori, Y; Hoshino, T; Huang, J; Huang, S; Hutchins, J R; Ichihara, T; Ikeda, Y; Imai, K; Imazu, Y; Imrek, J; Inaba, M; Iordanova, A; Isenhower, D; Isinhue, A; Isupov, A; Ivanischev, D; Ivanov, V; Jacak, B V; Jeon, S J; Jezghani, M; Jia, J; Jiang, X; Johnson, B M; Joo, K S; Jouan, D; Jumper, D S; Kamin, J; Kanda, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kawall, D; Kazantsev, A V; Kehayias, H -J; Key, J A; Khachatryan, V; Khandai, P K; Khanzadeev, A; Kijima, K M; Kim, C; Kim, D H; Kim, D J; Kim, E -J; Kim, H J; Kim, K -B; Kim, M; Kim, Y -J; Kim, Y K; Kimelman, B; Kiss, ; Kistenev, E; Kitamura, R; Klatsky, J; Kleinjan, D; Kline, P; Koblesky, T; Kochenda, L; Kofarago, M; Komatsu, Y; Komkov, B; Koster, J; Kotchetkov, D; Kotov, D; Kravtsov, P; Krizek, F; Kurita, K; Kuriyama, M; Kurosawa, M; Kwon, Y; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, G H; Lee, J; Lee, K B; Lee, K S; Lee, S; Lee, S H; Lefferts, R; Leitch, M J; Leite, M A L; Leitgab, M; Lewis, B; Li, X; Lim, S H; Lipski, A; Litvinenko, A; Liu, M X; Love, B; Lynch, D; Lynch, M; Maguire, C F; Makdisi, Y I; Makek, M; Malakhov, A; Manion, A; Manko, V I; Mannel, E; Maruyama, T; Masumoto, S; McCumber, M; McGaughey, P L; McGlinchey, D; McKay, R; McKinney, C; Meles, A; Mendoza, M; Menegasso, R; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Milov, A; Mishra, D K; Mitchell, J T; Miyasaka, S; Mizuno, S; Mohanty, A K; Montuenga, P; Moon, T; Morrison, D P; Moskowitz, M; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Mwai, A; Nagae, T; Nagamiya, S; Nagashima, K; Nagle, J L; Nagy, M I; Nakagawa, I; Nakagomi, H; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nattrass, C; Nederlof, A; Netrakanti, P K; Nihashi, M; Niida, T; Ninomiya, K; Nishimura, S; Northacker, D; Nouicer, R; Novak, T; Novitzky, N; Nukariya, A; Nyanin, A S; O'Brien, E; Ogilvie, C A; Oide, H; Okada, K; Koop, J D Orjuela; Osborn, J D; Oskarsson, A; sterman, L; Ozawa, K; Pancake, C; Pantuev, V; Papavassiliou, V; Park, I H; Park, J S; Park, S; Park, S K; Pate, S F; Patel, L; Patel, M; Peng, J -C; Perepelitsa, D; Perera, G D N; Peresedov, V; Peressounko, D Yu; Perry, J; Petti, R; Pinkenburg, C; Pinson, R; Pisani, R P; Popule, J; Purschke, M L; Qu, H; Radhakrishnan, S; Rak, J; Ramson, B J; Ravinovich, I; Read, K F; Reynolds, D; Reynolds, R; Riabov, V; Riabov, Y; Richardson, E; Rinn, T; Riveli, N; Roach, D; Rolnick, S D; Rosati, M; Roschin, E; Rowan, Z; Rubin, J G; Rukoyatkin, P; Ryu, M S; Safonov, A; Sahlmueller, B; Saito, N; Sakaguchi, T; Sako, H; Samsonov, V; Sano, M; Sarsour, M; Sato, S; Sawada, S; Schaefer, B; Schmoll, B K; Sedgwick, K; Seele, J; Seidl, R; Sekiguchi, Y; Sen, A; Seto, R; Sett, P; Sexton, A; Shafto, E; Sharma, D; Shaver, A; Shein, I; Shibata, T -A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sicho, P; Sickles, A; Silva, C L; Silvermyr, D; Singh, B K; Singh, C P; Singh, V; Sippach, F W; Skolnik, M; Snowball, M; Solano, S; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Soumya, M; Sourikova, I V; Stankus, P W; Steinberg, P; Stenlund, E; Stepanov, M; Ster, A; Stevens, L; Stoll, S P; Stone, M R; Sugitate, T; Sukhanov, A; Sumita, T; Sun, J; Sziklai, J; Takagui, E M

    2015-01-01T23:59:59.000Z

    In this document the PHENIX collaboration proposes a major upgrade to the PHENIX detector at the Relativistic Heavy Ion Collider. This upgrade, sPHENIX, enables an extremely rich jet and beauty quarkonia physics program addressing fundamental questions about the nature of the strongly coupled quark-gluon plasma (QGP), discovered experimentally at RHIC to be a perfect fluid. The startling dynamics of the QGP on fluid-like length scales is an emergent property of quantum chromodynamics (QCD), seemingly implicit in the Lagrangian but stubbornly hidden from view. QCD is an asymptotically free theory, but how QCD manifests as a strongly coupled fluid with specific shear viscosity near $T_C$, as low as allowed by the uncertainty principle, is as fundamental an issue as that of how confinement itself arises.

  11. CHALLENGES FOR THE SNS RING ENERGY UPGRADE

    SciTech Connect (OSTI)

    Plum, Michael A [ORNL; Gorlov, Timofey V [ORNL; Holmes, Jeffrey A [ORNL; Hunter, W Ted [ORNL; Roseberry, Jr., R Tom [ORNL; Wang, Jian-Guang [ORNL

    2012-01-01T23:59:59.000Z

    The Oak Ridge Spallation Neutron Source accumulator ring presently operates at a beam power of about 1 MW with a beam energy of about 910 MeV. A power upgrade is planned to increase the beam energy to 1.3 GeV. For the accumulator ring this mostly involves modifications to the injection and extraction sections. A variety of modifications to the existing injection section were necessary to achieve 1 MW, and the tools developed and the lessons learned from this work are now being applied to the design of the new injection section. This paper will discuss the tools and the lessons learned, and also present the design and status of the upgrades to the accumulator ring.

  12. JEFFERSON LAB 12 GEV CEBAF UPGRADE

    SciTech Connect (OSTI)

    Rode, C. H. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia, 23606 (United States)

    2010-04-09T23:59:59.000Z

    The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at approx6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

  13. The PS Upgrade Program: Recent Advances

    E-Print Network [OSTI]

    Gilardoni, SS; Bertone, C; Biancacci, N; Blas, A; Damjanovic, S; Bodart, D; Borburgh, J; Chiggiato, P; Damerau, H; Devine, JD; Dobers, T; Gourber-Pace, M; Hancock, S; Huschauer, A; Iadarola, G; Lopez Hernandez, LA; Masi, A; Mataguez, S; Metral, E; Paoluzzi, M; Persichelli, S; Pittet, S; Rossi, C; Roesler, S; Rumolo, G; Salvant, B; Steerenberg, R; Sterbini, G; Vollaire, J; Wasef, R; Ventura, L; Yin Vallgren, C; Migliorati, M

    2013-01-01T23:59:59.000Z

    The LHC Injectors Upgrade project (LIU) has been initiated to improve the performances of the existing injector complex at CERN to match the future requirements of the HL-LHC (High Luminosity LHC). In this framework, the Proton Synchrotron (PS) will undergo fundamental changes for many of its main systems: the injection energy will be increased to reduce space-charge effects, the transverse damper will be improved to cope with transverse instabilities, and the RF systems will be upgraded to accelerate higher beam intensity and brightness. These hardware improvements are triggered by a series of studies meant to identify the most critical performance bottlenecks, like space charge, impedances, longitudinal and transverse instabilities, as well as electron-cloud. Additionally, alternative production schemes for the LHC-type beams have been proposed and implemented to circumvent some of the present limitations. A summary of the most recent advances of the studies, as well as the proposed hardware improvements is...

  14. An Upgrade Proposal from the PHENIX Collaboration

    E-Print Network [OSTI]

    A. Adare; S. Afanasiev; C. Aidala; N. N. Ajitanand; Y. Akiba; R. Akimoto; J. Alexander; K. Aoki; N. Apadula; H. Asano; E. T. Atomssa; T. C. Awes; B. Azmoun; V. Babintsev; M. Bai; X. Bai; N. Bandara; B. Bannier; K. N. Barish; O. Baron; B. Bassalleck; S. Bathe; V. Baublis; S. Baumgart; A. Bazilevsky; M. Beaumier; S. Beckman; R. Belmont; G. Benjamin; A. Berdnikov; Y. Berdnikov; J. Blackburn; D. S. Blau; M. Bobrek; J. Bok; S. Boose; K. Boyle; C. L. Britton, Jr.; M. L. Brooks; J. Bryslawskyj; V. Bumazhnov; C. Butler; S. Butsyk; S. Campbell; A. Carollo; J. -S. Chai; C. -H. Chen; S. Chernichenko; C. Y. Chi; M. Chiu; I. J. Choi; J. B. Choi; S. Choi; S. Chollet; P. Christiansen; T. Chujo; V. Cianciolo; Z. Citron; B. A. Cole; N. Cronin; N. Crossett; M. Csand; L. D'Orazio; S. Dairaku; D. Danley; A. Datta; M. S. Daugherity; G. David; K. DeBlasio; A. Debraine; K. Dehmelt; A. Denisov; A. Deshpande; E. J. Desmond; O. Dietzsch; L. Ding; A. Dion; P. B. Diss; J. H. Do; M. Donadelli; O. Drapier; A. Drees; K. A. Drees; J. M. Durham; A. Durum; L. Eberle; Y. V. Efremenko; T. Engelmore; A. Enokizono; S. Esumi; K. O. Eyser; B. Fadem; N. Feege; D. E. Fields; M. Finger; M. FingerJr.; F. Fleuret; S. L. Fokin; J. E. Frantz; A. Franz; A. D. Frawley; Y. Fukao; T. Fusayasu; K. Gainey; C. Gal; P. Gallus; P. Garg; A. Garishvili; I. Garishvili; F. Gastaldi; H. Ge; P. Giannotti; F. Giordarno; A. Glenn; X. Gong; M. Gonin; Y. Goto; R. Granier de Cassagnac; N. Grau; S. V. Greene; M. Grosse Perdekamp; Y. Gu; T. Gunji; H. Guragain; T. Hachiya; J. S. Haggerty; K. I. Hahn; H. Hamagaki; H. F. Hamilton; S. Y. Han; J. Hanks; S. Hasegawa; T. O. S. Haseler; K. Hashimoto; R. Hayano; S. Hayashi; X. He; T. K. Hemmick; T. Hester; J. C. Hill; M. Hoefferkamp; R. S. Hollis; K. Homma; B. Hong; Y. Hori; T. Hoshino; J. Huang; S. Huang; J. R. Hutchins; T. Ichihara; Y. Ikeda; K. Imai; Y. Imazu; J. Imrek; M. Inaba; A. Iordanova; D. Isenhower; A. Isinhue; A. Isupov; D. Ivanischev; V. Ivanov; B. V. Jacak; S. J. Jeon; M. Jezghani; J. Jia; X. Jiang; B. M. Johnson; K. S. Joo; D. Jouan; D. S. Jumper; J. Kamin; S. Kanda; B. H. Kang; J. H. Kang; J. S. Kang; J. Kapustinsky; K. Karatsu; D. Kawall; A. V. Kazantsev; H. -J. Kehayias; J. A. Key; V. Khachatryan; P. K. Khandai; A. Khanzadeev; K. M. Kijima; C. Kim; D. H. Kim; D. J. Kim; E. -J. Kim; H. J. Kim; K. -B. Kim; M. Kim; Y. -J. Kim; Y. K. Kim; B. Kimelman; . Kiss; E. Kistenev; R. Kitamura; J. Klatsky; D. Kleinjan; P. Kline; T. Koblesky; L. Kochenda; M. Kofarago; Y. Komatsu; B. Komkov; J. Koster; D. Kotchetkov; D. Kotov; P. Kravtsov; F. Krizek; K. Kurita; M. Kuriyama; M. Kurosawa; Y. Kwon; R. Lacey; Y. S. Lai; J. G. Lajoie; A. Lebedev; G. H. Lee; J. Lee; K. B. Lee; K. S. Lee; S. Lee; S. H. Lee; R. Lefferts; M. J. Leitch; M. A. L. Leite; M. Leitgab; B. Lewis; X. Li; S. H. Lim; A. Lipski; A. Litvinenko; M. X. Liu; B. Love; D. Lynch; M. Lynch; C. F. Maguire; Y. I. Makdisi; M. Makek; A. Malakhov; A. Manion; V. I. Manko; E. Mannel; T. Maruyama; S. Masumoto; M. McCumber; P. L. McGaughey; D. McGlinchey; R. McKay; C. McKinney; A. Meles; M. Mendoza; R. Menegasso; B. Meredith; Y. Miake; T. Mibe; A. C. Mignerey; A. Milov; D. K. Mishra; J. T. Mitchell; S. Miyasaka; S. Mizuno; A. K. Mohanty; P. Montuenga; T. Moon; D. P. Morrison; M. Moskowitz; S. Motschwiller; T. V. Moukhanova; T. Murakami; J. Murata; A. Mwai; T. Nagae; S. Nagamiya; K. Nagashima; J. L. Nagle; M. I. Nagy; I. Nakagawa; H. Nakagomi; Y. Nakamiya; K. R. Nakamura; T. Nakamura; K. Nakano; C. Nattrass; A. Nederlof; P. K. Netrakanti; M. Nihashi; T. Niida; K. Ninomiya; S. Nishimura; D. Northacker; R. Nouicer; T. Novak; N. Novitzky; A. Nukariya; A. S. Nyanin; E. O'Brien; C. A. Ogilvie; H. Oide; K. Okada; J. D. Orjuela Koop; J. D. Osborn; A. Oskarsson; L. sterman; K. Ozawa; C. Pancake; V. Pantuev; V. Papavassiliou; I. H. Park; J. S. Park; S. Park; S. K. Park; S. F. Pate; L. Patel; M. Patel; J. -C. Peng; D. Perepelitsa; G. D. N. Perera; V. Peresedov; D. Yu. Peressounko; J. Perry; R. Petti; C. Pinkenburg; R. Pinson; R. P. Pisani; J. Popule; M. L. Purschke; H. Qu; S. Radhakrishnan; J. Rak; B. J. Ramson; I. Ravinovich; K. F. Read; D. Reynolds; R. Reynolds; V. Riabov; Y. Riabov; E. Richardson; T. Rinn; N. Riveli; D. Roach; S. D. Rolnick; M. Rosati; E. Roschin; Z. Rowan; J. G. Rubin; P. Rukoyatkin; M. S. Ryu; A. Safonov; B. Sahlmueller; N. Saito; T. Sakaguchi; H. Sako; V. Samsonov; M. Sano; M. Sarsour; S. Sato; S. Sawada; B. Schaefer; B. K. Schmoll; K. Sedgwick; J. Seele; R. Seidl; Y. Sekiguchi; A. Sen; R. Seto; P. Sett; A. Sexton; E. Shafto; D. Sharma; A. Shaver; I. Shein; T. -A. Shibata; K. Shigaki; M. Shimomura; K. Shoji; P. Shukla; P. Sicho; A. Sickles; C. L. Silva; D. Silvermyr; B. K. Singh; C. P. Singh; V. Singh; F. W. Sippach; M. Skolnik; M. Snowball; S. Solano; A. Soldatov; R. A. Soltz; W. E. Sondheim; S. P. Sorensen; M. Soumya; I. V. Sourikova; P. W. Stankus

    2015-01-25T23:59:59.000Z

    In this document the PHENIX collaboration proposes a major upgrade to the PHENIX detector at the Relativistic Heavy Ion Collider. This upgrade, sPHENIX, enables an extremely rich jet and beauty quarkonia physics program addressing fundamental questions about the nature of the strongly coupled quark-gluon plasma (QGP), discovered experimentally at RHIC to be a perfect fluid. The startling dynamics of the QGP on fluid-like length scales is an emergent property of quantum chromodynamics (QCD), seemingly implicit in the Lagrangian but stubbornly hidden from view. QCD is an asymptotically free theory, but how QCD manifests as a strongly coupled fluid with specific shear viscosity near $T_C$, as low as allowed by the uncertainty principle, is as fundamental an issue as that of how confinement itself arises.

  15. Economics of natural gas upgrading

    SciTech Connect (OSTI)

    Hackworth, J.H.; Koch, R.W.

    1995-07-01T23:59:59.000Z

    Natural gas could be an important alternative energy source in meeting some of the market demand presently met by liquid products from crude oil. This study was initiated to analyze three energy markets to determine if greater use could be made of natural gas or natural gas derived products and if those products could be provided on an economically competitive basis. The three markets targeted for possible increases in gas use were motor fuels, power generation, and the chemical feedstocks market. The economics of processes to convert natural gas to transportation fuels, chemical products, and power were analyzed. The economic analysis was accomplished by drawing on a variety of detailed economic studies, updating them and bringing the results to a common basis. The processes analyzed included production of methanol, MTBE, higher alcohols, gasoline, CNG, and LNG for the transportation market. Production and use of methanol and ammonia in the chemical feedstock market and use of natural gas for power generation were also assessed. Use of both high and low quality gas as a process feed stream was evaluated. The analysis also explored the impact of various gas price growth rates and process facility locations, including remote gas areas. In assessing the transportation fuels market the analysis examined production and use of both conventional and new alternative motor fuels.

  16. Software strategies and hardware upgrades to the PPL data acquisition system (DAS)

    SciTech Connect (OSTI)

    Davis, W.M.; Roney, P.; Gibney, T.; Funk, P.; Keller, M.; Sauthoff, N.; Davis, S.; Bates, G.; Corneliussen, M.; Fishman, H.

    1987-08-01T23:59:59.000Z

    This paper describes upgrades to the Data Acquisition System for the Experimental Projects Department at PPL, especially in support of the PBX-M upgrade to be completed this year. Hardware and software maintenance problems with the old configuration, consisting of a DEC KL-10 and eight PDP-11's, are described. The real-time software and hardware performance requirements and projections for CAMAC I/O and data analysis and display are presented. Described are three applications that have realtime requirements and are located on separate processors, connected to PPPL's VAX Cluster by an Ethernet link. Building upon a previous large software base, general-purpose subroutine libraries and utilities are being emphasized. The most useful of these are described. The use of software packages from DEC, third-party vendors, and the fusion community, is also described. The new approaches to software development that are being incorporated into the DAS efforts are discussed. Specific future challenges are also described.

  17. Advanced conceptual design report: T Plant secondary containment and leak detection upgrades. Project W-259

    SciTech Connect (OSTI)

    Hookfin, J.D.

    1995-05-12T23:59:59.000Z

    The T Plant facilities in the 200-West Area of the Hanford site were constructed in the early 1940s to produce nuclear materials in support of national defense activities. T Plant includes the 271-T facility, the 221-T facility, and several support facilities (eg, 2706-T), utilities, and tanks/piping systems. T Plant has been recommended as the primary interim decontamination facility for the Hanford site. Project W-259 will provide capital upgrades to the T Plant facilities to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. This document provides an advanced conceptual design concept that complies with functional requirements for the T Plant Secondary Containment and Leak Detection upgrades.

  18. NSTX-U Control System Upgrades

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Erickson, K G; Gates, D A; Gerhardt, S P; Lawson, J E; Mozulay, R; Sichta, P; Tchilinguirian, G J

    2014-06-01T23:59:59.000Z

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forward port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.

  19. Upgrades to Monteburns, version 3.0

    SciTech Connect (OSTI)

    Galloway, J. D.; Trellue, H. R. [Los Alamos National Laboratory, 30 Bikini Atoll Rd., Los Alamos, NM 87545-0001 (United States)

    2012-07-01T23:59:59.000Z

    Monteburns, a Monte Carlo burnup code which has the flexibility to model time-dependent isotopic changes for a variety of nuclear systems by linking the neutron transport code MCNP/X to a production/depletion code, has undergone several performance upgrades recently that have increased the code's capabilities. Once limited to a specific number of regions, enhancements have been implemented that afford a much greater number of burn materials, such that users will be more limited by the physical constraints of their computing environment as opposed to inherent limits built into the coding of Monteburns. In conjunction with the increase in the number of burn materials, parallel execution of a production/depletion code of choice has been implemented, such that users have the option of using CINDER90, 0RIGEN2, or the newly released version of ORIGEN. Finally, the recoverable energy per fission calculation was upgraded to include capture gamma energy deposited in all specified materials as a function of irradiation time. The sum of the prompt and delayed recoverable energies from fission was obtained as before. These upgrades were first tested on a rigorous 1/8 core model of a Pressurized Water Reactor with fresh, once- and twice-burned fuel. We can now model several orders of magnitude more materials using Monte Carlo techniques, which is a significant advance in the reactor modeling world. (authors)

  20. OpenEI Community - Utility Rates

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)ChangeOnPAC EnergyperMulticolor Maps

  1. OpenEI Community - utility rate

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN)ChangeOnPACen 2014Version 2 is Live!

  2. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec do BrasilGmbH Jump to:

  3. utility rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvest Home Jweers's pictureroadmap Home1:14

  4. Utility Rate Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtah StateLoadingGrant Program Jump to:Jump to:

  5. Utility Rate Discount | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtah StateLoadingGrant Program Jump to:Jump

  6. Utility Rate Discounts | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtah StateLoadingGrant Program Jump

  7. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire AddressGRR

  8. Evaluation of solvent-based in situ processes for upgrading and recovery of heavy oil bitumen

    SciTech Connect (OSTI)

    Duerksen, J.H.; Eloyan, A. [Chevron Petroleum Technology Co., La Habra, CA (United States)

    1995-12-31T23:59:59.000Z

    Solvent-based in situ recovery processes have been proposed as lower cost alternatives to thermal processes for recovery of heavy oil and bitumen. Advantages of solvent based processes are: reduced steam requirements, reduced water treating, and in situ upgrading of the produced oil. Lab results and process calculations show that low-pressure, low-energy solvent-based in situ processes have considerable technical and economic potential for upgrading and recovery of bitumen and heavy oil. In a lab flow test using Athabasca tar sand and propane as solvent, 50 percent of the bitumen was recovered as upgraded oil. Relative to the raw bitumen, API gravity increased by about 10{degrees}API, viscosity was reduced 30-fold, sulfur content was reduced about 50 percent, and metals content was also substantially reduced. Process uncertainties that will have a major impact on economics are: (1) oil production rate, (2) oil recovery, (3) extent of in situ upgrading, and (4) solvent losses. Additional lab development and field testing are required to reduce these process uncertainties and to predict commercial-scale economics.

  9. GeOx/Reduced Graphene Oxide Composite as an Anode for Li-ion Batteries: Enhanced Capacity via Reversible Utilization of Li2O along with Improved Rate Performance

    SciTech Connect (OSTI)

    Lv, Dongping; Gordin, Mikhail; Yi, Ran; Xu, Terrence (Tianren); Song, Jiangxuan; Jiang, Yingbing; Choi, Daiwon; Wang, Donghai

    2014-09-01T23:59:59.000Z

    A self-assembled GeOx/reduced graphene oxide (GeOx/RGO) composite, where GeOx nanoparticles were grown directly on reduced graphene oxide sheets, was synthesized via a facile one-step reduction approach and studied by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy, electron energy loss spectroscopy elemental mapping, and other techniques. Electrochemical evaluation indicates that incorporation of reduced graphene oxide enhances both the rate capability and reversible capacity of GeOx, with the latter being due to the RGO enabling reversible utilization of Li2O. The composite delivers a high reversible capacity of 1600 mAhg-1 at a current density of 100 mAg-1, and still maintains a capacity of 410 mAhg-1 at a high current density of 20 Ag-1. Owing to the flexible reduced graphene oxide sheets enwrapping the GeOx particles, the cycling stability of the composite was also improved significantly. To further demonstrate its feasibility in practical applications, the synthesized GeOx/RGO composite anode was successfully paired with a high voltage LiNi0.5Mn1.5O4 cathode to form a full cell, which showed good cycling and rate performance.

  10. Methods and apparatuses for preparing upgraded pyrolysis oil

    DOE Patents [OSTI]

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01T23:59:59.000Z

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  11. THREE VIRGINIA PROGRAMS OVERCOME BARRIERS TO UPGRADES | Department...

    Energy Savers [EERE]

    upgrades. RREA used a home energy makeover contest to educate homeowners and drive demand. RREA also engaged faith-based institutions and neighborhood associations in its...

  12. UNIVERSITY PARK SCHOOLS SMALL TOWNS ON UPGRADES | Department...

    Energy Savers [EERE]

    performance benchmarks to create a list of preferred contractors and provided quality control on the upgrades performed through the program. KEY TAKEAWAYS By piloting STEP in...

  13. Idaho Power- Easy Upgrades for Simple Retrofits Rebate Program

    Broader source: Energy.gov [DOE]

    Idaho Power offers incentives for its commercial and industrial customers in Idaho and Oregon to upgrade to more efficient equipment in facilities. They provide incentives for lighting equipment...

  14. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange...

    Broader source: Energy.gov (indexed) [DOE]

    Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities Case study details the U.S. Department of Defense (DOD) Exchange (formerly the Army and Air Force...

  15. Bioenergy Technologies Office R&D Pathways: Algal Lipid Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algal Biofuels Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway Bioenergy Technologies Office Conversion R&D Pathway: Whole Algae Hydrothermal Liquefaction...

  16. California Member Connects Solar Adoption With Upgrades | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Photo of a young man working on solar panels. Studies on the connection between solar adoption and energy upgrades by Better Buildings Residential Network member Center for...

  17. Media Advisory - Jefferson Lab 12 GeV Upgrade Groundbreaking...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for its 310 million 12 GeV Upgrade project. When: Tuesday, April 14, 2009. Where: CEBAF Center, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue,...

  18. Conceptual design report for Project W-420, stack monitoring upgrade

    SciTech Connect (OSTI)

    Lott, D.T., Fluor Daniel Hanford

    1997-03-10T23:59:59.000Z

    This document provides the Conceptual Design for the upgrade of seven designated Tank Farm stacks to meet NESHAP Title 40, CFR, Part 61, Sub-part H requirements.

  19. asdex upgrade results: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical control system would do. The real time emulation of both, fusion Zachmann, Gabriel 3 Ghost surfaces and island detection Application to LHD and ASDEX Upgrade...

  20. asdex upgrade divertor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical control system would do. The real time emulation of both, fusion Zachmann, Gabriel 7 Ghost surfaces and island detection Application to LHD and ASDEX Upgrade...

  1. asdex upgrade enhancements: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical control system would do. The real time emulation of both, fusion Zachmann, Gabriel 3 Ghost surfaces and island detection Application to LHD and ASDEX Upgrade...

  2. Standard Work Specifications for Single-Family Home Energy Upgrades...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Upgrades Summary (Fact Sheet), Guidelines For Home Energy Professionals, Energy Efficiency & Renewable Energy (EERE) Standard Work Specifications for Single-Family Home...

  3. PHOENIX ENERGIZES LIGHT RAIL CORRIDOR WITH UPGRADES | Department...

    Energy Savers [EERE]

    duct sealing; heating, ventilation, and air conditioning (HVAC) upgrades; sunscreens; and solar water heaters. Energize Phoenix eventually expanded its service area beyond the...

  4. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange...

    Broader source: Energy.gov (indexed) [DOE]

    Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities: Best Management Practice Case Study 11: Commercial Kitchen Equipment (Brochure), Federal Energy...

  5. What's Working in Residential Energy Efficiency Upgrade Programs...

    Energy Savers [EERE]

    Texas: Best Offer Ever Produces 564 Upgrades in Record Time Better Buildings Neighborhood Program Home Accomplishments History Better Buildings Partners Stories Interviews Videos...

  6. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology...

    Energy Savers [EERE]

    of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal...

  7. EA-1190: Wastewater Treatment Capability Upgrade, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed upgrade of the U.S. Department of Energy Pantex Plant Wastewater Treatment Plant in Amarillo, Texas.

  8. Office of Energy Policy and Systems Analysis Site Upgrade

    Broader source: Energy.gov [DOE]

    Office of Energy Policy and Systems Analysis site is currently being upgraded to better serve on audience. Please check back shortly.

  9. Utility Formation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field EmissionFunctional MaterialsRobertUtility-Formation

  10. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect (OSTI)

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01T23:59:59.000Z

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  11. Upgrading the Vanadium Redox Battery | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEM with EDAXUpdated CapitalMichaelUpgrading

  12. The value of steam turbine upgrades

    SciTech Connect (OSTI)

    Potter, K.; Olear, D.; [General Physics Corp. (United States)

    2005-11-01T23:59:59.000Z

    Technological advances in mechanical and aerodynamic design of the turbine steam path are resulting in higher reliability and efficiency. A recent study conducted on a 390 MW pulverized coal-fired unit revealed just how much these new technological advancements can improve efficiency and output. The empirical study showed that the turbine upgrade raised high pressure (HP) turbine efficiency by 5%, intermediate pressure (IP) turbine efficiency by 4%, and low pressure (LP) turbine efficiency by 2.5%. In addition, the unit's highest achievable gross generation increased from 360 MW to 371 MW. 3 figs.

  13. Jefferson Lab awards upgrade contracts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson Lab Click onLaserLabLabawards upgrade contracts

  14. The NIR Upgrade to the SALT Robert Stobie Spectrograph

    E-Print Network [OSTI]

    Andrew I. Sheinis; Marsha J. Wolf; Matthew A. Bershady; David A. H. Buckley; Kenneth H. Nordsieck; Ted B. Williams

    2006-06-05T23:59:59.000Z

    The near infrared (NIR) upgrade to the Robert Stobie Spectrograph (RSS) on the Southern African Large Telescope (SALT), RSS/NIR, extends the spectral coverage of all modes of the visible arm. The RSS/NIR is a low to medium resolution spectrograph with broadband imaging, spectropolarimetric, and Fabry-Perot imaging capabilities. The visible and NIR arms can be used simultaneously to extend spectral coverage from approximately 3200 A to 1.6 um. Both arms utilize high efficiency volume phase holographic gratings via articulating gratings and cameras. The NIR camera is designed around a 2048x2048 HAWAII-2RG detector housed in a cryogenic dewar. The Epps optical design of the camera consists of 6 spherical elements, providing sub-pixel rms image sizes of 7.5 +/- 1.0 um over all wavelengths and field angles. The exact long wavelength cutoff is yet to be determined in a detailed thermal analysis and will depend on the semi-warm instrument cooling scheme. Initial estimates place instrument limiting magnitudes at J = 23.4 and H(1.4-1.6 um) = 21.6 for S/N = 3 in a 1 hour exposure well below the sky noise.

  15. CEBAF Upgrade: Cryomodule Performance And Lessons Learned

    SciTech Connect (OSTI)

    Drury, Michael A.; Davis, G. Kirk; Hogan, John P.; Hovater, J. Curt; King, Lawrence; Marhauser, Frank; Park, HyeKyoung; Preble, Joe; Reece, Charles E.; Rimmer, Robert A.; Wang, Haipeng; Wiseman, Mark A.

    2014-02-01T23:59:59.000Z

    The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. This increase in beam energy will be due in large part to the addition of ten C100 cryomodules plus associated new RF in the CEBAF linacs. The C100 cryomodules are designed to deliver 100 MeV per installed cryomodule. Each C100 cryomodule is built around a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100MV per cryomodule is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. Cryomodule production started in December 2010. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to complete commissioning by September 2013. Performance during Commissioning has ranged from 104 MV to 118 MV. In May, 2012 a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs.

  16. Electric Utilities and Electric Cooperatives (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and...

  17. Rebates Cut the Price of Big-Time Efficiency Upgrades

    Broader source: Energy.gov [DOE]

    One of the smartest ways for homeowners to save money on major appliance upgrades is to hook into an energy efficiency rebate program. The Neighborhood Energy Connection (NEC), a non-profit organization in St. Paul, Minnesota, helps local residents take advantage of Xcel Energys rebate programs that cut the cost of whole-house energy efficiency upgrades.

  18. Recent ASDEX Upgrade Research in Support of ITER and DEMO

    E-Print Network [OSTI]

    Energy Conference, OV2/2, St. Petersburg, Russia, 13.10.2014 · ASDEX Upgrade: machine and programme allowed (?) Virtually no disruptions #12;ASDEX Upgrade has a powerful H&CD system Neutral Beam Injection;Stagnation of core density build-up due to fuelling limit (source shifts to SOL) High SOL density leads

  19. Computer Physics Communications 1 Optical Link ASICs for LHC Upgrades

    E-Print Network [OSTI]

    Gan, K. K.

    -Layer or IBL) for the ATLAS detector for the first phase of the LHC luminosity upgrade. The ASICs are a high) at CERN will be upgraded in two phases, resulting in ten times higher luminosity. The ATLAS experiment in the lab followed by an irradiation with 24 GeV protons at the T7 irradiation facility at CERN. The results

  20. The 12 GeV Energy Upgrade at Jefferson Laboratory

    SciTech Connect (OSTI)

    Pilat, Fulvia C.

    2012-09-01T23:59:59.000Z

    Two new cryomodules and an extensive upgrade of the bending magnets at Jefferson Lab has been recently completed in preparation for the full energy upgrade in about one year. Jefferson Laboratory has undertaken a major upgrade of its flagship facility, the CW re-circulating CEBAF linac, with the goal of doubling the linac energy to 12 GeV. I will discuss here the main scope and timeline of the upgrade and report on recent accomplishments and the present status. I will then discuss in more detail the core of the upgrade, the new additional C100 cryomodules, their production, tests and recent successful performance. I will then conclude by looking at the future plans of Jefferson Laboratory, from the commissioning and operations of the 12 GeV CEBAF to the design of the MEIC electron ion collider.

  1. U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava...

    Energy Savers [EERE]

    And Russia Complete Nuclear Security Upgrades Under Bratislava Initiative U.S. And Russia Complete Nuclear Security Upgrades Under Bratislava Initiative December 23, 2008 - 9:18am...

  2. E-Print Network 3.0 - asdex upgrade edge Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrade Team presented by Sibylle Gnter MPI fr Plasmaphysik, D-85748 Garching, Germany, EURATOM... collaborating institutes: 12;ASDEX Upgrade programme ... Source:...

  3. E-Print Network 3.0 - asdex upgrade h-mode Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrade Team presented by Sibylle Gnter MPI fr Plasmaphysik, D-85748 Garching, Germany, EURATOM... collaborating institutes: 12;ASDEX Upgrade programme ... Source:...

  4. E-Print Network 3.0 - asdex upgrade team Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrade Team presented by Sibylle Gnter MPI fr Plasmaphysik, D-85748 Garching, Germany, EURATOM... Overview of ASDEX Upgrade Results - Development of integrated operating...

  5. Sandia National Laboratories: Upgrades to SNL-EFDC: A Tool to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyComputational Modeling & SimulationUpgrades to SNL-EFDC: A Tool to Balance Marine Hydrokinetic Energy Generation Efficiency with Environmental Response Upgrades to...

  6. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  7. features Utility Generator

    E-Print Network [OSTI]

    Chang, Shih-Fu

    #12;#12;#12;#12;features function utility Training Pool Utility Generator Per-frame function content utility classes utility classes utility Tree Decision Generator Module Utility Clustering Adaptive Content Classification Loop features content VO selection & Utility Selector content features Real

  8. Characterization of the Neutron Detector Upgrade to the GP-SANS and BIO-SANS Instruments at HFIR

    SciTech Connect (OSTI)

    Berry, Kevin D [ORNL; Bailey, Katherine M [ORNL; Beal, Justin D [ORNL; Diawara, Yacouba [ORNL; Funk, Loren L [ORNL; Hicks, J Steve [ORNL; Jones, Amy Black [ORNL; Littrell, Ken [ORNL; Summers, Randy [ORNL; Urban, Volker S [ORNL; Vandergriff, David H [ORNL; Johnson, Nathan [GE Energy Services; Bradley, Brandon [GE Energy Services

    2012-01-01T23:59:59.000Z

    Over the past year, new 1 m x 1 m neutron detectors have been installed at both the General Purpose SANS (GP-SANS) and the Bio-SANS instruments at HFIR, each intended as an upgrade to provide improved high rate capability. This paper presents the results of characterization studies performed in the detector test laboratory, including position resolution, linearity and background, as well as a preliminary look at high count rate performance.

  9. Best Practices Implementation for Hydropower Efficiency and Utilization Improvement

    SciTech Connect (OSTI)

    Smith, Brennan T [ORNL] [ORNL; Zhang, Qin Fen [ORNL] [ORNL; March, Patrick [Hydro Performance Processes, Inc.] [Hydro Performance Processes, Inc.; Cones, Marvin [Mesa Associates, Inc.] [Mesa Associates, Inc.; Dham, Rajesh [U.S. Department of Energy] [U.S. Department of Energy; Spray, Michael [New West Technologies, LLC.] [New West Technologies, LLC.

    2012-01-01T23:59:59.000Z

    By using best practices to manage unit and plant efficiency, hydro owner/operators can achieve significant improvements in overall plant performance, resulting in increased generation and profitability and, frequently, reduced maintenance costs. The Hydropower Advancement Project (HAP) was initiated by the Wind and Hydropower Technologies Program within the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy to develop and implement a systematic process with standard methodology, based on the best practices of operations, maintenance and upgrades; to identify the improvement opportunities at existing hydropower facilities; and to predict and trend the overall condition and improvement opportunity within the U.S. hydropower fleet. The HAP facility assessment includes both quantitative condition ratings and data-based performance analyses. However, this paper, as an overview document for the HAP, addresses the general concepts, project scope and objectives, best practices for unit and plant efficiency, and process and methodology for best practices implementation for hydropower efficiency and utilization improvement.

  10. LCLS LLRF Upgrades to the SLAC Linac

    SciTech Connect (OSTI)

    Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Hong, B.; Kotturi, K.; Krejcik, P.; Wu, J.; /SLAC; Byrd, J.; /LBL, Berkeley

    2007-10-04T23:59:59.000Z

    The Linac Coherent Light Source (LCLS) at SLAC will be the brightest X-ray laser in the world when it comes on line. In order to achieve the brightness a 200fS length electron bunch is passed through an undulator. To create the 200fS, 3kA bunch, a 10pS electron bunch, created from a photo cathode in an RF gun, is run off crest on the RF to set up a position to energy correlation. The bunch is then compressed by chicanes. The stability of the RF system is critical in setting up the position to energy correlation. Specifications derived from simulations require the RF system to be stable to below 200fS in several critical injector stations and the last kilometer of linac. The SLAC linac RF system is being upgraded to meet these requirements.

  11. Steam turbine upgrading: low-hanging fruit

    SciTech Connect (OSTI)

    Peltier, R.

    2006-04-15T23:59:59.000Z

    The thermodynamic performance of the steam turbine, more than any other plant component, determines overall plant efficiency. Upgrading steam path components and using computerized design tools and manufacturing techniques to minimise internal leaks are two ways to give tired steam turbines a new lease on life. The article presents three case studies that illustrate how to do that. These are at Unit 1 of Dairyland's J.P. Madgett Station in Alma, WI, a coal-fired subcritical steam plant; the four units at AmerenUE's 600 MW coal-fired Labadie plant west of St. Louis; and Unit 3 of KeyPlan Corp's Northport Power Station on Long Island. 8 figs.

  12. Upgrading the TFTR Transrex Power Supplies

    SciTech Connect (OSTI)

    J. E. Lawson, R. Marsala, S. Ramakrishnan, X. Zhao, P. Sichta

    2009-05-29T23:59:59.000Z

    In order to provide improved and expanded experimental capabilities, the existing Transrex power supplies at PPPL are to be upgraded and modernized. Each of the 39 power supplies consists of two six pulse silicon controlled rectifier sections forming a twelve pulse power supply. The first modification is to split each supply into two independent six pulse supplies by replacing the existing obsolete twelve pulse firing generator with two commercially available six pulse firing generators. The second change replaces the existing control link with a faster system, with greater capacity, which will allow for independent control of all 78 power supply sections. The third change replaces the existing Computer Automated Measurement and Control (CAMAC) based fault detector with an Experimental Physics and Industrial Control System (EPICS) compatible unit, eliminating the obsolete CAMAC modules. Finally the remaining relay logic and interfaces to the "Hardwired Control System" will be replaces with a Programmable Logic Controller (PLC).

  13. Upgraded HFIR Fuel Element Welding System

    SciTech Connect (OSTI)

    Sease, John D [ORNL

    2010-02-01T23:59:59.000Z

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  14. Utilization Analysis Page 1 UTILIZATION ANALYSIS

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Utilization Analysis Page 1 UTILIZATION ANALYSIS Section 46a-68-40 and HIRING/PROMOTION GOALS utilized in the Health Center's workforce, the numbers of protected classes in the workforce must conducted for each occupational category and position classification. The Utilization Analysis was performed

  15. utility functions scaling profiles utility-fair

    E-Print Network [OSTI]

    Chang, Shih-Fu

    bandwidth utility functions scaling profiles utility-fair I. INTRODUCTION The emerging MPEG-4 video. This can result in a significant increase in the utilization of network capacity [1]. These techniques. Bandwidth utility functions [9] can be used to characterize an application's capability to adapt over

  16. Utility Monitor September 2010

    E-Print Network [OSTI]

    Utility Monitor September 2010 Why monitor utility syntax? Enforce and Maintain Company-Wide DB2 Utility Standards. Jennifer Nelson Product Specialist, Rocket Software © 2010 IBM Corporation © 2010............................................................................................................... iv 1 Why Monitor DB2 Utility Syntax

  17. AMI FW UPGRADEABILITY TEST PROCEDURE AND SECURITY ASSESSMENT

    SciTech Connect (OSTI)

    Snyder, Isabelle B [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The National Institute of Standards and Technology (NIST) is producing NISTIR 7823 to define test requirements for Smart Meter upgradability. The term Smart Meter refers specifically to advanced electric meters being deployed to enhance management of electricity distribution for residential and industrial consumers. The underlying functional and security requirements for Smart Meter upgradability are specified in NEMA standard SG-AMI 1-2009. The purpose of NISTIR 7823 is to describe conformance test requirements that may be used voluntarily by testers and/or test laboratories to determine whether Smart Meters and Upgrade Management Systems conform to the requirements of NEMA SG-AMI 1-2009.

  18. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    DOE Patents [OSTI]

    Gordon, John Howard

    2014-09-09T23:59:59.000Z

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  19. The Jefferson Lab 12 GeV Upgrade

    SciTech Connect (OSTI)

    R.D. McKeown

    2011-10-01T23:59:59.000Z

    A major upgrade of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility is in progress. Construction began in 2008 and the project should be completed in 2015. The upgrade includes doubling the energy of the electron beam to 12 GeV, the addition of a new fourth experimental hall, and new experimental equipment in three of the experimental halls. A brief overview of this upgrade project is presented along with some highlights of the anticipated experimental program.

  20. Superconducting RF Lab Facility Upgrades at Los Alamos

    SciTech Connect (OSTI)

    Katonak, D.J.; Rusnak, B.

    1999-03-01T23:59:59.000Z

    Research and testing of multi-cell superconducting cavities demands extensive contamination control resources to achieve high-cavity fields. Facility upgrades at Los Alamos National Laboratory (LANL) included the modernization of test equipment, expanding and modernizing cleanroom facilities, improving safety, and expanding the high-pressure rinse cleaning process equipment. Each upgrade was integrated into the facility to enable users to assemble prototype cryomodules. The scope of the upgrades, the new installed capability, and budget and schedule for certain aspects of the project are discussed in this paper.

  1. NET PRED UTILITY

    Energy Science and Technology Software Center (OSTI)

    002602IBMPC00 Normalized Elution Time Prediction Utility http://omics.pnl.gov/software/NETPredictionUtility.php

  2. FLOATING PRESSURE CONVERSION AND EQUIPMENT UPGRADES OF TWO 3.5KW, 20K, HELIUM REFRIGERATORS

    SciTech Connect (OSTI)

    J. Homan, V. Ganni, A. Sidi-Yekhlef, J. Creel, R. Norton, R. Linza, G. Vargas, J. Lauterbach, J. Urbin, D. Howe

    2010-04-01T23:59:59.000Z

    Two helium refrigerators, each rated for 3.5 KW at 20 K, are used at NASA's Johnson Space Center (JSC) in Building No. 32 to provide cryogenic-pumping within two large thermal-vacuum chambers. These refrigerators were originally commissioned in 1996. New changes to the controls of these refrigerators were recently completed. This paper describes some of the control issues that necessitated the controls change-over. It will describe the modifications and the new process control which allows the refrigerators to take advantage of the Ganni Cycle floating pressure control technology. The controls philosophy change-over to the floating pressure control technology was the first application on a helium gas refrigeration system. Previous implementations of the floating pressure technology have been on 4 K liquefaction and refrigeration systems, which have stored liquid helium volumes that have level indications used for varying the pressure levels (charge) in the system for capacity modulation. The upgrades have greatly improved the performance, stability, and efficiency of these two refrigerators. The upgrades have also given the operators more information and details about the operational status of the main components (compressors, expanders etc.) of the refrigerators at all operating conditions (i.e. at various loads in the vacuum chambers). The performance data of the two systems, pre and post upgrading are presented.

  3. Extension - Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2008-08-11T23:59:59.000Z

    The need for cost effective technologies for upgrading coal mine methane to pipeline quality natural gas is becoming ever greater. The current work presents and investigates a new approach to reduce the impact of the most costly step in the conventional technology, nitrogen rejection. The proposed approach is based on the Velocys microchannel platform, which is being developed to commercialize compact and cost efficient chemical processing technology. For this separation, ultra fast thermal swing sorption is enabled by the very high rates of heat and mass transfer inherent in microchannel processing. In a first phase of the project solid adsorbents were explored. Feasibility of ultrafast thermal swing was demonstrated but the available adsorbents had insufficient differential methane capacity to achieve the required commercial economics. In a second phase, ionic liquids were adopted as absorbents of choice, and experimental work and economic analyses, performed to gauge their potential, showed promise for this novel alternative. Final conclusions suggest that a combination of a required cost target for ionic liquids or a methane capacity increase or a combination of both is required for commercialization.

  4. Future Upgrade and Physics Perspectives of the ALICE TPC

    E-Print Network [OSTI]

    Taku Gunji; for the ALICE Collaboration

    2014-08-15T23:59:59.000Z

    The ALICE experiment at the Large Hadron Collider (LHC) proposes major detector upgrades to fully exploit the increase of the luminosity of the LHC in RUN~3 and to extend the physics reach for rare probes at low transverse momentum. The Time Projection Chamber (TPC) is one of the main tracking and PID devices in the central barrel of ALICE. The maximum trigger rate of the TPC is currently limited to about 3.5 kHz by the operation of a gating grid system. In order to make full use of the luminosity in RUN 3, the TPC is foreseen to be operated in an ungated mode with continuous readout. The existing MWPC readout will be replaced by a Micro-Pattern Gaseous Detector (MPGD) based readout, which provides intrinsic ion capture capability without gating. Extensive detector R\\&D employing Gas Electron Multiplier (GEM) and Micro-Mesh Gaseous detector (Micromegas) technologies, and simulation studies to advance the techniques for the corrections of space-charge distortions have been performed since 2012. In this paper, the expected detector performance and the status of the R\\&D program to achieve this ambitious goal are described.

  5. Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

    Broader source: Energy.gov [DOE]

    Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

  6. Digital I and C system upgrade integration technique

    SciTech Connect (OSTI)

    Huang, H. W. [Inst. of Nuclear Energy Research (INER), No. 1000, Wenhua Road, Chiaan Village, Longtan Township, Taoyuan County, 32546, Taiwan (China); Shih, C. [Inst. of Nuclear Engineering and Science, National Tsing Hua Univ., 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan (China); Wang, J. R. [Inst. of Nuclear Energy Research (INER), No. 1000, Wenhua Road, Chiaan Village, Longtan Township, Taoyuan County, 32546, Taiwan (China); Huang, K. C. [Inst. of Nuclear Engineering and Science, National Tsing Hua Univ., 101, Sec. 2, Kuang Fu Rd, Hsinchu, Taiwan (China)

    2012-07-01T23:59:59.000Z

    This work developed an integration technique for digital I and C system upgrade, the utility can replace the I and C systems step by step systematically by this method. Inst. of Nuclear Energy Research (INER) developed a digital Instrumentation and Control (I and C) replacement integration technique on the basis of requirement of the three existing nuclear power plants (NPPs), which are Chin-Shan (CS) NPP, Kuo-Sheng (KS) NPP, and Maanshan (MS) NPP, in Taiwan, and also developed the related Critical Digital Review (CDR) Procedure. The digital I and C replacement integration technique includes: (I) Establishment of Nuclear Power Plant Digital Replacement Integration Guideline, (2) Preliminary Investigation on I and C System Digitalization, (3) Evaluation on I and C System Digitalization, and (4) Establishment of I and C System Digitalization Architectures. These works can be a reference for performing I and C system digital replacement integration of the three existing NPPs of Taiwan Power Company (TPC). A CDR is the review for a critical system digital I and C replacement. The major reference of this procedure is EPRI TR- 1011710 (2005) 'Handbook for Evaluating Critical Digital Equipment and Systems' which was published by the Electric Power Research Inst. (EPRI). With this document, INER developed a TPC-specific CDR procedure. Currently, CDR becomes one of the policies for digital I and C replacement in TPC. The contents of this CDR procedure include: Scope, Responsibility, Operation Procedure, Operation Flow Chart, CDR review items. The CDR review items include the comparison of the design change, Software Verification and Validation (SVandV), Failure Mode and Effects Analysis (FMEA), Evaluation of Diversity and Defense-in-depth (D3), Evaluation of Watchdog Timer, Evaluation of Electromagnetic Compatibility (EMC), Evaluation of Grounding for System/Component, Seismic Evaluation, Witness and Inspection, Lessons Learnt from the Digital I and C Failure Events. A solid review can assure the quality of the digital I and C system replacement. (authors)

  7. Financing; A Cost Effective Alternative When Upgrading Energy Efficient Systems

    E-Print Network [OSTI]

    Ertle, J. M.

    in order to effectively compete in the marketplace. One obvious method of reducing costs and improving productivity is to upgrade old, antiquated equipment such as lighting to more modern energy efficient systems. Most projects provide a return...

  8. Financing Energy Upgrades for K-12 School Districts

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 11, 2013 and dealing with how to finance energy efficiency upgrades for K-12 school districts.

  9. Microsoft Word - 2010 LASO TA-55 Upgrade Assessment _Activity...

    Broader source: Energy.gov (indexed) [DOE]

    of actions being taken to support upgrading and future management of the TA-55 wet-pipe sprinkler system as a safety- class system. This review also satisfies a number of...

  10. Capturing Energy Efficiency Upgrades in the Real Estate Transaction

    Broader source: Energy.gov [DOE]

    "Capturing Energy Efficiency Upgrades in the Real Estate Transaction," by Residential Energy Efficiency Solutions, July 10, 2012. Describes the concept of a residential MPG number as a simple way of describing a homes energy consumption.

  11. Idaho Power- Easy Upgrades for Simple Retrofits Rebate Program

    Broader source: Energy.gov [DOE]

    Idaho Power offers incentives for its commercial and industrial customers in Idaho and Oregon to upgrade to more efficient equipment in their facilities. They provide rebates for lighting equipment...

  12. Energy and Emissions Savings through Insulation Upgrade Projects

    E-Print Network [OSTI]

    Lettich, M.

    2008-01-01T23:59:59.000Z

    The presentation demonstrates the value of including insulation system assessment, repairs and upgrades on a facility's physical function and its importance in the overall energy and environmental management program. Financial and environmental...

  13. Kitchen Appliance Upgrades Improve Water Efficiency at DOD Exchange Facilities

    Broader source: Energy.gov [DOE]

    Case study details the Exchange (formerly the Army and Air Force Exchange Service), which took a leadership role in kitchen appliance upgrades to improve water efficiency by integrating water efficiency concepts into the organization's overall sustainability plan and objectives.

  14. J.R. Simplot: Burner Upgrade Project Improves Performance and...

    Broader source: Energy.gov (indexed) [DOE]

    Company saved energy and money by increasing the efficiency of the steam system in its potato processing plant in Caldwell, Idaho. J.R. Simplot: Burner Upgrade Project Improves...

  15. EECBG Success Story: Energy Upgrades to Save Small Arizona Town...

    Broader source: Energy.gov (indexed) [DOE]

    Related Articles An aerial shot of Oro Valley, Ariz.'s town hall campus shows proposed solar locations. | Photo courtesy of Oro Valley Energy Upgrades to Save Small Arizona Town...

  16. Biofuels from Corn Stover: Pyrolytic Production and Catalytic Upgrading Studies

    E-Print Network [OSTI]

    Capunitan, Jewel Alviar

    2013-01-15T23:59:59.000Z

    Due to security issues in energy supply and environmental concerns, renewable energy production from biomass becomes an increasingly important area of study. Thus, thermal conversion of biomass via pyrolysis and subsequent upgrading procedures were...

  17. Using QECBs for Street Lighting Upgrades: Lighting the Way to...

    Broader source: Energy.gov (indexed) [DOE]

    Summarizes how the City of San Diego leveraged 13.1 million in qualified energy conservation bonds to increase the size of a street lighting upgrade project. Author: Lawrence...

  18. Microsoft Word - Noxon Radio Station Upgrade CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    Action: Noxon Radio Station Upgrade Project Budget Information: Work Order 00254987 Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7...

  19. Microsoft Word - AlbionButteRSCommunicationUpgrade-CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    Butte Radio Station Communication Upgrade Budget Information: Work Order 00253466 Task 03 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021: B1.7...

  20. Microsoft Word - CX-Olympia-SouthElma_upgrades_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    0, 2011 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Chad Hamel Project Manager - TEP-TPP-1 Proposed Action: The project consists of upgrades to the...

  1. Optical Link ASICs for the LHC Upgrade

    E-Print Network [OSTI]

    K. K. Gan; H. P. Kagan; R. D. Kass; J. R. Moore; D. S. Smith

    2009-11-23T23:59:59.000Z

    We have designed three ASICs for possible applications in the optical links of a new layer of pixel detector in the ATLAS experiment for the first phase of the LHC luminosity upgrade. The ASICs include a high-speed driver for the VCSEL, a receiver/decoder to decode the signal received at the PIN diode to extract the data and clock, and a clock multiplier to produce a higher frequency clock to serialize the data for transmission. These ASICs were designed using a 130 nm CMOS process to enhance the radiation-hardness. We have characterized the fabricated ASICs and the submission has been mostly successful. We irradiated the ASICs with 24 GeV/c protons at CERN to a dosage of 70 Mrad. We observed no significant degradation except the driver circuit in the VCSEL driver fabricated using the thick oxide process in order to provide sufficient voltage to drive a VCSEL. The degradation is due to a large threshold shifts in the PMOS transistors used.

  2. Combination process for upgrading residual oils

    SciTech Connect (OSTI)

    Busch, L.E.; Walters, P.W.; Zandona, O.

    1990-01-16T23:59:59.000Z

    This patent describes a method for upgrading high boiling residual portions of crude oils comprising metal contaminants, porphyrins, asphaltenes and high molecular weight multi-ring hydrocarbon material. It comprises: charging a high boiling residual portion of crude oil admixed with diluent in contact with suspended upflowing substantially inert fluidizable solids particulate material at an elevated thermal visbreaking temperature in a riser contact zone for a time sufficient to recover therefrom a vaporous hydrocarbon product higher boiling than gasoline partially decarbonized and demetallized to a lower contaminating metals level, quenching the vaporous product of thermal visbreaking below its dew point after separation from solids, charging quenched thermally modified high boiling hydrocarbon product with a crystalline zeolite cracking catalyst under cracking conditions for a hydrocarbon residence time in a riser cracking zone; recovering a hydrocarbon conversion product; separating a combined C{sub 4} minus wet gas product stream of the visbreaking and zeolite catalyst cracking operating to recover a C{sub 3}-C{sub 4} rich fraction separately from a C{sub 2} minus dry gas product fraction, and regenerating the crystalline zeolite contcontaining catalyst.

  3. Recent BES results and the BESIII upgrade

    E-Print Network [OSTI]

    Frederick A. Harris

    2007-12-17T23:59:59.000Z

    Using 58 million $J/\\psi$ and 14 million $\\psi(2S)$ events collected by the BESII detector at the BEPC, branching fractions or upper limits for the decays $J/\\psi$ and $\\psi(2S) \\to \\Lambda \\bar{\\Lambda} \\pi^0$ and $\\Lambda \\bar{\\Lambda} \\eta$ are measured, and the decays of $J/\\psi$ and $\\psi(2S)$ to $n K^0_S \\bar{\\Lambda}+c.c.$ are observed and measured for the first time. Finally, $R$ measurement data taken with the BESII detector at center-of-mass energies between 3.7 and 5.0 GeV are fitted to determine resonance parameters of the high mass charmonium states, $\\psi(3770)$, $\\psi(4040)$, $\\psi(4160)$, and $\\psi(4415)$. The Beijing Electron Collider is being upgraded to a two-ring collider (BEPCII) with a design luminosity of $1 \\times 10^{33}$cm$^{-2}$ s$^{-1}$ at 3.89 GeV and will operate between 2 and 4.2 GeV in the center of mass. With this luminosity, the new BESIII detector will beable to collect, for example, 10 billion $J/\\psi$ events in one year of running. BEPCII and BESIII are currently nearing completion, and commissioning of both is expected to begin in mid-2008.

  4. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect (OSTI)

    Talmadge, M.; Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the upgrading of biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and risk adverse conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas to hydrocarbon pathway to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  5. Process for upgrading tar sand bitumen

    SciTech Connect (OSTI)

    Bartholic, D.B.; Reagan, W.J.

    1989-04-04T23:59:59.000Z

    A process is described for upgrading a charge of a tar sand bitumen concentrate containing mineral matter including fine particles which comprises contacting the charge in a riser in the presence of a low boiling organic solvent diluent with finely divided attrition-resistant particles of a hot fluidizable substantially catalytically inert solid which is substantially chemically inert to a solution of mineral acid. The contact of the charge with the particles is at high temperature and short contact time to vaporize the high hydrogen containing components of the bitumen, the period of time being less than that which induces substantial thermal cracking of the charge, at the end of the time separating the vaporizing product from the fluidizable particles. The fluidizable particles now bear a deposit of both combustible solid, adherent particles of fine particles of mineral matter and metals. The particles of inert solid are passed with deposit of combustibles and fine particles of mineral matter to a regenerator to oxidize the combustible portion of the deposits, removing at least a portion of deposit of mineral matter and metals by removing the inert solid from the regenerator and contacting removed inert solid with a hot mineral acid, and recirculating fluidizable solid depleted at least in part of deposited mineral matter to contact with incoming charge of tar sand bitumen concentrate and diluent.

  6. Process for upgrading tar sand bitumen

    SciTech Connect (OSTI)

    Bartholic, D.B.; Reagan, W.J.

    1989-02-14T23:59:59.000Z

    A process is described for upgrading a charge of a tar sand bitumen concentrate containing metal impurities, colloidal calcium-containing clay and water. It consists of contacting the charge in a riser contacting zone in the presence of a low boiling organic solvent with hot fluidizable attrition-resistant substantially catalytically-inert microspheres, which are 20 to 150 microns in diameter and are composed of previously calcined kaolin clay. The contact takes place at high temperature and short contact time, which permits vaporization of the high hydrogen containing components of the bitumen. The period of time is less than that which induces substantial thermal cracking of the charge. At the end of the time the vaporized produce is separated from the microspheres of calcined kaolin clay, the microspheres of calcined kaolin clay now bearing a deposit of combustible solid, metal impurities and adherent particles of colloidal calcium-containing clay originally contained in the bitumen concentrate, immediately reducing the temperature of the vaporized product to minimize thermal cracking and recovering the product for further refining to produce one or more premium products.

  7. Upgrade to the Birmingham Irradiation Facility

    E-Print Network [OSTI]

    Dervan, P; Hodgson, P; Marin- Reyes; Parker, K; Wilson, J; Baca, M

    2015-01-01T23:59:59.000Z

    The Birmingham Irradiation Facility was developed in 2013 at the University of Birmingham using the Medical Physics MC40 cyclotron. It can achieve High Luminosity LHC (HL-LHC) fluences of 10^15 (1 MeV neutron equivalent (neq)) cm^-2 in 80 s with proton beam currents of 1 ?A and so can evaluate effectively the performance and durability of detector technologies and new components to be used for the HL-LHC. Irradiations of silicon sensors and passive materials can be carried out in a temperature controlled cold box which moves continuously through the homogenous beamspot. This movement is provided by a pre-configured XY-axis Cartesian robot scanning system. In 2014 the cooling system and cold box were upgraded from a recirculating glycol chiller system to a liquid nitrogen evaporative system. The new cooling system achieves a stable temperature of 50 1C in 30 min and aims to maintain sub-0 1C temperatures on the sensors during irradiations. This paper reviews the design, development, commissioning and perform...

  8. Screening of processing and upgrading schemes

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The RFP was predicated on DOE's desire to enhance the development of advanced transportation fuels made from coal via a program to process mild coal gasification (MCG) liquids into high volumetric energy density (HEDF) test fuels. The desired product fuels were to be cost effectively manufactured, have high volumetric energy density, and be hydrocarbon-based for existing and prototype turbine and diesel engines. The sources for these special fuels consist of the abundant and secure indigenous energy resources of coal. Comparison studies were also to be made using other non-petroleum fossil fuels such as shale oil and tar sands bitumen. METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in 1-, 2-, and 3-ring aromatics.

  9. Commissioning results from the recently upgraded RHIC LLRF system

    SciTech Connect (OSTI)

    Smith, K.S.; Harvey, M.; Hayes, T.; Narayan, G.; Severino, F.; Yuan, S.; Zaltsman, A.

    2011-03-28T23:59:59.000Z

    During RHIC Run 10, the first phase of the LLRF Upgrade was successfully completed. This involved replacing the aging VME based system with a modern digital system based on the recently developed RHIC LLRF Upgrade Platform, and commissioning the system as part of the normal RHIC start up process. At the start of Run 11, the second phase of the upgrade is underway, involving a significant expansion of both hardware and functionality. This paper will review the commissioning effort and provide examples of improvements in system performance, flexibility and scalability afforded by the new platform. The RHIC LLRF upgrade is based on the recently developed RHIC LLRF Upgrade Platform. The major design goals of the platform are: (1) Design a stand alone, generic, digital, modular control architecture which can be configured to satisfy all of the application demands we currently have, and which will be supportable and upgradeable into the foreseeable future; and (2) It should integrate seamlessly into existing controls infrastructure, be easy to deploy, provide access to all relevant control parameters (eliminate knobs), provide vastly improved diagnostic data capabilities, and permit remote reconfiguration. Although the system is still in its infancy, we think the initial commissioning results from RHIC indicate that these goals have been achieved, and that we've only begun to realize the benefits the platform provides.

  10. Innovative Rates Program. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-06-21T23:59:59.000Z

    Title II of the Energy Conservation and Production Act (ECPA) as amended by the Public Utility Regulatory Policies Act (PURPA) provided financial assistance to state utility regulatory commissions, nonregulated electric utilities, and the Tennessee Valley Authority through the Innovative Rates Program. The financial assistance was to be used to plan or carry out electric utility regulatory rate reform initiatives relating to innovative rate structures that encourage conservation of energy, electric utility efficiency and reduced costs, and equitable rates to consumers. The Federal and local objectives of the project are described. Activities planned and accomplishments are summarized for the following: project management, data collection, utility bill evaluation, billing enclosure/mailing evaluation, media program evaluation, display evaluation, rate study sessions evaluation, speakers bureau evaluation, and individual customer contacts. A timetable/milestone chart and financial information are included. (MHR)

  11. Hualapai Tribal Utility Development Project

    SciTech Connect (OSTI)

    Hualapai Tribal Nation

    2008-05-25T23:59:59.000Z

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribes tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West mini-grid sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribes wind resources.

  12. Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them? Environmental, economic and security concerns regarding oil consumption make electrifying the transportation sector a high national priority. NREL's Center for Transportation Technologies & Systems (CTTS) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness of distribution transformers. Combining a wealth of vehicle performance statistics with load data from partner utilities including the Hawaiian Electric Company and Xcel Energy, NREL analyzed the thermal loading characteristics of distribution transformers due to vehicle charging. After running millions of simulations replicating varying climates and conditions, NREL is now able to predict aging rates for transformers when PEVs are added to existing building loads. With the NREL tool, users define simulation parameters by inputting vehicle trip and weather data; transformer load profiles and ratings; PEV penetration, charging rates and battery sizes; utility rates; the number of houses on each transformer; and public charging availability. Transformer load profiles, drive cycles, and ambient temperature data are then run through the thermal model to produce a one-year timeseries of the hotspot temperature. Annual temperature durations are calculated to help determine the annual aging rate. Annual aging rate results are grouped by independent variables. The most useful measure is transformer mileage, a measure of how many electrically-driven miles must be supplied by the transformer. Once the spectrum analysis has been conducted for an area or utility, the outputs can be used to help determine if more detailed evaluation is necessary, or if transformer replacement is required. In the majority of scenarios, transformers have enough excess capacity to charge PEVs. Only in extreme cases does vehicle charging have negative long-term impact on transformers. In those cases, upgrades to larger transformers would be recommended. NREL analysis also showed opportunity for newly-installed smart grids to offset distribution demands by time-shifting the charging loads. Most importantly, the model demonstrated synergies between PEVs and distributed renewables, not only providing clean renewable energy for vehicles, but also reducing demand on the entire distribution infrastructure by supplying loads at the point of consumption.

  13. Utility Theory Social Intelligence

    E-Print Network [OSTI]

    Polani, Daniel

    Utility Theory Social Intelligence Daniel Polani Utility Theory ­ p.1/15 Utilities: Motivation Consider: game scenario For Instance: 2-or-more players Necessary: development of concept for utilities decisions sequential decisions (time) games Utility The Prototypical Scenario Consider: agent that can take

  14. Monroe County Extension Saves $2,000 Annually on Utility Bills

    E-Print Network [OSTI]

    Keinan, Alon

    antiquated tube boilers with new, high-efficiency, condensing boilers. Projected Savings Over $2,000 per year% efficiency, were replaced with 95%-efficiency condensing boilers. The new boilers use 70% less water, operateMonroe County Extension Saves $2,000 Annually on Utility Bills Heating Efficiency Upgrades Lower

  15. Upgraded coal interest group. First quarterly technical progress report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Weber, W. [Electric Power Research Inst., Chattanooga, TN (United States); Lebowitz, H.E. [Fossil Fuel Sciences, Palo Alto, CA (United States)

    1994-12-31T23:59:59.000Z

    The interest group got under way effective January 1, 1994, with nine utility members, EPRI, Bechtel, and the Illinois Clean Coal Institute. DOE participation was effective October 1, 1994. The first meeting was held on April 22, 1994 in Springfield, Illinois and the second meeting was held on August 10--11, 1994 at Johnstown, Pennsylvania. Technical reviews were prepared in several areas, including the following: status of low rank coal upgrading, advanced physical coal cleaning, organic sulfur removal from coal, handling of fine coal, combustion of coal water slurries. It was concluded that, for bituminous coals, processing of fines from coal cleaning plants or impoundments was going to be less costly than processing of coal, since the fines were intrinsically worth less and advanced upgrading technologies require fine coal. Penelec reported on benefits of NOX reductions when burning slurry fuels. Project work was authorized in the following areas: Availability of fines (CQ, Inc.), Engineering evaluations (Bechtel), and Evaluation of slurry formulation and combustion demonstrations (EER/MATS). The first project was completed.

  16. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    SciTech Connect (OSTI)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04T23:59:59.000Z

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  17. A Case Study of Danville Utilities: Utilizing Industrial Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing...

  18. SLHC, the High-Luminosity Upgrade (public event)

    ScienceCinema (OSTI)

    None

    2011-10-06T23:59:59.000Z

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  19. Experimental Study of In-Situ Upgrading for Heavy Oil Using Hydrogen Donors and Catalyst under Steam Injection Condition

    E-Print Network [OSTI]

    Zhang, Zhiyong

    2012-07-16T23:59:59.000Z

    1% compared with pre-upgrading mixture. It meant that hydrogen donors and catalyst had strong synergetic effects on heavy oil upgrading. We also found that 300 C was an effective temperature for heavy oil upgrading with obvious viscosity reduction...

  20. Cedar Falls Utilities- Residential New Construction Program

    Broader source: Energy.gov [DOE]

    Cedar Falls Utilities offers incentives to residential customers who construct new energy efficient homes. A rate discount of 25% is available to customers who meet the 5 Star Home Program criteria...

  1. The Utility Relationship to its Key Industries

    E-Print Network [OSTI]

    Gilbert, J. S.

    While the price of energy may have stabilized for the moment, the impact of several years of rate increases in the cost of energy, materials, and labor have made American industry re-evaluate their operations. Utilities serving clusters...

  2. City of Tallahassee Utilities- Efficiency Loans

    Broader source: Energy.gov [DOE]

    The City of Tallahassee Utilities offers loans with an interest rate of 5% for 29 different energy-saving measures, including energy-efficient central air conditioning units, windows, doors,...

  3. River Falls Municipal Utilities- Distributed Solar Tariff

    Broader source: Energy.gov [DOE]

    River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special...

  4. Avista Utilities (Gas)- Prescriptive Commercial Incentive Program

    Broader source: Energy.gov [DOE]

    Avista Utilities offers Natural Gas saving incentives to commercial customers on rate schedule 420 and 424. This program provides rebates for a variety of equipment and appliances including cooking...

  5. City of Tallahassee Utilities- Solar Loans

    Broader source: Energy.gov [DOE]

    The City of Tallahassee Utilities offers loans with an interest rate of 5% for a variety of energy-saving measures, including photovoltaic (PV) systems and solar water-heating systems. Under this...

  6. Bryan Texas Utilities- SmartHOME Program

    Broader source: Energy.gov [DOE]

    The Bryan Texas Utilities (BTU) SmartHOME Programs offers incentives to owners of single- and multi-family homes for insulation, windows, and solar screens. The incentive rate is set at $900/kW...

  7. The 12 GeV JLab Upgrade Project

    E-Print Network [OSTI]

    Elton S. Smith

    2009-01-21T23:59:59.000Z

    The upgrade of the CEBAF Accelerator at Jefferson Lab to 12 GeV will deliver high luminosity and high quality beams, which will open unique opportunities for studies of the quark and gluon structure of hadrons in the valence region. Such physics will be made accessible by substantial additions to the experimental equipment in combination with the increased energy reach of the upgraded machine. The emphasis of the talk will be on the program in a new experimental Hall D designed to search for gluonic excitations.

  8. The 12 GeV JLab Upgrade Project

    SciTech Connect (OSTI)

    Smith, Elton

    2009-01-01T23:59:59.000Z

    The upgrade of the CEBAF Accelerator at Jefferson Lab to 12 GeV will deliver high luminosity and high quality beams, which will open unique opportunities for studies of the quark and gluon structure of hadrons in the valence region. Such physics will be made accessible by substantial additions to the experimental equipment in combination with the increased energy reach of the upgraded machine. The emphasis of the talk will be on the program in a new experimental Hall D designed to search for gluonic excitations.

  9. Motor System Upgrades Smooth the Way to Savings of $700,000 at...

    Broader source: Energy.gov (indexed) [DOE]

    System Upgrades Smooth the Way to Savings of 700,000 at Chevron Refinery Motor System Upgrades Smooth the Way to Savings of 700,000 at Chevron Refinery Chevron, the largest U.S....

  10. Energy Efficiency Upgrades Make a Big Difference to a Small Organizati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Upgrades Make a Big Difference to a Small Organization Energy Efficiency Upgrades Make a Big Difference to a Small Organization Photo of a man and woman standing outside...

  11. Natural Gas Utility Restructuring and Customer Choice Act (Montana)

    Broader source: Energy.gov [DOE]

    These regulations apply to natural gas utilities that have restructured in order to acquire rate-based facilities. The regulations address customer choice offerings by natural gas utilities, which...

  12. Upgraded high time-resolved x-ray imaging crystal spectroscopy system for J-TEXT ohmic plasmas

    SciTech Connect (OSTI)

    Jin, W.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Huang, D. W.; Li, Q. L.; Yan, W.; Luo, Y. H.; Huang, Y. H.; Tong, R. H.; Yang, Z. J.; Rao, B.; Ding, Y. H.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)] [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Lee, S. G.; Shi, Y. J. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)] [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)

    2014-02-15T23:59:59.000Z

    This paper presents the upgraded x-ray imaging crystal spectrometer (XICS) system on Joint Texas Experimental Tokamak (J-TEXT) tokamak and the latest experimental results obtained in last campaign. With 500 Hz frame rate of the new Pilatus detector and 5 cm 10 cm spherically bent crystal, the XICS system can provide core electron temperature (T{sub e}), core ion temperature (T{sub i}), and plasma toroidal rotation (V{sub ?}) with a maximum temporal resolution of 2 ms for J-TEXT pure ohmic plasmas. These parameters with high temporal resolution are very useful in tokamak plasma research, especially for rapidly changed physical processes. The experimental results from the upgraded XICS system are presented.

  13. Upgrade of the PNNL TEPC and Multisphere Spectrometer

    SciTech Connect (OSTI)

    Scherpelz, Robert I.; Conrady, Matthew M.

    2008-09-10T23:59:59.000Z

    The Pacific Northwest National Laboratory (PNNL) has used two types of instruments, the tissue equivalent proportional counter (TEPC) and the multisphere spectrometer for characterizing neutron radiation fields in support of neutron dosimetry at the Hanford site. The US Department of Energy recently issued new requirements for radiation protection standards in 10 CFR 835 which affect the way that neutron dose equivalent rates are evaluated. In response to the new requirements, PNNL has upgraded the analyses used in conjunction with the TEPC and multisphere. The analysis software for the TEPC was modified for this effort, and a new analysis code was selected for the multisphere. These new analysis techniques were implemented and tested with measurement data that had been collected in previous measurements. In order to test the effectiveness of the changes, measurements were taken in PNNLs Low Scatter Room using 252Cf sources in both unmoderated and D2O-moderated configurations that generate well-characterized neutron fields. The instruments were also used at Los Alamos National Laboratory (LANL), in their Neutron Free-in-Air calibration room, also using neutron sources that generate well-characterized neutron fields. The results of the software modifications and the measurements are documented in this report. The TEPC measurements performed at PNNL agreed well with accepted dose equivalent rates using the traditional analysis, agreeing with the accepted value to within 13% for both unmoderated and moderated 252Cf sources. When the new analysis was applied to the TEPC measurement data, the results were high compared to the new accepted value. A similar pattern was seen for TEPC measurements at LANL. Using the traditional analysis method, results for all neutron sources showed good agreement with accepted values, nearly always less than 10%. For the new method of analysis, however, the TEPC responded with higher dose equivalent rates than accepted, by as much as 25%. The reason for the overresponse is that there is very little attenuation of the neutrons by tissue, so it cannot match the effect of attenuation by 1 cm of tissue called for in the new standards. This could be corrected with a modified instrument with a thicker wall, or by analytical means that would need to be developed. The multisphere spectrometer performed reasonably well both at PNNL and at LANL. It could produce a neutron spectrum that was similar to the accepted spectrum, and total flux values were usually within 15% of the accepted values. Dose equivalent rates were usually within 18% of the accepted values. The average energies, however, were usually lower than the accepted values. The performance of this instrument could be much better than seen in this study. If PNNL were to add some moderating spheres to its measurement set and calculate a new set of instrument response functions, performance could be improved. The multisphere could then be a more useful instrument for assessing the dose equivalent rate in the workplace.

  14. Project L-070, ``300 Area process sewer piping system upgrade`` Project Management Plan

    SciTech Connect (OSTI)

    Wellsfry, H.E.

    1994-09-16T23:59:59.000Z

    This document is the project management plan for Project L-070, 300 Area process sewer system upgrades.

  15. Standard Work Specifications for Single-Family Home Energy Upgrades Summary (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) and numerous industry stakeholders developed the Standard Work Specifications for Single-Family Home Energy Upgrades to define the minimum requirements for high-quality residential energy upgrades. Today, the Standard Work Specifications provide a unique source for defining high-quality home energy upgrades, establishing clear expectations for homeowners, contractors, trainers, workers, program administrators, and organizations that provide financing for energy upgrades.

  16. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30T23:59:59.000Z

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

  17. Using DOE Industrial Energy Audit Data for Utility Program Design

    E-Print Network [OSTI]

    Glaser, C. J.; Packard, C. P.; Parfomak, P.

    . Baltimore Gas & Electric Company BG&E provides natural gas and electric service to central Maryland, serving approximately 1,000,000 residential customers, 100,000 commercial customers, and 3,000 industrial customers. The industrial customers in BG... time-of-use rates, credits for reducing demand during critical periods, and rebates for efficient lighting, motors, and air compressors. In 1992, BG&E also began the design of its Custom Industrial Plant Upgrade Program, intended to provide custom...

  18. K.K. Gan ATLAS Tracker Upgrade Workshop 1 Progress Report on Joint ATLAS/CMS

    E-Print Network [OSTI]

    Gan, K. K.

    K.K. Gan ATLAS Tracker Upgrade Workshop 1 Progress Report on Joint ATLAS/CMS SLHC Opto ATLAS Tracker Upgrade Workshop 2 Outline Introduction Subgroups activities Summary #12;K.K. Gan ATLAS System #12;K.K. Gan ATLAS Tracker Upgrade Workshop 4 Group A: Lesson Learned and to be Learned from LHC

  19. ATLAS ID Upgrade R&D Plan: Development of a Short-Strip Silicon Detector Module

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    ATLAS ID Upgrade R&D Plan: Development of a Short-Strip Silicon Detector Module and a Frontend of the optimum technology and layout of the tracking detectors for the upgraded ATLAS ID. The goal for the intermediate tracking region in the upgraded ATLAS ID. We anticipate that much of the work would then also

  20. K.K. Gan ATLAS Tracker Upgrade Workshop 1 Nov 5, 2008

    E-Print Network [OSTI]

    Gan, K. K.

    Upgrade Workshop 5 Optical Fiber Irradiation Corning Infinicor GRIN fiber irradiated with 's from Co60 Upgrade Workshop 6 Optical Fiber Irradiation assume L = 3,000 fb-1 including safety factor of 1 Radiation-Hardness of Optical Components #12;K.K. Gan ATLAS Tracker Upgrade Workshop 2 Outline

  1. Health and Safety Plan for NSTX Upgrade Project Tasks

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    describes the structure and implementation of the Health and Safety Plan for the NSTX Upgrade Project work Safety Management Objective of this project is: 1. To integrate safety into all work management and work to Work Being Performed Operations Authorization This Integrated Safety Management Plan describes

  2. Upgraded recovery boiler meets low air emissions standards

    SciTech Connect (OSTI)

    La Fond, J.F.; Jansen, J.H. (Jansen Combustion and Boiler Technologies, Inc., Woodinville, WA (United States)); Eide, P. (Boise Cascade Corp., International Falls, MN (United States))

    1994-12-01T23:59:59.000Z

    In the fall of 1990, the Boise Cascade mill in International Falls, MN, carried out a millwide modernization project. One critical element of the project was the upgrade of their recovery boiler. As a result of the recovery boiler upgrade, the mill was required to obtain a prevention of significant deterioration (PSD) air permit. A best available control technology (BACT) assessment was performed as a requirement of the PSD regulations. Ultimately, a number of more stringent air pollution emission limits were established for the boiler, and a continuous emissions monitoring system (CEMS) was purchased and installed to report daily results to the Minnesota Pollution Control Agency. This paper describes efforts to achieve increased firing capacity in the mill's recovery boiler while meeting more severe air emissions regulations. The authors will show that each of the emissions limits, including CO, SO[sub 2], NO[sub x], TRS, and opacity, are met by the upgraded boiler, while achieving an increase in firing capacity over pre-upgrade levels of up to 40%.

  3. CDF Run IIb Silicon Vertex Detector DAQ Upgrade

    SciTech Connect (OSTI)

    S. Behari et al.

    2003-12-18T23:59:59.000Z

    The CDF particle detector operates in the beamline of the Tevatron proton-antiproton collider at Fermilab, Batavia, IL. The Tevatron is expected to undergo luminosity upgrades (Run IIb) in the future, resulting in a higher number of interactions per beam crossing. To operate in this dense radiation environment, an upgrade of CDF's silicon vertex detector (SVX) subsystem and a corresponding upgrade of its VME-based DAQ system has been explored. Prototypes of all the Run IIb SVX DAQ components have been constructed, assembled into a test stand and operated successfully using an adapted version of CDF's network-capable DAQ software. In addition, a PCI-based DAQ system has been developed as a fast and inexpensive tool for silicon detector and DAQ component testing in the production phase. In this paper they present an overview of the Run IIb silicon DAQ upgrade, emphasizing the new features and improvements incorporated into the constituent VME boards, and discuss a PCI-based DAQ system developed to facilitate production tests.

  4. National Spherical Torus Experiment Upgrade Status and Plans*

    E-Print Network [OSTI]

    fusion nuclear environment of copious neutrons to develop an experimental database on: ­ Nuclear is unique challenge for ST-based Fusion Nuclear Science Facility · NSTX-U goals: ­ Generate ~0.3-0.4MA fullNational Spherical Torus Experiment Upgrade ­ Status and Plans* J. Menard, PPPL For the NSTX-U Team

  5. Simulation of the TREAT-Upgrade Automatic Reactor Control System

    SciTech Connect (OSTI)

    Lipinski, W.C.; Kirsch, L.W.; Valente, A.D.

    1984-01-01T23:59:59.000Z

    This paper describes the design of the Automatic Reactor Control System (ARCS) for the Transient Reactor Test Facility (TREAT) Upgrade. A simulation was used to facilitate the ARCS design and to completely test and verify its operation before installation at the TREAT facility.

  6. Runner upgrading: Learning from Ontario Hydro`s experience

    SciTech Connect (OSTI)

    Kee, D.C.; Markovich, M.S.; Munro, R.I. [Ontario Hydro (Canada)

    1997-02-01T23:59:59.000Z

    Planning, design, and implementation of turbine runner replacement at Ontario Hydro is described in the article. The use of fully homologous modeling for upgrade projects, including both francis and propeller runner types, is outlined. Confirmation of physical model efficiency is obtained through numerical modeling. Inlet connections, setting cavitation-erosion guarantees, and other guarantees included in tender documents are also described in some detail.

  7. Post Production Heavy Oil Operations: A Case for Partial Upgrading

    E-Print Network [OSTI]

    Lokhandwala, Taher

    2012-12-05T23:59:59.000Z

    The transportation of heavy oil is a pressing problem. Various methods have been devised to mitigate the reluctance to flow of these highly dense and viscous oils. This study is focused on evaluating a case for post-production partial upgrading...

  8. Westover ARB Fuel Hydrant System Upgrade set to begin

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Westover ARB Fuel Hydrant System Upgrade set to begin Story on page 4 #12;2 YANKEE ENGINEER August, many along the East Coast felt the impact of Hurricane Sandy, one of the largest hurricanes in history's way. · Make sure to fully charge your cell phone or other mobile devices so you can communicate after

  9. Upgrade LCDs or TVs with improved ergonomic adjustability

    E-Print Network [OSTI]

    Saskatchewan, University of

    Highlights · Upgrade LCDs or TVs with improved ergonomic adjustability · Constant Force (CFTM comfort and productivity · 5 (130 mm) height range easily meets the ergonomic height needs of the average compliant Product Sheet Affordable desktop ergonomics Neo-FlexTM LCD Stand 870-05-067, rev. 03/08/07 www

  10. BIG Energy Upgrade: Procurement and Supply Chain report

    E-Print Network [OSTI]

    Wrigley, Stuart

    BIG Energy Upgrade: Procurement and Supply Chain report ­ Green Deal and Energy Efficiency ­ Green Deal and Energy Efficiency Retrofitting Supply Chains Delivery Professor S.C. Lenny Koh Dr Andrea........................................................................................................................... 26 4.5 Generalities on Procurement Best Practices

  11. T Plant secondary containment and leak detection upgrades

    SciTech Connect (OSTI)

    Carlson, T.A.

    1995-10-19T23:59:59.000Z

    The W-259 project will provide upgrades to the 2706-T/TA Facility to comply with Federal and State of Washington environmental regulations for secondary containment and leak detection. The project provides decontamination activities supporting the environmental restoration mission and waste management operations on the Hanford Site.

  12. Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2005-07-01T23:59:59.000Z

    The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench-scale. Natural gas upgrading systems have six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration has been initiated. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study. The project is on schedule and on budget. Task 4, a bench-scale demonstration of the ultra-fast TSA system is complete. Rapid thermal swing of an adsorbent bed using microchannels has been successfully demonstrated and the separation of a 70% methane and 30% nitrogen was purified to 92% methane. The bench-scale demonstration unit was small relative to the system dead volume for the initial phase of experiments and a purge step was added to sweep the dead volume prior to desorbing the bed and measuring purity. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement.

  13. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

  14. Mississippi Public Utility Act

    Broader source: Energy.gov [DOE]

    The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN)...

  15. GSA- Utility Interconnection Agreements

    Broader source: Energy.gov [DOE]

    Presentation given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  16. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    SciTech Connect (OSTI)

    Thorsness, C. B., LLNL

    1997-01-21T23:59:59.000Z

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  17. Property:OpenEI/UtilityRate/DemandRateStructure/Tier5Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms Jump

  18. Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms JumpEnergy InformationInformation

  19. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfPrograms JumpEnergyDemandWindow

  20. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier2Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfProgramsInformation

  1. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2NumberOfProgramsInformationInformation

  2. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Rate | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to: navigation, search This is a property of

  3. Upgrade of CEBAF from 6-GeV To 12-GeV: Status

    SciTech Connect (OSTI)

    Harwood, Leigh H.

    2013-04-01T23:59:59.000Z

    The CEBAF accelerator is being upgraded from 6 GeV to 12 GeV by the US Department of Energy. The accelerator upgrade is being done within the existing tunnel footprint. The accelerator upgrade includes: 10 new srfbased high-performance cryomodules plus RF systems, doubling the 2K helium plants capability, upgrading the existing beamlines to operate at nearly double the original performance envelope, and adding a beamline to a new experimental area. Construction is over 75% complete with final completion projected for late FY13. Details of the upgrade and status of the work will be presented.

  4. Upgraded coal interest group. Quarterly report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Weber, W. [Electric Power Research Inst., Chattanooga, TN (United States); Lebowitz, H.E. [Fossil Fuel Sciences, Palo Alto, CA (United States)

    1995-12-31T23:59:59.000Z

    The objectives of the Upgraded Coal Interest Group (UCIG) are as follows: Review and update the status of various coal upgrading technologies and developments and critically assess the results. Perform engineering screening analyses on various coal upgrading approaches. Perform commercialization analyses that will promote the availability and use of upgraded coal products by quantifying the benefits of using them. Identify market opportunities for introduction of upgraded coals. Perform critical analyses on a variety of coals and technologies in areas important to users but not readily available. Perform critical experiments which will show the differences between technologies.

  5. Lassen Municipal Utility District- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lassen Municipal Utility District (LMUD) offers an incentive for residential customers who purchase and install efficient lighting, HVAC equipment and ENERGY STAR rated appliances for eligible...

  6. Lodi Electric Utility- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lodi Electric Utility (LEU) offers 3 commercial energy efficiency programs to eligible customers. Available incentives are based upon the customer rate schedule. Each program has separate incentive...

  7. Elk River Municipal Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    [http://www.elkriverutilities.com/index.php Elk River Municipal Utilities] provides rebates to their residential electric customers who purchase and install Energy Star rated appliances and HVAC...

  8. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4SuperhardSuspectEngines | Department ofSyngas

  9. Commissioner Catherine J.K. Sandoval California Public Utilities Commission

    E-Print Network [OSTI]

    Reform: Rate Setting · CPUC approves utility rates and rate design · AB 327 repeals statutory limitations rates, rate design, CARE discount for low-income customers · Promote energy efficiency for low income Department (CSD) resources · Consider and document health and safety outcomes, as well as societal benefits

  10. Upgrading Methane Using Ultra-Fast Thermal Swing Adsorption

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2004-07-01T23:59:59.000Z

    The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the technical feasibility and cost of upgrading low-BTU methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys modular microchannel process technology. The objective of Phase II is to demonstrate the process at the bench scale. The project is on schedule and on budget. A technical and economic feasibility assessment was completed in Task 3. The proposed Velocys technology appears feasible for the methane upgrading market. Evaluated categories include adsorbent selection, rapid-cycle valve selection, microchannel manufacturability assessment, and system design and cost. The selected adsorbent, granular microporous carbon from either Barnaby-Sutcliffe or Calgon, experimentally demonstrated sufficient methane capacity under differential temperature at 100 pounds per square inch gauge. Several valve options were identified, including candidates that can operate millions of cycles between refurbishment. The microchannel adsorber and desorber designs were made using internal Velocys manufacturability standards, and the associated costs are acceptable as included with the complete nitrogen rejection unit (NRU) cost projection. A system design and cost estimate was completed for the NRU section of the methane upgrading system. As integrated into the complete system, the cost is in line with the market requirement. The system has six main unit operations: feed compressor, dehydration unit, nitrogen rejection unit, deoxygenator, carbon dioxide scrubber, and a sales compressor. The NRU is the focus of the development program, and a bench-scale demonstration will be initiated in the next fiscal year. The Velocys NRU system targets producing methane with greater than 96% purity and at least 90% recovery for final commercial operation. A preliminary cost analysis of the methane upgrading system, including the Velocys NRU, suggests that costs below $2.00 per million (MM) BTU methane may be achieved. The cost for a conventional methane upgrading system is well above $2.30 per MM BTU, as benchmarked in an Environmental Protection Agency study.

  11. "List of Covered Electric Utilities" under the Public Utility...

    Broader source: Energy.gov (indexed) [DOE]

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  12. 2 MW upgrade of the Fermilab Main Injector

    SciTech Connect (OSTI)

    Weiren Chou

    2003-06-04T23:59:59.000Z

    In January 2002, the Fermilab Director initiated a design study for a high average power, modest energy proton facility. An intensity upgrade to Fermilab's 120-GeV Main Injector (MI) represents an attractive concept for such a facility, which would leverage existing beam lines and experimental areas and would greatly enhance physics opportunities at Fermilab and in the U.S. With a Proton Driver replacing the present Booster, the beam intensity of the MI is expected to be increased by a factor of five. Accompanied by a shorter cycle, the beam power would reach 2 MW. This would make the MI a more powerful machine than the SNS or the J-PARC. Moreover, the high beam energy (120 GeV) and tunable energy range (8-120 GeV) would make it a unique high power proton facility. The upgrade study has been completed and published. This paper gives a summary report.

  13. Using EPICS enabled industrial hardware for upgrading control systems

    SciTech Connect (OSTI)

    Bjorkland, Eric A [Los Alamos National Laboratory; Veeramani, Arun [NATIONAL INSTRUMENTS; Debelle, Thierry [NATIONAL INSTRUMENTS

    2009-01-01T23:59:59.000Z

    Los Alamos National Laboratory has been working with National Instruments (NI) and Cosy lab to implement EPICS Input Output Controller (IOC) software that runs directly on NI CompactRIO Real Time Controller (RTC) and communicates with NI LabVIEW through a shared memory interface. In this presentation, we will discuss our current progress in upgrading the control system at the Los Alamos Neutron Science Centre (LANSCE) and what we have learned about integrating CompactRIO into large experimental physics facilities. We will also discuss the implications of using Channel Access Server for LabVIEW which will enable more commercial hardware platforms to be used in upgrading existing facilities or in commissioning new ones.

  14. Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan

    SciTech Connect (OSTI)

    Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

    2007-07-01T23:59:59.000Z

    Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

  15. Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway

    SciTech Connect (OSTI)

    Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

    2013-03-31T23:59:59.000Z

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

  16. Jefferson Lab 12 GeV CEBAF Upgrade

    SciTech Connect (OSTI)

    Claus Rode

    2010-04-01T23:59:59.000Z

    The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ~6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a $310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.

  17. Interaction Region Upgrades of e+ e- B-Factories

    SciTech Connect (OSTI)

    Sullivan, M.; /SLAC

    2008-02-22T23:59:59.000Z

    Both the PEP-II and KEKB B-Factories have plans to upgrade their Interaction Regions (IRs) in order to improve luminosity performance. Last summer PEP-II added cooling to the IR beam pipe in order to increase beam currents thereby raising the luminosity. In addition, PEP-II is working on a design that modifies the permanent magnets near the Interaction Point (IP) for an even higher luminosity increase. KEKB is also planning an improvement to their IR that will decrease the detector beam pipe radius. In addition, KEK has a design to increase the luminosity of KEKB to 1 x 10{sup 35} cm{sup -2} sec{sup -1} which includes changes to the IR. PEP-II is also investigating the feasibility of a 1 x 10{sup 36} cm{sup -2} sec{sup -1} luminosity design. I summarize these various upgrades and concentrate on issues common to the different designs.

  18. Phased approach to the LHC Insertion Upgrade and Magnet Challenges

    E-Print Network [OSTI]

    Ostojic, R

    2008-01-01T23:59:59.000Z

    The LHC is on its way for operation with beam in 2008. The first goal of CERN and the LHC community is to ensure that the collider is operated efficiently, gradually reaching its maximal performance. In parallel, discussions have started and there is already a wealth of ideas on the possible directions for upgrading the LHC insertions. In this talk, we illustrate some of the constraints limiting the upgrade scenarios, and argue that a phased approach with several intermediate targets is necessary. In the first phase, the known bottleneck in the low-? triplets needs to be removed in the perspective of the physics run of 2013. This phase relies on the mature Nb-Ti superconducting magnet technology, where improvements for a small scale production are still possible.

  19. Slum upgrading in India and Kenya: investigating the sustainability

    E-Print Network [OSTI]

    Cronin, Victoria Louise Molly

    2012-04-10T23:59:59.000Z

    I Government of India HUDCO Housing and Urban Development Corporation Limited IoG Institute of Governance JNNURM Jawaharlal Nehru National Urban Renewal Mission KP Kamgar Putla LDCs Least Developed Countries MASHAL Maharashtra Area Social... -up approaches. The case studies are of varying ages and were implemented via partnerships with differing agents including government, NGO, CBO, private developer and donors. The influence and design of the delivery model upon the upgrading sustainability...

  20. Providing protection: Agencies receive funding to repair, upgrade dams

    E-Print Network [OSTI]

    Wythe, Kathy

    2009-01-01T23:59:59.000Z

    Story by Kathy Wythe tx H2O | pg. 26 Providing protection Agencies receive funding to repair, upgrade dams along with local partners, can apply for grant funds, he said. Construction of the dams began through four federal authorizations... totaling about $11 million. Of the 343 dams currently classified as high hazard, Scattered across Texas are almost 2,000 nondescript, earthen dams built on private land to protect property, roads, and bridges from flood damages. Some of these dams...

  1. Conversion Technologies for Advanced Biofuels … Carbohydrates Upgrading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor Engineering NewisSecurityPARTUpgrading Report-OutUpgrading

  2. Electric Rate Alternatives to Cogeneration

    E-Print Network [OSTI]

    Sandberg, K. R. Jr.

    "ELECTRIC RATE ALTERNATIVES TO COGENERATION" K. R. SANDBERG, JR. INDUSTRIAL ACCOUNTS MANAGER - TEXAS GULF STATES UTILITIES COMPANY BEAUMONT, TEXAS ABSTRACT This paper discusses electric rate slternatives to cogeneration for the industrisl... PERSPECTIVE Gulf States Utilities was incorporated in 1925 and is primarily in the business of generating. transmitting and distributing electricity to 555.000 customers in southeast Texas and south Louisiana. The service area extends 350 miles westward...

  3. Generalized utility metrics for supercomputers

    E-Print Network [OSTI]

    Strohmaier, Erich

    2009-01-01T23:59:59.000Z

    2007:112 Generalized utility metrics for supercomputers 12.ISSUE PAPER Generalized utility metrics for supercomputersproblem of ranking the utility of supercom- puter systems

  4. Upgrading of raw oil into advanced fuel. Task 5

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The overall objective of the research effort is the determination of the minimum processing requirements to produce high energy density fuels (HEDF) having acceptable fuel specifications. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. The Phase I Baseline Program is intended to explore the processing alternatives for producing advanced HEDF from two raw synfuel feedstocks, one from Mild Coal Gasification as exemplified by the COALITE process and one from Colorado shale oil. Eight key tasks have been identified as follows: (1) Planning and Environmental Permitting; (2) Transporting and Storage of Raw Fuel Sources and Products; (3) Screening of Processing and Upgrading Schemes; (4) Proposed Upgrading Schemes for Advanced Fuel; (5) Upgrading of Raw Oil into Advanced Fuel (6) Packaging and Shipment of Advanced Fuels; (7) Updated Technical and Economic Assessment; and, (8) Final Report of Phase I Efforts. This topical report summarizes the operations and results of the Phase I Task 5 sample preparation program. The specific objectives of Task 5 were to: Perform laboratory characterization tests on the raw COALITE feed, the intermediate liquids to the required hydroprocessing units and final advanced fuels and byproducts; and produce a minimum of 25-gal of Category I test fuel for evaluation by DOE and its contractors.

  5. High temperature ceramic membrane reactors for coal liquid upgrading

    SciTech Connect (OSTI)

    Tsotsis, T.T.

    1992-01-01T23:59:59.000Z

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL's contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  6. Snowflake divertor configuration studies for NSTX-Upgrade

    SciTech Connect (OSTI)

    Soukhanovskii, V A

    2011-11-12T23:59:59.000Z

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  7. UPGRADING METHANE USING ULTRA-FAST THERMAL SWING ADSORPTION

    SciTech Connect (OSTI)

    Anna Lee Tonkovich

    2004-01-01T23:59:59.000Z

    The purpose of this project is to design and demonstrate an approach to upgrade low-BTU methane streams from coal mines to pipeline-quality natural gas. The objective of Phase I of the project was to assess the feasibility of upgrading low-Btu methane streams using ultra-fast thermal swing adsorption (TSA) using Velocys' modular microchannel process technology. The project is on schedule and under budget. For Task 1.1, the open literature, patent information, and vendor contacts were surveyed to identify adsorbent candidates for experimental validation and subsequent demonstration in an MPT-based ultra-fast TSA separation for methane upgrading. The leading candidates for preferential adsorption of methane over nitrogen are highly microporous carbons. A Molecular Gate{trademark} zeolite from Engelhard Corporation has emerged as a candidate. For Task 1.2, experimental evaluation of adsorbents was initiated, and data were collected on carbon (MGN-101) from PICA, Inc. This carbon demonstrated a preferential capacity for methane over nitrogen, as well as a reasonable thermal swing differential capacity for a 90% methane and 10% nitrogen mixture. A similar methane swing capacity at 2 psig was measured. The mixture composition is relevant because gob gas contains nearly 85% methane and must be purified to 97% methane for pipeline quality.

  8. Utility Data Collection Service

    Broader source: Energy.gov [DOE]

    Presentation covers the utility data collection service and is given at the FUPWG 2006 Spring meeting, held on May 3-4, 2006 in Atlanta, Georgia.

  9. Joint Electrical Utilities (Iowa)

    Broader source: Energy.gov [DOE]

    Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease...

  10. Utility Regulation (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Utility Regulatory Commission enforces regulations in this legislation that apply to all individuals, corporations, companies, and partnerships that may own, operate, manage, or control...

  11. Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    Utility energy service contracts (UESCs) offer Federal agencies an effective means to implement energy-efficiency, renewable-energy, and water-efficiency projects.

  12. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers significant electric industry trends and industry priorities with federal customers.

  13. Municipal Utility Districts (Texas)

    Broader source: Energy.gov [DOE]

    Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

  14. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01T23:59:59.000Z

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  15. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  16. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    None

    1989-02-01T23:59:59.000Z

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  17. Alternative Regulation for North American Electric Utilities

    SciTech Connect (OSTI)

    Lowry, Mark Newton; Kaufmann, Lawrence

    2006-06-15T23:59:59.000Z

    After a decade of favorable operating conditions, utilities find themselves faced with accelerating prices for key inputs and a growing need for new capacity. These pressures are likely to prompt increasingly frequent, and perhaps more contentious, rate cases. Steady progress in the development of alternative regulation provides hope that the utility industry will respond to these challenges much better than in 1975-85. (author)

  18. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    clean coal technology, are not extensively utilized in the cast concrete masonry products (bricks both conventional and clean coal technologies. A clean coal ash is defined as the ash derived from SO2Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST

  19. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    combustion by-products #12;3 generated by using both conventional and clean-coal technologies. A clean-coal that obtained from clean-coal technology, are not utilized in cast-concrete masonry products (bricks, blocksCenter for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik

  20. WOOD PRODUCTS AND UTILIZATION

    E-Print Network [OSTI]

    Standiford, Richard B.

    WOOD PRODUCTS AND UTILIZATION V #12;#12;443USDA Forest Service Gen. Tech. Rep. PSW-GTR-160. 1997. Section Overview Wood Products and Utilization1 John R. Shelly2 Forests are obviously a very important asset to California, and their economic and social value to the state is well documented. Wood

  1. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST OF CLASS F FLYASHAND CLEAN-COAL ASHBLENDS FOR CAST CONCRETE PRODUCTS Authors: TarunR.Naik, Director, Center,Illinois Clean Coal Institute RudolphN.Kraus, Research Associate, UWM Center forBy-Products Utilization Shiw S

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization CLEAN COAL BY-PRODUCTS UTILIZATION IN ROADWAY, EMBANKMENTS-fueled plants, particularly use of eastern coals, has lead to the use of clean coal and using advanced sulfur dioxide control technologies. Figure 1 shows clean coal technology benefits(2) . In 1977, the concept

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -Milwaukee, P.O. Box 784, Milwaukee, WI 53201 d Project Manager, Illinois Clean Coal Institute * Director UWM products containing clean coal ash compared to conventional coal ash. Utilization of clean coal ash is much products that utilize clean coal ash. With increasing federal regulations on power plant emissions, finding

  4. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    SciTech Connect (OSTI)

    Dennis Dalrymple

    2004-06-01T23:59:59.000Z

    This final report describes the objectives, technical approach, results and conclusions for a project funded by the U.S. Department of Energy to test a hybrid sulfur recovery process for natural gas upgrading. The process concept is a configuration of CrystaTech, Inc.'s CrystaSulf{reg_sign} process which utilizes a direct oxidation catalyst upstream of the absorber tower to oxidize a portion of the inlet hydrogen sulfide (H{sub 2}S) to sulfur dioxide (SO{sub 2}) and elemental sulfur. This hybrid configuration of CrystaSulf has been named CrystaSulf-DO and represents a low-cost option for direct treatment of natural gas streams to remove H{sub 2}S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day and more. This hybrid process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both onshore and offshore applications. CrystaSulf is a nonaqueous sulfur recovery process that removes H{sub 2}S from gas streams and converts it to elemental sulfur. In CrystaSulf, H{sub 2}S in the inlet gas is reacted with SO{sub 2} to make elemental sulfur according to the liquid phase Claus reaction: 2H{sub 2}S + SO{sub 2} {yields} 2H{sub 2}O + 3S. The SO{sub 2} for the reaction can be supplied from external sources by purchasing liquid SO{sub 2} and injecting it into the CrystaSulf solution, or produced internally by converting a portion of the inlet gas H{sub 2}S to SO{sub 2} or by burning a portion of the sulfur produced to make SO{sub 2}. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, the needed SO{sub 2} is produced by placing a bed of direct oxidation catalyst in the inlet gas stream to oxidize a portion of the inlet H{sub 2}S. Oxidation catalysts may also produce some elemental sulfur under these conditions, which can be removed and recovered prior to the CrystaSulf absorber. The CrystaSulf-DO process can utilize direct oxidation catalyst from many sources. Numerous direct oxidation catalysts are available from many suppliers worldwide. They have been used for H{sub 2}S oxidation to sulfur and/or SO{sub 2} for decades. It was believed at the outset of the project that TDA Research, Inc., a subcontractor, could develop a direct oxidation catalyst that would offer advantages over other commercially available catalysts for this CrystaSulf-DO process application. This project involved the development of several of TDA's candidate proprietary direct oxidation catalysts through laboratory bench-scale testing. These catalysts were shown to be effective for conversion of H{sub 2}S to SO{sub 2} and to elemental sulfur under certain operating conditions. One of these catalysts was subsequently tested on a commercial gas stream in a bench-scale reactor at CrystaTech's pilot plant site in west Texas with good results. However, commercial developments have precluded the use of TDA catalysts in the CrystaSulf-DO process. Nonetheless, this project has advanced direct oxidation catalyst technology for H{sub 2}S control in energy industries and led to several viable paths to commercialization. TDA is commercializing the use of its direct oxidation catalyst technology in conjunction with the SulfaTreat{reg_sign} solid scavenger for natural gas applications and in conjunction with ConocoPhillips and DOE for gasification applications using ConocoPhillips gasification technology. CrystaTech is commercializing its CrystaSulf-DO process in conjunction with Gas Technology Institute for natural gas applications (using direct oxidation catalysts from other commercial sources) and in conjunction with ChevronTexaco and DOE for gasification applications using ChevronTexaco's gasification technology.

  5. How One Utility is Building Industrial Consumer Relationships

    E-Print Network [OSTI]

    Hamilton, D. E.

    HOW ONE UT1~ITY IS BUILDING INDUSTRIAL CONSUMER RELATIONSHIPS DONALD E. HAMILTON Manager-Industrial Services and Cogeneration Gulf States Utilities Company Beaumont, Texas COMPETITION AND THE UTILITY INDUSTRY The refining and petrochemical... industries enjoyed an unprecedented era of growth beginning with World War II and continuing through the seventies. Electric loads served by gulf coast utilities grew at phenomenal rates. Electric loads at Gulf States Utilities, my Company, grew at a...

  6. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01T23:59:59.000Z

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  7. Summary of Initial Examination of Lighting-Only Utility Projects in the Federal Sector

    SciTech Connect (OSTI)

    Solana, Amy E.; Sandusky, William F.; Mcmordie, Katherine

    2007-07-26T23:59:59.000Z

    This work complements earlier work on an analysis of Federal utility energy projects that implemented excusively lighting upgrades. The objective of this analysis is to better understand the lighting-only projects through determination of the relationship of capital invested and the resulting energy and cost savings, in terms of geographic locale, project size, and potential according to specific lighting technologies and/or control technology implemented.

  8. SAGEWASP. Optimal Electric Utility Expansion

    SciTech Connect (OSTI)

    Clark, P.D.II; Ullrich, C.J. [Lakeland Electric and Water, FL (United States)

    1989-10-10T23:59:59.000Z

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansion configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.

  9. 12 GeV CEBAF Upgrade Celebration to Be Held on Friday | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the start of operations (aka Critical Decision 4A); and to recognize several vendors who provided distinguished contract performance during the upgrade effort. Virginia...

  10. E-Print Network 3.0 - atlas tracker upgrade Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research Summary: spectrometry. Future developments Since its inception in 1985, the ATLAS facility has continually been upgraded... ATLAS Argonne Tandem Linear Accelerator...

  11. E-Print Network 3.0 - atlas strips upgrade Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research Summary: spectrometry. Future developments Since its inception in 1985, the ATLAS facility has continually been upgraded... ATLAS Argonne Tandem Linear Accelerator...

  12. E-Print Network 3.0 - atlas pixel upgrade Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research Summary: spectrometry. Future developments Since its inception in 1985, the ATLAS facility has continually been upgraded... ATLAS Argonne Tandem Linear Accelerator...

  13. Microsoft Word - CX-WallaWalla-Pendleton-Upgrade_FY14_WEB.docx

    Broader source: Energy.gov (indexed) [DOE]

    3 REPLY TO ATTN OF: KEPRPasco SUBJECT: Environmental Clearance Memorandum Greg Wilfong Lineman Foreman III - TFPF-PASCO Proposed Action: Line upgrade on Bonneville Power...

  14. Microsoft Word - CX-DrainageUpgradesMultipleSubsFY13_WEB.docx

    Broader source: Energy.gov (indexed) [DOE]

    3, 2012 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Brett Sherer Project Manager - KEP-4 Proposed Action: FY13 Environmental Drainage Upgrades at Bonneville...

  15. Microsoft Word - CX-AlveyMaintenanceHQ_PoleStorageUpgrade_WEB...

    Broader source: Energy.gov (indexed) [DOE]

    4, 2011 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Brett Sherer Project Manager - KEP-4 Proposed Action: Environmental protection system upgrades at pole...

  16. Microsoft Word - CX-DixieSubstationUpgradesFY11_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    24, 2011 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Brett Sherer Project Manager - KEP-4 Proposed Action: Upgrade of secondary containment facilities at...

  17. Microsoft Word - CX-HatwaiSubstationUpgradesFY11_WEB.doc

    Broader source: Energy.gov (indexed) [DOE]

    January 18, 2011 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Brett Sherer Project Manager - KEP-4 Proposed Action: Upgrade of secondary containment...

  18. E-Print Network 3.0 - asdex upgrade invited Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    200910 EURATOMCCFE Fusion Association Summary: will remain operational until at least 2014, and probably longer. ASDEX-Upgrade (Germany) was ranked second... and must know how...

  19. Utility Access Questionnaire | Utility Access Questionnaire

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City, Utah Zip: 84111Jump to:Access Questionnaire

  20. K.K. Gan US ATLAS Upgrade Workshop 1 Tracker Optical Link Upgrade

    E-Print Network [OSTI]

    Gan, K. K.

    Optical Modules SCT harness: speed: 40 Mb/s single fiber (fragile) short flex to reduce? What is the PIN SEU rate? What is the VCSEL optical power after irradiation? Can the VCSEL recover > 70% of optical power 2 arrays irradiated to 1016 1-MeV neq/cm2 some channels lost all optical

  1. Upgrading of western shale oil by hydropyrolysis and hydrotreating

    SciTech Connect (OSTI)

    Bunger, J.W.; Russell, C.P.; Jeong, Soon-Yong; Pu, J.

    1992-07-01T23:59:59.000Z

    A proof-of-concept study for a new shale oil upgrading and refining process was undertaken. This project is aimed at reducing upgrading costs, thereby malting shale oil development more feasible for commercialization. Raw shale oil was topped to remove the most volatile components. The topped shale oil was distilled into three narrow boiling cuts, representing of 175--275{degrees}C, 275--365{degrees}C, and 365--455{degrees}C, and a residue portion (>455{degrees}C). The distillate cuts were used to study molecular weight effects, and the residue was used to test the performance of hydropyrolysis. Hydropyrolysis converts the heavy residue into lower boiling point materials which can be more easily hydrotreated. In the experiment to test molecular weight effects, it was found that geometric hindrance accounts for the inhibition effect. Diffusion limitation and inhibition by competitive adsorption are not strong effects. These results imply that there is no process substitute for the requirement of molecular weight reduction. In the experiment to test the performance of hydropyrolysis, average molecular weight is reduced from 495 to 359 at moderate severities. In HDN of the hydropyrolized residue, however, high process severities are still required to remove nitrogen to the level of refinery-acceptable-feed (< 0.15 wt %). Based on experimental data, the product slate is 1.9 wt % gas, 13.1 wt % gasoline, 27.3 wt % kerosene, 55.6 wt % total gas oil, 1.3 wt % vacuum residue, and 0.8 wt % coke with 1376 scf/bbl total hydrogen consumption. The removal of sulfur is 96%, and that of nitrogen is 84%. The concentration of sulfur in the final product is 0.038 wt %, and that of nitrogen in final product is 0.26%. The conversion of heavy residue to atmospheric distillate is 47%. However, the remaining residue is partially upgraded as a refinery feed.

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    International Conference onFly Ash Disposal and Utilization,onJanuary 20-22, 1998, New Delhi, India. COAL ASH and embankments, pavement and subbase courses, subgrade stabilizations, landfill cover, soil improvement, land

  3. Supervisory Public Utilities Specialist

    Broader source: Energy.gov [DOE]

    The incumbent of this position serves as a Supervisory Public Utilities Specialist in the Long Term Power Planning Group that is part of Power Servicess Generation Asset Management, Power &...

  4. Extraction Utility Design Specification

    Energy Savers [EERE]

    Extraction Utility Design Specification January 11, 2011 Document Version 1.9 1 Revision History Date Version Section and Titles Author Summary of Change January 15, 2010 1.0 All...

  5. Gas Utilities (New York)

    Broader source: Energy.gov [DOE]

    This chapter regulates natural gas utilities in the State of New York, and describes standards and procedures for gas meters and accessories, gas quality, line and main extensions, transmission and...

  6. Utility and Industrial Partnerships

    E-Print Network [OSTI]

    Sashihara, T. F.

    In the past decade, many external forces have shocked both utilities and their large industrial customers into seeking more effective ways of coping and surviving. One such way is to develop mutually beneficial partnerships optimizing the use...

  7. utilities.scm

    E-Print Network [OSTI]

    ;;; Some utility functions (define (negative-abs m) ;; m can be big, so we'll try to be nice here (if (abs_m m) ;; returns smallest p...

  8. Public Utilities (Florida)

    Broader source: Energy.gov [DOE]

    Chapter 366 of the Florida Statutes governs the operation of public utilities, and includes a section pertaining to cogeneration and small power production (366.051). This section establishes the...

  9. Public Utilities Act (Illinois)

    Broader source: Energy.gov [DOE]

    This act aims to make energy services in the state reliable and efficient, while preserving the quality if the environment. It states the duties of public utilities in terms of accounts and reports...

  10. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization DRAFT REPORT CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS-MILWAUKEE #12;CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS PRODUCTS Progress Report by Tarun R. Naik, Rakesh of Carbon Dioxide Sequestration Technologies

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -Products Utilization E-mail: ymchun@uwm.edu and F. D. Botha Project Manager, Illinois Clean Coal Institute 5776 Coal, University of Wisconsin-Milwaukee, Milwaukee, WI, USA. 4 Project Manager, Illinois Clean Coal Institute

  12. Utility Easements (Indiana)

    Broader source: Energy.gov [DOE]

    A permit is required from the Indiana Department of Natural Resources for the construction of a utility upon a state park, a state forest, a state game preserve, land acquired by the state and set...

  13. Gas Utilities (Maine)

    Broader source: Energy.gov [DOE]

    Rules regarding the production, sale, and transfer of manufactured gas will also apply to natural gas. This section regulates natural gas utilities that serve ten or more customers, more than one...

  14. Network Upgrade for the SLC: Control System Modifications

    SciTech Connect (OSTI)

    Crane, M.; Mackenzie, R.; Sass, R.; Himel, T.; /SLAC

    2011-09-09T23:59:59.000Z

    Current communications between the SLAC Linear Collider control system central host and the SLCmicros is built upon the SLAC developed SLCNET communication hardware and protocols. We will describe how the Internet Suite of protocols (TCP/IP) are used to replace the SLCNET protocol interface. The major communication pathways and their individual requirements are described. A proxy server is used to reduce the number of total system TCP/IP connections. The SLCmicros were upgraded to use Ethernet and TCP/IP as well as SLCNET. Design choices and implementation experiences are addressed.

  15. Physics at an upgraded proton driver at Fermilab

    SciTech Connect (OSTI)

    Steve Geer

    2004-07-28T23:59:59.000Z

    The accelerator-based particle physics program in the US is entering a period of transition. This is particularly true at Fermilab which for more than two decades has been the home of the Tevatron Proton-Antiproton Collider, the World's highest energy hadron collider. In a few years time the energy frontier will move to the LHC at CERN. Hence, if an accelerator-based program is to survive at Fermilab, it must evolve. Fermilab is fortunate in that, in addition to hosting the Tevatron Collider, the laboratory also hosts the US accelerator-based neutrino program. The recent discovery that neutrino flavors oscillate has opened a new exciting world for us to explore, and has created an opportunity for the Fermilab accelerator complex to continue to address the cutting-edge questions of particle physics beyond the Tevatron Collider era. The presently foreseen neutrino oscillation experiments at Fermilab (MiniBooNE [1] and MINOS [2]) will enable the laboratory to begin contributing to the Global oscillation physics program in the near future, and will help us better understand the basic parameters describing the oscillations. However, this is only a first step. To be able to pin down all of the oscillation parameters, and hopefully make new discoveries along the way, we will need high statistics experiments, which will require a very intense neutrino beam, and one or more very massive detectors. In particular we will require new MW-scale primary proton beams and perhaps ultimately a Neutrino Factory [3]. Plans to upgrade the Fermilab Proton Driver are presently being developed [4]. The upgrade project would replace the Fermilab Booster with a new 8 GeV accelerator with 0.5-2 MW beam power, a factor of 15-60 more than the current Booster. It would also make the modifications needed to the Fermilab Main Injector (MI) to upgrade it to simultaneously provide 120 GeV beams of 2 MW. This would enable a factor of 5-10 increase in neutrino beam intensities at the MI, while also supporting a vigorous 8 GeV fixed-target program. In addition, a Proton Driver might also serve as a stepping-stone to future accelerators, both as an R&D test bed and as an injector, with connections to the Linear Collider, Neutrino Factories, and a VLHC. Hence, although neutrino physics would provide the main thrust for the science program at an upgraded Fermilab proton source, the new facility would also offer exciting opportunities for other fixed-target particle physics (kaons, muons, neutrons, antiprotons, etc.) and a path towards new accelerators in the future.

  16. Searches for Higgs Boson(s) at the Upgraded Tevatron

    E-Print Network [OSTI]

    Gregorio Bernardi; for the CDF; D0 collaborations

    2005-07-14T23:59:59.000Z

    We summarize the status of Higgs boson searches at the upgraded Fermilab Tevatron performed by the DO and CDF collaborations. We report on three categories of searches, namely 1) the search for the Standard Model Higgs boson (p\\bar{p} --> H, WH or ZH, with H --> WW* and/or H --> b\\bar{b}), 2) the search for the minimal supersymmetric Higgs boson using p\\bar{p} --> hb\\bar{b} --> b\\bar{b}b\\bar{b} and p\\bar{p} --> hX --> tau tau X, 3) the search for doubly charged Higgs boson.

  17. Energy Efficiency Upgrades Part of Winning Formula for Oregon School

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011District | Department of Energy Upgrades

  18. Energy Star Building Upgrade Value Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro, California Zip: CA 94577Building Upgrade

  19. UPGRADING RHIC FOR HIGHER LUMINOSITY* W. MacKay

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof EnergyLeaseEnergyUNCLASSIFIED 2UPDATED:UPGRADING

  20. UPGRADES WORK IN PHILADELPHIA'S HISTORIC BUILDINGS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy,UCOR Contract &on Energy and WaterUPGRADES

  1. Upgrade Boilers with Energy-Efficient Burners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. ofUSA RSDepartment of Energy Updated Web ToolUpgrade

  2. Jefferson Lab begins $310 million upgrade (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson Lab Click onLaserLabLabawards upgrade

  3. PERFORMANCE OF AND UPGRADES TO THE SNS COLLIMATOR SYSTEMS

    SciTech Connect (OSTI)

    Plum, Michael A [ORNL; Abdou, Ashraf A [ORNL; Jacobs, Lorelei L [ORNL; Janney, Jim G [ORNL; Geoghegan, Patrick J [ORNL; McTeer, Stephen Mark [ORNL; Popova, Irina [ORNL; Ferguson, Phillip D [ORNL; Zhukov, Alexander P [ORNL

    2009-01-01T23:59:59.000Z

    As the Spallation Neutron Source (SNS) beam power is increased, the collimator systems are becoming correspondingly more important. The High Energy Beam Transport (HEBT) transverse collimators are now routinely used during neutron production. We are in the process of redesigning the HEBT momentum collimation system due to problems with gas production from radiolysis. The Ring collimators are designed for two-stage operation but to date they are mainly used in one-stage mode. In this paper we will discuss the status, the operational performance, and upgrades to the collimation systems.

  4. Utility theory front to back inferring utility from agents' choices

    E-Print Network [OSTI]

    Utility theory front to back ­ inferring utility from agents' choices A. M. G. Cox Dept to utility theory and consumption & investment problems. Instead of specifying an agent's utility function) and ask if it is possible to derive a utility function for which the observed behaviour is optimal. We

  5. Asymptotic utility-based pricing and hedging for exponential utility

    E-Print Network [OSTI]

    Kallsen, Jan

    Asymptotic utility-based pricing and hedging for exponential utility Jan Kallsen Christian deals with pricing and hedging based on utility indifference for exponential utility. We consider order approximation the utility indifference price and the corresponding hedge can be determined from

  6. A Review of Proposed Upgrades to the High Flux Isotope Reactor and Potential Impacts to Reactor Vessel Integrity

    SciTech Connect (OSTI)

    Simonen, Fredric A.

    2001-05-31T23:59:59.000Z

    The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) was scheduled in October 2000 to implement design upgrades that include the enlargement of the HB-2 and HB-4 beam tubes. Higher dose rates and higher radiation embrittlement rates were predicted for the two beam-tube nozzles and surrounding vessel areas. ORNL had performed calculations for the upgraded design to show that vessel integrity would be maintained at acceptable levels. Pacific Northwest National Laboratory (PNNL) was requested by the U.S. Department of Energy Headquarters (DOE/HQ) to perform an independent peer review of the ORNL evaluations. PNNL concluded that the calculated probabilities of failure for the HFIR vessel during hydrostatic tests and for operational conditions as estimated by ORNL are an acceptable basis for selecting pressures and test intervals for hydrostatic tests and for justifying continued operation of the vessel. While there were some uncertainties in the embrittlement predictions, the ongoing efforts at ORNL to measure fluence levels at critical locations of the vessel wall and to test materials from surveillance capsules should be effective in dealing with embrittlement uncertainties. It was recommended that ORNL continue to update their fracture mechanics calculations to reflect methods and data from ongoing research for commercial nuclear power plants. Such programs should provide improved data for vessel fracture mechanics calculations.

  7. Design aspects of upgradation from 6 pulse to 12 pulse operation of NHVDC project

    SciTech Connect (OSTI)

    Singhal, A.; Gera, R.; Tripathy, A.K.; Adhikari, T.; Hanif, M. [Bharat Heavy Electricals Ltd., New Delhi (India). Transmission Projects Dept.; Prakash, K.S.; Das, R.L. [Bharat Heavy Electricals Ltd., Bangalore (India). Electronics Div.

    1995-12-31T23:59:59.000Z

    In India, the first HVDC project was a back to back link between the northern grid and the Western grid at Vindhyachal. This project was commissioned by an external agency. By 1982 it was abundantly clear that HVDC would find a significant place in Indian power system. Government of India in its wisdom approved a proposal for an experimental HVDC line project to give Indian planners, manufacturers and utilities an opportunity to absorb the technology. The stage-1 of this National HVDC (NHVDC) project was successfully commissioned in October 1990, and has since been operating quite satisfactorily. In continuation of that effort, Government of India has since approved stage-2 of NHVDC project, which is under execution, at present. In stage-1, the challenge was to do the system studies, manufacture main circuit equipment and develop a controller. In stage-2 the focus will be on modernization and project engineering. The major change in stage-2 shall be the modernization of the controls. Upgradation details and the care being taken to have minimum disturbance to the existing setup, it discussed in this paper. The operational requirements, system solutions and control system aspects which have been considered and are being implemented for this project are also covered.

  8. "List of Covered Electric Utilities" under the Public Utility...

    Broader source: Energy.gov (indexed) [DOE]

    8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

  9. "List of Covered Electric Utilities" under the Public Utility...

    Broader source: Energy.gov (indexed) [DOE]

    9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

  10. Analysis of NSTX Upgrade OH Magnet and Center Stack

    SciTech Connect (OSTI)

    A. Zolfaghari, P. Titus, J. Chrzanowski, A. Salehzadeh, F. Dahlgren

    2010-11-30T23:59:59.000Z

    The new ohmic heating (OH) coil and center stack for the National Spherical Torus Experiment (NSTX) upgrade are required to meet cooling and structural requirements for operation at the enhanced 1 Tesla toroidal field and 2 MA plasma current. The OH coil is designed to be cooled in the time between discharges by water flowing in the center of the coil conductor. We performed resistive heating and thermal hydraulic analyses to optimize coolant channel size to keep the coil temperature below 100 C and meet the required 20 minute cooling time. Coupled electromagnetic, thermal and structural FEA analyses were performed to determine if the OH coil meets the requirements of the structural design criteria. Structural response of the OH coil to its self-field and the field from other coils was analyzed. A model was developed to analyze the thermal and electromagnetic interaction of centerstack components such as the OH coil, TF inner legs and the Bellville washer preload mechanism. Torsional loads from the TF interaction with the OH and poloidal fields are transferred through the TF flag extensions via a torque transfer coupling to the rest of the tokamak structure. A 3D FEA analysis was performed to qualify this design. The results of these analyses, which will be presented in this paper, have led to the design of OH coil and centerstack components that meet the requirements of the NSTX-upgrade structural design criteria.

  11. Fischer-Tropsch wax characterization and upgrading: Final report

    SciTech Connect (OSTI)

    Shah, P.P.; Sturtevant, G.C.; Gregor, J.H.; Humbach, M.J.; Padrta, F.G.; Steigleder, K.Z.

    1988-06-06T23:59:59.000Z

    The characterization and upgrading of Fischer-Tropsch wax was studied. The focus of the program was to maximize the yield of marketable transportation fuels from the Fischer-Tropsch process. The wax was characterized using gel permeation chromatography (GPC), high resolution mass spectrometry (HRMS), infrared spectroscopy (IR), gas chromatography (GC), nuclear magnetic resonance (NMR) and various other physical analyses. Hydrocracking studies conducted in a pilot plant indicate that Fischer-Tropsch wax is an excellent feedstock. A high yield of excellent quality diesel fuel was produced with satisfactory catalyst performance at relatively mild operating conditions. Correlations for predicting key diesel fuel properties were developed and checked against actual laboratory blend data. The blending study was incorporated into an economic evaluation. Finally, it is possible to take advantage of the high quality of the Fischer-Tropsch derived distillate by blending a lower value light cycle oil (produced from a refinery FCC unit) representing a high aromatic and low cetane number. The blended stream meets diesel pool specifications (up to 60 wt % LCO addition). The value added to this blending stream further enhances the upgrading complex return. 22 refs., 39 figs., 48 tabs.

  12. ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK

    SciTech Connect (OSTI)

    AUSTIN, ME; LOHR, J

    2002-08-01T23:59:59.000Z

    OAK A271 ECE RADIOMETER UPGRADE ON THE DIII-D TOKAMAK. The electron cyclotron emission (ECE) heterodyne radiometer diagnostic on DIII-D has been upgraded with the addition of eight channels for a total of 40. The new, higher frequency channels allow measurements of electron temperature into the magnetic axis in discharges at maximum field, 2.15 T. The complete set now extends over the full usable range of second harmonic emission frequencies at 2.0 T covering radii from the outer edge inward to the location of third harmonic overlap on the high field side. Full coverage permits the measurement of heat pulses and magnetohydrodynamic (MHD) fluctuations on both sides of the magnetic axis. In addition, the symmetric measurements are used to fix the location of the magnetic axis in tokamak magnetic equilibrium reconstructions. Also, the new higher frequency channels have been used to determine central T{sub e} with good time resolution in low field, high density discharges using third harmonic ECE in the optically gray and optically thick regimes.

  13. STANDARDIZATION OF CEBAF 12 GEV UPGRADE CAVITY TESTING

    SciTech Connect (OSTI)

    Tiffany Bass, G. Davis, Christiana Wilson, Mircea Stirbet

    2012-07-01T23:59:59.000Z

    CEBAF 12GeV upgrade project includes 80 new 7-cell cavities to form 10 cryomodules. Each cavity underwent RF qualification at 2.07K using a high power accelerating gradient test and an HOM survey in Jefferson Lab's Vertical Testing Area (VTA) before cavity string assembly. In order to ensure consistently high quality data, updated cavity testing procedures and analysis were implemented and used by a group of VTA operators. For high power tests, a cavity testing procedure was developed and used in conjunction with a LabVIEW program to collect the test data. Additionally while the cavity was at 2.07K, an HOM survey was performed using a network analyzer and a combination of Excel and Mathematica programs. Data analysis was standardized and an online logbook, Pansophy, was used for data storage and mining. The Pansophy system allowed test results to be easily summarized and searchable across all cavity tests. In this presentation, the CEBAF 12GeV upgrade cavity testing procedure, method for data analysis, and results reporting results will be discussed.

  14. RF Power Upgrade for CEBAF at Jefferson Laboratory

    SciTech Connect (OSTI)

    Andrew Kimber,Richard Nelson

    2011-03-01T23:59:59.000Z

    Jefferson Laboratory (JLab) is currently upgrading the 6GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12GeV. As part of the upgrade, RF systems will be added, bringing the total from 340 to 420. Existing RF systems can provide up to 6.5 kW of CW RF at 1497 MHZ. The 80 new systems will provide increased RF power of up to 13 kW CW each. Built around a newly designed and higher efficiency 13 kW klystron developed for JLab by L-3 Communications, each new RF chain is a completely revamped system using hardware different than our present installations. This paper will discuss the main components of the new systems including the 13 kW klystron, waveguide isolator, and HV power supply using switch-mode technology. Methodology for selection of the various components and results of initial testing will also be addressed. Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  15. Catalyst poisoning during tar-sands bitumen upgrading

    SciTech Connect (OSTI)

    Carruthers, J.D.; Brinen, J.S.; Komar, D.A.; Greenhouse, S. [CYTEC Industries, Stamford, CT (United States)

    1994-12-31T23:59:59.000Z

    A number of hydrotreating catalysts are used in commercial heavy oil upgrading facilities. One of these, a CoO/MoO{sub 3}/Al{sub 2}O{sub 3} catalyst has been evaluated in a pilot plant CSTR for Tar-Sands Bitumen upgrading. Following its use in a test of 200 hours duration, the catalyst was removed, de-oiled, regenerated by air-calcination to remove the coke, and then re-tested. Samples of the coked, fresh and regenerated catalyst were each examined using surface analytical techniques. ESCA and SIMS analysis of the coked and regenerated catalyst samples show, as expected, significant contamination of the catalyst with Ni and V. In addition, the SIMS analysis clearly reveals that the edges of the catalyst pellets are rich in Ca, Mg and Fe while the Ni, V and coke are evenly distributed. Regeneration of the catalyst by calcination removes the carbonaceous material but appears not to change the distribution of the metal contaminants. Retesting of the regenerated catalyst shows a performance similar to that of the fresh catalyst. These data serve to support the view that catalyst deactivation during early use is not due to the skin of Ca and Mg on the pellets but rather via the poisoning of active sites by carbonaceous species.

  16. 12 GeV Upgrade Project - Cryomodule Production

    SciTech Connect (OSTI)

    J. Hogan, A. Burrill, G.K. Davis, M.A. Drury, M. Wiseman

    2012-07-01T23:59:59.000Z

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is producing ten 100+MV SRF cryomodules (C100) as part of the CEBAF 12 GeV Upgrade Project. Once installed, these cryomodules will become part of an integrated accelerator system upgrade that will result in doubling the energy of the CEBAF machine from 6 to 12 GeV. This paper will present a complete overview of the C100 cryomodule production process. The C100 cryomodule was designed to have the major components procured from private industry and assembled together at Jefferson Lab. In addition to measuring the integrated component performance, the performance of the individual components is verified prior to being released for production and assembly into a cryomodule. Following a comprehensive cold acceptance test of all subsystems, the completed C100 cryomodules are installed and commissioned in the CEBAF machine in preparation of accelerator operations. This overview of the cryomodule production process will include all principal performance measurements, acceptance criterion and up to date status of current activities.

  17. Utility Roles in Preserving the Industrial Base

    E-Print Network [OSTI]

    Gilbert, J. S.

    While the price of energy may have stabilized for the moment, the impact of several years of rate increases in the cost of energy, materials, and labor has made American industry re-evaluate its operations. Utilities serving clusters of industrial...

  18. Trends in Utility Green Pricing Programs (2004)

    SciTech Connect (OSTI)

    Bird, L.; Brown, E.

    2005-10-01T23:59:59.000Z

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, nearly 600 utilities in regulated electricity markets--or almost 20% of all utilities nationally--provide their customers a "green power" option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals about 125. Through these programs, more than 40 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2004 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities as benchmarks by which to gauge the success of their green power programs.

  19. The Impacts of Commercial Electric Utility Rate Structure Elements...

    Broader source: Energy.gov (indexed) [DOE]

    FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Retail Demand Response in Southwest Power Pool Future Power Systems 21 - The Smart Customer...

  20. Recent content in Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType Jump to:Co JumpRETScreenJam Home Name

  1. Help:Utility Rate Data Entry | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridorPartImages Jump to: navigation,Entry Jump to:

  2. Historic utility retail rate information | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPowerInformation RhodeWest Energy,Historic

  3. Evaluation Ratings Definitions (Excluding Utilization of Small Business)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010December 1,Goals Chapter 42.15 - Attachment

  4. Utility Rate API v2 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire AddressGRR HomeDist-Western

  5. Front-end utility rate updates | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont, California:Climate

  6. Comparison of the ESP Benchmark with Observed System Utilization Adrian T. Wong, William T. C. Kramer, Leonid Oliker, and David H. Bailey

    E-Print Network [OSTI]

    Bailey, David H.

    Comparison of the ESP Benchmark with Observed System Utilization Adrian T. Wong, William T. C. Kramer, Leonid Oliker, and David H. Bailey National Energy Research Scientific Computing Center Lawrence of configuration changes and software upgrades in existing systems, but are evolving this benchmark to provide

  7. Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion

    E-Print Network [OSTI]

    Huseynzade, Samir

    2008-10-10T23:59:59.000Z

    UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A... UPGRADING AND ENHANCED RECOVERY OF JOBO HEAVY OIL USING HYDROGEN DONOR UNDER IN-SITU COMBUSTION A Thesis by SAMIR HUSEYNZADE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  8. Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion

    E-Print Network [OSTI]

    Huseynzade, Samir

    2009-05-15T23:59:59.000Z

    In-situ upgrading of oil using hydrogen donors is a new process. In particular, very little research has been conducted with respect to in-situ oil upgrading using hydrogen donor under in-situ combustion. Several papers describe the use of metal...

  9. Gate Reliability Assessment for a Spillway Upgrade Design in Queensland, Australia USSD 2006 Conference Page 1

    E-Print Network [OSTI]

    Bowles, David S.

    Gate Reliability Assessment for a Spillway Upgrade Design in Queensland, Australia USSD 2006 Conference Page 1 RELIABILITY ASSESSMENT FOR A SPILLWAY GATE UPGRADE DESIGN IN QUEENSLAND, AUSTRALIA Malcolm of reliability analysis, and how the results influenced the spillway system design and overall risk evaluation

  10. An e-Learning Platform for SME Manager Upgrade and its Evolution Toward a Distributed

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An e-Learning Platform for SME Manager Upgrade and its Evolution Toward a Distributed Training and the evaluation of an innovative e-learning platform for manager upgrade in Small and Medium Enterprises (SME but it is more and more true for Small and Medium Enterprises (SME) that often don't have a well defined

  11. Sponsored by: National Association of Energy Service Companies Financing An Energy Upgrade

    E-Print Network [OSTI]

    , as companies found it cost effective to invest in new technology that used less energy. 1 of 8 1/10/2001 11 and financiers' increasing comfort level with energy upgrade initiatives means good news: It's easier to accessSponsored by: National Association of Energy Service Companies Financing An Energy Upgrade

  12. DEVELOPMENT AND TESTING OF A PROTOTYPE TUNER FOR THE CEBAF UPGRADE CRYOMODULE*

    E-Print Network [OSTI]

    DEVELOPMENT AND TESTING OF A PROTOTYPE TUNER FOR THE CEBAF UPGRADE CRYOMODULE* G. Davis , J developed for CEBAF at Jefferson Lab. The high-gradient, low-current operation of the superconductingHz and resolution of 1Hz that will be used during normal operation [1]. Fig. 1: CEBAF Upgrade Tuner 2 MECHANICAL

  13. CRYOGENIC TESTING OF THE RF INPUT WAVEGUIDE FOR THE CEBAF UPGRADE CRYOMODULE*

    E-Print Network [OSTI]

    CRYOGENIC TESTING OF THE RF INPUT WAVEGUIDE FOR THE CEBAF UPGRADE CRYOMODULE* T. Hiatt , M. Breth to support the planned CEBAF upgrade at the Jefferson Lab a new cryomodule has been designed. A key component original CEBAF waveguides. A series of tests were performed on the waveguide to include temperature

  14. CEBAF UPGRADE CRYOMODULE COMPONENT TESTING IN THE HORIZONTAL TEST BED (HTB)*

    E-Print Network [OSTI]

    CEBAF UPGRADE CRYOMODULE COMPONENT TESTING IN THE HORIZONTAL TEST BED (HTB)* I. E. Campisi , B The planned upgrade of the CEBAF electron accelerator includes the development of an improved cryomodule. Several components differ substantially from the original CEBAF cryomodule; these include: the new 7-cell

  15. Status of the Tandem Mirror Experiment-Upgrade (TMX-U) diagnostic system

    SciTech Connect (OSTI)

    Coutts, G.W.; Coffield, F.E.; Hornady, R.S.

    1983-11-26T23:59:59.000Z

    This paper presents the current status of the Tandem Mirror Experiment-Upgrade (TMX-U) diagnostics system. For the initial instruments active on TMX-U, the expansions or upgrades that have been implemented are outlined. For the newly added systems, more implementation details are presented.

  16. ENERGY COMMISSION PUBLIC UTILITIES COMMISSION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA PUBLIC UTILITIES COMMISSION FOR IMMEDIATE RELEASE Prosper, California Public Utilities Commission, 415.703.2160 GREENHOUSE GAS STRATEGIES OPINION RELEASED SACRAMENTO -- The California Energy Commission and the California Public Utilities Commission today released

  17. Utility View of Risk Assessment

    E-Print Network [OSTI]

    Bickham, J.

    This paper will address a utility perspective in regard to risk assessment, reliability, and impact on the utility system. Discussions will also include the critical issues for utilities when contracting for energy and capacity from cogenerators...

  18. Innovative Utility Pricing for Industry

    E-Print Network [OSTI]

    Ross, J. A.

    INNOVATIVE UTILITY PRICING FOR INDUSTRY James A. Ross Drazen-Brubaker &Associates, Inc. St. Louis, Missouri ABSTRACT The electric utility industry represents only one source of power available to industry. Al though the monopolistic... structure of the electric utility industry may convey a perception that an electric utility is unaffected by competition, this is an erroneous perception with regard to in dustry. Electric utilities face increased compe tition, both from other utilities...

  19. Microsoft Word - Holcomb and Naselle Communication Upgrade CX...

    Broader source: Energy.gov (indexed) [DOE]

    abatement on road and construction site, if necessary. 3. Appropriate erosion and sediment control best management practices will be utilized for the protection of water...

  20. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway...

    Energy Savers [EERE]

    the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium...

  1. Plains & Eastern Clean Line Project Proposal for New or Upgraded...

    Energy Savers [EERE]

    the commercial issues involving large utilities and generating plants throughout Latin and North America. Mr. Hurtado holds a Bachelor of Arts degree in political science...

  2. Theoretical Description of Heavy Impurity Transport and its Application to the Modelling of Tungsten in JET and ASDEX Upgrade

    E-Print Network [OSTI]

    Theoretical Description of Heavy Impurity Transport and its Application to the Modelling of Tungsten in JET and ASDEX Upgrade

  3. Proposal concerning the participation of CERN in the procurement of depleted-uranium sheets for the UA1 calorimeter upgrading

    E-Print Network [OSTI]

    1985-01-01T23:59:59.000Z

    Proposal concerning the participation of CERN in the procurement of depleted-uranium sheets for the UA1 calorimeter upgrading

  4. Proposal to negotiate two contracts, without competitive tendering, for the supply and upgrade of cooling water pumps for the LHC

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal to negotiate two contracts, without competitive tendering, for the supply and upgrade of cooling water pumps for the LHC

  5. Utility Power Plant Construction (Indiana)

    Broader source: Energy.gov [DOE]

    This statute requires a certificate of necessity from the Indiana Utility Regulatory Commission for the construction, purchase, or lease of an electricity generation facility by a public utility.

  6. Utility Energy Savings Contract Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Utility Energy Savings Contract Project and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  7. GSA-Utility Interconnection Agreements

    Broader source: Energy.gov [DOE]

    Presentationgiven at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers the General Service Administration's (GSA's) utility interconnection agreements.

  8. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    wood with supplementary fuels such as coal, oil, natural gas, and coke by pulp and paper mills and wood, knots, chips, etc. with other supplementary fuels such as coal, oil, natural gas, and coke to generateCenter for By-Products Utilization DEVELOPMENT OF CLSM USING COAL ASH AND WOOD ASH, A SOURCE OF NEW

  9. Physical Plant Utility Department

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    of Massachusetts Amherst Electrical Distribution & Outdoor Lighting 3.0 Table of Contents Page 1 UMass Medium buses at the Eastside sub-station. The Eastside sub-station is comprised of two separate buses with a normally open bus tie. Each bus is automatically backed up by separate utility feeds. The Eastside Sub-station

  10. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Presentationand Publicationat the CBIP International Conference onFly Ash Disposal & Utilization,New Delhi, India, January 1998 foundry sand and slag. Most of these by-products are landfilled, primarily due to non-availability of economically attractive use options. Landfilling is not a desirable option because it not only causes huge

  11. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    currently being produced by Manitowoc Public Utilities. Flowable Materials have up to 1200 psi compressive of water, and consist mostly of ash or similar materials. It is believed that concrete Bricks, Blocks in manufacturing Blended Cements. Soil stabilization or site remediation is another significant potential use

  12. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    consume all of the ashes currently being produced by Manitowoc Public Utilities. Flowable Materials have little portland cement and a lot of water, and consist mostlyof ash or similar materials. It is believed fly ash in manufacturing Blended Cements. Soil stabilization or site remediation is another

  13. INTRODUCTION Ukiah Electric Utility

    E-Print Network [OSTI]

    INTRODUCTION Ukiah Electric Utility Renewable Energy Resources Procurement Plan Per Senate Billlx 2 renewable energy resources, including renewable energy credits, as a specified percentage of Ukiah's total,2011 to December 31, 2013, Ukiah shall procure renewable energy resources equivalent to an average of at least

  14. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Issued to the Illinois Clean Coal Institute For Project 02-1/3.1D-2 Department of Civil Engineering of technology and market development for controlled low-strength material (CLSM) slurry using Illinois coal ashCenter for By-Products Utilization IMPLEMENTATION OF FLOWABLE SLURRY TECHNOLOGY IN ILLINOIS

  15. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    technologies. A clean-coal ash is defined as the ash derived from SOxand NOxcontrol technologies, and FBC that obtained from clean-coal technology, are not utilized in cast-concrete masonry products (bricks, blocks conventional and clean-coal technologies. Fifteen high-sulfur coal ash samples were obtained from eight

  16. Advanced fossil energy utilization

    SciTech Connect (OSTI)

    Shekhawat, D.; Berry, D.; Spivey, J.; Pennline, H.; Granite, E.

    2010-01-01T23:59:59.000Z

    This special issue of Fuel is a selection of papers presented at the symposium Advanced Fossil Energy Utilization co-sponsored by the Fuels and Petrochemicals Division and Research and New Technology Committee in the 2009 American Institute of Chemical Engineers (AIChE) Spring National Meeting Tampa, FL, on April 2630, 2009.

  17. Utility spot pricing, California

    E-Print Network [OSTI]

    Schweppe, Fred C.

    1982-01-01T23:59:59.000Z

    The objective of the present spot pricing study carried out for SCE and PG&E is to develop the concepts which wculd lead to an experimental design for spot pricing in the two utilities. The report suggests a set of experiments ...

  18. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    and paper mills in concrete. INTRODUCTION Concrete is a porous solid that is created by combining four basicCenter for By-Products Utilization CURING TEMPERATURE EFFECTS ON HIGH-PERFORMANCE CONCRETE By Tarun For presentation and publication at the symposium entitled "High-Performance Concrete and Concrete for Marine

  19. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -burning electricity gene-ration is the current principal energy source. The total amounts of fly ash and bottom ash, University of Wisconsin - Milwaukee #12;The bar graph (Fig. 1) compares the production and utilization of fly shows the percentage of various usage of fly ash in China in 1988 [1]. Fig. 2 Percentage of Fly Ash

  20. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -Products Utilization University of Wisconsin-Milwaukee ABSTRACT This project consisted of performance testing at a typical electric power plant. One of the goals of this project was to determine the feasibility of using. The carbonation reaction of the CLSM would also have the potential to reduce carbon dioxide emissions at a coal-fired