National Library of Energy BETA

Sample records for updated battery cost

  1. PHEV Battery Cost Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    es_02_barnett.pdf (615.99 KB) More Documents & Publications PHEV Battery Cost Assessment PHEV Battery Cost Assessment PHEV and LEESS Battery Cost Assessment

  2. Load Leveling Battery System Costs

    Energy Science and Technology Software Center (OSTI)

    1994-10-12

    SYSPLAN evaluates capital investment in customer side of the meter load leveling battery systems. Such systems reduce the customer's monthly electrical demand charge by reducing the maximum power load supplied by the utility during the customer's peak demand. System equipment consists of a large array of batteries, a current converter, and balance of plant equipment and facilities required to support the battery and converter system. The system is installed on the customer's side of themore » meter and controlled and operated by the customer. Its economic feasibility depends largely on the customer's load profile. Load shape requirements, utility rate structures, and battery equipment cost and performance data serve as bases for determining whether a load leveling battery system is economically feasible for a particular installation. Life-cycle costs for system hardware include all costs associated with the purchase, installation, and operation of battery, converter, and balance of plant facilities and equipment. The SYSPLAN spreadsheet software is specifically designed to evaluate these costs and the reduced demand charge benefits; it completes a 20 year period life cycle cost analysis based on the battery system description and cost data. A built-in sensitivity analysis routine is also included for key battery cost parameters. The life cycle cost analysis spreadsheet is augmented by a system sizing routine to help users identify load leveling system size requirements for their facilities. The optional XSIZE system sizing spreadsheet which is included can be used to identify a range of battery system sizes that might be economically attractive. XSIZE output consisting of system operating requirements can then be passed by the temporary file SIZE to the main SYSPLAN spreadsheet.« less

  3. PHEV Battery Cost Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Cost Assessment PHEV Battery Cost Assessment 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es111_gallagher_2012_o.pdf (1.1 MB) More Documents & Publications Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes PHEV Battery Cost Assessment EV Everywhere Grand Challenge - Battery Status and Cost Reduction Prospects

  4. Updated Cost Analysis of Photobiological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report This report updates the 1999 economic analysis ...

  5. Review of storage battery system cost estimates

    SciTech Connect (OSTI)

    Brown, D.R.; Russell, J.A.

    1986-04-01

    Cost analyses for zinc bromine, sodium sulfur, and lead acid batteries were reviewed. Zinc bromine and sodium sulfur batteries were selected because of their advanced design nature and the high level of interest in these two technologies. Lead acid batteries were included to establish a baseline representative of a more mature technology.

  6. An Update on Advanced Battery Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29

  7. Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half

    Broader source: Energy.gov [DOE]

    Johnson Controls is working to increase energy density of vehicle batteries while reducing manufacturing costs for lithium-ion battery cells.

  8. Galileo probe battery system -- An update

    SciTech Connect (OSTI)

    Dagarin, B.P.; Taenaka, R.K.; Stofel, E.J.

    1996-11-01

    NASA`s Galileo 6-year trip to Jupiter is in its final phase. The mission consists of a Jovian Orbiter and an atmospheric entry Probe. The Probe is designed to coast autonomously for up to 190 days and turn itself on 6 hours prior to entry. It will then descend through the upper atmosphere for 50 to 75 minutes with the aid of an 8-foot parachute. This paper discusses sources of electrical power for the Probe and battery testing at the systems level. Described are the final production phase, qualification, and systems testing prior to and following launch, as well as decisions made regarding the Probe separation Li/SO{sub 2} battery configuration. In addition, the paper briefly describes the thermal battery verification program. The main power source comprises three Li/SO{sub 2} battery modules containing 13 D-sized cell strings per module. These modules are required to retain capacity for 7.5 years and support a 150-day clock, ending with a 7-hour mission sequence of increasing loads from 0.15 A to 9.5 A during the last 30 minutes. The main power source is supplemented by two thermal batteries (CaCrO{sub 4}-Ca), which will be used for firing the pyrotechnic initiators during the atmospheric entry.

  9. BatPRO: Battery Manufacturing Cost Estimation | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BatPRO: Battery Manufacturing Cost Estimation BatPRO models a stiff prismatic pouch-type cell battery pack with cells linked in series. BatPRO models a stiff prismatic pouch-type ...

  10. EV Everywhere Grand Challenge - Battery Status and Cost Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL. 5howellb.pdf (1.24 MB) More Documents & Publications PHEV Battery Cost Assessment ...

  11. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... But researchers hope that a new type of battery, called the lithium-air battery, will one day lead to a cost-effective, long-range electric vehicles that could travel 300 miles or ...

  12. Update on the Battery Projects at NREL (Presentation)

    SciTech Connect (OSTI)

    Santhanagopalan, S.; Pesaran, A.

    2010-10-01

    NREL collaborates with industry, universities, and other national laboratories as part of the DOE integrated Energy Storage Program to develop advanced batteries for vehicle applications. Our efforts are focused in the following areas: thermal characterization and analysis, evaluation of thermal abuse tolerance via modeling and experimental analysis, and implications on battery life and cost. Our activities support DOE goals, FreedomCAR targets, the USABC Tech Team, and battery developers. We develop tools to support the industry, both through one-on-one collaborations and by dissemination of information in the form of presentations in conferences and journal publications.

  13. 2006 Update of Business Downtime Costs

    SciTech Connect (OSTI)

    Hinrichs, Mr. Doug; Goggin, Mr. Michael

    2007-01-01

    The objective of this paper is to assess the downtime cost of power outages to businesses in the commercial and industrial sectors, updating and improving upon studies that have already been published on this subject. The goal is to produce a study that, relative to existing studies, (1) applies to a wider set of business types (2) reflects more current downtime costs, (3) accounts for the time duration factor of power outages, and (4) includes data on the costs imposed by real outages in a well-defined market. This study examines power outage costs in 11 commercial subsectors and 5 industrial subsectors, using data on downtime costs that was collected in the 1990's. This study also assesses power outage costs for power outages of 20 minutes, 1 hour, and 4 hours duration. Finally, this study incorporates data on the costs of real power outages for two business subsectors. However, the current limited state of data availability on the topic of downtime costs means there is room to improve upon this study. Useful next steps would be to generate more recent data on downtime costs, data that covers outages shorter than 20 minutes duration and longer than 4 hours duration, and more data that is based on the costs caused by real-world outages. Nevertheless, with the limited data that is currently available, this study is able to generate a clear and detailed picture of the downtime costs that are faced by different types of businesses.

  14. Costs of lithium-ion batteries for vehicles

    SciTech Connect (OSTI)

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  15. Updated Cost Analysis of Photobiological Hydrogen Production from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chlamydomonas reinhardtii Green Algae: Milestone Completion Report | Department of Energy Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report This report updates the 1999 economic analysis of NREL's photobiological hydrogen production from Chlamydomonas reinhardtii. 35593.pdf

  16. Special Feature: Reducing Energy Costs with Better Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Electricvehicles8331019248.jpg Electric vehicles lined up in Cascade Locks. Credit: Oregon Department of Transportation A better battery-one that is cheap and safe, but packs a lot of power-could lead to an electric vehicle that performs better than today's gasoline-powered cars, and costs about the same or less to consumers.

  17. EV Everywhre Grand Challenge - Battery Status and Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    80-100 150 180 225 Pack Energy Density WhL 200 250 300 425 SOC Window % 50 80 90 90 Tesla * 250 mile electric range * 85 kWh 270 kW battery * Battery Cost: 35,000 3 ...

  18. Battery energy storage systems life cycle costs case studies

    SciTech Connect (OSTI)

    Swaminathan, S.; Miller, N.F.; Sen, R.K.

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  19. PHEV and LEESS Battery Cost Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es001_barnett_2011_o.pdf (1.34 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: SAFT-USABC 12V Start-Stop Phase II PHEV Battery Cost Assessment Vehicle Technologies Office Merit Review 2015: A 12V Start-Stop Li Polymer Battery Pack

  20. Flexible low-cost packaging for lithium ion batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Chaiko, D. J.; Henriksen, G. L.; Chemical Engineering

    2004-01-01

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL

  1. Cost and Performance Model for Redox Flow Batteries

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Crawford, Aladsair J.; Stephenson, David E.; Kim, Soowhan; Wang, Wei; Li, Bin; Coffey, Greg W.; Thomsen, Edwin C.; Graff, Gordon L.; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2014-02-01

    A cost model was developed for all vanadium and iron-vanadium redox flow batteries. Electrochemical performance modeling was done to estimate stack performance at various power densities as a function of state of charge. This was supplemented with a shunt current model and a pumping loss model to estimate actual system efficiency. The operating parameters such as power density, flow rates and design parameters such as electrode aspect ratio, electrolyte flow channel dimensions were adjusted to maximize efficiency and minimize capital costs. Detailed cost estimates were obtained from various vendors to calculate cost estimates for present, realistic and optimistic scenarios. The main drivers for cost reduction for various chemistries were identified as a function of the energy to power ratio of the storage system. Levelized cost analysis further guided suitability of various chemistries for different applications.

  2. Lower Cost, Nanoporous Block Copolymer Battery Separator - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Lower Cost, Nanoporous Block Copolymer Battery Separator Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication A.K. Jha, S.L. Tsang, A.E. Ozcam, R.D. Offeman, N.P. Balsara. "Master Curve Captures the Effect of Domain Morphology on Ethanol Pervaporation Through Block Copolymer Membranes," Journal of Membrane Science, published online, 2011. (695 KB) Technology Marketing Summary Although the polyolefin polymer

  3. Desalting seawater and brackish waters: 1981 cost update

    SciTech Connect (OSTI)

    Reed, S.A.

    1982-08-01

    This is the fourth in a series of desalting cost update reports. Cost data are reported for desalting seawater by various distillation systems and by reverse osmosis. Costs of desalting four brackish waters, representative of those found in the United States by both reverse osmosis and electrodialysis are also given. Cost data are presented parametrically as a function of energy cost and plant size. The cost of desalting seawater by distillation has increased by 40% during the past two years, while desalting by reverse osmosis has increased by about 36% during the same period. Brackish water desalting by reverse osmosis has only increased by about 12%, and brackish water desalting by electrodialysis is up by 40%. Again, the continued increase in energy costs has had a major impact on all desalination systems.

  4. Prospects for reducing the processing cost of lithium ion batteries

    SciTech Connect (OSTI)

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  5. Prospects for Reducing the Processing Cost of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wood III, David L; Li, Jianlin; Daniel, Claus

    2014-01-01

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  6. Prospects for reducing the processing cost of lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and amore » standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).« less

  7. Advanced Flow Battery Electrodes: Low-cost, High-Performance 50-Year Electrode

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: Primus Power is developing zinc-based, rechargeable liquid flow batteries that could produce substantially more energy at lower cost than conventional batteries. A flow battery is similar to a conventional battery, except instead of storing its energy inside the cell it stores that energy for future use in chemicals that are kept in tanks that sit outside the cell. One of the most costly components in a flow battery is the electrode, where the electrochemical reactions actually occur. Primus Power is investigating and developing mixed-metal materials for their electrodes that could ultimately reduce the lifetime cost of flow batteries because they are more durable and long-lasting than electrodes found in traditional batteries. Using these electrodes, Primus Power’s flow batteries can be grouped together into robust, containerized storage pods for use by utilities, renewable energy developers, businesses, and campuses.

  8. Fact #914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decline | Department of Energy 4: February 29, 2016 Plug-in Vehicle Sales Climb as Battery Costs Decline Fact #914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery Costs Decline SUBSCRIBE to the Fact of the Week In 2009, the cost for lithium-ion plug-in vehicle batteries was about $1,000 per kilowatt-hour (kW-hr) and plug-in vehicle sales were negligible. The first mass-marketed plug-in vehicles were introduced just prior to 2011, when the cost of batteries was nearing $600 per

  9. Fact #914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decline - Dataset | Department of Energy 4: February 29, 2016 Plug-in Vehicle Sales Climb as Battery Costs Decline - Dataset Fact #914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery Costs Decline - Dataset Excel file and dataset for Plug-in Vehicle Sales Climb as Battery Costs Decline fotw#914_web.xlsx (15.25 KB) More Documents & Publications Fact #937: August 8, 2016 Total Battery Capacity of all Plug-in Electric Vehicles Sold Increased from 2014 to 2015 - Dataset Fact #892:

  10. Innovative manufacturing and materials for low cost lithium ion batteries

    SciTech Connect (OSTI)

    Carlson, Steven

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator and any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability

  11. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Parabolic Trough Collector Cost Update for the System Advisor Model (SAM) Citation Details In-Document Search Title: Parabolic Trough Collector Cost Update for the System Advisor Model (SAM) This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for

  12. Costs of U.S. Oil Dependence: 2005 Update

    SciTech Connect (OSTI)

    Greene, D.L.

    2005-03-08

    For thirty years, dependence on oil has been a significant problem for the United States. Oil dependence is not simply a matter of how much oil we import. It is a syndrome, a combination of the vulnerability of the U.S. economy to higher oil prices and oil price shocks and a concentration of world oil supplies in a small group of oil producing states that are willing and able to use their market power to influence world oil prices. Although there are vitally important political and military dimensions to the oil dependence problem, this report focuses on its direct economic costs. These costs are the transfer of wealth from the United States to oil producing countries, the loss of economic potential due to oil prices elevated above competitive market levels, and disruption costs caused by sudden and large oil price movements. Several enhancements have been made to methods used in past studies to estimate these costs, and estimates of key parameters have been updated based on the most recent literature. It is estimated that oil dependence has cost the U.S. economy $3.6 trillion (constant 2000 dollars) since 1970, with the bulk of the losses occurring between 1979 and 1986. However, if oil prices in 2005 average $35-$45/bbl, as recently predicted by the U.S. Energy Information Administration, oil dependence costs in 2005 will be in the range of $150-$250 billion. Costs are relatively evenly divided between the three components. A sensitivity analysis reflecting uncertainty about all the key parameters required to estimate oil dependence costs suggests that a reasonable range of uncertainty for the total costs of U.S. oil dependence over the past 30 years is $2-$6 trillion (constant 2000 dollars). Reckoned in terms of present value using a discount rate of 4.5%, the costs of U.S. oil dependence since 1970 are $8 trillion, with a reasonable range of uncertainty of $5 to $13 trillion.

  13. EV Everywhere Grand Challenge- Battery Status and Cost Reduction Prospects

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by technology manager David Howell at the EV Everywhere Grand Challenge: Battery Workshop on July 26, 2012 held at the Doubletree O'Hare, Chicago, IL.

  14. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the sixth annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. This 2012 update will cover current status technology updates since the 2011 report, as well as introduce a 2012 bus system analysis considered alongside the automotive system.

  15. Materials cost evaluation report for high-power Li-ion batteries.

    SciTech Connect (OSTI)

    Henriksen, G. L.; Amine, K.; Liu, J.

    2003-01-10

    The U.S. Department of Energy (DOE) is the lead federal agency in the partnership between the U.S. automobile industry and the federal government to develop fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs) as part of the FreedomCAR Partnership. DOE's FreedomCAR and Vehicle Technologies Office sponsors the Advanced Technology Development (ATD) Program--involving 5 of its national laboratories--to assist the industrial developers of high-power lithium-ion batteries to overcome the barriers of cost, calendar life, and abuse tolerance so that this technology can be rendered practical for use in HEV and FCEV applications under the FreedomCAR Partnership. In the area of cost reduction, Argonne National Laboratory (ANL) is working to identify and develop advanced anode, cathode, and electrolyte components that can significantly reduce the cost of the cell chemistry, while simultaneously extending the calendar life and enhancing the inherent safety of this electrochemical system. The material cost savings are quantified and tracked via the use of a cell and battery design model that establishes the quantity of each material needed in the production of batteries that are designed to meet the requirements of a minimum-power-assist HEV battery or a maximum-power-assist HEV battery for the FreedomCAR Partnership. Similar models will be developed for FEV batteries when the requirements for those batteries are finalized. In order to quantify the material costs relative to the FreedomCAR battery cost goals, ANL uses (1) laboratory cell performance data, (2) its battery design model and (3) battery manufacturing process yields to create battery-level material cost models. Using these models and industry-supplied material cost information, ANL assigns battery-level material costs for different cell chemistries. These costs can then be compared with the battery cost goals to determine the probability of meeting the goals with these cell chemistries. As can be

  16. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect (OSTI)

    Bundschuh, Paul

    2013-03-23

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the

  17. Updated Buildings Sector Appliance and Equipment Costs and Efficiency

    U.S. Energy Information Administration (EIA) Indexed Site

    Full report (3.6 mb) Major residential equipment and commercial heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies

  18. Analysis of Potential Benefits and Costs of Updating the Commercial Building Energy Code in North Dakota

    SciTech Connect (OSTI)

    Cort, Katherine A.; Belzer, David B.; Winiarski, David W.; Richman, Eric E.

    2004-04-30

    The state of North Dakota is considering updating its commercial building energy code. This report evaluates the potential costs and benefits to North Dakota residents from updating and requiring compliance with ASHRAE Standard 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in the analysis. Energy and economic impacts are estimated using the Building Loads Analysis and System Thermodynamics (BLAST simulation combined with a Life-cycle Cost (LCC) approach to assess correspodning economic costs and benefits.

  19. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  20. Impact of the 3Cs of Batteries on PHEV Value Proposition: Cost, Calendar Life, and Cycle Life (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Smith, K.; Markel, T.

    2009-06-01

    Battery cost, calendar life, and cycle life are three important challenges for those commercializing plug-in hybrid electric vehicles; battery life is sensitive to temperature and solar loading.

  1. Updated Buildings Sector Appliance and Equipment Costs and Efficiency

    Gasoline and Diesel Fuel Update (EIA)

    Full report (4.1 mb) Heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.9...

  2. Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density

    SciTech Connect (OSTI)

    2010-10-01

    BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

  3. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueousmore » electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.« less

  4. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries

    SciTech Connect (OSTI)

    Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.; Ha, Seungbum; Brushett, Fikile R.

    2014-11-01

    Energy storage is increasingly seen as a valuable asset for electricity grids composed of high fractions of intermittent sources, such as wind power or, in developing economies, unreliable generation and transmission services. However, the potential of batteries to meet the stringent cost and durability requirements for grid applications is largely unquantified. We investigate electrochemical systems capable of economically storing energy for hours and present an analysis of the relationships among technological performance characteristics, component cost factors, and system price for established and conceptual aqueous and nonaqueous batteries. We identified potential advantages of nonaqueous flow batteries over those based on aqueous electrolytes; however, new challenging constraints burden the nonaqueous approach, including the solubility of the active material in the electrolyte. Requirements in harmony with economically effective energy storage are derived for aqueous and nonaqueous systems. The attributes of flow batteries are compared to those of aqueous and nonaqueous enclosed and hybrid (semi-flow) batteries. Flow batteries are a promising technology for reaching these challenging energy storage targets owing to their independent power and energy scaling, reliance on facile and reversible reactants, and potentially simpler manufacture as compared to established enclosed batteries such as lead–acid or lithium-ion.

  5. Standardized Cost Savings Definitions and Reporting Template- Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    In September 2012, DOE issued Policy Flash 2012-67, Acquisition Savings Reporting Template Guidance to fully comply with reporting requirements. This is an update to that Policy Flash.

  6. Updated Capital Cost Estimates for Utility Scale Electricity...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... update, the assumed characteristics of a coal plant with CCS in NEMS were assumed to be ... which is a nominal 650 MW coal-fired supercritical steam-electric generating ...

  7. Webinar: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Thursday, February 25, from 12 to 1 p.m. Eastern Standard Time.

  8. Update of Hydrogen from Biomass - Determination of the Delivered Cost of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen: Milestone Completion Report | Department of Energy Update of Hydrogen from Biomass - Determination of the Delivered Cost of Hydrogen: Milestone Completion Report Update of Hydrogen from Biomass - Determination of the Delivered Cost of Hydrogen: Milestone Completion Report Milestone report summarizing the economic feasibility of producing hydrogen from biomass via (1) gasification/reforming of the resulting syngas and (2) fast pyrolysis/reforming of the resulting bio-oil. 33112.pdf

  9. Comparative analysis for various redox flow batteries chemistries using a cost performance model

    SciTech Connect (OSTI)

    Crawford, Aladsair J.; Viswanathan, Vilayanur V.; Stephenson, David E.; Wang, Wei; Thomsen, Edwin C.; Reed, David M.; Li, Bin; Balducci, Patrick J.; Kintner-Meyer, Michael CW; Sprenkle, Vincent L.

    2015-10-20

    A robust performance-based cost model is developed for all-vanadium, iron-vanadium and iron chromium redox flow batteries. Systems aspects such as shunt current losses, pumping losses and thermal management are accounted for. The objective function, set to minimize system cost, allows determination of stack design and operating parameters such as current density, flow rate and depth of discharge (DOD). Component costs obtained from vendors are used to calculate system costs for various time frames. A 2 kW stack data was used to estimate unit energy costs and compared with model estimates for the same size electrodes. The tool has been shared with the redox flow battery community to both validate their stack data and guide future direction.

  10. Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles.

    SciTech Connect (OSTI)

    Nelson, P. A. Gallagher, K. G. Bloom, I. Dees, D. W.

    2011-10-20

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publically available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publically peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the

  11. Webinar February 25: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Thursday, February 25, from 12 to 1 p.m. Eastern Standard Time (EST). Strategic Analysis will present results of its cost analysis of onboard compressed hydrogen storage systems.

  12. Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. EST. Strategic Analysis will present results of its cost analysis of onboard compressed hydrogen storage systems.

  13. Low-cost flexible packaging for high-power Li-Ion HEV batteries.

    SciTech Connect (OSTI)

    Jansen, A. N.; Amine, K.; Henriksen, G. L.

    2004-06-18

    Batteries with various types of chemistries are typically sold in rigid hermetically sealed containers that, at the simplest level, must contain the electrolyte while keeping out the exterior atmosphere. However, such rigid containers can have limitations in packaging situations where the form of the battery is important, such as in hand-held electronics like personal digital assistants (PDAs), laptops, and cell phones. Other limitations exist as well. At least one of the electrode leads must be insulated from the metal can, which necessitates the inclusion of an insulated metal feed-through in the containment hardware. Another limitation may be in hardware and assembly cost, such as exists for the lithium-ion batteries that are being developed for use in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The large size (typically 10-100 Ah) of these batteries usually results in electric beam or laser welding of the metal cap to the metal can. The non-aqueous electrolyte used in these batteries are usually based on flammable solvents and therefore require the incorporation of a safety rupture vent to relieve pressure in the event of overcharging or overheating. Both of these features add cost to the battery. Flexible packaging provides an alternative to the rigid container. A common example of this is the multi-layered laminates used in the food packaging industry, such as for vacuum-sealed coffee bags. However, flexible packaging for batteries does not come without concerns. One of the main concerns is the slow egress of the electrolyte solvent through the face of the inner laminate layer and at the sealant edge. Also, moisture and air could enter from the outside via the same method. These exchanges may be acceptable for brief periods of time, but for the long lifetimes required for batteries in electric/hybrid electric vehicles, batteries in remote locations, and those in satellites, these exchanges are unacceptable. Argonne National Laboratory (ANL

  14. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications (EIA)

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  15. Energy storage systems cost update : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Schoenung, Susan M.

    2011-04-01

    This paper reports the methodology for calculating present worth of system and operating costs for a number of energy storage technologies for representative electric utility applications. The values are an update from earlier reports, categorized by application use parameters. This work presents an update of energy storage system costs assessed previously and separately by the U.S. Department of Energy (DOE) Energy Storage Systems Program. The primary objective of the series of studies has been to express electricity storage benefits and costs using consistent assumptions, so that helpful benefit/cost comparisons can be made. Costs of energy storage systems depend not only on the type of technology, but also on the planned operation and especially the hours of storage needed. Calculating the present worth of life-cycle costs makes it possible to compare benefit values estimated on the same basis.

  16. Updated Costs (June 2011 Basis) for Selected Bituminous Baseline...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has been eliminated in the current version. * Cases 1, 2, 13 and 14, Account 7.1 (Heat Recovery Steam Generator): The HRSG costs were re-calibrated using a series of more recent...

  17. Table 1. Updated estimates of power plant capital and operating costs

    U.S. Energy Information Administration (EIA) Indexed Site

    Updated estimates of power plant capital and operating costs" ,"Plant Characteristics",,,"Plant Costs (2012$)" ,"Nominal Capacity (MW)","Heat Rate (Btu/kWh)",,"Overnight Capital Cost ($/kW)","Fixed O&M Cost ($/kW-yr)","Variable O&M Cost ($/MWh)" ,,,,,,,"NEMS Input" " Coal" "Single Unit Advanced PC",650,8800,,3246,37.8,4.47,"N" "Dual Unit Advanced

  18. CNEEC - Batteries Tutorial by Prof. Cui

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries

  19. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parabolic Trough Collector Cost Update for the System Advisor Model (SAM) Parthiv Kurup and Craig S. Turchi National Renewable Energy Laboratory Technical Report NREL/TP-6A20-65228 November 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  20. POSTPONED: Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar has been postponed until further notice. The Energy Department will present a live webinar titled "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" on Tuesday, January 26, from 12 to 1 p.m. Eastern Standard Time.

  1. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

  2. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct‐hydrogen proton ex

  3. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  4. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

  5. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2008 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2009-03-26

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  6. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    Broader source: Energy.gov [DOE]

    Report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  7. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2008-02-29

    This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

  8. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the seventh annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. The 2013 update covers fuel cell cost analysis of both light duty vehicle (automotive) and transit bus applications for only the current year (i.e., 2013).

  9. Batteries

    Broader source: Energy.gov [DOE]

    From consumer electronics to laptops to vehicles, batteries are an important part of our everyday life. Learn about the Energy Department's innovative research and development in different energy storage options.

  10. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles - SECOND EDITION

    SciTech Connect (OSTI)

    Nelson, Paul A.; Gallagher, Kevin G.; Bloom, Ira D.; Dees, Dennis W.

    2012-01-01

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publicly available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publicly peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on

  11. Design of Electric Drive Vehicle Batteries for Long Life and Low Cost: Robustness to Geographic and Consumer-Usage Variation (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Markel, T.; Kim, G. H.; Pesaran, A.

    2010-10-01

    This presentation describes a battery optimization and trade-off analysis for Li-ion batteries used in EVs and PHEVs to extend their life and/or reduce cost.

  12. A low cost, high energy density and long cycle life potassium-sulfur battery for grid-scale energy storage

    SciTech Connect (OSTI)

    Lu, Xiaochuan; Bowden, Mark E.; Sprenkle, Vincent L.; Liu, Jun

    2015-08-15

    Alkali metal-sulfur batteries are attractive for energy storage applications because of their high energy density. Among the batteries, lithium-sulfur batteries typically use liquid in the battery electrolyte, which causes problems in both performance and safety. Sodium-sulfur batteries can use a solid electrolyte such as beta alumina but this requires a high operating temperature. Here we report a novel potassium-sulfur battery with K+-conducting beta-alumina as the electrolyte. Our studies indicate that liquid potassium exhibits much better wettability on the surface of beta-alumina compared to liquid sodium at lower temperatures. Based on this observation, we develop a potassium-sulfur battery that can operate at as low as 150°C with excellent performance. In particular, the battery shows excellent cycle life with negligible capacity fade in 1000 cycles because of the dense ceramic membrane. This study demonstrates a new battery with a high energy density, long cycle life, low cost and high safety, which is ideal for grid-scale energy storage.

  13. Annual Energy Outlook 2014 Modeling Updates

    U.S. Energy Information Administration (EIA) Indexed Site

    Analysis; Energy Consumption and Efficiency Analysis July 23, 2013 | Washington, DC Annual Energy Outlook 2014: Modeling Updates in the Transportation Sector Overview 2 AEO2014 Transportation Model Updates Washington, D.C., July 2013 Discussion purposes only - Do not cite or circulate * Light-duty vehicle - Vehicle miles traveled by age cohort, update modeling parameters, employment and VMT - E85 demand - Battery electric vehicle cost, efficiency, and availability * Heavy-duty vehicle, rail,

  14. NREL Releases Updated Baseline of Cost and Performance Data for Electricity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Technologies - News Releases | NREL Releases Updated Baseline of Cost and Performance Data for Electricity Generation Technologies Webinar to be held on September 13 September 1, 2016 Graph-showing-NREL-2016-Annual-Technology-Baseline From NREL's 2016 Annual Technology Baseline, the projected Capital Expenditure (CAPEX) for electricity generating technologies in 2030. The Energy Department's National Renewable Energy Laboratory (NREL) has released the 2016 Annual Technology

  15. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation of Direct H 2 PEM Fuel Cell Systems for Transportation Applications: 2012 Update October 18, 2012 Prepared By: Brian D. James Andrew B. Spisak Revision 4 2 Sponsorship and Acknowledgements This research was conducted under Award Number DE-EE0005236 to the US Department of Energy. The authors wish to thank Dr. Dimitrios Papageorgopoulos and Mr. Jason Marcinkoski of DOE's Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies (FCT) Program

  16. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    SciTech Connect (OSTI)

    Kurup, Parthiv; Turchi, Craig S.

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m2 +/- $6/m2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.

  17. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis conducted by Directed Technologies (DTI), under contract to the US Department of Energy (DOE).

  18. DC Fast Charge Effects on Battery Life and Performance Study - 50,000 Mile Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 L2 4582 L2 2183 DCFC 2078 DCFC 0-10k Miles (Oct-Jan) 28.6 28.6 32.7 32.5 10-20k Miles (Jan-Mar) 22.7 22.5 27.6 27.3 20-30k Miles (Apr-Jul) 35.7 36.0 39.8 39.5 30-40k Miles (Jul-Oct) 38.2 38.4 40.8 40.6 40-50k Miles (Oct-Mar) 23.2 23.6 27.3 26.8 1. Capacity and Peak Power tests based on tests from USABC Electric Vehicle Battery Test Procedures Manual Revision 2. Electric Vehicle Power Characterization test adapted from the Hybrid Pulse Power Characterization Test from the FreedomCAR Battery

  19. Technical and economic assessments of electrochemical energy storage systems: Topical report on the potential for savings in load-leveling battery and balance of plant costs

    SciTech Connect (OSTI)

    Abraham, J.; Binas, G.; Del Monaco, J.L.; Pandya, D.A.; Sharp, T.E.; Consiglio, J.A.

    1985-08-31

    The battery technologies considered in this study are zinc-bromide, lead-acid, zinc-chloride and sodium sulfur. Results of the study are presented in self contained sections in the following order: Balance of Plant, Zinc-Bromide, Lead-Acid, Zinc-chloride, and Sodium-Sulfur. The balance of plant cost estimates are examined first since the results of this section are utilized in the following battery sections to generate cost reductions in the battery plant costs for each of the battery technologies.

  20. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  1. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  2. US-ABC Collaborates to Lower Cost of Electric Drive Batteries

    Broader source: Energy.gov [DOE]

    The U.S. Advanced Battery Consortium (US-ABC) is a group that funds electrochemical storage research and development.

  3. EERE Success Story—US-ABC Collaborates to Lower Cost of Electric Drive Batteries

    Broader source: Energy.gov [DOE]

    The U.S. Advanced Battery Consortium (US-ABC) is a group that funds electrochemical storage research and development.

  4. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  5. Modeling the Performance and Cost of Lithium-Ion Batteries for...

    Office of Scientific and Technical Information (OSTI)

    National Laboratory for lithium-ion battery packs used in automotive transportation. ... calculated by accounting for every step in the lithium-ionbattery manufacturing process. ...

  6. Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499

    SciTech Connect (OSTI)

    Smith, K.

    2013-10-01

    Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

  7. A cost effective battery bank for I sup 2 t testing and evaluation of electrical switchgear

    SciTech Connect (OSTI)

    Reass, W.A.

    1989-01-01

    This paper describes the electrical design and mechanical construction of a 50 kA step switched'' battery bank. Individual fuses protect each of the forty parallel isolated strings of three series (12 V) batteries. Step current waveforms of 12.5 kA, 25 kA, 37.5 kA, and 50 kA are produced by 8 sets of pneumatically driven 20 pole step switches and current limiting stainless steel trombone'' resistors. Inexpensive, yet conservatively designed, Group 65 Motorcraft car batteries are used to give an I{sup 2}t capability of better than 5 {times} 10{sup 9}. The battery bank has well over 1500 shots, with testing of commercial switchgear continuing. In addition to the battery bank engineering data, results of repetitive testing of vacuum interrupters at their I{sup 2}t limit will be provided. 8 figs.

  8. Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage Metal-Air Ionic Liquid (MAIL) Batteries

    SciTech Connect (OSTI)

    2009-12-21

    Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the batterys main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASUs new battery system could be both cheaper and safer than todays Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

  9. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    SciTech Connect (OSTI)

    1995-01-31

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  10. KAir Battery

    Broader source: Energy.gov [DOE]

    KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

  11. AEO2017 Modeling updates in the transportation sector

    U.S. Energy Information Administration (EIA) Indexed Site

    7 For AEO2017 Transportation Working Group August 31, 2016 | Washington, DC By Melissa Lynes, John Maples, Mark Schipper, and David Stone Office of Energy Consumption and Efficiency Analysis Modeling updates in the transportation sector Updates to the Annual Energy Outlook 2017 * Transportation demand model highlights - 10-year extension of last-year projection, AEO2016 is 2040 and AEO2017 is 2050 - Battery costs for electric vehicles - Phase 2 greenhouse gas and fuel efficiency standards for

  12. Flow-Assisted Alkaline Battery: Low-Cost Grid-Scale Electrical Storage using a Flow-Assisted Rechargeable Zinc-Manganese Dioxide Battery

    SciTech Connect (OSTI)

    2010-09-15

    GRIDS Project: Traditional consumer-grade disposable batteries are made of Zinc and Manganese, 2 inexpensive, abundant, and non-toxic metals. But these disposable batteries can only be used once. If they are recharged, the Zinc in the battery develops filaments called dendrites that grow haphazardly and disrupt battery performance, while the Manganese quickly loses its ability to store energy. CUNY Energy Institute is working to tame dendrite formation and to enhance the lifetime of Manganese in order to create a long-lasting, fully rechargeable battery for grid-scale energy storage. CUNY Energy Institute is also working to reduce dendrite formation by pumping fluid through the battery, enabling researchers to fix the dendrites as theyre forming. The team has already tested its Zinc battery through 3,000 recharge cycles (and counting). CUNY Energy Institute aims to demonstrate a better cycle life than lithium-ion batteries, which can be up to 20 times more expensive than Zinc-based batteries.

  13. An analysis of nuclear power plant operating costs: A 1995 update

    SciTech Connect (OSTI)

    1995-04-21

    Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

  14. Coupling Mechanical with Electrochemical-Thermal Models for Batteries under Abuse

    SciTech Connect (OSTI)

    Wierzbicki, Tomasz; Sahraei, Elham; Dajka, Stephen; Li, Genong; Santhanagopalan, Shriram; Zhang, Chao; Kim, Gi-Heon; Sprague, Michael A.

    2015-06-09

    This presentation provides an update on coupled mechanical-electrochemical-thermal models for batteries under abuse.

  15. Analysis of Nuclear Power Plant Operating Costs: A 1995 Update, An

    Reports and Publications (EIA)

    1995-01-01

    This report provides an analysis of nuclear power plant operating costs. The Energy Information Administration published three reports on this subject during the period 1988-1995.

  16. Updated Cost Analysis of Photobiological Hydrogen Production from Chlamydomonas reinhardtii Green Algae: Milestone Completion Report

    SciTech Connect (OSTI)

    Amos, W. A.

    2004-01-01

    This report updates the 1999 economic analysis of NREL's photobiological hydrogen production from Chlamydomonas reinhardtii. The previous study had looked mainly at incident light intensities, batch cycles and light adsorption without directly attempting to model the saturation effects seen in algal cultures. This study takes a more detailed look at the effects that cell density, light adsorption and light saturation have on algal hydrogen production. Performance estimates based on actual solar data are also included in this study. Based on this analysis, the estimated future selling price of hydrogen produced from algae ranges $0.57/kg to $13.53/kg.

  17. Update on maintenance and service costs of commercial building ground-source heat pump systems

    SciTech Connect (OSTI)

    Cane, D.; Garnet, J.M.

    2000-07-01

    An earlier paper showed that commercial ground-source heat pump systems have significantly lower service and maintenance costs than alternative HVAC systems. This paper expands on those results by adding 13 more buildings to the original 25 sites and by comparing the results to the latest ASHRAE survey of HVAC maintenance costs. Data from the 38 sites are presented here including total (scheduled and unscheduled) maintenance costs in cents per square foot per year for base cost, in-house, and contractor-provided maintenance. Because some of the new sites had maintenance costs that were much higher than the industry norm, the resulting data are not normally distributed. Analysis (O'Hara Hines 1998) indicated that a log-normal distribution is a better fit; thus, the data are analyzed and presented here as log-normal. The log-mean annual total maintenance costs for the most recent year of the survey ranged from 6.07 cents per square foot to 8.37 cents per square foot for base cost and contractor-provided maintenance, respectively.

  18. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  19. Vehicle Technologies Office Merit Review 2016: Low?Cost, High?Capacity Lithium Ion Batteries through Modified Surface and Microstructure

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  20. Vehicle Technologies Office Merit Review 2016: Low-cost, High Energy Si/Graphene Anodes for Li-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by XG Sciences at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  1. Vehicle Technologies Office Merit Review 2016: An Integrated Flame Spray Process for Low Cost Production of Battery Materials

    Broader source: Energy.gov [DOE]

    Presentation given by University of Missouri at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  2. EV Everywhere Grand Challenge - Battery Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...2012 EV Everywhere Grand Challenge -- Battery Workshop Thursday, July 26, 2012 - ... Technologies Program 9:25-9:50 AM EV BATTERY TECHNOLOGY-CURRENT STATUS & COST ...

  3. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Solution for Smart Grid Renewable Energy Applications - Sheri Nevins, Ktech & Craig Horne, EnerVault.pdf (1012.45 KB) ESS 2010 Update Conference - Smart Grid Distributed ...

  4. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. ... Municipal Power Vanadium Redox Battery Demonstration Project - Joseph Startari, ...

  5. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Energy Storage Systems 2010 Update Conference Presentations - Day 1, Session 3 The U.S. ... 2010 Update Conference - Nitrogen-Air Battery - David Ingersoll, SNL.pdf PDF icon ESS ...

  6. PHEV Battery Cost Assessment

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. PHEV Battery Cost Assessment

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  8. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect (OSTI)

    Ramsden, T.; Ruth, M.; Diakov, V.; Laffen, M.; Timbario, T. A.

    2013-03-01

    This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and greenhouse gas (GHG) emissions. This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle well-to-wheels energy use and GHG emissions associated with the pathways.

  9. Battery packaging - Technology review

    SciTech Connect (OSTI)

    Maiser, Eric

    2014-06-16

    This paper gives a brief overview of battery packaging concepts, their specific advantages and drawbacks, as well as the importance of packaging for performance and cost. Production processes, scaling and automation are discussed in detail to reveal opportunities for cost reduction. Module standardization as an additional path to drive down cost is introduced. A comparison to electronics and photovoltaics production shows 'lessons learned' in those related industries and how they can accelerate learning curves in battery production.

  10. Significant Enhancement of Computational Efficiency in Nonlinear Multiscale Battery Model for Computer Aided Engineering

    SciTech Connect (OSTI)

    Smith, Kandler; Graf, Peter; Jun, Myungsoo; Yang, Chuanbo; Li, Genong; Li, Shaoping; Hochman, Amit; Tselepidakis, Dimitrios

    2015-06-09

    This presentation provides an update on improvements in computational efficiency in a nonlinear multiscale battery model for computer aided engineering.

  11. Batteries: Overview of Battery Cathodes

    SciTech Connect (OSTI)

    Doeff, Marca M

    2010-07-12

    electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet

  12. #AskBerkeleyLab: Batteries for Electric Cars

    SciTech Connect (OSTI)

    Srinivasan, Venkat

    2015-02-27

    Berkeley Lab Battery Scientist, Venkat Srinivasan, answers a question about batteries for electric cars, highlighting the lab's research into reducing costs and improving environmental impact.

  13. High-Power Batteries | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Batteries Our goal is to develop and apply a new biologically inspired, low cost, ... exceptionally high power and stability as anodes and cathodes for lithium ion batteries. ...

  14. Lithium Iron Phosphate Composites for Lithium Batteries (IN-11...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Iron Phosphate Composites for Lithium Batteries (IN-11-024) Low-Cost Phosphate Compounds Enhance Lithium Battery Performance Argonne National Laboratory Contact ANL About ...

  15. Update of Hydrogen from Biomass - Determination of the Delivered...

    Office of Environmental Management (EM)

    Update of Hydrogen from Biomass - Determination of the Delivered Cost of Hydrogen: Milestone Completion Report Update of Hydrogen from Biomass - Determination of the Delivered Cost ...

  16. Webinar January 26: Update to the 700 bar Compressed Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection ...

  17. CRADA final report: Technical assessment of roll-to-roll operation of lamination process, thermal treatment, and alternative carbon fiber precursors for low-cost, high-efficiency manufacturing of flow battery stacks and other energy devices

    SciTech Connect (OSTI)

    Daniel, Claus; Madden, Thomas; Wood, III, David L; Muth, Thomas R.; Warrington, Curtis; Ozcan, Soydan; Manson, Hunter; Tekinalp, Halil L.; Smith, Mark A.; Lu, Yuan; Loretz, Jeremy

    2015-09-23

    Among the various stationary-storage technologies under development, redox flow batteries (RFBs) offer the greatest potential to deliver inexpensive, scalable, and efficient grid-scale electrical-energy storage. Unlike traditional sealed batteries, in a flow battery power and energy are decoupled. Cell area and cell count in the stack determine the device power, and the chemical storage volume determines the total energy. Grid-scale energy-storage applications require megawatt-scale devices, which require the assembly of hundreds of large-area, bipolar cells per power plant. The cell-stack is the single system component with the largest impact on capital cost (due to the large number of highly engineered components) and operating costs (determined by overall round-trip efficiency).

  18. Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

  19. Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  20. Vehicle Technologies Office Merit Review 2015: Low-cost, High Energy Si/Graphene Anodes for Li-ion Batteries

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by XG Sciences at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low-cost, high energy Si/graphene...

  1. Vehicle Technologies Office Merit Review 2015: Low‐Cost, High‐Capacity Lithium Ion Batteries through Modified Surface and Microstructure

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low‐cost, high‐capacity...

  2. Battery system

    DOE Patents [OSTI]

    Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

    2013-08-27

    A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

  3. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Lithium Batteries Resources with Additional Information...

  4. Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

    SciTech Connect (OSTI)

    Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew; Sullivan, John L.; Wang, Michael

    2014-01-01

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  5. Material and energy flows in the materials production, assembly, and end-of-life stages of the automotive lithium-ion battery life cycle

    SciTech Connect (OSTI)

    Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J.

    2012-06-21

    This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.

  6. Technical and economic assessments of electrochemical energy storage systems: Volume 6, Zinc-Bromide battery plant description, cost estimate credible accident and efficiency assessment: Part 1, Energy Research Corporation battery design: Final report for the period September 1978-May 1985

    SciTech Connect (OSTI)

    Abraham, J.; Binas, G.; Del Monaco, J.L.; Pandya, D.A.; Sharp, T.E.

    1985-06-05

    This document describes the ERC zinc-bromide battery module as the basic unit in the development of a battery load-leveling facility that will accumulate the output of base-load generation during periods of low demand and provide power for periods of high demands. (DLC)

  7. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (1.9 MB) ESS 2010 Update Conference - Towards Low Temperature Sodium Batteries - Jun Liu, PNNL.pdf (1.29 MB) More Documents & Publications Mechanism of LTO Gassing and potential ...

  8. Vehicle Technologies Office Merit Review 2016: Co-Extrusion (CoEx) for Cost Reduction of Advanced High-Energy-and-Power Battery Electrode Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by PARC at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  9. Electrode Materials for Rechargeable Lithium-Ion Batteries: A...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lowers battery pack cost. Layered cathode material contains low-cost manganese, which operates at high rate and high voltage and results in a high-energy-density battery with ...

  10. Hybrid CuO/SnO{sub 2} nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials

    SciTech Connect (OSTI)

    Xing, G. Z.; Wang, Y.; Wong, J. I.; Shi, Y. M.; Huang, Z. X.; Yang, H. Y.; Li, S.

    2014-10-06

    Hybrid CuO/SnO{sub 2} nanocomposites are synthesized by a facile thermal annealing method on Cu foils. Compared to pristine CuO and SnO{sub 2} nanostructures, hybrid CuO/SnO{sub 2} nanocomposites exhibit the enhanced electrochemical performances as the anode material of lithium ion batteries (LIBs) with high specific capacity and excellent rate capability. The binder free CuO/SnO{sub 2} nanocomposites deliver a specific capacity of 718 mA h g{sup ?1} at a current density of 500?mA g{sup ?1} even after 200 cycles. The enhanced electrochemical performances are attributed to the synergistic effect between SnO{sub 2} nanoparticles and CuO nanoarchitectures. Such hybrid CuO/SnO{sub 2} nanocomposites could open up a new route for the development of next-generation high-performance and cost-effective binder free anode material of LIBs for mass production.

  11. Renewable Energy Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Update Steve Lindenberg, Senior Advisor June 27, 2012 Message from the President "... I will not walk away from the promise of clean energy. I will not walk away from workers ... I will not cede the wind or solar or battery industry ... It's time ... to double down on a clean energy industry that has never been more promising." - President Obama, State of the Union, 24 January 2012 2 EERE Goals Clean Electricity: 80 percent by 2035 Transportation * Renewable electricity

  12. Cost Study Manual | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Study Manual Cost Study Manual Update 62912. PDF icon Memo regarding Cost Study Manual PDF icon Cost Study Manual More Documents & Publications Contractor Human Resources ...

  13. Battery resource assessment. Subtask II. 5. Battery manufacturing capability recycling of battery materials. Draft final report

    SciTech Connect (OSTI)

    Pemsler, P.

    1981-02-01

    Studies were conducted on the recycling of advanced battery system components for six different battery systems. These include: Nickel/Zinc, Nickel/Iron, Zinc/Chlorine, Zinc/Bromine, Sodium/Sulfur, and Lithium-Aluminum/Iron Sulfide. For each battery system, one or more processes has been developed which would permit recycling of the major or active materials. Each recycle process has been designed to produce a product material which can be used directly as a raw material by the battery manufacturer. Metal recoverabilities are in the range of 93 to 95% for all processes. In each case, capital and operating costs have been developed for a recycling plant which processes 100,000 electric vehicle batteries per year. These costs have been developed based on material and energy balances, equipment lists, factored installation costs, and manpower estimates. In general, there are no technological barriers for recycling in the Nickel/Zinc, Nickel/Iron, Zinc/Chlorine and Zinc/Bromine battery systems. The recycling processes are based on essentially conventional, demonstrate technology. The lead times required to build battery recycling plants based on these processes is comparable to that of any other new plant. The total elapsed time required from inception to plant operation is approximately 3 to 5 y. The recycling process for the sodium/sulfur and lithium-aluminum/sulfide battery systems are not based on conventional technology. In particular, mechanical systems for dismantling these batteries must be developed.

  14. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    information about thin-film lithium batteries is available in full-text and on the Web. ... Additional Web Pages: Thin Films for Advanced Batteries Thin-Film Rechargeable Lithium, ...

  15. EERE Success Story-Johnson Controls Develops an Improved Vehicle Battery,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Works to Cut Battery Costs in Half | Department of Energy Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half EERE Success Story-Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half April 15, 2013 - 12:00am Addthis Johnson Controls' Holland Technology Center in Milwaukee recently developed and built a new lithium-ion battery cell and accompanying system that substantially increases the energy density of plug-in

  16. NREL Model Licensed to Improve Accuracy of Battery Simulations - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Model Licensed to Improve Accuracy of Battery Simulations January 14, 2014 The Energy Department's National Renewable Energy Laboratory (NREL) has licensed its Equivalent Circuit Battery Model to software developer ThermoAnalytics for use in its recently updated RadTherm software package. The model is a part of the Battery Module within RadTherm, which is used by engineers to simulate the performance of battery cells and optimize multi-cell pack designs. Before the addition

  17. POSTPONED: Webinar January 26: Update to the 700 bar Compressed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POSTPONED: Webinar January 26: Update to the 700 bar Compressed Hydrogen Storage System Cost Projection POSTPONED: Webinar January 26: Update to the 700 bar Compressed Hydrogen ...

  18. DOE to Provide up to $14 Million to Develop Advanced Batteries...

    Energy Savers [EERE]

    in funding for a 28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. ...

  19. Battery Charger Efficiency

    Energy Savers [EERE]

    Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC Testing assumes all variables are known - battery chemistry, battery size. ...

  20. Construction of a Li Ion Battery (LIB) Cathode Production Plant...

    Broader source: Energy.gov (indexed) [DOE]

    Process for Low Cost Domestic Production of LIB Cathode Materials Process for Low Cost Domestic Production of LIB Cathode Materials Construction of a Li Ion Battery (LIB) Cathode ...

  1. Negative Electrodes Improve Safety in Lithium Cells and Batteries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost Lowers cost for enhanced stability ...

  2. Innovative Manufacturing and Materials for Low-Cost Lithium-Ion...

    Broader source: Energy.gov (indexed) [DOE]

    for Low-Cost Lithium-Ion Batteries Vehicle Technologies Office Merit Review 2014: Innovative Manufacturing and Materials for Low-Cost Lithium-Ion Batteries Vehicle Technologies ...

  3. Overcoming Processing Cost Barriers of High-Performance Lithium...

    Broader source: Energy.gov (indexed) [DOE]

    Lithium-Ion Battery Electrodes Vehicle Technologies Office Merit Review 2014: Overcoming Processing Cost Barriers of High-Performance Lithium-Ion Battery Electrodes ...

  4. Battery Charger Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery Charger Efficiency Issues with Marine and Recreational Vehicle Battery Chargers Marine and RV battery chargers differ from power tool and small appliance chargers CEC Testing assumes all variables are known - battery chemistry, battery size. This is not the case in Marine and RV applications. * The battery charger manufacturer has no influence on the selection of batteries. * The battery charger could be used to charge a single battery, single battery bank, multiple batteries or multiple

  5. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...

    Broader source: Energy.gov (indexed) [DOE]

    handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. ...

  6. Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications

    DOE Patents [OSTI]

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A battery load leveling arrangement for an electrically powered system in which battery loading is subject to intermittent high current loading utilizes a passive energy storage device and a diode connected in series with the storage device to conduct current from the storage device to the load when current demand forces a drop in battery voltage. A current limiting circuit is connected in parallel with the diode for recharging the passive energy storage device. The current limiting circuit functions to limit the average magnitude of recharge current supplied to the storage device. Various forms of current limiting circuits are disclosed, including a PTC resistor coupled in parallel with a fixed resistor. The current limit circuit may also include an SCR for switching regenerative braking current to the device when the system is connected to power an electric motor.

  7. Lithium Batteries

    Office of Scientific and Technical Information (OSTI)

    This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.' -Edited excerpt from Medical Applications of Non-medical ...

  8. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  9. Battery charging stations

    SciTech Connect (OSTI)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  10. Battery electrolytes. December 1982-June 1990 (A Bibliography from the NTIS data base). Report for December 1982-June 1990

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This bibliography contains citations concerning solid, liquid, and gaseous battery electrolytes. Battery design, use, and construction are discussed, and battery life, efficiency, and maintenance characteristics are also considered. Lithium, lead, nickel-cadmium, and thermal battery systems are covered in a separate bibliography. (This updated bibliography contains 241 citations, 190 of which are new entries to the previous edition.)

  11. Models for Battery Reliability and Lifetime

    SciTech Connect (OSTI)

    Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

    2014-03-01

    Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

  12. Johnson Controls Develops an Improved Vehicle Battery, Works...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half April 15, 2013 - 12:00am Addthis Johnson Controls' Holland Technology Center in Milwaukee ...

  13. Durathon Battery in New Bus | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    step in reducing the cost of clean fuel, zero emission buses, with a vehicle powered by GE's new Durathon(tm) battery in tandem with a lithium battery and a hydrogen fuel cell. ...

  14. NREL Bolsters Batteries with Nanotubes - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Scientist Chunmei Ban assembles a lithium-ion battery in the materials lab at the ... If successful, the batteries will last longer and perform better, leading to a cost ...

  15. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  16. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  17. Lithium battery

    SciTech Connect (OSTI)

    Ikeda, H.; Nakaido, S.; Narukara, S.

    1983-08-16

    In a lithium battery having a negative electrode formed with lithium as active material and the positive electrode formed with manganese dioxide, carbon fluoride or the like as the active material, the discharge capacity of the negative electrode is made smaller than the discharge capacity of the positive electrode, whereby a drop in the battery voltage during the final discharge stage is steepened, and prevents a device using such a lithium battery as a power supply from operating in an unstable manner, thereby improving the reliability of such device.

  18. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  19. NREL/CCSE PEV Battery Second Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2011-09-01

    This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

  20. Flow battery

    DOE Patents [OSTI]

    Lipka, Stephen M.; Swartz, Christopher R.

    2016-02-23

    An electrolyte system for a flow battery has an anolyte including [Fe(CN).sub.6].sup.3- and [Fe(CN).sub.6].sup.4- and a catholyte including Fe.sup.2+ and Fe.sup.3+.

  1. Bipolar battery

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1992-01-01

    A bipolar battery having a plurality of cells. The bipolar battery includes: a negative electrode; a positive electrode and a separator element disposed between the negative electrode and the positive electrode, the separator element electrically insulating the electrodes from one another; an electrolyte disposed within at least one of the negative electrode, the positive electrode and the separator element; and an electrode containment structure including a cup-like electrode holder.

  2. Fact #914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    29, 2016 Plug-in Vehicle Sales Climb as Battery Costs Decline - Dataset Fact 914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery Costs Decline - Dataset Excel file and ...

  3. Fact #914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    29, 2016 Plug-in Vehicle Sales Climb as Battery Costs Decline Fact 914: February 29, 2016 Plug-in Vehicle Sales Climb as Battery Costs Decline SUBSCRIBE to the Fact of the ...

  4. NERSC Helps Develop Next-Gen Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December 18, 2012 Contact: Linda Vu, lvu@lbl.gov, +1 510 495 2402 XBD201110-01310.jpg Kristin Persson To reduce the United States' reliance on foreign oil and lower consumer energy costs, the Department of Energy (DOE) is bringing together five national laboratories, five universities and four private firms to revolutionize

  5. Lithium-Ion Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Energy Analysis Energy Analysis Find More Like This Return to Search Lithium-Ion Batteries Predictive computer models for lithium-ion battery performance under standard and potentially abusive conditions National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Design. Build. Test. Break. Repeat. Developing batteries is an expensive and time-intensive process. Testing costs the

  6. Redox Flow Batteries: An Engineering Perspective

    SciTech Connect (OSTI)

    Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

    2014-10-01

    Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

  7. Rechargeable Aluminum-Ion Batteries

    SciTech Connect (OSTI)

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  8. Sodium cobalt bronze batteries and a method for making same

    DOE Patents [OSTI]

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1999-01-01

    A solid state secondary battery utilizing a low cost, environmentally sound, sodium cobalt bronze electrode. A method is provided for producing same.

  9. Battery Choices for Different Plug-in HEV Configurations (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2006-07-12

    Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

  10. A Better Anode Design to Improve Lithium-Ion Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... this composite anode exhibits the best performance so far in lithium-ion batteries, while retaining an economical cost and compatibility with existing manufacturing ...

  11. Layered Electrodes for Lithium Cells and Batteries | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrodes for Lithium Cells and Batteries Technology available for licensing: Layered lithium metal oxide compounds for ultra-high-capacity, rechargeable cathodes Lowers cost to ...

  12. Sodium cobalt bronze batteries and a method for making same

    DOE Patents [OSTI]

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1999-06-29

    A solid state secondary battery utilizing a low cost, environmentally sound, sodium cobalt bronze electrode is described. A method is provided for producing same. 11 figs.

  13. Innovative Way to Test Batteries Fills a Market Niche | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (IBC 284), developed by NREL and NETZSCH researchers, performs precise thermal measurements needed to design safer, longer-lasting, and more cost-effective battery systems. ...

  14. Four things you may not know about batteries | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... A battery must balance safety, cost, energy, power and overall lifetime for supreme performance. Many of these properties will have to be improved, depending on the intended ...

  15. Researchers Create Transparent Lithium-Ion Battery - Joint Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford and SLAC National Accelerator Laboratory researchers have invented a transparent lithium-ion battery that is also highly flexible. It is comparable in cost to regular ...

  16. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost ...

  17. levelized costs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levelized costs - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  18. RADIOACTIVE BATTERY

    DOE Patents [OSTI]

    Birden, J.H.; Jordan, K.C.

    1959-11-17

    A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

  19. Stand Alone Battery Thermal Management System

    SciTech Connect (OSTI)

    Brodie, Brad

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  20. Redox Flow Batteries - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The major issue of this type of flow battery is the high capital cost, partially due to the high market prices of vanadium compounds. Another drawback of the vanadium system is the ...

  1. NREL: Energy Storage - Battery Lifetime Analysis and Simulation Tool Suite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery Lifetime Analysis and Simulation Tool Suite Lithium-ion (Li-ion) batteries used in EVs and stationary energy storage applications must be optimized to justify their high upfront costs. Given that batteries degrade with use and storage, strategies for optimization must factor in many years of use with a number of variables, including: Temperature State-of-charge histories Electricity current levels Cycle depth and frequency. These factors can all affect rates of battery degradation,

  2. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation Citation Details In-Document Search Title: Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the

  3. Better Plants Progress Update 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Better Plants Progress Update 2014 The 2014 Progress Update details Better Buildings, Better Plants Program accomplishments, including new partners, new initiatives, and energy and cost savings experienced by partners. Better Plants Progress Update 2014 (1.22 MB) More Documents & Publications Better Plants Progress Update Fall 2013 Better Plants Look Ahead Webinar: Presentation Slides Better Plants Two-Page Overview

  4. EERE Success Story—Illinois: High-Energy, Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles Could Reduce Batteries' Cost and Size

    Broader source: Energy.gov [DOE]

    Batteries for electric drive vehicles and renewable energy storage will reduce petroleum usage, improving energy security and reducing harmful emissions.

  5. Thermal battery

    SciTech Connect (OSTI)

    Williams, M.T.; Winchester, C.S.; Jolson, J.D.

    1989-06-20

    A thermal battery is described comprising at least one electrochemical cell comprising an anode of alkali metal, alkaline earth metal or alloys thereof, a fusible salt electrolyte, a fluorocarbon polymer or fluorochlorocarbon polymer depolarizer, and means for heating the cell to melt the electrolyte.

  6. Develop improved battery charger (Turbo-Z Battery Charging System). Final report

    SciTech Connect (OSTI)

    1999-09-01

    The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

  7. Washington Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Energy Management Program Federal Utility Partnership Working Group Meeting: Washington Update Dr. Timothy Unruh October 25-26, 2011 Philadelphia, PA 2 | Federal Energy Management Program eere.energy.gov Presentation Overview  Federal Government Goals and Status  FEMP Update  UESC Program Overview and Goals  Mark Your Calendar: Spring 2012 FUPWG 3 | Federal Energy Management Program eere.energy.gov FEMP's Mission FEMP provides the services, tools, and expertise to Federal

  8. Washington Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 16, 2012 Federal Energy Management Program femp.energy.gov 2 Presentation Overview The Federal Buildings Personnel Training Act of 2010 Commit to Efficiency Customer Service Other FEMP Activities Update on Presidential Memo Commit to Efficiency OMB M-12-21 Federal Energy Management Program femp.energy.gov 3 The Federal Buildings Personnel Training Act of 2010 Commit to Efficiency Customer Service Other FEMP Activities Update on Presidential Memo Commit to Efficiency OMB M-12-21 Federal

  9. Washington Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington Update Dr. Timothy Unruh Director of Federal Energy Management Program Department of Energy May 18, 2016 2 Agenda * Federal Progress Toward Energy and Sustainability Goals for FY 2015 - GHG Emissions - Energy Intensity Reduction - Performance Contracting - Renewable Energy Use - Potable Water Intensity Reduction * Presidential Performance Contracting Challenge Update * Energy Exchange 2016 3 Progress Toward Energy and Sustainability Goals for FY 2015 4 Key Findings for FY 2015 * Scope

  10. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  11. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  12. ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY

    SciTech Connect (OSTI)

    LANDI, J.T.; PLIVELICH, R.F.

    2006-04-30

    Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

  13. EV Everywhere Battery Workshop: Preliminary Target-Setting Framework

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adv SI Adv CI SI HEV SI PHEV10 SI PHEV40 BEV100 BEV300 Levelized cost of driving, 2011mile Fuel Cost (NPV) Drive, Wheels, Tires, 12V Battery Transmission Generator Motor Energy ...

  14. Negative Electrodes Improve Safety in Lithium Cells and Batteries | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Negative Electrodes Improve Safety in Lithium Cells and Batteries Technology available for licensing: Enhanced stability at a lower cost Lowers cost for enhanced stability capability. A new class of intermetallic material for the negative electrode that offers a significantly higher volumetric and gravimetric capacity and improves battery stability and safety. PDF icon negative_electrodes

  15. Interim Update: Global Automotive Power Electronics R&D Relevant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and 2020 Cost Targets Interim Update: Global Automotive Power Electronics R&D Relevant To DOE 2015 and ...

  16. battery2.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-1982J Solid-State Environmentally Safe Battery for Replacing Lithium Batteries 1. ... Signature 2. Joint Entry with High Power Battery Systems Company 5 Silkin Street, Apt. 40 ...

  17. Comparison of advanced battery technologies for electric vehicles

    SciTech Connect (OSTI)

    Dickinson, B.E.; Lalk, T.R.; Swan, D.H.

    1993-12-31

    Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

  18. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, Thomas D.

    1995-01-01

    A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

  19. battery electrode percolating network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    battery electrode percolating network - Sandia Energy Energy Search Icon Sandia Home ... Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ...

  20. Vehicle Cost Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Choose a vehicle to compare fuel cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator Update Your Widget Code This widget version will stop working on March 31. Update your widget code. × Widget Code Select All Close U.S. Department of Energy Energy Efficiency and Renewable Energy

  1. Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Williams, B.; Ferry, M.; Eyer, J.

    2012-06-01

    Accelerated market penetration of plug-in electric vehicles and deployment of grid-connected energy storage are restricted by the high cost of lithium-ion batteries. Research, development, and manufacturing are underway to lower material costs, enhance process efficiencies, and increase production volumes. A fraction of the battery cost may be recovered after vehicular service by reusing the battery where it may have sufficient performance for other energy-storage applications. By extracting post-vehicle additional services and revenue from the battery, the total lifetime value of the battery is increased. The overall cost of energy-storage solutions for both primary (automotive) and secondary (grid) customer could be decreased. This techno-economic analysis of battery second use considers effects of battery degradation in both automotive and grid service, repurposing costs, balance-of-system costs, the value of aggregated energy-storage to commercial and industrial end users, and competitive technology. Batteries from plug-in electric vehicles can economically be used to serve the power quality and reliability needs of commercial and industrial end users. However, the value to the automotive battery owner is small (e.g., $20-$100/kWh) as declining future battery costs and other factors strongly affect salvage value. Repurposed automotive battery prices may range from $38/kWh to $132/kWh.

  2. Vehicle Technologies Office Merit Review 2016: Dramatically Improve the Safety Performance of Li Ion Battery Separators and Reduce the Manufacturing Cost Using UV Curing and High Precision Coating Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Miltec UV International at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  3. Piezonuclear battery

    DOE Patents [OSTI]

    Bongianni, Wayne L.

    1992-01-01

    A piezonuclear battery generates output power arising from the piezoelectric voltage produced from radioactive decay particles interacting with a piezoelectric medium. Radioactive particle energy may directly create an acoustic wave in the piezoelectric medium or a moderator may be used to generate collision particles for interacting with the medium. In one embodiment a radioactive material (.sup.252 Cf) with an output of about 1 microwatt produced a 12 nanowatt output (1.2% conversion efficiency) from a piezoelectric copolymer of vinylidene fluoride/trifluorethylene.

  4. Survey of mercury, cadmium and lead content of household batteries

    SciTech Connect (OSTI)

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

  5. Cost Participation in Research and Development Contracting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    35.2 June 2016 ______________________________________________________________________________ 1 Cost Participation in Research and Development Contracting [References: Public Law 109-58, Energy Policy Act of 2005, FAR 35.003(b), DEAR 917.70] 1.0 Summary of Latest Changes This update: (1) combines Acquisition Guide Chapters 17.2, Cost Participation, and 35.2, Cost Sharing in Research and Development Contracting, (2) updates delegations of authority, (3) updates sample cost sharing language for

  6. Electrode Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Approach | Argonne National Laboratory Materials for Rechargeable Lithium-Ion Batteries: A New Synthetic Approach Technology available for licensing: New high-energy cathode materials for use in rechargeable lithium-ion cells and batteries synthesized by using a novel alternative approach Lowers battery pack cost. Layered cathode material contains low-cost manganese, which operates at high rate and high voltage and results in a high-energy-density battery with improved stability. PDF icon

  7. Battery/Heat Engine Vehicle Analysis

    Energy Science and Technology Software Center (OSTI)

    1991-03-01

    MARVEL performs least-life-cycle-cost analyses of battery/heat engine/hybrid vehicle systems to determine the combination of battery and heat engine characteristics for different vehicle types and missions. Simplified models are used for the transmission, motor/generator, controller, and other vehicle components, while a rather comprehensive model is used for the battery. Battery relationships available include the Ragone curve, peak power versus specific energy and depth-of-discharge (DOD), cycle life versus DOD, effects of battery scale, and capacity recuperation duemore » to intermittent driving patterns. Energy management in the operation of the vehicle is based on the specified mission requirements, type and size of the battery, allowable DOD, size of the heat engine, and the management strategy employed. Several optional management strategies are available in MARVEL. The program can be used to analyze a pure electric vehicle, a pure heat engine vehicle, or a hybrid vehicle that employs batteries as well as a heat engine. Cost comparisons for these vehicles can be made on the same basis. Input data for MARVEL are contained in three files generated by the user using three preprocessors which are included. MVDATA processes vehicle specification and mission requirements information, while MBDATA creates a file containing specific peak power as a function of specific energy and DOD, and MPDATA produces the file containing vehicle velocity specification data based on driving cycle information.« less

  8. Better Plants Progress Update Fall 2013

    SciTech Connect (OSTI)

    none,

    2013-09-23

    This Progress Update summarizes the significant energy saving achievements and cumulative cost savings made by these industry leaders from 2010-2012. The update also shares the plans and priorities over the next year for the Better Plants Program to continue to advance energy efficiency in the industrial sector.

  9. Lithium-Polysulfide Flow Battery Demonstration

    ScienceCinema (OSTI)

    Zheng, Wesley

    2014-07-16

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  10. Lithium-Polysulfide Flow Battery Demonstration

    SciTech Connect (OSTI)

    Zheng, Wesley

    2014-06-30

    In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

  11. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    SciTech Connect (OSTI)

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  12. Optima Batteries | Open Energy Information

    Open Energy Info (EERE)

    Optima Batteries Jump to: navigation, search Name: Optima Batteries Place: Milwaukee, WI Website: www.optimabatteries.com References: Optima Batteries1 Information About...

  13. Breakthrough Flow Battery Cell Stack: Transformative Electrochemical Flow Storage System (TEFSS)

    SciTech Connect (OSTI)

    2010-09-09

    GRIDS Project: UTRC is developing a flow battery with a unique design that provides significantly more power than today's flow battery systems. A flow battery is a cross between a traditional battery and a fuel cell. Flow batteries store their energy in external tanks instead of inside the cell itself. Flow batteries have traditionally been expensive because the battery cell stack, where the chemical reaction takes place, is costly. In this project, UTRC is developing a new stack design that achieves 10 times higher power than today’s flow batteries. This high power output means the size of the cell stack can be smaller, reducing the amount of expensive materials that are needed. UTRC’s flow battery will reduce the cost of storing electricity for the electric grid, making widespread use feasible.

  14. New PerfSONAR Updates Showcased at 2015 Technology Exchange

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exchange Updates include support for accelerating node deployment; reduction of NOC costs October 5, 2015 To propel the automation and deployment of large scale...

  15. Energy Storage Systems 2010 Update Conference Presentations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations from the fourth session of Day 2, chaired by NETL's Kim Nuhfer, are below. ESS 2010 Update Conference - Low Cost Energy Storage - Ted Wiley, Aquion.pdf (1.47 MB) Ess ...

  16. Competitive Electricity Prices: An Update

    Reports and Publications (EIA)

    1998-01-01

    Illustrates a third impact of the move to competitive generation pricing -- the narrowing of the range of prices across regions of the country. This feature article updates information in Electricity Prices in a Competitive Environment: Marginal Cost Pricing of Generation Services and Financial Status of Electric Utilities.

  17. A review of battery life-cycle analysis : state of knowledge and critical needs.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Gaines, L.; Energy Systems

    2010-12-22

    A literature review and evaluation has been conducted on cradle-to-gate life-cycle inventory studies of lead-acid, nickel-cadmium, nickel-metal hydride, sodium-sulfur, and lithium-ion battery technologies. Data were sought that represent the production of battery constituent materials and battery manufacture and assembly. Life-cycle production data for many battery materials are available and usable, though some need updating. For the remaining battery materials, lifecycle data either are nonexistent or, in some cases, in need of updating. Although battery manufacturing processes have occasionally been well described, detailed quantitative information on energy and material flows is missing. For all but the lithium-ion batteries, enough constituent material production energy data are available to approximate material production energies for the batteries, though improved input data for some materials are needed. Due to the potential benefit of battery recycling and a scarcity of associated data, there is a critical need for life-cycle data on battery material recycling. Either on a per kilogram or per watt-hour capacity basis, lead-acid batteries have the lowest production energy, carbon dioxide emissions, and criteria pollutant emissions. Some process-related emissions are also reviewed in this report.

  18. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2010-09-30

    Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

  19. Iron-Air Rechargeable Battery: A Robust and Inexpensive Iron-Air Rechargeable Battery for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: USC is developing an iron-air rechargeable battery for large-scale energy storage that could help integrate renewable energy sources into the electric grid. Iron-air batteries have the potential to store large amounts of energy at low cost—iron is inexpensive and abundant, while oxygen is freely obtained from the air we breathe. However, current iron-air battery technologies have suffered from low efficiency and short life spans. USC is working to dramatically increase the efficiency of the battery by placing chemical additives on the battery’s iron-based electrode and restructuring the catalysts at the molecular level on the battery’s air-based electrode. This can help the battery resist degradation and increase life span. The goal of the project is to develop a prototype iron-air battery at significantly cost lower than today’s best commercial batteries.

  20. Overcharge Protection Prevents Exploding Lithium Ion Batteries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Overcharge Protection Prevents Exploding Lithium Ion Batteries Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary Berkeley Lab scientists Guoying Chen and Thomas J. Richardson have invented a new type of separator membrane that prevents dangerous overcharge and overdischarge conditions in rechargeable lithium-ion batteries, i.e., exploding lithium ion batteries. This low cost separator, with electroactive polymers

  1. Utility battery storage systems program report for FY 94

    SciTech Connect (OSTI)

    Butler, P.C.

    1995-03-01

    Sandia National Laboratories, New Mexico, conducts the Utility Battery Storage Systems Program, which is sponsored by the US Department of Energy`s Office of Energy Management. The goal of this program is to assist industry in developing cost-effective battery systems as a utility resource option by 2000. Sandia is responsible for the engineering analyses, contracted development, and testing of rechargeable batteries and systems for utility energy storage applications. This report details the technical achievements realized during fiscal year 1994.

  2. An Update on Radiative Transfer Model Development at Atmospheric and Environmental Research, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Battery Manufacturing An Update on Advanced Battery Manufacturing October 16, 2012 - 9:41am Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs What are the key facts? The advanced battery market is expanding dramatically in the U.S. and around the world -- from $5 billion in 2010 to nearly $50 billion in 2020, an average annual growth rate of roughly 25 percent. The Department of Energy, with strong bipartisan support, awarded $2 billion in grants to 29

  3. Organic-Acid-Assisted Fabrication of Low-Cost Li-Rich Cathode Material (Li[Li1/6Fe1/6Ni1/6Mn1/2]O-2) for Lithium-Ion Battery

    SciTech Connect (OSTI)

    Zhao, Taolin; Chen, Shi; Li, Li; Zhang, Xiaoxiao; Wu, Huiming; Wu, Tianpin; Sun, Cheng-Jun; Chen, Renjie; Wu, Feng; Lu, Jun; Amine, Khalil

    2014-12-24

    A novel Li-rich cathode Li[Li1/6Fe1/6Ni1/6Mn1/2]O-2 (0.4Li(2)MnO(3-)0.6LiFe(1/3)Ni(1/3)Mn(1/3)O(2)) was synthesized by a solgel method, which uses citric acid (SC), tartaric acid (ST), or adipic acid (SA) as a chelating agent. The structural, morphological, and electrochemical properties of the prepared samples were characterized by various methods. X-ray diffraction showed that single-phase materials are formed mainly with typical alpha-NaFeO2 layered structure (R3 m), and the SC sample has the lowest Li/Ni cation disorder. The morphological study indicated homogeneous primary particles in good distribution size (100 nm) with small aggregates. The Fe, Ni, and Mn valences were determined by X-ray absorption near-edge structure analysis. In coin cell tests, the initial reversible discharge capacity of an SA electrode was 289.7 mAh g(-1) at the 0.1C rate in the 1.54.8 V voltage range, while an SC electrode showed a better cycling stability with relatively high capacity retention. At the 2C rate, the SC electrode can deliver a discharge capacity of 150 mAh g(-1) after 50 cycles. Differential capacity vs voltage curves were employed to further investigate the electrochemical reactions and the structural change process during cycling. This low-cost, Fe-based compound prepared by the solgel method has the potential to be used as the high capacity cathode material for Liion batteries.

  4. Washington Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 11, 2012 Federal Energy Management Program femp.energy.gov 2 1. Status of Federal Goals 2. Presidential Memo * Key provisions * Role of UESCs * Agency commitments 3. Meeting Memo's Goals * New Programs * Financing * Reporting and Resources 4. FEMP Update 5. Mark Your Calendar: GovEnergy 2012 Agenda Federal Energy Management Program femp.energy.gov 3 $169 $181 $291 $281 $335 $469 $1,081 $3,544 $2,565 $122 $54 $92 $70 $139 $110 $142 $64 $165 $429 $36 $123 $314 $166 $356 $457 $563 $369 $0

  5. Washington Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUPWG: Washington Update November 5, 2014 Timothy D. Unruh PhD, PE, CEM Program Manager DOE FEMP 2 Agenda  Mission  FEMP's Role  White House Capital Solar Challenge  President's Performance Contracting Challenge  UESC  IDIQ Re-compete  eProject Builder- UESC Inclusion  ENABLE- UESC Inclusion  Operations and Maintenance  FEEF Awards-include next award technology  Energy Exchange  Fossil Fuel Rule: SNOPR  Vision for PBC of the Future  Questions 3 Mission

  6. Propane update

    U.S. Energy Information Administration (EIA) Indexed Site

    update March 30,2016 | Washington, DC (Inventory data as of 3/25/16; residential heating fuel prices as of 3/28/16) By U.S. Energy Information Administration 0 5 10 15 20 25 30 35 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 Mar-16 5-year range Inventories rolling 5-year Avg PADD 2 (Midwest) propane inventories near top of 5-year range U.S. Energy Information Administration 2 PADD 2 propane* inventories million barrels Source: EIA, Weekly Petroleum Status Report, data through March 25, 2016

  7. Program Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April-June 2014 issue of the U.S. Department of Energy (DOE) Offce of Legacy Management (LM) Program Update. This publication is designed to provide a status of activities within LM. Please direct all comments and inquiries to lm@hq.doe.gov. April-June 2014 Visit us at http://energy.gov/lm/ Goal 4 Optimizing the Use of Federal Lands Through Disposition The foundation of the U.S. Department of Energy (DOE) Offce of Legacy Manage- ment's (LM) Goal 4, "Optimize the use of land and

  8. Program Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 issue of the U.S. Department of Energy (DOE) Offce of Legacy Management (LM) Program Update. This publication is designed to provide a status of activities within LM. Please direct all comments and inquiries to lm@hq.doe.gov. January-March 2015 Visit us at http://energy.gov/lm/ Goal 4 Successful Transition from Mound Site to Mound Business Park Continues The Mound Business Park attracts a variety of businesses to the former U.S. Department of Energy (DOE) Mound, Ohio, Site in Miamisburg. In

  9. Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update

  10. Better Plants Progress Update Fall 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fall 2013 Better Plants Progress Update Fall 2013 The Fall 2013 Progress Update chronicles the Better Buildings, Better Plants Program's efforts to capture these cost-effective, energy-saving opportunities and demonstrate that strong energy management practices are good for business, good for the economy, and good for the environment. Better Plants Progress Update Fall 2013 (1.11 MB) More Documents & Publications Better Plants Progress Update 2014 Better Plants Two-Page Overview Better

  11. Battery cell feedthrough apparatus

    DOE Patents [OSTI]

    Kaun, T.D.

    1995-03-14

    A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

  12. Updates | Department of Energy

    Office of Environmental Management (EM)

    blog is updated every time a significant update is made to the Communication Standards Web site. On this page, you can sign up to be notified by email when the blog is updated,...

  13. NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

  14. Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and...

    Broader source: Energy.gov (indexed) [DOE]

    Scientists at Ames Laboratory are making batteries that are "greener" and more cost-efficient by using rare earth elements -- neodymium iron boron magnets -- which are the most ...

  15. PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Smith, K.; Markel, T.; Pesaran, A.

    2009-03-01

    Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

  16. Cost Recovery | OpenEI Community

    Open Energy Info (EERE)

    Cost Recovery Home Kyoung's picture Submitted by Kyoung(150) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations...

  17. Cost Mechanisms | OpenEI Community

    Open Energy Info (EERE)

    Cost Mechanisms Home Kyoung's picture Submitted by Kyoung(150) Contributor 9 July, 2013 - 20:57 GRR 3rd Quarter - Stakeholder Update Meeting Alaska analysis appropriations...

  18. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications: 2007 Update | Department of Energy Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update (3.19

  19. Anodes for Batteries

    SciTech Connect (OSTI)

    Windisch, Charles F.

    2003-01-01

    The purpose of this chapter is to discuss, "constructive corrosion" as it occurs in power generated devices, specifically batteries.

  20. PHEV Battery Cost Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PBA2007 Presentation-short-6-19-07DOE&#0; (20.08 MB) More Documents & Publications Acquisition Guide Chapter 37.601 - Performance-Based Services Acquisition Microsoft Word - AL2005-13.doc AcqGuide37pt1.doc&#0; Department of Energy

    Presentation at the MCFC and PAFC R&D Workshop held Nov. 16, 2009 in Palm Springs, CA mcfc_pafc_workshop_de_castro.pdf (328.63 KB) More Documents & Publications MCFC and PAFC R&D Workshop Summary Report Manufacturing Barriers to High

  1. Sodium sulfur battery seal

    DOE Patents [OSTI]

    Topouzian, Armenag

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  2. LM Program Update Newsletter

    Energy Savers [EERE]

    Updated Radiation Exhibit Unveiled at Math and Science Center in Grand Junction, Colorado ... Goal 6 Updated Radiation Exhibit Unveiled at Math and Science Center in Grand Junction, ...

  3. Second Use of PEV Batteries: A Massive Storage Resource for Revolutionizing the Grid

    SciTech Connect (OSTI)

    Neubauer, Jeremy; Pesaran, Ahmad; Wood, Eric; Smith, Kandler

    2015-05-27

    The market penetration of plug-in electric vehicles (PEVs) and deployment of grid-connected energy storage systems are both presently impeded by the high cost of batteries. Battery second use (B2U) strategies-in which a single battery first serves an automotive application, then is redeployed into a secondary market-could help address both issues by reducing battery costs to the primary repurposed PEV batteries to serve grid applications for energy storage. The authors view this as of significant importance, as our expectation is that such batteries will be both cheap and plentiful. Understanding the dynamics of B2U will be important for customers and utilities in need of storage to understand when and where such batteries will be applicable. It will also be important for suppliers of other energy storage technologies, as repurposed PEV batteries could pose a significant threat to their business model.

  4. Electrolyte additive for lithium rechargeable organic electrolyte battery

    SciTech Connect (OSTI)

    Behl, W.K.; Chin, D.T.

    1988-02-08

    This invention relates in general to a rechargeable lithium organic electrolyte battery and, in particular, to an electrolyte additive for such a battery that provides overcharge protection. Rechargeable lithium-organic electrolyte batteries are being developed to provide low-cost, high-energy-density power sources for communication, night vision and various other Army applications. Typically, a rechargeable lithium organic electrolyte battery includes a lithium anode, a cathode including compounds such as titanium disulfide, molybdenum oxide, molybdenum sulfide, vanadium oxide, vanadium sulfide, chromium oxide, etc an electrolyte solution including an inorganic lithium salt such as lithium hexafluoroarsenate, lithium perchlorate, etc.

  5. Electrochemical Model of the Fe/V Redox Flow Battery

    SciTech Connect (OSTI)

    Stephenson, David E.; Kim, Soowhan; Chen, Feng; Thomsen, Edwin C.; Viswanathan, Vilayanur V.; Wang, Wei; Sprenkle, Vincent L.

    2012-11-05

    This paper presents a mathematical model for the new Fe/V redox flow battery chemistry. The model is designed to be useful for stack development and cost analysis purposes.

  6. AGM Batteries Ltd | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: AGM Batteries Ltd Place: United Kingdom Product: Manufactures lithium-ion cells and batteries for AEA Battery Systems Ltd. References: AGM Batteries Ltd1...

  7. Vehicle Technologies Office: Exploratory Battery Materials R&D | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vehicle Technologies Office: Exploratory Battery Materials R&D Vehicle Technologies Office: Exploratory Battery Materials R&D Lowering the cost and improving the performance of batteries for plug-in electric vehicles (PEVs) requires improving every part of the battery, from underlying chemistry to packaging. To reach the EV Everywhere Grand Challenge goal of making plug-in electric vehicles as affordable and practical as a 2012 baseline conventional vehicle by 2022, the

  8. Batteries and energy systems

    SciTech Connect (OSTI)

    Mantell, C.L.

    1982-01-01

    A historical review of the galvanic concept and a brief description of the theory of operation of batteries are followed by chapters on specific types of batteries and energy systems. Chapters contain a section on basic theory, performance and applications. Secondary cells discussed are: SLI batteries, lead-acid storage batteries, lead secondary cells, alkaline secondary cells, nickel and silver-cadmium systems and solid electrolyte systems. Other chapters discuss battery charging, regenerative electrochemical systems, solar cells, fuel cells, electric vehicles and windmills. (KAW)

  9. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles decreases with time. * Manufacturing costs associated with batteries and electric machines fall faster than those of conventional technologies (i.e., engine,...

  10. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. ...