Powered by Deep Web Technologies
Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

First Wind (Formerly UPC Wind) (California) | Open Energy Information  

Open Energy Info (EERE)

600 B Street 600 B Street Place San Diego, California Zip 92101 Sector Wind energy Product Wind power developer Website http://www.firstwind.com/ Coordinates 32.718218°, -117.158821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.718218,"lon":-117.158821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

First Wind (Formerly UPC Wind) | Open Energy Information  

Open Energy Info (EERE)

First Wind (Formerly UPC Wind) First Wind (Formerly UPC Wind) Address 2 Shaw Alley Place San Francisco, California Zip 94105 Sector Wind energy Product Wind power developer Website http://www.firstwind.com/ Coordinates 37.7889736°, -122.3985675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7889736,"lon":-122.3985675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

UPC Wind | Open Energy Information  

Open Energy Info (EERE)

Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL National Wind Technology Center...

4

First Wind formerly UPC Wind | Open Energy Information  

Open Energy Info (EERE)

UPC Wind UPC Wind Jump to: navigation, search Name First Wind (formerly UPC Wind) Place Boston, Massachusetts Zip 2111 Sector Wind energy Product String representation "First Wind is a ... project delays." is too long. Coordinates 42.358635°, -71.056699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358635,"lon":-71.056699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

5

First Wind (Formerly UPC Wind) (Massachusetts) | Open Energy Information  

Open Energy Info (EERE)

(Massachusetts) (Massachusetts) Jump to: navigation, search Name First Wind (Formerly UPC Wind) Address 85 Wells Ave Place Newton Center, Massachusetts Zip 02459 Sector Wind energy Product Wind power developer Website http://www.firstwind.com/ Coordinates 42.293376°, -71.197719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.293376,"lon":-71.197719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

First Wind (Formerly UPC Wind) (New York) | Open Energy Information  

Open Energy Info (EERE)

535 Rynders Road 535 Rynders Road Place Cohocton, New York Zip 14826 Sector Wind energy Product Wind power developer Website http://www.firstwind.com/ Coordinates 42.499884°, -77.444995° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.499884,"lon":-77.444995,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information  

Open Energy Info (EERE)

01 S.W. Fifth Avenue 01 S.W. Fifth Avenue Place Portland, Oregon Zip 97204 Sector Wind energy Product Wind power developer Website http://www.firstwind.com/ Coordinates 45.51661°, -122.679357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.51661,"lon":-122.679357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

San Diego County - Wind Regulations (California) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Regulations (California) San Diego County - Wind Regulations (California) < Back Eligibility Commercial Industrial Residential Savings Category Wind Buying & Making...

9

UPC (Unified Parallel C)  

NLE Websites -- All DOE Office Websites (Extended Search)

and an extension of the C programming language. Availability UPC is available on Edison and Hopper via the Cray compilers. Using UPC To compile a UPC source file you must...

10

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

economic realities of using wind power to produce hydrogensource in California [2], wind power characteristics in manythe intermittency of wind power means that utilities must

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

11

UPC-Yelick.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

UPC Overview
 UPC Overview
 http://upc.lbl.gov
 Katherine Yelick
 NERSC Director" Lawrence Berkeley National Laboratory
 2/7/11" 1" Cray XE Training" What's Wrong with MPI Everywhere * We can run 1 MPI process per core ("flat MPI") - This works now on dual and quad-core machines - It will work on 12-24 core machines like Hopper as well * What are the problems? - Latency: some copying required by semantics - Memory utilization: partitioning data for separate address space requires some replication * How big is your per core subgrid? At 10x10x10, over 1/2 of the points are surface points, probably replicated * Weak scaling: success model for the "cluster era;" will not be for the many core era -- not enough memory per core

12

California/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » California/Wind Resources < California Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> California Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

13

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

increasing wind energy reduces the cost and CO 2 emissions alowest cost renewable energy source in California [2], windwind electricity costs are consistent with values developed by the California Energy

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

14

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

allow integration with the existing grid and wind resourceWind Generation Operating Experience: CAISO Perspective and Experience, February 2005, California Energy Commission Workshop on Transmission-Renewables Integration

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

15

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network (OSTI)

uences on Californias wind energy resource. Part 1: Generalin?uences on Californias wind energy resource. Part 2:uences on californias wind energy resource. part 1: General

Mansbach, David K

2010-01-01T23:59:59.000Z

16

The Sundowner Winds of Santa Barbara, California  

Science Conference Proceedings (OSTI)

Significant downslope wind and warming events periodically occur along a short segment of the southern California coast in the vicinity of Santa Barbara. This region is characterized by a unique mesoscale topography:over a length of about 100 km ...

Warren Blier

1998-09-01T23:59:59.000Z

17

California Regional Wind Energy Forecasting System Development, Volume 4: California Wind Generation Research Dataset (CARD)  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 megawatts in place at the end of 2005. The main drivers are the state's 20 percent renewable portfolio standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources. As wind is an intermittent generation resource and weather changes can cause large and rapid changes in output, system operators will need accurate and robust wind energy forec...

2006-11-13T23:59:59.000Z

18

Nancy Rader, Executive Director California Wind Energy Association  

E-Print Network (OSTI)

Nancy Rader, Executive Director California Wind Energy Association Improving Methods for Estimating Fatality of Birds and Bats at Wind Energy Facilities California Wind Energy Association Public Webinar Wind Energy Development 2008 CEC Research "Roadmap" on Impact Assessment Methods 2008 CEC PIER RFP 2009

19

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network (OSTI)

3.4.2 Wind roses . . . . . . . .Figure 5.5: Downscaled wind speed changes and componentin?uences on Californias wind energy resource. Part 1:

Mansbach, David K

2010-01-01T23:59:59.000Z

20

California Wind Systems | Open Energy Information  

Open Energy Info (EERE)

Wind Systems Wind Systems Address 3411 Camino Corte Place Carlsbad, California Zip 92008 Sector Wind energy Product Developing a patented wind impeller system for residential and commercial rooftop installations Website http://www.californiawindsyste Coordinates 33.1412124°, -117.3205123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1412124,"lon":-117.3205123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wind to Hydrogen in California: Case Study  

DOE Green Energy (OSTI)

This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

Antonia, O.; Saur, G.

2012-08-01T23:59:59.000Z

22

California/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

California/Wind Resources/Full Version California/Wind Resources/Full Version < California‎ | Wind Resources Jump to: navigation, search Print PDF California Wind Resources CaliforniaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

23

Wind resource assessment: San Nicolas Island, California  

DOE Green Energy (OSTI)

San Nicolas Island (SNI) is the site of the Navy Range Instrumentation Test Site which relies on an isolated diesel-powered grid for its energy needs. The island is located in the Pacific Ocean 85 miles southwest of Los Angeles, California and 65 miles south of the Naval Air Weapons Station (NAWS), Point Mugu, California. SNI is situated on the continental shelf at latitude N33{degree}14` and longitude W119{degree}27`. It is approximately 9 miles long and 3.6 miles wide and encompasses an area of 13,370 acres of land owned by the Navy in fee title. Winds on San Nicolas are prevailingly northwest and are strong most of the year. The average wind speed is 7.2 m/s (14 knots) and seasonal variation is small. The windiest months, March through July, have wind speeds averaging 8.2 m/s (16 knots). The least windy months, August through February, have wind speeds averaging 6.2 m/s (12 knots).

McKenna, E. [National Renewable Energy Lab., Golden, CO (United States); Olsen, T.L. [Timothy L. Olsen Consulting, (United States)

1996-01-01T23:59:59.000Z

24

Solar or Wind Energy System Credit - Corporate (California) ...  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Solar or Wind Energy System Credit - Corporate (California) This is the approved revision...

25

Solar or Wind Energy System Credit - Personal (California) |...  

Open Energy Info (EERE)

Data Page Edit with form History Share this page on Facebook icon Twitter icon Solar or Wind Energy System Credit - Personal (California) This is the approved revision...

26

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

RenewableEnergy forHydrogenProductioninCalifornia UndergraduateStudies:CaliforniaPolytechnicState

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

27

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network (OSTI)

approach to locating wind farms in the UK," Renewablepower production at existing wind farms. Each of these is anpower from potential wind farm locations in California and

Wiser, Ryan H

2008-01-01T23:59:59.000Z

28

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

Policy Report, 2004, California Energy Commission, 100-04-Technologies August 2003, California Energy Commission 100-Generation . CAISO 33. California Energy Commission (

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

29

Southern California Edison 32MWh Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, Southern California Edison , Southern California Edison Tehachapi Wind Energy Storage (TSP) Project Loïc Gaillac, Naum Pinsky Southern California Edison November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 2 © Copyright 2010, Southern California Edison Outline * Policy Challenges - The challenge/opportunity * Testing a Solution: Tehachapi Storage Project Overview - Description of the project & objectives - Operational uses - Conceptual layout 3 © Copyright 2010, Southern California Edison CA 2020: Energy Policy Initiatives Highlighting potential areas for storage applications: * High penetration of Solar and Wind generation - Executive order requiring 33% of generated electricity to come from

30

California Wind Energy Forecasting Program Description and Status - 2000: California Energy Commission--EPRI Wind Energy Forecasting Program  

Science Conference Proceedings (OSTI)

The modern era of wind power began in the early 1980s when the first large installations of modern wind turbines were installed in California. The industry has grown rapidly in recent years and, at the end of 1999, the total installed wind capacity was 13.4 gigawatts (GW) worldwide and 2.5 GW in the U.S., of which about 1.6 GW is operating in California. Deregulation of the California electricity markets in 1998 created a challenge for the California investor-owned utilitiies and the owners and operators...

2000-12-18T23:59:59.000Z

31

UPC Solar Managment LLC | Open Energy Information  

Open Energy Info (EERE)

UPC Solar Managment LLC UPC Solar Managment LLC Jump to: navigation, search Name UPC Solar Managment LLC Place Chicago, Illinois Zip 60606 Sector Renewable Energy, Solar Product UPC Solar is a renewable energy development company that finances, owns and operates commercial scale PV energy projects throughout North America. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

California Regional Wind Energy Forecasting System Development, Vol. 3  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 MW in place at the end of 2005. The main drivers are the state's 20 percent Renewable Portfolio Standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources. As wind is an intermittent generation resource and weather changes can cause large and rapid changes in output, system operators will need accurate and robust wind energy forecasting ...

2006-11-15T23:59:59.000Z

34

Climatology of High Wind Events in the Owens Valley, California  

Science Conference Proceedings (OSTI)

The climatology of high wind events in the Owens Valley, California, a deep valley located just east of the southern Sierra Nevada, is described using data from six automated weather stations distributed along the valley axis in combination with ...

Shiyuan Zhong; Ju Li; C. David Whiteman; Xindi Bian; Wenqing Yao

2008-09-01T23:59:59.000Z

35

NREL: Wind Research - Energy Department Honors California and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Honors California and Washington Utilities with 2013 Public Power Wind Award June 18, 2013 In support of the Obama Administration's all-of-the-above approach to...

36

Summertime Three-Dimensional Wind Field Above Sacramento, California  

Science Conference Proceedings (OSTI)

An observational study of the three-dimensional structure of the wind field over Sacramento, California, is reported. The observations were made with a double-theodolite network during the summer period. Although the topography is relatively ...

L. O. Myrup; D. L. Morgan; R. L. Boomer

1983-02-01T23:59:59.000Z

37

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network (OSTI)

near three California wind farms are then explored: Sancirculations that drive wind farms, and to consider the e?at three major California wind farms. This is clearly a much

Mansbach, David K

2010-01-01T23:59:59.000Z

38

California Regional Wind Energy Forecasting System Development, Volume 2:  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 MW in place at the end of 2005. The main drivers are the state's 20 percent renewable portfolio standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources.

2006-11-15T23:59:59.000Z

39

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

of the lowest cost renewable energy source in California [Costs of Storing and Transporting Hydrogen, November 1998, National Renewable EnergyRenewable Resources Development Report November 2003, California Energy Commission 500-03-080F 2. Comparative Cost

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

40

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

hydrogen at the site of the wind farm and transport it tothe maximum output of the wind farm, or it might be sized athydrogen produced at the wind farm to the end users. Either

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

of a design proposal for a wind energy electrolytic hydrogenfor the best use of wind energy in an unconstrained grid.case of geothermal and biomass. Wind energy however does not

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

42

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

strategies. In particular, peak demand and low wind periodsresulted in an increase of peak demand for the electricityof wind electricity during peak demand hours on the grid. In

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

43

Southern California Sunbelt Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

Sunbelt Wind Farm I Sunbelt Wind Farm I Jump to: navigation, search Name Southern California Sunbelt Wind Farm I Facility So. Cal. Sunbelt Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Integrating wind and wave power in California.  

E-Print Network (OSTI)

??California is increasing the percentage of its electrical energy supply from renewable energy resources. The motivation to shift from fossil fuel fired electric power plants (more)

Stoutenburg, Eric Dale

2012-01-01T23:59:59.000Z

45

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

California Underground Natural Gas Storage Capacity 1998-of geologic storage capacity for natural gas in 2003, nearlyuntil natural gas prices were significantly higher. Storage

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

46

How to Build a Small Wind Energy Business: Lessons from California; Preprint  

DOE Green Energy (OSTI)

This paper highlights the experience of one small wind turbine installer in California that installed more than 1 MW of small wind capacity in 6 years.

Sinclair, K.

2007-07-01T23:59:59.000Z

47

California Wind Energy Forecasting System Development and Testing Phase 2: 12-Month Testing  

Science Conference Proceedings (OSTI)

This report describes results from the second phase of the California Wind Energy Forecasting System Development and Testing Project.

2003-07-22T23:59:59.000Z

48

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

of a Natural Gas Combined-Cycle Power Generation SystemNatural Gas Report 02-IEP-01 3. Jackson, Kevin: Wind Power Generation

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

49

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

wind energy electrolytic hydrogen fueling station. ProposalandTheir SuitabilityforHydrogenProductionintheAreaSeptember 2004,HydrogenandFuelCellsConference

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

50

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

towers or operational wind farms are needed to resolveapproach to locating wind farms in the UK. Renewablepower from potential wind farm locations in California and

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

51

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

7 2.2.3 Wind Farm Production1. Rated Capacity of Wind Farms for which Monthly Productionpower from potential wind farm locations in California and

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

52

NERSC_CAF_UPC_FEB_2010.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

RE-Introduction to RE-Introduction to One-Sided communication PGAS Languages: Coarrays in Fortran 2008 UPC Nathan Wichmann wichmann@cray.com Outline  What is one-sided communication?  How do I do this?  Why would I want to?  Examples and success stories. February 10 Slide 2 PGAS programming  Partitioned Global Address Space  Language level parallelism as opposed to library calls * Extension to C - Unified Parallel C (UPC) * New feature called coarrays in Fortran 2008 (CAF)  Single-sided communication as opposed to two-sided MPI communication  Explicit synchronization required - this is (mostly) implicit in MPI  Gives compiler lots of freedom for optimization  Many algorithms are very naturally expressed using one-sided language level parallelism

53

Southern California Sunbelt Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

II II Jump to: navigation, search Name Southern California Sunbelt Wind Farm II Facility So. Cal. Sunbelt Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network (OSTI)

value of re- newable electricity; and customer surveys ofCalifornia or Northwestern electricity demand. This may bebetween wind speed and electricity demand," Solar Energy,

Wiser, Ryan H

2008-01-01T23:59:59.000Z

55

The Santa Ana Winds of California  

Science Conference Proceedings (OSTI)

A 33-yr, numerical dataset of the occurrence of Santa Ana winds for the period 19682000 has been created and validated. Daily Weather Maps were examined to identify the days when a surface high pressure system existed over the Great Basin ...

M. N. Raphael

2003-08-01T23:59:59.000Z

56

Risk Quantification Associated with Wind Energy Intermittency in California  

E-Print Network (OSTI)

As compared to load demand, frequent wind energy intermittencies produce large short-term (sub 1-hr to 3-hr) deficits (and surpluses) in the energy supply. These intermittent deficits pose systemic and structural risks that will likely lead to energy deficits that have significant reliability implications for energy system operators and consumers. This work provides a toolset to help policy makers quantify these first-order risks. The thinking methodology / framework shows that increasing wind energy penetration significantly increases the risk of loss in California. In addition, the work presents holistic risk tables as a general innovation to help decision makers quickly grasp the full impact of risk.

George, Sam O; Nguyen, Scott V

2010-01-01T23:59:59.000Z

57

Wind Generation in the Future Competitive California Power Market  

DOE Green Energy (OSTI)

The goal of this work is to develop improved methods for assessing the viability of wind generation in competitive electricity markets. The viability of a limited number of possible wind sites is assessed using a geographic information system (GIS) to determine the cost of development, and Elfin, an electric utility production costing and capacity expansion model, to estimate the possible revenues and profits of wind farms at the sites. This approach improves on a simple profitability calculation by using a site-specific development cost calculation and by taking the effect of time varying market prices on revenues into account. The first component of the work is to develop data characterizing wind resources suitable for use in production costing and capacity expansion models, such as Elfin, that are capable of simulating competitive electricity markets. An improved representation of California wind resources is built, using information collected by the California Energy Commission (CE C) in previous site evaluations, and by using a GIS approach to estimating development costs at 36 specific sites. These sites, which have been identified as favorable for wind development, are placed on Digital Elevation Maps (DEMs) and development costs are calculated based on distances to roads and transmission lines. GIS is also used to develop the potential capacity at each site by making use of the physical characteristics of the terrain, such as ridge lengths. In the second part of the effort, using a previously developed algorithm for simulating competitive entry to the California electricity market, the Elfin model is used to gauge the viability of wind farms at the 36 sites. The results of this exercise are forecasts of profitable development levels at each site and the effects of these developments on the electricity system as a whole. Under best guess assumptions, including prohibition of new nuclear and coal capacity, moderate increase in gas prices and some decline in renewable capital costs, about 7.35 GW of the 10 GW potential capacity at the 36 specific sites is profitably developed and 62 TWh of electricity produced per annum by the year 2030. Most of the development happens during the earlier years of the forecast. Sensitivity of these results to future gas price scenarios is also presented. This study also demonstrates that an analysis based on a simple levelized profitability calculation approach does not sufficiently capture the implications of time varying prices in a competitive market.

Sezgen, O.; Marnay, C.; Bretz, S.

1998-03-01T23:59:59.000Z

58

Aircraft Observations of a Coastally Trapped Wind Reversal off the California Coast  

Science Conference Proceedings (OSTI)

The summertime marine atmospheric boundary layer off the California coast is normally characterized by northerly winds associated with the Pacific high. This pattern is occasionally disturbed by episodes of southerly winds and a finger of fog or ...

Thomas R. Parish; David A. Rahn; David Leon

2008-02-01T23:59:59.000Z

59

Wind Stress Curl Forcing of the Coastal Ocean near Point Conception, California  

Science Conference Proceedings (OSTI)

Near Point Conception, California, the atmospheric flow separates from the coast and a large wind stress curl results. Direct spatial wind field observations from 20 aircraft overflights in the spring of 1983 suggest that Ekman pumping of on ...

Andreas Mnchow

2000-06-01T23:59:59.000Z

60

Diurnal Evolution of Three-Dimensional Wind and Temperature Structure in California's Central Valley  

Science Conference Proceedings (OSTI)

The diurnal evolution of the three-dimensional summer-season mean wind and temperature structure in California's Sacramento and San Joaquin Valleys (collectively called the Central Valley) is investigated using data from 22 radar wind profiler/...

Shiyuan Zhong; C. David Whiteman; Xindi Bian

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Forecast Skill of Synoptic Conditions Associated with Santa Ana Winds in Southern California  

Science Conference Proceedings (OSTI)

Santa Ana winds (SAW) are synoptically driven mesoscale winds observed in Southern California usually during late fall and winter. Because of the complex topography of the region, SAW episodes can sometimes be extremely intense and pose ...

Charles Jones; Francis Fujioka; Leila M. V. Carvalho

2010-12-01T23:59:59.000Z

62

Final Report on California Regional Wind Energy Forecasting Project:Application of NARAC Wind Prediction System  

DOE Green Energy (OSTI)

Wind power is the fastest growing renewable energy technology and electric power source (AWEA, 2004a). This renewable energy has demonstrated its readiness to become a more significant contributor to the electricity supply in the western U.S. and help ease the power shortage (AWEA, 2000). The practical exercise of this alternative energy supply also showed its function in stabilizing electricity prices and reducing the emissions of pollution and greenhouse gases from other natural gas-fired power plants. According to the U.S. Department of Energy (DOE), the world's winds could theoretically supply the equivalent of 5800 quadrillion BTUs of energy each year, which is 15 times current world energy demand (AWEA, 2004b). Archer and Jacobson (2005) also reported an estimation of the global wind energy potential with the magnitude near half of DOE's quote. Wind energy has been widely used in Europe; it currently supplies 20% and 6% of Denmark's and Germany's electric power, respectively, while less than 1% of U.S. electricity is generated from wind (AWEA, 2004a). The production of wind energy in California ({approx}1.2% of total power) is slightly higher than the national average (CEC & EPRI, 2003). With the recently enacted Renewable Portfolio Standards calling for 20% of renewables in California's power generation mix by 2010, the growth of wind energy would become an important resource on the electricity network. Based on recent wind energy research (Roulston et al., 2003), accurate weather forecasting has been recognized as an important factor to further improve the wind energy forecast for effective power management. To this end, UC-Davis (UCD) and LLNL proposed a joint effort through the use of UCD's wind tunnel facility and LLNL's real-time weather forecasting capability to develop an improved regional wind energy forecasting system. The current effort of UC-Davis is aimed at developing a database of wind turbine power curves as a function of wind speed and direction, using its wind tunnel facility at the windmill farm at the Altamont Pass. The main objective of LLNL's involvement is to provide UC-Davis with improved wind forecasts to drive the parameterization scheme of turbine power curves developed from the wind tunnel facility. Another objective of LLNL's effort is to support the windmill farm operation with real-time wind forecasts for the effective energy management. The forecast skill in capturing the situation to meet the cut-in and cutout speed of given turbines would help reduce the operation cost in low and strong wind scenarios, respectively. The main focus of this report is to evaluate the wind forecast errors of LLNL's three-dimensional real-time weather forecast model at the location with the complex terrain. The assessment of weather forecast accuracy would help quantify the source of wind energy forecast errors from the atmospheric forecast model and/or wind-tunnel module for further improvement in the wind energy forecasting system.

Chin, H S

2005-07-26T23:59:59.000Z

63

A performance model for fine-grain accesses in UPC  

Science Conference Proceedings (OSTI)

UPC's implicit communication and fine-grain programming style make application performance modeling a challenging task. The correspondence between remote references and communication events depends on the internals of the compiler and runtime system. ...

Zhang Zhang; Steven R. Seidel

2006-04-01T23:59:59.000Z

64

California Wind Energy Forecasting System Development and Testing, Phase 1: Initial Testing  

Science Conference Proceedings (OSTI)

Wind energy forecasting uses sophisticated numerical weather forecasting and wind plant power generation models to predict the hourly energy generation of a wind power plant up to 48 hours in advance. As a result, it has great potential to address the needs of the California Independent System Operator (ISO) and the wind plant operators, as well as power marketers and buyers and utility system dispatch personnel. This report gives the results of 28 days of testing of wind energy forecasting at a Californ...

2003-01-31T23:59:59.000Z

65

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

SciTech Connect

Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

2008-05-01T23:59:59.000Z

66

California Regional Wind Energy Forecasting System Development, Volume 1: Executive Summary  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 megawatts (MW) in place at the end of 2005. The main drivers are the state's 20 Renewable Portfolio Standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources. As wind is an intermittent generation resource and weather changes can cause large and rapid changes in output, system operators will need accurate and robust wind energy forecasti...

2006-11-14T23:59:59.000Z

67

PGAS Language Codes (UPC, CoArray Fortran) on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

PGAS PGAS Languages PGAS Language Codes (UPC, Coarray Fortran) Introduction PGAS (Partitioned Global Address Space) languages such as Unified Parallel C (UPC) and Coarray Fortran (CAF) are available with the Cray compilers. To use them, swap to the Cray programming environment and compile as usual with the Cray wrappers ftn and cc. See the examples below for command line usage. module swap PrgEnv-pgi PrgEnv-cray Using Large Pages Due to a hardware requirement, SHMEM, UPC, and CAF applications on Cray XE systems that use more than 2 GB of memory per compute node for static data must back the static data with huge pages. The 2 GB of static data per compute node is the sum of the static data used per core, multiplied by the number of cores used per compute node. It includes initialized data and

68

Wind-driven sea level variability on the California coast: an adjoint sensitivity analysis  

Science Conference Proceedings (OSTI)

Effects of atmospheric forcing on coastal sea surface height near Port San Luis, central California, are investigated using a regional state estimate and its adjoint. The physical pathways for the propagation of non-local ((100) km) wind stress ...

Ariane Verdy; Matthew R. Mazloff; Bruce D. Cornuelle; Sung Yong Kim

69

Observations of Nighttime Winds Using Pilot Balloons in Anderson Creek Valley, Geysers, California  

Science Conference Proceedings (OSTI)

Nighttime drainage or downslope winds along the east-facing slope of Anderson Creek Valley located in the Geysers area of northern California are examined using pilot balloons as air parcel tracers. Observations made over four nights show a ...

Carmen J. Nappo; Howell F. Snodgrass

1981-06-01T23:59:59.000Z

70

Summertime Coupling between Sea Surface Temperature and Wind Stress in the California Current System  

Science Conference Proceedings (OSTI)

Satellite observations of wind stress and sea surface temperature (SST) are analyzed to investigate oceanatmosphere interaction in the California Current System (CCS). As in regions of strong SST fronts elsewhere in the World Ocean, SST in the ...

Dudley B. Chelton; Michael G. Schlax; Roger M. Samelson

2007-03-01T23:59:59.000Z

71

Diagnosing Santa Ana Winds in Southern California with Synoptic-Scale Analysis  

Science Conference Proceedings (OSTI)

Santa Ana winds (SAW) are among the most notorious fire-weather conditions in the United States and are implicated in wildfire and wind hazards in Southern California. This study employs large-scale reanalysis data to diagnose SAW through synoptic-...

John T. Abatzoglou; Renaud Barbero; Nicholas J. Nauslar

2013-06-01T23:59:59.000Z

72

County Wind Ordinance Standards (California) | Open Energy Information  

Open Energy Info (EERE)

detailing the number of local wind ordinances adopted after January 1, 2011; the number of applications to install wind turbines that were received and approved by those...

73

A Seven-Year Wind ProfilerBased Climatology of the Windward Barrier Jet along Californias Northern Sierra Nevada  

Science Conference Proceedings (OSTI)

This wind profilerbased study highlights key characteristics of the barrier jet along the windward slope of Californias Sierra Nevada. Between 2000 and 2007 roughly 10% of 100 000 hourly wind profiles, recorded at two sites, satisfied the ...

Paul J. Neiman; Ellen M. Sukovich; F. Martin Ralph; Mimi Hughes

2010-04-01T23:59:59.000Z

74

Analyzing the Effects of Temporal Wind Patterns on the Value ofWind-Generated Electricity at Different Sites in California and theNorthwest  

DOE Green Energy (OSTI)

Wind power production varies on a diurnal and seasonal basis. In this report, we use wind speed data modeled by TrueWind Solutions, LLC (now AWS Truewind) to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwest. (Data from this dataset are referred to as ''TrueWind data'' throughout this report.) The intra-annual wind speed variations reported in the TrueWind datasets have not previously been used in published work, however, so we also compare them to a collection of anemometer wind speed measurements and to a limited set of actual wind farm production data. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in the Northwest and California with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. Based on our research, we reach three key conclusions. (1) Temporal patterns have a moderate impact on the wholesale market value of wind power and a larger impact on the capacity factor during peak hours. The best-timed wind power sites have a wholesale market value that is up to 4 percent higher than the average market price, while the worst-timed sites have a market value that is up to 11 percent below the average market price. The best-timed wind sites could produce as much as 30-40 percent more power during peak hours than they do on average during the year, while the worst timed sites may produce 30-60 percent less power during peak hours. (2) Northwestern markets appear to be well served by Northwestern wind and poorly served by California wind; results are less clear for California markets. Both the modeled TrueWind data and the anemometer data indicate that many Northwestern wind sites are reasonably well-matched to the Northwest's historically winter-peaking wholesale electricity prices and loads, while most California sites are poorly matched to these prices and loads. However, the TrueWind data indicate that most California and Northwestern wind sites are poorly matched to California's summer-afternoon-peaking prices and loads, while the anemometer data suggest that many of these same sites are well matched to California's wholesale prices and loads. (3) TrueWind and anemometer data agree about wind speeds in most times and places, but disagree about California's summer afternoon wind speeds: The TrueWind data indicate that wind speeds at sites in California's coastal mountains and some Northwestern locations dip deeply during summer days and stay low through much of the afternoon. In contrast, the anemometer data indicate that winds at these sites begin to rise during the afternoon and are relatively strong when power is needed most. At other times and locations, the two datasets show good agreement. This disagreement may be due in part to time-varying wind shear between the anemometer heights (20-25m) and the TrueWind reference height (50m or 70m), but may also be due to modeling errors or data collection inconsistencies.

Fripp, Matthias; Wiser, Ryan

2006-05-31T23:59:59.000Z

75

Southern California Edison 32MWh Wind Integration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern California Edison November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology...

76

Local and synoptic mechanisms causing Southern Californias Santa Ana winds  

E-Print Network (OSTI)

in December and no strong offshore winds from April to earlythat lead to strong offshore surface winds in SouthernSanta Ana events based on offshore wind strength. This index

Hughes, Mimi; Hall, Alex

2010-01-01T23:59:59.000Z

77

Local and synoptic mechanisms causing Southern Californias Santa Ana winds  

E-Print Network (OSTI)

in December and no strong offshore winds from April to earlySanta Ana events based on offshore wind strength. This indexLiu 2003). These strong offshore wind events also transport

Hughes, Mimi; Hall, Alex

2010-01-01T23:59:59.000Z

78

Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms  

DOE Green Energy (OSTI)

California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

Vick, B. D.; Clark, R. N.; Mehos, M.

2008-01-01T23:59:59.000Z

79

Model Wind over the Central and Southern California Coastal Ocean  

Science Conference Proceedings (OSTI)

Recent studies have shown the importance of high-resolution wind in coastal ocean modeling. This paper tests the Coupled OceanAtmosphere Mesoscale Prediction System (COAMPS) at the 9-, 27-, and 81-km grid resolutions in simulating wind off the ...

Hsiao-ming Hsu; Lie-Yauw Oey; Walter Johnson; Clive Dorman; Richard Hodur

2007-05-01T23:59:59.000Z

80

Sensitivity of Low-Level Winds Simulated by the WRF Model in Californias Central Valley to Uncertainties in the Large-Scale Forcing and Soil Initialization  

Science Conference Proceedings (OSTI)

The sensitivity of the Weather and Research Forecasting (WRF) model-simulated low-level winds in the Central Valley (CV) of California to uncertainties in the atmospheric forcing and soil initialization is investigated using scatter diagrams for ...

Sara A. Michelson; Jian-Wen Bao

2008-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wind-Forced Cross-Shelf Circulation on the Northern California Shelf  

Science Conference Proceedings (OSTI)

Velocity time series are used to study cross-shelf circulation on the northern California shelf and to examine classical ideas of locally wind-forced cross-shelf circulation. A simple linear two-dimensional model of cross-shelf transport is ...

E. P. Dever

1997-08-01T23:59:59.000Z

82

Principal Component Analysis of the Summertime Winds over the Gulf of California: A Gulf Surge Index  

Science Conference Proceedings (OSTI)

A principal component analysis of the summertime near-surface Quick Scatterometer (QuikSCAT) winds is used to identify the leading mode of synoptic-scale variability of the low-level flow along the Gulf of California during the North American ...

Simona Bordoni; Bjorn Stevens

2006-11-01T23:59:59.000Z

83

Sierra Barrier Jets, Atmospheric Rivers, and Precipitation Characteristics in Northern California: A Composite Perspective Based on a Network of Wind Profilers  

Science Conference Proceedings (OSTI)

Five 915-MHz wind profilers and global-positioning-system receivers across Californias northern Central Valley (CV) and adjacent Sierra foothills and coastal zone, in tandem with a 6-km-resolution gridded reanalysis dataset generated from the ...

Paul J. Neiman; Mimi Hughes; Benjamin J. Moore; F. Martin Ralph; Ellen M. Sukovich

84

Steel Winds | Open Energy Information  

Open Energy Info (EERE)

Steel Winds Steel Winds Facility Steel Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner UPC Wind/BQ Energy Developer UPC Wind/BQ Energy Location Near Lackawanna NY Coordinates 42.81724°, -78.867542° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.81724,"lon":-78.867542,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

85

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network (OSTI)

approach to locating wind farms in the UK," RenewableV. G. Rau, "Optimum siting of wind turbine generators," IEEEoptimal planning for wind energy conver- sion systems over

Wiser, Ryan H

2008-01-01T23:59:59.000Z

86

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network (OSTI)

presented at European Wind Energy Con- ference, Athens,optimal planning for wind energy conver- sion systems overStates " presented at European Wind Energy Con- ference and

Wiser, Ryan H

2008-01-01T23:59:59.000Z

87

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network (OSTI)

Report - 2006 Minnesota Wind Integration Study, Volume I,"M. Schuerger, "Wind Plant Integration: Costs, Status, and

Wiser, Ryan H

2008-01-01T23:59:59.000Z

88

Wind and tidal response of a semi-enclosed bay, Baha Concepcin, Baja California  

E-Print Network (OSTI)

Observed response to diurnal winds . . . . . 4.1Thermal wind balance . . . . . . . . . . . . . . . . . . . .level response to wind . . . . . . . . . . . . 4.3 Current

Ponte, Aurlien L. S.

2009-01-01T23:59:59.000Z

89

Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

Melaina, M. W.

2013-05-01T23:59:59.000Z

90

Performance and Economics of a Wind-Diesel Hybrid Energy System: Naval Air Landing Field, San Clemente Island, California  

DOE Green Energy (OSTI)

This report provides an overview of the wind resource, economics and operation of the recently installed wind turbines in conjunction with diesel power for the Naval Air Landing Field (NALF), San Clemente Island (SCI), California Project. The primary goal of the SCI wind power system is to operate with the existing diesel power plant and provide equivalent or better power quality and system reliability than the existing diesel system. The wind system is also intended to reduce, as far as possible, the use of diesel fuel and the inherent generation of nitrogen-oxide emissions and other pollutants. The first two NM 225/30 225kW wind turbines were installed and started shake-down operations on February 5, 1998. This report describes the initial operational data gathered from February 1998 through January 1999, as well as the SCI wind resource and initial cost of energy provided by the wind turbines on SCI. In support of this objective, several years of data on the wind resources of San Clemente Island were collected and compared to historical data. The wind resource data were used as input to economic and feasibility studies for a wind-diesel hybrid installation for SCI.

McKenna, E. (National Renewable Energy Laboratory); Olsen, T. (Timothy Olsen Consulting)

1999-07-06T23:59:59.000Z

91

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network (OSTI)

V. G. Rau, "Optimum siting of wind turbine generators," IEEEwould be expected from wind turbines at each site [1-6].the hub height of modern wind turbines. The modeled data for

Wiser, Ryan H

2008-01-01T23:59:59.000Z

92

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network (OSTI)

Modeling Utility-Scale Wind Power Plants Part 2: Capac- ityNakafuji, "Grid Im- pacts of Wind Power Variability: RecentParsons, and M. Milligan, "Wind Power Impacts on Electric-

Wiser, Ryan H

2008-01-01T23:59:59.000Z

93

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network (OSTI)

Wind Plant Integration: Costs, Status, and Issues," IEEE Power & Energy,wind power; the treatment of renewable energy in integrated resource planning; the cost

Wiser, Ryan H

2008-01-01T23:59:59.000Z

94

Capps et al. Wind Power Sensitivity to Turbine Characteristics Sensitivity of Southern California Wind Power to Turbine  

E-Print Network (OSTI)

functions. However, for the installation of a single or small cluster of turbines, a wind developer may find phase of a wind project includes monitoring and evaluating the local wind resource, determining possible turbine locations, and estimating the economic feasibility of a wind project. It may also include

Hall, Alex

95

Speaker Diarization for Conference Room: The UPC RT07s Evaluation System  

Science Conference Proceedings (OSTI)

In this paper the authors present the UPC speaker diarization system for the NIST Rich Transcription Evaluation (RT07s) [1] conducted on the conference environment. The presented system is based on the ICSI RT06s system, which employs agglomerative clustering ...

Jordi Luque; Xavier Anguera; Andrey Temko; Javier Hernando

2008-01-01T23:59:59.000Z

96

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network (OSTI)

maps showing locations of wind power conversion facilities,of US winds and wind power at 80 m derived fromEvaluation of global wind power. Journal of Geo- physical

Mansbach, David K.

2010-01-01T23:59:59.000Z

97

Kaheawa Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Kaheawa Wind Farm Kaheawa Wind Farm Facility Kaheawa Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner UPC Wind Partners & Makani Nui Associates Developer UPC Wind Partners & Makani Nui Associates Energy Purchaser Maui Electric Co. Location Maalaea Harbor- Maui HI Coordinates 20.2564°, -155.850409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.2564,"lon":-155.850409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

California  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Public 16 California Residential 791 Commercial 39 Public 518 Not Specified 3 Connecticut Residential 11 Florida Residential 43 Commercial 10 Public 228 Not Specified 2...

99

California  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Public 16 California Residential 578 Commercial 34 Public 463 Not Specified 3 Connecticut Residential 8 Florida Residential 24 Commercial 10 Public 204 Not Specified 2...

100

California  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential 1 Commercial 16 Public 16 California Residential 1074 Commercial 43 Public 659 Not Specified 8 Connecticut Residential 12 Florida Residential 67 Commercial 14 Public...

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Observed and WRF-Simulated Low-Level Winds in a High-Ozone Episode during the Central California Ozone Study  

Science Conference Proceedings (OSTI)

A case study is carried out for the 29 July3 August 2000 episode of the Central California Ozone Study (CCOS), a typical summertime high-ozone event in the Central Valley of California. The focus of the study is on the low-level winds that ...

J-W. Bao; S. A. Michelson; P. O. G. Persson; I. V. Djalalova; J. M. Wilczak

2008-09-01T23:59:59.000Z

102

A New Model for the Prediction of Dst on the Basis of the Solar Wind Space Sciences Lab., University of California, Berkeley  

E-Print Network (OSTI)

1 A New Model for the Prediction of Dst on the Basis of the Solar Wind M. Temerin Space Sciences Lab., University of California, Berkeley Xinlin Li Lab. for Atmospheric and Space Physics, University on solar wind data for the years 1995-1999 gives a good fit with a prediction efficiency of 88%, a linear

Li, Xinlin

103

Revisiting the 'Buy versus Build' Decision for Publicly Owned Utilities in California Considering Wind and Geothermal Resources  

DOE Green Energy (OSTI)

The last two decades have seen a dramatic increase in the market share of independent, nonutility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Very little of this debate, however, has focused specifically on publicly owned electric utilities, and with few exceptions, renewable sources of supply have received similarly scant attention. Contrary to historical treatment, however, the buy versus build debate is quite relevant to publicly owned utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This article looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind and geothermal power--in California. To examine the economic aspects of this decision, we used a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity. We focus on wind and geothermal because both resources are abundant and, in some cases, potentially economic in California. Our analysis is not intended to provide precise estimates of the levelized cost of electricity from wind projects and geothermal plants; nor is our intent to compare the levelized costs of wind and geothermal power to one another. Instead, our intent is simply to compare the costs of buying wind or geothermal power to the costs of building and operating wind or geothermal capacity under various scenarios. Of course, the ultimate decision to buy or build cannot and should not rest solely on a comparison of the levelized cost of electricity. Thus, in addition to quantitative analysis, we also include a qualitative discussion of several important features of the ''buy versus build'' decision not reflected in the economic analysis.

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-12-11T23:59:59.000Z

104

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network (OSTI)

of renewable energy policies, and on the costs, benefits,renewable energy in integrated resource planning; the costRenewable Generation Integration Cost Analysis Phase III: Recommendations For Implementation," California Energy

Wiser, Ryan H

2008-01-01T23:59:59.000Z

105

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network (OSTI)

Makarov, Y. , 2007: Wind Integration Issues and So- lutionsexpectations, and integration strategy for any wind powerwind climate and variability. Site design and operation, as well as market integration

Mansbach, David K

2010-01-01T23:59:59.000Z

106

Mars Hill (2007) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

7) Wind Farm 7) Wind Farm Jump to: navigation, search Name Mars Hill (2007) Wind Farm Facility Mars Hill (2007) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner UPC Wind Partners Developer UPC Wind Partners Energy Purchaser Confidential Location Aroostook county ME Coordinates 46.551388°, -67.808333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.551388,"lon":-67.808333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Mars Hill (2006) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mars Hill (2006) Wind Farm Mars Hill (2006) Wind Farm Jump to: navigation, search Name Mars Hill (2006) Wind Farm Facility Mars Hill (2006) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner UPC Wind Partners Developer UPC Wind Partners Energy Purchaser Confidential Location Aroostook county ME Coordinates 46.551388°, -67.808333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.551388,"lon":-67.808333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Revisiting the "Buy versus Build" decision for publicly owned utilities in California considering wind and geothermal resources  

E-Print Network (OSTI)

California state incentives for renewable energy. In thisenergy, and (2) the California state production incentives

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-01-01T23:59:59.000Z

109

Synoptic and local influences on boundary layer processes, with an application to California wind power  

E-Print Network (OSTI)

wind climate and variability. Site design and operation, as well as market integration mechanisms and energy policy

Mansbach, David K

2010-01-01T23:59:59.000Z

110

Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing  

E-Print Network (OSTI)

the surface wind along and offshore of the California coaststructure of wind offshore of California is characterized bynorthwesterly winds along and offshore of the California

Taylor, Stephen V.

2006-01-01T23:59:59.000Z

111

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

Energy Facilities. American Wind Energy Association (AWEA)Analyzing the Effects of Temporal Wind Patterns onthe Value of Wind-Generated Electricity References TrueWind

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

112

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

land area in California. Wind farms only directly displacewill be required: about 1 wind farm, 1 central solar plant,

2011-01-01T23:59:59.000Z

113

WEST: A northern California study of the role of wind-driven transport in the productivity of coastal plankton communities  

E-Print Network (OSTI)

and persistent wind stress offshore, while inshore winds areby stronger winds, greater offshore transport and lowerextending well offshore due to wind stress curl off Bodega.

2006-01-01T23:59:59.000Z

114

Californias Energy Future: The View to 2050 - Summary Report  

E-Print Network (OSTI)

land area in California. Wind farms only directly displacewill be required: about 1 wind farm, 1 central solar plant,

Yang, Christopher

2011-01-01T23:59:59.000Z

115

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

22 Figure 5. Historical Electricity Demand in California andof Month- Hours for Electricity Demand in California and theduring hours of peak electricity demand, and a smaller but

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

116

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

1992). Capacity credit of wind power in the Netherlands. modeling as a tool for wind resource assessment andBurton, T. , et al. (2001). Wind Energy Handbook, John

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

117

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

Energy Facilities. American Wind Energy Association (AWEA)21. Brower, M. 2002a. New Wind Energy Resource Maps ofand M. Schwartz. 1993. Wind Energy Potential in the United

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

118

Modeling of Mountain-Valley Wind Fields in the Southern San Joaquin Valley, California  

Science Conference Proceedings (OSTI)

A dry three-dimensional mesoscale model was used to study the diurnal cycle of mountain-valley winds in the southern San Joaquin Valley during a summer day. A scheme for interpolating potential temperature was developed to provide hourly ...

Gary E. Moore; Christopher Daly; Mei-Kao Liu; Shi-Jian Huang

1987-09-01T23:59:59.000Z

119

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

1992). Capacity credit of wind power in the Netherlands. the capacity credit of wind power in the presence ofSimulating Long-Term Wind- Power Output. Wind Engineering

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

120

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

40, 70, and 100 m. Oklahoma Wind Power Initiative. OWPI.m sensor heights. Oklahoma Wind Power Initiative. Perez,

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CaliforniaFIRST (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CaliforniaFIRST (California) CaliforniaFIRST (California) CaliforniaFIRST (California) < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Program Info State California Program Type PACE Financing The CaliforniaFIRST Program is a Property Assessed Clean Energy (PACE) financing program for non-residential properties. PACE programs allow property owners to finance the installation of energy and water improvements on their buildings and to pay the amount back through their

122

Revisiting the 'Buy versus Build' decision for publicly owned utilities in California considering wind and geothermal resources  

DOE Green Energy (OSTI)

The last two decades have seen a dramatic increase in the market share of independent, non-utility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Specific debates have revolved around the relative advantages of, the types of risk created by, and the regulatory incentives favoring each approach. Very little of this discussion has focused specifically on publicly owned electric utilities, however, perhaps due to the belief that public power's tax-free financing status leaves little space in which NUGs can compete. With few exceptions (Wiser and Kahn 1996), renewable sources of supply have received similarly scant attention in the buy versus build debate. In this report, we revive the ''buy versus build'' debate and apply it to the two sectors of the industry traditionally underrepresented in the discussion: publicly owned utilities and renewable energy. Contrary to historical treatment, this debate is quite relevant to public utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This report looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind or geothermal power--in California. To examine the economic aspects of this decision, we modified and updated a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity.

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-10-01T23:59:59.000Z

123

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

the Value of Wind-Generated Electricity References TrueWindValuing the Time-Varying Electricity Production of Solarthe Value of Wind-Generated Electricity References Gipe, P.

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

124

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

T. , et al. (2001). Wind Energy Handbook, John Wiley & Sons.optimal planning for wind energy conversion systems over59-71. Brower, M. (2002a). New Wind Energy Resource Maps of

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

125

Foresight Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Foresight Wind Energy LLC Jump to: navigation, search Name Foresight Wind Energy LLC Place San Francisco, California Zip 94105 Sector Wind energy Product San Francisco-based...

126

A pilot golden eagle population study in the Altamont Pass Wind Resource Area, California  

Science Conference Proceedings (OSTI)

Orloff and Flannery (1992) estimated that several hundred reports are annually killed by turbine collisions, wire strikes, and electrocutions at the Altamont Pass Wind Resource Area (WRA). The most common fatalities were those of red-tailed hawks (Buteo jamaicensis), American kestrels (Falco sparvatius), and golden eagles (Aquila chrysaetos), with lesser numbers of turkey vultures (Cathartes aura), common ravens (Corvus corax), bam owls (Tyto alba), and others. Among the species of raptors killed at Altamont Pass, the one whose local population is most likely to be impacted is the golden eagle. Besides its being less abundant than the others, the breeding and recruitment rates of golden eagles are naturally slow, increasing their susceptibility to decline as a result of mortality influences. The golden eagle is a species afforded special federal protection because of its inclusion within the Bald Eagle Protection Act as amended in 1963. There are no provisions within the Act which would allow the killing ``taking`` of golden eagles by WRA structures. This report details the results of field studies conducted during 19941. The primary purpose of the investigation is to lay the groundwork for determining whether or not turbine strikes and other hazards related to energy at Altamont Pass may be expected to affect golden eagles on a population basis. We also seek an understanding of the physical and biotic circumstances which attract golden eagles to the WRA within the context of the surrounding landscape and the conditions under which they are killed by wind turbines. Such knowledge may suggest turbine-related or habitat modifications that would result in a lower incidence of eagle mortality.

Hunt, G. [California Univ., Santa Cruz, CA (United States). Predatory Bird Research Group

1995-05-01T23:59:59.000Z

127

A Note on the Effect of Wind Waves on Vertical Mixing in Franks Tract, Sacramento-San Joaquin Delta, California  

E-Print Network (OSTI)

Wang W, Huang RX. 2004. Wind energy input to the surfacecoefficient variability under wind waves in a tidal estuary.2008. A Note on the Effect of Wind Waves on Vertical Mixing

Jones, Nicole L; Thompson, Janet K; Monismith, Stephen G

2008-01-01T23:59:59.000Z

128

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

17 2.7 Electricity Price and Loadpeaking wholesale electricity prices and loads, while mostload and wholesale electricity price series for California

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

129

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network (OSTI)

2007) Baseload wind energy: modeling the competition betweenSystems Integrated with Wind Energy Resources in California,Assessment of Baseload Wind Energy Systems, Environmental

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

130

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

or production data from tall towers are needed before we canmore data from tall anemometer towers or operational wind

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

131

Revisiting the 'Buy versus Build' Decision for Publicly Owned Utilities in California Considering Wind and Geothermal Resources  

SciTech Connect

The last two decades have seen a dramatic increase in the market share of independent, nonutility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Very little of this debate, however, has focused specifically on publicly owned electric utilities, and with few exceptions, renewable sources of supply have received similarly scant attention. Contrary to historical treatment, however, the buy versus build debate is quite relevant to publicly owned utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This article looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind and geothermal power--in California. To examine the economic aspects of this decision, we used a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity. We focus on wind and geothermal because both resources are abundant and, in some cases, potentially economic in California. Our analysis is not intended to provide precise estimates of the levelized cost of electricity from wind projects and geothermal plants; nor is our intent to compare the levelized costs of wind and geothermal power to one another. Instead, our intent is simply to compare the costs of buying wind or geothermal power to the costs of building and operating wind or geothermal capacity under various scenarios. Of course, the ultimate decision to buy or build cannot and should not rest solely on a comparison of the levelized cost of electricity. Thus, in addition to quantitative analysis, we also include a qualitative discussion of several important features of the ''buy versus build'' decision not reflected in the economic analysis.

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-12-11T23:59:59.000Z

132

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network (OSTI)

wind energy conversibn systems. If located in coastal areas, the California Coastal Commission policies

Balderston, F.

2010-01-01T23:59:59.000Z

133

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network (OSTI)

Currents Salinity Gradients WIND ENERGY Characteristics ofCOUNTIES THE CALIFORNIA WIND ENERGY RESOURCE . . . . . . . .Principal Investigator, Wind Energy Mission Analys~s, F~nal

Authors, Various

2010-01-01T23:59:59.000Z

134

Anomalously warm July 2005 in the northern California Current: Historical context and the significance of cumulative wind stress  

E-Print Network (OSTI)

, and equator- ward currents associated with strong horizontal density gradients develop [Huyer et al., 1979 transition was unusually late: by inspection of buoy wind records it was 24 May 2005, about five weeks later

Pierce, Stephen

135

Evaluation of the Summertime Low-Level Winds Simulated by MM5 in the Central Valley of California  

Science Conference Proceedings (OSTI)

A season-long set of 5-day simulations between 1200 UTC 1 June and 1200 UTC 30 September 2000 are evaluated using the observations taken during the Central California Ozone Study (CCOS) 2000 experiment. The simulations are carried out using the ...

Sara A. Michelson; Irina V. Djalalova; Jian-Wen Bao

2010-11-01T23:59:59.000Z

136

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

State renewable energy funds provide support for wind projects, as do a variety of state tax incentives.incentive Californias Renewable Energy Transmission Initiative renewables portfolio standard regional transmission organization Southwest Power Pool United States

Bolinger, Mark

2010-01-01T23:59:59.000Z

137

CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and biofuels, carbon capture and storage, and environmental cleanup. Through these investments, California's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning California to play an important role in the new energy economy

138

CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT CALIFORNIA RECOVERY ACT SNAPSHOT California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and biofuels, carbon capture and storage, and environmental cleanup. Through these investments, California's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning California to play an important role in the new energy economy

139

California - SEDS - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... California Colorado Connecticut Delaware: District of Columbia Florida Georgia Hawaii Idaho ...

140

Making european-style community wind power development work in the United States  

E-Print Network (OSTI)

States, where a single wind farm might stretch on for mileslarge California wind farms, Danish turbine manufacturersbased 100 MW Trimont wind farm as the successful bidder;

Bolinger, Mark A.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

DOE). 20% Wind Energy by 2030: Increasing Wind Energysbased on California in 2030. Increasing amounts of wind,hourly load profile in 2030. Thermal generation parameters

Mills, Andrew

2013-01-01T23:59:59.000Z

142

Category:Small Wind Guidebook | Open Energy Information  

Open Energy Info (EERE)

Guidebook Guidebook Jump to: navigation, search Print PDF Book of this Category Pages in category "Small Wind Guidebook" The following 119 pages are in this category, out of 119 total. A Alabama/Wind Resources Alabama/Wind Resources/Full Version Alaska/Wind Resources Alaska/Wind Resources/Full Version Arizona/Wind Resources Arizona/Wind Resources/Full Version Arkansas/Wind Resources Arkansas/Wind Resources/Full Version C California/Wind Resources California/Wind Resources/Full Version Colorado/Wind Resources Colorado/Wind Resources/Full Version Connecticut/Wind Resources Connecticut/Wind Resources/Full Version D Delaware/Wind Resources Delaware/Wind Resources/Full Version F Florida/Wind Resources Florida/Wind Resources/Full Version G Georgia/Wind Resources Georgia/Wind Resources/Full Version

143

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

144

Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing  

E-Print Network (OSTI)

D. (2005), California Wind Resources, CEC publication # CEC-level inversions with surface wind and temperature at PointD. W. Stuart (1986), Mesoscale wind variability near Point

Taylor, Stephen V.

2006-01-01T23:59:59.000Z

145

CALIFORNIA GUIDELINES FOR REDUCING IMPACTS TO BIRDS AND BATS FROM  

E-Print Network (OSTI)

Treaty Act, rotorswept area, wind energy, wind siting guidelines, wind turbines. #12; #12; i development projects and wind turbine repowering projects in California. The objectives of the Guidelines of Wind Energy Research Bird and bat interactions with wind turbines is an area of active research

146

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

dry and often hot offshore winds. Raphael [2003] described awintertime offshore Santa Ana (SA) wind conditions [ConilCalifornia wind regimes (alongshore, onshore, and offshore

Riley, W.J.

2008-01-01T23:59:59.000Z

147

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

dry and often hot offshore winds. Raphael [2003] described awintertime offshore Santa Ana (SA) wind conditions [ConilCalifornia wind regimes (alongshore, on- shore, and offshore

2008-01-01T23:59:59.000Z

148

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Sea Surface Mixed Layer during the 1011 June 1994 California Coastally Trapped Event  

Science Conference Proceedings (OSTI)

A midlevel, coastally trapped atmospheric event occurred along the California coast 1011 June 1994. This feature reversed the surface wind field along the coast in a northerly phase progression. Along the central California coast, the winds at ...

C. E. Dorman; L. Armi; J. M. Bane; D. P. Rogers

1998-03-01T23:59:59.000Z

150

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

Wind belt states include Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, Nebraska, New Mexico, North Dakota, Oklahoma,Oklahoma all with more than 2,000 MW. Twenty-nine states had more than 100 MW of windWind Power Rankings: The Top 20 States Capacity (MW) Percentage of In-State Generation Annual (2011) California Illinois Iowa Minnesota Oklahoma

Bolinger, Mark

2013-01-01T23:59:59.000Z

151

An experimental and numerical study of wind turbine seismic behavior  

E-Print Network (OSTI)

Figure 1.1: White Water Wind Farm located near Palm Springs,testing at their active wind farm near Mojave, California.It is imperative that wind farms remain in operation

Prowell, I.

2011-01-01T23:59:59.000Z

152

Wind Wave Growth at Short Fetch  

Science Conference Proceedings (OSTI)

Wave wire data from the large wind wave tank of the Ocean Engineering Laboratory at the University of California, Santa Barbara, are analyzed, and comparisons are made with published data collected in four other wave tanks. The behavior of wind ...

T. Lamont-Smith; T. Waseda

2008-07-01T23:59:59.000Z

153

California - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. ... California. State Profile and Energy Estimates. Change State/Territory .

154

Wind Power Plant Evaluation Naval Auxiliary Landing Field, San Clemente Island, California: Period of Performance 24 September 1999--15 December 2000  

DOE Green Energy (OSTI)

The purpose of this report is to evaluate the wind power benefits and impacts to the San Clement Island wind power system, including energy savings, emissions reduction, system stability, and decreased naval dependence on fossil fuel at the island. The primary goal of the SCI wind power system has been to operate with the existing diesel power plant and provide equivalent or better power quality and system reliability than the existing diesel system. The wind system is intended to reduce, as far as possible, the use of diesel fuel and the inherent generation of nitrogen oxide emissions and other pollutants.

Olsen, T.L.; Gulman, P.J.; McKenna, E.

2000-12-11T23:59:59.000Z

155

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2009 2, 2009 CX-000025: Categorical Exclusion Determination Cortina Rancheria of Wintun Indians Renewable Energy Technologies (Wind) on Government Buildings CX(s) Applied: B5.1, B3.6, A1 Date: 11/02/2009 Location(s): California Office(s): Energy Efficiency and Renewable Energy November 2, 2009 CX-000024: Categorical Exclusion Determination Cortina Rancheria of Wintun Indians Energy Efficiency Retrofits CX(s) Applied: B5.1, B2.5, A1 Date: 11/02/2009 Location(s): California Office(s): Energy Efficiency and Renewable Energy November 2, 2009 CX-000171: Categorical Exclusion Determination California City Sacramento CX(s) Applied: A9, A11, B5.1 Date: 11/02/2009 Location(s): Sacramento, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office October 27, 2009

156

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2010 25, 2010 CX-000899: Categorical Exclusion Determination "Fish-Friendly" Hydropower Turbine Development and Deployment: Phase II Preliminary Engineering and Model Testing CX(s) Applied: A9, B3.6 Date: 02/25/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 24, 2010 CX-000898: Categorical Exclusion Determination 20 Percent Wind by 2030: Overcoming the Challenges CX(s) Applied: A9, A11 Date: 02/24/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 23, 2010 CX-000925: Categorical Exclusion Determination Sustainable Hydrogen Fueling Station, California State University, Los Angeles CX(s) Applied: B5.1 Date: 02/23/2010 Location(s): Los Angeles, California

157

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Wind Power Rankings: The Top 20 States Cumulative Capacity (end of 2006, MW) Texas California Iowa Minnesota Washington Oklahoma

2008-01-01T23:59:59.000Z

158

CaliforniaFIRST (California)  

Energy.gov (U.S. Department of Energy (DOE))

The CaliforniaFIRST Program is a Property Assessed Clean Energy (PACE) financing program for non-residential properties. PACE programs allow property owners to finance the installation of energy...

159

Category:State Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:State Wind Resources Jump to: navigation, search Category containing State Wind Resources Pages in category "State Wind Resources" The following 100 pages are in this category, out of 100 total. A Alabama/Wind Resources Alabama/Wind Resources/Full Version Alaska/Wind Resources Alaska/Wind Resources/Full Version Arizona/Wind Resources Arizona/Wind Resources/Full Version Arkansas/Wind Resources Arkansas/Wind Resources/Full Version C California/Wind Resources California/Wind Resources/Full Version Colorado/Wind Resources Colorado/Wind Resources/Full Version

160

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Californias Energy Future - Transportation Energy Use inCalifornias Energy Future - Transportation Energy Use inCalifornias Energy Future - Transportation Energy Use in

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

California's Housing Problem  

E-Print Network (OSTI)

could not only improve Californias housing opportunitiesrequirements for education California Budget Project.Locked Out 2004: Californias Affordable Housing Crisis.

Kroll, Cynthia; Singa, Krute

2008-01-01T23:59:59.000Z

162

Alta Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Alta Wind Energy Center Alta Wind Energy Center Address 10315 Oak Creek Road Place Mojave, California Zip 93501 Sector Wind energy Phone number 1-877-4WI-ND88 (1-877-494-6388) Website http://altawindenergycenter.co Region Southern CA Area References Alta Wind Energy Center[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! The Alta Wind Energy Center (AWEC) is located in the heart of one of the most proven wind resources in the United States - the Tehachapi-Mojave Wind Resource Area. Terra-Gen is developing the AWEC, California's largest wind energy project, adjacent to existing wind projects between the towns of Mojave and Tehachapi. Due to a welcoming community and the participation of a diverse group of landowners (private and public, local and non-local,

163

California Ridge | Open Energy Information  

Open Energy Info (EERE)

California Ridge California Ridge Jump to: navigation, search Name California Ridge Facility California Ridge Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ivenergy Developer Ivenergy Energy Purchaser Tennessee Valley Authority Location Fithian IL Coordinates 40.19729811°, -87.82702446° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.19729811,"lon":-87.82702446,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

RESOLUCI DE LA CONVOCATRIA D'AJUTS PER A L'ORGANITZACI DE CONGRESSOS DE LA UPC 2011  

E-Print Network (OSTI)

NETWORKS (BISWSN 2011) 5 500 Wind to wheel, The role of renewable energy and electric vehicle.000 Thirteenth European InterRegional Conference on Ceramics CIEC 13 (2011) 9 1.000 IV Seminar for Advanced for Hybrid Machine Translation (2011) 8 1.000 Current Carbon budget in the Mediterranean basin: processes

Casanellas, Marta

165

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2011 16, 2011 CX-006520: Categorical Exclusion Determination High Energy Density Distributed Hydrostatic Direct Drive for Large Wind Turbine and Marine Hydro-Kinetic Device Applications CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 16, 2011 CX-006513: Categorical Exclusion Determination Novel Low Cost, High Reliability Wind Turbine Drivetrain CX(s) Applied: A9 Date: 08/16/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 15, 2011 CX-006536: Categorical Exclusion Determination Development and Demonstration of a New Generation High Efficiency 1-10 Kilowatt Stationary Fuel Cell System CX(s) Applied: A9, B3.6, B5.1 Date: 08/15/2011

166

Energy Efficiency Financing for Public Sector Projects (California) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Financing for Public Sector Projects (California) Energy Efficiency Financing for Public Sector Projects (California) Energy Efficiency Financing for Public Sector Projects (California) < Back Eligibility Institutional Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Buying & Making Electricity Energy Sources Solar Wind Maximum Rebate $3 million Program Info State California Program Type State Loan Program Provider California Energy Commission Cities, counties, public care institutions, public hospitals, public schools and colleges, and special districts in California can apply for low-interest loans from the California Energy Commission for energy

167

California Enterprise Development Authority (Figtree PACE) - Statewide PACE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Enterprise Development Authority (Figtree PACE) - California Enterprise Development Authority (Figtree PACE) - Statewide PACE Program (California) California Enterprise Development Authority (Figtree PACE) - Statewide PACE Program (California) < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Program Info State California Program Type PACE Financing FIGTREE Energy Financing is administering a Property Assessed Clean Energy (PACE) financing program in a number of California cities and counties

168

Stakeholder Engagement and Outreach: State Wind Activities  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting State Wind Activities The U.S. map below summarizes Wind Powering America's state activities as of February 2010, which include Wind Working Groups, validated wind maps, anemometer loan programs, small wind guides, Wind for Schools Wind Applications Centers, exhibits, and workshops or webcasts. To read more state-specific news, click on a state. You can also view an enlarged map or print the state wind activities map. U.S. map showing Wind Powering America's activities in each state. Washington has an inactive/evolved wind working group, validated wind map, and a small wind guide. Exhibits have been displayed. Oregon has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. California has an inactive/evolved wind working group and valided wind map. Exhibits have been displayed. Idaho has an inactive/evolved wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nevada has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Montana has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Wyoming has a wind working group, validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts and exhibits. Utah has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arizona has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. Colorado has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. New Mexico has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. North Dakota has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. South Dakota has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nebraska has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Kansas has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Oklahoma has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Texas currently does not have any Wind Powering America activities. Minnesota has a small wind guide. Iowa has a small wind guide and has had exhibits. Missouri has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arkansas has a wind working group, validated wind map, and workshops or Webcasts. Lousiana currently does not have any Wind Powering America activities. Mississippi currently does not have any Wind Powering America activities. Alabama currently does not have any Wind Powering America activities. Georgia has a wind working group, a validated wind map, and has had workshops or Webcasts. Florida currently does not have any Wind Powering America activities. South Carolina has a wind working group. Alaska has a wind working group, validated wind map, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Hawaii has a wind working group, validated wind map, a small wind guide, and has had exhibits. Puerto Rico has a validated wind map and a planned wind working group. Wisconsin has a wind working group, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Illinois has a wind working group, validated wind map, a small wind guide, and has had workshops or Webcasts. Michigan has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Indiana has a wind working group, a validated wind map, a small wind guide, and has had workshops or Webcasts and exhibits. Kentucky has a wind working group and a validated wind map. Tennessee has a wind working group, a validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts. North Carolina has a wind working group, validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Virginia has a wind working group, a validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. West Virginia has a wind working group, a validated wind map, and has had workshops or Webcasts. Ohio has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Maryland has a wind working group, a validated wind map, a small wind guide, and an anemometer loan program. Pennsylvania has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Delaware has a validated wind map and a small wind guide. New Jersey has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Connecticut has a wind working group and a validated wind map. New York has a small wind guide. Vermont has a validated wind map and a small wind guide. Massachusetts has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had exhibits. New Hampshire has a validated wind map and small wind guide. Maine has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Rhode Island has a validated wind map and small wind guide. The U.S. Virgin Islands have a validated wind map.

169

Padoma Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Padoma Wind Power LLC Padoma Wind Power LLC Jump to: navigation, search Name Padoma Wind Power LLC Place La Jolla, California Zip 92037 Sector Wind energy Product A wind energy consulting and development company. References Padoma Wind Power LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Padoma Wind Power LLC is a company located in La Jolla, California . References ↑ "Padoma Wind Power LLC" Retrieved from "http://en.openei.org/w/index.php?title=Padoma_Wind_Power_LLC&oldid=349559" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

170

Making european-style community wind power development work in the United States  

E-Print Network (OSTI)

Reading, Writing, Wind Energy & Arithmetic. Case Study:of the Politics of Wind Energy Innovation in California and10% in 2015. Xcels wind energy mandate, which at the time

Bolinger, Mark A.

2004-01-01T23:59:59.000Z

171

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Description See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine. Duration 2:16 Topic Tax Credits, Rebates, Savings Wind Energy Economy Credit Energy Department Video MR. : We've all seen those creaky old windmills on farms, and although they may seem about as low-tech as you can get, those old windmills are the predecessors for new modern wind turbines that generate electricity. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert, a hot desert next to tall mountains - an ideal place for a lot of wind.

172

CALIFORNIA COMMISSION  

E-Print Network (OSTI)

with California's coastal power plant fleet; 3) biological resource issues associated with solar thermal.......................................................................23 CHAPTER 3: Cooling Water Use at New Power Plants Subject to Energy Commission Jurisdiction Cooling Water Trends for California Power Plants

173

CALIFORNIA COMMISSION  

E-Print Network (OSTI)

aspects of energy industry supply, production, transportation, delivery and distribution, demand CALIFORNIA ENERGY COMMISSION SCENARIO-BASED ASSESSMENT OF RESOURCE PLANS PREDICATED Integrated Energy Policy Report #12;CALIFORNIA ENERGY COMMISSION Michael R. Jaske Principal Author Global

174

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Vehicles in Southern California, Energy Policy, 39 (2011)contract between the California Energy Commission (CEC) andBechtel Fund and the California Energy Commision for their

Yang, Christopher

2011-01-01T23:59:59.000Z

175

California Electricity Restructuring Suspended  

U.S. Energy Information Administration (EIA)

Acronyms for the State of California: CAISO-California Independent System Operator: CEC-California Energy Commission: CPUC-California Public Utilities ...

176

CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

177

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network (OSTI)

Water Supply and Demand, 1972 and 2025 California Biomasssupply, and the fact that most crops are grown to optimize fruit or grain yield rather than total biomass (Biomass, 2025 Potential of Various Ocean Energy Resources for California California Wind Energy, by Region Estimates of California's Conventional Crude Oil Supply

Authors, Various

2010-01-01T23:59:59.000Z

178

County Wind Ordinance Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

County Wind Ordinance Standards County Wind Ordinance Standards County Wind Ordinance Standards < Back Eligibility Agricultural Commercial Industrial Local Government Residential Savings Category Wind Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider California Energy Commission [http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems (50 kW or smaller) outside urbanized areas but within the county's jurisdiction. The bill also addressed specific aspects of a typical wind ordinance and established the limiting factors by which a county's wind ordinance can be no more restrictive. Counties may freely make more lenient ordinances, but AB 45

179

Energy 101: Wind Turbines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Turbines Wind Turbines Energy 101: Wind Turbines Addthis Below is the text version for the Energy 101: Wind Turbines video. The video opens with "Energy 101: Wind Turbines." This is followed by wooden windmills on farms. We've all seen those creaky, old windmills on farms. And although they may seem about as low-tech as you can get, those old windmills are the predecessors for new, modern wind turbines that generat electricity. The video pans through shots of large windmills and wind farms of different sizes, situated on cultivated plains and hills. The same wind that used to pump water for cattle is now turning giant wind turbines to power cities and homes. OK, have a look at this wind farm in the California desert. A hot desert, next to tall mountains. An ideal place for a lot of wind.

180

California - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. ... California: 3,569.3: California: 882.1: Alaska: 898.5: 3: Ohio: 1,355.4 ...

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Renewable Auction Mechanism (RAM) (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Auction Mechanism (RAM) (California) Renewable Auction Mechanism (RAM) (California) Renewable Auction Mechanism (RAM) (California) < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Home Weatherization Wind Program Info State California Program Type Other Incentive Provider California Public Utilities Commission The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in 1,299 megawatts (MW) of new distributed generation over the course of two years. RAM is designed to streamline the procurement process for distributed generation projects between 3 MW and 20 MW* in capacity while ensuring the lowest costs for ratepayers.

182

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

California Solar Initiative California Public Utilities Commission Staff Progress Report July 2008 #12;California Solar Initiative, CPUC Staff Progress Report, July 2008: Zerull Location: San Rafael, CA System size: 14 kW Funded by the California Solar Initiative

183

California Public Utilities Commission California Solar Initiative  

E-Print Network (OSTI)

California Public Utilities Commission California Solar Initiative Program Handbook September 2012Power #12;Table of Contents i California Solar Initiative Program Handbook September 2012 1. Introduction: California Solar Initiative Program....................................................................1 1

184

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

California Solar Initiative California Public Utilities Commission Staff Progress Report January 2008 #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 This page intentionally left blank. #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 Table of Contents

185

California Immigrant Families: Issues for California's Future  

E-Print Network (OSTI)

F O R N I A CPRC Brief CALIFORNIA PROGRAM ON ACCESS TO CAREFamilies: Issues for Californias Future Public Forumsin the United States lives in California, few studies have

Research Center, California Policy; Health Policy Research, UCLA Center for

2000-01-01T23:59:59.000Z

186

Santa Clara County - Zoning Ordinance (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Zoning Ordinance (California) Zoning Ordinance (California) Santa Clara County - Zoning Ordinance (California) < Back Eligibility Agricultural Commercial Residential Savings Category Solar Buying & Making Electricity Wind Program Info State California Program Type Solar/Wind Permitting Standards Provider Santa Clara County Santa Clara County's Zoning Ordinance includes standards for wind and solar structures for residential, agricultural, and commercial uses. Commercial Wind Structures Commercial-scale wind systems must be setback from property lines by a distance equal to the height of the tower plus the radius of the blades. The structure must also be placed in such a manner to minimize its overall visual impact, may not obstruct the view for neighbors, and must be colored to help the structure blend into the surrounding environment. Lettering and

187

California Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Recovery Act State Memo California Recovery Act State Memo California Recovery Act State Memo California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in California are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to solar and wind, geothermal and biofuels, carbon capture and storage, and environmental cleanup. Through these investments, California's businesses, universities, national labs, non-profits, and local governments are creating quality jobs today and positioning California to play an important role in the new energy economy

188

The Marine Layer off Northern California: An Example of Supercritical Channel Flow  

Science Conference Proceedings (OSTI)

During the spring and summer, northerly winds driven by the North Pacific high pressure system are prevalent over the Northern California continental shelf, only interrupted for periods of a few days, when weak or southerly winds occur. In the ...

C. D. Winant; C. E. Dorman; C. A. Friehe; R. C. Beardsley

1988-12-01T23:59:59.000Z

189

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Santa Clara Water and Sewer - Solar Water Heating Program Santa Clara Water and Sewer - Solar Water Heating Program In 1975, the City of Santa Clara established the nation's first municipal solar utility. Under the Solar Water Heating Program, the Santa Clara Water and Sewer Utilities Department supplies, installs and maintains solar water heating systems for residents and businesses. In addition, the city has also installed solar energy equipment for a number of its own facilities. October 16, 2013 Santa Clara County - Zoning Ordinance (California) Santa Clara County's Zoning Ordinance includes standards for wind and solar structures for residential, agricultural, and commercial uses. Commercial Wind Structures October 16, 2013 Santa Clara County - Green Building Policy for County Government Buildings In February 2006, the Santa Clara County Board of Supervisors approved a

190

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. The Engineering ... section. I. Extreme Winds: ... II. Wind Effects on Buildings. Database ...

2013-01-17T23:59:59.000Z

191

Wind turbulence characterization for wind energy development  

DOE Green Energy (OSTI)

As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,

Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.

1991-09-01T23:59:59.000Z

192

LADWP - Net Metering (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Net Metering (California) Net Metering (California) LADWP - Net Metering (California) < Back Eligibility Agricultural Commercial General Public/Consumer Industrial Residential Savings Category Solar Buying & Making Electricity Wind Program Info State California Program Type Net Metering Provider Los Angeles Department of Water and Power LADWP allows its customers to net meter their photovoltaic (PV), wind, and hybrid systems with a capacity of not more than one megawatt. LADWP will provide the necessary metering equipment unless an installation requires atypical metering equipment. In these cases the customer must cover the additional metering expenses. The customer must also pay any related interconnection fees. Excess kilowatt-hours (kWh) generated by the customer's system will be

193

Archaeology and California's Climate  

E-Print Network (OSTI)

Meadows, Sierra Nevada, California. UnpubUshed Ph.D.Berkeley: University of California Archaeological SurveyNo. 34. THE JOURNAL O F CALIFORNIA ANTHROPOLOGY Cahfomia

Moratto, Michael J.; King, Thomas F.; Woolfenden, Wallace B.

1978-01-01T23:59:59.000Z

194

Stakeholder Engagement and Outreach: Utility-Scale Land-Based 80-Meter Wind  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Utility-Scale Land-Based 80-Meter Wind Maps The U.S. Department of Energy provides an 80-meter (m) height, high-resolution wind resource map for the United States with links to state wind maps. States, utilities, and wind energy developers use utility-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites within a fairly large region and determining a potential site's economic and technical viability. A wind resource map of the United States. Washington wind map and resources. Oregon wind map and resources. California wind map and resources. Idaho wind map and resources. Nevada wind map and resources. Arizona wind map and resources. Utah wind map and resources. Montana wind map and resources. Wyoming wind map and resources. North Dakota wind map and resources. South Dakota wind map and resources. Nebraska wind map and resources. Colorado wind map and resources. New Mexico wind map and resources. Kansas wind map and resources. Oklahoma wind map and resources. Texas wind map and resources. Minnesota wind map and resources. Iowa wind map and resources. Missouri wind map and resources. Arkansas wind map and resources. Lousiana wind map and resources. Wisconsin wind map and resources. Michigan wind map and resources. Michigan wind map and resources. Illinois wind map and resources. Indiana wind map and resources. Ohio wind map and resources. Kentucky wind map and resources. Tennessee wind map and resources. Mississippi wind map and resources. Alabama wind map and resources. Georgia wind map and resources. Florida wind map and resources. South Carolina wind map and resources. North Carolina wind map and resources. West Virginia wind map and resources. Virginia wind map and resources. Maryland wind map and resources. Pennsylvania wind map and resources. Delaware wind map and resources. New Jersey wind map and resources. New York wind map and resources. Maine wind map and resources. Vermont wind map and resources. New Hampshire wind map and resources. Massachusetts wind map and resources. Rhode Island wind map and resources. Connecticut wind map and resources. Alaska wind map and resources. Hawaii wind map and resources.

195

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

California Solar Initiative California Public Utilities Commission Staff Progress Report January 2009 #12;2 California Solar Initiative CPUC Staff Progress Report - January 2009 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

196

Naturener USA LLC formerly Great Plains Wind Energy | Open Energy  

Open Energy Info (EERE)

LLC formerly Great Plains Wind Energy LLC formerly Great Plains Wind Energy Jump to: navigation, search Name Naturener USA, LLC (formerly Great Plains Wind & Energy) Place San Francisco, California Zip 94111 Sector Wind energy Product Developer of a wind farm in Montana, has been sold to Naturener S.A. References Naturener USA, LLC (formerly Great Plains Wind & Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Naturener USA, LLC (formerly Great Plains Wind & Energy) is a company located in San Francisco, California . References ↑ "Naturener USA, LLC (formerly Great Plains Wind & Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Naturener_USA_LLC_formerly_Great_Plains_Wind_Energy&oldid=3491

197

EERE: Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Buildings The U.S. Department of Energy funds R&D to develop wind energy. Learn about the DOE Wind Program, how to use wind energy and get financial incentives, and access...

198

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

199

Measurement of Clear-Air Gradients and Turbulence Properties with Radar Wind Profilers  

Science Conference Proceedings (OSTI)

An experiment comparing balloon and profiler observations was carried out to evaluate the capability of Doppler radar wind profilers to remotely measure useful meteorological quantities other than wind. The site chosen was in Southern California ...

E. E. Gossard; D. E. Wolfe; K. P. Moran; R. A. Paulus; K. D. Anderson; L. T. Rogers

1998-04-01T23:59:59.000Z

200

Stakeholder Engagement and Outreach: Residential-Scale 30-Meter Wind Maps  

Wind Powering America (EERE)

Residential-Scale 30-Meter Wind Maps Residential-Scale 30-Meter Wind Maps The Stakeholder Engagement and Outreach initiative provides 30-meter (m) height, high-resolution wind resource maps for the United States. Businesses, farms, and homeowners use residential-scale wind resource maps to identify wind sites that may be appropriate for small-scale wind projects. A wind resource map of the United States. Go to the California wind resource map. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the Idaho wind resource map. Go to the Nevada wind resource map. Go to the Montana wind resource map. Go to the Wyoming wind resource map. Go to the Utah wind resource map. Go to the Colorado wind resource map. Go to the Arizona wind resource map. Go to the New Mexico wind resource map. Go to the North Dakota wind resource map. Go to the South Dakota wind resource map. Go to the Nebraska wind resource map. Go to the Kansas wind resource map. Go to the Oklahoma wind resource map. Go to the Texas wind resource map. Go to the Minnesota wind resource map. Go to the Iowa wind resource map. Go to the Missouri wind resource map. Go to the Arkansas wind resource map. Go to the Louisiana wind resource map. Go to the Wisconsin wind resource map. Go to the Illinois wind resource map. Go to the Indiana wind resource map. Go to the Michigan wind resource map. Go to the Ohio wind resource map. Go to the Kentucky wind resource map. Go to the Tennessee wind resource map. Go to the Mississippi wind resource map. Go to the Alabama wind resource map. Go to the Florida wind resource map. Go to the Georgia wind resource map. Go to the South Carolina wind resource map. Go to the North Carolina wind resource map. Go to the Virginia wind resource map. Go to the West Virginia wind resource map. Go to the Pennsylvania wind resource map. Go to the Maryland wind resource map. Go to the Delaware wind resource map. Go to the New Jersey wind resource map. Go to the New York wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. Go to the Massachusetts wind resource map. Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Alaska wind resource map. Go to the Hawaii wind resource map.

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Changes in the Economic Value of Variable Generation at High Penetration Levels: A Pilot Case Study of California  

E-Print Network (OSTI)

System Concentrating solar power Combustion turbine DayInvestment in Wind and Solar Power in California. Doctor offor parabolic trough solar power plants. Energy, 29(5-6):

Mills, Andrew

2013-01-01T23:59:59.000Z

202

East Winds (formerly Altech III) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds (formerly Altech III) Wind Farm Winds (formerly Altech III) Wind Farm Jump to: navigation, search Name East Winds (formerly Altech III) Wind Farm Facility East Winds (formerly Altech III) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Nichimen America Developer SeaWest Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Mexico-NREL Wind Resource Assessments | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessments Wind Resource Assessments Jump to: navigation, search Logo: Mexico-NREL Initiatives Name Mexico-NREL Initiatives Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Wind Topics Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://www.nrel.gov/internatio Country Mexico Central America References NREL International Program Overview [1] Abstract Currently NREL is working with Mexico to develop wind resource assessments including wind maps for Tamuilipas and & Baja California (10/10) and to prepare wind development scenarios for these regions. Currently NREL is working with Mexico to develop wind resource assessments including wind maps for Tamuilipas and & Baja California (10/10) and to

204

Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Final report  

DOE Green Energy (OSTI)

The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in the study was the Los Angeles Department of Water and Power and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

1982-08-01T23:59:59.000Z

205

Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Revised final report  

DOE Green Energy (OSTI)

The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in this study was the Los Angeles Department of Water and Power, and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

1983-03-01T23:59:59.000Z

206

Helix Wind Inc formerly ClearView Acquisitions | Open Energy Information  

Open Energy Info (EERE)

Helix Wind Inc formerly ClearView Acquisitions Helix Wind Inc formerly ClearView Acquisitions Jump to: navigation, search Name Helix Wind Inc. (formerly ClearView Acquisitions) Place San Diego, California Zip 92113 Sector Wind energy Product California-based manufacturer of small scale wind turbines. References Helix Wind Inc. (formerly ClearView Acquisitions)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Helix Wind Inc. (formerly ClearView Acquisitions) is a company located in San Diego, California . References ↑ "Helix Wind Inc. (formerly ClearView Acquisitions)" Retrieved from "http://en.openei.org/w/index.php?title=Helix_Wind_Inc_formerly_ClearView_Acquisitions&oldid=346471"

207

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

208

California Sea Grant 1 California Sea Grant  

E-Print Network (OSTI)

California Sea Grant 1 California Sea Grant Strategic Plan 2010­2013 #12;2 Strategic Plan 2010 Library: http://nsgl.gso.uri.edu. University of California CASG College Program 9500 Gilman Dr, Dept 0232)--CASG archives; p. 6 (left) --Carrie Pomeroy/SGEP; (right)--William Folsom, NMFS; SGEP archives; p. 7--California

Jaffe, Jules

209

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

2004,ACOREPower?GenRenewable Energy,LasVegas,NVthe International Renewable Hydrogen TransmissionNovember 1998, National Renewable Energy Laboratory, NREL/

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

210

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

owner might have to low electricity rates is fairly limited,to lower than retail electricity rates is imperative forsupplemental grid electricity rates. Sources 1. Renewable

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

211

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

of a Natural Gas Combined-Cycle Power Generation Systemcontinues to install combined cycle gas facilities, afairly low heat rate combined cycle ga s facility was chosen

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

212

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

in the case of solar, or baseload fossil generation in theit is then competing with baseload power, some of which may

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

213

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

if hydrogen production or other energy storage mechanismsthere was energy storage or off-peak hydrogen production. Inhydrogen production should b e considered along with other forms of energy storage.

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

214

Renewable Hydrogen From Wind in California  

E-Print Network (OSTI)

3.6,Focus:RenewableEnergy forHydrogenProductioninFocus:RenewableEnergyfor PowerProductionandHybrid

Bartholomy, Obadiah

2005-01-01T23:59:59.000Z

215

California Energy Power | Open Energy Information  

Open Energy Info (EERE)

Power Power Jump to: navigation, search Name California Energy & Power Place Pomona, California Zip CA 91767 Sector Renewable Energy, Wind energy Product California Energy & Power is engaged in the development of renewable energy products. Its current emphasis is wind turbine development. Coordinates 41.183387°, -74.056504° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.183387,"lon":-74.056504,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

An Evaluation of a Diagnostic Wind Model (CALMET)  

Science Conference Proceedings (OSTI)

A U.S. Environmental Protection Agency (EPA)-approved diagnostic wind model [California Meteorological Model (CALMET)] was evaluated during a typical lake-breeze event under fair weather conditions in the Chicago region. The authors focused on ...

Weiguo Wang; William J. Shaw; Timothy E. Seiple; Jeremy P. Rishel; Yulong Xie

2008-06-01T23:59:59.000Z

217

Implication of Spatial Averaging in Complex-Terrain Wind Studies  

Science Conference Proceedings (OSTI)

Studies of wind over complex terrain have been conducted at three times and two locations in Northern California. Instrumentation included conventional cup-vane anemometers and optical anemometers with spatial averaging over path lengths of 0.6-1 ...

W. M. Porch

1982-09-01T23:59:59.000Z

218

Wind energy resource atlas. Volume 9. The Southwest Region  

DOE Green Energy (OSTI)

This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

1980-11-01T23:59:59.000Z

219

California Integrated Renewable Energy Systems Report California Renewable Energy Collaborative  

E-Print Network (OSTI)

1 California Integrated Renewable Energy Systems Report California Renewable Energy Collaborative UC Davis Energy Institute University of California I Shields Avenue Davis, California 95616 California Renewable Energy Center: Vision and Development Metrics Principal Author: Gerald Braun CREC

Islam, M. Saif

220

California Enterprise Development Authority - Statewide PACE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Enterprise Development Authority - Statewide PACE Program (California) California Enterprise Development Authority - Statewide PACE Program (California) Eligibility...

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIA: Wind  

U.S. Energy Information Administration (EIA)

Technical information and data on the wind energy industry from the U.S. Energy Information Administration (EIA).

222

Webinar on Improving Methods for Estimating Fatality of Birds and Bats at Wind Energy Facilities 10Noon Pacific Wednesday, September 26, 2012  

E-Print Network (OSTI)

Webinar on Improving Methods for Estimating Fatality of Birds and Bats at Wind Energy Facilities 10 results from a California Wind Energy Association (CalWEA)sponsored, California Energy Commissionfunded associated with wind energy facilities, including an improved equation developed to adjust mortality

223

The California Sentencing Commission  

E-Print Network (OSTI)

The California Sentencing Commission: Laying the Groundwork Sponsored by The Stanford Executive alexander, Executive Vice President, California Correctional and Peace Officers Association Laura appleman Project, The Pew Charitable Trusts Joyce Hayhoe, Assistant Secretary, Office of Legislation, California

Ford, James

224

Granite Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wind, LLC Wind, LLC Place Redlands, California Zip 92373 Sector Wind energy Product An Apple Valley, California based wind developer. Coordinates 34.055282°, -117.18258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.055282,"lon":-117.18258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Onion Seed Production in California  

E-Print Network (OSTI)

Onion Seed Production in California RONALD E. VOSS, Cooperative Extension Vegetable Specialist, University of California, Davis; MIKE MURRAY, University of California Cooperative Extension Farm Advisor of California, Davis; KEITH S. MAYBERRY, University of California Cooperative Extension Farm Advisor, Imperial

Bradford, Kent

226

California Policy Initiatives  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS (AB 1925) In 2010 - California CCS Review Panel and Report - CCS included in energy planning (California's Energy Future: The View to 2050) In 2011 - Rubio bill (SB...

227

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

States California California July 27, 2012 UC Berkeley engineering student Jerome Thai launches one of 100 floating sensors into the Sacramento River. The Sacramento-San...

228

California's electricity crisis  

E-Print Network (OSTI)

The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

Joskow, Paul L.

2001-01-01T23:59:59.000Z

229

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

230

STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network (OSTI)

Core turbine listed by the Commission as eligible for use under the ERP. Complainant requests that the DyoCore turbine be immediately removed from the Energy Commission's "List of Eligible Small Wind TurbinesBEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA 1516

231

A preliminary evaluation of the performance of wind tunnel and numerical modeling simulations of the wind flow over a wind farm  

SciTech Connect

This report is an analysis of physical and numerical model simulations of the wind flow over complex terrain. The specific area to which these models were applied is a wind farm in the Altamont Pass area of California. The physical model results were obtained from wind tunnel flow simulations, and the numerical model used was the optimizing version of the NOABL model. The goals of this analysis were (1) to evaluate the relative performance of the two models and (2) to uncover any clues that would point toward improvement of the wind tunnel modeling. The performances of the models were gauged by comparing model simulations to wind observations taken over the modeled area.

Barnard, J.C.; Wegley, H.L.

1987-01-01T23:59:59.000Z

232

Alite Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Alite Wind Farm Alite Wind Farm Jump to: navigation, search Name Alite Wind Farm Facility Alite Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Terra-Gen Power Developer Allco/Oak Creek Energy Energy Purchaser California Portland Cement Location Mojave CA Coordinates 35.04046°, -118.29939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.04046,"lon":-118.29939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Calwind Resources Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Resources Wind Farm Resources Wind Farm Jump to: navigation, search Name Calwind Resources Wind Farm Facility Calwind Resources Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer CalWind Resources Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

234

New England Wind Forum: Historic Wind Development in New England: An  

Wind Powering America (EERE)

An Industry in Transition An Industry in Transition Most early wind farm development in the United States took place in California because the state granted a 25% income tax credit for wind energy investment, utilities signed contracts for power at attractive prices, state-funded wind measurement studies documented good wind resources, and because the state government, utilities, and local investors encouraged development. From 1980 through 1985, the principal market for wind turbines was tax-motivated individuals. Changes in federal tax law, including expiration of the energy tax credit in 1985 and passage of the Tax Reform Act of 1986, removed the major tax incentives for investing in wind energy. Because energy tax credits were eliminated and deductions for losses from passive investments had been reduced, the number of new wind turbines installed dropped sharply over this period. Oil prices declined during the same period, so many manufacturers and developers went out of business or were consolidated into larger operations.

235

Stakeholder Engagement and Outreach: Community-Scale 50-Meter Wind Maps  

Wind Powering America (EERE)

Community-Scale 50-Meter Wind Maps Community-Scale 50-Meter Wind Maps The Stakeholder Engagement and Outreach initiative provides 50-meter (m) height, high-resolution wind resource maps for most of the states and territories of Puerto Rico and the Virgin Islands in the United States. Counties, towns, utilities, and schools use community-scale wind resource maps to locate and quantify the wind resource, identifying potentially windy sites determining a potential site's economic and technical viability. Map of the updated wind resource assessment status for the United States. Go to the Washington wind resource map. Go to the Oregon wind resource map. Go to the California wind resource map. Go to the Nevada wind resource map. Go to the Idaho wind resource map. Go to the Utah wind resource map. Go to the Arizona wind resource map. Go to the Montana wind resource map. Go to the Wyoming wind resource map. Go to the Colorado wind resource map. Go to the New Mexico wind resource map. Go to the North Dakota wind resource map. Go to the South Dakota wind resource map. Go to the Nebraska wind resource map. Go to the Kansas wind resource map. Go to the Oklahoma wind resource map. Go to the Missouri wind resource map. Go to the Alaska wind resource map. Go to the Hawaii wind resource map. Go to the Michigan wind resource map. Go to the Illinois wind resource map. Go to the Indiana wind resource map. Go to the Ohio wind resource map. Go to the North Carolina wind resource map. Go to the Virginia wind resource map. Go to the Maryland wind resource map. Go to the West Virginia wind resource map. Go to the Pennsylvania wind resource map. Go to the Rhode Island wind resource map. Go to the Connecticut wind resource map. Go to the Massachusetts wind resource map. Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Kentucky wind resource map. Go to the Tennessee wind resource map. Go to the Arkansas wind resource map. Go to the Puerto Rico wind resource map. Go to the U.S. Virgin Islands wind resource map. Go to the New Jersey wind resource map. Go to the Delaware wind resource map.

236

Response of Red-Tailed Hawks and Golden Eagles to Topographical Features, Weather, and Abundance of a Dominant Prey Species at the Altamont Pass Wind Resource Area, California: April 1999-December 2000  

SciTech Connect

Studies have shown that raptors flying within the Altamont Pass WRA are vulnerable to fatal turbine collisions, possibly because of their specific foraging and flight behavior. Between June 1999 and June 2000, I conducted 346.5 hours of raptor observations within the Atlamont Pass WRA. Behavior was recorded in relation to characteristics of the topography (slope aspect, elevation, and inclination), the weather, and ground squirrel abundance, as determined by active burrow entrances. The most significant finding of this study revealed that red-tailed hawks and golden eagles flew more in strong winds than in weak winds, particularly along hillsides facing into prevailing winds (as opposed to hillsides shielded from the wind). This is likely a result of the birds' use of declivity currents for lift during flights. These results suggest that certain combinations of topography and weather produce wind currents that are sought out by foraging red-tailed hawks and golden eagles within the Altamont Pass WRA. To decrease raptor mortality, mitigation measures can be targeted to specific areas likely to attract foraging raptors because of their capacity to create particularly favorable wind currents.

Hoover, S.

2002-06-01T23:59:59.000Z

237

I WIND POWER, SOCIETY, THIS BOOK: an introduction  

E-Print Network (OSTI)

Core turbine from the Energy Commission's "List of Eligible Small Wind Turbines" on the ERP website; 2. Energy Commission issued 249 R2 Forms for small wind systems that use the DyoCore turbine. Some of these R2 Forms1 BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA

Groningen, Rijksuniversiteit

238

Offshore Wind Potential Tables  

Wind Powering America (EERE)

Offshore wind resource by state and wind speed interval within 50 nm of shore. Offshore wind resource by state and wind speed interval within 50 nm of shore. Wind Speed at 90 m (m/s) 7.0 - 7.5 7.5 - 8.0 8.0 - 8.5 8.5 - 9.0 9.0 - 9.5 9.5 - 10.0 >10.0 Total >7.0 State Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) Area km 2 (MW) California 11,439 (57,195) 24,864 (124,318) 23,059 (115,296) 22,852 (114,258) 13,185 (65,924) 15,231 (76,153) 6,926 (34,629) 117,555 (587,773) Connecticut 530 (2,652) 702 (3,508) 40 (201) 0 (0) 0 (0) 0 (0) 0 (0) 1,272 (6,360) Delaware 223 (1,116) 724 (3,618) 1,062 (5,310) 931 (4,657) 0 (0) 0 (0) 0 (0) 2,940 (14,701) Georgia 3,820 (19,102) 7,741 (38,706) 523 (2,617) 0 (0) 0 (0) 0 (0) 0 (0) 12,085 (60,425) Hawaii 18,873 (94,363) 42,298 (211,492)

239

The Making of Californias Energy Crisis  

E-Print Network (OSTI)

Scrutiny starts as California energy companies report recordthe origins of the California Energy Crisis through the lensforums, detractors - the California Energy Commission, SDG&E

Whittington, Jan

2002-01-01T23:59:59.000Z

240

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Standards for Municipal Small Wind Regulations and Small Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Eligibility...

242

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

243

City of Santa Cruz - Solar Access Ordinance (California) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cruz - Solar Access Ordinance (California) Cruz - Solar Access Ordinance (California) City of Santa Cruz - Solar Access Ordinance (California) < Back Eligibility Commercial Construction Local Government Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Swimming Pool Heaters Water Heating Wind Program Info State California Program Type Solar/Wind Access Policy Before a development plan can be approved in the City of Santa Cruz, it must be found that the orientation and location of buildings, structures, open spaces and other features of the site plan preserve solar access of adjacent properties. In addition, buildings and structures should be designed and oriented to make use of natural elements such as solar

244

NREL: Wind Research - Large Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Large Wind Turbine Research NREL's utility scale wind system research addresses performance and...

245

California commercial building energy benchmarking  

E-Print Network (OSTI)

Internal memorandum to California Energy Commission. HPCBS #data sets. Report to California Energy Commission. HPCBS #Methodologies). Report to California Energy Commission.

Kinney, Satkartar; Piette, Mary Ann

2003-01-01T23:59:59.000Z

246

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

Prepared for the California Energy Commission. December. [and F. Coito). 2002. California's Secret Energy Surplus; Theby key end use. Figure 1. California Energy Consumption by

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

247

California Agriculture: Dimensions and Issues  

E-Print Network (OSTI)

Agriculture 1959. California, Vol. 1, Part 48. ----------.of Population, California, Vol. 1, Part 6. ----------. 1990Vol. 12, No. 67, 1888. California Committee to Survey the

Siebert,, Jerome Editor

2003-01-01T23:59:59.000Z

248

Why California Stopped Building Freeways  

E-Print Network (OSTI)

Why California S toppeJ Building Freeways BY Planning BRIANUniversity Chapel of California, Hill, Los NC 275QQ-31other modes Constructed in California of transportation. The

Taylor, Brian D.

1993-01-01T23:59:59.000Z

249

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

250

Manzanita Wind Energy Feasibility Study  

DOE Green Energy (OSTI)

The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

Trisha Frank

2004-09-30T23:59:59.000Z

251

Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Edison (SCE) is positioned to demonstrate the effectiveness of California Edison (SCE) is positioned to demonstrate the effectiveness of lithium-ion battery and smart inverter technologies to improve grid performance and assist in the integration of variable energy resources. This project will be sited at the Tehachapi Wind Resource Area, one of the largest wind resource areas in the world, where as much as 4,500 MW of wind resources are expected to come online by 2015. An existing SCE substation located approximately 100 miles north of Los Angeles, California, will host the demonstration. Overview The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. SCE will test the BESS for 24 months to

252

An Analysis of Mesoscale Transport Phenomena during the Evening Transition Period near Sacramento, California  

Science Conference Proceedings (OSTI)

An analytical study of transport phenomena during the evening transition period in the vicinity of Sacramento, California is presented. The study is based on a network of double-theodolite wind stations, aircraft soundings and micrometeorological ...

L. O. Myrup; D. L. Morgan; R. Boomer

1986-04-01T23:59:59.000Z

253

Observations of the Coastal Upwelling Region near 3430?N of California: Spring 1981  

Science Conference Proceedings (OSTI)

Coordinated meteorological and oceanographic (CTD) measurements were made near Point Conception, California, during MarchApril 1981. The goal of the observations was to study coastal upwelling and the local characteristics of the assumed wind ...

Kenneth H. Brink; David W. Stuart; John C. Van Leer

1984-02-01T23:59:59.000Z

254

UNIVERSITY OF CALIFORNIA, SANTA CRUZ UNIVERSITY OF CALIFORNIA OBSERVATORIES  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA, SANTA CRUZ UNIVERSITY OF CALIFORNIA OBSERVATORIES Postdoctoral Scholar - Employee The University of California Observatories invites applications for one Postdoctoral Scholar of funding. For appointments within the University of California, the total duration of an individual

California at Santa Cruz, University of

255

UNIVERSITY OF CALIFORNIA, SANTA CRUZ UNIVERSITY OF CALIFORNIA OBSERVATORIES  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA, SANTA CRUZ UNIVERSITY OF CALIFORNIA OBSERVATORIES POSTDOCTORAL SCHOLAR ­ EMPLOYEE The University of California Observatories invites applications for one Postdoctoral Scholar of California, the total duration of an individual's postdoctoral service may not exceed five years, including

California at Santa Cruz, University of

256

Wind Energy Group WEG | Open Energy Information  

Open Energy Info (EERE)

WEG WEG Jump to: navigation, search Name Wind Energy Group (WEG) Place Irvine, California Zip CA 92618 Sector Wind energy Product California based wind turbine manufacturer. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

257

Categorical Exclusion Determinations: California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 16, 2010 August 16, 2010 CX-003443: Categorical Exclusion Determination Post-Combustion Carbon Dioxide Capture for Existing Post-Combustion Boilers by Self-Concentrating Amine Absorbent CX(s) Applied: A9, A11, A14 Date: 08/16/2010 Location(s): San Francisco, California Office(s): Fossil Energy, National Energy Technology Laboratory August 14, 2010 CX-004959: Categorical Exclusion Determination Primus Power -Low Cost, High Performance, 50-Year Electrodes CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Alameda, California Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004941: Categorical Exclusion Determination Makani Power, Inc. - Advanced Wind Turbine CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Alameda, California Office(s): Advanced Research Projects Agency - Energy

258

Marquiss Wind Power | Open Energy Information  

Open Energy Info (EERE)

Marquiss Wind Power Marquiss Wind Power Jump to: navigation, search Name Marquiss Wind Power Place Folsom, California Zip 95630 Sector Wind energy Product US-based manufacturer of patented ducted micro-scale wind turbines for use on commercial and industrial rooftops. Coordinates 39.474081°, -80.529699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.474081,"lon":-80.529699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Westwind Trust Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Westwind Trust Wind Farm Westwind Trust Wind Farm Jump to: navigation, search Name Westwind Trust Wind Farm Facility Westwind Trust Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Cameron Ridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cameron Ridge Wind Farm Cameron Ridge Wind Farm Facility Cameron Ridge Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer NextEra Energy Resources/M&N Wind Power/RES Americas Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Kenetech Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Kenetech Wind Farm Kenetech Wind Farm Jump to: navigation, search Name Kenetech Wind Farm Facility Kenetech Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Kenetech Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Aeroman Repower Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Aeroman Repower Wind Farm Aeroman Repower Wind Farm Jump to: navigation, search Name Aeroman Repower Wind Farm Facility Aeroman repower (2003) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Coram Energy Developer Coram Energy Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.044965°, -118.278036° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.044965,"lon":-118.278036,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Windridge Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Windridge Wind Farm Windridge Wind Farm Jump to: navigation, search Name Windridge Wind Farm Facility Windridge Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Windridge Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

AB Tehachapi Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Tehachapi Wind Farm Tehachapi Wind Farm Jump to: navigation, search Name AB Tehachapi Wind Farm Facility AB Tehachapi Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Coram Energy Developer AB Energy Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.053289°, -118.268631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.053289,"lon":-118.268631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Difwind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Difwind I Wind Farm Difwind I Wind Farm Jump to: navigation, search Name Difwind I Wind Farm Facility Difwind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Difwind V Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Difwind V Wind Farm Difwind V Wind Farm Jump to: navigation, search Name Difwind V Wind Farm Facility Difwind V Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Developer Seawest Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Dutch Pacific Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Dutch Pacific Wind Farm Dutch Pacific Wind Farm Jump to: navigation, search Name Dutch Pacific Wind Farm Facility Dutch Pacific Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Dutch Pacific- LLC Developer Dutch Pacific- LLC Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Difwind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Difwind II Wind Farm Facility Difwind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EnXco Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Sky River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Sky River Wind Farm Sky River Wind Farm Jump to: navigation, search Name Sky River Wind Farm Facility Sky River Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Zond Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Mogul Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mogul Energy Wind Farm Mogul Energy Wind Farm Jump to: navigation, search Name Mogul Energy Wind Farm Facility Mogul Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Mogul Energy Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Small Business Innovation Research Grant Helps Propel Innovative Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Innovation Research Grant Helps Propel Innovative Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business Small Business Innovation Research Grant Helps Propel Innovative Wind Energy Small Business March 11, 2011 - 10:32am Addthis Link to image of Wind Tower System's Space Frame Tower™ Link to image of Wind Tower System's Space Frame Tower(tm) Mark Higgins Operations Supervisor, Wind & Water Power Technologies Office Wind Tower Systems, a subsidiary of Wasatch Wind, was founded in 2002 to research, develop and commercialize new ways to make lighter, taller and easier- to-assemble land-based wind turbines. Since then, the Park City, Utah-based small business received early funding from the Department of Energy, which catalyzed investment from the California Energy Commission

272

Seasonal variability of wind electric potential in the United States  

DOE Green Energy (OSTI)

Seasonal wind electric potential has been estimated for the contiguous United States based on the methods previously used to estimate the annual average wind electric potential. National maps show estimates of the seasonal wind electric potential averaged over the state as a whole, and gridded maps show the distribution of the seasonal wind electric potential within a state. The seasons of winter and spring have highest wind electric potential for most windy areas in the United States. Summer is the season with the least potential for most of the contiguous United States. Wind electric potential patterns in autumn generally resemble the annual average potential map. Excellent matches between seasonal wind electric potential and electric energy use occur during winter for the northern parts of the nation. California has a good match between summer wind potential and electric use.

Schwartz, M.N.; Elliott, D.L.; Gower, G.L.

1993-07-01T23:59:59.000Z

273

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. Description/Summary: The Building and Fire Research Laboratory has an ...

2010-10-04T23:59:59.000Z

274

California Nonresident Tuition Exemption For Eligible California High School Graduates  

E-Print Network (OSTI)

California Nonresident Tuition Exemption For Eligible California High School Graduates (The law at the California Community Colleges, the University of California, and the California State University (all public colleges and universities in California). · Requirements: o The student must have attended a high school

Ravikumar, B.

275

California Nonresident Tuition Exemption For Eligible California High School Graduates  

E-Print Network (OSTI)

California Nonresident Tuition Exemption For Eligible California High School Graduates (The law at the California Community Colleges, the California State University and the University of California (all public colleges and universities in California). · Requirements: o The student must have attended a high school

de Lijser, Peter

276

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

277

California Energy Commission STAFF REPORT  

E-Print Network (OSTI)

Natural Gas Vehicle Fuel ­ Oroville, California · Pixley Biogas ­ Pixley, California · High Mountain Fuels

278

California Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Kern River Gas Transmission ... California suffered an energy crisis characterized by electricity price instability and ... California ISO (Independent System Operator)

279

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

280

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

i I CALIFORNIA SOLAR DATA MANUAL I. ! I i Jan uary 1978 I,weather parameters. This manual can supply only the latter.The California Solar Data Manual describes this resource

Berdahl, P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Arnold Schwarzenegger Preserving California's  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor Preserving California's Energy Resources for residential O N REGULATIONS/STANdARdS nonresidential alternative calculation Method (acM) approval Manual, Pacific Gas and Electric Company, Southern California Edison Company, San Diego Gas and Electric Company

282

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050CA3","N3010CA3","N3020CA3","N3035CA3","N3045CA3" "Date","Natural Gas Citygate Price in California (Dollars per Thousand Cubic Feet)","California Price...

283

Wind News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & Renewable news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters http://energy.gov/eere/articles/new-report-shows-trend-toward-larger-offshore-wind-systems-11-advanced-stage-projects wind-systems-11-advanced-stage-projects" class="title-link">New Report Shows Trend Toward Larger Offshore Wind Systems, with 11 Advanced Stage Projects Proposed in U.S. Waters

284

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains,...

285

Cost of Federal tax credit programs to develop the market for industrial solar and wind energy technologies. Final report to Lawrence Livermore Laboratory, University of California. Volume 2: appendices  

DOE Green Energy (OSTI)

A study was made to estimate the impact tax credits (from Acts passed by Congress) would have on renewable energy investment and to estimate the net costs to the US Treasury of providing these tax credits. The appendices to this study are presented. Some investment and marketing penetration worksheets are presented on wind turbines, solar ponds, flat plates, evacuated tubes, and parabolic troughs. A market penetration and economic analysis program with test written for TI-59 programmable calculator with printer is presented. Data on the average $/kWh for each state are included for energy use (70 to 400/sup 0/F and electricity) and energy resource (total and direct solar and wind). Also included is an energy use processing program written for TI-59 programmable calculator with printer. (MCW)

Downey, W.T.; Carey, H.; Dlott, E.; Frantzis, L.; McDonald, M.; Myer, L.; O& #x27; Neill, K.; Patel, R.; Perkins, R.

1981-11-12T23:59:59.000Z

286

Retail Unbundling - California  

U.S. Energy Information Administration (EIA)

Regulatory and Legislative Actions on Retail Unbundling Summary: The California Public Utilities Commission (PUC) endorsed restructuring in a collaborative ...

287

NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2009  

Science Conference Proceedings (OSTI)

As part of its Native American outreach, DOE's Wind Powering America program has initiated a NAWIG newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events. It is our hope that this newsletter will both inform and elicit comments and input on wind development in Indian Country. This issue profiles the Campo Band Wind Project in California and a feature on the Cheyenne River Sioux Tribe's plans for a 100- to 125-MW project.

Not Available

2009-09-01T23:59:59.000Z

288

Apolonia Dangzalan: Filipina Businesswoman, Watsonville, California  

E-Print Network (OSTI)

Watsonville, California: Watsonville Businesswoman page 43Businesswoman, Watsonville, California: Early Life page 8Businesswoman, Watsonville, California: Early Life page 9

Regional History Project, UCSC Library; Dangzalan, Apolonia; Knaster, Meri; Reti, Irene

2004-01-01T23:59:59.000Z

289

New England Wind Forum: Historic Wind Development in New England: The Age  

Wind Powering America (EERE)

The Age of PURPA Spawns the "Wind Farm" The Age of PURPA Spawns the "Wind Farm" The sustained high cost of conventional fuels together with heightened environmental concerns about air pollution led in 1978 to federal legislation - known as PURPA, the Public Utility Regulatory Policies Act - that encouraged private, non-utility investment in generating power from renewable energy sources. At that time, the first small-scale wind turbines were being sold by domestic manufacturers. Wind Farm at Crotched Mountain, NH, 1978. Photo courtesy of the University of Massachusetts. Click on the photo to view a larger image. Wind Farm at Crotched Mountain, NH, 1978. Photo courtesy of the University of Massachusetts. Crotched Mountain In December 1980, U.S. Windpower installed the world's first wind farm, consisting of 20 wind turbines rated at 30 kilowatts each, on the shoulder of Crotched Mountain in southern New Hampshire. Like many firsts, it was a failure: The developer overestimated the wind resource, and the turbines frequently broke. U.S. Windpower, which later changed its name to Kenetech, subsequently developed wind farms in California, and after experiencing machine failure there too, improved its designs and became the world's largest turbine manufacturer and wind farm developer before succumbing to the weight of aggressive development efforts, serious technical problems with its newest turbines, and a weak U.S. market, ultimately filing for bankruptcy in 1996.

290

from Wind Energy Development  

E-Print Network (OSTI)

These comments are submitted on behalf of the Clean Energy State Alliance (CESA) (electronically and by mail). CESA is a non-profit, multi-state coalition of state clean energy funds and programs working together to develop and promote clean energy technologies. CESA seeks to identify and address barriers to the development and growth of viable renewable energy resources in the United States. The California Energy Commission is a member of CESA. CESA offers its assistance and resources to the Commission and staff in the guidelines development process. CESA has substantial experience and expertise on the avian protection and wind siting issues that the Commission will consider in this Docket. Most notably, CESA is working actively with the United States Fish & Wildlife Service (USFWS), the Minerals Management Service, and several states (Pennsylvania, New York, Vermont, and others) to develop reasonable and effective approaches to addressing the impacts of wind projects on avian species. Many of the issues that the Commission will consider in this Docket are also being addressed by other states and federal agencies. CESA is available to provide relevant information and approaches that these other agencies and guidance development processes are employing, developing, and/or evaluating.

Dockets Office Ms; Dear Commissioners

2006-01-01T23:59:59.000Z

291

Western Wind and Solar Integration Study  

SciTech Connect

The Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. It was initiated in 2007 to examine the operational impact of up to 35% energy penetration of wind, photovoltaics (PV), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming (see study area map). WestConnect also includes utilities in California, but these were not included because California had already completed a renewable energy integration study for the state. This study was set up to answer questions that utilities, public utilities commissions, developers, and regional planning organizations had about renewable energy use in the west: (1) Does geographic diversity of renewable energy resource help mitigate variability; (2) How do local resources compare to out-of-state resources; (3) Can balancing area cooperation help mitigate variability; (4) What is the role and value of energy storage; (5) Should reserve requirements be modified; (6) What is the benefit of forecasting; and (7) How can hydropower help with integration of renewables? The Western Wind and Solar Integration Study is sponsored by the U.S. Department of Energy (DOE) and run by NREL with WestConnect as a partner organization. The study follows DOE's 20% Wind Energy by 2030 report, which did not find any technical barriers to reaching 20% wind energy in the continental United States by 2030. This study and its partner study, the Eastern Wind Integration and Transmission Study, performed a more in-depth operating impact analysis to see if 20% wind energy was feasible from an operational level. In DOE/NREL's analysis, the 20% wind energy target required 25% wind energy in the western interconnection; therefore, this study considered 20% and 30% wind energy to bracket the DOE analysis. Additionally, since solar is rapidly growing in the west, 5% solar was also considered in this study. The goal of the Western Wind and Solar Integration Study is to understand the costs and operating impacts due to the variability and uncertainty of wind, PV, and CSP on the grid. This is mainly an operations study, (rather than a transmission study), although different scenarios model different transmission build-outs to deliver power. Using a detailed power system production simulation model, the study identifies operational impacts and challenges of wind energy penetration up to 30% of annual electricity consumption.

Lew, D.; Piwko, R.; Jordan, G.; Miller, N.; Clark, K.; Freeman, L.; Milligan, M.

2011-01-01T23:59:59.000Z

292

BLM California State Office | Open Energy Information  

Open Energy Info (EERE)

California State Office Jump to: navigation, search Logo: BLM California State Office Name BLM California State Office Short Name California Parent Organization Bureau of Land...

293

ANALYSIS OF THE CALIFORNIA SOLAR RESOURCE  

E-Print Network (OSTI)

STATIONS IN REGIONS OF CALIFORNIA BEYOND THE CURRENT PG&Eof the University of California, the Lawrence BerkeleyLABORATOR Y UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA

Berdahl, P.

2011-01-01T23:59:59.000Z

294

The Cost of Smoking in California, 1999  

E-Print Network (OSTI)

California, 1985. Sacramento, CA: California Department ofsmoking in CA, 1989. Sacramento, CA: CA Department of Healthin California, 1999, Sacramento, CA: California Department

Max, Wendy Ph.D.; Rice, Dorothy P. D.Sc.; Zhang, Xiulan Ph.D.; Sung, Hai-Yen Ph.D.; Miller, Leonard Ph.D.

2002-01-01T23:59:59.000Z

295

Milford Wind Corridor Phase II | Open Energy Information  

Open Energy Info (EERE)

Milford Wind Corridor Phase II Milford Wind Corridor Phase II Facility Milford Wind Corridor Phase II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Southern California Public Power Authority Location Millard and Beaver County UT Coordinates 38.645608°, -112.878027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.645608,"lon":-112.878027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Stakeholder Engagement and Outreach: Wind Energy Curricula and Teaching  

Wind Powering America (EERE)

Wind Energy Curricula and Teaching Materials Wind Energy Curricula and Teaching Materials This is a list of wind energy curricula and teaching materials for elementary, middle school, and high school students, in alphabetical order by the producing agency's name. 4-H Group Wind Curriculum Developed The Power of the Wind, which consists of one Youth Guide and one Facilitator's Guide. The activities involve young people in the engineering design process as they learn about the wind and its uses. The site also offers videos. Boise State University Compiled a list of resources for educators, including lesson plans created using the Idaho State and Common Core Standards. California Energy Commission Developed a set of educational materials called "Energy Quest" that includes the following: Energy Story: Wind Energy

297

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

298

New England Wind Forum: Wind Power Technology  

Wind Powering America (EERE)

Wind Power Technology Wind Power Technology Modern wind turbines have become sophisticated power plants while the concept of converting wind energy to electrical energy remains quite simple. Follow these links to learn more about the science behind wind turbine technology. Wind Power Animation An image of a scene from the wind power animation. The animation shows how moving air rotates a wind turbine's blades and describes how the internal components work to produce electricity. It shows small and large wind turbines and the differences between how they are used, as stand alone or connected to the utility grid. How Wind Turbines Work Learn how wind turbines make electricity; what are the types, sizes, and applications of wind turbines; and see an illustration of the components inside a wind turbine.

299

Review of Wind Energy Forecasting Methods for Modeling Ramping Events  

DOE Green Energy (OSTI)

Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

2011-03-28T23:59:59.000Z

300

Average Diurnal Behavior of Surface Winds during Summer at Sites in Complex Terrain  

Science Conference Proceedings (OSTI)

Mean diurnal wind distributions from five surface stations in the rugged Geysers area of northern California were examined to determine how they were affected by the terrain. The one dimensional slope-flow model of Garrett was able to simulate ...

Alfred J. Garrett; Frank G. Smith III

1985-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Diurnal Variation of Downslope Winds in Owens Valley during the Sierra Rotor Experiment  

Science Conference Proceedings (OSTI)

The impact of diurnal forcing on a downslope wind event that occurred in Owens Valley in California during the Sierra Rotors Project (SRP) in the spring of 2004 has been examined based on observational analysis and diagnosis of numerical ...

Qingfang Jiang; James D. Doyle

2008-10-01T23:59:59.000Z

302

Coastal jet adjustment near Point Conception, CA with opposing wind in the bight  

Science Conference Proceedings (OSTI)

Typical spring and summer conditions offshore of California consist of strong northerly low-level wind contained within the cool, well-mixed marine boundary layer (MBL) that is separated from the warm and dry free troposphere by a sharp ...

David A. Rahn; Thomas R. Parish; David Leon

303

Cluster Analysis of Hourly Wind Measurements to Reveal Synoptic Regimes Affecting Air Quality  

Science Conference Proceedings (OSTI)

A clustering algorithm is developed to study hourly, ground-level wind measurements obtained from a network of monitoring stations positioned throughout the San Francisco Bay Area of California. A statistical model based on principal components ...

Scott Beaver; Ahmet Palazoglu

2006-12-01T23:59:59.000Z

304

Response of the Summer Marine Layer Flow to an Extreme California Coastal Bend  

Science Conference Proceedings (OSTI)

A summer wind speed maximum extending more than 200 km occurs over water around Point Conception, California, the most extreme bend along the U.S. West Coast. The following several causes were investigated for this wind speed maximum: 1) synoptic ...

Clive E. Dorman; Darko Kora?in

2008-08-01T23:59:59.000Z

305

Balancing of Wind Power.  

E-Print Network (OSTI)

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

306

California State Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

California California State Regulations: California State of California The California Department of Conservation's Division of Oil, Gas, and Geothermal Resources oversees the drilling, operation, maintenance, and plugging and abandonment of oil, natural gas, and geothermal wells. The regulatory program emphasizes the development of oil, natural gas, and geothermal resources in the state through sound engineering practices that protect the environment, prevent pollution, and ensure public safety. Other agencies that may be involved in the regulation of drilling wastes include the State Water Resources Control Board and appropriate Regional Water Quality Control Boards, the California Integrated Waste Management Board, the California Air Resources Board and appropriate Air Quality Management Districts or Air Pollution Control Districts, and the Department of Toxic Substances Control.

307

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-003180: Categorical Exclusion Determination Manchester Band of Pomo Indians of the Manchester-Point Arena Rancheria, California CX(s) Applied: A9, B5.1 Date: 07/22/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy July 22, 2010 California Team to Receive up to $122 Million for Energy Innovation Hub to Develop Method to Produce Fuels from Sunlight California Institute of Technology to lead team in partnership with Lawrence Berkeley National Laboratory and other California institutions July 19, 2010 CX-003053: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project (Only for University of Southern California's Portion of the Work) CX(s) Applied: A11, B3.6 Date: 07/19/2010 Location(s): Marina del Ray, California

308

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-002868: Categorical Exclusion Determination California-Tribal Energy Program-Campo Band of Mission Indians CX(s) Applied: B3.1, A9 Date: 06/30/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 30, 2010 CX-002914: Categorical Exclusion Determination California-Tribe-Buena Vista Rancheria of Me-Wuk Indians CX(s) Applied: A9, A11, B5.1 Date: 06/30/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 30, 2010 CX-002913: Categorical Exclusion Determination California-Tribe-Cloverdale Rancheria of Pomo Indians CX(s) Applied: A9, B5.1 Date: 06/30/2010 Location(s): Cloverdale, California Office(s): Energy Efficiency and Renewable Energy June 28, 2010 Playing Around with Lighting Efficiency California town uses grant to make required upgrades that will also save

309

Wind-Stress Coefficients at Light Winds  

Science Conference Proceedings (OSTI)

The increase of the wind-stress coefficient with wind velocity was found to start with winds as light as 3 m s?1, below which, following the formula for aerodynamically smooth flows, the wind-stress coefficient decreases as the wind velocity ...

Jin Wu

1988-12-01T23:59:59.000Z

310

Current Dynamics over the Northern California Inner Shelf  

Science Conference Proceedings (OSTI)

Subtidal current dynamics at a northern California inner-shelf site are analysed using moored current observations in 30 m of water, in conjunction with wind and bottom pressure measurements acquired during the summer of 1981 as part of the first ...

Steven J. Lentz

1994-12-01T23:59:59.000Z

311

Goshen North Wind Project | Open Energy Information  

Open Energy Info (EERE)

Goshen North Wind Project Goshen North Wind Project Jump to: navigation, search Name Goshen North Wind Project Facility Goshen North Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy/Ridgeline Energy Developer BP Wind Energy/Ridgeline Energy Energy Purchaser Southern California Edison Co Location Bonneville County ID Coordinates 43.511043°, -111.886067° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.511043,"lon":-111.886067,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Wind turbine  

DOE Patents (OSTI)

A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

Cheney, Jr., Marvin C. (Glastonbury, CT)

1982-01-01T23:59:59.000Z

313

University of California Energy Institute The California Electricity Market  

E-Print Network (OSTI)

University of California Energy Institute The California Electricity Market: What a long strange trip it's been #12;University of California Energy Institute Market Organization in California · ISO of California Energy Institute Transmission Pricing Models · Fixed cost pricing models (cost recovery

California at Berkeley. University of

314

Cannon II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cannon II Wind Farm Cannon II Wind Farm Facility Cannon II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.1317°, -118.451° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1317,"lon":-118.451,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Cabazon Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

Cabazon Wind Farm I Cabazon Wind Farm I Facility Cabazon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer GE Energy Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Dillon Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Dillon Wind Farm Dillon Wind Farm Facility Dillon Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Iberdrola Renewables Developer Iberdrola Renewables Energy Purchaser Southern California Edison Co Location Palm Springs CA Coordinates 33.939323°, -116.589503° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.939323,"lon":-116.589503,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

San Jacinto Wind Farm | Open Energy Information  

Open Energy Info (EERE)

San Jacinto Wind Farm San Jacinto Wind Farm Facility San Jacinto Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Cannon I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

I Wind Farm I Wind Farm Facility Cannon I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer NA Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.1317°, -118.451° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1317,"lon":-118.451,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Green Power Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Green Power Wind Farm Green Power Wind Farm Facility Green Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer GE Energy Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Optimizing wind turbine control system parameters  

Science Conference Proceedings (OSTI)

The impending expiration of the levelized period in the Interim Standard Offer Number 4 (ISO4) utility contracts for purchasing wind-generated power in California mandates, more than ever, that windplants be operated in a cost-effective manner. Operating plans and approaches are needed that maximize the net revenue from wind parks--after accounting for operation and maintenance costs. This paper describes a design tool that makes it possible to tailor a control system of a wind turbine (WT) to maximize energy production while minimizing the financial consequences of fatigue damage to key structural components. Plans for code enhancements to include expert systems and fuzzy logic are discussed, and typical results are presented in which the code is applied to study the controls of a generic Danish 15-m horizontal axis wind turbine (HAWT).

Schluter, L.L. [Sandia National Labs., Albuquerque, NM (United States); Vachon, W.A. [Vachon (W.A.) and Associates, Inc., Manchester, MA (United States)

1993-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wind Revolutions LLC | Open Energy Information  

Open Energy Info (EERE)

Revolutions LLC Revolutions LLC Jump to: navigation, search Name Wind Revolutions LLC Place Denver, Colorado Zip 80202 Sector Wind energy Product Wind Revolutions is a wind energy project developer with three projects currently under development in Wyoming and three other projects in early stages in California, New Mexico, and Arizona. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Pacific Crest Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Pacific Crest Wind Farm Pacific Crest Wind Farm Facility Pacific Crest Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer NextEra Energy Resources Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

324

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

325

NREL: Wind Research - International Wind Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has led to the...

326

NREL: Wind Research - Wind Project Development Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Project Development Updates A 2.3 megawatt Siemens wind turbine nacelle on route to the Record Hill Wind project in Roxbury, Maine. January 14, 2013 As a result of the...

327

Wind Power for Municipal Utilities. Office of Energy Efficiency and Renewable Energy (EERE) Brochure.  

Wind Powering America (EERE)

Clean energy has a bright future. Today a growing number Clean energy has a bright future. Today a growing number of public utilities are harvesting a new source of homegrown energy. From Massachusetts to California, more than two dozen municipal utilities have wind power in their energy mix. Wind energy is attractive for many reasons: * Wind energy is clean and renewable. * Wind energy is economically competitive. * Wind energy reduces energy price risks. Unlike coal, natural gas, or oil, the "fuel" for a wind turbine will always be free. * Wind energy is popular with the public. A RECORD YEAR - Wind power is booming. Worldwide, a record 3,800 megawatts (MW) were installed in 2001. These sleek, impressive wind turbines have closed the cost gap with conventional power plants. Depending on size and location, wind farms produce electricity for 3-6

328

U.S. Navy - San Clemente Island, California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Clemente Island, California San Clemente Island, California U.S. Navy - San Clemente Island, California October 7, 2013 - 10:12am Addthis Photo of Wind Turbine on San Clemente Island, California San Clemente Island is one of the Channel Islands off the southern coast of California. The U.S. Navy owns the 21-mile long island, making it one of the Navy's largest real estate assets. The Navy uses the island for research, development, testing, evaluation, and training. Originally, the electrical needs of the island were provided by four diesel generators. In 1998 two wind turbines were installed through a joint project of the Department of Defense, the Department of Energy, and the Environmental Protection Agency working through the Federal Energy Management Program (FEMP). A third turbine was installed in 1999, allowing

329

8/10/2010 1 DOE Offshore Wind RFI Response: DEOA-EE0000385, DOE Offshore Wind Program, Input Requested for  

E-Print Network (OSTI)

onshore wind and other renewable energy sources including solar, geothermal, biomass, and small hydro-Losique, Program Manager, Wind and Water Power Program (WWPP) Office of Energy Efficiency and Renewable Energy U.S. Department of Energy (DOE) Dear Mr. Beaudry-Losique, Staff of the California Energy Commission provide

Islam, M. Saif

330

Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Clipper) Wind Farm Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Energy Purchaser Southern California Public Power Authority Location Milford UT Coordinates 38.52227°, -112.935262° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.52227,"lon":-112.935262,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Hualapai Wind Project Feasibility Report  

SciTech Connect

The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

Davidson, Kevin [Hualapai Tribe] [Hualapai Tribe; Randall, Mark [Daystar Consulting] [Daystar Consulting; Isham, Tom [Power Engineers] [Power Engineers; Horna, Marion J [MJH Power Consulting LLC] [MJH Power Consulting LLC; Koronkiewicz, T [SWCA Environmental, Inc.] [SWCA Environmental, Inc.; Simon, Rich [V-Bar, LLC] [V-Bar, LLC; Matthew, Rojas [Squire Sanders Dempsey] [Squire Sanders Dempsey; MacCourt, Doug C. [Ater Wynne, LLP] [Ater Wynne, LLP; Burpo, Rob [First American Financial Advisors, Inc.] [First American Financial Advisors, Inc.

2012-12-20T23:59:59.000Z

332

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Options Site Map Printable Version Offshore Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data...

333

Resonant Diurnal Oscillations and Mean Alongshore Flows Driven by Sea/Land Breeze Forcing in the Coastal Southern California Bight  

Science Conference Proceedings (OSTI)

This study presents observations of the cross-sectional structure of resonant response to sea/land breezes (SLBs) off Huntington Beach (HB) in the Southern California Bight (SCB). A resonant response to local diurnal wind stress fluctuations ...

SungHyun Nam; Uwe Send

2013-03-01T23:59:59.000Z

334

Topic: Wind Engineering  

Science Conference Proceedings (OSTI)

Topic: Wind Engineering. Forty-Fourth Meeting of the UJNR Panel on Wind and Seismic Effects. NIST researchers collected ...

2011-08-31T23:59:59.000Z

335

Extreme Wind Speeds: Publications  

Science Conference Proceedings (OSTI)

... "Algorithms for Generating Large Sets of Synthetic Directional Wind Speed Data for Hurricane, Thunderstorm, and Synoptic Winds," NIST Technical ...

2013-08-19T23:59:59.000Z

336

Solar Construction Permitting Standards (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards (California) Standards (California) Solar Construction Permitting Standards (California) < Back Eligibility Commercial Industrial Local Government Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info State California Program Type Solar/Wind Permitting Standards Two bills signed in 2012 place limits on the fees that cities, counties, cities and counties, and charter cities can charge for a solar permit. AB 1801 specifies that a local government cannot base the fee for a solar permit on the value of the solar system or the value of the property on which the system will be installed. It also requires the local government to separately identify every fee charged on the invoice provided to the

337

National Park Service - San Miguel Island, California | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Miguel Island, California San Miguel Island, California National Park Service - San Miguel Island, California October 7, 2013 - 10:00am Addthis Photo of Wind/Photovoltaic Power System at San Miguel Island San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at Channel Islands National Park by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources wisely. It also seeks to replace conventional fuels with renewable energy wherever possible. This applies especially to diesel fuel and petroleum, which must

338

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feed-In Tariff Feed-In Tariff '''''Note: The California general feed-in tariff was amended by [http://leginfo.ca.gov/pub/09-10/bill/sen/sb_0001-0050/sb_32_bill_2009091... SB 32] of 2009 and [http://www.leginfo.ca.gov/pub/11-12/bill/sen/sb_0001-0050/sbx1_2_bill_20... SBX1-2] of 2011. The California Public Utilities Commission (CPUC) accounted for these amendments in Decision 12-05-035 in May 2012. October 16, 2013 Energy Upgrade California The Energy Upgrade California program serves as a one-stop shop for California homeowners who want to improve the energy efficiency of their homes. The program connects homeowners with qualified contractors, and helps homeowners find all the available incentives from their local utilities and local governments. Interested California homeowners should go

339

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2009 20, 2009 CX-000253: Categorical Exclusion Determination California County Monterey CX(s) Applied: A9, A11, B5.1 Date: 12/20/2009 Location(s): Monterey County, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 20, 2009 CX-000252: Categorical Exclusion Determination California City San Jose CX(s) Applied: A9, A11, B5.1 Date: 12/20/2009 Location(s): San Jose, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 20, 2009 CX-000251: Categorical Exclusion Determination California City Riverside CX(s) Applied: A9, A11, B5.1 Date: 12/20/2009 Location(s): Riverside, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 17, 2009 CX-001253: Categorical Exclusion Determination

340

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2009 13, 2009 CX-000386: Categorical Exclusion Determination Lawrence Berkeley National Laboratory - Alameda, California CX(s) Applied: A1, A9 Date: 11/13/2009 Location(s): Berkley, California Office(s): Fossil Energy, National Energy Technology Laboratory November 13, 2009 CX-000384: Categorical Exclusion Determination Carbon Dioxide Capture Site Survey in California CX(s) Applied: A1, A9, B3.1 Date: 11/13/2009 Location(s): Contra Costa County, California Office(s): Fossil Energy, National Energy Technology Laboratory November 11, 2009 CX-000179: Categorical Exclusion Determination California City Irvine CX(s) Applied: A9, A11, B5.1 Date: 11/11/2009 Location(s): Irvine, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 10, 2009

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

342

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

343

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

344

California Electric Energy Crisis - Provisions of AB 1890  

U.S. Energy Information Administration (EIA)

This page contains information on California energy crisis, California Electricity Situation, California Assembly Bill 1890, California electricity ...

345

Additions to a Design Tool for Visualizing the Energy Implications of Californias Climates  

E-Print Network (OSTI)

of Californias 16 climate zones. These different buildingincluding Californias 16 climate zones, plus data for 21any of Californias 16 climate zones: Ground Temperature (

Milne, Murray; Liggett, Robin rliggett@ucla.edu; Benson, Andrew; Bhattacharya, Yasmin

2009-01-01T23:59:59.000Z

346

New York's 29th congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

E CO LAC Ecovation Inc formerly AnAerobics First Wind (Formerly UPC Wind) (New York) Geotherm, Inc. LFG Technologies Smart Solar Inc Solar Sentry Corporation The Center...

347

California Lighting Technology Center (University of California, Davis) |  

Open Energy Info (EERE)

Lighting Technology Center (University of California, Davis) Lighting Technology Center (University of California, Davis) Jump to: navigation, search Name California Lighting Technology Center (University of California, Davis) Place Davis, CA Website http://cltc.ucdavis.edu/ References CLTC Website[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections California Lighting Technology Center (University of California, Davis) is a research institution located in Davis, CA. References ↑ "CLTC Website" Retrieved from "http://en.openei.org/w/index.php?title=California_Lighting_Technology_Center_(University_of_California,_Davis)&oldid=381592"

348

California ISO Your Link to Power California Independent System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California ISO Your Link to Power California Independent System Operator Corporation Laura J. Manz Vice President, Market & Infrastructure Development April 3, 2009 Transmission...

349

Surgery-Preliminary Torrence, California  

E-Print Network (OSTI)

Surgery-Preliminary Torrence, California LACounty-Harbor-UCLA Medical Center Program Boise VA, Wisconsin Stanford University Program Anesthesiology Stanford, California University of Colorado Program Indianapolis, Indiana Cedars-Sinai Medical Center Program Internal Medicine Los Angeles, California Medical

350

California Energy Commission STAFF REPORT  

E-Print Network (OSTI)

California Energy Commission STAFF REPORT SUMMER 2012 ELECTRICITY SUPPLY ABSTRACT The Summer 2012 Electricity Supply and Demand Outlook is the California Energy and Demand Outlook. California Energy Commission, Electricity Supply Analysis Division. CEC-200

351

California Energy Commission STAFF REPORT  

E-Print Network (OSTI)

California Energy Commission STAFF REPORT SUMMER 2010 ELECTRICITY SUPPLY AND DEMAND OUTLOOK MAY Supply and Demand Outlook provides a summary of the California Energy Commission staff assessment. Summer 2010 Electricity Supply and Demand Outlook. California Energy Commission, Electricity Supply

352

Two Southern California Trade Trails  

E-Print Network (OSTI)

be about TWO SOUTHERN CALIFORNIA TRADE TRAILS cranes. WhenHowe 1885 History of California, Vol. 11, 1801-1824 (TheCompany. J O U R N A L OF CALIFORNIA A N D GREAT BASIN

Johnston, Francis J

1980-01-01T23:59:59.000Z

353

NUCLEAR POWER in CALIFORNIA  

E-Print Network (OSTI)

by PG&E, is a 2,174 megawatt plant located near San Luis Obispo on the Central California coast. · San

354

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Solar Thermal Program '''''Note: This program was modified by AB 2249, signed in September 2012. The bill allows for non-residential solar pool...

355

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 12, 2013 Western Riverside Council of Governments - Large Commercial PACE (California) Structured Finance, on behalf of the Western Riverside Council of Governments...

356

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Sandia National Laboratories, Livermore, Oakland Operations Office, Oakland, California July 1, 1998 EIS-0283: Draft Environmental Impact Statement Surplus Plutonium...

357

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California August 14, 1995 EA-1053: Final Environmental Assessment Decontaminating and...

358

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network (OSTI)

this room )I I( I I ,i I CALIFORNIA SOLAR DATA MANUAL I. ! IJ LAWRENCE BERICALIFORNIA 94720 Supported in part by the U.S.

Berdahl, P.

2010-01-01T23:59:59.000Z

359

One: California Economic Outlook  

E-Print Network (OSTI)

THE CALIFORNIA ECONOMIC OUTLOOK: AN IMPROVED POWER SITUATIONwas sluggish. An improved outlook for consumer spending inforecast compared with the outlook of UCLA's Anderson

Lieser, Tom K

2002-01-01T23:59:59.000Z

360

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 26, 2013 EIS-0431: Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, CA...

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Prices",13,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

362

Retail Unbundling - California  

Annual Energy Outlook 2012 (EIA)

adopts energy efficiency strategic plan. The plan provides a road map to achieve maximum energy savings across all sectors in California. Goals include: all new residential...

363

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"California Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

364

Chronic Obstructive Pulmonary Disease Burden in California and Southern California, 2011  

E-Print Network (OSTI)

Data Source: 2011 California Behavioral Risk Factorthe University of California, or collaborating organizationsfunders. Endnotes State of California Department of Public

Meng, Ying-Ying; Pickett, Melissa C.; Induni, Marta; Ryan-Ibarra, Suzanne

2012-01-01T23:59:59.000Z

365

Modification of Fronts and Precipitation by Coastal Blocking during an Intense Landfalling Winter Storm in Southern California: Observations during CALJET  

Science Conference Proceedings (OSTI)

The California Land-falling Jets Experiment (CALJET) was carried out along the California coast, and up to 1000-km offshore, during the winter of 1997/98 to study the underlying physical processes that cause flooding rains and high winds in the ...

Paul J. Neiman; F. Martin Ralph; P. Ola G. Persson; Allen B. White; David P. Jorgensen; David E. Kingsmill

2004-01-01T23:59:59.000Z

366

California - State Energy Profile Overview - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

... commercial buildings, ... California Public Utilities ... California Department of Community Services and Development. California Department of Conservation, ...

367

Orange County - Wind Permitting Standards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange County - Wind Permitting Standards Orange County - Wind Permitting Standards Orange County - Wind Permitting Standards < Back Eligibility Agricultural Commercial Residential Savings Category Wind Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider OC Planning In December 2010, the County of Orange Board of Supervisors adopted small wind performance and development standards (Ord. No. 10-020) in order to promote distributed generation systems in non-urbanized areas (as defined in Government Code Section 65944(d)(2)) within the unincorporated territory. Permitting standards are for systems of 50 kW or less per customer site, for which the energy is primarily for on-site consumption. Height: For systems 45 feet tall or less, a use permit must be approved by

368

Planning Water Use in California  

E-Print Network (OSTI)

the University of Maryland Water Policy Collaborative, 2006.FURTH ER READ ING California Department of Water Resources.California Water Plan Update 2005: A Framework for Action.

Eisenstein, William; Kondolf, G. Mathias

2008-01-01T23:59:59.000Z

369

California Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

California Quick Facts. Excluding Federal offshore areas, California ranked third in the Nation in crude oil production in 2011, despite an overall decline in ...

370

Horizon Wind  

E-Print Network (OSTI)

The Washington Department of Fish and Wildlife (WDFW) does not have regulatory authority specific to wind power development at this time. WDFW is an agency with environmental expertise as provided for through the Washington Administrative Code (WAC) 197-11-920. Comments related to environmental impacts are provided to regulatory authorities through the State Environmental Policy Act (SEPA) Revised Code of Washington (RCW) 43.21C review process.

Cover Photo; Nina Carter; Heath Packard; Lisa Paribello; Craig Dublanko; Dana Peck; Nicole Hughes; Bill Robinson; Robert Kruse; Arlo Corwin; Joe Buchanan; Ted Clausing; Eric Cummins; Travis Nelson; Eric Pentico; Mike Ritter; Jeff Tayer; James Watson; William Weiler; David Mcclure

2009-01-01T23:59:59.000Z

371

Health Profile of California's Adolescents: Findings from the 2001 California Health Interview Survey  

E-Print Network (OSTI)

HEALTH PROFILE OF CALIFORNIAS ADOLESCENTS: FINDINGSFROM THE 2001 CALIFORNIA HEALTH INTERVIEW SURVEY UCLA CenterPopulation: U.S. and California, 2000 Exhibit 2. Adolescent

2005-01-01T23:59:59.000Z

372

One: Californias Economic Outlook: Looking Beyond the State Budget  

E-Print Network (OSTI)

CALIFORNIAS ECONOMIC OUTLOOK: LOOKING BEYOND THE STATEForecast Californias economic outlook depends in largepart on the national outlook. But it also depends,

Lieser, Tom

2004-01-01T23:59:59.000Z

373

Cancer Screening in California: Findings from the 2001 California Health Interview Survey  

E-Print Network (OSTI)

American Cancer Society, California Division, and PublicDiabetes in California: CancerScreening in California: Findings from the 2001 California

Ponce, Ninez A.; Babey, Susan H.; Etzioni, David; Spencer, Benjamin A.; Brown, E. Richard R; Chawla, Neetu

2003-01-01T23:59:59.000Z

374

The State of Health Insurance in California: Findings from the 2005 California Health Interview Study  

E-Print Network (OSTI)

THE STATE OF HEALTH INSURANCE IN CALIFORNIA FINDINGS FROMTHE 2005 CALIFORNIA HEALTH INTERVIEW SURVEY JULY 2007 E.by grants from The California Endowment and The California

Brown, E. Richard; Lavarreda, Shana Alex; Ponce, Ninez; Yoon, Jean; al., et

2007-01-01T23:59:59.000Z

375

NAWIG News: The Native American Wind Interest Group Newsletter, Spring 2007  

Wind Powering America (EERE)

TDX Power and St. Paul Island: Lessons Learned TDX Power and St. Paul Island: Lessons Learned Interview with Nicholas Goodman, Project Coordinator, TDX Power Corporation (conducted for NAWIG News in winter 2006/2007). Tell us how TDX became interested in wind energy. TDX's chairman, Ron Philemonoff, became interested in windpower during one of his annual trips to visit family in California. With all due respect to our brethren in California, the St. Paul Island wind resource has no equal in California, and he knew the technology had real poten-

376

NREL: Wind Research - Offshore Wind Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Research Offshore Wind Research Photo of a European offshore wind farm. Early progress in European Offshore Wind Energy over the last decade provides a glimpse into the vast potential of the global offshore resource. For more than eight years, NREL has worked with the Department of Energy to become an international leader in offshore wind energy research. Capabilities NREL's offshore wind capabilities focus on critical areas that reflect the long-term needs of the offshore wind energy industry and the U.S. Department of Energy including: Offshore Design Tools and Methods Offshore Standards and Testing Energy Analysis of Offshore Systems Offshore Wind Resource Characterization Grid Integration of Offshore Wind Key Research NREL documented the status of offshore wind energy in the United States in

377

NREL: Wind Research - Site Wind Resource Characteristics  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Wind Resource Characteristics Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. Enlarge image This graphic shows the wind power class at the National Wind Technology Center. You can download a printable copy. The National Wind Technology Center (NWTC) is on the Great Plains just miles from the Rocky Mountains. The site is flat and covered with short grasses. The terrain and lack of obstructions make the site highly suitable for testing wind turbines. Take a tour of the NWTC and its facilities to better understand its location and layout. Another prime feature of the NWTC is the strong directionality of the wind - most of the strong winds come within a few degrees of 285°. West of

378

Session: What can we learn from developed wind resource areas  

DOE Green Energy (OSTI)

This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contribute to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.

Thelander, Carl; Erickson, Wally

2004-09-01T23:59:59.000Z

379

Oak Creek Wind Power Phase 2 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Phase 2 Wind Farm Phase 2 Wind Farm Jump to: navigation, search Name Oak Creek Wind Power Phase 2 Wind Farm Facility Oak Creek Wind Power Phase 2 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer M&N Wind Power/Oak Creek Energy Systems Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Proceedings: Workshop on Prospects and Requirements for Geographic Expansion of Wind Power Usage  

SciTech Connect

Can wind power play a significant role in the U.S. energy picture? Only if its use spreads beyond its present California base. In clarifying the technical, environmental, and resource-related issues involved in broadening the use of wind power, participants at this workshop identified key steps for utilities considering this generation option.

1986-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Utility Wind Integration Group Distributed Wind/Solar Interconnection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Wind Integration Group Distributed WindSolar Interconnection Workshop Utility Wind Integration Group Distributed WindSolar Interconnection Workshop May 21, 2013 8:00AM...

382

The Wind Energy Outlook Scenarios 1 India Wind Energy  

E-Print Network (OSTI)

1 ?Status of wind energy in India ????????????????????6 Wind energy in India????????????????????????????????????????????????????????????????????????????????????7 Wind power resource assessment?????????????????????????????????????????????????????????6 Wind power installations by state?????????????????????????????????????????????????????????8

unknown authors

2012-01-01T23:59:59.000Z

383

of California, General Catalog  

E-Print Network (OSTI)

resources in California's Central Valley (September 2010 ­ May 2013, Co-PI with Preston Jordan, $490K funded by California Energy Commission, CEC) (Completed) 9. Collaboration with China on geologic carbon sequestration. T. Birkholzer, I. Javandel, and P. D. Jordan, 2004. Modeling three-dimensional groundwater flow

California at Santa Cruz, University of

384

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables Portfolio Standard Renewables Portfolio Standard California's Renewables Portfolio Standard (RPS) was originally established by legislation enacted in 2002. Subsequent amendments to the law have resulted in a requirement for California's electric utilities to have 33% of their retail sales derived from eligible renewable energy resources in 2020 and all subsequent years. The law established interim targets for the utilities as shown below. By January 1, 2012, the California Public Utilities Commission (CPUC) must establish specific electricity sales targets for electric retail sellers based on the interim targets: October 16, 2013 Renewable Auction Mechanism (RAM) (California) The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in

385

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2010 6, 2010 Riverside, Calif., used a portion of its EECBG funds to buy 25 solar-powered trash compactors. | Courtesy of BigBelly Solar California City Implements Solar-Powered Trash Compactors This summer, Riverside, Calif., is harnessing the power of the sun in an effort aimed at slashing waste, costs and greenhouse gases. June 15, 2010 CX-002776: Categorical Exclusion Determination California-City-Elk Grove CX(s) Applied: B2.5, A9, A11, B5.1 Date: 06/15/2010 Location(s): Elk Grove, California Office(s): Energy Efficiency and Renewable Energy June 15, 2010 CX-002775: Categorical Exclusion Determination Bridgeport Indian Colony of California CX(s) Applied: B2.5, B5.1 Date: 06/15/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 15, 2010

386

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 22, 2010 CX-002788: Categorical Exclusion Determination California-Tribe-Bear River Band of the Rohnerville Rancheria CX(s) Applied: B2.5, B5.1 Date: 06/22/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 22, 2010 CX-002787: Categorical Exclusion Determination California-Tribe-Alturas Indian Rancheria CX(s) Applied: B2.5, B5.1 Date: 06/22/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 21, 2010 CX-002770: Categorical Exclusion Determination Cedarville Rancheria CX(s) Applied: A9, A11, B5.1 Date: 06/21/2010 Location(s): Cedarville, California Office(s): Energy Efficiency and Renewable Energy June 21, 2010 CX-002723: Categorical Exclusion Determination Area of Interest 3 Deployment of Flex Combined Heat and Power System

387

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2011 20, 2011 Ground Breaking of Blythe Solar Power Project Blythe Solar Power Project began construction on a solar thermal power plant near Blythe, California. June 16, 2011 CX-006097: Categorical Exclusion Determination California-City-Indio CX(s) Applied: A9, A11, B1.32, B2.5, B3.6, B5.1 Date: 06/16/2011 Location(s): Indio, California Office(s): Energy Efficiency and Renewable Energy June 14, 2011 Concentrating On California Solar Power Secretary Chu announced conditional commitments for approximately $2 billion in loan guarantees to two California concentrating solar power plants. June 14, 2011 Primus Power's energy cell stack. | Photo Courtesy of Primus Power Primus Power's Flow Battery Powered by $11 Million in Private Investment Investments in Primus Power's low-cost, distributed storage battery

388

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-004631: Categorical Exclusion Determination California- City- Turlock CX(s) Applied: B5.1 Date: 11/30/2010 Location(s): Turlock, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004630: Categorical Exclusion Determination California- City- Tulare CX(s) Applied: A1, A9, A11, B5.1 Date: 11/30/2010 Location(s): Tulare, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 29, 2010 CX-004555: Categorical Exclusion Determination

389

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2010 19, 2010 CX-001761: Categorical Exclusion Determination California-City-Palmdale CX(s) Applied: A1, A9, B1.32, B2.5, B5.1 Date: 04/19/2010 Location(s): Palmdale, California Office(s): Energy Efficiency and Renewable Energy April 16, 2010 CX-001698: Categorical Exclusion Determination Recovery Act, County of Monterey, California Energy Efficiency and Conservation Block Grant CX(s) Applied: A9, A11, B5.1 Date: 04/16/2010 Location(s): Monterey County, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 16, 2010 CX-001695: Categorical Exclusion Determination Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems CX(s) Applied: A9 Date: 04/16/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

390

California Energy Commission California Leadership on Land Use  

E-Print Network (OSTI)

California Energy Commission California Leadership on Land Use and Climate Change California Leadership on Land Use and Climate Change Panama Bartholomy Advisor to the Chairman California Energy Commission New Partners for Smart GrowthNew Partners for Smart Growth Washington, DCWashington, DC February 8

391

California Air Resources Board's "California Green Building Strategy"  

E-Print Network (OSTI)

California Air Resources Board's "California Green Building Strategy" Collectively, energy use and related activities by buildings is the second largest source of California's greenhouse gas (GHG) emissions. Almost one-quarter of California's greenhouse gas emissions can be attributed to buildings

392

California/Incentives | Open Energy Information  

Open Energy Info (EERE)

California/Incentives California/Incentives < California Jump to: navigation, search Contents 1 Financial Incentive Programs for California 2 Rules, Regulations and Policies for California Download All Financial Incentives and Policies for California CSV (rows 1 - 310) Financial Incentive Programs for California Download Financial Incentives for California CSV (rows 1 - 242) Incentive Incentive Type Active Agricultural Biomass to Energy Program (California) Performance-Based Incentive No Agricultural Pumping Efficiency Program (California) State Rebate Program No Agriculture and Food Processing Energy Loans (California) State Loan Program No Alameda Municipal Power - Commercial Energy Efficiency Loan Program (California) Utility Loan Program No Alameda Municipal Power - Commercial Energy Efficiency Rebate Program (California) Utility Rebate Program Yes

393

Energy Basics: Wind Power Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Power...

394

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

395

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Energy...

396

EERE: Wind Program Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

wind projects and offshore wind resource potential. Offshore Wind R&D DOE makes strategic research & deployment investments to launch domestic offshore wind industry....

397

Energy Basics: Wind Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating...

398

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Jump to: navigation, search Name Solar Wind Place Krasnodar, Romania Zip 350000 Sector Solar, Wind energy Product Russia-based PV product manufacturer. Solar Wind manufactures...

399

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

A. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.D.C. : American Wind Energy Association. American Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

400

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

404

Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth  

E-Print Network (OSTI)

the United States The Electricity Journal. Vol 20, Issue 9,s Contribution to U.S. Electricity Supply. DOE/GO-102008-Value of Wind- Generated Electricity in California and the

Bolinger, Mark A

2009-01-01T23:59:59.000Z

405

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 U.S. Wind Power Capacity Increased by 27% in 2006 . . . . . . . . . . . . . . . .4 The United States Leads the World in Annual Capacity Growth . . . . . . . .4 Texas, Washington, and California Lead the U.S. in Annual Capacity Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 GE Wind Is the Dominant Turbine Manufacturer, with Siemens Gaining Market Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Average Turbine Size Continues to Increase . . . . . . . . . . . . . . . . . . . . . . .7 Developer Consolidation Accelerates . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Innovation and Competition in Non-Utility Wind Financing Persists . . . .9 Utility Interest in Wind Asset Ownership Strengthens; Community Wind Grows Modestly . . . . . . . . . . . .

406

Karen Avenue Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Farm Farm Jump to: navigation, search Name Karen Avenue Wind Farm Facility Karen Avenue Windfarm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner San Gorgonio Farms Developer San Gorgonio Farms Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

California Solar Initiative - PV Incentives (California) | Open...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

408

California Solar Initiative - Solar Thermal Program (California...  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View New...

409

STATE OF CALIFORNIA DUTY STATEMENT  

E-Print Network (OSTI)

STATE OF CALIFORNIA DUTY STATEMENT CEC-004 (Revised 04/07) CALIFORNIA ENERGY COMMISSION consumption by specific building and industrial types within in various California climate zones historic and forecast energy consumption information for various California regions for use in models

410

STATE OF CALIFORNIA DUTY STATEMENT  

E-Print Network (OSTI)

STATE OF CALIFORNIA DUTY STATEMENT CEC-004 (Revised 04/07) CALIFORNIA ENERGY COMMISSION impacts of electricity supply in California. In this capacity, the incumbent will serve as a prime subject to inform California energy policies as formulated in the Integrated Energy Policy Report. This work

411

Powerworks Inc Pacific Winds | Open Energy Information  

Open Energy Info (EERE)

Powerworks Inc Pacific Winds Powerworks Inc Pacific Winds Jump to: navigation, search Name Powerworks Inc/Pacific Winds Place Tracy, California Zip CA 95377 Sector Renewable Energy, Solar, Wind energy Product PowerWorks Inc. and its affiliate, Pacific Winds Inc., are privately-held companies, focused upon the development, acquisition, and operation of clean, renewable, wind and solar power projects. Coordinates 39.37719°, -94.792309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.37719,"lon":-94.792309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Enron Wind Corporation | Open Energy Information  

Open Energy Info (EERE)

Enron Wind Corporation Enron Wind Corporation Jump to: navigation, search Name Enron Wind Corporation Place Houston, Texas Zip 77251-1188 Sector Wind energy Product Former Enron Wind, which still owns, operates and manages 125 MW of wind capacity in California, Crete and India. All its other assets were bought by GE through GE Power Systems in October 2002. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

NREL: Wind Research - Information and Outreach  

NLE Websites -- All DOE Office Websites (Extended Search)

small wind systems. Printable Version Wind Research Home Capabilities Projects Offshore Wind Research Large Wind Turbine Research Midsize Wind Turbine Research Small Wind Turbine...

414

California Solar Initiative California Public Utilities Commission  

E-Print Network (OSTI)

for solar energy by dramatically reducing the cost of solar. As part of the statewide solar effort, the CPUC of the state's solar offerings, such as the California Energy Commission's (Energy Commission) New Solar Homes Renewable Energy Council (IREC) released Larry Sherwood's U.S. Solar Market Trends for 2007 report

415

Mas Hori & Associates, California Sea Grant Extension Program -University of California and California Fisheries and Seafood Institute  

E-Print Network (OSTI)

Mas Hori & Associates, California Sea Grant Extension Program - University of California and California Fisheries and Seafood Institute Present Seafood HACCP Changes in the Revised FDA Hazards Guide

Hammock, Bruce D.

416

The Status of California Archaeology in 1984 [Chartkoff and Chartkoff: The Archaeology of California; and Moratto: California Archaeology  

E-Print Network (OSTI)

REVIEWS The Status of California Archaeology in 1984 THOMAS369]. The Archaeology of California. Joseph L. Chartkoff andindex, $32.50 (cloth). California Archaeology. Michael J.

Layton, Thomas N

1984-01-01T23:59:59.000Z

417

Stakeholder Engagement and Outreach: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of September 30, 2012, 51,630 MW have been installed. Alaska, 16 MW; Hawaii, 112 MW; Washington, 2,699 MW; Oregon, 3,153 MW; California, 4,570 MW; Nevada, 152; Idaho, 675 MW; Utah, 325 MW; Arizona, 238 MW; Montana, 395 MW; Wyoming, 1,410 MW; Colorado, 1,805 MW; New Mexico, 778 MW; North Dakota, 1,469 MW; South Dakota, 784 MW; Nebraska, 337 MW; Kansas, 1,877 MW; Oklahoma, 2,400 MW; Texas, 10,929 MW; Minnesota, 2,717 MW; Iowa, 4,536 MW; Missouri, 459 MW; Wisconsin, 636 MW; Illinois, 3,055 MW; Tennessee, 29 MW; Michigan, 515 MW; Indiana, 1,343 MW; Ohio, 420 MW; West Virginia, 583 MW; Pennsylvania, 1,029 MW; Maryland, 120 MW; Delaware, 2 MW; New Jersey, 9 MW; New York, 1,418 MW; Vermont, 46 MW; New Hampshire, 125 MW; Massachusetts, 64 MW; Rhode Island, 3 MW; Maine, 397 MW.

418

Wind Power Today  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

419

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

2006-05-01T23:59:59.000Z

420

Hybrid energy system cost analysis: San Nicolas Island, California  

DOE Green Energy (OSTI)

This report analyzes the local wind resource and evaluates the costs and benefits of supplementing the current diesel-powered energy system on San Nicolas Island, California (SNI), with wind turbines. In Section 2.0 the SNI site, naval operations, and current energy system are described, as are the data collection and analysis procedures. Section 3.0 summarizes the wind resource data and analyses that were presented in NREL/TP 442-20231. Sections 4.0 and 5.0 present the conceptual design and cost analysis of a hybrid wind and diesel energy system on SNI, with conclusions following in Section 6. Appendix A presents summary pages of the hybrid system spreadsheet model, and Appendix B contains input and output files for the HYBRID2 program.

Olsen, T.L.; McKenna, E.

1996-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 25, 2009 February 25, 2009 EIS-0414: Notice of Intent to Prepare an Environmental Impact Statement Energia Sierra Juarez Transmission Project February 23, 2009 EIS-0411: Notice of Intent to Prepare an Environmental Impact Statement Construction, Operation, and Maintenance of the Proposed Transmission Agency of Northern California Transmission Project, California January 20, 2009 EA-1602: Finding of No Significant Impact Alternative Intake Project Transmission Line and Interconnection, California November 28, 2008 EIS-0386: EPA Notice of Availability of the Programmatic Final Environmental Impact Statement Designation of Energy Corridors in 11 Western States, Preferred Location of Future Oil, Gas, and Hydrogen Pipelines and Electricity Transmission and Distribution Facilities on Federal Land

422

California Energy Incentive Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Energy California Energy Incentive Programs: An Annual Update on Key Energy Issues and Financial Opportunities for Federal Sites in California Prepared for the U.S. Department of Energy Federal Energy Management Program December 2011 i Contacts Utility Acquisitions, ESPCs, PPAs Tracy Logan U.S. Department of Energy Federal Energy Management Program EE-2L 1000 Independence Avenue, SW Washington, DC 20585-0121 Phone: (202) 586-9973 E-mail: tracy.logan@ee.doe.gov Principal Research Associate Elizabeth Stuart Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley, CA 94720 Phone: (510)495-2370 E-mail: estuart@lbl.gov ii Contents Overview ...................................................................................................................................................... 1

423

Demand Response In California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

424

Notice of Decision by the California Energy Commission To: California Resources Agency From: California Energy Commission  

E-Print Network (OSTI)

Notice of Decision by the California Energy Commission To: California Resources Agency From: California Energy Commission 1416 9th Street, Room 1311 1516 9th Street MS-2000 Sacramento, CA 95814 21080.5 and Title 20, California Code of Regulations, Section 1768 Project Name: 1 Energy Commission

425

NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency From: California Energy Commission  

E-Print Network (OSTI)

NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency From: California Energy Commission 1416 9th Street, Room 1311 1516 9th Street, MS-2000 Sacramento, CA 95814 21080.5 and Title 20, California Code of Regulations, Section 1768 Project Name: Kern River Cogeneration

426

NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency From: California Energy Commission  

E-Print Network (OSTI)

NOTICE OF DECISION BY THE CALIFORNIA ENERGY COMMISSION To: California Resources Agency From: California Energy Commission 1416 9th Street, Room 1311 1516 9th Street, MS-2000 Sacramento, CA 95814 21080.5 and Title 20, California Code of Regulations, Section 1768 Project Name: Crockett Cogeneration

427

California energy flow in 1989  

DOE Green Energy (OSTI)

California's energy use showed a modest increase (2.2%) in 1989 over 1988 which was in keeping with the steady increase in population that the state has experienced annually during the decade. All end-use sectors (residential, commercial, industrial, transportation, etc.) contributed to the growth. The larger demand was met by increased imports of all major fuels. Only electrical imports remained close to 1988 levels, in part due to increased output from Diablo Canyon nuclear plant whose performance exceeded expectations. California's per capita energy consumption has traditionally been below the national average due to the relatively benign climate associated with its centers of population. The largest single use for energy in the state was for transportation which overtook industrial usage in the 60's. Use of highway fuels continued to grow and reached all time highs in 1989. Highway congestion, a major problem and concern in the state, is anticipated to grow as the number of licensed drivers increases; in 1989 the increase was 3.4%. Output from the The Geysers Geothermal fields, the largest in the world, continued to falter as the steam output fell. Nonetheless new resources at the Coso Geothermal Resource Area and at the Wendel Geothermal field came on line during the year, and other geothermal areas were under active development. Novel sources of renewable energy (solar, wind, etc.) grew; however, collectively they made only a small contribution to the overall energy supply. Cogenerated electricity sold to the utilities by small power producers inexplicably fell in 1989 although estimates of the total capacity available rose. Energy flow diagrams illustrate energy sources and energy consumption.

Borg, I.Y.; Briggs, C.K.

1991-02-06T23:59:59.000Z

428

Wind energy manual  

E-Print Network (OSTI)

Objectives: The course introduces principles of wind power production, design of wind turbines, location and design of wind farms, control of turbines and wind farms, predictive modeling, diagnostics, operations and maintenance, condition monitoring, health monitoring and of turbine components and systems, wind farm performance optimization, and integration of wind power with a grid. The modeling and analysis aspect of the topics discussed in the class will be illustrated with examples and case studies. Textbook: References:

A. Vieira; Da Rosa; Fundamentals Renewable; Energy Processes; San Diego; Jacob Kirpes; Small Wind

2013-01-01T23:59:59.000Z

429

California Solar Energy Industries Association | Open Energy...  

Open Energy Info (EERE)

Name California Solar Energy Industries Association Place Rio Vista, California Zip 94571 Sector Solar Product California Solar Energy Industries Association is a trade group...

430

California's 38th congressional district: Energy Resources |...  

Open Energy Info (EERE)

can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 38th congressional district California...

431

Diabetes on the Rise in California  

E-Print Network (OSTI)

HEALTH POLICY RESEARCH DIABETES IN CALIFORNIA: FINDINGS FROMTHE 2001 CALIFORNIA HEALTH INTERVIEW SURVEY UCLA CENTER FORSUITE 300 LOS ANGELES, CALIFORNIA 90024 PHONE: (310) 794-

Diamant, Allison L.; Babey, Susan H.; Brown, E. Richard; Hastert, Theresa A.

2005-01-01T23:59:59.000Z

432

California Air Resources Board | Open Energy Information  

Open Energy Info (EERE)

Air Resources Board Jump to: navigation, search Logo: California Air Resources Board Name California Air Resources Board Place Sacramento, California Website http:www.arb.ca.gov...

433

EIS-0431: Hydrogen Energy California's Integrated Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31: Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, California EIS-0431: Hydrogen Energy California's Integrated...

434

The Optimal Gas Tax for California  

E-Print Network (OSTI)

Parsing California Gas Prices. http://www.law.stanford.edu/in California Real gas price ( $/gallon) Taxable gasolineEnergy Commission (gas price), California State Board of

Lin, C.-Y. Cynthia; Prince, Lea

2010-01-01T23:59:59.000Z

435

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

California Energy Demand Scenario Projections to 2050 RyanResearch Program California Energy Commission November 7,Chris Kavalec. California Energy Commission. CEC (2003a)

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

436

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

contract between the California Energy Commission (CEC) andBechtel Fund and the California Energy Commision for theirstudy was funded by the California Energy Commission and the

2011-01-01T23:59:59.000Z

437

An Integrated Hydrogen Vision for California  

E-Print Network (OSTI)

Program, November. California Energy Commission (2001), gas_facts.html. California Energy Commission (2002), wepr, August 7. California Energy Commission (2003a), 2002

2004-01-01T23:59:59.000Z

438

RESIDENTIAL THERMOSTATS: COMFORT CONTROLS IN CALIFORNIA HOMES  

E-Print Network (OSTI)

saturation survey. California Energy Commission Report 400-the Elderly. A UERG California Energy Studies Report. UER-1984- 1988). California Energy Commission, Sacramento, CA.

Meier, Alan K.

2008-01-01T23:59:59.000Z

439

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network (OSTI)

Economic Profile of the California Energy Industry Analysisand R.L. Cooper, "California Energy Outlook," LawrenceDivision Analysis of the California Energy Industry Energy

Authors, Various

2010-01-01T23:59:59.000Z

440

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

442

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Wind Power Today: Federal Wind Program Highlights  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describe the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry.

Not Available

2005-04-01T23:59:59.000Z

444

Commonwealth Wind Incentive Program Micro Wind Initiative  

Energy.gov (U.S. Department of Energy (DOE))

Through the Commonwealth Wind Incentive Program Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

445

Wind characteristics for agricultural wind energy applications  

SciTech Connect

Wind energy utilization in agriculture can provide a potentially significant savings in fuel oil consumption and ultimately a cost savings to the farmer. A knowledge of the wind characteristics within a region and at a location can contribute greatly to a more efficient and cost-effective use of this resource. Current research indicates that the important wind characteristics include mean annual wind speed and the frequency distribution of the wind, seasonal and diurnal variations in wind speed and direction, and the turbulent and gustiness characteristics of the wind. Further research is underway to provide a better definition of the total wind resource available, improved methods for siting WECS and an improved understanding of the environment to which the WECS respond.

Renne, D. S.

1979-01-01T23:59:59.000Z

446

NREL: Wind Research - Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A...

447

Wind/Hydro Study  

NLE Websites -- All DOE Office Websites (Extended Search)

WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

448

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment and Characterization Defining, measuring, and forecasting land-based and offshore wind resources Environmental Impacts and Siting of Wind Projects Avoiding,...

449

Wind Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain.

450

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

451

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

452

Wind energy bibliography  

DOE Green Energy (OSTI)

This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

None

1995-05-01T23:59:59.000Z

453

Wind Energy Resources for Teachers | Open Energy Information  

Open Energy Info (EERE)

Resources for Teachers Resources for Teachers Jump to: navigation, search Photo from the South Dakota Wind Applications Center, NREL 18283 The following links lead to curricula and classroom resources for teachers who want to incorporate wind energy into their lesson plans. 4-H Group Wind Curriculum Developed The Power of the Wind, which consists of one Youth Guide and one Facilitator's Guide. The activities involve young people in the engineering design process as they learn about the wind and its uses. The site also offers videos. Boise State University Compiled a list of resources for educators, including lesson plans created using the Idaho State and Common Core Standards. California Energy Commission Developed a set of educational materials called "Energy Quest" that

454

Edom Hills (repower) Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Edom Hills (repower) Wind Farm Edom Hills (repower) Wind Farm Jump to: navigation, search Name Edom Hills (repower) Wind Farm Facility Edom Hills (repower) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Alternative Energy Developer BP Alternative Energy Energy Purchaser Southern California Edison Co Location CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Section 28 Trust Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Section 28 Trust Wind Farm Section 28 Trust Wind Farm Jump to: navigation, search Name Section 28 Trust Wind Farm Facility Section 28 Trust Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Kenetech/Wintech Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Kenetech/Wintech Wind Farm Kenetech/Wintech Wind Farm Jump to: navigation, search Name Kenetech/Wintech Wind Farm Facility Kenetech/Wintech Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Mojave/Morowind Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mojave/Morowind Wind Farm Mojave/Morowind Wind Farm Jump to: navigation, search Name Mojave/Morowind Wind Farm Facility Mojave/Morowind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Tomen Developer Tomen Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Knight & Carver Wind Group | Open Energy Information  

Open Energy Info (EERE)

Knight & Carver Wind Group Knight & Carver Wind Group Jump to: navigation, search Name Knight & Carver Wind Group Address 2423 Hoover Avenue Place National City, California Zip 91950 Sector Wind energy Product Blade design for wind turbines Website http://www.kcwind.com/ Coordinates 32.6609335°, -117.1045466° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.6609335,"lon":-117.1045466,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tehachapi Wind Energy Storage Project (October 2012) Tehachapi Wind Energy Storage Project (October 2012) Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. Southern California Edison (SCE) will test the BESS for 24 months to determine its capability and effectiveness to support 13 operational users. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) More Documents & Publications New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): ARRA Projects Energy Storage Systems 2010 Update Conference Presentations - Day 2,

460

Alta Mesa I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Mesa I Wind Farm Mesa I Wind Farm Jump to: navigation, search Name Alta Mesa I Wind Farm Facility Alta Mesa I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Seasonal variation of CH4 emissions from central California  

NLE Websites -- All DOE Office Websites (Extended Search)

Seasonal variation of CH4 emissions from central California Seasonal variation of CH4 emissions from central California Title Seasonal variation of CH4 emissions from central California Publication Type Journal Article Year of Publication 2012 Authors Jeong, Seongeun, Chuanfeng Zhao, Arlyn E. Andrews, Laura Bianco, James M. Wilczak, and Marc L. Fischer Journal Journal of Geophysical Research - Atmospheres Volume 117 Issue D11 Keywords atmospheric transport, emission inventory, greenhouse gas, inverse model, methane Abstract We estimate seasonal variations in methane (CH4) emissions from central California from December 2007 through November 2008 by comparing CH4 mixing ratios measured at a tall tower with transport model predictions based on a global 1° a priori CH4emissions map (EDGAR32) and a 10 km seasonally varying California-specific map, calibrated to statewide by CH4emission totals. Atmospheric particle trajectories and surface footprints are computed using the Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport models. Uncertainties due to wind velocity and boundary layer mixing depth are evaluated using measurements from radar wind profilers. CH4signals calculated using the EDGAR32 emission model are larger than those based on the California-specific model and in better agreement with measurements. However, Bayesian inverse analyses using the California-specific and EDGAR32 maps yield comparable annually averaged posterior CH4emissions totaling 1.55 ± 0.24 times and 1.84 ± 0.27 times larger than the California-specific prior emissions, respectively, for a region of central California within approximately 150 km of the tower. If these results are applicable across California, state total CH4 emissions would account for approximately 9% of state total greenhouse gas emissions. Spatial resolution of emissions within the region near the tower reveal seasonality expected from several biogenic sources, but correlations in the posterior errors on emissions from both prior models indicate that the tower footprints do not resolve spatial structure of emissions. This suggests that including additional towers in a measurement network will improve the regional specificity of the posterior estimates.

462

Energy Solutions to Air Pollution and Climate Change in California  

Science Conference Proceedings (OSTI)

Wind, solar, hydro, and geothermal power can be combined for baseload or load-matching power supply, particularly in combination with plug-in electric vehicles. California and the U.S. have significant wind resources. California's offshore resources were quantified. Interconnecting wind farms can convert about 1/3 of intermittent power to power with the same reliability as a coal-fired power plant. Wind-battery electric vehicles could reduce U.S. CO2 by 25.5%; solar-battery electric vehicles can reduce it by 23.4%. Corn-ethanol vehicles cannot practically reduce CO2 in the U.S. by more than 0.07-0.2%. Battery electric and hydrogen-fuel cell vehicles powered by renewable sources will eliminate 10,000-20,000 U.S. air pollution deaths each year. Ethanol vehicles will increase the death rate or cause no change. Wind turbines require 30 times less land than corn ethanol and 20 times less land than cellulosic ethanol for the same power.

Jacobson, M.Z.; Dvorak, M.; Archer, C.L.; Hoste, G. [Stanford Univ., CA (United States). Dept. of Civil & Environmental Engineering

2007-07-01T23:59:59.000Z

463

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2010 4, 2010 CX-003570: Categorical Exclusion Determination R10 Heat Mirror Technology with Optimized Solar Heat Gain Coefficient CX(s) Applied: B3.6 Date: 08/24/2010 Location(s): Palo Alto, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 24, 2010 CX-003510: Categorical Exclusion Determination Sulfur Based Thermochemical Heat Storage for Based Load Concentrated Solar Power Generation CX(s) Applied: A9, B3.6 Date: 08/24/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 18, 2010 CX-003481: Categorical Exclusion Determination California - City - Compton CX(s) Applied: A9, A11, B2.5, B5.1 Date: 08/18/2010 Location(s): Compton, California Office(s): Energy Efficiency and Renewable Energy

464

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-002348: Categorical Exclusion Determination California Low Carbon Fuels Infrastructure Investment Initiative (LCFI3) CX(s) Applied: A1, A9, B5.1 Date: 05/11/2010 Location(s): Sacramento, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 10, 2010 CX-002215: Categorical Exclusion Determination San Buenaventura's Joint Partnership to meet Clean Air Mandates CX(s) Applied: A9, A11, B2.5, B5.1 Date: 05/10/2010 Location(s): Ventura, California Office(s): Energy Efficiency and Renewable Energy May 10, 2010 CX-002214: Categorical Exclusion Determination Susanville Indian Rancheria Portfolio Manager Tool CX(s) Applied: B2.5, B5.1 Date: 05/10/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy

465

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-002328: Categorical Exclusion Determination Community Renewable Energy Deployment - Sacramento Municipal Utility District (SMUD): Solar Highways CX(s) Applied: A9 Date: 05/18/2010 Location(s): Sacramento, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 18, 2010 CX-002326: Categorical Exclusion Determination Community Renewable Energy Deployment - Sacramento Municipal Utility District (SMUD): BLT Anaerobic Digester Date: 05/18/2010 Location(s): Sacramento, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 17, 2010 CX-002554: Categorical Exclusion Determination California-City-Hemet CX(s) Applied: B1.32, A1, A9, A11, B5.1 Date: 05/17/2010 Location(s): Hemet, California Office(s): Energy Efficiency and Renewable Energy

466

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 17, 2011 March 17, 2011 CX-005396: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - California-City-Escondido CX(s) Applied: A9, A11, B1.32, B5.1 Date: 03/17/2011 Location(s): Escondido, California Office(s): Energy Efficiency and Renewable Energy March 17, 2011 CX-005395: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - California-City-Compton CX(s) Applied: A9, A11, B2.5, B5.1 Date: 03/17/2011 Location(s): Compton, California Office(s): Energy Efficiency and Renewable Energy March 16, 2011 Disneyland's Dry Cleaning Gets an Energy Efficient Upgrade As the provider of laundry and dry cleaning services for Disneyland Resort's costumes and hospitality supply items, L&N Costume and Linen Service knows a little something about both quantity and quality.

467

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States » California United States » California California January 15, 2014 Dr. Adam Weber oversees the work of intern Sara Kelly at Lawrence Berkeley National Laboratory in California. Dr. Weber was recently named one of the winners of the Presidential Early Career Awards for Scientists and Engineers. | Photo by Roy Kaltschmidt, Lawrence Berkeley National Laboratory 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley National Laboratory Dr. Adam Weber of the Energy Department's Lawrence Berkeley National Laboratory was recently honored for his cutting edge work to help make hydrogen fuel cells and their components more efficient and durable. Dr. Weber talks to us about what inspired him to become a scientist, why he loves Lord of the Rings, and gives some advice to future scientists.

468

California | OpenEI  

Open Energy Info (EERE)

California California Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 92, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released August 10th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO California EIA Electric Power projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / California- Reference Case (xls, 259.5 KiB)

469

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program '''''Note: This program was modified by AB 2249, signed in September 2012. The bill allows for non-residential solar pool heating to qualify for incentives, and requires program administrators to modify their programs accordingly by July 1, 2013. Residential solar pool heating will continue to be ineligible for incentives. ''''' October 16, 2013 California Solar Initiative - Single-Family Affordable Solar Housing (SASH) Program The California Solar Initiative (CSI) provides financial incentives for installing solar technologies through a variety of smaller sub-programs. Of the $3.2 billion in total funding for the CSI, $216 million has been set aside for programs to help fund photovoltaic (PV) installations on

470

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-002706: Categorical Exclusion Determination California-Tribe-Tuolumne Band of Me-Wuk Indians CX(s) Applied: A9, B5.1 Date: 06/11/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 11, 2010 More than $60 Million in Recovery Act Funding to Expand Local Energy Efficiency Efforts in 20 Communities Competitive block grants to support jobs, save money and increase energy independence June 10, 2010 CX-002621: Categorical Exclusion Determination Compressed Air Energy Storage (CAES) System CX(s) Applied: B3.6, A9, B5.1 Date: 06/10/2010 Location(s): San Luis Obispo, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 9, 2010 CX-002710: Categorical Exclusion Determination California City-Fullerton

471

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2011 4, 2011 CX-005938: Categorical Exclusion Determination Roseville Elverta (RSC-ELV) Optical Ground Wire Replacement Project CX(s) Applied: B4.6, B4.7 Date: 05/04/2011 Location(s): Sacramento, California Office(s): Western Area Power Administration-Sierra Nevada Region May 2, 2011 The Gale Ranch Middle School of San Ramon, CA, received first place at the 2011 National Science Bowl. | Energy Department Image | Photo by Dennis Brack, Contractor California Schools Sweep the 2011 National Science Bowl The Mira Loma High School of Sacramento, California, and the Gale Ranch Middle School of San Ramon, California, beat out 1,800 sciences teams from across the country to become the 2011 National Science Bowl champions today. May 2, 2011 CX-005745: Categorical Exclusion Determination

472

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 1, 2002 April 1, 2002 EA-1363: Final Environmental Assessment California Department of Food and Agriculture Curly Top Virus Control Program December 5, 2001 EA-1391: Final Environmental Assessment Environmental Assessment for Presidential Permit Applications for Baja California, Inc. and Sempra Energy Resources December 5, 2001 EA-1391: Finding of No Significant Impact Baja California Power Inc. and Sempra Energy Resources September 30, 2001 EA-1383: Final Environmental Assessment Amendment of Presidential Permit (PP-68) San Diego Gas & Electric Company for Interconnection of Otay Mesa Generating Project to Miguel-Tijuana 230 kV Transmission Line San Diego, California September 24, 2001 EA-1383: Finding of No Significant Impact Amendment of Presidential Permit (PP-68) for San Diego Gas and Electric

473

THE CALIFORNIA ENVIRONMENTAL ENTERPRISE  

SciTech Connect

THE CALIFORNIA ENVIRONMENTAL ENTERPRISE (CEE) is a joint partnership of: the DOE Laboratories LLNL, LBL, and Sandia; the California Environmental Protection Agency (Cal/EPA); and the Institute of Environmental Solutions (IES). CEE is an independent, non-profit regional function organized and operated in accordance with the Department of Energy (DOE) ``Enterprise`` model developed by the DOE Environmental Management (EM) Strategic Task Force and the Strategic Laboratory Council. The vision of THE CALIFORNIA ENVIRONMENTAL ENTERPRISE is to create new economic opportunities through the advancement of rehabilitative reuse of environmentally impaired property, and through research, development and commercialization of alternative environmental technologies. The mission of THE CALIFORNIA ENVIRONMENTAL ENTERPRISE is to maximize the DOE investment by acting as the catalyst for the rapid development and acceptance of environmental technologies needed for redevelopment of contaminated sites, economic revitalization, and the dissipation of adversarial relationships between the public, regulators, problem-holders, and Federal agencies.

Ragaini, R.C. [Lawrence Livermore National Lab., CA (United States); Buckles, R.J. [Institute of Environmental Solutions, Sacarameto, CA (United States); Goldstein, N.E. [Lawrence Berkeley Lab., CA (United States); Bramlette, T.T. [Sandia National Labs., Livermore, CA (United States)

1994-04-01T23:59:59.000Z

474

RES California Conference  

Energy.gov (U.S. Department of Energy (DOE))

The NCAIEDs RES California conference and tradeshow will feature respected tribal leaders, state and local elected officials, top CEOs, the NCAIEDs Twenty Grand Business Plan Competition,...

475

California Fuel Cell Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Speaker(s): Bob Knight Date: October 19, 2000 - 12:00pm Location: Bldg. 90 The California Fuel Cell Partnership is a current collaboration among major automakers, fuel cell...

476

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-002033: Categorical Exclusion Determination Recovery Act: County of Monterey, California Energy Efficiency and Conservation Block Grant CX(s) Applied: A9, A11, B5.1 Date:...

477

Southern California Gas Co  

Gasoline and Diesel Fuel Update (EIA)

Southern California Gas Co ... 236,147,041 98,326,527 274,565,356 690,930 139,093,560 748,823,414 Lone Star Gas Co......

478

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Otay Mesa Generating Project to Miguel-Tijuana 230 kV Transmission Line San Diego, California September 24, 2001 EA-1383: Finding of No Significant Impact Amendment of...

479

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Density CX(s) Applied: B3.6 Date: 09192011 Location(s): Menlo Park, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology...

480

Perspective: California's vision  

SciTech Connect

This article describes California regulators' attempts to create regulations which would reflect a vision of the future of the electric industry. Some things that must be considered are retail wheeling, incentive regulation, simplified regulations, and promoting competitiveness of utilities.

Eckert, P.M.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "upc wind california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

California | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting the Way for Big Energy Savings in Los Angeles The world's largest light emitting diode (LED) conversion project to date is under way in Los Angeles, California. In...

482

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 19, 2011 January 19, 2011 CX-005046: Categorical Exclusion Determination Evaluating and Commercializing a Solvent Based EOR Technology CX(s) Applied: B3.6 Date: 01/19/2011 Location(s): Santa Barbara County, California Office(s): Fossil Energy, National Energy Technology Laboratory January 19, 2011 Truck 51 of the Chula Vista Fire Department. How Chula Vista, California Is Turning Cooking Oil Into Savings Chula Vista, California is saving their citizens money and reducing emissions by converting over 125 of their heavy-duty fleet vehicles to run off biodiesel. January 19, 2011 CX-005051: Categorical Exclusion Determination PAX Cooling Cycle CX(s) Applied: B3.6, B5.1 Date: 01/19/2011 Location(s): Petaluma, California Office(s): Energy Efficiency and Renewable Energy, National Energy

483

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2009 5, 2009 CX-000591: Categorical Exclusion Determination 25A2936 - Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration CX(s) Applied: B3.6 Date: 12/15/2009 Location(s): California Office(s): Advanced Research Projects Agency - Energy December 15, 2009 CX-000235: Categorical Exclusion Determination California City Fresno CX(s) Applied: A9, A11, B5.1 Date: 12/15/2009 Location(s): Fresno, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 14, 2009 CX-001247: Categorical Exclusion Determination Biodiesel Tank Installation, Solar Installations, and Home Upgrades CX(s) Applied: A1, A9, A11, B3.6, B5.1 Date: 12/14/2009 Location(s): Chula Vista, California Office(s): Energy Efficiency and Renewable Energy December 14, 2009

484

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 6, 2012 June 6, 2012 Solar Industry At Work: Video Interview with Alta Devices' Laila Mattos Laila Mattos, a technology manager at Alta Devices, talks about what it means to work for a "disruptive" solar company. May 31, 2012 Gemini's Wind Turbine Tower Rescue courses provide wind technicians with training in safety at height, emergency escape systems and rescue. This course is designed to prepare wind technicians with the knowledge and emergency procedures specific to wind turbines. | Photo by Claudia Trevizo. Wind Industry Training for Our Military Veterans The Energy Department is taking steps to leverage the skill sets of our military veterans in support of the wind energy industry. May 31, 2012 EIS-0414: Final Environmental Impact Statement Energia Sierra Juarez Transmission Project

485

2008 WIND TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

policy support for other renewable energy sources, wind mayrenewable energy and climate policy initiatives. With wind

Bolinger, Mark

2010-01-01T23:59:59.000Z

486

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2010 26, 2010 CX-003250: Categorical Exclusion Determination California-Tribe-Redwood Valley Rancheria of Pomo Indians CX(s) Applied: A9, B2.5, B5.1 Date: 07/26/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy July 26, 2010 CX-003249: Categorical Exclusion Determination California-Tribe-San Pasqual Band of Mission Indians CX(s) Applied: A9, A11, B5.1 Date: 07/26/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy July 26, 2010 CX-003197: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Systems for Utility Power Generation CX(s) Applied: B5.1 Date: 07/26/2010 Location(s): Pomona, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office July 22, 2010 Byron Washom, Director of Strategic Energy Initiatives at the University of California at San Diego, poses with an electric vehicle and some of the solar panels that cover UCSD's campus.| Photo courtesy of UCSD

487

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2010 13, 2010 CX-001226: Categorical Exclusion Determination End Station Test Beam CX(s) Applied: B3.10 Date: 03/13/2010 Location(s): California Office(s): Science, Stanford Linear Accelerator Site Office March 12, 2010 CX-006104: Categorical Exclusion Determination California-City-Temecula CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 03/12/2010 Location(s): Temecula, California Office(s): Energy Efficiency and Renewable Energy March 11, 2010 CX-006099: Categorical Exclusion Determination California-City-Pomona CX(s) Applied: A9, A11, B1.32, B5.1 Date: 03/11/2010 Location(s): Pomona, California Office(s): Energy Efficiency and Renewable Energy March 10, 2010 CX-006098: Categorical Exclusion Determination California-City-Lynwood CX(s) Applied: A9, A11, B2.5, B5.1 Date: 03/10/2010

488

Categorical Exclusion Determinations: California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 25, 2010 March 25, 2010 CX-004878: Categorical Exclusion Determination Rock Slough Pole Replacement Project CX(s) Applied: B1.20, B4.6, B4.13 Date: 03/25/2010 Location(s): Oakley, California Office(s): Western Area Power Administration-Sierra Nevada Region March 25, 2010 CX-002198: Categorical Exclusion Determination Rock Slough Pole Replacement CX(s) Applied: B1.20, B4.6, B4.13 Date: 03/25/2010 Location(s): Contra Costa Canal, California Office(s): Western Area Power Administration-Sierra Nevada Region March 24, 2010 CX-001206: Categorical Exclusion Determination Tehachapi Wind Energy Storage CX(s) Applied: A9, B1.13, B3.6, B4.4, B4.6, B5.1 Date: 03/24/2010 Location(s): Kern County, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

489

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network (OSTI)

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program...........................................................................................................................11 #12;Table of Contents California Solar Initiative Thermal Program Handbook ii 2.5 Surface

490

Applications: Operational wind turbines  

E-Print Network (OSTI)

Capability Applications: Operational wind turbines Benefits: Optimize wind turbine performance Summary: Researchers at the Los Alamos National Laboratory (LANL) Intelligent Wind Turbine Program are developing a multi-physics modeling approach for the analysis of wind turbines in the presence of realistic

491

Wind powering America: Iowa  

DOE Green Energy (OSTI)

Wind resources in the state of Iowa show great potential for wind energy development. This fact sheet provides a brief description of the state's wind resources and the financial incentives available for the development of wind energy systems. It also provides a list of contacts for more information.

NREL

2000-04-11T23:59:59.000Z

492

NREL: Wind Research - Small Wind Site Assessment: Wind Powering...  

NLE Websites -- All DOE Office Websites (Extended Search)

environmental impacts have increased the demand for small wind energy systems for homeowners, schools, businesses, and local governments. Over the past decade, the knowledge,...

493

California Electric Energy Crisis - Electricity Information  

U.S. Energy Information Administration (EIA)

Electricity Information Available Formats; Status of Electric Industry Restructuring Activity in California: html: California State Electricity Profil ...

494

An Integrated Hydrogen Vision for California  

E-Print Network (OSTI)

Inc. (Concord) Alternative Energy Systems Consulting, Inc. (under the California Alternative Energy and Advancedunder the California Alternative Energy and Advanced

Lipman, Timothy; Kammen, Daniel; Ogden, Joan; Sperling, Dan

2004-01-01T23:59:59.000Z

495

California Enterprise Development Authority (Figtree PACE) -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enterprise Development Authority (Figtree PACE) - Statewide PACE Program (California) California Enterprise Development Authority (Figtree PACE) - Statewide PACE Program...

496

California Hydrogen Infrastructure Project | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Infrastructure Project Jump to: navigation, search Name California Hydrogen Infrastructure Project Place California Sector Hydro, Hydrogen Product String representation...

497

Showcasing California Better Buildings Challenge Partners' Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Showcasing California Better Buildings Challenge Partners' Energy Saving Solutions Showcasing California Better Buildings Challenge Partners' Energy Saving Solutions August 28,...

498

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

499

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

500

San Onofre nuclear outage contributes to Southern Californias ...  

U.S. Energy Information Administration (EIA)

Short, timely articles with graphics on energy, facts, issues ... in the Southern California Edison and San ... company providing retail ...