Powered by Deep Web Technologies
Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

2

PHEV Battery Cost Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

PHEV Battery Cost Assessment PHEV Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

3

PHEV Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting, June 7-11, 2010 -- Washington D.C. es001barnett2010o.pdf More Documents & Publications PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment PHEV...

4

PHEV and LEESS Battery Cost Assessment | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PHEV and LEESS Battery Cost Assessment PHEV and LEESS Battery Cost Assessment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

5

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half  

Broader source: Energy.gov [DOE]

Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

6

An Update on Advanced Battery Manufacturing | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29 companies to build or retool 45 manufacturing facilities spread across 20 states to build advanced batteries, engines, drive trains and other key components for electric vehicles. More than 30 of these plants are already in operation, employing thousands of American workers, and our grants were matched dollar for

7

BatPRO: Battery Manufacturing Cost Estimation | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BatPRO: Battery Manufacturing Cost Estimation BatPRO models a stiff prismatic pouch-type cell battery pack with cells linked in series. BatPRO models a stiff prismatic pouch-type...

8

EV Everywhre Grand Challenge - Battery Status and Cost Reduction...  

Broader source: Energy.gov (indexed) [DOE]

EV Everywhere Grand Challenge Battery Status and Cost Reduction Prospects July 26, 2012 David Howell Team Lead, Hybrid & Electric Systems Vehicle Technologies Program U.S....

9

Costs of lithium-ion batteries for vehicles  

SciTech Connect (OSTI)

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

10

Special Feature: Reducing Energy Costs with Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reducing Energy Costs with Better Batteries Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Electricvehicles8331019248.jpg Electric vehicles lined up in Cascade Locks. Credit: Oregon Department of Transportation A better battery-one that is cheap and safe, but packs a lot of power-could lead to an electric vehicle that performs better than today's gasoline-powered cars, and costs about the same or less to consumers. Such a vehicle would reduce the United States' reliance on foreign oil and lower energy costs for the average American, so one of the Department of Energy's (DOE's) goals is to fund research that will revolutionize the performance of next-generation batteries. In honor of DOE's supercomputing month, we are highlighting some of the

11

Update on the Battery Projects at NREL (Presentation)  

SciTech Connect (OSTI)

NREL collaborates with industry, universities, and other national laboratories as part of the DOE integrated Energy Storage Program to develop advanced batteries for vehicle applications. Our efforts are focused in the following areas: thermal characterization and analysis, evaluation of thermal abuse tolerance via modeling and experimental analysis, and implications on battery life and cost. Our activities support DOE goals, FreedomCAR targets, the USABC Tech Team, and battery developers. We develop tools to support the industry, both through one-on-one collaborations and by dissemination of information in the form of presentations in conferences and journal publications.

Santhanagopalan, S.; Pesaran, A.

2010-10-01T23:59:59.000Z

12

Updating Texas Energy Cost Containment Audit Reports  

E-Print Network [OSTI]

moneys in a program known as LoanSTAR. Due to the time between the audits and availability of funds, update of the reports for current energy and equipment cost, and for accomplishment of projects was necessary. Audits in 1984 and 1986 identified total...

Burke, T. E.; Heffington, W. M.

1989-01-01T23:59:59.000Z

13

Updated Capital Cost Estimates for Utility Scale Electricity  

E-Print Network [OSTI]

Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii for Utility Scale Electricity Generating Plants ii Contents Introduction

14

Cost Update, STAR-TOFp Implementation STAR-TOFp Group  

E-Print Network [OSTI]

Cost Update, STAR-TOFp Implementation STAR-TOFp Group November 22, 1999 Abstract This document updates the cost sections of the TOFp Implementation Plan. In this update1 to the TOFp Implementation plan of Oct. 5, 1999,2 the cost estimates based on the latest quotes and the nal design are discussed

Llope, William J.

15

Costs of Oil Dependence: A 2000 Update  

SciTech Connect (OSTI)

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.

2000-05-17T23:59:59.000Z

16

Cost of Oil Dependence: A 2000 Update  

SciTech Connect (OSTI)

Oil dependence remains a potentially serious economic and strategic problem for the United States. This report updates previous estimates of the costs of oil dependence to the U.S. economy and introduces several methodological enhancements. Estimates of the costs to the U.S. economy of the oil market upheavals of the last 30 years are in the vicinity of $7 trillion, present value 1998 dollars, about as large as the sum total of payments on the national debt over the same period. Simply adding up historical costs in 1998 dollars without converting to present value results in a Base Case cost estimate of $3.4 trillion. Sensitivity analysis indicates that cost estimates are sensitive to key parameters. A lower bound estimate of $1.7 trillion and an upper bound of $7.1 trillion (not present value) indicate that the costs of oil dependence have been large under almost any plausible set of assumptions. These cost estimates do not include military, strategic or political costs associated with U.S. and world dependence on oil imports.

Greene, D.L.; Tishchishyna, N.I.

2000-05-01T23:59:59.000Z

17

Costs of Oil Dependence: A 2000 Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RNL RNL / TM -2000/ 152 Cos t s of O il D e pe nde nce : A 2000 Updat e David L. Greene Oak Ridge National Laboratory Nataliya I. Tishchishyna University of Tennessee May 2000 Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by UT-BATTELLE, LLC for the U. S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 iii TA BL E O F CO NTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. COST COMPONENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries Presentation from the U.S. DOE Office of...

19

US-ABC Collaborates to Lower Cost of Electric Drive Batteries...  

Office of Environmental Management (EM)

US-ABC Collaborates to Lower Cost of Electric Drive Batteries US-ABC Collaborates to Lower Cost of Electric Drive Batteries April 16, 2013 - 12:00am Addthis The U.S. Advanced...

20

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Full report (4.1 mb) Full report (4.1 mb) Heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.9 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.3 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.1 mb) Appendix D - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1.1 mb) Updated Buildings Sector Appliance and Equipment Costs and Efficiency Release date: August 7, 2013 Energy used in the residential and commercial sectors provides a wide range

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

ESS 2012 Peer Review - Reducing the Costs of Manufacturing Flow Batteries - Dhruv Bhatnagar, SNL  

Broader source: Energy.gov (indexed) [DOE]

the Costs of Manufacturing Flow Batteries the Costs of Manufacturing Flow Batteries Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP Next Steps 1. Continued outreach with other with other manufacturers 2. Characterization of the flow battery manufacturing process and determination of process issues 3. Evaluation of the fuel cell, other battery and other industry manufacturing process to address issues identified 4. Coordination with PNNL flow battery component cost

22

Low-cost flexible packaging materials for batteries.  

SciTech Connect (OSTI)

Considerable cost savings can be realized if the metal container used for lithium-based batteries is replaced with a flexible multi-laminate containment commonly used in the food packaging industry. This laminate structure must have air, moisture, and electrolyte barrier capabilities, be resistant to hydrogen-fluoride attack, and be heat-sealable. After extensive screening of commercial films, the polyethylene and polypropylene classes of polymers were found to have an adequate combination of mechanical, permeation, and seal-strength properties. The search for a better film and adhesive is ongoing.

Jansen, A. N.; Amine, K.; Newman, A. E.; Vissers, D. R.; Henriksen, G. L.; Chemical Engineering

2002-03-01T23:59:59.000Z

23

A Novel Low-Cost Sodium-Zinc Chloride Battery  

SciTech Connect (OSTI)

The sodium-metal halide (ZEBRA) battery has been considered as one of the most attractive energy storage systems for stationary and transportation applications. Even though Na-NiCl2 battery has been widely investigated, there is still a need to develop a more economical system to make this technology more attractive for commercialization. In the present work, a novel low-cost Na-ZnCl2 battery with a thin planar ??-Al2O3 solid electrolyte (BASE) was proposed, and its electrochemical reactions and battery performance were investigated. Compared to the Na-NiCl2 chemistry, the ZnCl2-based chemistry was more complicated, in which multiple electrochemical reactions including liquid-phase formation occurred at temperatures above 253C. During the first stage of charge, NaCl reacted with Zn to form Na in the anode and Na2ZnCl4 in the cathode. Once all the residual NaCl was consumed, further charging led to the formation of a NaCl-ZnCl2 liquid phase. At the end of charge, the liquid phase reacted with Zn to produce solid ZnCl2. To identify the effects of liquid-phase formation on electrochemical performance, button cells were assembled and tested at 280C and 240C. At 280C where the liquid phase formed during cycling, cells revealed quite stable cyclability. On the other hand, more rapid increase in polarization was observed at 240C where only solid-state electrochemical reactions occurred. SEM analysis indicated that the stable performance at 280C was due to the suppressed growth of Zn and NaCl particles, which were generated from the liquid phase during discharge of each cycle.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2013-02-28T23:59:59.000Z

24

Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Updated Capital Cost Estimates Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

25

NTS-2 Ni-H/sub 2/ battery - an update  

SciTech Connect (OSTI)

This paper presents an extensive data base for future Ni-H/sub 2/ spacecraft batteries. End of-discharge (EOD) voltages for the eight eclipse seasons are presented along with long-term pressure data derived from a strain gauge mounted on the dome of a cell. The use of temperature for charge control is also evaluated. 5 refs.

Stockel, J.F.

1981-01-01T23:59:59.000Z

26

Desalting seawater and brackish waters: 1981 cost update  

SciTech Connect (OSTI)

This is the fourth in a series of desalting cost update reports. Cost data are reported for desalting seawater by various distillation systems and by reverse osmosis. Costs of desalting four brackish waters, representative of those found in the United States by both reverse osmosis and electrodialysis are also given. Cost data are presented parametrically as a function of energy cost and plant size. The cost of desalting seawater by distillation has increased by 40% during the past two years, while desalting by reverse osmosis has increased by about 36% during the same period. Brackish water desalting by reverse osmosis has only increased by about 12%, and brackish water desalting by electrodialysis is up by 40%. Again, the continued increase in energy costs has had a major impact on all desalination systems.

Reed, S.A.

1982-08-01T23:59:59.000Z

27

Updated Buildings Sector Appliance and Equipment Costs and Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Updated Buildings Sector Updated Buildings Sector Appliance and Equipment Costs and Efficiency August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Buildings Appliance and Equipment Costs and Efficiency i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies. June 2013 U.S. Energy Information Administration | Buildings Appliance and Equipment Costs and Efficiency 1

28

3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems  

SciTech Connect (OSTI)

Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PVs inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topologys capability for the industrys first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

Bundschuh, Paul [Ideal Power

2013-03-23T23:59:59.000Z

29

EV Everywhere Grand Challenge- Battery Status and Cost Reduction Prospects  

Broader source: Energy.gov [DOE]

Presentation given by technology manager David Howell at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

30

Cost update technology, safety, and costs of decommissioning a reference uranium hexafluoride conversion plant  

SciTech Connect (OSTI)

The purpose of this study is to update the cost estimates developed in a previous report, NUREG/CR-1757 (Elder 1980) for decommissioning a reference uranium hexafluoride conversion plant from the original mid-1981 dollars to values representative of January 1993. The cost updates were performed by using escalation factors derived from cost index trends over the past 11.5 years. Contemporary price quotes wee used for costs that have increased drastically or for which is is difficult to find a cost trend. No changes were made in the decommissioning procedures or cost element requirements assumed in NUREG/CR-1757. This report includes only information that was changed from NUREG/CR-1757. Thus, for those interested in detailed descriptions and associated information for the reference uranium hexafluoride conversion plant, a copy of NUREG/CR-1757 will be needed.

Miles, T.L.; Liu, Y.

1995-08-01T23:59:59.000Z

31

Batteries for electric drive vehicles: Evaluation of future characteristics and costs through a Delphi study  

SciTech Connect (OSTI)

Uncertainty about future costs and operating attributes of electric drive vehicles (EVs and HEVs) has contributed to considerable debate regarding the market viability of such vehicles. One way to deal with such uncertainty, common to most emerging technologies, is to pool the judgments of experts in the field. Data from a two-stage Delphi study are used to project the future costs and operating characteristics of electric drive vehicles. The experts projected basic vehicle characteristics for EVs and HEVs for the period 2000-2020. They projected the mean EV range at 179 km in 2000, 270 km in 2010, and 358 km in 2020. The mean HEV range on battery power was projected as 145 km in 2000, 212 km in 2010, and 244 km in 2020. Experts` opinions on 10 battery technologies are analyzed and characteristics of initial battery packs for the mean power requirements are presented. A procedure to compute the cost of replacement battery packs is described, and the resulting replacement costs are presented. Projected vehicle purchase prices and fuel and maintenance costs are also presented. The vehicle purchase price and curb weight predictions would be difficult to achieve with the mean battery characteristics. With the battery replacement costs added to the fuel and maintenance costs, the conventional ICE vehicle is projected to have a clear advantage over electric drive vehicles through the projection period.

Vyas, A.D.; Ng, H.K.; Anderson, J.L.; Santini, D.J.

1997-07-01T23:59:59.000Z

32

2000-01-1556 Life-Cycle Cost Sensitivity to Battery-Pack Voltage of an HEV  

E-Print Network [OSTI]

defined the peak power ratings for each HEV drive system's electric components: batteries, battery cables. This affects the material and manufacturing costs of the battery, electric motor, and controller. *Prepared performance, ratings, and cost study was conducted on series and parallel hybrid electric vehicle (HEV

Tolbert, Leon M.

33

UAH Cost Policy Regarding Charges to Grants and Contracts Last update: May 21, 2010  

E-Print Network [OSTI]

UAH Cost Policy Regarding Charges to Grants and Contracts Last update: May 21, 2010 TABLE OF CONTENTS 1.0 INTRODUCTION 1.1 GENERAL GUIDELINES 1.2 FACTORS AFFECTING ALLOWABILITY OF COST 2.0 DIRECT COSTS 2.1 ACCEPTABLE DIRECT COSTS 2.2 DOCUMENTATION OF DIRECT COSTS 2.3 UNACCEPTABLE DIRECT COSTING

Alabama in Huntsville, University of

34

BatPaC - Battery Performance and Cost model - About BatPaC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About BatPaC About BatPaC The starting point for this work is based on the decades of battery design work headed by Paul Nelson at Argonne National Laboratory. These design models were based in Microsoft Office Excel® resulting in a flexible and straightforward format. The current effort builds on this previous experience by adding a manufacturing cost calculation as well as increasing the fidelity of the performance calculations all while maintaining efficient calculations (e.g. fractions of a second). The cost of a battery will change depending upon the materials chemistry, battery design, and manufacturing process. Therefore, it is necessary to account for all three areas with a bottom-up cost model. Other bottom-up cost models exist but are not generally available and have not been explicitly detailed in a public document. The motivation for our approach is based on a need for a battery performance and cost model that meets the following requirements:

35

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update  

Broader source: Energy.gov [DOE]

This report is the sixth annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. This 2012 update will cover current status technology updates since the 2011 report, as well as introduce a 2012 bus system analysis considered alongside the automotive system.

36

Updated July24, 2012 OIP Guidelines on Allowable Costs for Faculty Program Leaders  

E-Print Network [OSTI]

Updated July24, 2012 OIP Guidelines on Allowable Costs for Faculty Program Leaders with a high cost will be harder to recruit for and risks not making enrollment. Flights: Faculty can decide of students. OIP and the department/college will confirm all financial arrangements. Early recruitment

Fernandez, Eduardo

37

Table 1. Updated estimates of power plant capital and operating costs  

U.S. Energy Information Administration (EIA) Indexed Site

Updated estimates of power plant capital and operating costs" Updated estimates of power plant capital and operating costs" ,"Plant Characteristics",,,"Plant Costs (2012$)" ,"Nominal Capacity (MW)","Heat Rate (Btu/kWh)",,"Overnight Capital Cost ($/kW)","Fixed O&M Cost ($/kW-yr)","Variable O&M Cost ($/MWh)" ,,,,,,,"NEMS Input" " Coal" "Single Unit Advanced PC",650,8800,,3246,37.8,4.47,"N" "Dual Unit Advanced PC",1300,8800,,2934,31.18,4.47,"Y" "Single Unit Advanced PC with CCS",650,12000,,5227,80.53,9.51,"Y" "Dual Unit Advanced PC with CCS",1300,12000,,4724,66.43,9.51,"N" "Single Unit IGCC ",600,8700,,4400,62.25,7.22,"N"

38

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve  

Broader source: Energy.gov (indexed) [DOE]

authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical Engineering, Case Western Reserve University Purpose Impact on Iron Based Batteries on the DOE OE Energy Storage Mission Recent Results Recent Results Develop efficient, cost-effective grid level storage capability based on iron. Goals of this Effort: * Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost * Minimize Cost/Whr by increasing plating capacity * Maximize Efficiency by minimizing current lost to hydrogen evolution Electrochemistry of the all-Iron system:

39

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

40

ESS 2012 Peer Review - Estimation of Capital and Levelized Cost for Redox Flow Batteries - Vilayanur Viswanathan, PNNL  

Broader source: Energy.gov (indexed) [DOE]

Estimation of Capital and Levelized Estimation of Capital and Levelized Cost for Redox Flow Batteries V. Viswanathan, A. Crawford, L. Thaller 1 , D. Stephenson, S. Kim, W. Wang, G. Coffey, P. Balducci, Z. Gary Yang 2 , Liyu Li 2 , M. Kintner-Meyer, V. Sprenkle 1 Consultant 2 UniEnergy Technology September 28, 2012 USDOE-OE ESS Peer Review Washington, DC Dr. Imre Gyuk - Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability 1 What are we trying to accomplish? PNNL grid analytics team has established ESS cost targets for various applications PNNL cost/performance model estimates cost for redox flow battery systems of various chemistries drives research internally to focus on most important components/parameters/metrics for cost reduction and performance improvement

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

42

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update  

Broader source: Energy.gov [DOE]

Report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

43

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

44

Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update  

Broader source: Energy.gov [DOE]

This report is the seventh annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. The 2013 update covers fuel cell cost analysis of both light duty vehicle (automotive) and transit bus applications for only the current year (i.e., 2013).

45

Preprint of a paper to be presented at UUVS 2005, Southampton, Sept 2005 Cost vs. performance for fuel cells and batteries within AUVs  

E-Print Network [OSTI]

that secondary lithium batteries offer the lowest energy cost. PEM fuel cells should produce energy at a lower integrators, we are in a position to make estimates of the cost of energy from a marinised fuel cell for fuel cells and batteries within AUVs Gwyn Griffiths National Oceanography Centre, Southampton

Griffiths, Gwyn

46

ESS 2012 Peer Review - Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries - Fei Wang, EIC Laboratories  

Broader source: Energy.gov (indexed) [DOE]

Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Low Cost and Highly Selective Composite Membrane for Redox Flow Batteries Fei Wang, Dharmasena Peramunage, James M. Sylvia, and Monsy M. Jocob EIC Laboratories, Inc. 111 Downey Street, Norwood, MA 02062. www.eiclabs.com Identification of the Problem and Technical Approach Redox flow batteries (RFB) hold great promise for large scale electrochemical energy storage. A critical component of RFB is the membrane which separates anode and cathode compartments. The current state-of-the-art membrane, NAFION is too expensive, lacks selectivity, permitting leakage between anode and cathode electrolyte compartments. EIC is developing a novel bilayer, interpenetrating network membrane. Thin Nafion layer for anode side protection providing oxidative stability. The bulk part of the membrane consists of a block

47

ESS 2012 Peer Review - Low Cost, High Performance and Long Life Flow Battery Electrodes - Tom Stepien, Primus Power  

Broader source: Energy.gov (indexed) [DOE]

With ARPA-E we optimized With ARPA-E we optimized * Adhesion * Current density * Duration * Catalytic coatings * Voltaic performance Goals * Cost-effectiveness * High-efficiency * Uniformity EnergyPod Low Cost, High Performance and Long Life Flow Battery Electrodes TM A Breakthrough In Distributed, Grid Scale Energy Storage ARPA-E has enabled Primus Power to create an innovative and technically advanced electrode Electrode Zinc Plating This, combined with our other advances has enabled us to create a unique flow battery system with ...  Low cost electrodes  Long life  High efficiency  Flexibility For...  Ubiquitous  Dispatchable  Cost effective ... grid-scale electrical energy storage to: * Accelerate renewable

48

US-ABC Collaborates to Lower Cost of Electric Drive Batteries  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Advanced Battery Consortium (US-ABC) is a group that funds electrochemical storage research and development.

49

ESS 2012 Peer Review - Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries - Hongxing Hu, Amsen Technologies  

Broader source: Energy.gov (indexed) [DOE]

DESIGN © 2008 DESIGN © 2008 www.PosterPresentations.com Low-Cost, High-Performance Hybrid Membranes for Redox Flow Batteries Hongxing Hu, Amsen Technologies LLC DOE SBIR Project, Program Manager at DOE: Dr. Imre Gyuk Objectives and Technical Approach Objectives: This SBIR project aims to develop low-cost, high performance hybrid polymeric PEMs for redox flow batteries (RFBs). Such membranes shall have high chemical stability in RFB electrolytes, high proton conductivity, low permeability of vanadium ions, along with high dimensional stability, high mechanical strength and durability, and lower cost than Nafion membranes. Approach: * Hybrid membranes of sulfonated polymers * Balance between different types of polymers for proton conductivity and chemical stability

50

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network [OSTI]

backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are neededCost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b

Michalek, Jeremy J.

51

Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499  

SciTech Connect (OSTI)

Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

Smith, K.

2013-10-01T23:59:59.000Z

52

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update  

Broader source: Energy.gov [DOE]

This report is the third annual update of a comprehensive automotive fuel cell cost analysis conducted by Directed Technologies (DTI), under contract to the US Department of Energy (DOE).

53

The development of low cost LiFePO4-based high power lithium-ion batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

development of low cost LiFePO4-based high power lithium-ion batteries development of low cost LiFePO4-based high power lithium-ion batteries Title The development of low cost LiFePO4-based high power lithium-ion batteries Publication Type Journal Article Year of Publication 2005 Authors Striebel, Kathryn A., Joongpyo Shim, Azucena Sierra, Hui Yang, Xiangyun Song, Robert Kostecki, and Kathryn N. McCarthy Journal Journal of Power Sources Volume 146 Pagination 33-38 Keywords libob, lifepo4, lithium-ion, post-test, raman spectroscopy Abstract Pouch type LiFePO4-natural graphite lithium-ion cells were cycled at constant current with periodic pulse-power testing in several different configurations. Components were analyzed after cycling with electrochemical, Raman and TEM techniques to determine capacity fade mechanisms. The cells with carbon-coated current collectors in the cathode and LiBOB-salt electrolyte showed the best performance stability. In many cases, iron species were detected on the anodes removed from cells with both TEM and Raman spectroscopy. The LiFePO4 electrodes showed unchanged capacity suggesting that the iron is migrating in small quantities and is acting as a catalyst to destabilize the anode SEI in these cells.

54

Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report  

SciTech Connect (OSTI)

This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

NONE

1995-01-31T23:59:59.000Z

55

KAir Battery  

Broader source: Energy.gov [DOE]

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

56

Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems  

E-Print Network [OSTI]

side hybrid photovoltaic and battery energy storage system,to combined photovoltaic and battery energy storage systemsphotovoltaic systems, IEEE Transactions on Sustainable Energy (

Nottrott, A.; Kleissl, J.; Washom, B.

2013-01-01T23:59:59.000Z

57

Update on the environmental and economic costs associated with alien-invasive species in the United States  

E-Print Network [OSTI]

Update on the environmental and economic costs associated with alien-invasive species in the United University, Ithaca, NY 14850-0901, United States Available online 29 December 2004 Abstract Invading alien% of the species on the Threatened or Endangered species lists are at risk primarily because of alien

Schweik, Charles M.

58

Low-Cost Graphite and Olivine-Based Materials for Li-Ion Batteries  

Broader source: Energy.gov (indexed) [DOE]

WORK Identify suitable graphite materials for anodes that meet the requirement for low cost and long cycle life. Fabricate half cells (Ligraphite) and Li-ion (graphiteolivine)...

59

Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report  

Broader source: Energy.gov [DOE]

This report updates the 1999 economic analysis of NRELs photobiological hydrogen production from Chlamydomonas reinhardtii.

60

ESS 2012 Peer Review - Flow Battery Membrane - David Ofer, Tiax  

Broader source: Energy.gov (indexed) [DOE]

Flow Battery Membrane Flow Battery Membrane Energy Storage Systems Program (ESS) Peer Review and Update Meeting 2012 Jack Treger treger.jack@tiaxllc.com Washington DC, September 27, 2012 Flow Battery Membrane Background and Purpose 1 Vanadium redox batteries (VRB) for energy storage require improved ion- selective membranes. * Vanadium permeation across current membranes leads to self-discharge and decreases cycling efficiency: - Negative half cell: V 2+ V 3+ + e - E o = -0.255V - Positive half cell: e - + VO 2 + + 2H + VO 2+ + H 2 O E o = 1.00V . * Current perfluorosulfonic acid polymer membranes are costly. * TIAX is developing a novel composite bipolar membrane: - Composite anionic membrane minimizes content of costly perfluorosulfonic acid polymer - Made bipolar by a cationic surface layer to improve selectivity for

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A comprehensive power loss, efficiency, reliability and cost calculation of a 1MW/500kWh battery based energy storage system for frequency regulation application  

Science Journals Connector (OSTI)

Abstract Battery based energy storage system (ESS) has tremendous diversity of application with an intense focus on frequency regulation market. An ESS typically comprised of a battery and a power conversion system. A calculation of performance parameters is performed in this research. The aim is to formulate an in-depth analysis of the ESS in terms of power losses of the semiconductor and electrical devices, efficiency, reliability and cost which would foster various research groups and industries around the globe to improve their future product. In view of this, a relation between the operating conditions and power losses is established to evaluate the efficiency of the system. The power loss calculation presented in this paper has taken into account the conduction and switching losses of the semiconductor devices. Afterwards, the Arrhenius Life Stress relation is adopted to calculate the reliability of the system by considering temperature as a covariate. And finally, a cost calculation is executed and presented as a percentage of total cost of the ESS. It has been found that the power loss and efficiency of the ESS at rated power is 146kW and 85% respectively. Furthermore, the mean time between failures of the ESS is 8 years and reliability remains at 73% after a year. The major cost impact observed is for battery and PCS as 58% and 16% respectively. Finally, it has been determined that further research is necessary for higher efficient and lower cost system for high penetration of energy storage system in the market.

Md Arifujjaman

2015-01-01T23:59:59.000Z

62

Modeling & Simulation - Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production of Batteries for Electric and Hybrid Vehicles Production of Batteries for Electric and Hybrid Vehicles battery assessment graph Lithium-ion (Li-ion) batteries are currently being implemented in hybrid electric (HEV), plug-in hybrid electric (PHEV), and electric (EV) vehicles. While nickel metal-hydride will continue to be the battery chemistry of choice for some HEV models, Li-ion will be the dominate battery chemistry of the remaining market share for the near-future. Large government incentives are currently necessary for customer acceptance of the vehicles such as the Chevrolet Volt and Nissan Leaf. Understanding the parameters that control the cost of Li-ion will help researchers and policy makers understand the potential of Li-ion batteries to meet battery energy density and cost goals, thus enabling widespread adoption without incentives.

63

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

Science Journals Connector (OSTI)

Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and \\{SUVs\\} in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives.

Scott B. Peterson; Jeremy J. Michalek

2013-01-01T23:59:59.000Z

64

ESS 2012 Peer Review - Sodium Intercalation Battery for Stationary Storage - David Ofer, Tiax  

Broader source: Energy.gov (indexed) [DOE]

Sodium Intercalation Battery for Sodium Intercalation Battery for Stationary Storage Energy Storage Systems Program (ESS) Peer Review and Update Meeting 2012 David Ofer Ofer.david@tiaxllc.com Washington DC, September 27, 2012 Sodium Intercalation Battery for Stationary Storage Background and Purpose 2 Large-scale stationary energy storage for integration with renewables and for off-peak energy capture is a new application requiring new rechargeable batteries. * New combination of requirements - Long cycle life under deep cycling use profile - High cycling efficiency - Moderate rate capability - Very low cost - No requirement for particularly high specific energy or energy density * TIAX is developing a novel Na-ion battery - Leverages teachings of Li-ion technology - Targets novel low-cost chemistry and cell design

65

UPDATE:  

Science Journals Connector (OSTI)

......small molecule research in areas such as Pharmaceuticals and agrochemicals. Costs start at 22 000 for a single-user system, with...assess how small changes, e.g. in temperature, solvent composition and flow rate, affect the quantitation. Finally, the PU6106......

News; Views

1990-07-01T23:59:59.000Z

66

ESS 2012 Peer Review - Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies - Thomas Kodenkandath, ITN Energy Systems  

Broader source: Energy.gov (indexed) [DOE]

Innovative, high energy density Mn-V based RFB electrolytes as a Innovative, high energy density Mn-V based RFB electrolytes as a low-cost alternate to all-Vanadium systems * Low-cost membrane technology, based on renewable biopolymer Chitosan with improved proton conduction & chemical stability, adaptable to Mn-V system * Scale-up of electrolyte and membrane technologies in pursuit of ARPA-E's goal for a 2.5kW/10kWh RFB stack with integrated BoS at a total cost of ~$1000/unit and ~1.2 m 3 footprint ITN Energy Systems, Inc., Littleton, CO 2.5kW/10kWh Redox Flow Battery (RFB) with Low-cost Electrolyte and Membrane Technologies $2.1 M, 33-month program awarded by ARPA-E Sept 7, 2012 Dr. Thomas Kodenkandath High-Performance, Low-cost RFB through Electrolyte & Membrane Innovations Technology Summary

67

Cache Placement in Sensor Networks Under Update Cost Bin Tang and Himanshu Gupta  

E-Print Network [OSTI]

networks. 1 Introduction Advances in embedded processing and wireless networking have made possible must be powered by small batteries, making energy efficiency a critical design goal. There has been and process time-varying data. As energy and storage limitations will always remain an issue ­ as much

Gupta, Himanshu

68

Nuclear batteries  

Science Journals Connector (OSTI)

Nuclear batteries ... Describes the structure, operation, and application of nuclear batteries. ... Nuclear / Radiochemistry ...

Alfred B. Garrett

1956-01-01T23:59:59.000Z

69

Batteries and Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

70

An analysis of nuclear power plant operating costs: A 1995 update  

SciTech Connect (OSTI)

Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

NONE

1995-04-21T23:59:59.000Z

71

A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues  

E-Print Network [OSTI]

The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL...

Shidore, Neeraj Shripad

2012-07-16T23:59:59.000Z

72

Updated Analysis of Energy and cost Savings for Utility service Program at Federal Sites  

SciTech Connect (OSTI)

Report detailing PNNL's re-analysis of data based original analysis done in 2004. The data came from the updated Department of Energy Federal Energy Management utility energy services contract database and the analysis was also expanded to uncover information on additional areas.

Mcmordie, Katherine; Sandusky, William F.; Solana, Amy E.; Bates, Derrick J.

2006-10-31T23:59:59.000Z

73

PHEV Battery Cost Assessment  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

74

PHEV Battery Cost Assessment  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

75

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update September 30, 2010 Prepared by: Brian D. James, Jeffrey A. Kalinoski & Kevin N. Baum One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared under: Subcontract No. AGB-0-40628-01 to the National Renewable Energy Laboratory (NREL) under Prime Contract No. DE-AC36-08GO28308 to the U.S. Department of Energy Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gasses and pollutants than

76

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Broader source: Energy.gov (indexed) [DOE]

4 4 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the fourth session of Day 2, chaired by NETL's Kim Nuhfer, are below. ESS 2010 Update Conference - Low Cost Energy Storage - Ted Wiley, Aquion.pdf Ess 2010 Update Conference - Solid State Li Metal Batteries for Grid-Scale Storage - Mohit Singh, Seeo.pdf ESS 2010 Update Conference - Utility Scale Flywheel Energy Storage Demonstration - Edward Chiao, Amber Kinetics.pdf

77

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

78

ORNL/TM-2005/45 COSTS OF U.S. OIL DEPENDENCE: 2005 UPDATE  

E-Print Network [OSTI]

..........................................................................................29 5.2 CASE 1A: OIL PRICE ELASTICITY OF GDP VARIES WITH OIL COST SHARE .......................................................................................................36 5.3 CASE 1B: OIL PRICE ELASTICITY OF GDP CONSTANT OVER TIME ......37 5.4 CASE 2: STOCHASTIC ....................................................................................40 5.6 THE IMPACT OF CONTINUED HIGH OIL PRICES IN 2005..........................42 6. CONCLUSIONS

79

Update Sustainable Transportation Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 * July 2012 3 * July 2012 Boosting the battery industry Future automotive batteries could cost less and pack more power because of ORNL's new Battery Manufacturing Facility. Co-located with the National Transportation Research Center and Manufacturing Demonstration Facility off Hardin Valley Road, the $3 million DOE facility allows for collaboration with industry and other national labs while protecting

80

Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Batteries Batteries Batteries A small New York City startup is hoping it has the next big solution in energy storage. A video documents what the company's breakthrough means for the future of grid-scale energy storage. Learn more. First invented by Thomas Edison, batteries have changed a lot in the past century, but there is still work to do. Improving this type of energy storage technology will have dramatic impacts on the way Americans travel and the ability to incorporate renewable energy into the nation's electric grid. On the transportation side, the Energy Department is working to reduce the costs and weight of electric vehicle batteries while increasing their energy storage and lifespan. The Department is also supports research, development and deployment of battery technologies that would allow the

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

82

Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size  

Broader source: Energy.gov [DOE]

Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

83

Vehicle Technologies Office: Exploratory Battery Materials Research  

Broader source: Energy.gov [DOE]

Lowering the cost and improving the performance of batteries for plug-in electric vehicles requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV...

84

Batteries - EnerDel Lithium-Ion Battery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel/Argonne Advanced High-Power Battery for Hybrid Electric Vehicles EnerDel lithium-ion battery The EnerDel Lithium-Ion Battery The EnerDel/Argonne lithium-ion battery is a highly reliable and extremely safe device that is lighter in weight, more compact, more powerful and longer-lasting than the nickel-metal hydride (Ni-MH) batteries in today's hybrid electric vehicles (HEVs). The battery is expected to meet the U.S. Advanced Battery Consortium's $500 manufacturing price criterion for a 25-kilowatt battery, which is almost a sixth of the cost to make comparable Ni-MH batteries intended for use in HEVs. It is also less expensive to make than comparable Li-ion batteries. That cost reduction is expected to help make HEVs more competitive in the marketplace and enable consumers to receive an immediate payback in

85

Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios  

SciTech Connect (OSTI)

This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and greenhouse gas (GHG) emissions. This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle well-to-wheels energy use and GHG emissions associated with the pathways.

Ramsden, T.; Ruth, M.; Diakov, V.; Laffen, M.; Timbario, T. A.

2013-03-01T23:59:59.000Z

86

Electrical energy storage systems: A comparative life cycle cost analysis  

Science Journals Connector (OSTI)

Abstract Large-scale deployment of intermittent renewable energy (namely wind energy and solar PV) may entail new challenges in power systems and more volatility in power prices in liberalized electricity markets. Energy storage can diminish this imbalance, relieving the grid congestion, and promoting distributed generation. The economic implications of grid-scale electrical energy storage technologies are however obscure for the experts, power grid operators, regulators, and power producers. A meticulous techno-economic or cost-benefit analysis of electricity storage systems requires consistent, updated cost data and a holistic cost analysis framework. To this end, this study critically examines the existing literature in the analysis of life cycle costs of utility-scale electricity storage systems, providing an updated database for the cost elements (capital costs, operational and maintenance costs, and replacement costs). Moreover, life cycle costs and levelized cost of electricity delivered by electrical energy storage is analyzed, employing Monte Carlo method to consider uncertainties. The examined energy storage technologies include pumped hydropower storage, compressed air energy storage (CAES), flywheel, electrochemical batteries (e.g. leadacid, NaS, Li-ion, and NiCd), flow batteries (e.g. vanadium-redox), superconducting magnetic energy storage, supercapacitors, and hydrogen energy storage (power to gas technologies). The results illustrate the economy of different storage systems for three main applications: bulk energy storage, T&D support services, and frequency regulation.

Behnam Zakeri; Sanna Syri

2015-01-01T23:59:59.000Z

87

Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle  

SciTech Connect (OSTI)

This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J. (Energy Systems)

2012-06-21T23:59:59.000Z

88

batteries | OpenEI  

Open Energy Info (EERE)

batteries batteries Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal Hydro market data NREL performance data PV wind Data application/vnd.ms-excel icon Technology Profiles (market and performance data) (xls, 207.4 KiB) Quality Metrics Level of Review Some Review

89

The development of low cost LiFePO4-based high power lithium-ion batteries  

SciTech Connect (OSTI)

The cycling performance of low-cost LiFePO4-based high-power lithium-ion cells was investigated and the components were analyzed after cycling to determine capacity fade mechanisms. Pouch type LiFePO4/natural graphite cells were assembled and evaluated by constant C/2 cycling, pulse-power and impedance measurements. From post-test electrochemical analysis after cycling, active materials, LiFePO4 and natural graphite, showed no degradation structurally or electrochemically. The main reasons for the capacity fade of cell were lithium inventory loss by side reaction and possible lithium deposition on the anode.

Shim, Joongpyo; Sierra, Azucena; Striebel, Kathryn A.

2003-11-25T23:59:59.000Z

90

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles  

Broader source: Energy.gov (indexed) [DOE]

complete Timeline Budget Barriers Partners Overview * Barriers addressed: - A. Battery cost - C. Performance: Energy Density - E. Lifetime * Targets - prototype cells...

91

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

92

Cost Study Manual | Department of Energy  

Energy Savers [EERE]

Cost Study Manual Cost Study Manual Update 62912. Memo regarding Cost Study Manual Cost Study Manual More Documents & Publications Policy Flash 2013-62 Acquisition Letter 09 -...

93

Boosting batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Boosting batteries Boosting batteries Broad use possible for lithium-silicon batteries Findings could pave the way for widespread adoption of lithium ion batteries for applications...

94

Batteries - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Battery Research, Development, and Testing Advanced Battery Research, Development, and Testing Argonne's Research Argonne plays a major role in the US Department of Energy's (DOE's) energy storage program within its Office of Vehicle Technologies. Activities include: Developing advanced anode and cathode materials under DOE's longer term exploratory R&D program Leading DOE's applied R&D program focused on improving lithium-ion (Li-Ion) battery technology for use in transportation applications Developing higher capacity electrode materials and electrolyte systems that will increase the energy density of lithium batteries for extended electric range PHEV applications Conducting independent performance and life tests on other advanced (Li-Ion, Ni-MH, Pb-Acid) batteries. Argonne's R&D focus is on advanced lithium battery technologies to meet the energy storage needs of the light-duty vehicle market.

95

Pioneering battery maker files for bankruptcy  

Science Journals Connector (OSTI)

... Ultimately, the fate of US battery makers will remain tied to that of the electric car itself. And for now, no battery technology can compete cost-wise with the internal ... cost-wise with the internal combustion engine. The outlook in the near future for electric cars does not look that promising, says Daniel Scherson, an electrochemist at Case Western ...

Devin Powell

2012-10-24T23:59:59.000Z

96

EMSL - batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

97

Developing a Lower Cost and Higher Energy Density Alternative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Advanced Batteries ADVANCED MANUFACTURING OFFICE Developing a Lower Cost and Higher Energy Density Alternative to Lithium-Ion Batteries Introduction As the world moves toward...

98

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

materials, although electro-active compounds containing these metals exist. Todays technologically important cathodesactive field. Characteristics of battery cathode materials

Doeff, Marca M

2011-01-01T23:59:59.000Z

99

Models for Battery Reliability and Lifetime  

SciTech Connect (OSTI)

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

100

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

battery used for hybrid electric vehicles (HEVs) or electric vehicles (EVs) due to its low cost, low toxicity, thermal andthermal stability. 109-112 Thus, it proves to be a promising candidate cathode in battery

Zhu, Jianxin

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Eagle Project Update Eagle P3 Project Update  

E-Print Network [OSTI]

) offers 11-minute travel time to Westminster #12;5 Eagle P3 Project Scope · Overall capital cost $2 for cost effective index · Allows RTD to spread the cost of the project over a longer time periodEagle Project Update Eagle P3 Project Update Rick Clarke Assistant General Manager, Capital

Bustamante, Fabián E.

102

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

103

Thermal Batteries for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austins thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

104

Better Plants Progress Update 2014  

Broader source: Energy.gov [DOE]

The 2014 Progress Update details Better Buildings, Better Plants Program accomplishments, including new partners, new initiatives, and energy and cost savings experienced by partners.

105

Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model  

E-Print Network [OSTI]

analyses of the manufacturing cost of the key unique components of electric vehicles: batteries, fuel cells,

Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

2000-01-01T23:59:59.000Z

106

NREL/CCSE PEV Battery Second Use Project (Presentation)  

SciTech Connect (OSTI)

This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

Neubauer, J.; Pesaran, A.

2011-09-01T23:59:59.000Z

107

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network [OSTI]

safety and cost. Third, Li-Ion battery designs are betterattributes of one type of Li-Ion battery cannot necessarilycapabilities. In any case, Li-Ion battery technologies hold

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

108

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

and Titanates as High-Energy Cathode Materials for Li-IonI, Amine K (2009) High Energy Cathode Material for Long-LifeA New Cathode Material for Batteries of High Energy Density.

Doeff, Marca M

2011-01-01T23:59:59.000Z

109

Redox Flow Batteries: An Engineering Perspective  

SciTech Connect (OSTI)

Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

2014-10-01T23:59:59.000Z

110

Progress Update  

Broader source: Energy.gov (indexed) [DOE]

Update Update FALL 2013 Learn more at eere.energy.gov/manufacturing/tech_assistance/betterplants/ The Better Buildings, Better Plants Program is a national partnership initiative that challenges industry to set and meet ambitious energy-saving targets. Across the United States, manufacturers spend more than $200 billion each year to power their plants. 1 The industrial sector has the potential to invest more than $100 billion in cost-effective, energy-efficiency technologies by 2020, which would result in annual energy savings of almost $50 billion. 2 U.S. Department of Energy (DOE) data demonstrates that many facilities can save 15% or more annually through projects with payback periods of less than three years. 3 Better Plants Partners are working with DOE

111

Sodium cobalt bronze batteries and a method for making same  

DOE Patents [OSTI]

A solid state secondary battery utilizing a low cost, environmentally sound, sodium cobalt bronze electrode. A method is provided for producing same.

Doeff, Marca M. (Hayward, CA); Ma, Yanping (Berkeley, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard (Lafayette, CA)

1999-01-01T23:59:59.000Z

112

U.S. Battery R&D Progress and Plans  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power & Capacity Increase Life Improvement VTO Battery R&D Activities 10-100 mAh cells 0.5 - 1.0 Ah cells 5 - 40 + Ah cells 5 Battery R&D Progress Plug-In Battery Cost (per...

113

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

114

Membrane-less hydrogen bromine flow battery  

E-Print Network [OSTI]

In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for ...

Braff, William A.

115

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

cooling system we have developed in our previous program with respect to mass, volume, cost and power demand. Deliver cells and battery packs to USABC for testing. Tasks OEM...

116

Optimal design of a hybrid solarwind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP)  

Science Journals Connector (OSTI)

Potou is an isolated site, located in the northern coast of Senegal. The populations living in this area have no easy access to electricity supply. The use of renewable energies can contribute to the improvement of the living conditions of these populations. The methodology used in this paper consists in Sizing a hybrid solarwind-battery system optimized through multi-objective genetic algorithm for this site and the influence of the load profiles on the optimal configuration. The two principal aims are: the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP). To study the load profile influence, three load profiles with the same energy (94kWh/day) have been used. The achieved results show that the cost of the optimal configuration strongly depends on the load profile. For example, the cost of the optimal configuration decreases by 7% and 5% going from profile 1 to 2 and for those ones going from 1 to 3.

B. Ould Bilal; V. Sambou; P.A. Ndiaye; C.M.F. Kb; M. Ndongo

2010-01-01T23:59:59.000Z

117

Flow Battery System Design for Manufacturability.  

SciTech Connect (OSTI)

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

118

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

119

Battery business boost  

Science Journals Connector (OSTI)

... year, A123 formed deals with the US car manufacturer Chrysler to make batteries for its electric cars. Other applications for A123 products include batteries for portable power tools and huge batteries ... batteries are not yet developed enough to be considered for use in its Prius hybrid electric car, preferring instead to keep using nickel metal hydride batteries. ...

Katharine Sanderson

2009-09-24T23:59:59.000Z

120

Design of a low-cost underwater acoustic modem for short- range sensor networks  

E-Print Network [OSTI]

modem must be powered from batteries Power amplifiers areof the modem and its batteries at node i. b i is a binaryplus the total number of batteries required times the cost

Benson, Bridget

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

07 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost for systems...

122

Cost Recovery Charge (CRC) Calculation Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Recovery Charge (CRC) Calculation Table Updated: October 6, 2014 FY 2016 September 2014 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

123

Membranes and separators for flowing electrolyte batteries-a review  

SciTech Connect (OSTI)

Flowing electrolyte batteries are rechargeable electrochemical storage devices in which externally stored electrolytes are circulated through the cell stack during charge or discharge. The potential advantages that flow batteries offer compared to other secondary batteries include: 1) ease of thermal and electrolyte management, 2) simple electrochemistry, 3) deep cycling capability, and 4) minimal loss of capacity with cycling. However, flow batteries are more complex than other secondary batteries and consequently may cost more and may be less reliable. Flow batteries are being developed for utility load leveling, electric vehicles, solar photovoltaic and wind turbine application. The status of flow batteries has recently been reviewed by Clark et al. The flowing electrolyte batteries place rigorous demands on the performance of separators and membranes. The operating characteristics of the iron/chromium redox battery were changed in order to accommodate the limitations in membrane performance. Low cost alternatives to the presently used membrane must be found before the zinc/ferricyanide battery can be economically feasible. The zinc/bromine battery's efficiency could be improved if a suitably selective membrane were available. It is anticipated that better and less costly membranes to meet these needs will be developed as more is learned about their preparation and performance.

Arnold, C.; Assink, R.A.

1983-01-01T23:59:59.000Z

124

NREL: Continuum Magazine - Electric Vehicle Battery Development Gains  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicle Battery Development Gains Momentum Electric Vehicle Battery Development Gains Momentum Issue 5 Print Version Share this resource Electric Vehicle Battery Development Gains Momentum CAEBAT collaboration targets EDV batteries with longer range and lifespan, at a lower cost. A photo of two men silhouetted in front of six back-lit display screens showing battery models, located in a dark room (22008). Enlarge image NREL's modeling, simulation, and testing activities include battery safety assessment, next-generation battery technologies, material synthesis and research, subsystem analysis, and battery second use studies. Photo by Dennis Schroeder, NREL "When people get behind the wheel of an electric car, it should be a great driving experience. Period." Dr. Taeyoung Han, GM technical fellow, said,

125

Battery Safety Testing  

Broader source: Energy.gov (indexed) [DOE]

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

126

Cost of a Ride: The Effects of Densities on Fixed-Guideway Transit Ridership and Capital Costs  

E-Print Network [OSTI]

rail transit capital cost study update final. Washington,2005). Managing Capital Costs of Major Federally Fundedin US rail transit project cost overrun. Transportation

Guerra, Erick; Cervero, Robert

2010-01-01T23:59:59.000Z

127

Li-Ion and Other Advanced Battery Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scientist viewing computer screen scientist viewing computer screen Li-Ion and Other Advanced Battery Technologies The research aims to overcome the fundamental chemical and mechanical instabilities that have impeded the development of batteries for vehicles with acceptable range, acceleration, costs, lifetime, and safety. Its aim is to identify and better understand cell performance and lifetime limitations. These batteries have many other applications, in mobile electronic devices, for example. The work addresses synthesis of components into battery cells with determination of failure modes, materials synthesis and evaluation, advanced diagnostics, and improved electrochemical model development. This research involves: Battery development and analysis; Mathematical modeling; Sophisticated diagnostics;

128

Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation  

E-Print Network [OSTI]

Improving the efficiency and utilization of battery systems can increase the viability and cost-effectiveness of existing technologies for electric vehicles (EVs). Developing smarter battery management systems and advanced ...

Northrop, Paul W. C.

129

Argonne Transportation - Lithium Battery Technology Patents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

130

Batteries - Next-generation Li-ion batteries Breakout session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next-generation Li-ion batteries Next-generation Li-ion batteries EV Everywhere Workshop July 26, 2012 Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * Overall, everything is achievable, but, clearly, the cost targets are dramatic, particularly for AEV 300. (I have discussed this with Yet-Ming Chiang, who has a good feel for cost reductions, both their importance and interesting approaches.) * AEV 100 achievable with a good silicon/graphite composite anode and LMRNMC (unsure timeline) * AEV 300 would require cycleable Li-metal anode and UHVHC cathode (can't get there with Li-ion intercalation on both electrodes) (unsure timeline) Barriers Interfering with Reaching the Targets * Pack - too high a fraction of inactive materials/inefficient engineering designs.

131

Survey of mercury, cadmium and lead content of household batteries  

SciTech Connect (OSTI)

Highlights: A well selected sample of 146 batteries was analysed for its heavy metals content. A comparison was made between heavy metals contents in batteries in 2006 and 2011. No significant change after implementation of the new EU Batteries Directive. Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkalinemanganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinccarbon batteries, on average, contained the highest levels.

Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willsttter-Strae 11, D-12489 Berlin (Germany); Radant, Hendrik [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willsttter-Strae 11, D-12489 Berlin (Germany); Kohlmeyer, Regina [German Federal Environment Agency (UBA), Section III 1.6 Extended Producer Responsibility, Wrlitzer Platz 1, D-06844 Dessau-Rolau (Germany)

2014-01-15T23:59:59.000Z

132

Lithium-Polysulfide Flow Battery Demonstration  

SciTech Connect (OSTI)

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-06-30T23:59:59.000Z

133

Safety Hazards of Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Hazards of Batteries Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the Lithium-ion battery. Cell phones, laptop computers, GPS systems, iPods, and even cars are now using lithium- ion rechargeable battery technology. In fact, you probably have a lithium-ion battery in your pocket or purse right now! Although lithium-ion batteries are very common there are some inherent dangers when using ANY battery. Lithium cells are like any other technology - if they are abused and not used for their intended purpose catastrophic results may occur, such as: first-, second-, and third-degree burns, respiratory problems, fires, explosions, and even death. Please handle the lithium-ion batteries with care and respect.

134

Optima Batteries | Open Energy Information  

Open Energy Info (EERE)

Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: http:www.optimabatteries.com References: Optima Batteries1 Information About...

135

Data Updating  

Science Journals Connector (OSTI)

Data update refers to change of old data and generation of new data by applying new experiences and knowledge.

2008-01-01T23:59:59.000Z

136

NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)  

SciTech Connect (OSTI)

NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

Not Available

2014-01-01T23:59:59.000Z

137

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

138

Batteries and Fuel Cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher

1984-01-01T23:59:59.000Z

139

Batteries and fuel cells  

Science Journals Connector (OSTI)

A battery is a device which can store chemical energy and, on demand, convert it into electrical energy to drive an external circuit. The importance of batteries to modern life surely requires no emphasis. Eve...

Derek Pletcher; Frank C. Walsh

1993-01-01T23:59:59.000Z

140

The development of an updatable series of problems that can be used to demonstrate construction cost estimating principles to students of civil engineering and building construction  

E-Print Network [OSTI]

Construction Equipment 5 Prices Summarize Equipment Costs Calculate Labor Manhours Determine wage Rates and Crew Mixes Price out Labor Obtain Material Prices 5 Availabilities Assemble Direct Cost Items Determine Overhead Personnel Calculate Labor Burden... is solving a problem from his text us1ng a labor rate of $2 per hour for a carpenter when the present rate is in excess of $8 per hour. He knows that the expected "right" answer is go1ng to be wrong by at least 400K. Pulver tried to overcome this cost...

Tiner, Wayne Douglas

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fact Sheet: Sodium-Beta Batteries (October 2012) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Beta Batteries (October 2012) Beta Batteries (October 2012) Fact Sheet: Sodium-Beta Batteries (October 2012) DOE's Energy Storage Program is funding research to further develop a novel planar design for sodium-beta batteries (Na-beta batteries or NBBs) that will improve energy and power densities and simplify manufacturing. This project will demonstrate a planar prototype that operates at <300 degrees Celsius and will scale up the storage capacity to 5 kW, improving on the performance levels being pursued in related battery research projects. Fact Sheet: Sodium-Beta Batteries (October 2012) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects Energy Storage Systems 2012 Peer Review and Update Meeting Advanced Materials and Devices for Stationary Electrical Energy Storage

142

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...  

Broader source: Energy.gov (indexed) [DOE]

Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel...

143

Microsoft PowerPoint - Cost-Allocation Customer Presentation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 19-20, 2011 Agenda Agenda OCPOCI U d t OCPOCI Update Interim Cost Allocation Methodology P d C All i Proposed Cost Allocation Analysis of Proposed...

144

Alan MacDiarmid, Conductive Polymers, and Plastic Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Alan MacDiarmid, Conductive Polymers, and Plastic Batteries Resources with Additional Information · Patents Alan MacDiarmid ©Alan MacDiarmid/ University of Pennsylvania Photo by Felice Macera Until 1987, the billions of batteries that had been marketed in myriad sizes and shapes all had one thing in common. To make electricity, they depended exclusively upon chemical reactions involving metal components of the battery. But today a revolutionary new type of battery is available commercially. It stores electricity in plastic. Plastic batteries are the most radical innovation in commercial batteries since the dry cell was introduced in 1890. Plastic batteries offer higher capacity, higher voltage, and longer shelf-life than many competitive designs. Companies are testing new shapes and configurations, including flat batteries, that can be bent like cardboard. Researchers expect that the new technology will free electronic designers from many of the constraints imposed by metal batteries such as limited recharging cycles, high weight, and high cost.

145

URESC Update  

Broader source: Energy.gov [DOE]

Presentation covers the URESC Update for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

146

Towards a lithium-ion fiber battery  

E-Print Network [OSTI]

One of the key objectives in the realm of flexible electronics and flexible power sources is to achieve large-area, low-cost, scalable production of flexible systems. In this thesis we propose a new Li-ion battery architecture ...

Grena, Benjamin (Benjamin Jean-Baptiste)

2013-01-01T23:59:59.000Z

147

A battery chemistry-adaptive fuel gauge using probabilistic data association  

Science Journals Connector (OSTI)

Abstract This paper considers the problem of state of charge (SOC) tracking in Li-ion batteries when the battery chemistry is unknown. It is desirable for a battery fuel gauge (BFG) to be able to perform without any offline characterization or calibration on sample batteries. All the existing approaches for battery fuel gauging require at least one set of parameters, a set of open circuit voltage (OCV) parameters, that need to be estimated offline. Further, a BFG with parameters from offline characterization will be accurate only for a known battery chemistry. A more desirable BFG is one that is accurate for any battery chemistry. In this paper, we show that by storing finite sets of OCV parameters of possible batteries, we can derive a generalized BFG using the probabilistic data association (PDA) algorithm. The PDA algorithm starts by assigning prior model probabilities (typically equal) for all the possible models in the library and recursively updates those probabilities based on the voltage and current measurements. In the event of an unknown battery to be gauged, the PDA algorithm selects the most similar OCV model to the battery from the library. We also demonstrate a strategy to select the minimum sets of OCV parameters representing a large number of Li-ion batteries. The proposed approaches are demonstrated using data from portable Li-ion batteries.

G.V. Avvari; B. Balasingam; K.R. Pattipati; Y. Bar-Shalom

2015-01-01T23:59:59.000Z

148

Energy Storage Systems 2010 Update Conference Presentations - Day 1,  

Broader source: Energy.gov (indexed) [DOE]

3 3 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the third session of Day 1, chaired by PNNL's Jun Lui, are below. ESS 2010 Update Conference - MetILs, New Ionic Liquids for Flow Batteries - Travis Anderson, SNL.pdf ESS 2010 Update Conference - Nitrogen-Air Battery - David Ingersoll, SNL.pdf ESS 2010 Update Conference - Improved Properties of Nanocomposites for Flywheel Applications - Tim Boyle, SNL.pdf

149

Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...  

Broader source: Energy.gov (indexed) [DOE]

compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES). Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...

150

Overcoming Processing Cost Barriers of High-Performance Lithium...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cost Barriers of High-Performance Lithium-Ion Battery Electrodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

151

Batteries Breakout Session  

Broader source: Energy.gov (indexed) [DOE]

capture external conditions (consumer and infrastructure) * Capture Secondary use of batteries * EV100 Primary Vehicle, felt not practical? Barriers Interfering with Reaching the...

152

Vehicle Technologies Office: Batteries  

Broader source: Energy.gov [DOE]

Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental...

153

battery2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

154

EMSL - battery materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery-materials en Measuring Spatial Variability of Vapor Flux to Characterize Vadose-zone VOC Sources: Flow-cell Experiments. http:www.emsl.pnl.govemslwebpublications...

155

GBP Battery | Open Energy Information  

Open Energy Info (EERE)

GBP Battery Place: China Product: Shenzhen-China-based maker of Li-Poly and Li-ion batteries suitable for EVs and other applications. References: GBP Battery1 This article is...

156

Non-Aqueous Battery Systems  

Science Journals Connector (OSTI)

...0 V. Practical non-aqueous batteries have energies extending from 100...electric watches to 20 kWh secondary batteries being developed for vehicle traction...10 years, to a military lithium thermal battery delivering all of its energy in...

1996-01-01T23:59:59.000Z

157

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect (OSTI)

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

158

Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) | Department  

Broader source: Energy.gov (indexed) [DOE]

Carbon-Enhanced Lead-Acid Batteries (October 2012) Carbon-Enhanced Lead-Acid Batteries (October 2012) Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) DOE's Energy Storage Program is funding research and testing to improve the performance and reduce the cost of lead-acid batteries. Research to understand and quantify the mechanisms responsible for the beneficial effect of carbon additions will help demonstrate the near-term feasibility of grid-scale energy storage with lead-acid batteries, and may also benefit other battery chemistries. Fact Sheet: Carbon-Enhanced Lead-Acid Batteries (October 2012) More Documents & Publications Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (October 2012) New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Day 1, Session 2

159

Battery Power for Your Residential Solar Electric System: Better Buildings Series Solar Electric Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ELECTRIC ELECTRIC Battery Power for Your Residential Solar Electric System A Winning Combination-Design, Efficiency, and Solar Technology A battery bank stores electricity produced by a solar electric system. If your house is not connected to the utility grid, or if you antici- pate long power outages from the grid, you will need a battery bank. This fact sheet pro- vides an overview of battery basics, including information to help you select and maintain your battery bank. Types of Batteries There are many types of batteries avail- able, and each type is designed for specific applications. Lead-acid batteries have been used for residential solar electric systems for many years and are still the best choice for this application because of their low mainte- nance requirements and cost. You may

160

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

Colorado-based startup company that is developing lithium ion batteries based on nano-structured materials. References: Prieto Battery1 This article is a stub. You can...

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are investigating cost-effective electrode materials and electrolytes, as well as novel low-cost synthesis approaches for making highly efficient electrode materials using additives such as graphine, oleic acid, and paraffin. To address safety issues, researchers will also identify materials with better thermal stability. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) More Documents & Publications Battery SEAB Presentation

162

Washington Update  

Broader source: Energy.gov (indexed) [DOE]

Utility Partnership Working Group (FUPWG) Utility Partnership Working Group (FUPWG) eere.energy.gov The Parker Ranch installation in Hawaii Federal Energy Management Program Federal/Utility Partnership Working Group David McAndrew October 20, 2010 Rapid City, SD Washington Update 2 | Federal Utility Partnership Working Group (FUPWG) eere.energy.gov Presentation Overview * FEMP Updates * GHG Guidance Update * EISA Section 432 Update * Mark Your Calendar 3 | Federal Utility Partnership Working Group (FUPWG) eere.energy.gov * Richard Kidd is leaving FEMP - Will become Deputy Assistant Secretary of the Army for Energy and Sustainability - Skye Schell will assume the role of interim Program Manager * Jesse Feinberg (Energetics) departed over the summer to attend grad school Columbia * Sarah Mabbitt (smabbitt@energetics.com)

163

Influences of Permeation of Vanadium Ions through PVDF-g-PSSA Membranes on Performances of Vanadium Redox Flow Batteries  

Science Journals Connector (OSTI)

The vanadium redox flow battery (VRB) proposed by Skyllas-Kazacos and co-workers1-3 in 1985 has received considerable attention due to its long cycle life, flexible design, fast response time, deep-discharge capability, and low cost in energy storage. ... Figure 1 Schematic illustration of a vanadium redox flow battery. ... Vanadium Redox Flow Battery Performance. ...

Xuanli Luo; Zhengzhong Lu; Jingyu Xi; Zenghua Wu; Wentao Zhu; Liquan Chen; Xinping Qiu

2005-10-08T23:59:59.000Z

164

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

10 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update This report is the fourth annual update of a comprehensive...

165

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

Broader source: Energy.gov (indexed) [DOE]

Application: 2009 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update This report is the third annual update of a...

166

Vehicle Technologies Office: Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

167

Tanks for the Batteries  

Science Journals Connector (OSTI)

...kg), in the most common flow batteries that number ranges from 20 to 50 Wh/kg. Most modular units now under development range in size from refrigerators to railcars. A flow battery in Osaka, Japan, that's capable of storing a megawatt...

Robert F. Service

2014-04-25T23:59:59.000Z

168

Advanced battery thermal management for electrical-drive vehicles using reciprocating cooling flow and spatial-resolution, lumped-capacitance thermal model.  

E-Print Network [OSTI]

?? The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. The (more)

Mahamud, Rajib

2011-01-01T23:59:59.000Z

169

Fact Sheet: Sodium-Beta Batteries (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

Sodium-Beta Batteries Sodium-Beta Batteries Improving the performance and reducing the cost of sodium-beta batteries for large-scale energy storage Sodium-beta batteries (Na-beta batteries or NBBs) use a solid beta-alumina (ß˝-Al 2 O 3 ) electrolyte membrane that selectively allows sodium ion transport between a positive electrode (e.g., a metal halide) and a negative sodium electrode. NBBs typically operate at temperatures near 350˚C. They are increasingly used in renewable storage and utility applications due to their high round-trip efficiency, high energy densities, and energy storage capacities ranging from a few kilowatt-hours to multiple megawatt-hours. In fact, U.S. utilities

170

Developing Next-Gen Batteries With Help From NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC Helps Develop NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December 18, 2012 | Tags: Materials Science, Science Gateways Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 XBD201110-01310.jpg Kristin Persson To reduce the United States' reliance on foreign oil and lower consumer energy costs, the Department of Energy (DOE) is bringing together five national laboratories, five universities and four private firms to revolutionize next-generation battery performance. This collaboration-dubbed the Joint Center for Energy Storage Research (JCESR)-will receive $120 million over five years to establish a new Batteries and Energy Storage Hub led by Argonne National Laboratory (ANL)

171

EA-1939: Reese Technology Center Wind and Battery Integration Project,  

Broader source: Energy.gov (indexed) [DOE]

9: Reese Technology Center Wind and Battery Integration 9: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX SUMMARY This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply. Under the proposed action, DOE's Office of Electricity Delivery and Energy Reliability would provide cost shared funding for the project through American Reinvestment and Recovery Act

172

Fact Sheet: Vanadium Redox Flow Batteries (October 2012) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Vanadium Redox Flow Batteries (October 2012) Vanadium Redox Flow Batteries (October 2012) Fact Sheet: Vanadium Redox Flow Batteries (October 2012) DOE's Energy Storage Program is funding research to develop next-generation vanadium redox flow batteries (VRBs) that reduce costs by improving energy and power densities, widening the operating temperature window, and simplifying and optimizing stack/system designs. These efforts build on Pacific Northwest National Laboratory research that has developed new redox electrolytes that enable increased VRB operating temperatures and energy storage capabilities. Fact Sheet: Vanadium Redox Flow Batteries (October 2012) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 2 Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2

173

ESS 2012 Peer Review - Flow Battery Modeling - Mario Martinez, SNL  

Broader source: Energy.gov (indexed) [DOE]

Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Photos placed in horizontal position with even amount of white space between photos and header Photos placed in horizontal position with even amount of white space between photos and header Flow Battery Modeling Energy Storage Systems Peer Review September 26-28, 2012 MJ Martinez (PI), J Clausen, SM Davison, HK Moffat Flow Battery Modeling Schematic of a Flow Battery PURPOSE: The flow battery modeling task seeks to improve fundamental understanding and enable high-performing, low-cost designs of flow batteries through

174

Better Plants Progress Update Fall 2013  

Broader source: Energy.gov [DOE]

The Fall 2013 Progress Update chronicles the Better Buildings Programs efforts to capture cost-effective energy-saving opportunities and demonstrate that strong energy management practices are good for business, good for the economy, and good for the environment.

175

Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services  

SciTech Connect (OSTI)

Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and replacement costs for batteries with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options. Our evaluation process followed four steps: (1) identifying drive patterns best suited to battery swapping service plans, (2) modeling service usage statistics for the selected drive patterns, (3) calculating the cost-of-service plan options, and (4) evaluating the economics of individual drivers under realistically priced service plans. A service plan option can be more cost-effective than direct ownership for drivers who wish to operate a BEV as their primary vehicle where alternative options for travel beyond the single-charge range are expensive, and a full-coverage-yet-cost-effective regional infrastructure network can be deployed. However, when assumed cost of gasoline, tax structure, and absence of purchase incentives are factored in, our calculations show the service plan BEV is rarely more cost-effective than direct ownership of a conventional vehicle.

Neubauer, J. S.; Pesaran, A.

2013-01-01T23:59:59.000Z

176

Technology Improvement Pathways to Cost-Effective Vehicle Electrification  

SciTech Connect (OSTI)

Electrifying transportation can reduce or eliminate dependence on foreign fuels, emission of green house gases, and emission of pollutants. One challenge is finding a pathway for vehicles that gains wide market acceptance to achieve a meaningful benefit. This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer. Significant improvements in battery life and battery cost also made PHEVs more cost-effective than today's hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles (CVs).

Brooker, A.; Thornton, M.; Rugh, J. P.

2010-04-01T23:59:59.000Z

177

Electrochemically Stable Cathode Current Collectors for Rechargeable Magnesium Batteries  

SciTech Connect (OSTI)

Rechargeable Mg batteries are attractive energy storage systems and could bring cost-effective energy solutions. Currently, however, no practical cathode current collectors that can withstand high voltages in Mg2+ electrolytes has been identified and therefore cathode research is greatly hindered. Here we identified that two metals, Mo and W, are electrochemically stable through formation of surface passive layers. The presented results could have significant impacts on the developments of high voltage Mg batteries.

Cheng, Yingwen; Liu, Tianbiao L.; Shao, Yuyan; Engelhard, Mark H.; Liu, Jun; Li, Guosheng

2014-01-01T23:59:59.000Z

178

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Systems 2010 Update Conference Presentations - Day Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the first session of Day 2, chaired by DOE's Imre Gyuk, are below. ESS 2010 Update Conference - UltraBattery Grid Storage - John Wood, Ecoult.pdf ESS 2010 Update Conference - PV Plus Storage for Simultaneous Voltage Smoothing and Peak Shifting - Steve Willard, PNM.pdf

179

Energy Storage Systems 2010 Update Conference Presentations - Day 1,  

Broader source: Energy.gov (indexed) [DOE]

0 Update Conference Presentations - Day 0 Update Conference Presentations - Day 1, Session 2 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the second session of Day 1, chaired by SNL's Terry Aselage, are below. ESS 2010 Update Conference - Advanced Stationary Electrical Energy Storage R&D at PNNL - Z Gary Yang, PNNL.pdf ESS 2010 Update Conference - A New Vanadium Redox Flow Battery Using Mixed Acid Electrolytes - Liyu Li, PNNL.pdf

180

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network [OSTI]

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Washington Update  

Broader source: Energy.gov (indexed) [DOE]

Federal Energy Management Federal Energy Management Program Federal/Utility Partnership Working Group David McAndrew April 14, 2010 Providence RI Washington Update Federal Energy Management Program femp.energy.gov 3 Presentation Overview * EO 13514 - Strategic Sustainability Plans * DOE's approach * EISA section 432 update * Outreach Opportunities - Federal Energy Management Awards - Energy Empowers Campaign - GovEnergy Federal Energy Management Program femp.energy.gov 4 EO13514 Sustainability Plans Update Federal Energy Management Program femp.energy.gov 5 EO 13514 Goals In addition to GHG goals, the EO requires agencies to meet sustainability targets, including: * 30% reduction in vehicle fleet petroleum use by 2020; * 26% reduction in potable, industrial, landscaping, and agricultural water consumption by 2020;

182

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

183

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

184

Blue Sky Batteries Inc | Open Energy Information  

Open Energy Info (EERE)

Batteries Inc Jump to: navigation, search Name: Blue Sky Batteries Inc Place: Laramie, Wyoming Zip: 82072-3 Product: Nanoengineers materials for rechargeable lithium batteries....

185

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

186

Aerospatiale Batteries ASB | Open Energy Information  

Open Energy Info (EERE)

Aerospatiale Batteries ASB Jump to: navigation, search Name: Aerospatiale Batteries (ASB) Place: France Product: Research, design and manufacture of Thermal Batteries. References:...

187

American Battery Charging Inc | Open Energy Information  

Open Energy Info (EERE)

American Battery Charging Inc Place: Smithfield, Rhode Island Zip: 2917 Product: Manufacturer of industrial and railroad battery chargers. References: American Battery Charging...

188

Argonne TTRDC - TransForum v10n1 - New Molecule for Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Molecule Could Help Make Batteries Safer, Less Expensive New Molecule Could Help Make Batteries Safer, Less Expensive Charge transfer mechanism for Li-ion battery overcharge protection Charge Transfer Mechanism for Li-ion Battery Overcharge Protection. When the battery is overcharged, the redox shuttle (bottom molecule) will be oxidized by losing an electron to the positive electrode. The radical cation formed (top molecule) will then diffuse back to the negative electrode, causing the cation to obtain an electron and be reduced. The net reaction is to shuttle electrons from the positive electrode to the negative electrode without causing chemical damage to the battery. Safety, life and cost are three of the major barriers to making commercially-viable lithium-ion batteries for plug-in hybrid electric

189

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Broader source: Energy.gov (indexed) [DOE]

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell

190

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary  

Broader source: Energy.gov (indexed) [DOE]

Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman Missouri Lithium-Ion Battery Company Hosts Tour With U.S. Deputy Secretary of Energy Poneman February 9, 2012 - 4:25pm Addthis Washington, D.C. - Today, U.S. Deputy Secretary of Energy Daniel Poneman toured Dow Kokam's new global battery research and development center, located in Lee's Summit, Missouri, outside of Kansas City, to highlight America's investments in cutting-edge energy innovations that are laying the building blocks for an American economy built to last. The R&D center aims to bring next-generation lithium-ion battery solutions to the market faster, increase battery performance and reduce their overall cost. Lithium batteries are used in a variety of everyday products from laptops to cell

191

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Cycle Cost Analysis of Conventional and Fuel Cell/BatteryEVs A few cost analyses for complete PEM fuel cell systemshigh-volume PEM fuel cell system cost analysis has been

Lipman, Timothy E.

1999-01-01T23:59:59.000Z

192

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Fuel Cell Vehicle Analysis of Energy Use, Emissions, and Cost,"Cost Analysis of Conventional and Fuel Cell/Battery Powered Urban Passenger Vehicles,cost analysis of several types of AFVs, but did not include fuel cell vehicles

Lipman, Timothy Edward

1999-01-01T23:59:59.000Z

193

Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework  

E-Print Network [OSTI]

Fuel Cell Vehicle Analysis of Energy Use, Emissions, and Cost,&Cost Analysis of Conventional and Fuel Cell/Battery Powered Urban Passenger Vehicles,cost analysis of several types of AFV s, but did not include fuel cell vehicles

Lipman, Timothy E.

1999-01-01T23:59:59.000Z

194

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

195

Critical Update - Renwable Guidance Update  

Broader source: Energy.gov (indexed) [DOE]

Renewable Update Renewable Update FUPWG May 1, 2007 Chandra Shah, National Renewable Energy Laboratory 303-384-7557, chandra_shah@nrel.gov Presentation Overview * Energy Policy Act of 2005 (EPACT 05) Federal Renewable Goal * Executive Order 13423 & Instructions * EPACT/EO Renewable Goal Guidance * Federal Renewable Use Update * Innovative Renewable Projects 3  Section 203 (a) Requirement- The President, acting through the Secretary, shall seek to ensure that, to the extent economically feasible and technically practicable, of the total amount of electric energy the Federal Government consumes during any fiscal year, the following amounts shall be renewable energy:  (1) Not less than 3% in FY07-09  (2) Not less than 5% in FY10-FY12  (3) Not less than 7.5% in FY13 & each fiscal year thereafter.

196

Temperature maintained battery system  

SciTech Connect (OSTI)

A chassis contains a battery charger connected to a multi-cell battery. The charger receives direct current from an external direct current power source and has means to automatically selectively charge the battery in accordance with a preselected charging program relating to temperature adjusted state of discharge of the battery. A heater device is positioned within the chassis which includes heater elements and a thermal switch which activates the heater elements to maintain the battery above a certain predetermined temperature in accordance with preselected temperature conditions occurring within the chassis. A cooling device within the chassis includes a cooler regulator, a temperature sensor, and peltier effect cooler elements. The cooler regulator activates and deactivates the peltier cooler elements in accordance with preselected temperature conditions within the chassis sensed by the temperature sensor. Various vehicle function circuitry may also be positioned within the chassis. The contents of the chassis are positioned to form a passage proximate the battery in communication with an inlet and outlet in the chassis to receive air for cooling purposes from an external source.

Newman, W.A.

1980-10-21T23:59:59.000Z

197

CSE - 6th US-China Battery Conference  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011 Workshop 2011 Workshop 2010 Workshop U Mass 6th U.S.-China Electric Vehicle and Battery Technology Workshop August 22 - 24, 2012 Sponsored by the U.S. Department of Energy and the China Ministry of Science and Technology Hosted by University of Massachusetts Boston View the conference booklet with program (pdf) » Photo Gallery » Presentations Session 1: Plenary Update on US DOE Electric Drive Vehicle R&D and Deployment Activities (pdf), Dave Howell, US Department of Energy China-US Cooperation and Exchanges in Basic Research on Secondary Batteries and Energy Materials (pdf), WU Feng, Beijing Institute of Technology An Update on the US-China Bi-lateral EVI Agreement (pdf), Larry Johnson, Argonne National Lab The EV Everywhere Challenge: Setting the Technical Targets (pdf),

198

MISSION UPDATE:  

Science Journals Connector (OSTI)

......Update Homing in on landing site for Philae As...started to examine comet 67P/Churyumov-Gerasimenko...instruments to examine the comet, and the choice...technical challenges of landing safely and remaining...the surface of the comet as it rounds the...by Rosetta. The landing site must allow Philae......

Homing in on landing site for Philae

2014-10-01T23:59:59.000Z

199

Texas Tech University Energy Savings Program July 2009 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For the first Program for four energy projects. 1) AHU VFD Project ­ Final cost of $558,904 with a payback of 5.2 yearsTexas Tech University Energy Savings Program July 2009 Update The Texas Tech Energy Savings Update

Zhuang, Yu

200

Texas Tech University Energy Savings Program July 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through the Third energy demand upon the university buildings. Cogeneration steam, provided at no cost to the universityTexas Tech University Energy Savings Program July 2011 Update The Texas Tech Energy Savings Update

Zhuang, Yu

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery  

Science Journals Connector (OSTI)

Nanorod Niobium Oxide as Powerful Catalysts for an All Vanadium Redox Flow Battery ... A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). ... Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. ...

Bin Li; Meng Gu; Zimin Nie; Xiaoliang Wei; Chongmin Wang; Vincent Sprenkle; Wei Wang

2013-11-26T23:59:59.000Z

202

Critical Update - Renewable Guidance Update | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Critical Update - Renewable Guidance Update Critical Update - Renewable Guidance Update Presentation covers the FUPWG Meeting, held on May 1-2, 2007 in Cape Canaveral, Florida....

203

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

204

Electrocatalysts for Nonaqueous LithiumAir Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous LithiumAir Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous LithiumAir Batteries: Status, Challenges,...

205

Battery Vent Mechanism And Method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

206

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

207

Washington Update  

Broader source: Energy.gov (indexed) [DOE]

October 16, 2012 Federal Energy Management Program femp.energy.gov 2 Presentation Overview The Federal Buildings Personnel Training Act of 2010 Commit to Efficiency Customer Service Other FEMP Activities Update on Presidential Memo Commit to Efficiency OMB M-12-21 Federal Energy Management Program femp.energy.gov 3 The Federal Buildings Personnel Training Act of 2010 Commit to Efficiency Customer Service Other FEMP Activities Update on Presidential Memo Commit to Efficiency OMB M-12-21 Federal Energy Management Program femp.energy.gov 4 The Federal Buildings Personnel Training Act of 2010 * What the Act does - Requires Training of Federal Employees to maintain core competency in their ability to operate and maintain Federal Facilities

208

EEI Update  

Broader source: Energy.gov (indexed) [DOE]

EEI Update EEI Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG October 25, 2011 Philadelphia, PA Today's Discussion Current Electricity Landscape  Emerging Issues  Infrastructure investment  M&A  Political landscape  Grid modernization Changing Electric Utility Landscape  Utility industry has embarked on a major investment cycle, driven by the need to address:  Generation, Transmission, and Distribution to ensure reliability  Energy Efficiency and deploying new technologies (SG, renewables)  Significant Environmental CAPEX  Concerns about the Environment has Changed our Power Supply Mix  Short -term: Rely on Energy Efficiency, Renewables, and Natural Gas  Medium-term: Targets should be harmonized with the development

209

Washington Update  

Broader source: Energy.gov (indexed) [DOE]

Federal Energy Management Program Federal Energy Management Program Federal Utility Partnership Working Group Meeting: Washington Update Dr. Timothy Unruh October 25-26, 2011 Philadelphia, PA 2 | Federal Energy Management Program eere.energy.gov Presentation Overview  Federal Government Goals and Status  FEMP Update  UESC Program Overview and Goals  Mark Your Calendar: Spring 2012 FUPWG 3 | Federal Energy Management Program eere.energy.gov FEMP's Mission FEMP provides the services, tools, and expertise to Federal agencies to help them achieve their legislated and executive ordered energy, greenhouse gas, and water goals. This is delivered through project financing services, technical assistance, and communications and training. 4 | Federal Energy Management Program eere.energy.gov

210

Divalent Iron Nitridophosphates: A New Class of Cathode Materials for Li-Ion Batteries  

Science Journals Connector (OSTI)

(4-6) Here we demonstrate the design of a battery cathode material incorporating N3 anions as a distinct structural building block. ... Lithium transition metal phosphates are of interest as storage cathodes for rechargeable Li batteries because of their high energy d., low raw materials cost, environmental friendliness and safety. ... The reversible specific capacities for the cathode and anode active materials were detd. ...

Jue Liu; Xiqian Yu; Enyuan Hu; Kyung-Wan Nam; Xiao-Qing Yang; Peter G. Khalifah

2013-09-18T23:59:59.000Z

211

Nuclear Batteries for Implantable Applications  

Science Journals Connector (OSTI)

The nuclear battery is so named because its source of ... the nucleus of the atoms of the fuel, rather than in the electrons that surround ... the fundamental source of energy for the chemical batteries describ...

David L. Purdy

1986-01-01T23:59:59.000Z

212

Battery Factory Bringing Jobs to Jacksonville | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Factory Bringing Jobs to Jacksonville Factory Bringing Jobs to Jacksonville Battery Factory Bringing Jobs to Jacksonville April 30, 2010 - 2:10pm Addthis A rendering of Saft’s lithium-ion battery factory under construction in Jacksonville, Fla. | Courtesy of Saft A rendering of Saft's lithium-ion battery factory under construction in Jacksonville, Fla. | Courtesy of Saft Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy The Saft lithium-ion battery plant under construction in Jacksonville, Fla., is expected to pump hundreds of high-paying jobs into the city's economy while boosting its green credentials. Construction on the factory is expected to wrap up in 2012 and cost $191 million. Saft was awarded $95.5 million in Recovery Act funds and $20.2 million in financial incentives from Jacksonville and the state.

213

A Comparison of US and Chinese EV Battery Testing Protocols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

US and Chinese EV US and Chinese EV Battery Testing Protocols: Results D. Robertson, 1 J. Christophersen, 2 Fang Wang, 3 Fan Bin, 3 I. Bloom 1 US/China Electric Vehicle Initiative Meeting August 23-24, 2012 Boston, MA 1 Argonne National Laboratory 2 Idaho National Laboratory 3 CATARC A Comparison of US and Chinese Battery Testing Protocols  Battery testing is a time-consuming and costly process  There are parallel testing efforts, such as those in the US and China  These efforts may be better leveraged through international collaboration  The collaboration may establish standardized, accelerated testing procedures and will allow battery testing organizations to cooperate in the analysis of the resulting data  In turn, the collaboration may accelerate electric vehicle development and

214

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

Broader source: Energy.gov [DOE]

This report by NREL discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment.

215

Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing and Materials for Low-Cost Lithium-Ion Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

216

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Broader source: Energy.gov (indexed) [DOE]

1 1 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the first session of Day 2, chaired by DOE's Imre Gyuk, are below. ESS 2010 Update Conference - UltraBattery Grid Storage - John Wood, Ecoult.pdf ESS 2010 Update Conference - PV Plus Storage for Simultaneous Voltage Smoothing and Peak Shifting - Steve Willard, PNM.pdf ESS 2010 Update Conference - Tehachapi Wind Energy Storage - Loic Gaillac,

217

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Broader source: Energy.gov (indexed) [DOE]

2 2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the second session of Day 2, chaired by NETL's Bill Ayres, are below. ESS 2010 Update Conference - EnergyPod Smart Grid Storage - Rick Winter, Primus Power.pdf ESS 2010 Update Conference - Painesville Municipal Power Vanadium Redox Battery Demonstration Project - Joseph Startari, Ashlawn Energy.pdf ESS 2010 Update Conference - Notrees Wind Storage Project - Jeff Gates,

218

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

219

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet)  

SciTech Connect (OSTI)

Repurposing Li-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications.

Not Available

2014-01-01T23:59:59.000Z

220

Energy Management Using Storage Batteries in Large Commercial Facilities Based on Projection of Power Demand  

Science Journals Connector (OSTI)

This study provides three methods for projection of power demand of large commercial facilities planned for construction, ... the operation algorithm of storage batteries to manage energy and minimize power costs...

Kentaro Kaji; Jing Zhang; Kenji Tanaka

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ESS 2012 Peer Review - Painesville Municipal Electric Power Vanadium Redox Battery Demo Project - Jodi Startari, Ashlawn Energy  

Broader source: Energy.gov (indexed) [DOE]

Electric Power Electric Power Vanadium Redox Battery Demonstration Project Jodi Startari Ashlawn Energy LLC Briefing Overview * Painesville Municipal Electric Power Plant Project Synopsis * Vanadium Redox Flow Battery Technology * City of Painesville Municipal Electric Plant History * Project Multiple Objectives and Additional Detail * Project Risk Analysis presented at previous Peer Review * Project to date progress * Cost Distribution * Summary/Conclusions * Future Tasks * Questions US Produced Vanadium Redox Flow Battery for Bulk Storage, Peak Shaving * 8 MW Hour redox flow battery (1MW 8 hours) * To be installed at Painesville Municipal Electric Plant (PMEP), a 32 MW coal fired facility * Most efficient PMEP operation is steady state at 26 MW (lowest emissions, lowest operating cost)

222

Current balancing for battery strings  

DOE Patents [OSTI]

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

223

Startup Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter discusses startup costs for construction and environmental projects, and estimating guidance for startup costs.

1997-03-28T23:59:59.000Z

224

Battery electrode growth accommodation  

DOE Patents [OSTI]

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

225

DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in  

Broader source: Energy.gov (indexed) [DOE]

to Provide up to $14 Million to Develop Advanced Batteries for to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles April 5, 2007 - 12:17pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will provide up to $14 million in funding for a $28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. This research aims to find solutions to improving battery performance so vehicles can deliver up to 40 miles of electric range without recharging. This would include most roundtrip daily commutes. "President Bush is committed to developing alternative fuels and

226

Taking Battery Technology from the Lab to the Big City | Department of  

Broader source: Energy.gov (indexed) [DOE]

Taking Battery Technology from the Lab to the Big City Taking Battery Technology from the Lab to the Big City Taking Battery Technology from the Lab to the Big City July 29, 2013 - 2:09pm Addthis Watch the video to learn how Urban Electric Power is taking battery technology from the lab to the market. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Matty Greene Matty Greene Videographer What are the key facts? The CUNY Energy Institute developed a low-cost zinc anode rechargeable battery that can be used for grid-scale energy storage. Building on this technology, ARPA-E funded the CUNY Energy Institute to develop a long-lasting, fully rechargeable battery that can store renewable energy for future grid-use at any location. In 2012, Urban Electric Power was formed to commercialize the

227

Nickel-Metal-Hydride Batterie--High Energy Storage for Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freedomcar & Vehicle Technologies Program Freedomcar & Vehicle Technologies Program Nickel-Metal-Hydride Batteries - High Energy Storage for Electric Vehicles Background The key to making electric vehicles (EVs) practical is the development of batteries that can provide performance comparable with that of con ventional vehicles at a similar cost. Most EV batteries have limited energy storage capabili ties, permitting only relatively short driving distances before the batteries must be recharged. In 1991, under a coopera tive agreement with The U.S. Department of Energy (DOE), the United States Advanced Battery Consortium (USABC) initiated development of nickel- metal-hydride (NiMH) battery technology and established it as a prime mid-term candidate for use in EVs. DOE funding has been instru

228

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

229

ESnet Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ESnet Update ESnet Update Winter 2008 Joint Techs Workshop Joe Burrescia ESnet General Manager January 21, 2008 Energy Sciences Network Lawrence Berkeley National Laboratory Networking for the Future of Science 2 TWC SNLL YUCCA MT PNNL LIGO I N E E L LANL SNLA Allied Signal ARM KCP NOAA OSTI ORAU SRS JLAB PPPL Lab DC Offices MIT ANL BNL FNAL AMES N R E L LLNL GA DOE-ALB OSC GTN NNSA International (high speed) 10 Gb/s SDN core 10G/s IP core 2.5 Gb/s IP core MAN rings (≥ 10 G/s) Lab supplied links OC12 ATM (622 Mb/s) OC12 / GigEthernet OC3 (155 Mb/s) 45 Mb/s and less NNSA Sponsored (12) Joint Sponsored (3) Other Sponsored (NSF LIGO, NOAA) Laboratory Sponsored (6) 42 end user sites SINet (Japan) Russia (BINP) CA*net4 France GLORIAD (Russia, China) Korea (Kreonet2

230

ESS 2012 Peer Review - Advanced Sodium Battery - Joonho Koh, Materials & Systems Research  

Broader source: Energy.gov (indexed) [DOE]

Sodium Battery Sodium Battery Joonho Koh (jkoh@msrihome.com), Greg Tao (gtao@msrihome.com), Neill Weber, and Anil V. Virkar Materials & Systems Research, Inc., 5395 W 700 S, Salt Lake City, UT 84104 Company Introduction History  Founded in 1990 by Dr. Dinesh K. Shetty and Dr. Anil V. Virkar  Currently 11 employees including 5 PhDs  10,000 ft² research facility in Salt Lake City, Utah MSRI's Experience of Na Batteries Status of the Na Batteries Overall Project Description Goal Develop advanced Na battery technology for enhanced safety, reduced fabrication cost, and high-power performance Approach  Innovative cell design using stronger structural materials  Reduction of the fabrication cost using a simple and reliable processing technique

231

An Evaluation of the NaS Battery Storage Potential for Providing Regulation Service in California  

SciTech Connect (OSTI)

Sodium sulfur (NaS) batteries can provide energy storage, real-time dispatch, regulation, frequency response, and other essential services to the power grids. This study presents the technical characteristics, modeling approach, methodologies, and results for providing regulation services in the California Independent System Operator (CAISO) market. Two different scenarios were studied and compared: a scenario without intermittent renewable-energy resource penetration (base case) and a scenario with significant renewable-energy resource penetration (including wind) reaching 20% of CAISOs energy supply. In addition, breakeven cost analyses were developed for four cases. Based on the results of the technical and cost analyses, the opportunities for the NaS battery providing the regulation services are discussed, design improvements for the batterys physical characteristics are recommended, and modifications of the regulation signals sent to NaS batteries are proposed.

Lu, Ning; Weimar, Mark R.; Makarov, Yuri V.; Loutan, Clyde

2011-03-23T23:59:59.000Z

232

Waste Disposition Update by Christine Gelles  

Broader source: Energy.gov (indexed) [DOE]

Waste Disposition Update Waste Disposition Update Christine Gelles Associate Deputy Assistant Secretary for Waste Management (EM-30) EM SSAB Chairs Meeting Washington, DC 2 October 2012 www.em.doe.gov 2 o Waste Stream Highlights o DOE Transportation Update o Greater Than Class C (GTCC) Low Level Waste Environmental Impact Statement o Blue Ribbon Commission on America's Nuclear Future o Nuclear Regulatory Commission's LLW Regulatory Initiatives Discussion Topics www.em.doe.gov 3 Waste Stream Highlights www.em.doe.gov 4 o Within current budget outlook, it is especially critical that EM ensures safe, reliable and cost effective disposition paths exist. o The program's refocused organization and the detailed

233

Impact of PV forecasts uncertainty in batteries management in microgrids  

E-Print Network [OSTI]

production forecast algorithm is used in combination with a battery schedule optimisation algorithm. The size. On the other hand if forecasted high production events do not occur, the cost of de- optimisation Energies and Energy Systems Sophia Antipolis, France andrea.michiorri@mines-paristech.fr Abstract

Paris-Sud XI, Université de

234

Predictive Models of Li-ion Battery Lifetime (Presentation)  

SciTech Connect (OSTI)

Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

2014-09-01T23:59:59.000Z

235

Advanced Battery Manufacturing (VA)  

SciTech Connect (OSTI)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

236

Washington Update  

Broader source: Energy.gov (indexed) [DOE]

April 11, 2012 Federal Energy Management Program femp.energy.gov 2 1. Status of Federal Goals 2. Presidential Memo * Key provisions * Role of UESCs * Agency commitments 3. Meeting Memo's Goals * New Programs * Financing * Reporting and Resources 4. FEMP Update 5. Mark Your Calendar: GovEnergy 2012 Agenda Federal Energy Management Program femp.energy.gov 3 $169 $181 $291 $281 $335 $469 $1,081 $3,544 $2,565 $122 $54 $92 $70 $139 $110 $142 $64 $165 $429 $36 $123 $314 $166 $356 $457 $563 $369 $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 $3,500 $4,000 $4,500 2003 2004 2005 2006 2007 2008 2009 2010 2011 Millions Fiscal Year Direct Appropriations UESC ESPC $271 $505 $666 (ESPC Hiatus) $720 $640 $935 $1,681 $4,171 $3,100 Status of Federal Goals Federal Facilities: Investment in Energy Efficient Projects

237

Batteries, mobile phones & small electrical devices  

E-Print Network [OSTI]

at the ANU (eg. lead acid car batteries) send an email to recycle@anu.edu.au A bit of information about by batteries. Rechargeable batteries have been found to save resources, money and energy and therefore are a more environmentally friendly alternative to single use batteries. However rechargeable batteries

238

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

239

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

240

An updated comprehensive techno-economic analysis of algae biodiesel  

Science Journals Connector (OSTI)

Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.530.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.420.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality.

Sanjay Nagarajan; Siaw Kiang Chou; Shenyan Cao; Chen Wu; Zhi Zhou

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

cost | OpenEI  

Open Energy Info (EERE)

cost cost Dataset Summary Description The following data-set is for a benchmark residential home for all TMY3 locations across all utilities in the US. The data is indexed by utility service provider which is described by its "unique" EIA ID ( Source National Renewable Energy Laboratory Date Released April 05th, 2012 (2 years ago) Date Updated April 06th, 2012 (2 years ago) Keywords AC apartment CFL coffeemaker Computer cooling cost demand Dishwasher Dryer Furnace gas HVAC Incandescent Laptop load Microwave model NREL Residential television tmy3 URDB Data text/csv icon Residential Cost Data for Common Household Items (csv, 14.5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

242

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

243

Electricity Monthly Update  

Gasoline and Diesel Fuel Update (EIA)

Electricity Reports Electricity Reports Electricity Monthly Update With Data for October 2013 | Release Date: Dec. 20, 2013 | Next Release Date: Jan. 22, 2014 Previous Issues Issue: November 2013 October 2013 September 2013 August 2013 July 2013 June 2013 May 2013 April 2013 March 2013 February 2013 January 2013 December 2012 November 2012 Previous issues Format: html xls Go Highlights: October 2013 Thirty-one states saw the average cost of electricity increase by more than two percent, with fourteen states experiencing increases of at least five percent compared to a year ago. Texas (ERCOT) and the Midwest (MISO) experienced above average wholesale electricity prices for October due to unseasonable temperatures. The New York City (Transco Zone 6 NY) natural gas price was

244

Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services (Presentation)  

SciTech Connect (OSTI)

Battery electric vehicles (BEVs) could significantly reduce the nation's gasoline consumption and greenhouse gas emissions rates. However, both the upfront cost and the limited range of the vehicle are perceived to be deterrents to the widespread adoption of BEVs. A service provider approach to marketing BEVs, coupled with a battery swapping infrastructure deployment could address both issues and accelerate BEV adoption. This presentation examines customer selection, service usage statistics, service plan fees and driver economics. Our results show it is unlikely that a battery swapping service plan will be more cost-effective than ownership of a conventional vehicle. A battery swapping service plan may be a more cost-effective solution than a directly owned BEV for some single-vehicle, high-mileage consumers. However, other factors not considered in this analysis could decrease the viability of such a service.

Neubauer, J.; Pesaran, A.

2013-05-01T23:59:59.000Z

245

Vent construction for batteries  

SciTech Connect (OSTI)

A battery casing to be hermetically sealed is described the casing having main side walls with end walls bridging the end portions of the side walls, at least one of the end walls facing and being exposed to the battery interior, the improvement in vent means for the casing which ruptures when internal casing pressure exceeds a given value. The vent means include at least one vent-forming rib of a given length and width projecting outward from a portion of the end wall normally facing the battery interior, the rib being in a central band or segment of the one end wall and oriented so that the length of the rib is parallel to the band or segment; and the rib having formed therein a vent-forming groove which extends transversely of the length of the rib only part way substantially symmetrically along the transverse contour thereof, so that both ends of the groove are spaced from the base of the rib and the groove extends comparable distances on both sides of the top or center point of the rib contour.

Romero, A.

1986-07-22T23:59:59.000Z

246

Policy Flash 2014-37 Update to the Department of Energy Acquisition...  

Office of Environmental Management (EM)

7 Update to the Department of Energy Acquisition Guide Chapter 16.2, Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non-Management and Operating Contracts...

247

Process for Low Cost Domestic Production of LIB Cathode Materials  

Broader source: Energy.gov (indexed) [DOE]

Received 472K * FY10 Funding Expected 890K Barriers * Reduce the production cost of Cathode Material * Meet PHEV battery requirements for a 40 mile all-electric range *...

248

GHG Update/CAP Progress ReportGHG Update/CAP Progress Report 2010 GHG Update2010 GHG Update  

E-Print Network [OSTI]

GHG Update/CAP Progress ReportGHG Update/CAP Progress Report May 2010 #12;2010 GHG Update2010 GHG,434 2009 levels = 398,780 6.2% #12;2010 GHG Update - University2010 GHG Update University 400,000 328 for year 2.5 more Duke Forests purchased #12;2010 GHG Update - University2010 GHG Update University

Zhou, Pei

249

Federal Procurement of Energy-Efficient Products June 2012 Update |  

Broader source: Energy.gov (indexed) [DOE]

June 2012 Update June 2012 Update Federal Procurement of Energy-Efficient Products June 2012 Update October 22, 2013 - 11:20am Addthis Welcome to the fifth issue of Federal Energy-Efficient Product Procurement! This bi-monthly update helps Federal procurement officials, facility managers, and others remain up to date on events, training, technology, and changes to acquisition requirements. What do you think? Your feedback is very important to us. To subscribe, submit articles, suggest topics, or give us your feedback, contact Amanda Sahl. For more information about energy-efficient product procurement, visit femp.energy.gov/procurement In This Issue: Cost Calculator Updates Underway FEMP "Covered Products" Page Update ENERGY STAR Products Update New EPEAT Standards for TV and Imaging Equipment Ratings Move

250

Use Patterns of LED Flashlights in Kenya and a One-Year Cost Analysis of Flashlight Ownership  

E-Print Network [OSTI]

in Kenya, outpacing incandescent flashlights (Johnstone etbenefits relative to incandescent bulbs, and low-cost LEDsby dry cell batteries, incandescent flashlights powered by a

Tracy, Jennifer

2010-01-01T23:59:59.000Z

251

Nickel recovery aids battery development  

Science Journals Connector (OSTI)

GM is developing the zinc/nickel-oxide battery for the small commuter-type electric car that the company expects to produce in a few years. ...

1981-11-02T23:59:59.000Z

252

United States Advanced Battery Consortium  

Broader source: Energy.gov (indexed) [DOE]

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

253

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

254

Advanced battery modeling using neural networks  

E-Print Network [OSTI]

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

255

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ...

256

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

257

Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison  

SciTech Connect (OSTI)

This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. The analysis compares three different backup power technologies (diesel, battery, and fuel cell) operating in similar circumstances in four run time scenarios (8, 52, 72, and 176 hours).

Kurtz, J.; Saur, G.; Sprik, S.; Ainscough, C.

2014-09-01T23:59:59.000Z

258

Texas Tech University Energy Savings Program April 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through the SecondTexas Tech University Energy Savings Program April 2011 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. University Energy Use Energy units are converted to thousands of BTUs per

Gelfond, Michael

259

Texas Tech University Energy Savings Program April 2010 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For first twoTexas Tech University Energy Savings Program April 2010 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Zhuang, Yu

260

Texas Tech University Energy Savings Program July 2009 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For the firstTexas Tech University Energy Savings Program July 2009 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Zhuang, Yu

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Texas Tech University Energy Savings Program July 2010 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For first threeTexas Tech University Energy Savings Program July 2010 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Zhuang, Yu

262

Status and evaluation of hybrid electric vehicle batteries for short term applications. Final report  

SciTech Connect (OSTI)

The objective of this task is to compile information regarding batteries which could be use for electric cars or hybrid vehicles in the short term. More specifically, this study applies lead-acid batteries and nickel-cadmium battery technologies which are more developed than the advanced batteries which are presently being investigated under USABC contracts and therefore more accessible in production efficiency and economies of scale. Moreover, the development of these batteries has advanced the state-of-the-art not only in terms of performance and energy density but also in cost reduction. The survey of lead-acid battery development took the biggest part of the effort, since they are considered more apt to be used in the short-term. Companies pursuing the advancement of lead-acid batteries were not necessarily the major automobile battery manufacturers. Innovation is found more in small or new companies. Other battery systems for short-term are discussed in the last part of this report. We will review the various technologies investigated, their status and prognosis for success in the short term.

Himy, A. [Westinghouse Electric Co., Pittsburgh, PA (United States). Machinery Technology Div.

1995-07-01T23:59:59.000Z

263

Sandia National Laboratories: Evaluating Powerful Batteries for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

264

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

265

Batteries lose in game of thorns | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries lose in game of thorns Batteries lose in game of thorns Scientists see how and where disruptive structures form and cause voltage fading Images from EMSL's scanning...

266

Disordered Materials Hold Promise for Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

267

Hierarchically Structured Materials for Lithium Batteries. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles,...

268

Ford Electric Battery Group | Open Energy Information  

Open Energy Info (EERE)

Group Jump to: navigation, search Name: Ford Electric Battery Group Place: Dearborn, MI References: Ford Battery1 Information About Partnership with NREL Partnership with...

269

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

270

Advanced Battery Factory | Open Energy Information  

Open Energy Info (EERE)

Factory Jump to: navigation, search Name: Advanced Battery Factory Place: Shen Zhen City, Guangdong Province, China Product: Producers of lithium polymer batteries, established in...

271

Ovonic Battery Company Inc | Open Energy Information  

Open Energy Info (EERE)

Ovonic Battery Company Inc Place: Michigan Zip: 48309 Sector: Hydro, Hydrogen Product: Focused on commercializing its patented and proprietary NiMH battery technology through...

272

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

273

Coordination Chemistry in magnesium battery electrolytes: how...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

274

Upgrading the Vanadium Redox Battery | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upgrading the Vanadium Redox Battery Upgrading the Vanadium Redox Battery New electrolyte mix increases energy storage by 70 percent After developing a more effective...

275

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 7, SEPTEMBER 2012 2925 Battery Cell Identification and SOC Estimation Using  

E-Print Network [OSTI]

battery technology employs cell- or module-level voltage sensors, with high costs for sensors observability for battery cell subsystems. Control strategies, estimation algorithms, and their key properties for electric vehicles (including hybrid electric, plug-in hybrid, fuel cell, and solar vehicles), renewable

Mi, Chunting "Chris"

276

Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries  

E-Print Network [OSTI]

Ultrathin Spinel LiMn2O4 Nanowires as High Power Cathode Materials for Li-Ion Batteries Hyun materials as cathode in lithium ion batteries because of its intrinsic low-cost, environmental friendliness that enhances the contact between active material grains and electrolyte. In particular, LiMn2O4 nanorods

Cui, Yi

277

A review of nuclear batteries  

Science Journals Connector (OSTI)

Abstract This paper reviews recent efforts in the literature to miniaturize nuclear battery systems. The potential of a nuclear battery for longer shelf-life and higher energy density when compared with other modes of energy storage make them an attractive alternative to investigate. The performance of nuclear batteries is a function of the radioisotope(s), radiation transport properties and energy conversion transducers. The energy conversion mechanisms vary significantly between different nuclear battery types, where the radioisotope thermoelectric generator, or RTG, is typically considered a performance standard for all nuclear battery types. The energy conversion efficiency of non-thermal-type nuclear batteries requires that the two governing scale lengths of the system, the range of ionizing radiation and the size of the transducer, be well-matched. Natural mismatches between these two properties have been the limiting factor in the energy conversion efficiency of small-scale nuclear batteries. Power density is also a critical performance factor and is determined by the interface of the radioisotope to the transducer. Solid radioisotopes are typically coated on the transducer, forcing the cell power density to scale with the surface area (limiting power density). Methods which embed isotopes within the transducer allow the power density to scale with cell volume (maximizing power density). Other issues that are examined include the limitations of shelf-life due to radiation damage in the transducers and the supply of radioisotopes to sustain a commercial enterprise. This review of recent theoretical and experimental literature indicates that the physics of nuclear batteries do not currently support the objectives of miniaturization, high efficiency and high power density. Instead, the physics imply that nuclear batteries will be of moderate size and limited power density. The supply of radioisotopes is limited and cannot support large scale commercialization. Niche applications for nuclear batteries exist, and advances in materials science may enable the development of high-efficiency solid-state nuclear batteries in the near term.

Mark A. Prelas; Charles L. Weaver; Matthew L. Watermann; Eric D. Lukosi; Robert J. Schott; Denis A. Wisniewski

2014-01-01T23:59:59.000Z

278

Technology to Extend Battery Life Coming Soon | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology to Extend Battery Life Coming Soon Technology to Extend Battery Life Coming Soon Technology to Extend Battery Life Coming Soon December 7, 2009 - 9:46am Addthis Joshua DeLung What are the key facts? A firm in Albany, New York is developing a clean source of energy -- fuel cells -- for portable electronics. A cost-sharing award through the Recovery Acy will help MTI demonstrate a commercially viable, methanol fuel cell-powered charger for the consumer electronics market. Many Americans across the country rely on handheld devices each day to get their jobs done or stay in touch with friends and family, and now some companies are pushing technologies that power that hardware from concept to reality faster than ever. One such firm in Albany, N.Y., has developed a clean source of energy for portable electronics designed for anybody

279

Redox Flow Batteries, a Review  

SciTech Connect (OSTI)

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

280

Lithium batteries for pulse power  

SciTech Connect (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

282

MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT  

SciTech Connect (OSTI)

The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

R.E. Sweeney

2001-02-08T23:59:59.000Z

283

Definition: Battery | Open Energy Information  

Open Energy Info (EERE)

Battery Battery Jump to: navigation, search Dictionary.png Battery An energy storage device comprised of two or more electrochemical cells enclosed in a container and electrically interconnected in an appropriate series/parallel arrangement to provide the required operating voltage and current levels. Under common usage, the term battery also applies to a single cell if it constitutes the entire electrochemical storage system.[1] View on Wikipedia Wikipedia Definition Also Known As Electrochemical cell Related Terms Fuel cell, energy, operating voltage, smart grid References ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#B Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Battery&oldid=502543

284

Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching  

Broader source: Energy.gov (indexed) [DOE]

8.20.10] -- Turning Trash Bags into Battery Anodes and 8.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome August 20, 2010 - 5:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What are the key facts? An Argonne Scholar has figured out a way to convert grocery bags into carbon nanotubes that can be used as components for lithium-ion batteries. We have about three pounds of bacteria living in our gut -- most of which is helpful for our immune system development and metabolism. Scientists at Ames Laboratory are making batteries that are "greener" and more cost-efficient by using rare earth elements -- neodymium

285

NREL: Energy Storage - NREL Battery Calorimeters Win R&D 100 Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Calorimeters Win R&D 100 Award Battery Calorimeters Win R&D 100 Award The NREL Energy Storage team Dirk Long, John Ireland, Matthew Keyser, Ahmad Pesaran, and Mark Mihalic of NREL's Energy Storage Team. Photo by Amy Glickson, NREL 27242 August 28, 2013 Isothermal Battery Calorimeters (IBCs) developed by the National Renewable Energy Laboratory (NREL) and NETZSCH North America are among the winners of the 2013 R&D 100 Awards, known in the research and development community as "the Oscars of Innovation." The IBCs are the only calorimeters in the world capable of performing the precise thermal measurements needed to make safer, longer-lasting, and more cost-effective lithium-ion batteries. Understanding and controlling temperature is necessary for the successful operation of battery packs in electric-drive vehicles (EDVs). The IBCs are

286

INDEPENDENT COST REVIEW (ICR)  

Broader source: Energy.gov (indexed) [DOE]

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

287

INDEPENDENT COST REVIEW (ICR)  

Broader source: Energy.gov (indexed) [DOE]

COST REVIEW (ICR) COST REVIEW (ICR) and INDEPENDENT COST ESTIMATE (ICE) STANDARD OPERATING PROCEDURES (SOP) Revision 1 DEPARTMENT OF ENERGY (DOE) OFFICE OF ACQUISITION AND PROJECT MANAGEMENT (OAPM) September 2013 SUMMARY OF UPDATES: This revision includes the following significant changes since the December 2011 SOP release: 1. The original SOP discussed how an EIR and an ICE could be executed in tandem, but since we are no longer advocating this approach the ICE process has been completely separated from the EIR process and references to EIRs have been removed. 2. Section 1 adds a reference to Public Law 2055 reflecting that we must now, as a matter of law, perform an ICE at CD-3 for projects with a TPC over $100 million. 3. Section 2 notes that DOE Programs must now pay for ICRs and ICEs and reflects that PARS II must be

288

News and Updates  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News and Updates Cleanroom Training - February 15-17th NEWS: Article published in Louisinana Technology Guide...

289

Cost Containment  

Science Journals Connector (OSTI)

Cost containment in health care involves awide ... , the growth rate of expenditure or certain costs of health care services. These measures include ... patient education, etc. The reasons for increased cost ...

2008-01-01T23:59:59.000Z

290

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

291

Battery Thermal Management System Design Modeling (Presentation)  

SciTech Connect (OSTI)

Presents the objectives and motivations for a battery thermal management vehicle system design study.

Kim, G-H.; Pesaran, A.

2006-10-01T23:59:59.000Z

292

Paracoccidioidomycosis: an update.  

Science Journals Connector (OSTI)

...advisable to culture repeated samples in a battery of selective and non- selective media...evaluated with the aim of amplifying the battery of serodiagnostic tests capable of demonstrating...reported in other fungal diseases caused by thermal dimorphic fungal patho- gens, e.g...

E Brummer; E Castaneda; A Restrepo

1993-04-01T23:59:59.000Z

293

Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

Franois Martel; Sousso Kelouwani; Yves Dub; Kodjo Agbossou

2015-01-01T23:59:59.000Z

294

The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development  

E-Print Network [OSTI]

The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

Crabtree, George

2014-01-01T23:59:59.000Z

295

Cost Recovery | OpenEI Community  

Open Energy Info (EERE)

Cost Recovery Cost Recovery Home Kyoung's picture Submitted by Kyoung(155) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White Papers On June 26th, we held the 3rd Quarter GRR Stakeholder Update at the Grand Sierra Resort in Reno, NV. The meeting was well-attended with over 40 attendees, including in-person and webinar attendance. Thanks to all who attended! Files: application/pdf icon Presentation: 3rd Quarterly Stakeholder Update Meeting application/vnd.openxmlformats-officedocument.presentationml.presentation icon Mock-up: GRR Permitting Wizard Interface Kyoung's picture Submitted by Kyoung(155)

296

Cost Mechanisms | OpenEI Community  

Open Energy Info (EERE)

Cost Mechanisms Cost Mechanisms Home Kyoung's picture Submitted by Kyoung(155) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White Papers On June 26th, we held the 3rd Quarter GRR Stakeholder Update at the Grand Sierra Resort in Reno, NV. The meeting was well-attended with over 40 attendees, including in-person and webinar attendance. Thanks to all who attended! Files: application/pdf icon Presentation: 3rd Quarterly Stakeholder Update Meeting application/vnd.openxmlformats-officedocument.presentationml.presentation icon Mock-up: GRR Permitting Wizard Interface Kyoung's picture Submitted by Kyoung(155)

297

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

298

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

299

Batteries, from Cradle to Grave  

Science Journals Connector (OSTI)

As battery producers and vendors, legislators, and the consumer population become aware of the consequences of inappropriate disposal of batteries to landfill sites instead of responsible chemical neutralization and reuse, the topic of battery recycling has begun to appear on the environmental agenda. ... Significant advances are also being made in fuel-cell technology with several companies involved in the design and manufacture of high-performance fuel cells adapted to the portable electronics, back-up energy, and traction markets (37-41). ... These hydrogen or methanol-fuelled cells draw their chemical energy from a quick-fill reservoir outside the cell (or stack) structure. ...

Michael J. Smith; Fiona M. Gray

2010-01-12T23:59:59.000Z

300

Battery SEAB Presentation  

Broader source: Energy.gov (indexed) [DOE]

The Parker Ranch installation in Hawaii The Parker Ranch installation in Hawaii US Department of Energy Vehicle Battery R&D: Current Scope and Future Directions January 31, 2012 * David Howell (EERE/VTP) * Pat Davis (EERE/VTP) * Dane Boysen (ARPA-E) * Dave Danielson (ARPA-E) * Linda Horton (BES) * John Vetrano (BES) 2 | Energy Efficiency and Renewable Energy eere.energy.gov U.S. Oil-dependence is Driven by Transportation Source: DOE/EIA Annual Energy Review, April 2010 Transportation Residential and Commercial 94% Oil-dependent Industry 41% Oil-dependent 17% Oil-dependent 72% 22% 1% 5% U.S. Oil Consumption by End-use Sector 19.1 Million Barrels per Day (2010) Electric Power 1% Oil-dependent * On-road vehicles are responsible for ~80% of transportation oil usage 3 | Energy Efficiency and Renewable Energy eere.energy.gov

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Low Cost, High Performance, 50-year Electrode  

Broader source: Energy.gov (indexed) [DOE]

this ARPA-E project, Primus Power will develop an this ARPA-E project, Primus Power will develop an extremely durable, highly active, conductive, and inexpensive electrode for flow batteries. Flow batteries offer one of the most exciting opportunities for affordable grid storage, however electrodes are costly and are the single largest cost component in a well integrated design. Grid storage can yield numerous benefits in utility and customer- owned applications:  renewable firming  peak load reduction  load shifting  capital deferral  frequency regulation By incorporating volume production practices from the chlorine, filter media, and electroplating industries, Primus Power will effectively reduce electrode costs to exceed GRIDS cost targets while providing the durability essential for widespread grid-scale adoption.

302

Reverse logistics network design for spent batteries: a simulation study  

Science Journals Connector (OSTI)

End of life (EOL) product management, which encompasses reuse, remanufacturing and materials recycling, requires a structured reverse logistic network in order to collect products efficiently at the end of their life cycle. This work describes modelling and simulation of reverse logistics network design for collection of spent batteries for Sangrur District of North India. To compare different order assignment, a simulation model of forward and reverse logistics networks has been developed. Several simulation experiments have been designed to analyse impact of the system design factors on the operational performance of the reverse logistics system. The simulation results show that the model presented in this paper calculates the battery collection cost, transfer time, transfer cost, and resource utilisation in a predictable manner. Moreover, it provides a tool to understand how the system behaves by carrying out 'what-if' assessments and to identify which parameters are most important for more detailed analysis.

Arvind Jayant; Pardeep Gupta; S.K. Garg

2014-01-01T23:59:59.000Z

303

Hunan Copower EV Battery Co Ltd | Open Energy Information  

Open Energy Info (EERE)

EV Battery Co Ltd Place: Hunan Province, China Sector: Vehicles Product: Producer of batteries and battery-related products for electric vehicles. References: Hunan Copower EV...

304

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

305

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

306

Developing Next-Gen Batteries With Help From NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

307

Making Li-air batteries rechargeable: material challenges. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

308

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

309

Autonomic Shutdown of Lithium-Ion Batteries Using Thermoresponsive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shutdown of Li-ion batteries is demonstrated by incorporating thermoresponsive polyethylene (PE) microspheres (ca. 4 m) onto battery anodes. When the internal battery...

310

Sandia National Laboratories: Due Diligence on Lead Acid Battery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US...

311

EV Everywhere Battery Workshop Introduction | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Workshop Introduction EV Everywhere Battery Workshop Introduction Presentation given at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the...

312

Phylion Battery | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Jiangsu-province-based producer of high-power high-energy Li-ion batteries for such uses as electric bicycles, hybrid vehicles, lighting, medical equipment,...

313

Battery Components, Active Materials for  

Science Journals Connector (OSTI)

A battery consists of one or more electrochemical cells that convert into electrically energy the chemical energy stored in two separated electrodes, the anode and the cathode. Inside a cell, the two electrodes ....

J. B. Goodenough

2013-01-01T23:59:59.000Z

314

Polymer Electrolyte and Polymer Battery  

Science Journals Connector (OSTI)

Generally the polymer electrolyte of the polymer battery is classified into two kinds of the electrolyte: One is a dry-type electrolyte composed of a polymer matrix and...21.1. Fig....

Toshiyuki Osawa; Michiyuki Kono

2009-01-01T23:59:59.000Z

315

Batteries using molten salt electrolyte  

DOE Patents [OSTI]

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

316

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries  

Broader source: Energy.gov [DOE]

Partnered with NETZSCH, the National Renewable Energy Laboratory (NREL) developed an Isothermal Battery Calorimeter (IBC) used to quantify heat flow in battery cells and modules.

317

Iron Edison Battery Company | Open Energy Information  

Open Energy Info (EERE)

Iron Edison Battery Company Iron Edison Battery Company Jump to: navigation, search Logo: Iron Edison Battery Company Name Iron Edison Battery Company Place Lakewood, Colorado Sector Bioenergy, Carbon, Efficiency, Hydro, Renewable Energy, Solar, Wind energy Product Nickel Iron (Ni-Fe) battery systems Year founded 2011 Number of employees 1-10 Phone number 202-681-4766 Website http://ironedison.com Region Rockies Area References Iron Edison Battery Company[1] Nickel Iron Battery Specifications[2] About the company and the owners[3] Nickel Iron Battery Association[4] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Iron Edison Battery Company is a company based in Lakewood, Colorado. Iron Edison is redefining off-grid energy storage using advanced

318

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

319

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mapping Particle Charges in Battery Electrodes Print Mapping Particle Charges in Battery Electrodes Print The deceivingly simple appearance of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or discharged lithium ions move from one electrode to another, filling and unfilling individual, variably-sized battery particles. The rates of these processes determine how much power a battery can deliver. Despite the technological innovations and widespread use of batteries, the mechanism behind charging and discharging particles remains largely a mystery, partly because it is difficult to visualize the motion of lithium ions for a significant number of battery particles at nanoscale resolution.

320

costs | OpenEI  

Open Energy Info (EERE)

7 7 Varnish cache server costs Dataset Summary Description This dataset represents a historical repository of all the numerical data from the smartgrid.gov website condensed into spreadsheets to enable analysis of the data. Below are a couple of things worth noting: Source Smartgrid.gov Date Released March 04th, 2013 (11 months ago) Date Updated March 04th, 2013 (11 months ago) Keywords AMI costs distribution smart grid transmission Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 4Q12 (xlsx, 112.1 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 3Q12 (xlsx, 107.9 KiB) application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon SmartGrid.gov Quarterly Data Summary 2Q12 (xlsx, 111.9 KiB)

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells  

SciTech Connect (OSTI)

Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption. This analysis employs real-world vocational data and near-term economic assumptions to (1) identify optimal component configurations for minimizing lifecycle costs, (2) benchmark economic performance relative to both battery electric and conventional powertrains, and (3) understand how the optimal design and its competitiveness change with respect to duty cycle and economic climate. It is found that small fuel-cell power units provide extended range at significantly lower capital and lifecycle costs than additional battery capacity alone. And while fuel-cell range-extended vehicles are not deemed economically competitive with conventional vehicles given present-day economic conditions, this paper identifies potential future scenarios where cost equivalency is achieved.

Wood, E.; Wang, L.; Gonder, J.; Ulsh, M.

2013-10-01T23:59:59.000Z

322

Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison  

Broader source: Energy.gov [DOE]

This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems.

323

Cost Estimator  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as a senior cost and schedule estimator who is responsible for preparing life-cycle cost and schedule estimates and analyses associated with the...

324

Operating Costs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This chapter is focused on capital costs for conventional construction and environmental restoration and waste management projects and examines operating cost estimates to verify that all elements of the project have been considered and properly estimated.

1997-03-28T23:59:59.000Z

325

Low Cost Components: Advanced High Power & High Energy Battery Materials  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

326

Lower Cost, Nanoporous Block Copolymer Battery Separator - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

means.Description The Berkeley Lab team used a wet process with polystyrene-block-polyethylene-block-polystyrene (SES) copolymer mixed with an amorphous polystyrene polymer (PS)....

327

Low Cost Components: Screening of Advanced Battery Materials  

Broader source: Energy.gov [DOE]

Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

328

Energy Management and Cost Analysis in Residential Houses using Batteries  

E-Print Network [OSTI]

consumption constitutes 38% of the total energy consumption in the US, with millions of individual customers}@ucsd.edu Abstract--Residential energy consumption shows significant diurnal patterns that can be leveraged by energy, like smart metering, allow residential energy consumption to be monitored and managed more effectively

Simunic, Tajana

329

Clean Coal Technology Programs: Program Update 2009  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2009 is to provide an updated status of the U.S. Department of Energy (DOE) commercial-scale demonstrations of clean coal technologies (CCT). These demonstrations have been performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII), and the Clean Coal Power Initiative (CCPI). Program Update 2009 provides: (1) a discussion of the role of clean coal technology demonstrations in improving the nations energy security and reliability, while protecting the environment using the nations most abundant energy resourcecoal; (2) a summary of the funding and costs of the demonstrations; and (3) an overview of the technologies being demonstrated, along with fact sheets for projects that are active, recently completed, or recently discontinued.

None

2009-10-01T23:59:59.000Z

330

Clean coal technology programs: program update 2006  

SciTech Connect (OSTI)

The purpose of the Clean Coal Technology Programs: Program Update 2006 is to provide an updated status of the DOE commercial-scale demonstrations of clean coal technologies (CCTs). These demonstrations are performed under the Clean Coal Technology Demonstration Program (CCTDP), the Power Plant Improvement Initiative (PPII) and the Clean Coal Power Initiative (CCPI). Program Update 2006 provides 1) a discussion of the role of clean coal technology demonstrations in improving the nation's energy security and reliability, while protecting the environment using the nation's most abundant energy resource - coal; 2) a summary of the funding and costs of the demonstrations; and 3) an overview of the technologies being demonstrated, with fact sheets for demonstration projects that are active, recently completed, withdrawn or ended, including status as of June 30 2006. 4 apps.

NONE

2006-09-15T23:59:59.000Z

331

Navy Technology Evaluation Update  

Broader source: Energy.gov [DOE]

Presentation covers the Navy Technology Evaluation update at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

332

Directives Quarterly Updates  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Listings of new Justification Memoranda and new or revised Directives that have been posted to the DOE Directives, Delegations, and Requirements Portal. Updated quarterly.

333

Electricity Monthly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Update November 28, 2012 Map of Electric System Selected for Daily Peak Demand was replaced with the correct map showing Selected Wholesale Electricity and Natural Gas Locations....

334

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S....

335

Plans, Updates, Regulatory Documents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2010 Target Action Level (TAL) Exceedance Report 2011 Updates on Permit Compliance March 7, 2013, NPDES Permit No. NM0030759 - Request for Extenstion to Submit Renewal Application...

336

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for September 2014 | Release Date: Nov. 25, 2014 | Next Release Date: Dec. 23, 2014 Previous Issues Issue:...

337

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for October 2014 | Release Date: Dec. 23, 2014 | Next Release Date: Jan. 26, 2015 Previous Issues Issue:...

338

Skye, Schell, Washington Update  

Broader source: Energy.gov (indexed) [DOE]

Updates in the Program 13 qualified ESCOs under GSA Schedule 84 * Four Small Business vendors Expanded ECMs to solar (PV) and related HVAC equipment ...

339

Natural Gas Weekly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

natural gas production output. Rigs Natural Gas Transportation Update Tennessee Gas Pipeline Company yesterday (August 4) said it is mobilizing equipment and manpower for...

340

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

See all Electricity Reports Electricity Monthly Update With Data for August 2014 | Release Date: Oct. 24, 2014 | Next Release Date: Nov. 24, 2014 Previous Issues Issue: October...

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Foodborne Illness Cost Calculator | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Foodborne Illness Cost Calculator Foodborne Illness Cost Calculator Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Foodborne Illness Cost Calculator Dataset Summary Description The calculator provides information on the assumptions behind foodborne illness cost estimates and gives you a chance to make your own assumptions and calculate your own cost estimates. This interactive web-based tool allows users to estimate the cost of illness due to specific foodborne pathogens. The updated ERS cost estimate for Shiga-toxin producing E. coli O157 (STEC O157) was added to the Calculator in spring, 2008. Calculator users can now review and change the assumptions behind the ERS cost estimates for either STEC O157 or Salmonella. The assumptions that can be modified include the annual number of cases, the distribution of cases by severity, the use or costs of medical care, the amount or value of time lost from work, the costs of premature death, and the disutility costs for nonfatal cases. Users can also update the cost estimate for inflation for any year from 1997 to 2007.

342

Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

2013-01-01T23:59:59.000Z

343

Advanced Materials for Sodium-Beta Alumina Batteries: Status, Challenges and Perspectives  

SciTech Connect (OSTI)

The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a ?"-Al2O3 solid electrolyte at elevated temperatures (typically 300~350C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement.

Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

2010-05-01T23:59:59.000Z

344

Web browser security update effectiveness  

Science Journals Connector (OSTI)

We analyze the effectiveness of different Web browser update mechanisms on various operating systems; from Google Chrome's silent update mechanism to Opera's update requiring a full re-installation. We use anonymized logs from Google's world wide distributed ...

Thomas Duebendorfer; Stefan Frei

2009-09-01T23:59:59.000Z

345

4/6/2014 Micro Windmill Recharges Phone Batteries | Solar Feeds http://www.solarfeeds.com/micro-windmill-recharges-phone-batteries/ 1/3  

E-Print Network [OSTI]

Hoff Africa: Set for Solar Revolution Power Food by Sony In Focus: FIA Formula E Artificial Opportunity? In Focus: Reducing Business Energy Costs Vermont Raises Support for Solar Can Solar Save Brazil4/6/2014 Micro Windmill Recharges Phone Batteries | Solar Feeds http

Chiao, Jung-Chih

346

Cost Shifting  

Science Journals Connector (OSTI)

Abstract Cost shifting exists when a provider raises prices for one set of buyers because it has lowered prices for some other buyer. In theory, cost shifting can take place only if providers have unexploited market power. The empirical evidence on the extent of cost shifting is mixed. Taken as a whole, the evidence does not support the claims that cost shifting is a large and pervasive feature of the US health-care markets. At most, one can argue that perhaps one-fifth of Medicare payment reductions have been passed on to private payers. The majority of the rigorous studies, however, have found no evidence of cost shifting.

M.A. Morrisey

2014-01-01T23:59:59.000Z

347

Horizon Batteries formerly Electrosource | Open Energy Information  

Open Energy Info (EERE)

Batteries formerly Electrosource Batteries formerly Electrosource Jump to: navigation, search Name Horizon Batteries (formerly Electrosource) Place Texas Sector Vehicles Product Manufacturer of high-power, light-weight batteries for use in electric and hybrid-electric vehicles, engine-starting and telecommunication stand-by power applications. References Horizon Batteries (formerly Electrosource)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Horizon Batteries (formerly Electrosource) is a company located in Texas . References ↑ "Horizon Batteries (formerly Electrosource)" Retrieved from "http://en.openei.org/w/index.php?title=Horizon_Batteries_formerly_Electrosource&oldid=346600

348

Electrolyte Model Helps Researchers Develop Better Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

349

'Thirsty' Metals Key to Longer Battery Lifetimes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked...

350

A User Programmable Battery Charging System  

E-Print Network [OSTI]

, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system...

Amanor-Boadu, Judy M

2013-05-07T23:59:59.000Z

351

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

352

Molten Salt Batteries and Fuel Cells  

Science Journals Connector (OSTI)

This chapter describes recent work on batteries and fuel cells using molten salt electrolytes. This entails a comparison with other batteries and fuel cells utilizing aqueous and organic electrolytes; for...(1,2)

D. A. J. Swinkels

1971-01-01T23:59:59.000Z

353

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

354

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

355

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale Energy Storage - Frank Delnick, SNL  

Broader source: Energy.gov (indexed) [DOE]

US DOE Energy Storage Systems Research Program US DOE Energy Storage Systems Research Program Peer Review, Washington, DC Sept. 26-28, 2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman Nitrogen/Oxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources Technology Group Sandia National Laboratories Albuquerque, NM SAND2012-7881P N 2 /O 2 Battery Project Overview  Air/Air battery.  N 2 electrochemistry enables the redefinition of a gas (diffusion) electrode and the three phase interface.  Operated as redox flow battery.  Provide a very high energy density, very low cost, environmentally benign electrochemical platform for load leveling and for grid-integrated storage of energy generated by wind, solar and other sustainable but intermittent sources.

356

New Battery Design Could Help Solar and Wind Power the Grid | Department of  

Broader source: Energy.gov (indexed) [DOE]

Battery Design Could Help Solar and Wind Power the Grid Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar and Wind Power the Grid April 24, 2013 - 4:20pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life "flow" battery that could enable solar and wind energy to become major suppliers to the electrical grid. The research, led by Yi Cui, a Stanford associate professor and member of the Stanford Institute for Materials and Energy Sciences, is a product of the new Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub. Led by Argonne National Laboratory, with SLAC as major partner, JCESR is one of five such Hubs created by the Department to

357

Subscribe to Geothermal Technologies Office Updates | Department...  

Energy Savers [EERE]

Subscribe to Geothermal Technologies Office Updates Subscribe to Geothermal Technologies Office Updates...

358

Electric Turbo Compounding Technology Update  

Broader source: Energy.gov (indexed) [DOE]

Turbo Compounding Technology Update Electric Turbo Compounding Technology Update 15 August, 2007 Carl Vuk 15 August, 2007 Carl Vuk Electric Turbo Compounding Highlights Electric...

359

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

360

Battery Thermal Management System Design Modeling  

SciTech Connect (OSTI)

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NEUP Update- January 2014  

Broader source: Energy.gov [DOE]

The newsletter features a recent meeting between Dr. Pete Lyons and current fellowship awardees, a highlight of Rita Patel, a FY 2012 fellowship recipient, and an update on a Fuel Cycle project studying high temperature sorption behaviors, led by Brian Powell at Clemson, along with other program updates.

362

Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

363

Cost Analysis of Fuel Cell Systems for Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System Discussion Fuel Cell Tech Team FreedomCar Detroit. MI October 20, 2004 TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Ref D0006 SFAA No. DE-SCO2- 98EE50526 Topic 1 Subtopic 1C Agenda EC_2004 10 20 FC Tech Team Presentation 1 1 Project Overview 2 Compressed Hydrogen Storage Cost 3 2004 System Cost Update 4 Appendix Project Overview Approach EC_2004 10 20 FC Tech Team Presentation 2 In our final year of the project, we assessed the cost of compressed hydrogen storage and updated the overall system cost projection. Task 1: PEMFC System Technology Synopsis Task 2: Develop Cost Model and Baseline Estimates Task 3: Identify Opportunities for System Cost Reduction Tasks 4, 5, 6 & 7: Annual Updates

364

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

365

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

366

Wearable Textile Battery Rechargeable by Solar Energy  

Science Journals Connector (OSTI)

Wearable Textile Battery Rechargeable by Solar Energy ... Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities. ... Other groups(17-20) have also developed flexible conductive substrates by engaging carbon nanomaterials, such as graphene paper, for demonstration of similar wearable energy storage devices. ...

Yong-Hee Lee; Joo-Seong Kim; Jonghyeon Noh; Inhwa Lee; Hyeong Jun Kim; Sunghun Choi; Jeongmin Seo; Seokwoo Jeon; Taek-Soo Kim; Jung-Yong Lee; Jang Wook Choi

2013-10-28T23:59:59.000Z

367

Microbial battery for efficient energy recovery  

Science Journals Connector (OSTI)

...used for decades in batteries (19). This couple...condition in Ag 2 O/Ag batteries, the overpotential...or carbon nanotube/graphene-coated macroporous substrate, such...silver oxide-zinc batteries . Ind Eng Chem Prod Res Dev...23 Xie X ( 2012 ) Graphene-sponge as high-performance...

Xing Xie; Meng Ye; Po-Chun Hsu; Nian Liu; Craig S. Criddle; Yi Cui

2013-01-01T23:59:59.000Z

368

Integrated Modeling for Intelligent Battery Thermal Management  

Science Journals Connector (OSTI)

Effective thermal management is crucial to the optimal operation of lithium ion batteries and its health management. However, the thermal behaviors of batteries are governed by complex chemical process whose parameters will degrade over time and different ... Keywords: integrated modeling, distributed parameter system, battery thermal management, intelligent learning

Zhen Liu; Han-Xiong Li

2013-10-01T23:59:59.000Z

369

Electrothermal Analysis of Lithium Ion Batteries  

SciTech Connect (OSTI)

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

370

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

371

WINDOW 5 Glass Library Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WINDOW 6 or 7 Glass Library Update WINDOW 6 or 7 Glass Library Update Last update:12/09/13 07:26 PM Automatic IGDB Update Feature in WINDOW 6 and 7 The latest versions of WINDOW 6 and 7 have an automatic IGDB database update function in the Glass Library. When you first open the program, it checks to see if there is an IGDB version later than what you already have installed, and will notify you if there is an update. Then you can download and install the IGDB database, and click on the Update IGDB button in the Glass Library in order to start the automatic update. For older versions of WINDOW 6 and 7 without the automatic IGDB update function bullet How to Check the Current WINDOW5 IGDB Version bullet Updating the Glass Library bullet Problem Updating the Glass Library bullet Discontinued Records or Reused NFRC IDs

372

PV output smoothing using a battery and natural gas engine-generator.  

SciTech Connect (OSTI)

In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

Johnson, Jay; Ellis, Abraham; Denda, Atsushi [Shimizu Corporation; Morino, Kimio [Shimizu Corporation; Shinji, Takao [Tokyo Gas Co., Ltd.; Ogata, Takao [Tokyo Gas Co., Ltd.; Tadokoro, Masayuki [Tokyo Gas Co., Ltd.

2013-02-01T23:59:59.000Z

373

cost savings  

National Nuclear Security Administration (NNSA)

reduced the amount of time involved in the annual chemical inventory for a cost savings of 18,282. Other presentations covered SRNS' award-winning employee suggestion...

374

BPA's Costs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BPAsCosts Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects & Initiatives Finance & Rates...

375

Fact Sheet: Sodium-Ion Batteries for Grid-Level Applications (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

Aquion Energy, Inc. Aquion Energy, Inc. American Recovery and Reinvestment Act (ARRA) Sodium-Ion Batteries for Grid-Level Applications Demonstrating low-cost, grid-scale, ambient temperature sodium-ion batteries In June 2012, Aquion Energy, Inc. completed the testing and demonstration requirements for the U.S. Department of Energy's program with its low-cost, grid-scale, ambient temperature Aqueous Hybrid Ion (AHI) energy storage device. During the three-year project, Aquion manufactured hundreds of batteries and assemble them into high-voltage, grid-scale systems. This project helped them move their aqueous electrochemical energy storage device from bench-scale testing to pilot-scale manufacturing. The testing successfully demonstrated a grid-connected, high voltage (>1,000 V), 13.5 kWh system with a 4-hour discharge.

376

Advanced batteries for electric vehicle applications  

SciTech Connect (OSTI)

A technology assessment is given for electric batteries with potential for use in electric powered vehicles. Parameters considered include: specific energy, specific power, energy density, power density, cycle life, service life, recharge time, and selling price. Near term batteries include: nickel/cadmium and lead-acid batteries. Mid term batteries include: sodium/sulfur, sodium/nickel chloride, nickel/metal hydride, zinc/air, zinc/bromine, and nickel/iron systems. Long term batteries include: lithium/iron disulfide and lithium- polymer systems. Performance and life testing data for these systems are discussed. (GHH)

Henriksen, G.L.

1993-08-01T23:59:59.000Z

377

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

378

The Science of Battery Degradation.  

SciTech Connect (OSTI)

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

379

Vehicle Battery Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Battery Basics Vehicle Battery Basics Vehicle Battery Basics November 22, 2013 - 1:58pm Addthis Batteries are essential for electric drive technologies such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (AEVs). What is a Battery? A battery is a device that stores chemical energy and converts it on demand into electrical energy. It carries out this process through an electrochemical reaction, which is a chemical reaction involving the transfer of electrons. Batteries have three main parts, each of which plays a different role in the electrochemical reaction: the anode, cathode, and electrolyte. The anode is the "fuel" electrode (or "negative" part), which gives up electrons to the external circuit to create a flow of electrons, otherwise

380

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Promising Magnesium Battery Research Promising Magnesium Battery Research at ALS Promising Magnesium Battery Research at ALS Print Wednesday, 23 January 2013 16:59 toyota battery a) Cross-section of the in situ electrochemical/XAS cell with annotations. b) Drawing and c) photograph of the assembled cell. Alternatives to the current lithium-ion-based car batteries are at the forefront of the automotive industry's research agenda-manufacturers want to build cars with longer battery life, and to do that they're going to have to find new solutions. One promising battery material is magnesium (Mg)-it is more dense than lithium, it is safer, and the magnesium ion carries a two-electron charge, giving it potential as a more efficient energy source. Magnesium has a high volumetric capacity, which could mean

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SECONDARY BATTERIES LITHIUM RECHARGEABLE SYSTEMS | Overview  

Science Journals Connector (OSTI)

Rechargeable lithium batteries have conquered the markets for portable consumer electronics and, recently, for electric vehicles. Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E=3.045V), provides very high energy and power densities in batteries. As lithium metal reacts violently with water and can ignite into flame, modern lithium-ion batteries use carbon negative electrode and lithium metal oxide positive electrode. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This article outlines energy storage in lithium batteries, basic cell chemistry, positive electrode materials, negative electrode materials, electrolytes, and state-of-charge (SoC) monitoring.

P. Kurzweil; K. Brandt

2009-01-01T23:59:59.000Z

382

On the comparison and the complementarity of batteries and fuel cells for electric driving  

Science Journals Connector (OSTI)

Abstract This paper considers different current and emerging power train technologies (ICE, BEV, HEV, FCEV and FC-RE) and provides a comparison within a techno-economic framework, especially for the architectures of range-extender power trains. The economic benefits in terms of Total Cost of Ownership (TCO) are based on forecasts for the major TCO-influencing parameters up to 2030: electric driving distances, energy (fuel, electricity, hydrogen) prices, batteries and fuel cell costs. The model takes into account functional parameters such as the battery range as well as daily trip segmentation statistics. The \\{TCOs\\} of all the vehicles become similar in 2030, given a 200km battery range for BEVs. \\{BEVs\\} are profitable for yearly mileages of 30,000km and over, and for higher battery ranges. The competitiveness of \\{FCEVs\\} is examined through the H2 target price at the pump. There is a very significant effect of the fuel cell cost on the TCO. A FCEV with a fuel cell cost of 40/kW will be competitive with a similar ICE car for a 1.75/l fuel cost and ca. 7/kg hydrogen cost. This depends too to a great extent on possible ICE cars' CO2 taxes. As regard the FC-RE electric car, the hydrogen target price at the pump is noticeably higher (ca 10/Kg). FC-RE cars \\{TCOs\\} are strongly affected by the FC power, the discount rate chosen and the yearly mileage. Moreover, it therefore seems reasonable to confine FC-RE battery ranges in the region of 60km.

Alain Le Duigou; Aimen Smatti

2014-01-01T23:59:59.000Z

383

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network [OSTI]

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

384

Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries  

SciTech Connect (OSTI)

BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Todays EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Air batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.

None

2010-08-01T23:59:59.000Z

385

A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems  

SciTech Connect (OSTI)

This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

Onar, Omer C [ORNL

2012-01-01T23:59:59.000Z

386

New Battery Design Could Help Solar and Wind Power the Grid  

Broader source: Energy.gov [DOE]

Researchers from the U.S. Department of Energys (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life flow battery that could enable solar and wind energy to become major suppliers to the electrical grid.

387

Update to the Fissile Materials Disposition program SST/SGT transportation estimation  

SciTech Connect (OSTI)

This report is an update to ``Fissile Materials Disposition Program SST/SGT Transportation Estimation,'' SAND98-8244, June 1998. The Department of Energy Office of Fissile Materials Disposition requested this update as a basis for providing the public with an updated estimation of the number of transportation loads, load miles, and costs associated with the preferred alternative in the Surplus Plutonium Disposition Final Environmental Impact Statement (EIS).

John Didlake

1999-11-15T23:59:59.000Z

388

Power Purchase Agreements Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FEDERAL ENERGY MANAGEMENT PROGRAM FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov Federal Utility Partnership Working Group Meeting April 20-21 in Portland, Oregon Power Purchase Agreement Update April 21, 2011 Chandra Shah chandra.shah@nrel.gov 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov Overview * Power Purchase Agreement (PPA) Template * PPA Request For Information (RFI) 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov PPA Template * DLA Energy has an updated PPA template - Includes Best Value evaluation (rather than Low Price/Technically Acceptable) - Additional updates will be made based on the PPA RFI - Updated template will be posted on FEMP PPA Sample Document web site http://www1.eere.energy.gov/femp/financing/ppa_sampledocs.html 4 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov

389

Power Purchase Agreements Update  

Broader source: Energy.gov (indexed) [DOE]

April 20-21 in Portland, Oregon April 20-21 in Portland, Oregon Power Purchase Agreement Update April 21, 2011 Chandra Shah chandra.shah@nrel.gov 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov Overview * Power Purchase Agreement (PPA) Template * PPA Request For Information (RFI) 3 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov PPA Template * DLA Energy has an updated PPA template - Includes Best Value evaluation (rather than Low Price/Technically Acceptable) - Additional updates will be made based on the PPA RFI - Updated template will be posted on FEMP PPA Sample Document web site http://www1.eere.energy.gov/femp/financing/ppa_sampledocs.html 4 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov PPA Request for Information * Background - PPA issues identified based on meetings/telecons

390

Natural Gas Monthly Update  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

issues Go CorrectionUpdate February 22, 2013 Two Year-To-Date values, for 2010 NGL Composite Spot Price and Natural Gas Spot Price, were incorrectly displayed in Table 3. These...

391

UESC Development Update  

Broader source: Energy.gov [DOE]

Presentation covers an update on the utility energy service contract (UESC) development and is given at the FUPWG 2006 Spring meeting, held on May 3-4, 2006 in Atlanta, Georgia.

392

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

393

A zinc-air battery and flywheel zero emission vehicle  

SciTech Connect (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

394

Industrial Assessment Centers Quarterly Update, Spring 2014 ...  

Broader source: Energy.gov (indexed) [DOE]

Assessment Centers Quarterly Update, Spring 2014 Read the Industrial Assessment Centers (IAC) Quarterly Update -- Spring 2014 Industrial Assessment Centers (IAC) Quarterly Update...

395

Power Purchase Agreements Update | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Agreements Update Power Purchase Agreements Update Presentation covers an update on power purchase agreements and is given at the Spring 2011 Federal Utility Partnership Working...

396

Emission control cost-effectiveness of alternative-fuel vehicles  

SciTech Connect (OSTI)

Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

1993-06-14T23:59:59.000Z

397

Battery Ventures | Open Energy Information  

Open Energy Info (EERE)

Ventures (Boston) Ventures (Boston) Name Battery Ventures (Boston) Address 930 Winter Street, Suite 2500 Place Waltham, Massachusetts Zip 02451 Region Greater Boston Area Product Venture Capital Year founded 1983 Phone number (781) 478-6600 Website http://www.battery.com/ Coordinates 42.4024072°, -71.274181° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4024072,"lon":-71.274181,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RR0DF106791 RR0DF106791 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,715 mi Date of Test: January 8, 2013 Static Capacity Test Measured Average Capacity: 3.98 Ah Measured Average Energy Capacity: 460 Wh HPPC Test Pulse Discharge Power @ 50% DOD

399

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RRXDF106605 RRXDF106605 Hybrid Propulsion System: Mild Parallel Belt-Alternator Starter (BAS) Number of Electric Machines: 1 Motor: 15 kW (peak), AC induction Battery Specifications Manufacturer: Hitachi Type: Cylindrical Lithium-ion Number of Cells: 32 Nominal Cell Voltage: 3.6 V Nominal System Voltage: 115.2 V Rated Pack Capacity: 4.4 Ah Maximum Cell Charge Voltage 2 : 4.10 V Minimum Cell Discharge Voltage 2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,244 mi Date of Test: January 9, 2013 Static Capacity Test Measured Average Capacity: 3.88 Ah Measured Average Energy Capacity: 450 Wh HPPC Test Pulse Discharge Power @ 50% DOD

400

Cascade redox flow battery systems  

DOE Patents [OSTI]

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Revolution Now: The Future Arrives for Four Clean Energy Technologies-- 2014 Update  

Broader source: Energy.gov [DOE]

This report provides an update and finds that cost reductions and deployment have continued to advance in the past year for onshore wind power, polysilicon photovoltaic (PV) modules, light-emitting diodes (LEDs), and electric vehicles (EVs).

402

ABAA - 6th International Conference on Advanced Lithium Batteries for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals Goals Environmental pollution and the looming energy crisis have been attracting significant concerns worldwide. Much of the criticism has been directed to the consumption of fossil fuels and the greenhouse gases emitted by automobiles, which consume almost 45% of all fossil fuels produced. The huge amount of carbon dioxide emitted by automobiles is also highly blamed for global warming. Recently, there has been a worldwide active effort to develop hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV) to effectively reduce the consumption of fossil fuels in the transportation sector. Among the available battery technologies, lithium-ion batteries have the highest capacity density and energy density, and are promising candidates for energy storage devices for HEV and PHEV with improved energy efficiency. However, the key technological barriers that hinder commercial use of lithium-ion batteries for HEV and PHEV are their high cost, not enough calendar and cycle life, limited low temperature performance during cold cranking, and intrinsic abuse tolerance.

403

Electrolytes for lithium ion batteries  

SciTech Connect (OSTI)

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

404

Battery system with temperature sensors  

SciTech Connect (OSTI)

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

405

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

406

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Rechargeable Batteries, Photochromics, Electrochemical Lithography: From Interfacial Studies to Practical Applications Speaker(s): Robert Kostecki Date: January 11, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Satkartar K. Kinney The constantly growing power requirements of portable electronic devices and the need for high-power batteries for electric vehicles have created a strong demand for new batteries or substantial improvements of existing ones. Fundamental problems associated with complex interfacial processes in batteries must be resolved to enhance battery performance and lifetime. An overview of the principles of electrode-electrolyte interfacial studies, experimental methods, recent results, and potential applications will be presented. Advanced instrumental techniques and

407

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

408

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

409

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

410

Energy Department Updates Home Energy Scoring Tool for Advancing  

Broader source: Energy.gov (indexed) [DOE]

Updates Home Energy Scoring Tool for Advancing Updates Home Energy Scoring Tool for Advancing Residential Energy Performance Energy Department Updates Home Energy Scoring Tool for Advancing Residential Energy Performance January 9, 2014 - 3:19pm Addthis As part of the Energy Department's commitment to helping families across the United States save money by saving energy, the Department announced today its first major software update to the Home Energy Scoring Tool, developed by the Department's Building Technologies Office and Lawrence Berkeley National Laboratory (LBNL). The Home Energy Score allows homebuyers to compare homes on an "apples to apples" basis and provides recommendations for energy efficiency improvements. In addition, homeowners and homebuyers receive a cost-saving estimate of how these improvements could reduce utility bills and improve a

411

Primer on lead-acid storage batteries  

SciTech Connect (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

412

NO. REV. NO. LSPE THERMAL BATTERY TEST  

E-Print Network [OSTI]

NO. REV. NO. ATM 1086 LSPE THERMAL BATTERY TEST PAGE 1 OF DATE 2/25/72 Prepared by @c!_.e,~.~ ~P. Weir Approved by ~~---:J L. Lewis 5 #12;KC::Y, NO. LSPE THERMAL BATTERY TEST ATM 1086 2 PAGE OF DATE 2-52-72 Introduction The purpose of this ATM is to document the results of a Thermal Battery test for the Lunar Seismic

Rathbun, Julie A.

413

JCESR Update | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

its advances in fundamental science and the promising pathways to transformational battery designs and prototypes. This work was supported as part of the Joint Center for...

414

NREL: Energy Analysis - Energy Technology Cost and Performance Data for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bookmark and Share Bookmark and Share Energy Technology Cost and Performance Data for Distributed Generation Transparent Cost Database Button Recent cost estimates for distributed generation (DG) renewable energy technologies are available across capital costs, operations and maintenance (O&M) costs, and levelized cost of energy (LCOE). Use the tabs below to navigate the charts. The LCOE tab provides a simple calculator for both utility-scale and DG technologies that compares the combination of capital costs, O&M, performance, and fuel costs. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update)

415

Regenerative zinc/air and zinc/ferricyanide batteries for stationary power applications  

SciTech Connect (OSTI)

The authors report a novel configuration for a zinc-particle, packed-bed anode in which an open structure of high hydraulic permeability is maintained indefinitely in a cell with closely spaced walls by the formation of particle bridges and associated gaps. The configuration minimizes electrolyte pumping costs, allows rapid refueling and partial recharge, and provides for 100% zinc consumption. This approach benefits zinc/air fuel batteries by allowing nearly continuous operation and fuel recycle without commercial infrastructure; it benefits Zn/[Fe(CN){sub 6}]{sup {minus}3} batteries by eliminating shape-change and polarization problems found with planar anodes.

Cooper, J.F.; Keene, L.E.; Noring, J.; Maimoni, A.; Peterman, K.

1994-05-01T23:59:59.000Z

416

Metal-air batteries. (Latest citations from the Aerospace database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning applications of metal-air batteries. Topics include systems that possess different practical energy densities at specific powers. Coverage includes the operation of air electrodes at different densities and performance results. The systems are used in electric vehicles as a cost-effective method to achieve reliability and efficiency. Zinc-air batteries are covered more thoroughly in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-02-01T23:59:59.000Z

417

Epitaxial Single Crystal Nanostructures for Batteries & PVs ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrode Channel Flow DEMS Cell Sulfur@Carbon Cathodes for Lithium Sulfur Batteries Better Ham & Cheese: Enhanced Anodes and Cathodes for Fuel Cells Epitaxial Single...

418

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

419

Battery systems performance studies - HIL components testing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

systems performance studies - HIL components testing Battery systems performance studies - HIL components testing 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

420

NREL: Energy Storage - Battery Materials Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough that batteries last...

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Autogenic Pressure Reactions for Battery Materials Manufacture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

422

Ambient Operation of Li/Air Batteries  

SciTech Connect (OSTI)

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

423

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

efforts to develop new high-energy materials such as siliconNew Cathode Material for Batteries of High- Energy Density.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

424

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

425

Celgard and Entek - Battery Separator Development  

Broader source: Energy.gov (indexed) [DOE]

Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

426

USABC Battery Separator Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es007smith2011p.pdf More Documents & Publications USABC Battery Separator Development Overview...

427

Kayo Battery Industries Group | Open Energy Information  

Open Energy Info (EERE)

Vehicles Product: Shenzhen-based company, started by Hong Kong Highpower Technology and Japan Kayo Group, active in producing Lithium and NiMH batteries for various applications...

428

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

429

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

237253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

430

Batteries as they are meant to be seen | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Batteries as they are meant to be seen Batteries as they are meant to be seen The search for long-lasting, inexpensive rechargeable batteries Researchers have developed a way to...

431

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Broader source: Energy.gov [DOE]

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

432

Challenges and Prospects of LithiumSulfur Batteries  

Science Journals Connector (OSTI)

His research interests are in the area of materials for rechargeable batteries, fuel cells, and solar cells, including novel synthesis approaches for nanomaterials. ... Lithium-ion (Li-ion) batteries have the highest energy density among the rechargeable battery chemistries. ...

Arumugam Manthiram; Yongzhu Fu; Yu-Sheng Su

2012-10-25T23:59:59.000Z

433

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network [OSTI]

operation and thermal management of battery modules may alsoneed for careful thermal ment of battery modules. manage~ Atfor precise thermal management of LiAl/FeS battery modules.

Pollard, Richard

2012-01-01T23:59:59.000Z

434

Thermal behavior simulation of Ni/MH battery  

Science Journals Connector (OSTI)

Thermal behavior of overcharged Ni/MH battery is studied with microcalorimeter. The battery is installed in a special device in ... Quantity of heat and heat capacity of the battery charged at different state of ...

DaHe Li; Kai Yang; Shi Chen; Feng Wu

2009-05-01T23:59:59.000Z

435

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network [OSTI]

of the assembled Li-ion battery, such as the operating1-4: Schematic of a Li-ion battery. Li + ions are shuttledprocessing of active Li-ion battery materials. Various

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

436

Building America Update - January 9, 2013 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Building America Update - January 9, 2013 Building America Update - January 9, 2013 Building America Update - January 9, 2013 January 14, 2014 - 4:37pm Addthis Top Innovation Spotlight: Next Generation Advanced Framing Image of house framing. Building America field studies involving thousands of homes have verified significant savings in energy, materials, and labor when production builders apply advanced framing techniques-exceeding $1,000 per home. The Partnership for Home Innovation (PHI), a Building America team, won a 2013 Top Innovation award for its research into simple, cost-effective ways to implement advanced framing techniques. The team tested three innovative techniques that improve the thermal performance of the building enclosure, reduce the cost of energy-efficient construction, and simplify the

437

Field Test Best Practices (FTBP) Update  

Broader source: Energy.gov (indexed) [DOE]

Field Test Best Practices (FTBP) Update: Field Test Best Practices (FTBP) Update: It's here! And we need you! Lieko Earle Dane Christensen Bethany Sparn Building America Stakeholder Meeting 2012-03-02 NATIONAL RENEWABLE ENERGY LABORATORY Identified Field Testing Needs 2 * Difficult to find good general guidelines * Difficult to find examples of good field test plans * Difficult to find information on instrumentation options * No easily-accessible central repository for best practices knowledge * Field tests were taking longer and costing more $$ than initially estimated * We keep reinventing the wheel * Start from scratch each time we write a data-logger program? * Repeat each other's mistakes? NATIONAL RENEWABLE ENERGY LABORATORY What is the FTBP Resource?

438

EM Program Update by Dr. Ines Triay  

Broader source: Energy.gov (indexed) [DOE]

Update Update www.em.doe.gov 1 Environmental Management Advisory Board Public Meeting June 23, 2011 Dr. Inés Triay Assistant Secretary for Environmental Management DOE's Strategic Plan highlights EM's important role. Protect Human Health and the Environment Maximize Success of Construction and Operations Outcomes A Technical Roadmap to Address Complete Environmental Remediation of our Legacy and Active Sites www.em.doe.gov 2 A Technical Roadmap to Address Radioactive Liquid Tank Waste Ensure a Long-Term Solution to the Cold War's Environmental Legacy Goal 3: Goal 3: Complete the disposition of 90% of the legacy transuranic waste by 2015 Goal 2: Goal 2: Reduce the life cycle costs and accelerate the cleanup of the Cold War environmental legacy Goal 1: Goal 1: Complete the three major tank

439

Academy Member Annual Update Report 1Academy Member Update Report  

E-Print Network [OSTI]

Academy Member Annual Update Report 1Academy Member Update Report The annual update report is an important activity associated with active membership in the Academy. These reports are due annually questions. A separate document includes the required report format and directions. Please email omerad

440

Shutdown 2013 Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shutdown 2013 Update Shutdown 2013 Update Shutdown 2013 Update Print Friday, 01 March 2013 15:43 Sextupole upgrade The ALS is replacing all of the corrector magnets with sextupoles (48 of them) to allow for tighter horizontal control of the beam, thereby increasing beam brightness. This so-called "lattice upgrade" will also increase beam brightness by concentrating the horizontal emittance. (Top) ALS Project and Facility Management Group Leader Steve Rossi proudly shows off a newly-installed sextupole magnet. (Center) Christoph Steier and Arnaud Madur discuss challenges encountered during the installation. (Bottom) A corrector magnet that has been removed from the ring. Some sextupole magnets awaiting installation in the Building 15 staging area. Cold head replacement

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Shutdown 2013 Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shutdown 2013 Update Shutdown 2013 Update Shutdown 2013 Update Print Sextupole upgrade The ALS is replacing all of the corrector magnets with sextupoles (48 of them) to allow for tighter horizontal control of the beam, thereby increasing beam brightness. This so-called "lattice upgrade" will also increase beam brightness by concentrating the horizontal emittance. (Top) ALS Project and Facility Management Group Leader Steve Rossi proudly shows off a newly-installed sextupole magnet. (Center) Christoph Steier and Arnaud Madur discuss challenges encountered during the installation. (Bottom) A corrector magnet that has been removed from the ring. Some sextupole magnets awaiting installation in the Building 15 staging area. Cold head replacement The cooling elements in the three superbend magnets (and one spare) need to

442

Updates - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Updates by Diane Johnson Email Alerts Subscribe to automatic e-mail notification about updates to the portal. Email Alerts...

443

ESS 2012 Peer Review - Hydrogen-Bromine Flow Batteries for Grid-Scale Energy Storage - Vincent Battaglia, LBNL  

Broader source: Energy.gov (indexed) [DOE]

H H 2 /Br 2 Flow Battery for Grid-Scale Energy Storage Venkat Srinivasan, Adam Weber, & Vince Battaglia Lawrence Berkeley National Laboratory * DOE ESS Review * Washington, DC * September 26, 2012 vsbattaglia@lbl.gov Purpose Develop a low-cost, energy-storage system with high power density at 80% efficiency Use H 2 and Br 2 in a flow battery Future Plans Modeling Funding from ARPA-E GRIDS, USDOE LBNL: Kyu Taek Cho (Cell studies); Paul Ridgway (Catalysis studies); Sophia Haussener (Transport modeling) Bosch: Paul Albertus (Cost Modeling); Roel Sanchez-Carrera and Boris Kozinsky (Catalyst theory)

444

Texas Tech University Energy Savings Program January 2010 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footageTexas Tech University Energy Savings Program January 2010 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands

Zhuang, Yu

445

Texas Tech University Energy Savings Program October 2009 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footageTexas Tech University Energy Savings Program October 2009 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands

Zhuang, Yu

446

Texas Tech University Energy Savings Program February 2008 Update  

E-Print Network [OSTI]

consumption for the same time period from the previous year normalized to current energy costs and campusTexas Tech University Energy Savings Program February 2008 Update The Texas Tech Energy Savings by State Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Texas Tech

Gelfond, Michael

447

Texas Tech University Energy Savings Program October 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through fiscalTexas Tech University Energy Savings Program October 2011 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. University Energy Use Energy units are converted to thousands of BTUs

Zhuang, Yu

448

Texas Tech University Energy Savings Program October 2010 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footage Total 15.1357 14.7573 15.5852 3.0% Page 2 of 6 October 2010 Energy Report #12;3. Fleet Fuel ManagementTexas Tech University Energy Savings Program October 2010 Update The Texas Tech Energy Savings

Zhuang, Yu

449

Texas Tech University Energy Savings Program October 2012 Update  

E-Print Network [OSTI]

on energy consumption for the same time period from the previous year normalized to current energy costs,727 Cogeneration Steam 20.06 20.83 Up 3.8% NA Total 165.84 161.01 Down 2.9% $ 194,851 Texas Tech University EnergyTexas Tech University Energy Savings Program October 2012 Update The Texas Tech Energy Savings

Zhuang, Yu

450

Electricity costs  

Science Journals Connector (OSTI)

... index is used to correct for inflation. The short answer is given by the Central Electricity Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The ... Generating Board's (CEGB's) 1980-81 report, paragraph 168. "The cost per kWh of fuel. . . rose by 18.6 per cent (between 1979 ...

J.W. JEFFERY

1982-03-18T23:59:59.000Z

451

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

452

Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies  

Science Journals Connector (OSTI)

Abstract Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1נ24, 3נ8 and 5נ5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended.

Tao Wang; K.J. Tseng; Jiyun Zhao; Zhongbao Wei

2014-01-01T23:59:59.000Z

453

OCRWM Program Update -- Lanthrum  

Broader source: Energy.gov (indexed) [DOE]

Update Update Presented to: Transportation External Coordination Working Group Presented by: Gary Lanthrum Director, Office of Logistics Management February 6, 2008 San Antonio, TX 2 Introduction * Program key milestones * Status of License Application * FY 2008 Office of Civilian Radioactive Waste Management (OCRWM) Program budget * Status of transportation projects 3 Program Key Milestones Design for License Application Complete November 2007 License Application Submittal Start Nevada Rail Construction YM Construction Authorization Operating License Submittal Rail Line Operational Begin Receipt Completed Supplemental EIS LSN Certification October 2007 4 Licensing Support Network (LSN) * LSN is a web-based information system established by the Nuclear Regulatory Commission (NRC) that provides public

454

Building Technologies Office: Battery Chargers and External Power Supplies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Chargers and Battery Chargers and External Power Supplies Framework Document Public Meeting to someone by E-mail Share Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Facebook Tweet about Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Twitter Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Google Bookmark Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Delicious Rank Building Technologies Office: Battery Chargers and External Power Supplies Framework Document Public Meeting on Digg Find More places to share Building Technologies Office: Battery

455

Department of Energy Will Hold a Batteries and Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

456

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

457

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

458

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

459

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

460

Overview of the Batteries for Advanced Transportation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the...

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

462

Computer-Aided Engineering for Electric Drive Vehicle Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

463

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

464

Overview and Progress of the Batteries for Advanced Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT)...

465

NREL: Transportation Research - Innovative Way to Test Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative Way to Test Batteries Fills a Market Niche A square piece of machinery with a lid that opens upwards NETZSCH's Isothermal Battery Calorimeter (IBC 284), developed by...

466

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Broader source: Energy.gov (indexed) [DOE]

R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes 2012 DOE Hydrogen...

467

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

468

Overcharge Protection for PHEV Batteries | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overcharge Protection for PHEV Batteries Overcharge Protection for PHEV Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

469

Overview of the Batteries for Advanced Transportation Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2010 DOE Vehicle...

470

Overview of the Batteries for Advanced Transportation Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2009 DOE...

471

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

472

By losing their shape, material fails batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

By losing their shape, material fails batteries By losing their shape, material fails batteries Too many electrons at the lithiation front in silicon are a problem Molecular...

473

Characterization of Li-ion Batteries using Neutron Diffraction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

474

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

475

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

476

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

477

Reality Check: Cheaper Batteries are GOOD for America's Electric...  

Energy Savers [EERE]

Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers Reality Check: Cheaper Batteries are GOOD for America's Electric Vehicle Manufacturers...

478

Automotive Li-ion Battery Cooling Requirements | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Li-ion Battery Cooling Requirements Presents thermal management of lithium-ion battery packs for electric vehicles cunningham.pdf More Documents & Publications...

479

New INL High Energy Battery Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

INL High Energy Battery Test Facility New INL High Energy Battery Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

480

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NREL Battery Thermal and Life Test Facility NREL Battery Thermal and Life Test Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit...

Note: This page contains sample records for the topic "updated battery cost" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Abuse Testing of High Power Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Testing of High Power Batteries Abuse Testing of High Power Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting,...

482

Overview and Progress of the Battery Testing, Analysis, and Design...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Battery Testing, Analysis, and Design Activity Overview and Progress of the Battery Testing, Analysis, and Design Activity 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

483

Energy Management Strategies for Fast Battery Temperature Rise...  

Broader source: Energy.gov (indexed) [DOE]

Energy Management Strategies for Fast Battery Temperature Rise and Engine Efficiency Improvement at Very Cold Conditions Energy Management Strategies for Fast Battery Temperature...

484

Li-Ion Battery Cell Manufacturing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-Ion Battery Cell Manufacturing Li-Ion Battery Cell Manufacturing 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

485

Saft America Advanced Batteries Plant Celebrates Grand Opening...  

Broader source: Energy.gov (indexed) [DOE]

Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville Saft America Advanced Batteries Plant Celebrates Grand Opening in Jacksonville September 16, 2011 -...

486

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost  

E-Print Network [OSTI]

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

Ulukus, Sennur

487

Fluidic: Grid-Scale Batteries for Wind and Solar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fluidic: Grid-Scale Batteries for Wind and Solar Fluidic: Grid-Scale Batteries for Wind and Solar Fluidic: Grid-Scale Batteries for Wind and Solar February 27, 2013 - 5:42pm Addthis Andrew Gumbiner Contractor, Advanced Research Projects Agency-Energy. FLUIDIC: Metal Air Recharged from DOE ARPA-E on Vimeo. Our nation's modern electric grid is limited in its ability to store excess energy for on-demand power. As a result, electricity must be generated on a constant basis to perfectly match demand. Grid-scale storage technologies have the potential to shift this dynamic, revolutionizing how our grid uses and distributes energy. Reliable, high-performing storage technologies could provide a considerable amount of power on very short demand, lowering costs to utilities and consumers alike. These powerful technologies would enable renewable sources of energy -

488

Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance  

SciTech Connect (OSTI)

Magnesium battery is potentially a safe, cost-effective, and high energy density technology for large scale energy storage. However, the development of magnesium battery has been hindered by the limited performance and the lack of fundamental understandings of electrolytes. Here, we present a coordination chemistry study of Mg(BH4)2 in ethereal solvents. The O donor denticity, i.e. ligand strength of the ethereal solvents which act as ligands to form solvated Mg complexes, plays a significant role in enhancing coulombic efficiency of the corresponding solvated Mg complex electrolytes. A new and safer electrolyte is developed based on Mg(BH4)2, diglyme and optimized LiBH4 additive. The new electrolyte demonstrates 100% coulombic efficiency, no dendrite formation, and stable cycling performance with the cathode capacity retention of ~90% for 300 cycles in a prototype magnesium battery.

Shao, Yuyan; Liu, Tianbiao L.; Li, Guosheng; Gu, Meng; Nie, Zimin; Engelhard, Mark H.; Xiao, Jie; Lu, Dongping; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

2013-11-04T23:59:59.000Z

489

ESS 2012 Peer Review - Secondary Use of Vehicle Batteries in Power Systems - Omer Onar, ORNL  

Broader source: Energy.gov (indexed) [DOE]

/2012 1 /2012 1 National Academy of Engineering - BMED December 2008 www.oe.energy.gov U.S. Department of Energy - 1000 Independence Ave., SW Washington, DC 20585 Secondary Use of Vehicle Batteries in Power Systems December 2008 Secondary Use of Vehicle Batteries in Power Systems Objective Life-cycle Funding Summary FY12 FY13 300k ?k Technical Scope The objective is this project is to carry out a collaborative effort among ORNL, original equipment manufacturers (OEM)s, and other partners to develop a cogent and informed view of the economic and technological value of secondary use of EV batteries in grid support. CES is one of the highlighted synergistic applications with a high value to cost relationship. Specific grid services related to CES (community energy storage) is

490

Thin film buried anode battery  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

491

Graphene/Li-ion battery  

Science Journals Connector (OSTI)

Density function theory calculations were carried out to clarify storage states of Lithium (Li) ions in graphene clusters. The adsorption energy spin polarization charge distribution electronic gap surface curvature and dipole momentum were calculated for each cluster. Li-ion adsorbed graphene doped by one Li atom is spin polarized so there would be different gaps for different spin polarization in electrons. Calculation results demonstrated that a smaller cluster between each two larger clusters is preferable because it could improve grapheneLi-ion batteries; consequently the most proper graphene anode structure has been proposed.

Narjes Kheirabadi; Azizollah Shafiekhani

2012-01-01T23:59:59.000Z

492

Alloys of clathrate allotropes for rechargeable batteries  

SciTech Connect (OSTI)

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Chan, Candace K; Miller, Michael A; Chan, Kwai S

2014-12-09T23:59:59.000Z

493

Battery Stack-on Process Improvement  

E-Print Network [OSTI]

Imagine yourself in a job in which you stack 10,000 batteries onto a conveyor for eight hours. Each battery weighs about 22 pounds. The work is completed in an acidic environment where temperatures can peak in the summer as high as 100 degrees...

Watkins, Robert E.

2011-12-16T23:59:59.000Z

494

Transparent lithium-ion batteries , Sangmoo Jeongb  

E-Print Network [OSTI]

, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human (11), and solar cells (12­14). However, the battery, a key component in portable electronics, has

Cui, Yi

495

Cost vs. performance ... Gwyn Griffiths email: gxg@noc.soton.ac.uk http://www.noc.soton.ac.uk/OED/gxg/  

E-Print Network [OSTI]

Nexa 1.2 kW PEM fuel cell system from Ballard. Cost ~ 5900 Composite hydrogen storage cylinders e://www.noc.soton.ac.uk/OED/gxg/ Cost vs. performance for fuel cells and batteries within AUVs Gwyn Griffiths National Oceanography typical cost Uses similar method to cost energy from a marinised PEM fuel cell Poses some questions

Griffiths, Gwyn

496

Updating GCSE Astronomy  

Science Journals Connector (OSTI)

......research-article Features Updating GCSE Astronomy Julien King, Chair of the RAS Education...brings news of changes to the GCSE Astronomy syllabus, mainly additions aimed at...Julien King Principal Moderator for GCSE Astronomy with Edexcel and Chair of the RAS Education......

Julien King

2009-08-01T23:59:59.000Z

497

RESEARCH UPDATE Ecology Division  

E-Print Network [OSTI]

1 RESEARCH UPDATE Ecology Division Biotype has changed its name to Ecotype! Following the re-organisation of Forest Research into five science Divisions and three Support Divisions, the former Woodland Ecology Branches to form the new Ecology Division. We decided to give the divisional newsletter a new name (and

498

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

first cost or capital investment): ­ Expenditures made to acquire or develop capital assets ­ Three main· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining-site management or corporate level expenditure · Direct vs. Indirect Costs ­ Direct (or variable) costs apply

Boisvert, Jeff

499

Types of Costs Types of Cost Estimates  

E-Print Network [OSTI]

-Revenue Relationships · Capital Costs (or first cost or capital investment): ­ Expenditures made to acquire or develop05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408 ­ off-site management or corporate level expenditure · Direct vs. Indirect Costs ­ Direct (or variable

Boisvert, Jeff

500

Paper Battery Co | Open Energy Information  

Open Energy Info (EERE)

Paper Battery Co Paper Battery Co Jump to: navigation, search Name Paper Battery Co. Place Troy, New York Zip 12180 Product Paper Battery Co. is constructing a hybrid ultracapacitor/battery which yeilds high power and energy density. The material used is a nano-porous cellulous. Coordinates 39.066587°, -80.768578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.066587,"lon":-80.768578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}