National Library of Energy BETA

Sample records for uo uo uo

  1. Spectroscopic Studies of the Several Isomers of UO3

    SciTech Connect (OSTI)

    Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.; Buck, Edgar C.; Meier, David E.; Su, Yin-Fong; Brauer, Carolyn S.; Schwantes, Jon M.; Tonkyn, Russell G.; Szecsody, James E.; Blake, Thomas A.; Johnson, Timothy J.

    2013-09-26

    Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of α-UO3, β-UO3, γ-UO3 and UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.

  2. METHOD FOR PREPARATION OF UO$sub 2$ PARTICLES

    DOE Patents [OSTI]

    Johnson, J.R.; Taylor, A.J.

    1959-09-22

    A method is described for the preparation of highdensity UO/sub 2/ particles within the size range of 40 to 100 microns. In accordance with the invention UO/sub 2/ particles are autoclaved with an aqueous solution of uranyl ions. The resulting crystals are reduced to UO/sub 2/ and the UO/sub 2/ is heated to at least 1000 deg C to effect densification. The resulting UO/sub 2/ particles are screened, and oversize particles are crushed and screened to recover the particles within the desired size range.

  3. Final Report: Manganese Redox Mediation of UO2 Stability and...

    Office of Scientific and Technical Information (OSTI)

    Meter Scale Dynamics Citation Details In-Document Search Title: Final Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate in the Subsurface: Molecular and Meter ...

  4. Oxidative Dissolution of UO2 in a Simulated Groundwater Containing...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Oxidative Dissolution of UO2 in a Simulated ... Citation Details In-Document Search Title: Oxidative ... Publication Date: 2014-03-18 OSTI Identifier: 1124154 Report ...

  5. RECOMMENDATIONS FOR UO3 PLANT BIOASSAY

    SciTech Connect (OSTI)

    Carbaugh, Eugene H.

    2010-07-12

    Alternative urine bioassay programs are described for application with decontamination and decommissioning activities at the Hanford UO3 Plant. The alternatives are based on quarterly or monthly urine bioassay for recycled uranium, assuming multiple acute inhalation intakes of recycled uranium occurring over a year. The inhalations are assumed to be 5µm AMAD particles of 80% absorption type F and 20% absorption type M. Screening levels, expressed as daily uranium mass excretion rates in urine, and the actions associated with these levels are provided for both quarterly and monthly sampling frequencies.

  6. PREPARATION OF HIGH DENSITY UO$sub 2$

    DOE Patents [OSTI]

    Googin, J.M.

    1959-09-29

    A method is presented for the preparation of highdensity UO/sub 2/ from UF/sub 6/. In accordance with the invention, UF/sub 6/ is reacted with water and concentrated ammonium hydroxide is added to the resulting aqueous solution of UO/ sub 2/F/sub 2/. The resulting precipitate is calcined to U/sub 3/O/sub 8/ an d the U/sub 3/O/sub 8/ is reduced to UO/sub 2/ with a gaseous mixture comprised of carbon monoxide and carbon dioxide at a temperature of from 1600 to 1900 deg C.

  7. Fuel Performance Experiments on the Atomistic Level, Studying Fuel Through Engineered Single Crystal UO2

    SciTech Connect (OSTI)

    Burgett, Eric; Deo, Chaitanya; Phillpot, Simon

    2015-05-08

    Fuel Performance Experiments on the Atomistic Level, Studying Fuel Through Engineered Single Crystal UO2

  8. Simple but Stronger UO, Double but Weaker UNMe Bonds: The Tale Told by Cp2UO and Cp2UNR

    SciTech Connect (OSTI)

    LPCNO, CNRS-UPS-INSA, INSA Toulouse; Institut Charles Gerhardt, CNRS, Universite Montpellier; Laboratoire de Chimie et Physique Quantiques, CNRS, IRSAMC, Universite Paul Sabatier; Andersen, Richard; Barros, Noemi; Maynau, Daniel; Maron, Laurent; Eisenstein, Odile; Zi, Guofu; Andersen, Richard

    2007-06-27

    The free energies of reaction and the activation energies are calculated, with DFT (B3PW91) and small RECP (relativistic core potential) for uranium, for the reaction of Cp2UNMe and Cp2UO with MeCCMe and H3Si-Cl that yields the corresponding addition products. CAS(2,7) and DFT calculations on Cp2UO and Cp2UNMe give similar results, which validates the use of DFT calculations in these cases. The calculated results mirror the experimental reaction of [1,2,4-(CMe3)3C5H2]2UNMe with dimethylacetylene and [1,2,4-(CMe3)3C5H2]2UO with Me3SiCl. The net reactions are controlled by the change in free energy between the products and reactants, not by the activation energies, and therefore by the nature of the UO and UNMe bonds in the initial and final states. A NBO analysis indicates that the U-O interaction in Cp2UO is composed of a single U-O bond with three lone pairs of electrons localized on oxygen, leading to a polarized U-O fragment. In contrast, the U-NMe interaction in Cp2UNMe is composed of a and component and a lone pairof electrons localized on the nitrogen, resulting in a less polarized UNMe fragment, in accord with the lower electronegativity of NMe relative to O. The strongly polarized U(+)-O(-) bond is calculated to be about 70 kcal mol-1 stronger than the less polarized U=NMe bond.

  9. U(v) in metal uranates: A combined experimental and theoretical study of MgUO4, CrUO4, and FeUO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Xiaofeng; Tiferet, Eitan; Qi, Liang; Solomon, Jonathan M.; Lanzirotti, Antonio; Newville, Matthew; Engelhard, Mark H.; Kukkadapu, Ravi K.; Wu, Di; Ilton, Eugene S.; et al

    2016-02-02

    Although pentavalent uranium can exist in aqueous solution, its presence in the solid state is uncommon. Metal monouranates, MgUO4, CrUO4 and FeUO4 were synthesized for detailed structural and energetic investigations. Structural characteristics of these uranates used powder X-ray diffraction, synchrotron X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and 57Fe-Mossbauer spectroscopy. Enthalpies of formation were measured by high temperature oxide melt solution calorimetry. Density functional theory (DFT) calculations provided both structural and energetic information. The measured structural and thermodynamic properties show good consistency with those predicted from DFT. The presence of U5+ has been solidly confirmed in CrUO4 and FeUO4, which aremore » thermodynamically stable compounds, and the origin and stability of U5+ in the system was elaborated by DFT. Lastly, the structural and thermodynamic behaviour of U5+ elucidated in this work is relevant to fundamental actinide redox chemistry and to applications in the nuclear industry and radioactive waste disposal.« less

  10. Unveiling the Behavior of UO2 Under Extreme Physical Conditions...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Such understanding, as the interplay between UO2 and its zirconium cladding at the atomic scale, will allow researchers to design, test and deploy "accident-tolerant fuels" that do ...

  11. AVLIS modified direct denitration: UO{sub 3} powder evaluation

    SciTech Connect (OSTI)

    Slagle, O.D.; Davis, N.C.; Parchen, L.J.

    1994-02-01

    The evaluation study demonstrated that AVLIS-enriched uranium converted to UO{sub 3} can be used to prepare UO{sub 3} pellets having densities in the range required for commercial power reactor fuel. Specifically, the program has demonstrated that MDD (Modified Direct Denitration)-derived UO{sub 2} powders can be reduced to sinterable UO{sub 2} powder using reduction techniques that allow control of the final powder characteristics; the resulting UO{sub 2} powders can be processed/sintered using standard powder preparation and pellet fabrication techniques to yield pellets with densities greater than 96% TD; pellet microstructures appear similar to those of power reactor fuel, and because of the high final pellet densities, it is expected that they would remain stable during in-reactor operation; the results of the present study confirm the results of a similar study carried out in 1982 (Davis and Griffin 1992). The laboratory processes were selected on the basis that they could be scaled up to standard commercial fuel processing. However, larger scale testing may be required to establish techniques compatible with commercial fuel fabrication techniques.

  12. Synthesis and sintering of UN-UO2 fuel composites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A.; Tyburska-Puschel, Beata; Meyer, Mitch; Xu, Peng; Lahoda, Edward J.; Butt, Darryl P.

    2015-06-17

    In this study, the design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uraniummore » using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO2 in a planetary ball mill. UN and UN – UO2 composite pellets were sintered in Ar – (0–1 at%) N2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO2 composite pellets were also sintered in Ar – 100 ppm N2 to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.« less

  13. PUREX/UO{sub 3} deactivation project management plan

    SciTech Connect (OSTI)

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.

  14. Thermodynamic studies of studtite thermal decomposition pathways via amorphous intermediates UO3, U2O7, and UO4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guo, Xiaofeng; Wu, Di; Xu, Hongwu; Burns, Peter C.; Navrotsky, Alexandra

    2016-06-08

    The thermal decomposition of studtite (UO2)O2(H2O)2·2H2O results in a series of intermediate X-ray amorphous materials with general composition UO3+x (x = 0, 0.5, 1). As an extension of a structural study on U2O7, this work provides detailed calorimetric data on these amorphous oxygen-rich materials since their energetics and thermal stability are unknown. These were characterized in situ by thermogravimetry, and mass spectrometry. Ex situ X-ray diffraction and infrared spectroscopy characterized their chemical bonding and local structures. This detailed characterization formed the basis for obtaining formation enthalpies by high temperature oxide melt solution calorimetry. The thermodynamic data demonstrate the metastability ofmore » the amorphous UO3+x materials, and explain their irreversible and spontaneous reactions to generate oxygen and form metaschoepite. Thus, formation of studtite in the nuclear fuel cycle, followed by heat treatment, can produce metastable amorphous UO3+x materials that pose the risk of significant O2 gas. Quantitative knowledge of the energy landscape of amorphous UO3+x was provided for stability analysis and assessment of conditions for decomposition.« less

  15. Modelling oxygen self-diffusion in UO2 under pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cooper, Michael William D.; Grimes, R. W.; Fitzpatrick, M. E.; Chroneos, A.

    2015-10-22

    Access to values for oxygen self-diffusion over a range of temperatures and pressures in UO2 is important to nuclear fuel applications. Here, elastic and expansivity data are used in the framework of a thermodynamic model, the cBΩ model, to derive the oxygen self-diffusion coefficient in UO2 over a range of pressures (0–10 GPa) and temperatures (300–1900 K). Furthermore, the significant reduction in oxygen self-diffusion as a function of increasing hydrostatic pressure, and the associated increase in activation energy, is identified.

  16. METHOD FOR PREPARATION OF SPHERICAL UO$sub 4$

    DOE Patents [OSTI]

    Gregory, J.F. Jr.; Levey, R.P. Jr.

    1962-06-01

    A method is given for continuously precipitating ura nium peroxide in the form of spherical particles. Seed crystals are formed in a first reaction zone by introducing an acidified aqueous uranyl nitrate solution and an aqueous hydrogen peroxide solution at a ratio of 5 to 20 per cent of the stoichiometric amount required for complete precipitation. After a mean residence time of 2 to 5 minutes in the first reaction zone, the resulting mixture is introduced into a second reaction zone, together with a large excess of hydrogen peroxide solution. The resulting UO4 is rapidly separated from the mother liquor after an over-all residence time of 5 to 11 minutes. The first reaction is maintained at a temperature of 85 to 90 deg C and the second zone above 50 deg C. Additional reaction zones may be employed for further crystal growth. The UO/sub 4/ is converted to U/sub 3/O/sub 8/ or UO/sub 2/ by heating in air or hydrogen atmosphere. This method is particularly useful for the preparation of spherical UO/sub 2/ particles 10 to 25 microns in diameter. (AEC)

  17. Thermal Reactions of Uranium Metal, UO2, U3O8, UF4, and UO2F2 with NF3 to Produce UF6

    SciTech Connect (OSTI)

    McNamara, Bruce K.; Scheele, Randall D.; Kozelisky, Anne E.; Edwards, Matthew K.

    2009-11-01

    he objective of this paper is to demonstrate that NF3 fluorinates uranium metal, UO2, UF4, UO3, U3O8, and UO2F22H2O to produce the volatile UF6 at temperatures between 100 and 500?C. Thermogravimetric reaction profiles are described that reflect changes in the uranium oxidation state and discrete chemical speciation. Differences in the onset temperatures for each system indicate that NF3-substrate interactions are important for the temperature at which NF3 reacts: U metal > UO3 > UO2 > UO2F2 > UF4 and in fact may indicate different fluorination mechanisms for these various substrates. These studies demonstrate that NF3 is a potential replacement fluorinating agent in the existing nuclear fuel cycle and in oft-proposed actinide volatility reprocessing.

  18. Density Functional Theory Calculations of Mass Transport in UO2

    SciTech Connect (OSTI)

    Andersson, Anders D.; Dorado, Boris; Uberuaga, Blas P.; Stanek, Christopher R.

    2012-06-26

    In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models

  19. Tandem dissolution of UO 3 in amide-based acidic ionic liquid and in situ electrodeposition of UO 2 with regeneration of the ionic liquid: a closed cycle

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wanigasekara, Eranda; Freiderich, John W.; Sun, Xiao-Guang; Meisner, Roberta A.; Luo, Huimin; Delmau, Lætitia H.; Dai, Sheng; Moyer, Bruce A.

    2016-05-19

    A closed cycle is demonstrated for the tandem dissolution and electroreduction of UO3 to UO2 with regeneration of the acidic ionic liquid. The dissolution is achieved by use of the acidic ionic liquid N,N-dimethylacetimidium bis(trifluoromethanesulfonimide) in 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonimide) serving as the diluent. Bulk electrolysis performed at 1.0 V vs. Ag reference yields a dark brown-black uranium deposit (UO2) on the cathode. Anodic oxidation of water in the presence of dimethylacetamide regenerates the acidic ionic liquid. We have demonstrated the individual steps in the cycle together with a sequential dissolution, electroreduction, and regeneration cycle.

  20. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures

    SciTech Connect (OSTI)

    Silva, Chinthaka M; Katoh, Yutai; Voit, Stewart L; Snead, Lance Lewis

    2015-01-01

    Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO2 pellets and evaluated for their potential chemical reaction with UO2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO2 was observed at comparatively low temperatures of 1100 and 1300 C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity, according to microstructural investigations. However, both CVD and CVC SiCs showed some reaction with UO2 at a higher temperature (1500 C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500 C. Furthermore, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi2, and U3Si2 as a result of SiC reaction with UO2.

  1. PROCESS FOR THE PRODUCTION OF AN ACTIVATED FORM OF UO$sub 2$

    DOE Patents [OSTI]

    Polissar, M.J.

    1957-09-24

    A process for producing a highly active form of UO/sub 2/ characterized both by rapid oxidation in air and by rapid chlorination with CCl/sub 4/ vapor at an elevated temperature is reported. In accordance with the process, commercial UO/sub 2/, is subjected to a series of oxidation-reduction operations to produce a form of UC/sub 2/ of enhanced reactivity. By treatimg commercial UO/sub 2/ at a temperature between 335 and 485 deg C with methane, then briefly with an oxygen containing gas and followimg this by a second treatment with a methane containing gas, the original relatively stable charge of UO/sub 2/ will be transformed into an active form of UO/sub 2/.

  2. PUREX/UO{sub 3} facilities deactivation lessons learned history

    SciTech Connect (OSTI)

    Hamrick, D.G.; Gerber, M.S.

    1995-01-01

    The Plutonium-Uranium Extraction (PUREX) Facility operated from 1956-1972, from 1983-1988, and briefly during 1989-1990 to produce for national defense at the Hanford Site in Washington State. The Uranium Trioxide (UO{sub 3}) Facility operated at the Hanford Site from 1952-1972, 1984-1988, and briefly in 1993. Both plants were ordered to permanent shutdown by the U.S. Department of Energy (DOE) in December 1992, thus initiating their deactivation phase. Deactivation is that portion of a facility`s life cycle that occurs between operations and final decontamination and decommissioning (D&D). This document details the history of events, and the lessons learned, from the time of the PUREX Stabilization Campaign in 1989-1990, through the end of the first full fiscal year (FY) of the deactivation project (September 30, 1994).

  3. Surface reactions of ethanol over UO2(100) thin film

    SciTech Connect (OSTI)

    S. D. Senanayake; Mudiyanselage, K.; Burrell, A. K.; Sadowski, J. T.; Idriss, H.

    2015-10-08

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure, and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C 1s, O 1s, and U 4f to investigate the bonding mode, surface composition, electronic structure, and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [rough-UO2(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion-sputtering of this UO2(100) did not result in noticeable reduction of U cations. Upon ethanol adsorption (saturation occurred at 0.5 ML), only the ethoxy (CH3CH2O) species is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO–) on the Ar+-sputtered UO2(100) surface. Furthermore, all ethoxy and acetate species are removed from the surface between 600 and 700 K.

  4. Surface reactions of ethanol over UO2(100) thin film

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    S. D. Senanayake; Mudiyanselage, K.; Burrell, A. K.; Sadowski, J. T.; Idriss, H.

    2015-10-08

    The study of the reactions of oxygenates on well-defined oxide surfaces is important for the fundamental understanding of heterogeneous chemical pathways that are influenced by atomic geometry, electronic structure, and chemical composition. In this work, an ordered uranium oxide thin film surface terminated in the (100) orientation is prepared on a LaAlO3 substrate and studied for its reactivity with a C-2 oxygenate, ethanol (CH3CH2OH). With the use of synchrotron X-ray photoelectron spectroscopy (XPS), we have probed the adsorption and desorption processes observed in the valence band, C 1s, O 1s, and U 4f to investigate the bonding mode, surface composition,more » electronic structure, and probable chemical changes to the stoichiometric-UO2(100) [smooth-UO2(100)] and Ar+-sputtered UO2(100) [rough-UO2(100)] surfaces. Unlike UO2(111) single crystal and UO2 thin film, Ar-ion-sputtering of this UO2(100) did not result in noticeable reduction of U cations. Upon ethanol adsorption (saturation occurred at 0.5 ML), only the ethoxy (CH3CH2O–) species is formed on smooth-UO2(100) whereas initially formed ethoxy species are partially oxidized to surface acetate (CH3COO–) on the Ar+-sputtered UO2(100) surface. Furthermore, all ethoxy and acetate species are removed from the surface between 600 and 700 K.« less

  5. Dissolution process for ZrO.sub.2 -UO.sub.2 -CaO fuels

    DOE Patents [OSTI]

    Paige, Bernice E.

    1976-06-22

    The present invention provides an improved dissolution process for ZrO.sub.2 -UO.sub.2 -CaO-type pressurized water reactor fuels. The zirconium cladding is dissolved with hydrofluoric acid, immersing the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers in the resulting zirconium-dissolver-product in the dissolver vessel, and nitric acid is added to the dissolver vessel to facilitate dissolution of the uranium from the ZrO.sub.2 -UO.sub.2 -CaO fuel wafers.

  6. Final Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate

    Office of Scientific and Technical Information (OSTI)

    in the Subsurface: Molecular and Meter Scale Dynamics (Technical Report) | SciTech Connect Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate in the Subsurface: Molecular and Meter Scale Dynamics Citation Details In-Document Search Title: Final Report: Manganese Redox Mediation of UO2 Stability and Uranium Fate in the Subsurface: Molecular and Meter Scale Dynamics One strategy to remediate U contamination in the subsurface is the immobilization of U via injection of an

  7. Simulations and Experimental Measurements of UO2 Thermal Conductivity

    SciTech Connect (OSTI)

    Stanek, Christopher Richard; Gofryk, Krzysztof; Tonks, Michael; Andersson, Anders David Ragnar; Liu, Xiang-Yang; Lashley, Jason Charles; Uberuaga, Blas P.; Mcclellan, Kenneth James

    2015-04-10

    Spin-phonon interactions lead to low κ of UO2 (and behave like a defect), and this has implications for nuclear fuel performace. The inability to capture spin-phonon scattering leads to inherent errors. The interplay between magnetism and structural asymmetry in UO2 displays rich physics. Grain boundary structure plays a role which must be taken into account.

  8. DISPERSION ELEMENT CONSISTING OF CHROMIUM COATED UO$sup 2$ PARTICLES UNIFORMLY DISTRIBUTED IN A ZIRCALOY MATRIX

    DOE Patents [OSTI]

    Cain, F.M. Jr.; Eck, J.E.

    1963-05-01

    A nuclear fuel element consisting of metal coated UO/sub 2/ particles dispersed in a matrix of Zircalloy and having a cladding of Zircalloy is presented. (AEC)

  9. Near surface stoichiometry in UO2: A density functional theory study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.; Manuel, Michele V.; Allen, Todd

    2015-08-01

    The mechanisms of oxygen stoichiometry variation in UO2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO2 have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the near surface stoichiometric variationmore » is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.« less

  10. Near surface stoichiometry in UO2: A density functional theory study

    SciTech Connect (OSTI)

    Yu, Jianguo; Valderrama, Billy; Henderson, Hunter B.; Manuel, Michele V.; Allen, Todd

    2015-08-01

    The mechanisms of oxygen stoichiometry variation in UO2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110) surface relaxation and stoichiometry in UO2 have been studied with density functional theory (DFT) calculations. On the basis of the point-defect model (PDM), a general expression for the near surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.

  11. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Silva, Chinthaka M.; Katoh, Yutai; Voit, Stewart L.; Snead, Lance L.

    2015-02-11

    Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO2 pellets and evaluated for their potential chemical reaction with UO2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO2 was observed at comparatively low temperatures of 1100 and 1300 C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity, according to microstructural investigations. But, both CVD and CVC SiCs showed some reaction with UO2 at a higher temperature (1500 C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500more » C. Moreover, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi2, and U3Si2 as a result of SiC reaction with UO2.« less

  12. Synthesis and sintering of UN-UO2 fuel composites

    SciTech Connect (OSTI)

    Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A.; Tyburska-Puschel, Beata; Meyer, Mitch; Xu, Peng; Lahoda, Edward J.; Butt, Darryl P.

    2015-06-17

    In this study, the design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO2 in a planetary ball mill. UN and UN – UO2 composite pellets were sintered in Ar – (0–1 at%) N2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO2 composite pellets were also sintered in Ar – 100 ppm N2 to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.

  13. PREPARATION OF UO$sub 2$ FOR NUCLEAR REACTOR FUEL PELLETS

    DOE Patents [OSTI]

    Googin, J.M.

    1962-06-01

    A method is given for preparing high-density UO/sub 2/ compacts. An aqueous uranyl fluoride solution is contacted with an aqueous ammonium hydroxide solution at an ammonium to-uranium ratio of 25: 1 to 30:1 to form a precipitate. The precipitate is separated from the- mother liquor, dried, and contacted with steam at a uniform temperature within the range of 400 to 650 deg C to produce U/ sub 3/O/sub 8/. The U/sub 3/O/sub 8/ is red uced to UO/sub 2/ with hydrogen at a uniform temperature within the range of 550 to 600 deg C. The UO/sub 2/ is then compressed into compacts and sintered. High-density compacts are fabricated to close tolerances without use of a binder and without machining or grinding. (AEC)

  14. Fission gas release from UO{sub 2+x} in defective light water reactor fuel rods

    SciTech Connect (OSTI)

    Skim, Y. S.

    1999-11-12

    A simplified semi-empirical model predicting fission gas release form UO{sub 2+x} fuel to the fuel rod plenum as a function of stoichiometry excess (x) is developed to apply to the fuel of a defective LWR fuel rod in operation. The effect of fuel oxidation in enhancing gas diffusion is included as a parabolic dependence of the stoichiometry excess. The increase of fission gas release in a defective BWR fuel rod is at the most 3 times higher than in an intact fuel rod because of small extent of UO{sub 2} oxidation. The major enhancement contributor in fission gas release of UO{sub 2+x} fuel is the increased diffusivity due to stoichiometry excess rather than the higher temperature caused by degraded fuel thermal conductivity.

  15. SINGLE-STEP CONVERSION OF UO$sub 3$ TO UF$sub 4$

    DOE Patents [OSTI]

    Moore, J.E.

    1960-07-12

    A description is given of the preparation of uranium tetrafluoride by reacting a hexavalent uranium compound with a pclysaccharide and gaseous hydrogen fluoride at an elevated temperature. Uranium trioxide and starch are combined with water to form a doughy mixture. which is extruded into pellets and dried. The pellets are then contacted with HF at a temperature from 500 to 700 deg C in a moving bed reactor to prcduce UF/sub 4/. Reduction of the hexavalent uranium to UO/sub 2/ and conversion of the UO/sub 2/ to UF/sub 4/ are accomplished simultaneously in this process.

  16. Microstructure evolution in Xe-irradiated UO2 at room temperature

    SciTech Connect (OSTI)

    L.F. He; J. Pakarinen; M.A. Kirk; J. Gan; A.T. Nelson; X.-M. Bai; A. El-Azab; T.R. Allen

    2014-07-01

    In situ Transmission Electron Microscopy was conducted for single crystal UO2 to understand the microstructure evolution during 300 keV Xe irradiation at room temperature. The dislocation microstructure evolution was shown to occur as nucleation and growth of dislocation loops at low irradiation doses, followed by transformation to extended dislocation segments and tangles at higher doses. Xe bubbles with dimensions of 1-2 nm were observed after room-temperature irradiation. Electron Energy Loss Spectroscopy indicated that UO2 remained stoichiometric under room temperature Xe irradiation.

  17. PUREX/UO3 Facilities deactivation lessons learned history

    SciTech Connect (OSTI)

    Gerber, M.S.

    1996-09-19

    Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitric acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were

  18. Thermal Stabilization of {sup 233}UO{sub 2}, {sup 233}UO{sub 3}, and {sup 233}U{sub 3}O{sub 8}

    SciTech Connect (OSTI)

    Thein, S.M.

    2000-07-26

    This report identifies an appropriate thermal stabilization temperature for {sup 233}U oxides. The temperature is chosen principally on the basis of eliminating moisture and other residual volatiles. This report supports the U. S. Department of Energy (DOE) Standard for safe storage of {sup 233}U (DOE 2000), written as part of the response to Recommendation 97-1 of the Defense Nuclear Facilities Safety Board (DNFSB), addressing safe storage of {sup 233}U. The primary goals in choosing a stabilization temperature are (1) to ensure that the residual volatiles content is less than 0.5 wt % including moisture, which might produce pressurizing gases via radiolysis during long-term sealed storage; (2) to minimize potential for water readsorption above the 0.5 wt % threshold; and (3) to eliminate reactive uranium species. The secondary goals are (1) to reduce potential future chemical reactivity and (2) to increase the particle size thereby reducing the potential airborne release fraction (ARF) under postulated accident scenarios. The prevalent species of uranium oxide are the chemical forms UO{sub 2}, UO{sub 3}, and U{sub 3}O{sub 8}. Conversion to U{sub 3}O{sub 8} is sufficient to accomplish all of the desired goals. The preferred storage form is U{sub 3}O{sub 8} because it is more stable than UO{sub 2} or UO{sub 3} in oxidizing atmospheres. Heating in an oxidizing atmosphere at 750 C for at least one hour will achieve the thermal stabilization desired.

  19. Thermal Behavior of Advanced UO{sub 2} Fuel at High Burnup

    SciTech Connect (OSTI)

    Muller, E.; Lambert, T.; Silberstein, K.; Therache, B.

    2007-07-01

    To improve the fuel performance, advanced UO{sub 2} products are developed to reduce significantly Pellet-Cladding Interaction and Fission Gas Release to increase high burnup safety margins on Light Water Reactors. To achieve the expected improvements, doping elements are currently used, to produce large grain viscoplastic UO{sub 2} fuel microstructures. In that scope, AREVA NP is conducting the qualification of a new UO{sub 2} fuel pellet obtained by optimum chromium oxide doping. To assess the fuel thermal performance, especially the fuel conductivity degradation with increasing burnup and also the kinetics of fission gas release under transient operating conditions, an instrumented in-pile experiment, called REMORA, has been developed by the CEA. One segment base irradiated for five cycles in a French EDF commercial PWR ({approx} 62 GWd/tM) was consequently re-instrumented with a fuel centerline thermocouple and an advanced pressure sensor. The design of this specific sensor is based on the counter-pressure principle and avoids any drift phenomenon due to nuclear irradiation. This rodlet was then irradiated in the GRIFFONOS rig of the Osiris experimental reactor at CEA Saclay. This device, located in the periphery of the core, is designed to perform test under conditions close to those prevailing in French PWR reactor. Power variations are carried out by translating the device relatively to the core. Self - powered neutron detectors are positioned in the loop in order to monitor the power the whole time of the irradiation. The re-irradiation of the REMORA experiment consisted of a stepped ramp to power in order to point out a potential degradation of the fuel thermal conductivity with increasing burnup. During the first part of the irradiation, most of the measurements were performed at low power in order to take into account the irradiation effects on UO{sub 2} thermal conductivity at high burnup in low range of temperature. The second part of the irradiation

  20. Theoretical investigation of the impact of grain boundaries and fission gases on UO2 thermal conductivity

    SciTech Connect (OSTI)

    Du, Shiyu; Andersson, Anders D.; Germann, Timothy C.; Stanek, Christopher R.

    2012-05-02

    Thermal conductivity is one of the most important metrics of nuclear fuel performance. Therefore, it is crucial to understand the impact of microstructure features on thermal conductivity, especially since the microstructure evolves with burn-up or time in the reactor. For example, UO{sub 2} fuels are polycrystalline and for high-burnup fuels the outer parts of the pellet experience grain sub-division leading to a very fine grain structure. This is known to impact important physical properties such as thermal conductivity as fission gas release. In a previous study, we calculated the effect of different types of {Sigma}5 grain boundaries on UO{sub 2} thermal conductivity and predicted the corresponding Kapitza resistances, i.e. the resistance of the grain boundary in relation to the bulk thermal resistance. There have been reports of pseudoanisotropic effects for the thermal conductivity in cubic polycrystalline materials, as obtained from molecular dynamics simulations, which means that the conductivity appears to be a function of the crystallographic direction of the temperature gradient. However, materials with cubic symmetry should have isotropic thermal conductivity. For this reason it is necessary to determine the cause of this apparent anisotropy and in this report we investigate this effect in context of our earlier simulations of UO{sub 2} Kapitza resistances. Another source of thermal resistance comes from fission products and fission gases. Xe is the main fission gas and when generated in sufficient quantity it dissolves from the lattice and forms gas bubbles inside the crystalline structure. We have performed studies of how Xe atoms dissolved in the UO{sub 2} matrix or precipitated as bubbles impact thermal conductivity, both in bulk UO{sub 2} and in the presence of grain boundaries.

  1. Thermal transport in UO2 with defects and fission products by molecular dynamics simulations

    SciTech Connect (OSTI)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Mcclellan, Kenneth James; Lashley, Jason Charles; Byler, Darrin David; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-10-14

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U5+ and Zr4+ in UO2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then corrected for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO2+x samples.

  2. Fabrication of ThO/sub 2/ and ThO/sub 2/-UO/sub 2/ fuel pellets

    SciTech Connect (OSTI)

    Davis, N.C.; Matthews, R.B.; White, G.D.; Hart, P.E.

    1980-06-01

    In this presentation, ThO/sub 2/ and ThO/sub 2/-UO/sub 2/ pellet fuel development activities leading to the production of kilogram quantities of fuel are described. Conventional dry ball milling was used to produce ThO/sub 2/ and ThO/sub 2/-UO/sub 2/ mixtures that were pressed and sintered to 95% TD with a homogeneous distribution of the components.

  3. Sensitivity of UO2 Stability in a Reducing Environment on Radiolysis Model Parameters

    SciTech Connect (OSTI)

    Wittman, Richard S.; Buck, Edgar C.

    2012-09-01

    Results for a radiolysis model sensitivity study of radiolytically produced H2O2 are presented as they relate to Spent (or Used) Light Water Reactor uranium oxide (UO2) nuclear fuel (UNF) oxidation in a low oxygen environment. The model builds on previous reaction kinetic studies to represent the radiolytic processes occurring at the nuclear fuel surface. Hydrogen peroxide (H2O2) is the dominant oxidant for spent nuclear fuel in an O2-depleted water environment.

  4. $sup 18$O enrichment process in UO$sub 2$F$sub 2$ utilizing laser light

    DOE Patents [OSTI]

    DePoorter, G.L.; Rofer-DePoorter, C.K.

    1975-12-01

    Photochemical reaction induced by laser light is employed to separate oxygen isotopes. A solution containing UO$sub 2$F$sub 2$, HF, H$sub 2$O and a large excess of CH$sub 3$OH is irradiated with laser light of appropriate wavelength to differentially excite the UO$sub 2$$sup 2+$ ions containing $sup 16$O atoms and cause a reaction to proceed in accordance with the reaction 2 UO$sub 2$F$sub 2$ + CH$sub 3$OH + 4 HF $Yields$ 2 UF$sub 4$ down arrow + HCOOH + 3 H$sub 2$O. Irradiation is discontinued when about 10 percent of the UO$sub 2$F$sub 2$ has reacted, the UF$sub 4$ is filtered from the reaction mixture and the residual CH$sub 3$OH and HF plus the product HCOOH and H$sub 2$O are distilled away from the UO$sub 2$F$sub 2$ which is thereby enriched in the $sup 18$O isotope, or the solution containing the UO$sub 2$F$sub 2$ may be photochemically processed again to provide further enrichment in the $sup 18$O isotope.

  5. Development of Innovative Accident Tolerant High Thermal Conductivity UO2-Diamond Composite Fuel Pellets

    SciTech Connect (OSTI)

    Tulenko, James; Subhash, Ghatu

    2016-01-01

    The University of Florida (UF) evaluated a composite fuel consisting of UO2 powder mixed with diamond micro particles as a candidate as an accident-tolerant fuel (ATF). The research group had previous extensive experience researching with diamond micro particles as an addition to reactor coolant for improved plant thermal performance. The purpose of this research work was to utilize diamond micro particles to develop UO2-Diamond composite fuel pellets with significantly enhanced thermal properties, beyond that already being measured in the previous UF research projects of UO2 – SiC and UO2 – Carbon Nanotube fuel pins. UF is proving with the current research results that the addition of diamond micro particles to UO2 may greatly enhanced the thermal conductivity of the UO2 pellets producing an accident-tolerant fuel. The Beginning of life benefits have been proven and fuel samples are being irradiated in the ATR reactor to confirm that the thermal conductivity improvements are still present under irradiation.

  6. Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations

    SciTech Connect (OSTI)

    Liu, Xiang-Yang; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-07-21

    The thermal conductivity of uranium dioxide (UO2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO2, as a function of defect concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].

  7. Recovery of UO.sub.2 /Pu O.sub.2 in IFR electrorefining process

    DOE Patents [OSTI]

    Tomczuk, Zygmunt; Miller, William E.

    1994-01-01

    A process for converting PuO.sub.2 and UO.sub.2 present in an electrorefiner to the chlorides, by contacting the PuO.sub.2 and UO.sub.2 with Li metal in the presence of an alkali metal chloride salt substantially free of rare earth and actinide chlorides for a time and at a temperature sufficient to convert the UO.sub.2 and PuO.sub.2 to metals while converting Li metal to Li.sub.2 O. Li.sub.2 O is removed either by reducing with rare earth metals or by providing an oxygen electrode for transporting O.sub.2 out of the electrorefiner and a cathode, and thereafter applying an emf to the electrorefiner electrodes sufficient to cause the Li.sub.2 O to disassociate to O.sub.2 and Li metal but insufficient to decompose the alkali metal chloride salt. The U and Pu and excess lithium are then converted to chlorides by reaction with CdCl.sub.2.

  8. Recovery of UO[sub 2]/PuO[sub 2] in IFR electrorefining process

    DOE Patents [OSTI]

    Tomczuk, Z.; Miller, W.E.

    1994-10-18

    A process is described for converting PuO[sub 2] and UO[sub 2] present in an electrorefiner to the chlorides, by contacting the PuO[sub 2] and UO[sub 2] with Li metal in the presence of an alkali metal chloride salt substantially free of rare earth and actinide chlorides for a time and at a temperature sufficient to convert the UO[sub 2] and PuO[sub 2] to metals while converting Li metal to Li[sub 2]O. Li[sub 2]O is removed either by reducing with rare earth metals or by providing an oxygen electrode for transporting O[sub 2] out of the electrorefiner and a cathode, and thereafter applying an emf to the electrorefiner electrodes sufficient to cause the Li[sub 2]O to disassociate to O[sub 2] and Li metal but insufficient to decompose the alkali metal chloride salt. The U and Pu and excess lithium are then converted to chlorides by reaction with CdCl[sub 2].

  9. Fluorination behavior of UO{sub 2}F{sub 2} in the presence of F{sub 2} and O{sub 2}

    SciTech Connect (OSTI)

    Matsuda, Minoru; Sato, Nobuaki; Kirishima, Akira; Tochiyama, Osamu

    2007-07-01

    To apply the fluoride volatility process to the spent nuclear fuel, fluorination of UO{sub 2} by fluorine has been studied. In this reaction, it is possible that the U-O-F compounds, such as UO{sub 2}F{sub 2}, are produced. Therefore, study of such compounds is useful in order to know the fluorination behavior of UO{sub 2}. This paper presents the fluorination behavior of UO{sub 2}F{sub 2} in the presence of F{sub 2} and O{sub 2}, analyzed by thermogravimetry and differential thermal analysis (TG-DTA) method using anti-corrosion type differential thermo-balance. In fluorine gas, exothermic peaks appeared and volatilization of UF{sub 6}. In oxygen gas, only slowly pace decomposition was measured from UO{sub 22} to UF{sub 6} and UO{sub 3}. (authors)

  10. Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures

    SciTech Connect (OSTI)

    Silva, Chinthaka M.; Katoh, Yutai; Voit, Stewart L.; Snead, Lance L.

    2015-02-11

    Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO2 pellets and evaluated for their potential chemical reaction with UO2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO2 was observed at comparatively low temperatures of 1100 and 1300 C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity, according to microstructural investigations. But, both CVD and CVC SiCs showed some reaction with UO2 at a higher temperature (1500 C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500 C. Moreover, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi2, and U3Si2 as a result of SiC reaction with UO2.

  11. First-principles study of noble gas impurities and defects in UO{sub 2}

    SciTech Connect (OSTI)

    Thompson, Alexander E.; Wolverton, C.

    2011-10-01

    We performed a series of density functional theory + U (DFT + U) calculations to explore the energetics of various defects in UO{sub 2}, i.e., noble gases (He, Ne, Ar, Kr, Xe), Schottky defects, and the interaction between these defects. We found the following: (1) collinear antiferromagnetic UO{sub 2} has an energy-lowering distortion of the oxygen sublattice from ideal fluorite positions; (2) DFT + U qualitatively affects the formation volume of Schottky defect clusters in UO{sub 2} (without U the formation volume is negative, but including U the formation volume is positive); (3) the configuration of the Schottky defect cluster is dictated by a competition between electrostatic and surface energy effects; (4) the incorporation energy of inserting noble gas atoms into an interstitial site has a strong dependence on the volume of the noble gas atom, corresponding to the strain it causes in the interstitial site, from He (0.98 eV) to Xe (9.73 eV); (5) the energetics of each of the noble gas atoms incorporated in Schottky defects show strong favorable binding, due to strain relief associated with moving the noble gas atom from the highly strained interstitial position into the vacant space of the Schottky defect; and (6) for argon, krypton, and xenon, the binding energy of a noble gas impurity with the Schottky defect is larger than the formation energy of a Schottky defect, thereby making the formation of Schottky defects thermodynamically favorable in the presence of these large impurities.

  12. Pellet fabrication development using thermally denitrated UO{sub 2} powder

    SciTech Connect (OSTI)

    Davis, N.C.; Griffin, C.W.

    1992-05-01

    Pacific Northwest Laboratory (PNL) has evaluted, on a laboratory scale, the characteristics and pellet fabrication properties of UO{sub 3} powder prepared by the thermal denitration process. Excellent quality, 96% TD (percent of theoretical density) pellets were produced from development lots of this powder. Apparently, the key to making this highly sinterable powder from uranyl nitrate is the addition of ammonium nitrate (NH{sub 4}NO{sub 3}) to the feed solution prior to thermal denitration. Powder lots were processed with and without the NH{sub 4}NO{sub 3} addition in the feed solution. The lots included samples from the ORNL laboratory rotary kiln and from a larger scale rotary kiln at National Lead of Ohio (NLO). In the PNL evaluation, samples of UO{sub 3} were calculated and reduced to UO{sub 2}, followed by conventional process procedures to compare the sinterability of the powder lots. The high density pellets made from the powder lots, which included the NH{sub 4}NO{sub 3} addition, were reduced to Fast Breeder Reactor (FBR) density range of 88 to 92% TD by the use of poreformers. The NH{sub 4}NO{sub 3} addition also improved the sinterability properties of uranium oxide powders that contain thorium and cerium. Thorium and cerium were used as ``stand-in`` for plutonium used in urania-plutonia FBR fuel pellets. A very preliminary examination of a single lot of thermally denitrated uranium-plutonium oxide powder was made. This powder lot was made with the NH{sub 3}NO{sub 3} addition and produced pellets just above the FBR density range.

  13. Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

  14. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    SciTech Connect (OSTI)

    Douglas E. Burkes; Daniel M. Wachs; James E. Werner; Steven D. Howe

    2007-06-01

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted ‘traditional’ fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of

  15. Supplying materials needed for grain growth characterizations of nano-grained UO2

    SciTech Connect (OSTI)

    Mo, Kun; Miao, Yinbin; Yun, Di; Jamison, Laura M.; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  16. Synchrotron characterization of nanograined UO2 grain growth

    SciTech Connect (OSTI)

    Mo, Kun; Miao, Yinbin; Yun, Di; Jamison, Laura M.; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL) and aims at providing experimental data for the validation of the mesoscale simulation code MARMOT. MARMOT is a mesoscale multiphysics code that predicts the coevolution of microstructure and properties within reactor fuel during its lifetime in the reactor. It is an important component of the Moose-Bison-Marmot (MBM) code suite that has been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. In order to ensure the accuracy of the microstructure based materials models being developed within the MARMOT code, extensive validation efforts must be carried out. In this report, we summarize our preliminary synchrotron radiation experiments at APS to determine the grain size of nanograin UO2. The methodology and experimental setup developed in this experiment can directly apply to the proposed in-situ grain growth measurements. The investigation of the grain growth kinetics was conducted based on isothermal annealing and grain growth characterization as functions of duration and temperature. The kinetic parameters such as activation energy for grain growth for UO2 with different stoichiometry are obtained and compared with molecular dynamics (MD) simulations.

  17. NEAMS FPL M2 Milestone Report: Development of a UO? Grain Size Model using Multicale Modeling and Simulation

    SciTech Connect (OSTI)

    Michael R Tonks; Yongfeng Zhang; Xianming Bai

    2014-06-01

    This report summarizes development work funded by the Nuclear Energy Advanced Modeling Simulation program's Fuels Product Line (FPL) to develop a mechanistic model for the average grain size in UO? fuel. The model is developed using a multiscale modeling and simulation approach involving atomistic simulations, as well as mesoscale simulations using INL's MARMOT code.

  18. Direct electrolytic reduction of UO{sub 2} vs. U{sub 3}O{sub 8}

    SciTech Connect (OSTI)

    Barnes, L.A.; Willit, J.L.

    2007-07-01

    UO{sub 2} and U{sub 3}O{sub 8} have been electrochemically reduced to uranium metal by direct electrolytic reduction at 650 deg. C in molten LiCl-Li{sub 2}O. Differences in electrolyte concentrations and efficiency have been observed in the reduction process as a function of using UO{sub 2} vs. U{sub 3}O{sub 8} as the feed material. Numerous tests with UO{sub 2} as the feed material have been conducted to optimize the electrochemical cell design and process chemistry. These studies have reproducibly demonstrated greater than 99% reduction with current efficiencies as high as 75% and only a slight decrease in the Li{sub 2}O concentration. Initial scoping experiments using U{sub 3}O{sub 8} have achieved greater than 93% reduction to uranium metal. However, in the U{sub 3}O{sub 8} experiments, the Li{sub 2}O concentration dropped significantly upon introducing the feed basket into the cell electrolyte due to formation of Li{sub 2}UO{sub 4}., but under appropriate conditions could be fully reduced to metal. (authors)

  19. Role of uranium(VI) in the ThO/sub 2/-UO/sub 3/ sol-gel process

    SciTech Connect (OSTI)

    Tewari, P.H.; Campbell, A.B.

    1980-11-01

    Increases in pH and temperature of U(VI) solutions enhance adsorption of uranium on ThO/sub 2/ through hydrolysis of U(VI) as evidenced by absorption spectra changes of the solution. Sols of ThO/sub 2/-UO/sub 3/ are formed by adsorption of uranium on ThO/sub 2/. At low pH's (approx. pH 3.0), the sols behave as Newtonian fluids but at higher pH's the sols (especially the concentrated ones) transform into thixotropic gels. The increased adsorption of uranium by ThO/sub 2/ and the increased viscosity of the ThO/sub 2/-UO/sub 3/ sols with pH are related. Increased adsorption of uranium produces rod-shaped UO/sub 3/.2H/sub 2/O on the ThO/sub 2/ surface. These UO/sub 3/ nuclei link ThO/sub 2/ particles to form long rodlike particles. With further increased adsorption of uranium at higher pH's (less than or equal to 3.7), the particles crosslink to produce a structured network giving a thixotropic gel. Adsorption, electron microscopic, electrophoetic mobility, X-ray diffraction, and X-ray photoelectron spectroscopic data are presented to explain the role of U(VI) in the sol-gel process. 6 figures, 1 table.

  20. Multi-scale modeling of inter-granular fracture in UO2

    SciTech Connect (OSTI)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.; Biner, S. Bulent

    2015-03-01

    A hierarchical multi-scale approach is pursued in this work to investigate the influence of porosity, pore and grain size on the intergranular brittle fracture in UO2. In this approach, molecular dynamics simulations are performed to obtain the fracture properties for different grain boundary types. A phase-field model is then utilized to perform intergranular fracture simulations of representative microstructures with different porosities, pore and grain sizes. In these simulations the grain boundary fracture properties obtained from molecular dynamics simulations are used. The responses from the phase-field fracture simulations are then fitted with a stress-based brittle fracture model usable at the engineering scale. This approach encapsulates three different length and time scales, and allows the development of microstructurally informed engineering scale model from properties evaluated at the atomistic scale.

  1. New insight into UO2F2 particulate structure by micro-Raman spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stefaniak, Elzbieta A.; Darchuk, Larysa; Sapundjiev, Danislav; Kips, Ruth E.; Aregbe, Yetunde; Grieken, Rene Van

    2013-02-19

    Uranyl fluoride particles produced via hydrolysis of uranium hexafluoride have been deposited on different substrates: polished graphite disks, silver foil, stainless steel and gold-coated silicon wafer, and measured with micro-Raman spectroscopy (MRS). All three metallic substrates enhanced the Raman signal delivered by UO2F2 in comparison to graphite. The fundamental stretching of the U–O band appeared at 867 cm–1 in case of the graphite substrate, while in case of the others it was shifted to lower frequencies (down to 839 cm–1). All applied metallic substrates showed the expected effect of Raman signal enhancement; however the gold layer appeared to be mostmore » effective. Lastly, application of new substrates provides more information on the molecular structure of uranyl fluoride precipitation, which is interesting for nuclear safeguards and nuclear environmental analysis.« less

  2. Irradiation behaviour of the large grained UO{sub 2} fuel pellet in the transient conditions

    SciTech Connect (OSTI)

    Kosaka, Yuji; Watanabe, Seiichi; Arakawa, Yasushi

    2007-07-01

    In order to achieve a high duty fuel rod design, it is the key issue to suppress the fission gas release from the view point of the fuel rod inner pressure design. The large grain UO{sub 2} pellet is one of the candidates to meet such a requirement by reducing the fission gas release especially at high power and/or high burnup. We have demonstrated the fuel performance of the large grain pellet in the PWR irradiation conditions, which was fabricated with no additive but with active UO{sub 2} powder through the conventional pelletizing process for the normal grain size pellet. According to the mechanism of the fission gas retention, there may be a concern about the larger gas bubble swelling of the large grain pellet at the power transient conditions which may increase the potential of the PCMI failure. In this paper, we focus on the differences of the dimensional change in comparison among the pellets with the different grain sizes at the power transient conditions. The power ramp tests were carried out on the high burnup fuel rods of normal and large grain pellet with no additive, which had been irradiated in the PWR conditions up to around 60 GWd/t at peak position. The detailed PIE results revealed that the volume increment due to the power ramp clearly showed the dependence on the grain size as well as the fission gas release and suggested that the larger grain with no additive may suppress the gas bubble swelling at the power transient conditions. According to the experimental results, it is concluded that the large grain pellet with no additive does not deteriorate the irradiation performance during the power transient conditions from the view point of the gas bubble swelling. (authors)

  3. Direct Electrodeposition of UO2 from Uranyl Bis(trifluoromethanesulfonyl)imide Dissolved in 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide Room Temperature Ionic Liquid System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Freiderich, John W.; Wanigasekara, Eranda P.; Sun, Xiao-Guang; Meisner, Roberta Ann; Meyer, III, Harry M.; Luo, Huimin; Delmau, Laetitia Helene; Dai, Sheng; Moyer, Bruce A

    2013-11-11

    Our study demonstrates a direct electrodeposition of UO2 at a Pt cathode from a solution of uranyl bis(trifluoromethanesulfonyl)imide [UO2(NTf2)2)] in a bulk room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM+NTf2–). Cyclic voltammetry (CV) studies revealed two reduction waves corresponding to the conversion of uranium(VI) to uranium(IV), and a mechanism for the overall electroreduction is proposed. A controlled-potential experiment was performed, holding the reduction potential at–1.0 V for 24 h to obtain a brown-black deposit of UO2 on the Pt cathode. The Faradaic efficiency of the reduction process was determined to be >80%. The UO2deposit was characterized by powder X-ray diffraction (XRD)more » and X-ray photoelectron spectroscopy (XPS).« less

  4. Simulation of xenon, uranium vacancy and interstitial diffusion and grain boundary segregation in UO2

    SciTech Connect (OSTI)

    Andersson, Anders D.; Tonks, Michael R.; Casillas, Luis; Nerikar, Pankaj; Vyas, Shyam; Uberuaga, Blas P.; Stanek, Christopher R.

    2014-10-31

    In light water reactor fuel, gaseous fission products segregate to grain boundaries, resulting in the nucleation and growth of large intergranular fission gas bubbles. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations 1, continuum models for diffusion of xenon (Xe), uranium (U) vacancies and U interstitials in UO2 have been derived for both intrinsic conditions and under irradiation. Segregation of Xe to grain boundaries is described by combining the bulk diffusion model with a model for the interaction between Xe atoms and three different grain boundaries in UO2 ( Σ5 tilt, Σ5 twist and a high angle random boundary),as derived from atomistic calculations. All models are implemented in the MARMOT phase field code, which is used to calculate effective Xe and U diffusivities as well as redistribution for a few simple microstructures.

  5. Local structure in solid solutions of stabilised zirconia with actinide dioxides (UO{sub 2}, NpO{sub 2})

    SciTech Connect (OSTI)

    Walter, Marcus; Somers, Joseph; Bouexiere, Daniel; Rothe, Joerg

    2011-04-15

    The local structure of (Zr,Lu,U)O{sub 2-x} and (Zr,Y,Np)O{sub 2-x} solid solutions has been investigated by extended X-ray absorption fine structure (EXAFS). Samples were prepared by mixing reactive (Zr,Lu)O{sub 2-x} and (Zr,Y)O{sub 2-x} precursor materials with the actinide oxide powders, respectively. Sintering at 1600 {sup o}C in Ar/H{sub 2} yields a fluorite structure with U(IV) and Np(IV). As typical for stabilised zirconia the metal-oxygen and metal-metal distances are characteristic for the different metal ions. The bond lengths increase with actinide concentration, whereas highest adaptation to the bulk stabilised zirconia structure was observed for U---O and Np---O bonds. The Zr---O bond shows only a slight increase from 2.14 A at 6 mol% actinide to 2.18 A at infinite dilution in UO{sub 2} and NpO{sub 2}. The short interatomic distance between Zr and the surrounding oxygen and metal atoms indicate a low relaxation of Zr with respect to the bulk structure, i.e. a strong Pauling behaviour. -- Graphical abstract: Metal-oxygen bond distances in (Zr,Lu,U)O{sub 2-x} solid solutions with different oxygen vacancy concentrations (Lu/Zr=1 and Lu/Zr=0.5). Display Omitted Research Highlights: {yields} EXAFS indicates high U and Np adaption to the bulk structure of stabilised zirconia. {yields} Zr---O bond length is 2.18 A at infinite Zr dilution in UO{sub 2} and NpO{sub 2}. {yields} Low relaxation (strong Pauling behaviour) of Zr explains its low solubility in UO{sub 2}.

  6. Chemical reactions during ThO{sub 2} and ThO{sub 2}-UO{sub 2} fuel fabrication

    SciTech Connect (OSTI)

    Clayton, J.C.

    1994-08-01

    The chemical reactions that occur during the fabrication of fuel pellets for the Shipping port Light Water Breeder Reactor are discussed. These include (1) precipitation and pyrolysis of thorium oxalate, (2) precipitation, calcination, and hydrogen reduction of ammonium diuranate, (3) comminution, granulation with an organic binder, and cold compaction of ThO{sub 2} and ThO{sub 2}-UO{sub 2} powders, (4) decarburization of the organic binder in CO{sub 2} at temperature up to 925 C, and (5) sintering in moist hydrogen at temperature up to 1790 C. Thorium oxalate precipitation and pyrolysis temperatures were the primary process variables for controlling the resulting thoria powder properties. Coprecipitated metal sulfates were converted to transition metal sulfides during calcining - the conversion of thorium oxalate to thorium oxide. The critical variable for controlling the urania powder properties was the hydrogen reduction temperature. Thermodynamic analyses showed that the efficiency of carbon removal from cold-compacted ThO{sub 2} and ThO{sub 2}-UO{sub 2} pellets by CO{sub 2} oxidation increases with temperature and, at temperatures around 900 C, substantially complete oxidation of carbon to carbon monoxide gas should occur. The carbon content of the ThO{sub 2} and ThO{sub 2}-UO{sub 2} fuels was further reduced during the initial heating in the hydrogen sintering cycle through the formation of methane gas. Additions of water vapor to the hydrogen sintering atmosphere also aided in carbon removal.

  7. A Fission Gas Release Model for High-Burnup LWR ThO{sub 2}-UO{sub 2} Fuel

    SciTech Connect (OSTI)

    Long, Yun; Yi Yuan; Kazimi, Mujid S.; Ballinger, Ronald G.; Pilat, Edward E.

    2002-06-15

    Fission gas release in thoria-urania fuel has been investigated by creating a specially modified FRAPCON-3 code. Because of the reduced buildup of {sup 239}Pu and a flatter distribution of {sup 233}U, the new model THUPS (Thoria-Urania Power Shape) was developed to calculate the radial power distribution, including the effects of both plutonium and {sup 233}U. Additionally, a new porosity model for the rim region was introduced at high burnup. The mechanisms of fission gas release in ThO{sub 2}-UO{sub 2} fuel are expected to be essentially similar to those of UO{sub 2} fuel; therefore, the general formulations of the existing fission gas release models in FRAPCON-3 were retained. However, the gas diffusion coefficient was adjusted to a lower level to account for the smaller observed release fraction in the thoria-based fuel. To model the accelerated fission gas release at high burnup properly, a new athermal fission gas release model was introduced. The modified version of FRAPCON-3 was calibrated using the measured fission gas release data from the light water breeder reactor. Using the new model to calculate the gas release in typical pressurized water reactor hot pins gives data that indicate that the ThO{sub 2}-UO{sub 2} fuel will have considerably lower fission gas release above a burnup of 50 MWd/kg HM.

  8. A Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments

    SciTech Connect (OSTI)

    Phillippe, Aaron M; Clarno, Kevin T; Banfield, James E; Ott, Larry J; Philip, Bobby; Berrill, Mark A; Sampath, Rahul S; Allu, Srikanth; Hamilton, Steven P

    2014-01-01

    The IFA-432 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO$_2$) fuel systems was performed, with a focus on the densification stage (2.2 \\unitfrac{GWd}{MT(UO$_{2}$)}). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was over-predicted and the temperatures were outside of the experimental uncertainty. The radial power shape within the fuel was shown to significantly impact the predicted centerline temperatures, whereas modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO$_2$ fuel with respect to a well-validated nuclear fuel performance code.

  9. Development of an Innovative High-Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering

    SciTech Connect (OSTI)

    Subhash, Ghatu; Wu, Kuang-Hsi; Tulenko, James

    2014-03-10

    Uranium dioxide (UO2) is the most common fuel material in commercial nuclear power reactors. Despite its numerous advantages such as high melting point, good high-temperature stability, good chemical compatibility with cladding and coolant, and resistance to radiation, it suffers from low thermal conductivity that can result in large temperature gradients within the UO2 fuel pellet, causing it to crack and release fission gases. Thermal swelling of the pellets also limits the lifetime of UO2 fuel in the reactor. To mitigate these problems, we propose to develop novel UO2 fuel with uniformly distributed carbon nanotubes (CNTs) that can provide high-conductivity thermal pathways and can eliminate fuel cracking and fission gas release due to high temperatures. CNTs have been investigated extensively for the past decade to explore their unique physical properties and many potential applications. CNTs have high thermal conductivity (6600 W/mK for an individual single- walled CNT and >3000 W/mK for an individual multi-walled CNT) and high temperature stability up to 2800°C in vacuum and about 750°C in air. These properties make them attractive candidates in preparing nano-composites with new functional properties. The objective of the proposed research is to develop high thermal conductivity of UO2–CNT composites without affecting the neutronic property of UO2 significantly. The concept of this goal is to utilize a rapid sintering method (5–15 min) called spark plasma sintering (SPS) in which a mixture of CNTs and UO2 powder are used to make composites with different volume fractions of CNTs. Incorporation of these nanoscale materials plays a fundamentally critical role in controlling the performance and stability of UO2 fuel. We will use a novel in situ growth process to grow CNTs on UO2 particles for rapid sintering and develop UO2-CNT composites. This method is expected to provide a uniform distribution of CNTs at various volume fractions so that a high

  10. Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels

    SciTech Connect (OSTI)

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; Hales, Jason D.

    2015-12-22

    The high burnup structure forming at the rim region in UO2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order to correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10-5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.

  11. Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; Hales, Jason D.

    2015-12-22

    The high burnup structure forming at the rim region in UO2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order to correctlymore » predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10-5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less

  12. Atomic Scale Modelling of the Primary Damage State of Irradiated UO{sub 2} Matrix

    SciTech Connect (OSTI)

    Van Brutzel, Laurent

    2008-07-01

    Large scale classical molecular dynamics simulations have been carried out to study the primary damage state due to a-decay self irradiation in UO{sub 2} matrix. Simulations of energetic displacement cascades up to the realistic energy of the recoil nucleus at 80 keV provide new informations on defect production, their spatial distribution and their clustering. The discrepancy with the classical linear theory NRT (Norton-Robinson-Torrens) law on the creation of the number of point defects is discussed. Study of cascade overlap sequence shows a saturation of the number of point defects created as the dose increases. Toward the end of the overlap sequence, large stable clusters of vacancies are observed. The values of athermal diffusion coefficients coming from the ballistic collisions and the additional point defects created during the cascades are estimated from these simulations to be, in all the cases, less than 10-26 m{sup 2}/s. Finally, the influence of a grain boundary of type Sigma 5 is analysed. It has been found that the energy of the cascades are dissipated along the interface and that most of the point defects are created at the grain boundary. (authors)

  13. Low temperature synthesis and sintering of d-UO2 nanoparticles.

    SciTech Connect (OSTI)

    Nenoff, Tina Maria; Ferreira, Summer Rhodes; Robinson, David B.; Jacobs, Benjamin W.; Provencio, Paula Polyak; Huang, Jian Yu

    2010-12-01

    We report on the novel room temperature method of synthesizing advanced nuclear fuels; a method that virtually eliminates any volatility of components. This process uses radiolysis to form stable nanoparticle (NP) nuclear transuranic (TRU) fuel surrogates and in-situ heated stage TEM to sinter the NPs. The radiolysis is performed at Sandia's Gamma Irradiation Facility (GIF) 60Co source (3 x 10{sup 6} rad/hr). Using this method, sufficient quantities of fuels for research purposes can be produced for accelerated advanced nuclear fuel development. We are focused on both metallic and oxide alloy nanoparticles of varying compositions, in particular d-U, d-U/La alloys and d-UO2 NPs. We present detailed descriptions of the synthesis procedures, the characterization of the NPs, the sintering of the NPs, and their stability with temperature. We have employed UV-vis, HRTEM, HAADF-STEM imaging, single particle EDX and EFTEM mapping characterization techniques to confirm the composition and alloying of these NPs.

  14. Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations

    SciTech Connect (OSTI)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

    2013-10-01

    In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.

  15. Thermionic emission and work function of U and UO/sub 2/

    SciTech Connect (OSTI)

    McLean, W.; Chen, H.L.

    1985-02-01

    Thermionic emission measurements have been used to determine the work function (phi) of pure and oxidized uranium samples between 1100 and 1300/sup 0/K; Auger electron spectroscopy (AES) was used to verify the cleanliness and compositions of the samples. It was found that impurities present in ppM amounts in the bulk U segregated to the surface upon heating and had an appreciable effect on the zero-field emission currents as well as the slopes of the Schottkey curves obtained at various temperatures. A combination of ion-sputtering and ultra-high vacuum (UHV) annealing at high temperatures was successful in reducing the total impurity level on the hot surfaces to approx.5%. At this low concentration of impurities, well-behaved Richardson line plots were obtained with A = 135 A cm/sup -2/ K/sup -2/ and phi = 3.54 eV for pure U, and A = 128 A cm/sup -2/ K/sup -2/ and phi = 3.19 eV for UO/sub 2/. The Schottkey coefficients for clean U approached their ideal values at fields > 400 V/cm.

  16. Probing the Oxygen Environment in UO22+ by Solid-State O-17 Nuclear Magnetic Resonance Spectroscopy and Relativistic Density Functional Calculations

    SciTech Connect (OSTI)

    Cho, Herman M.; De Jong, Wibe A.; Soderquist, Chuck Z.

    2010-02-28

    A combined theoretical and solid-state O-17 NMR study of the electronic structure of the uranyl ion UO22+ in (NH4)4UO2(CO3)3 and rutherfordine UO2CO3 is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens, and the latter exemplifying a uranyl environment without hydrogens. A fully relativistic ab initio treatment reveals unique features of the U-O covalent bond, including the finding of O-17 chemical shift anisotropies that are among the largest ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state O-17 NMR measurements in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the O-17 echo signal of UO22+. The William R. Wiley environmental Molecular Sciences Laboratory is a US Department of Energy national scientific user facility located at Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is operated by Battelle for the US Department of Energy.

  17. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at

  18. Atomistic Calculations of the Effect of Minor Actinides on Thermodynamic and Kinetic Properties of UO{sub 2{+-}x}

    SciTech Connect (OSTI)

    Deo, Chaitanya; Adnersson, Davis; Battaile, Corbett; uberuaga, Blas

    2012-10-30

    The team will examine how the incorporation of actinide species important for mixed oxide (MOX) and other advanced fuel designs impacts thermodynamic quantities of the host UO{sub 2} nuclear fuel and how Pu, Np, Cm and Am influence oxygen mobility. In many cases, the experimental data is either insufficient or missing. For example, in the case of pure NpO2, there is essentially no experimental data on the hyperstoichiometric form it is not even known if hyperstoichiometry NpO{sub 2{+-}x} is stable. The team will employ atomistic modeling tools to calculate these quantities

  19. E&nr Ph. S. W.. Wahhgt~n. D.C. 200242174, TIkpbnc (202) 48a60uo

    Office of Legacy Management (LM)

    75' 00.955 L' E&nr Ph. S. W.. Wahhgt~n. D.C. 200242174, TIkpbnc (202) 48a60uo 7117-03.87.cdy.43 23 September 1987 CR CA.d M r. Andrew Wallo, III, NE-23 Division of Facility & Site Decoaunissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear M r. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES M /4.0-03 kl 77.0% I - The attached elimination reconunendation was prepared in accordance rlL.0~ with your suggestion during our meeting on 22 September. The

  20. Experimental investigations of long-term interactions of molten UO/sub 2/ with MgO and concrete at Argonne National Laboratory. [LMFBR

    SciTech Connect (OSTI)

    Stein, R.P.; Farhadieh, R.; Pedersen, D.R.; Gunther, W.H.; Purviance, R.T.

    1982-01-01

    Experimental work at Argonne is being performed to investigate the long-term molten-core-debris retention capability of the ex-vessel cavity following a postulated meltdown accident. The eventual objective of the work is to determine if normal structural material (concrete) or a specifically selected sacrificial material (MgO) located in the ex-vessel cavity region can effectively contain molten core debris. The materials under investigation at ANL are various types of concrete (limestone, basalt and magnetite) and commercially-available MgO brick. Results are presented of the status of real material experimental investigation at ANL into (1) molten UO/sub 2/ pool heat transfer, (2) long-term molten UO/sub 2/ penetration into concrete and (3) long-term molten UO/sub 2/ penetration into refractory substrates. The decay heating in the fuel has been simulated by direct electrical heating permitting the study of the long-term interaction.

  1. Uranium vacancy mobility at the sigma 5 symmetric tilt grain boundary in UO2

    SciTech Connect (OSTI)

    Uberuaga, Blas P.

    2012-05-02

    An important consequence of the fissioning process occurring during burnup is the formation of fission products. These fission products alter the thermo-mechanical properties of the fuel. They also lead to macroscopic changes in the fuel structure, including the formation of bubbles that are connected to swelling of the fuel. Subsequent release of fission gases increase the pressure in the plenum and can cause changes in the properties of the fuel pin itself. It is thus imperative to understand how fission products, and fission gases in particular, behave within the fuel in order to predict the performance of the fuel under operating conditions. Fission gas redistribution within the fuel is governed by mass transport and the presence of sinks such as impurities, dislocations, and grain boundaries. Thus, to understand how the distribution of fission gases evolves in the fuel, we must understand the underlying transport mechanisms, tied to the concentrations and mobilities of defects within the material, and how these gases interact with microstructural features that might act as sinks. Both of these issues have been addressed in previous work under NEAMS. However, once a fission product has reached a sink, such as a grain boundary, its mobility may be different there than in the grain interior and predicting how, for example, bubbles nucleate within grain boundaries necessitates an understanding of how fission gases diffuse within boundaries. That is the goal of the present work. In this report, we describe atomic level simulations of uranium vacancy diffusion in the pressence of a {Sigma}5 symmetric tilt boundary in urania (UO{sub 2}). This boundary was chosen as it is the simplest of the boundaries we considered in previous work on segregation and serves as a starting point for understanding defect mobility at boundaries. We use a combination of molecular statics calculations and kinetic Monte Carlo (kMC) to determine how the mobility of uranium vacancies is

  2. Production of Depleted UO2Kernels for the Advanced Gas-Cooled Reactor Program for Use in TRISO Coating Development

    SciTech Connect (OSTI)

    Collins, J.L.

    2004-12-02

    The main objective of the Depleted UO{sub 2} Kernels Production Task at Oak Ridge National Laboratory (ORNL) was to conduct two small-scale production campaigns to produce 2 kg of UO{sub 2} kernels with diameters of 500 {+-} 20 {micro}m and 3.5 kg of UO{sub 2} kernels with diameters of 350 {+-} 10 {micro}m for the U.S. Department of Energy Advanced Fuel Cycle Initiative Program. The final acceptance requirements for the UO{sub 2} kernels are provided in the first section of this report. The kernels were prepared for use by the ORNL Metals and Ceramics Division in a development study to perfect the triisotropic (TRISO) coating process. It was important that the kernels be strong and near theoretical density, with excellent sphericity, minimal surface roughness, and no cracking. This report gives a detailed description of the production efforts and results as well as an in-depth description of the internal gelation process and its chemistry. It describes the laboratory-scale gel-forming apparatus, optimum broth formulation and operating conditions, preparation of the acid-deficient uranyl nitrate stock solution, the system used to provide uniform broth droplet formation and control, and the process of calcining and sintering UO{sub 3} {center_dot} 2H{sub 2}O microspheres to form dense UO{sub 2} kernels. The report also describes improvements and best past practices for uranium kernel formation via the internal gelation process, which utilizes hexamethylenetetramine and urea. Improvements were made in broth formulation and broth droplet formation and control that made it possible in many of the runs in the campaign to produce the desired 350 {+-} 10-{micro}m-diameter kernels, and to obtain very high yields.

  3. Fabrication of Natural Uranium UO2 Disks (Phase II): Texas A&M Work for Others Summary Document

    SciTech Connect (OSTI)

    Gerczak, Tyler J.; Baldwin, Charles A.; Schmidlin, Joshua E.; Henry, Jr, John James

    2015-08-28

    The steps to fabricate natural UO2 disks for an irradiation campaign led by Texas A&M University are outlined. The process was initiated with stoichiometry adjustment of parent, U3O8 powder. The next stage of sample preparation involved exploratory pellet pressing and sintering to achieve the desired natural UO2 pellet densities. Ideal densities were achieved through the use of a bimodal powder size blend. The steps involved with disk fabrication are also presented, describing the coring and thinning process executed to achieve final dimensionality.

  4. FASTGRASS implementation in BISON and Fission gas behavior characterization in UO2 and connection to validating MARMOT

    SciTech Connect (OSTI)

    Yun, Di; Mo, Kun; Ye, Bei; Jamison, Laura M.; Miao, Yinbin; Lian, Jie; Yao, Tiankei

    2015-09-30

    This activity is supported by the US Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Product Line (FPL). Two major accomplishments in FY 15 are summarized in this report: (1) implementation of the FASTGRASS module in the BISON code; and (2) a Xe implantation experiment for large-grained UO2. Both BISON AND MARMOT codes have been developed by Idaho National Laboratory (INL) to enable next generation fuel performance modeling capability as part of the NEAMS Program FPL. To contribute to the development of the Moose-Bison-Marmot (MBM) code suite, we have implemented the FASTGRASS fission gas model as a module in the BISON code. Based on rate theory formulations, the coupled FASTGRASS module in BISON is capable of modeling LWR oxide fuel fission gas behavior and fission gas release. In addition, we conducted a Xe implantation experiment at the Argonne Tandem Linac Accelerator System (ATLAS) in order to produce the needed UO2 samples with desired bubble morphology. With these samples, further experiments to study the fission gas diffusivity are planned to provide validation data for the Fission Gas Release Model in MARMOT codes.

  5. Microstructure changes and thermal conductivity reduction in UO2 following 3.9 MeV He2+ ion irradiation

    SciTech Connect (OSTI)

    Janne Pakrinen; Marat Khafizov; Lingfeng He; Chris Wetland; Jian Gan; Andrew T. Nelson; David H Hurley; Anter El-Azab; Todd R Allen

    2014-11-01

    The microstructural changes and associated effects on thermal conductivity were examined in UO2 after irradiation using 3.9 MeV He2+ ions. Lattice expansion of UO2 was observed in x-ray diffraction after ion irradiation up to 5×1016 He2+/cm2 at low-temperature (< 200 °C). Transmission electron microscopy (TEM) showed homogenous irradiation damage across an 8 µm thick plateau region, which consisted of small dislocation loops accompanied by dislocation segments. Dome-shaped blisters were observed at the peak damage region (depth around 8.5 µm) in the sample subjected to 5×1016 He2+/cm2, the highest fluence reached, while similar features were not detected at 9×1015 He2+/cm2. Laser-based thermo-reflectance measurements showed that the thermal conductivity for the irradiated layer decreased about 55 % for the high fluence sample and 35% for the low fluence sample as compared to an un-irradiated reference sample. Detailed analysis for the thermal conductivity indicated that the conductivity reduction was caused by the irradiation induced point defects.

  6. Theoretical investigation of thermodynamic stability and mobility of the oxygen vacancy in ThO2 –UO2 solid solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, B.; Aidhy, D. S.; Zhang, Y.; Weber, W. J.

    2014-10-16

    The thermodynamic stability and the migration energy barriers of oxygen vacancies in ThO2 –UO2 solid solutions are investigated by density functional theory calculations. In pure ThO2, the formation energy of oxygen vacancy is 7.58 eV and 1.46 eV under O rich and O poor conditions, respectively, while its migration energy barrier is 1.97 eV. The addition of UO2 into ThO2 significantly decreases the energetics of formation and migration of the oxygen vacancy. Among the range of UO2-ThO2 solid solutions studied in this work, UO2 exhibits the lowest formation energy (5.99 eV and -0.13 eV under O rich and O poormore » conditions, respectively) and Th0.25U0.75O2 exhibits the lowest migration energy barrier (~ 1 eV). Moreover, by considering chemical potential, the phase diagram of oxygen vacancy as a function of both temperature and oxygen partial pressure is shown, which could help to gain experimental control over oxygen vacancy concentration.« less

  7. Y H-S I-H HATIOHAL LEAth~~Y~~OF' OtUO ' Industrial Hygiene No...

    Office of Legacy Management (LM)

    H-S I-H HATIOHAL LEAthYOF' OtUO ' Industrial Hygiene No. P.O. Box 158)At.' He&bykation Sample Nos. ? Sk. 0 qq Cinchnail 31;Obio Type of SampleCI" lz -- HEALTH AND SAFETY ...

  8. Direct Electrodeposition of UO2 from Uranyl Bis(trifluoromethanesulfonyl)imide Dissolved in 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide Room Temperature Ionic Liquid System

    SciTech Connect (OSTI)

    Freiderich, John W.; Wanigasekara, Eranda P.; Sun, Xiao-Guang; Meisner, Roberta Ann; Meyer, III, Harry M.; Luo, Huimin; Delmau, Laetitia Helene; Dai, Sheng; Moyer, Bruce A

    2013-11-11

    Our study demonstrates a direct electrodeposition of UO2 at a Pt cathode from a solution of uranyl bis(trifluoromethanesulfonyl)imide [UO2(NTf2)2)] in a bulk room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMIM+NTf2). Cyclic voltammetry (CV) studies revealed two reduction waves corresponding to the conversion of uranium(VI) to uranium(IV), and a mechanism for the overall electroreduction is proposed. A controlled-potential experiment was performed, holding the reduction potential at–1.0 V for 24 h to obtain a brown-black deposit of UO2 on the Pt cathode. The Faradaic efficiency of the reduction process was determined to be >80%. The UO2deposit was characterized by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

  9. Theoretical investigation of thermodynamic stability and mobility of the oxygen vacancy in ThO2UO2 solid solutions

    SciTech Connect (OSTI)

    Liu, B.; Aidhy, D. S.; Zhang, Y.; Weber, W. J.

    2014-10-16

    The thermodynamic stability and the migration energy barriers of oxygen vacancies in ThO2UO2 solid solutions are investigated by density functional theory calculations. In pure ThO2, the formation energy of oxygen vacancy is 7.58 eV and 1.46 eV under O rich and O poor conditions, respectively, while its migration energy barrier is 1.97 eV. The addition of UO2 into ThO2 significantly decreases the energetics of formation and migration of the oxygen vacancy. Among the range of UO2-ThO2 solid solutions studied in this work, UO2 exhibits the lowest formation energy (5.99 eV and -0.13 eV under O rich and O poor conditions, respectively) and Th0.25U0.75O2 exhibits the lowest migration energy barrier (~ 1 eV). Moreover, by considering chemical potential, the phase diagram of oxygen vacancy as a function of both temperature and oxygen partial pressure is shown, which could help to gain experimental control over oxygen vacancy concentration.

  10. Synthesis and structure of R{sub 2}[UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}] (R = Rb or Cs)

    SciTech Connect (OSTI)

    Serezhkin, V. N.; Peresypkina, E. V.; Grigor’eva, V. A.; Virovets, A. V.; Serezhkina, L. B.

    2015-01-15

    Crystals Rb{sub 2}[UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}] (I) and Cs{sub 2}[UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}] (II) have been synthesized and studied by IR spectroscopy and X-ray diffraction. Crystals I are monoclinic, with the following parameters: a = 12.2118(5) Å, b = 10.2545(3) Å, c = 11.8754(4) Å, β = 110.287(1)°, sp. gr. C2/c, Z = 4, and R = 0.0523. Crystals II are orthorhombic, with a = 13.7309(3) Å, b = 10.5749(2) Å, c = 10.1891(2) Å, sp. gr. Pnma, Z = 4, and R = 0.0411. The basic structural units of crystals I and II are one-core complexes [UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}]{sup 2−}, which belong to the crystallochemical group cis-AB{sub 2}{sup 01}M{sub 2}{sup 1} (A = UO{sub 2}{sup 2+}, B{sup 01} = NO{sub 3}{sup −}, M{sup 1} = NCS{sup −}), which are combined into a framework via electrostatic interactions with ions of alkaline metals R (R = Rb or Cs). The structural features of crystals I and II, which condition the formation of [UO{sub 2}(NO{sub 3}){sub 2}(NCS){sub 2}]{sup 2−} complexes with a cis rather than a trans position of isothiocyanate ions in the coordination sphere of uranyl ions, are discussed.

  11. Phase-field simulations of intragranular fission gas bubble evolution in UO2 under post-irradiation thermal annealing

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2013-05-15

    Fission gas bubble is one of evolving microstructures, which affect thermal mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking, in operating nuclear fuels. Therefore, fundamental understanding of gas bubble evolution kinetics is essential to predict the thermodynamic property and performance changes of fuels. In this work, a generic phasefield model was developed to describe the evolution kinetics of intra-granular fission gas bubbles in UO2 fuels under post-irradiation thermal annealing conditions. Free energy functional and model parameters are evaluated from atomistic simulations and experiments. Critical nuclei size of the gas bubble and gas bubble evolution were simulated. A linear relationship between logarithmic bubble number density and logarithmic mean bubble diameter is predicted which is in a good agreement with experimental data.

  12. Modeling the Distribution of Acidity within Nuclear Fuel (UO{sub 2}) Corrosion Product Deposits and Porous Sites

    SciTech Connect (OSTI)

    Cheong, W.J.; Keech, P.G.; Wren, J.C.; Shoesmith, D.W.; Qin, Z.

    2007-07-01

    A model for acidity within pores within corrosion products on anodically-dissolving UO{sub 2} was developed using Comsol Multiphysics 3.2 to complement ongoing electrochemical measurements. It was determined that a depression of pH within pores can be maintained if: electrochemically measured dissolution currents used in the calculations are attenuated to reflect very localized pores; corrosion potentials exceed -250 mV (vs. SCE); and pore depths are >1 {mu}m for 300 mV or >100 {mu}m for -50 mV (vs. SCE). Mixed diffusional-chemical equilibria control is suggested through deviations in the shapes between pH-potential and pH-pore depth plots. (authors)

  13. New insight into UO2F2 particulate structure by micro-Raman spectroscopy

    SciTech Connect (OSTI)

    Stefaniak, Elzbieta A.; Darchuk, Larysa; Sapundjiev, Danislav; Kips, Ruth E.; Aregbe, Yetunde; Grieken, Rene Van

    2013-02-19

    Uranyl fluoride particles produced via hydrolysis of uranium hexafluoride have been deposited on different substrates: polished graphite disks, silver foil, stainless steel and gold-coated silicon wafer, and measured with micro-Raman spectroscopy (MRS). All three metallic substrates enhanced the Raman signal delivered by UO2F2 in comparison to graphite. The fundamental stretching of the U–O band appeared at 867 cm–1 in case of the graphite substrate, while in case of the others it was shifted to lower frequencies (down to 839 cm–1). All applied metallic substrates showed the expected effect of Raman signal enhancement; however the gold layer appeared to be most effective. Lastly, application of new substrates provides more information on the molecular structure of uranyl fluoride precipitation, which is interesting for nuclear safeguards and nuclear environmental analysis.

  14. Synthesis and crystal structure of (NH{sub 4}){sub 3}[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2}[UO{sub 2}(CH{sub 3}COO)(NCS){sub 2}(H{sub 2}O)

    SciTech Connect (OSTI)

    Serezhkina, L. B.; Peresypkina, E. V.; Virovets, A. V.; Karasev, M. O.

    2010-01-15

    Single crystals of the compound (NH{sub 4}){sub 3}[UO{sub 2}(CH{sub 3}COO){sub 3}]{sub 2}[UO{sub 2}(CH{sub 3}COO)(NCS){sub 2}(H{sub 2}O)] (I) are synthesized, and their structure is investigated using X-ray diffraction. Compound I crystallizes in the monoclinic system with the unit cell parameters a = 18.3414(6) A, b = 16.3858(7) A, c = 12.4183(5) A, {beta} = 92.992(1){sup o}, space group C2/c, Z = 4, V = 3727.1(3) A{sup 3}, and R = 0.0253. The uranium-containing structural units of crystals I are mononuclear complexes of two types with an island structure, i.e., the [UO{sub 2}(CH{sub 3}COO){sub 3}]{sup -} anionic complexes belonging to the crystal-chemical group (AB{sub 3}{sup 01} = UO{sub 2}{sup 2+}, B{sup 01} = CH{sub 3}COO{sup -}) of the uranyl complexes and the [UO{sub 2}(CH{sub 3}COO)(NCS){sub 2}(H{sub 2}O)]{sup -} anionic complexes belonging to the crystal-chemical group AB{sup 01}M{sub 3}{sup 1} (A = UO{sub 2}{sup 2+}, B{sup 01} = CH{sub 3}COO{sup -}, M{sup 1} = NCS{sup -} or H{sub 2}O).

  15. [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology

    SciTech Connect (OSTI)

    Mer, A.; Obbade, S.; Rivenet, M.; Renard, C.; Abraham, F.

    2012-01-15

    The new lanthanum uranyl vanadate divanadate, [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] was obtained by reaction at 800 Degree-Sign C between lanthanum chloride, uranium oxide (U{sub 3}O{sub 8}) and vanadium oxide (V{sub 2}O{sub 5}) and the structure was determined from single-crystal X-ray diffraction data. This compound crystallizes in the orthorhombic system with space group P2{sub 1}2{sub 1}2{sub 1} and unit-cell parameters a=6.9470(2) A, b=7.0934(2) A, c=25.7464(6) A, V=1268.73(5) A{sup 3}, Z=4. A full matrix least-squares refinement yielded R{sub 1}=0.0219 for 5493 independent reflections. The crystal structure is characterized by the stacking of uranophane-type sheets {sup 2}{sub {infinity}}[(UO{sub 2})(VO{sub 4})]{sup -} and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +} connected through La-O bonds involving the uranyl oxygen of the uranyl-vanadate sheets. The double layers result from the connection of two {sup 2}{sub {infinity}}[La(UO{sub 2})(VO{sub 4}){sub 2}]{sup -} sheets derived from the uranophane anion-topology by replacing half of the uranyl ions by lanthanum atoms and connected through the formation of divanadate entities. - Graphical abstract: A view of the three-dimensional structure of [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})]. Highlights: Black-Right-Pointing-Pointer New lanthanum uranyl vanadate divanadate has been synthesized. Black-Right-Pointing-Pointer Structure was determined from single-crystal X-ray diffraction data. Black-Right-Pointing-Pointer Structure is characterized by uranophane-type sheets and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +}.

  16. High temperature synthesis of two open-framework uranyl silicates with ten-ring channels: Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19} and Rb{sub 2}(UO{sub 2}){sub 2}Si{sub 5}O{sub 13}

    SciTech Connect (OSTI)

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E.

    2013-01-15

    The uranyl silicates Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19} and Rb{sub 2}(UO{sub 2}){sub 2}Si{sub 5}O{sub 13} were obtained by mixing stoichiometric amounts of uranium metal, tellurium dioxide, silicon dioxide, and an excess of correspondent alkali metal halide flux. These compounds crystallize in the orthorhombic space groups Pnma and C222 with eight and two units per unit cell, respectively. Their crystal structures are dominated by zippered pentagonal bipyramidal chains of UO{sub 7} and silicates layer that are further connected into 3D frameworks. The cesium compound has silicate double layers while rubidium has a single layer. Six-ring voids and ten-ring channels are found in both compounds. - Graphical abstract: A view of the three-dimensional network structure of Cs{sub 2}(UO{sub 2}){sub 2}Si{sub 8}O{sub 19}. Highlights: Black-Right-Pointing-Pointer Three-dimensional uranium silicates. Black-Right-Pointing-Pointer Analogs of natural uranyl silicate minerals. Black-Right-Pointing-Pointer Complexity and symmetry ambiguity of uranyl silicates.

  17. Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2 +/- x: Implications for nuclear fuel performance modeling

    SciTech Connect (OSTI)

    Giovanni Pastore; Michael R. Tonks; Derek R. Gaston; Richard L. Williamson; David Andrs; Richard Martineau

    2014-03-01

    Based on density functional theory (DFT) and empirical potential calculations, the diffusivity of fission gas atoms (Xe) in UO2 nuclear fuel has been calculated for a range of non-stoichiometry (i.e. UO2x), under both out-of-pile (no irradiation) and in-pile (irradiation) conditions. This was achieved by first deriving expressions for the activation energy that account for the type of trap site that the fission gas atoms occupy, which includes the corresponding type of mobile cluster, the charge state of these defects and the chemistry acting as boundary condition. In the next step DFT calculations were used to estimate migration barriers and internal energy contributions to the thermodynamic properties and calculations based on empirical potentials were used to estimate defect formation and migration entropies (i.e. pre-exponentials). The diffusivities calculated for out-of-pile conditions as function of the UO2x nonstoichiometrywere used to validate the accuracy of the diffusion models and the DFT calculations against available experimental data. The Xe diffusivity is predicted to depend strongly on the UO2x non-stoichiometry due to a combination of changes in the preferred Xe trap site and in the concentration of uranium vacancies enabling Xe diffusion, which is consistent with experiments. After establishing the validity of the modeling approach, it was used for studying Xe diffusion under in-pile conditions, for which experimental data is very scarce. The radiation-enhanced Xe diffusivity is compared to existing empirical models. Finally, the predicted fission gas diffusion rates were implemented in the BISON fuel performance code and fission gas release from a Ris fuel rod irradiation experiment was simulated. 2014 Elsevier B.V. All rights

  18. Reactivity-worth estimates of the OSMOSE samples in the MINERVE reactor R1-MOX, R2-UO2 and MORGANE/R configurations.

    SciTech Connect (OSTI)

    Zhong, Z.; Klann, R. T.; Nuclear Engineering Division

    2007-08-03

    An initial series of calculations of the reactivity-worth of the OSMOSE samples in the MINERVE reactor with the R2-UO2 and MORGANE/R core configuration were completed. The calculation model was generated using the lattice physics code DRAGON. In addition, an initial comparison of calculated values to experimental measurements was performed based on preliminary results for the R1-MOX configuration.

  19. {gamma}-Radiolysis of NaCl Brine in the Presence of UO{sub 2}(s): Effects of Hydrogen and Bromide

    SciTech Connect (OSTI)

    Metz, Volker; Bohnert, Elke; Kelm, Manfred; Schild, Dieter; Kienzler, Bernhard

    2007-07-01

    A concentrated NaCl solution was {gamma}-irradiated in autoclaves under a pressure of 25 MPa. A set of experiments were conducted in 6 mol (kg H{sub 2}O){sup -1} NaCl solution in the presence of UO{sub 2}(s) pellets; in a second set of experiments, {gamma}-radiolysis of the NaCl brine was studied without UO{sub 2}(s). Hydrogen, oxygen and chlorate were formed as long-lived radiolysis products. Due to the high external pressure, all radiolysis products remained dissolved. H{sub 2} and O{sub 2} reached steady state concentrations in the range of 5.10{sup -3} to 6.10{sup -2} mol (kg H{sub 2}O){sup -1} corresponding to a partial gas pressure of {approx}2 to {approx}20 MPa. Radiolytic formation of hydrogen and oxygen increased with the concentration of bromide added to solution. Both, in the presence of bromide, resulting in a relatively high radiolytic yield, and in the absence of bromide surfaces of the UO{sub 2}(s) samples were oxidized, and concentration of dissolved uranium reached the solubility limit of the schoepite / NaUO{sub 2}O(OH)(cr) transition. At the end of the experiments, the pellets were covered by a surface layer of a secondary solid phase having a composition close to Na{sub 2}U{sub 2}O{sub 7}. The experimental results demonstrate that bromide counteracts an H{sub 2} inhibition effect on radiolysis gas production, even at a concentration ratio of [H{sub 2}] / [Br{sup -}] > 100. The present observations are related to the competitive reactions of OH radicals with H{sub 2}, Br{sup -} and Cl{sup -}. A similar competition of hydrogen and bromide, controlling the yield of {gamma}-radiolysis products, is expected for solutions of lower Cl{sup -} concentration. (authors)

  20. Analysis of burnup and isotopic compositions of BWR 9 x 9 UO{sub 2} fuel assemblies

    SciTech Connect (OSTI)

    Suzuki, M.; Yamamoto, T.; Ando, Y.; Nakajima, T.

    2012-07-01

    In order to extend isotopic composition data focusing on fission product nuclides, measurements are progressing using facilities of JAEA for five samples taken from high burnup BWR 9 x 9 UO{sub 2} fuel assemblies. Neutronics analysis with an infinite assembly model was applied to the preliminary measurement data using a continuous-energy Monte Carlo burnup calculation code MVP-BURN with nuclear libraries based on JENDL-3.3 and JENDL-4.0. The burnups of the samples were determined to be 28.0, 39.3, 56.6, 68.1, and 64.0 GWd/t by the Nd-148 method. They were compared with those calculated using node-average irradiation histories of power and in-channel void fractions which were taken from the plant data. The comparison results showed that the deviations of the calculated burnups from the measurements were -4 to 3%. It was confirmed that adopting the nuclear data library based on JENDL-4.0 reduced the deviations of the calculated isotopic compositions from the measurements for {sup 238}Pu, {sup 144}Nd, {sup 145}Nd, {sup 146}Nd, {sup 148}Nd, {sup 134}Cs, {sup 154}Eu, {sup 152}Sm, {sup 154}Gd, and {sup 157}Gd. On the other hand, the effect of the revision in the nuclear. data library on the neutronics analysis was not significant for major U and Pu isotopes. (authors)

  1. The gas-phase bis-uranyl nitrate complex [(UO2)2(NO3)5]-: infrared spectrum and structure

    SciTech Connect (OSTI)

    Groenewold, G. S.; van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; McIIwain, Michael E.

    2011-12-01

    The infrared spectrum of the bis-uranyl nitrate complex [(UO2)2(NO3)5]- was measured in the gas phase using multiple photon dissociation (IRMPD). Intense absorptions corresponding to the nitrate symmetric and asymmetric vibrations, and the uranyl asymmetric vibration were observed. The nitrate v3 vibrations indicate the presence of nitrate in a bridging configuration bound to both uranyl cations, and probably two distinct pendant nitrates in the complex. The coordination environment of the nitrate ligands and the uranyl cations were compared to those in the mono-uranyl complex. Overall, the uranyl cation is more loosely coordinated in the bis-uranyl complex [(UO2)2(NO3)5]- compared to the mono-complex [UO2(NO3)3]-, as indicated by a higher O-U-O asymmetric stretching (v3) frequency. However, the pendant nitrate ligands are more strongly bound in the bis-complex than they are in the mono-uranyl complex, as indicated by the v3 frequencies of the pendant nitrate, which are split into nitrosyl and O-N-O vibrations as a result of bidentate coordination. These phenomena are consistent with lower electron density donation per uranyl by the nitrate bridging two uranyl centers compared to that of a pendant nitrate in the mono-uranyl complex. The lowest energy structure predicted by density functional theory (B3LYP functional) calculations was one in which the two uranyl molecules bridged by a single nitrate coordinated in a bis-bidentate fashion. Each uranyl molecule was coordinated by two pendant nitrate ligands. The corresponding vibrational spectrum was in excellent agreement with the IRMPD measurement, confirming the structural assignment.

  2. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O and anhydrous Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})

    SciTech Connect (OSTI)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.; Bosbach, Dirk; Suleimanov, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.; Alekseev, Evgeny V.

    2014-07-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O (α-, β-RbUAs) and the anhydrous phase Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions. - Graphical abstract: Three different layer geometries observed in the structures of Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] and α- and β- Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O. Two different coordination environments of uranium polyhedra (types I and II) are shown schematically on the top of the figure. - Highlights: • Three new uranyl arsenates were synthesized from the hydrothermal reactions. • The phases consist of the topologically identical but geometrically different layers. • Topotactic transitions were observed in the processes of mono-hyrates dehydration.

  3. Dispersion of UO{sub 2}F{sub 2} aerosol and HF vapor in the operating floor during winter ventilation at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.

    1996-12-30

    The gaseous diffusion process is currently employed at two plants in the US: the Paducah Gaseous Diffusion Plant and the Portsmouth Gaseous Diffusion Plant. As part of a facility-wide safety evaluation, a postulated design basis accident involving large line-rupture induced releases of uranium hexafluoride (UF{sub 6}) into the process building of a gaseous diffusion plant (GDP) is evaluated. When UF{sub 6} is released into the atmosphere, it undergoes an exothermic chemical reaction with moisture (H{sub 2}O) in the air to form vaporized hydrogen fluoride (HF) and aerosolized uranyl fluoride (UO{sub 2}F{sub 2}). These reactants disperse in the process building and transport through the building ventilation system. The ventilation system draws outside air into the process building, distributes it evenly throughout the building, and discharges it to the atmosphere at an elevated temperature. Since air is recirculated from the cell floor area to the operating floor, issues concerning in-building worker safety and evacuation need to be addressed. Therefore, the objective of this study is to evaluate the transport of HF vapor and UO{sub 2}F{sub 2} aerosols throughout the operating floor area following B-line break accident in the cell floor area.

  4. Criticality Safety Study of UF6and UO2F2in 8-in. Inner Diameter Piping

    SciTech Connect (OSTI)

    Elam, K.R.

    2003-10-07

    The purpose of this report is to provide an evaluation of the criticality safety aspects of using up to 8-in.-inner-diameter (ID) piping as part of a system to monitor the {sup 235}U enrichment in uranium hexafluoride (UF{sub 6}) gas both before and after an enrichment down-blending operation. The evaluated operation does not include the blending stage but includes only the monitors and the piping directly associated with the monitors, which are in a separate room from the blending operation. There are active controls in place to limit the enrichment of the blended UF{sub 6} to a maximum of 5 weight percent (wt%) {sup 235}U. Under normal operating conditions of temperature and pressure, the UF{sub 6} will stay in the gas phase and criticality will not be credible. The two accidents of concern are solidification of the UF{sub 6} along with some hydrofluoric acid (HF) and water or moisture ingress, which would cause the UF{sub 6} gas to react and form a hydrated uranyl fluoride (UO{sub 2}F{sub 2}) solid or solution. Of these two types of accidents, the addition of water and formation of UO{sub 2}F{sub 2} is the most reactive scenario and thus limits related to UO{sub 2}F{sub 2} will bound the limits related to UF{sub 6}. Two types of systems are included in the monitoring process. The first measures the enrichment of the approximately 90 wt% enriched UF{sub 6} before it is blended. This system uses a maximum 4-in.-(10.16-cm-) ID pipe, which is smaller than the 13.7-cm-cylinder-diameter subcritical limit for UO{sub 2}F{sub 2} solution of any enrichment as given in Table 1 of American National Standard ANSI/ANS-8.1.1 Therefore, this system poses no criticality concerns for either accident scenario. The second type of system includes two enrichment monitors for lower-enriched UF{sub 6}. One monitors the approximately 1.5 wt% enriched UF{sub 6} entering the blending process, and the second monitors the approximately 5 wt% enriched UF{sub 6} coming out of the blending

  5. High temperature redox reactions with uranium: Synthesis and characterization of Cs(UO{sub 2})Cl(SeO{sub 3}), Rb{sub 2}(UO{sub 2}){sub 3}O{sub 2}(SeO{sub 3}){sub 2}, and RbNa{sub 5}U{sub 2}(SO{sub 4}){sub 7}

    SciTech Connect (OSTI)

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E.

    2013-10-15

    Cs(UO{sub 2})Cl(SeO{sub 3}) (1), Rb{sub 2}(UO{sub 2}){sub 3}O{sub 2}(SeO{sub 3}){sub 3} (2), and RbNa{sub 5}U{sub 2}(SO{sub 4}){sub 7} (3) single crystals were synthesized using CsCl, RbCl, and a CuCl/NaCl eutectic mixture as fluxes, respectively. Their lattice parameters and space groups are as follows: P2{sub 1}/n (a=6.548(1) Å, b=11.052(2) Å, c=10.666(2) Å and β=93.897(3)°), P1{sup ¯} (a=7.051(2) Å, b=7.198(2) Å, c=8.314(2) Å, α=107.897(3)°, β=102.687(3)° and γ=100.564(3)°) and C2/c (a=17.862(4) Å, b=6.931(1) Å, c=20.133(4) Å and β=109.737(6)°. The small anionic building units found in these compounds are SeO{sub 3}{sup 2−} and SO{sub 4}{sup 2−} tetrahedra, oxide, and chloride. The crystal structure of the first compound is composed of [(UO{sub 2}){sub 2}Cl{sub 2}(SeO{sub 3}){sub 2}]{sup 2−} chains separated by Cs{sup +} cations. The structure of (2) is constructed from [(UO{sub 2}){sub 3}O{sub 11}]{sup 16−} chains further connected through selenite units into layers stacked perpendicularly to the [0 1 0] direction, with Rb{sup +} cations intercalating between them. The structure of compound (3) is made of uranyl sulfate layers formed by edge and vertex connections between dimeric [U{sub 2}O{sub 16}] and [SO{sub 4}] polyhedra. These layers contain unusual sulfate–metal connectivity as well as large voids. - Graphical abstract: A new family of uranyl selenites and sulfates has been prepared by high-temperature redox reactions. This compounds display new bonding motifs. Display Omitted - Highlights: • Low-dimensional Uranyl Oxoanion compounds. • Conversion of U(IV) to U(VI) at high temperatures. • Dimensional reduction by both halides and stereochemically active lone-pairs.

  6. Molten salt flux synthesis and structure of the new layered uranyl tellurite, K{sub 4}[(UO{sub 2}){sub 5}(TeO{sub 3}){sub 2}O{sub 5}

    SciTech Connect (OSTI)

    Woodward, Jonathan D.; Albrecht-Schmitt, Thomas E. . E-mail: albreth@auburn.edu

    2005-09-15

    The reaction of UO{sub 3} and TeO{sub 3} with a KCl flux at 800 deg. C for 3 days yields single crystals of K{sub 4}[(UO{sub 2}){sub 5}(TeO{sub 3}){sub 2}O{sub 5}]. The structure of the title compound consists of layered, two-dimensional {sub {infinity}}{sup 2}[(UO{sub 2}){sub 5}(TeO{sub 3}){sub 2}O{sub 5}]{sup 4-} sheets arranged in a stair-like topology separated by potassium cations. Contained within these sheets are one-dimensional uranium oxide ribbons consisting of UO{sub 7} pentagonal bipyramids and UO{sub 6} tetragonal bipyramids. The ribbons are in turn linked by corner-sharing with trigonal pyramidal TeO{sub 3} units to form sheets. The lone-pair of electrons from the TeO{sub 3} groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet nonpolar. The potassium cations form contacts with nearby tellurite units and axial uranyl oxygen atoms. Crystallographic data (193K, MoK{alpha}, {lambda}=0.71073A): triclinic, space group P1-bar , a=6.8514(5)A, b=7.1064(5)A, c=11.3135(8)A, {alpha}=99.642(1){sup o}, {beta}=93.591(1){sup o}, {gamma}=100.506(1){sup o}, V=531.48(7)A{sup 3}, Z=1,R(F)=4.19% for 149 parameters and 2583 reflections with I>2{sigma}(I)

  7. LWR fuel assembly designs for the transmutation of LWR Spent Fuel TRU with FCM and UO{sub 2}-ThO{sub 2} Fuels

    SciTech Connect (OSTI)

    Bae, G.; Hong, S. G.

    2013-07-01

    In this paper, transmutation of transuranic (TRU) nuclides from LWR spent fuels is studied by using LWR fuel assemblies which consist of UO{sub 2}-ThO{sub 2} fuel pins and FCM (Fully Ceramic Microencapsulated) fuel pins. TRU from LWR spent fuel is loaded in the kernels of the TRISO particle fuels of FCM fuel pins. In the FCM fuel pins, the TRISO particle fuels are distributed in SiC matrix having high thermal conductivity. The loading patterns of fuel pins and the fuel compositions are searched to have high transmutation rate and feasible neutronic parameters including pin power peaking, temperature reactivity coefficients, and cycle length. All studies are done only in fuel assembly calculation level. The results show that our fuel assembly designs have good transmutation performances without multi-recycling and without degradation of the safety-related neutronic parameters. (authors)

  8. RELAP5/MOD3.2 Analysis of a VVER-1000 Reactor with UO{sub 2} Fuel and Mixed-Oxide Fuel

    SciTech Connect (OSTI)

    Hassan, Yassin A.; Fu Chun

    2004-12-15

    A RELAP5/MOD3.2 model of the VVER-1000/MODEL V320 nuclear power plant was modified and a large-break loss-of-coolant accident (LBLOCA) in the cold leg was simulated. In this analysis, the core consisted of 162 UO{sub 2} assemblies and 1 mixed-oxide assembly. The results from the simulation were compared with the results from a similar study performed with the Russian computer program TECH-M. An uncertainty analysis was performed on the peak cladding temperature following a similar methodology called code scaling, applicability, and uncertainty. Monte Carlo calculations were performed using the response surface inferred from 15 runs of RELAP5 calculations. The result of this study shows that the emergency core coolant system would be sufficient to keep the cladding temperature during the LBLOCA scenario well below the required maximum limit.

  9. Influence of the Electronic Structure and Optical Properties of CeO2 and UO2 for Characterization with UV-Laser Assisted Atom Probe Tomography

    SciTech Connect (OSTI)

    Billy Valderrama; H.B. Henderson; C. Yablinsky; J. Gan; T.R. Allen; M.V. Manuel

    2015-09-01

    Oxide materials are used in numerous applications such as thermal barrier coatings, nuclear fuels, and electrical conductors and sensors, all applications where nanometer-scale stoichiometric changes can affect functional properties. Atom probe tomography can be used to characterize the precise chemical distribution of individual species and spatially quantify the oxygen to metal ratio at the nanometer scale. However, atom probe analysis of oxides can be accompanied by measurement artifacts caused by laser-material interactions. In this investigation, two technologically relevant oxide materials with the same crystal structure and an anion to cation ratio of 2.00, pure cerium oxide (CeO2) and uranium oxide (UO2) are studied. It was determined that electronic structure, optical properties, heat transfer properties, and oxide stability strongly affect their evaporation behavior, thus altering their measured stoichiometry, with thermal conductance and thermodynamic stability being strong factors.

  10. Fission gas and iodine release measured in IFA-430 up to 15 GWd/t UO/sub 2/ burnup. [PWR; BWR

    SciTech Connect (OSTI)

    Appelhans, A.D.; Turnbull, J.A.; White, R.J.

    1983-01-01

    The release of fission products from fuel pellets to the fuel-cladding gap is dependent on the fuel temperature, the power (fission rate) and the burnup (fuel structure). As part of the US Nuclear Regulatory Commission's Fuel Behavior Program, EG and G Idaho, Inc., is conducting fission product release studies in the Heavy Boiling Water Reactor in Halden, Norway. This paper presents a summary of the results up to December, 1982. The data cover fuel centerline temperatures ranging from 700 to 1500/sup 0/C for average linear heat ratings of 16 to 35 kW/m. The measurements have been performed for the period between 4.2 and 14.8 GWd/t UO/sub 2/ of burnup of the Instrumented Fuel Assembly 430 (IFA-430). The measurement program has been directed toward quantifying the release of the short-lived radioactive noble gases and iodines.

  11. Safety Criticality Standards Using the French CRISTAL Code Package: Application to the AREVA NP UO{sub 2} Fuel Fabrication Plant

    SciTech Connect (OSTI)

    Doucet, M.; Durant Terrasson, L.; Mouton, J.

    2006-07-01

    Criticality safety evaluations implement requirements to proof of sufficient sub critical margins outside of the reactor environment for example in fuel fabrication plants. Basic criticality data (i.e., criticality standards) are used in the determination of sub critical margins for all processes involving plutonium or enriched uranium. There are several criticality international standards, e.g., ARH-600, which is one the US nuclear industry relies on. The French Nuclear Safety Authority (DGSNR and its advising body IRSN) has requested AREVA NP to review the criticality standards used for the evaluation of its Low Enriched Uranium fuel fabrication plants with CRISTAL V0, the recently updated French criticality evaluation package. Criticality safety is a concern for every phase of the fabrication process including UF{sub 6} cylinder storage, UF{sub 6}-UO{sub 2} conversion, powder storage, pelletizing, rod loading, assembly fabrication, and assembly transportation. Until 2003, the accepted criticality standards were based on the French CEA work performed in the late seventies with the APOLLO1 cell/assembly computer code. APOLLO1 is a spectral code, used for evaluating the basic characteristics of fuel assemblies for reactor physics applications, which has been enhanced to perform criticality safety calculations. Throughout the years, CRISTAL, starting with APOLLO1 and MORET 3 (a 3D Monte Carlo code), has been improved to account for the growth of its qualification database and for increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating a modern basic microscopic cross section set based on JEF2.2 and the comprehensive APOLLO2 and MORET 4 codes. APOLLO2 is well suited for criticality standards calculations as it includes a sophisticated self shielding approach, a P{sub ij} flux determination, and a 1D transport (S{sub n}) process. CRISTAL V0 is the result of more than five years of development work focusing on theoretical

  12. Dissolution Kinetics of Synthetic and Natural Meta-Autunite Minerals, X??n????[(UO?)(PO?)]? ? xH?O, Under Acidic Conditions

    SciTech Connect (OSTI)

    Wellman, Dawn M.; Gunderson, Katie M.; Icenhower, Jonathan P.; Forrester, Steven W.

    2007-11-01

    Mass transport within the uranium geochemical cycle is impacted by the availability of phosphorous. In oxidizing environments, in which the uranyl ionic species is typically mobile, formation of sparingly soluble uranyl phosphate minerals exert a strong influence on uranium transport. Autunite group minerals have been identified as the long-term uranium controlling phases in many systems of geochemical interest. Anthropogenic operations related to uranium mining operations have created acidic environments, exposing uranyl phosphate minerals to low pH groundwaters. Investigations regarding the dissolution behavior of autunite group minerals under acidic conditions have not been reported; consequently, knowledge of the longevity of uranium controlling solids is incomplete. The purpose of this investigation was to: 1) quantify the dissolution kinetics of natural calcium and synthetic sodium meta-autunite, under acidic conditions, 2) measure the effect of temperature and pH on meta-autunite mineral dissolution, and 3) investigate the formation of secondary uranyl phosphate phases as long-term controls on uranium migration. Single-pass flow-through (SPFT) dissolution tests were conducted over the pH range of 2 to 5 and from 5 to 70C. Results presented here illustrate meta-autunite dissolution kinetics are strongly dependent on pH, but are relatively insensitive to temperature variations. In addition, the formation of secondary uranyl-phosphate phases such as, uranyl phosphate, (UO2)3(PO4)2 ? 4 H2O, may serve as a secondary phase limiting the migration of uranium in the environment.

  13. Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation

    SciTech Connect (OSTI)

    Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.; Kehl, Jeffrey A.; Durakiewicz, Tomasz; Andersson, David A.; Bishop, Alan R.; Byler, Darrin D.; Maldonado, Pablo; Oppeneer, Peter M.; Valdez, James A.; Neidig, Michael L.; Rodriguez, George

    2015-10-16

    Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests a novel mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.

  14. Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.; Kehl, Jeffrey A.; Durakiewicz, Tomasz; Andersson, David A.; Bishop, Alan R.; Byler, Darrin D.; Maldonado, Pablo; Oppeneer, Peter M.; et al

    2015-10-16

    Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests a novelmore » mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.« less

  15. Derivation of effective fission gas diffusivities in UO2 from lower length scale simulations and implementation of fission gas diffusion models in BISON

    SciTech Connect (OSTI)

    Andersson, Anders David Ragnar; Pastore, Giovanni; Liu, Xiang-Yang; Perriot, Romain Thibault; Tonks, Michael; Stanek, Christopher Richard

    2014-11-07

    This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO2 were derived for both intrinsic conditions and under irradiation. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.

  16. Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Conradson, Steven D.; Gilbertson, Steven M.; Daifuku, Stephanie L.; Kehl, Jeffrey A.; Durakiewicz, Tomasz; Andersson, David A.; Bishop, Alan R.; Byler, Darrin D.; Maldonado, Pablo; Oppeneer, Peter M.; et al

    2015-10-16

    Bose-Einstein condensates (BECs) composed of polarons would be an advance because they would combine coherently charge, spin, and a crystal lattice. Following our earlier report of unique structural and spectroscopic properties, we now identify potentially definitive evidence for polaronic BECs in photo- and chemically doped UO2(+x) on the basis of exceptional coherence in the ultrafast time dependent terahertz absorption and microwave spectroscopy results that show collective behavior including dissipation patterns whose precedents are condensate vortex and defect disorder and condensate excitations. Furthermore, that some of these signatures of coherence in an atom-based system extend to ambient temperature suggests a novelmore »mechanism that could be a synchronized, dynamical, disproportionation excitation, possibly via the solid state analog of a Feshbach resonance that promotes the coherence. Such a mechanism would demonstrate that the use of ultra-low temperatures to establish the BEC energy distribution is a convenience rather than a necessity, with the actual requirement for the particles being in the same state that is not necessarily the ground state attainable by other means. Interestingly, a macroscopic quantum object created by chemical doping that can persist to ambient temperature and resides in a bulk solid would be revolutionary in a number of scientific and technological fields.« less

  17. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    SciTech Connect (OSTI)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling

  18. AREVA NP next generation fresh UO{sub 2} fuel assembly shipping cask: SCALE - CRISTAL comparisons lead to safety criticality confidence

    SciTech Connect (OSTI)

    Doucet, M.; Landrieu, M.; Montgomery, R.; O' Donnell, B.

    2007-07-01

    AREVA NP as a worldwide PWR fuel provider has to have a fleet of fresh UO{sub 2} shipping casks being agreed within a lot of countries including USA, France, Germany, Belgium, Sweden, China, and South Africa - and to accommodate foreseen EPR Nuclear Power Plants fuel buildings. To reach this target the AREVA NP Fuel Sector decided to develop an up-to-date shipping cask (so called MAP project) gathering experience feedback of the today fleet and an improved safety allowing the design to comply with international regulations (NRC and IAEA) and local Safety Authorities. Based on pre design features a safety case was set up to highlight safety margins. Criticality hypothetical accidental assumptions were defined: - Preferential flooding; - Fuel rod lattice pitch expansion for full length of fuel assemblies; - Neutron absorber penalty; -... Well known computer codes, American SCALE package and French CRISTAL package, were used to check configurations reactivity and to ensure that both codes lead to coherent results. Basic spectral calculations are based on similar algorithms with specific microscopic cross sections ENDF/BV for SCALE and JEF2.2 for CRISTAL. The main differences between the two packages is on one hand SCALE's three dimensional fuel assembly geometry is described by a pin by pin model while an homogenized fuel assembly description is used by CRISTAL and on the other hand SCALE is working with either 44 or 238 neutron energy groups while CRISTAL is with a 172 neutron energy groups. Those two computer packages rely on a wide validation process helping defining uncertainties as required by regulations in force. The shipping cask with two fuel assemblies is designed to maximize fuel isolation inside a cask and with neighboring ones even for large array configuration cases. Proven industrial products are used: - Boral{sup TM} as neutron absorber; - High density polyethylene (HDPE) or Nylon as neutron moderator; - Foam as thermal and mechanical protection. The

  19. [Ni(H{sub 2}O){sub 4}]{sub 3}[U(OH,H{sub 2}O)(UO{sub 2}){sub 8}O{sub 12}(OH){sub 3}], crystal structure and comparison with uranium minerals with U{sub 3}O{sub 8}-type sheets

    SciTech Connect (OSTI)

    Rivenet, Murielle; Vigier, Nicolas; Roussel, Pascal; Abraham, Francis

    2009-04-15

    The new U(VI) compound, [Ni(H{sub 2}O){sub 4}]{sub 3}[U(OH,H{sub 2}O)(UO{sub 2}){sub 8}O{sub 12}(OH){sub 3}], was synthesized by mild hydrothermal reaction of uranyl and nickel nitrates. The crystal-structure was solved in the P-1 space group, a=8.627(2), b=10.566(2), c=12.091(4) A and alpha=110.59(1), beta=102.96(2), gamma=105.50(1){sup o}, R=0.0539 and wR=0.0464 from 3441 unique observed reflections and 151 parameters. The structure of the title compound is built from sheets of uranium polyhedra closely related to that in beta-U{sub 3}O{sub 8}. Within the sheets [(UO{sub 2})(OH)O{sub 4}] pentagonal bipyramids share equatorial edges to form chains, which are cross-linked by [(UO{sub 2})O{sub 4}] and [UO{sub 4}(H{sub 2}O)(OH)] square bipyramids and through hydroxyl groups shared between [(UO{sub 2})(OH)O{sub 4}] pentagonal bipyramids. The sheets are pillared by sharing the apical oxygen atoms of the [(UO{sub 2})(OH)O{sub 4}] pentagonal bipyramids with the oxygen atoms of [NiO{sub 2}(H{sub 2}O){sub 4}] octahedral units. That builds a three-dimensional framework with water molecules pointing towards the channels. On heating [Ni(H{sub 2}O){sub 4}]{sub 3}[U(OH,H{sub 2}O)(UO{sub 2}){sub 8}O{sub 12}(OH){sub 3}] decomposes into NiU{sub 3}O{sub 10}. - Graphical abstract: The framework of [Ni(H{sub 2}O){sub 4}]{sub 3}[U(OH,H{sub 2}O)(UO{sub 2}){sub 8}O{sub 12}(OH){sub 3}] built from uranium polyhedra sheets pillared by Ni-centered octahedra.

  20. Pipe diffusion at dislocations in UO2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TEM images of high burn-up fuel pellets show that the dislocations are heavily decorated by fission product precipitates, including gas bubbles and metallic particles 5. This is ...

  1. Structure and dynamics of complexes of the uranyl ion with nonamethylimidodiphosphoramide (NIPA). 2. NMR studies of complexes (UO/sub 2/(NIPA)/sub 2/X)(CIO/sub 4/)/sub 2/ with X = H/sub 2/O, MeOH, EtOH, or Me/sub 2/CO

    SciTech Connect (OSTI)

    Rodehueser, L.; Rubini, P.R.; Bokolo, K.; Delpuech, J.J.

    1982-03-01

    The /sup 31/P and /sup 1/H spectra at -90/sup 0/C of the title uranyl complex ions (prepared as solutions of the solid perchlorates in inert anhydrous organic solvents (CH/sub 3/NO/sub 2/, CH/sub 2/Cl/sub 2/)) reveal a pentacoordinated arrangement of two symmetrically doubly bonded NIPA molecules and one solvent molecule about the uranyl group. In the case of (UO/sub 2/(NIPA)/sub 2/(EtOH))(ClO/sub 4/)/sub 2/, an intermolecular exchange between bound and free ethanol molecules is observed above -75/sup 0/C upon addition of ethanol to a solution of the complex. The observed rate law, k/sub inter/ = kK(EtOH)/(1 + K(EtOH) is accounted for by the existence of an outer-sphere complex (UO/sub 2//sup 2 +/(NIPA)/sub 2/(EtOH))EtOH in fast equilibrium (K) with the initial complex and free ethanol. The rate-determining step (k) consists of an outer-sphere to inner-sphere interchange of ethanol molecules. The thermodynamic and kinetic parameters are K(25/sup 0/C) = 15.8 dm/sup 3/ mol/sup -1/, k(25/sup 0/C) = 1.0 x 10/sup 4/s/sup -1/, ..delta..H and ..delta..H/sub inter//sup + +/ = -4.8 and 7.6 kcal mol/sup -1/, and ..delta..S and ..delta..S/sub inter//sup + +/ = 10.7 and -14.7 eu. A second exchange takes place at higher temperatures (above -30/sup 0/C) yielding full dynamic equivalence of the phosphorus nuclei of the coordinated NIPA molecules. The observed rate law k/sub intra/ = k/sub ex/(1 + K(EtOH)) reveals that the internal rearrangement of NIPA molecules occurs on the complex ion (UO/sub 2/(NIPA)/sub 2/(EtOH))/sup 2 +/ but not on the outer-sphere complex: k/sub ex/(25/sup 0/C) = 0.91 x 10/sup 3/s/sup -1/, ..delta..H/sub intra//sup + +/ = 10.6 kcal mol/sup -1/ and ..delta..S/sub intra//sup + +/ = -9.4 eu. Possible mechanisms for this exchange are discussed. 5 figures, 2 tables.

  2. Materials Data on UO2 (SG:225) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2015-01-27

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  3. Modeling of Fission Gas Release in UO2

    SciTech Connect (OSTI)

    MH Krohn

    2006-01-23

    A two-stage gas release model was examined to determine if it could provide a physically realistic and accurate model for fission gas release under Prometheus conditions. The single-stage Booth model [1], which is often used to calculate fission gas release, is considered to be oversimplified and not representative of the mechanisms that occur during fission gas release. Two-stage gas release models require saturation at the grain boundaries before gas is release, leading to a time delay in release of gases generated in the fuel. Two versions of a two-stage model developed by Forsberg and Massih [2] were implemented using Mathcad [3]. The original Forsbers and Massih model [2] and a modified version of the Forsberg and Massih model that is used in a commercially available fuel performance code (FRAPCON-3) [4] were examined. After an examination of these models, it is apparent that without further development and validation neither of these models should be used to calculate fission gas release under Prometheus-type conditions. There is too much uncertainty in the input parameters used in the models. In addition. the data used to tune the modified Forsberg and Massih model (FRAPCON-3) was collected under commercial reactor conditions, which will have higher fission rates relative to Prometheus conditions [4].

  4. METHOD OF MAKING UO$sub 2$-Bi SLURRIES

    DOE Patents [OSTI]

    Hahn, H.T.

    1960-05-24

    A process is given of preparing an easily dispersible slurry of uranium dioxide in bismuth. A mixture of bismuth oxide, uranium, and bismuth are heated in a capsule to a temperature over the melting point of bismuth oxide. The amount of bismuth oxide used is less than that stoichiometrically required because the oxygen in the capsule also enters into the reaction.

  5. PUREX/UO{sub 3} facilities deactivation lessons learned: History

    SciTech Connect (OSTI)

    Gerber, M.S.

    1997-11-25

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status.

  6. Migration Mechanisms of Oxygen Interstitial Clusters in UO2 ...

    Office of Scientific and Technical Information (OSTI)

    Authors: Xian-Ming Bai ; Anter El-Azab ; Jianguo Yu ; Todd R. Allen Publication Date: 2013-01-01 OSTI Identifier: 1057705 Report Number(s): INLJOU-12-27046 DOE Contract Number: ...

  7. Materials Data on UOs2 (SG:227) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2015-02-09

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  8. Materials Data on K2UO4 (SG:139) by Materials Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  9. Materials Data on Na3UO4 (SG:65) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  10. A brief history of the PUREX and UO{sub 3} facilities

    SciTech Connect (OSTI)

    Gerber, M.S.

    1993-11-01

    The Plutonium-Uranium Extraction (PUREX) Plant, conceived during the early Cold War years, was a vehicle to increase significantly US nuclear weapons production capacity. The original PUREX Plant was a concrete rectangle 1,005 feet long and 61.5 feet wide. The shielding capacity of the concrete was designed so that personnel in non-regulated service areas would not receive radiation in excess of 0.1 millirem per hour. This report discusses the design of the PUREX Plant, the production chronology, projects and equipment changes, equipment decontamination and reuse, waste management, and contamination events that have occurred during the operation of the plant. Additionally, the development and history of the Uranium Trioxide Plant are also covered.

  11. Random-Walk Monte Carlo Simulation of Intergranular Gas Bubble Nucleation in UO2 Fuel

    SciTech Connect (OSTI)

    Yongfeng Zhang; Michael R. Tonks; S. B. Biner; D.A. Andersson

    2012-11-01

    Using a random-walk particle algorithm, we investigate the clustering of fission gas atoms on grain bound- aries in oxide fuels. The computational algorithm implemented in this work considers a planar surface representing a grain boundary on which particles appear at a rate dictated by the Booth flux, migrate two dimensionally according to their grain boundary diffusivity, and coalesce by random encounters. Specifically, the intergranular bubble nucleation density is the key variable we investigate using a parametric study in which the temperature, grain boundary gas diffusivity, and grain boundary segregation energy are varied. The results reveal that the grain boundary bubble nucleation density can vary widely due to these three parameters, which may be an important factor in the observed variability in intergranular bubble percolation among grain boundaries in oxide fuel during fission gas release.

  12. Recovery of UO{sub 2}/PuO{sub 2} in IFR electrorefining process

    DOE Patents [OSTI]

    Tomczuk, Z.; Miller, W.E.

    1992-01-01

    This invention is comprised of a process for converting PuO{sub 2} and U0{sub 2} present in an electrorefiner to the chlorides, by contacting the PuO{sub 2} and U0{sub 2} with Li metal in the presence of an alkali metal chloride salt substantially free of rare earth and actinide chlorides for a time and at a temperature sufficient to convert the U0{sub 2} and PuO{sub 2} to metals while converting Li metal to Li{sub 2}O. Li{sub 2}O is removed either by reducing with rare earth metals or by providing an oxygen electrode for transporting 0{sub 2} out of the electrorefiner and a cathode, and thereafter applying an emf to the electrorefiner electrodes sufficient to cause the Li{sub 2}O to disassociate to 0{sub 2} and Li metal but insufficient to decompose the alkali metal chloride salt. The U and Pu and excess lithium are then converted to chlorides by reaction with CdCl{sub 2}.

  13. Materials Data on Ca3UO6 (SG:148) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Strong electron correlation in UO{sub 2}{sup -}: A photoelectron...

    Office of Scientific and Technical Information (OSTI)

    ... Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084 ... Resource Type: Journal Article Resource Relation: Journal Name: Journal of Chemical Physics; ...

  15. Materials Data on BaUO3 (SG:62) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  16. Materials Data on SrUO4 (SG:166) by Materials Project

    SciTech Connect (OSTI)

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  17. OSMOSE program : statistical review of oscillation measurements in the MINERVE reactor R1-UO2 configuration.

    SciTech Connect (OSTI)

    Stoven, G.; Klann, R.; Zhong, Z.; Nuclear Engineering Division

    2007-08-28

    The OSMOSE program is a collaboration on reactor physics experiments between the United States Department of Energy and the France Commissariat Energie Atomique. At the working level, it is a collaborative effort between the Argonne National Laboratory and the CEA Cadarache Research Center. The objective of this program is to measure very accurate integral reaction rates in representative spectra for the actinides important to future nuclear system designs, and to provide the experimental data for improving the basic nuclear data files. The main outcome of the OSMOSE measurement program will be an experimental database of reactivity-worth measurements in different neutron spectra for the heavy nuclides. This database can then be used as a benchmark to verify and validate reactor analysis codes. The OSMOSE program (Oscillation in Minerve of isotopes in Eupraxic Spectra) aims at improving neutronic predictions of advanced nuclear fuels through oscillation measurements in the MINERVE facility on samples containing the following separated actinides: {sup 232}Th, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 237}Np, {sup 238}Pu, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu, {sup 241}Am, {sup 243}Am, {sup 244}Cm, and {sup 245}Cm. The first part of this report provides an overview of the experimental protocol and the typical processing of a series of experimental results which is currently performed at CEA-Cadarache. In the second part of the report, improvements to this technique are presented, as well as the program that was created to process oscillation measurement results from the MINERVE facility in the future.

  18. REACTOR HAVING NaK-UO$sub 2$ SLURRY HELICALLY POSITIONED IN A GRAPHITE MODERATOR

    DOE Patents [OSTI]

    Rodin, M.B.; Carter, J.C.

    1962-05-15

    A reactor utilizing 20% enriched uranium consists of a central graphite island in cylindrical form, with a spiral coil of tubing fitting against the central island. An external graphite moderator is placed around the central island and coil. A slurry of uranium dioxide dispersed in alkali metal passes through the coil to transfer heat externally to the reactor. There are also conventional controls for regulating the nuclear reaction. (AEC)

  19. A Combined Nonfertile and UO{sub 2} PWR Fuel Assembly for Actinide...

    Office of Scientific and Technical Information (OSTI)

    the CONFU assembly exhibits negative reactivity feedback coefficients comparable in ... NUCLEAR FUELS; PWR TYPE REACTORS; REACTIVITY COEFFICIENTS; REPROCESSING; SIMULATION; ...

  20. Project report to STB/UO, Northern New Mexico Community College two- year college initiative: Biotechnology

    SciTech Connect (OSTI)

    1996-03-01

    This report summarizes the experiences gained in a project involving faculty direct undergraduate research focused on biotechnology and its applications. The biology program at Northern New Mexico Community College has been involved in screening for mutations in human DNA and has developed the ability to perform many standard and advanced molecular biology techniques. Most of these are based around the polymerase chain reaction (PCR) and include the use of single strand conformation polymorphism analysis (SSCP), denaturing gradient gel electrophoresis (DGGE) in the screening for mutant DNA molecules, and the capability to sequence PCR generated fragments of DNA using non-isotopic imaging. At Northern, these activities have a two-fold objective: (1) to bring current molecular biology techniques to the teaching laboratory, and (2) to support the training of minority undergraduates in research areas that stimulate them to pursue advanced degrees in the sciences.

  1. Safety testing of AGR-2 UO2 compacts 3-3-2 and 3-4-2

    SciTech Connect (OSTI)

    Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.; Montgomery, Fred C.

    2015-09-01

    Post-irradiation examination (PIE) is in progress on tristructural-isotropic (TRISO) coated-particle fuel compacts from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program second irradiation experiment (AGR-2) [Collin 2014]. The AGR-2 PIE will build upon new information and understanding acquired throughout the recently-concluded six-year AGR-1 PIE campaign [Demkowicz et al. 2015] and establish a database for the different AGR-2 fuel designs.

  2. Fully-coupled engineering and mesoscale simulations of thermal conductivity in UO2 fuel using an implicit multiscale approach

    SciTech Connect (OSTI)

    Michael Tonks; Derek Gaston; Cody Permann; Paul Millett; Glen Hansen; Chris Newman

    2009-08-01

    Reactor fuel performance is sensitive to microstructure changes during irradiation (such as fission gas and pore formation). This study proposes an approach to capture microstructural changes in the fuel by a two-way coupling of a mesoscale phase field irradiation model to an engineering scale, finite element calculation. This work solves the multiphysics equation system at the engineering-scale in a parallel, fully-coupled, fully-implicit manner using a preconditioned Jacobian-free Newton Krylov method (JFNK). A sampling of the temperature at the Gauss points of the coarse scale is passed to a parallel sequence of mesoscale calculations within the JFNK function evaluation phase of the calculation. The mesoscale thermal conductivity is calculated in parallel, and the result is passed back to the engineering-scale calculation. As this algorithm is fully contained within the JFNK function evaluation, the mesoscale calculation is nonlinearly consistent with the engineering-scale calculation. Further, the action of the Jacobian is also consistent, so the composite algorithm provides the strong nonlinear convergence properties of Newton's method. The coupled model using INL's \\bison\\ code demonstrates quadratic nonlinear convergence and good parallel scalability. Initial results predict the formation of large pores in the hotter center of the pellet, but few pores on the outer circumference. Thus, the thermal conductivity is is reduced in the center of the pellet, leading to a higher internal temperature than that in an unirradiated pellet.

  3. E&nr Ph. S. W.. Wahhgt~n. D.C. 200242174, TIkpbnc (202) 48a60uo

    Office of Legacy Management (LM)

    ... Several colleges and universities, including the University of California, the University ... NAME California Inst. of Technology University of California Yale Heavy Ion Linear ...

  4. Fonsi.Leo.DOC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... empty and 147 full); uranium dioxide (UO 2 ) (UO 2 inventory on the Hanford Site consists of depleted and normal uranium pellets, powder, and fuel pins containing UO 2 pellets). ...

  5. Issues in the use of Weapons-Grade MOX Fuel in VVER-1000 Nuclear Reactors: Comparison of UO2 and MOX Fuels

    SciTech Connect (OSTI)

    Carbajo, J.J.

    2005-05-27

    The purpose of this report is to quantify the differences between mixed oxide (MOX) and low-enriched uranium (LEU) fuels and to assess in reasonable detail the potential impacts of MOX fuel use in VVER-1000 nuclear power plants in Russia. This report is a generic tool to assist in the identification of plant modifications that may be required to accommodate receiving, storing, handling, irradiating, and disposing of MOX fuel in VVER-1000 reactors. The report is based on information from work performed by Russian and U.S. institutions. The report quantifies each issue, and the differences between LEU and MOX fuels are described as accurately as possible, given the current sources of data.

  6. Recalculation of the Critical Size and Multiplication Constant of a Homogeneous UO{sub 2} - D{sub 2}O Mixtures

    DOE R&D Accomplishments [OSTI]

    Wigner, E. P.; Weinberg, A. M.; Stephenson, J.

    1944-02-11

    The multiplication constant and optimal concentration of a slurry pile is recalculated on the basis of Mitchell`s experiments on resonance absorption. The smallest chain reacting unit contains 45 to 55 m{sup 3}of D{sub 2}O. (auth)

  7. Recalculation of the Critical Size and Multiplication Constant of a Homogeneous UO{sub 2}-D{sub 2}O Mixtures

    DOE R&D Accomplishments [OSTI]

    Wigner, E. P.; Weinberg, A. M.; Stephenson, J.

    1944-02-11

    The multiplication constant and optimal concentration of a slurry pile is recalculated on the basis of Mitchell's experiments on resonance absorption. The smallest chain reacting unit contains 45 to 55 m{sup 3}of d{sub 2}O. (auth).

  8. Gas Phase Uranyl Activation: Formation of a Uranium Nitrosyl Complex from Uranyl Azide

    SciTech Connect (OSTI)

    Gong, Yu; De Jong, Wibe A.; Gibson, John K.

    2015-05-13

    Activation of the oxo bond of uranyl, UO22+, was achieved by collision induced dissociation (CID) of UO2(N3)Cl2 in a quadrupole ion trap mass spectrometer. The gas phase complex UO2(N3)Cl2 was produced by electrospray ionization of solutions of UO2Cl2 and NaN3. CID of UO2(N3)Cl2 resulted in the loss of N2 to form UO(NO)Cl2, in which the inert uranyl oxo bond has been activated. Formation of UO2Cl2 via N3 loss was also observed. Density functional theory computations predict that the UO(NO)Cl2 complex has nonplanar Cs symmetry and a singlet ground state. Analysis of the bonding of the UO(NO)Cl2 complex shows that the side-on bonded NO moiety can be considered as NO3, suggesting a formal oxidation state of U(VI). Activation of the uranyl oxo bond in UO2(N3)Cl2 to form UO(NO)Cl2 and N2 was computed to be endothermic by 169 kJ/mol, which is energetically more favorable than formation of NUOCl2 and UO2Cl2. The observation of UO2Cl2 during CID is most likely due to the absence of an energy barrier for neutral ligand loss.

  9. VERA Core Physics Benchmark Progression Problems Specifications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... It is a very thin ZrB 2 coating on selected UO 2 fuel pellets in an assembly. Because the ... Gadolinia is mixed homogeneously within the UO 2 fuel pellets for a few select rods in the ...

  10. DOE-HDBK-1113-98, CN 1, Reaffirm; Radiological Safety Training...

    Broader source: Energy.gov (indexed) [DOE]

    ... The UO 2 powder is compacted into cylindrical pellets that are loaded into thin walled ... The UO 2 powder is compacted into cylindrical pellets that are loaded into thinwalled ...

  11. Advanced Nuclear Final Solicitation Fact Sheet_Dec-2014

    Office of Environmental Management (EM)

    ... is "reconverted" from enriched UF6 gas from enrichment plants; (2) formation of UO2 pellets from UO2 powder through compaction and sintering; and(3) fuel assembly (i.e. insertion ...

  12. METHOD OF PREPARING A CERAMIC FUEL ELEMENT

    DOE Patents [OSTI]

    Ross, W.T.; Bloomster, C.H.; Bardsley, R.E.

    1963-09-01

    A method is described for preparing a fuel element from -325 mesh PuO/ sub 2/ and -20 mesh UO/sub 2/, and the steps of screening --325 mesh UO/sub 2/ from the -20 mesh UO/sub 2/, mixing PuO/sub 2/ with the --325 mesh UO/sub 2/, blending this mixture with sufficient --20 mesh UO/sub 2/ to obtain the desired composition, introducing the blend into a metal tube, repeating the procedure until the tube is full, and vibrating the tube to compact the powder are included. (AEC)

  13. Investigation of the Polymorphs and Hydrolysis of Uranium Trioxide

    SciTech Connect (OSTI)

    Sweet, Lucas E.; Blake, Thomas A.; Henager, Charles H.; Hu, Shenyang Y.; Johnson, Timothy J.; Meier, David E.; Peper, Shane M.; Schwantes, Jon M.

    2013-04-01

    This work focuses on progress in gaining a better understanding of the polymorphic nature of the UO3-water system, one of several important materials associated with the nuclear fuel cycle. The UO3-water system is complex and has not been fully characterized, even though these species are common throughout the fuel cycle. Powder x-ray diffraction, Raman and fluorescence characterization was performed on polymorphic forms of UO3 and UO3 hydrolysis products for the purpose of developing some predictive capability of estimating process history and utility, e.g. for polymorphic phases of unknown origin. Specifically, we have investigated three industrially relevant production pathways of UO3 and discovered a previously unknown low temperature route to β-UO3. Pure phases of UO3, hydrolysis products and starting materials were used to establish optical spectroscopic signatures for these compounds.

  14. Molten uranium dioxide structure and dynamics

    SciTech Connect (OSTI)

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; Leibowitz, L.

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  15. Molten uranium dioxide structure and dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skinner, L. B.; Parise, J. B.; Benmore, C. J.; Weber, J. K.R.; Williamson, M. A.; Tamalonis, A.; Hebden, A.; Wiencek, T.; Alderman, O. L.G.; Guthrie, M.; et al

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. Onmore » melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.« less

  16. SEPARATION OF URANIUM AND PLUTONIUM OXIDES

    DOE Patents [OSTI]

    Benedict, G.E.; Lyon, W.L.

    1961-12-01

    ABS>A method of separating a mixture of UO/sub 2/ and PuO/sub 2/ is given which comprises immersing the mixture in a fused NaCl-KCl bath, chlorinating with chlorine or phosgene, and preferentially electrolytically or chemically reducing the UO/sub 2/Cl/sub 2/ so produced to UO/sub 2/ and filtering it out. (AEC)

  17. Microsoft Word - DOE-ID-14-057 University of Florida EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Experimental Validation of UO2 Microstructural Evolution for NEAMS tool MARMOT - University of Florida SECTION B. Project Description The University of Florida will experimentally validate the NEAMS tool for the computer model MARMOT. Surrogate oxide (CeO2) and depleted uranium oxide (UO2) will be used for this study and will be formed into pellets of various types then characterized. SECTION C. Environmental Aspects / Potential Sources of Impact The depleted UO 2

  18. High Field Magnetization measurements of uranium dioxide single crystals (P08358- E003-PF)

    SciTech Connect (OSTI)

    Gofryk, K.; Harrison, N.; Jaime, M.

    2014-12-01

    Our preliminary high field magnetic measurements of UO2 are consistent with a complex nature of the magnetic ordering in this material, compatible with the previously proposed non-collinear 3-k magnetic structure. Further extensive magnetic studies on well-oriented (<100 > and <111>) UO2 crystals are planned to address the puzzling behavior of UO2 in both antiferromagnetic and paramagnetic states at high fields.

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    S. ; Gu, Genda ; Gilbertson, Steve M. ; Taylor, Antoinette ; Rodriguez, George A ... 5f electrons inUO2 Au, Yongqiang Q ; Taylor, Antoinette J ; Durakiewicz, Tomasz ; ...

  20. FUEL FOR NEUTRONIC REACTORS AND PROCESS OF MAKING

    DOE Patents [OSTI]

    Abraham, B.M.; Flotow, H.E.

    1961-05-01

    A fuel material is offered for nuclear reactors consisting of UO/sub 2// sub .//sub 0//sub 0/ suspended in a sodium-containing liquid metal.

  1. final ERI-2142 18-1501 Analysis of Potential Effects on Domestic...

    Office of Environmental Management (EM)

    ... may contain natural uranium pellets, such that some uranium does not require enrichment; the feed material for these natural uranium pellets may also be made from UO 2 , ...

  2. ARQ07-4.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... uranium, low-enriched uranium fuel pellets, highly enriched uranium, plutonium, and contaminated scrap metal. First case: uranium pellets Uranium dioxide (UO 2 ) pellets are used ...

  3. OPTICAL PROPERTIES OF A MECHANICALLY POLISHED AND AIR-EQUILIBRATED...

    Office of Scientific and Technical Information (OSTI)

    Conference: OPTICAL PROPERTIES OF A MECHANICALLY POLISHED AND AIR-EQUILIBRATED 111 UO2 SURFACE BY RAMAN AND ELLIPSOMETRIC SPECTROSCOPY Citation Details In-Document Search Title: ...

  4. Microsoft Word - 1aDOE-ID-12-047 Westinghouse EC B3-6 NRC.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Project Title: Development of LWR Fuels Enhanced Accident Tolerance - Westinghouse Electric ... the currently used Zr + UO2 fuel system with and enhanced accident tolerant fuel. ...

  5. ENG-RCAL-028-r1.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Shipment of Unirradiated Uranium Preparer: J. L. Boles Date 53100 ... of the transportation of unirradiated uranium in the form of metallic billets, UO 3 ...

  6. Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate...

    Office of Scientific and Technical Information (OSTI)

    Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation Citation Details In-Document Search Title: Possible ...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... parameters are investigated based on available experimental and atomic scale data. ... Lattice expansion of UO2 was observed in x-ray diffraction after ion irradiation up to ...

  8. METHOD AND APPARATUS FOR CALCINING SALT SOLUTIONS

    DOE Patents [OSTI]

    Lawroski, S.; Jonke, A.A.; Taecker, R.G.

    1961-10-31

    A method is given for converting uranyl nitrate solution into solid UO/ sub 3/, The solution is sprayed horizontally into a fluidized bed of UO/sub 3/ particles at 310 to 350 deg C by a nozzle of the coaxial air jet type at about 26 psig, Under these conditions the desired conversion takes place, and caking in the bed is avoided.

  9. On the possibility of using uranium-beryllium oxide fuel in a VVER reactor

    SciTech Connect (OSTI)

    Kovalishin, A. A.; Prosyolkov, V. N.; Sidorenko, V. D.; Stogov, Yu. V.

    2014-12-15

    The possibility of using UO{sub 2}-BeO fuel in a VVER reactor is considered with allowance for the thermophysical properties of this fuel. Neutron characteristics of VVER fuel assemblies with UO{sub 2}-BeO fuel pellets are estimated.

  10. Magnetization measurements of uranium dioxide single crystals (P08358-E002-PF)

    SciTech Connect (OSTI)

    Gofryk, K.; Zapf, V.; Jaime, M.

    2014-12-01

    Our preliminary magnetic susceptibility measurements of UO2 point to complex nature of the magnetic ordering in this material, consistent with the proposed non-collinear 3-k magnetic structure. Further extensive magnetic studies are planned to address the puzzling behavior of UO2 in both antiferromagnetic and paramagnetic states.

  11. Ordinary Isotropic Peridynamic Models Position Aware Viscoelastic...

    Office of Scientific and Technical Information (OSTI)

    ... state t(Y) pcox + 2u"o + 2 a,:cr( - el) i rfl Sandia National laboratories John ... state t(Y) ymx + 2u"o + 2 g,cr( - el) i Governing equation for l . 1 . l + ...

  12. Accelerator breeder with uranium, thorium target

    SciTech Connect (OSTI)

    Takahashi, H.; Powell, J.; Kouts, H.

    1983-01-01

    An accelerator breeder, that uses a low-enriched fuel as the target material, can produce substantial amounts of fissile material and electric power. A study of H/sub 2/O- and D/sub 2/O-cooled, UO/sub 2/, U, (depleted U), or thorium indicates that U-metal fuel produces a good fissile production rate and electrical power of about 60% higher than UO/sub 2/ fuel. Thorium fuel has the same order of magnitude as UO/sub 2/ fuel for fissile-fuel production, but the generating electric power is substantially lower than in a UO/sub 2/ reactor. Enriched UO/sub 2/ fuel increases the generating electric power but not the fissile-material production rate. The Na-cooled breeder target has many advantages over the H/sub 2/O-cooled breeder target.

  13. Some effects of data base variations on numerical simulations of uranium migration

    SciTech Connect (OSTI)

    Carnahan, C.L.

    1987-12-01

    Numerical simulations of migration of chemicals in the geosphere depend on knowledge of identities of chemical species and on values of chemical equilibrium constants supplied to the simulators. In this work, some effects of variability in assumed speciation and in equilibrium constants were examined, using migration of uranium as an example. Various simulations were done of uranium migration in systems with varying oxidation potential, pH, and mator component content. A simulation including formation of aqueous species UO/sub 2//sup 2 +/, UO/sub 2/CO/sub 3//sup 0/, UO/sub 2/(CO/sub 3/)/sub 2//sup 2 -/, UO/sub 2/(CO/sub 3/)/sub 3//sup 4 -/, (UO/sub 2/)/sub 2/CO/sub 3/(OH)/sub 3//sup -/, UO/sub 2//sup +/, U(OH)/sub 4//sup 0/, and U(OH)/sub 5//sup -/ is compared to simulation excluding formation of UO/sub 2//sup +/ and U(OH)/sub 5//sup -/. These simulations relied on older data bases, and they are compared to a further simulation using recently published data on formation of U(OH)/sub 4//sup 0/, (UO/sub 2/)/sub 2/CO/sub 3/(OH)/sub 3//sup -/, UO/sub 2/(CO/sub 3/)/sub 5//sup 5 -/, and U(CO/sub 3/)/sub 5//sup 6 -/. Significant differences in dissolved uranium concentrations are noted among the simulations. Differences are noted also in precipitation of two solids, USiO/sub 4/(c) (coffinite) and CaUO/sub 4/(c) (calcium uranate), although the solubility products of the solids were not varied in the simulations. 18 refs., 9 figs., 2 tabs.

  14. Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides

    SciTech Connect (OSTI)

    Haas, P.A.; Lee, D.D.; Mailen, J.C.

    1991-11-01

    The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

  15. Electrolytic process for preparing uranium metal

    DOE Patents [OSTI]

    Haas, Paul A.

    1990-01-01

    An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.

  16. Complexation of Gluconate with Uranium(VI) in Acidic Solutions: Thermodynamic Study with Structural Analysis

    SciTech Connect (OSTI)

    Zhang, Zhicheng; Helms, G.; Clark, S. B.; Tian, Guoxin; Zanonato, PierLuigi; Rao, Linfeng

    2009-01-05

    Within the pC{sub H} range of 2.5 to 4.2, gluconate forms three uranyl complexes UO{sub 2}(GH{sub 4}){sup +}, UO{sub 2}(GH{sub 3})(aq), and UO{sub 2}(GH{sub 3})(GH{sub 4}){sup -}, through the following reactions: (1) UO{sub 2}{sup 2+} + GH{sub 4}{sup -} = UO{sub 2}(GH{sub 4}){sup +}, (2) UO{sub 2}{sup 2+} + GH{sub 4}{sup -} = UO{sub 2}(GH{sub 3})(aq) + H{sup +}, and (3) UO{sub 2}{sup 2+} + 2GH{sub 4}{sup -} = UO{sub 2}(GH{sub 3})(GH{sub 4}){sup -} + H{sup +}. Complexes were inferred from potentiometric, calorimetric, NMR, and EXAFS studies. Correspondingly, the stability constants and enthalpies were determined to be log {Beta}{sub 1} = 2.2 {+-} 0.3 and {Delta}H{sub 1} = 7.5 {+-} 1.3 kJ mol{sup -1} for reaction (1), log {Beta}{sub 2} = -(0.38 {+-} 0.05) and {Delta}H{sub 2} = 15.4 {+-} 0.3 kJ mol{sup -1} for reaction (2), and log {Beta}{sub 3} = 1.3 {+-} 0.2 and {Delta}H{sub 3} = 14.6 {+-} 0.3 kJ mol{sup -1} for reaction (3), at I = 1.0 M NaClO{sub 4} and t = 25 C. The UO{sub 2}(GH{sub 4}){sup +} complex forms through the bidentate carboxylate binding to U(VI). In the UO{sub 2}(GH{sub 3})(aq) complex, hydroxyl-deprotonated gluconate (GH{sub 3}{sup 2-}) coordinates to U(VI) through the five-membered ring chelation. For the UO{sub 2}(GH{sub 3})(GH{sub 4}){sup -} complex, multiple coordination modes are suggested. These results are discussed in the context of trivalent and pentavalent actinide complexation by gluconate.

  17. Effect of temperature on the complexation of Uranium(VI) with fluoride in aqueous solutions

    SciTech Connect (OSTI)

    Tian, Guoxin; Rao, Linfeng

    2009-05-18

    Complexation of U(VI) with fluoride at elevated temperatures in aqueous solutions was studied by spectrophotometry. Four successive complexes, UO{sub 2}F{sup +}, UO{sub 2}F{sub 2}(aq), UO{sub 2}F{sub 3}{sup -}, and UO{sub 2}F{sub 4}{sup 2-}, were identified, and the stability constants at 25, 40, 55, and 70 C were calculated. The stability of the complexes increased as the temperature was elevated. The enthalpies of complexation at 25 C were determined by microcalorimetry. Thermodynamic parameters indicate that the complexation of U(VI) with fluoride in aqueous solutions at 25 to 70 C is slightly endothermic and entropy-driven. The Specific Ion Interaction (SIT) approach was used to obtain the thermodynamic parameters of complexation at infinite dilution. Structural information on the U(VI)/fluoride complexes was obtained by extended X-ray absorption fine structure spectroscopy.

  18. MOX Fuel Presentation to Duke Board of Directors

    National Nuclear Security Administration (NNSA)

    PuO 2 with 95% depleted UO 2 - Like LEU fuel pellets, MOX fuel pellets are primarily uranium * Fission power comes primarily from plutonium (Pu 239 ) instead of uranium (U 235 )...

  19. E P GPT collectively denotes new ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The model includes 16 cylindrical fuel rods (8 MOX and 8 UO 2 ) moderated by water. For this model, the flux has 256 dimensions representing 128 spa- tial nodes with equal spatial ...

  20. OPTICAL PROPERTIES OF A MECHANICALLY POLISHED AND AIR-EQUILIBRATED...

    Office of Scientific and Technical Information (OSTI)

    AND AIR-EQUILIBRATED 111 UO2 SURFACE BY RAMAN AND ELLIPSOMETRIC SPECTROSCOPY Citation Details In-Document Search Title: OPTICAL PROPERTIES OF A MECHANICALLY POLISHED AND AIR-EQUI...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. ... Laboratory Low Activity BetaGamma Sources Waste Stream at the Area 5 Radioactive ...

  2. ContaCt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time-dependent experiments have been successfully performed using a broad-spectrum neutron beam. EnErgy-rESoLvEd nEUtron iMaging Tungsten (red) diffused into UO 2 rod. Fuel pellets ...

  3. DOE-HDBK-1017/2-93; DOE Fundamentals Handbook Material Science...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The UO 2 is formed into pellets and clad with zircaloy (water-cooled reactors) or ... Also, pelletized fuel requires a tubular container to hold the pellets in the required ...

  4. CX-012689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Experimental Validation of UO2 Microstructural Evolution for NEAMS tool MARMOT – University of Florida CX(s) Applied: B3.6Date: 41869 Location(s): FloridaOffices(s): Nuclear Energy

  5. Uranium Mining, Conversion, and Enrichment Industries

    Broader source: Energy.gov (indexed) [DOE]

    ... At the fabrication facility, the enriched UF 6 is converted into UO 2 powder, and then formed into small ceramic pellets. These pellets are then loaded into metal tubes and ...

  6. Microsoft PowerPoint - MOX Adventure_Reactor Subcommittee_Tamara...

    National Nuclear Security Administration (NNSA)

    3 MOX Fuel - General MOX fuel pellets from former weapons plutonium Blend of 5% PuO 2 with 95% depleted UO 2 Like LEU fuel pellets, MOX fuel pellets are primarily ...

  7. NEAMS Update

    Broader source: Energy.gov (indexed) [DOE]

    ... PWR Pressurized water reactor RIA Reactivity-initiated accident RPL Reactors Product Line SFR Sodium fast reactor UO Uranium oxide VHTR Very high-temperature gas-cooled reactor ...

  8. Influence of Temperature on the Corrosion of Uranium Dioxide Nuclear Fuel

    SciTech Connect (OSTI)

    Broczkowski, Michael E.; Noel, Jamie J.; Shoesmith, David W.

    2007-07-01

    The anodic dissolution of UO{sub 2} has been studied at 60 deg. C and the results compared to previous observations at 22 deg. C. The rate of oxidation / dissolution was determined electrochemically at constant potentials in the range -500 mV to 500 mV (vs. SCE). The composition of the electrochemically oxidized surface was determined by X-Ray Photoelectron Spectroscopy (XPS). The onset of oxidation (UO{sub 2} {yields} UO{sub 2+x}) occurred at approximately the same potential (-400 mV) at both temperatures. However, the conversion of U{sub V} to U{sub VI}, and hence to soluble UO{sub 2}{sup 2+}, was accelerated by temperature. This acceleration of dissolution caused the development of acidity at localized sites on the fuel surface at lower (less oxidizing) potentials ({>=} 100 mV) at 60 deg. C than at 22 deg. C ({>=} 350 mV)

  9. Emergent Properties of the Bose-Einstein-Hubbard Condensate in...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Emergent Properties of the Bose-Einstein-Hubbard Condensate in UO2(+x) Citation Details In-Document Search Title: Emergent Properties of the Bose-Einstein-Hubbard ...

  10. Subsurface Uranium Fate and Transport: Integrated Experiments and Modeling of Coupled Biogeochemical Mechanisms of Nanocrystalline Uraninite Oxidation by Fe(III)-(hydr)oxides - Project Final Report

    SciTech Connect (OSTI)

    Peyton, Brent M. [Montana State University; Timothy, Ginn R. [University of California Davis; Sani, Rajesh K. [South Dakota School of Mines and Technology

    2013-08-14

    Subsurface bacteria including sulfate reducing bacteria (SRB) reduce soluble U(VI) to insoluble U(IV) with subsequent precipitation of UO2. We have shown that SRB reduce U(VI) to nanometer-sized UO2 particles (1-5 nm) which are both intra- and extracellular, with UO2 inside the cell likely physically shielded from subsequent oxidation processes. We evaluated the UO2 nanoparticles produced by Desulfovibrio desulfuricans G20 under growth and non-growth conditions in the presence of lactate or pyruvate and sulfate, thiosulfate, or fumarate, using ultrafiltration and HR-TEM. Results showed that a significant mass fraction of bioreduced U (35-60%) existed as a mobile phase when the initial concentration of U(VI) was 160 M. Further experiments with different initial U(VI) concentrations (25 - 900 ?M) in MTM with PIPES or bicarbonate buffers indicated that aggregation of uraninite depended on the initial concentrations of U(VI) and type of buffer. It is known that under some conditions SRB-mediated UO2 nanocrystals can be reoxidized (and thus remobilized) by Fe(III)-(hydr)oxides, common constituents of soils and sediments. To elucidate the mechanism of UO2 reoxidation by Fe(III) (hydr)oxides, we studied the impact of Fe and U chelating compounds (citrate, NTA, and EDTA) on reoxidation rates. Experiments were conducted in anaerobic batch systems in PIPES buffer. Results showed EDTA significantly accelerated UO2 reoxidation with an initial rate of 9.5?M day-1 for ferrihydrite. In all cases, bicarbonate increased the rate and extent of UO2 reoxidation with ferrihydrite. The highest rate of UO2 reoxidation occurred when the chelator promoted UO2 and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO2 dissolution did not occur, UO2 reoxidation likely proceeded through an aqueous Fe(III) intermediate as observed for both NTA and citrate. To complement to these laboratory studies, we collected U-bearing samples from a surface seep at the Rifle field site and

  11. Office of Nuclear Energy Teachers' Edition Doe...

    Energy Savers [EERE]

    ... 2 Water Graphite Fast Neutron Breeder Reactor (FBR) Japan, France, Russia 2 1 PuO2 and UO 2 Liquid sodium None needed ... Source: IAEA June 2012, Nuclear Power Reactors in the World ...

  12. Directory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of UO2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep ... (Properties) 91813 9:46 AM 91813 9:46 AM Send Document Link...

  13. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoparticulate FeS as an Effective Redox Buffer to Prevent Uraninite (UO2) Oxidation August 2013 SSRL Science Summary by Manuel Gnida Figure A major concern in the nuclear age is...

  14. ALTERATION OF U(VI)-PHASES UNDER OXIDIZING CONDITIONS

    SciTech Connect (OSTI)

    A.P. Deditius; S. Utsunomiya; R.C. Ewing

    2006-02-21

    Uranium-(VI) phases are the primary alteration products of the UO{sub 2} in spent nuclear fuel and the UO{sub 2+x}, in natural uranium deposits. The U(VI)-phases generally form sheet structures of edge-sharing UO{sub 2}{sup 2+} polyhedra. The complexity of these structures offers numerous possibilities for coupled-substitutions of trace metals and radionuclides. The incorporation of radionuclides into U(VI)-structures provides a potential barrier to their release and transport in a geologic repository that experiences oxidizing conditions. In this study, we have used natural samples of UO{sub 2+x}, to study the U(VI)-phases that form during alteration and to determine the fate of the associated trace elements.

  15. MEMORANDUM TO: FILE - Oh'

    Office of Legacy Management (LM)

    ... of. Law NCJW York, New York 01 MATERIALS FRO3 DOB L ....-- --. -' - Norsrbt IO, 10x1 "uos.es Ca.e YIIe . -.. . . . . . . . Env. Prot. Bureau N.Y.S. Department of Law Nev ...

  16. Uranium Downblending and Disposition Project Technology Readiness...

    Office of Environmental Management (EM)

    ... transfer high specific activity UO 3 as a dry, thermally hot solid, which is expected to ... for an electrostatic precipitator or a scrubber to allow the removal of these daughter ...

  17. 2013 Publications Resulting from the Use of NERSC Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the Uranyl-SO2 Complex, UO2(CH3SO2)(SO2)-," J. Phys. Chem. ... Nuclear Instruments and Methods A683 (2012) 78-90, 11 August ... Cyclops Tensor Framework: reducing communication and ...

  18. L

    Office of Legacy Management (LM)

    ... contract to the Manhattan &gineer District (MED) and the Atomic Energy Commission @EC). ... wnverting UO, to green salt (UFJ, operated during World War II and tbe following 2 years. ...

  19. DOE - Office of Legacy Management -- University of California...

    Office of Legacy Management (LM)

    Subject: List of California Sites; May 17, 1989 CA.05-3 - AEC Memorandum; Ball to Smith; Subject: 500 Pounds UO3 - SR-1952; July 10, 1951 CA.05-4 - AEC Memorandum; Blatzs to ...

  20. PREPARATION OF SPHERICAL URANIUM DIOXIDE PARTICLES

    DOE Patents [OSTI]

    Levey, R.P. Jr.; Smith, A.E.

    1963-04-30

    This patent relates to the preparation of high-density, spherical UO/sub 2/ particles 80 to 150 microns in diameter. Sinterable UO/sub 2/ powder is wetted with 3 to 5 weight per cent water and tumbled for at least 48 hours. The resulting spherical particles are then sintered. The sintered particles are useful in dispersion-type fuel elements for nuclear reactors. (AEC)

  1. Quasielastic neutron scattering with in situ humidity control: Water dynamics in uranyl fluoride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miskowiec, A.; Kirkegaard, M. C.; Herwig, K. W.; Trowbridge, L.; Mamontov, E.; Anderson, B.

    2016-03-04

    The authors confirm that water vapor pressure is the driving thermodynamic force for the conversion of the anhydrous structure to [(UO2F2)(H2O)]7 ? (H2O)4, and they demonstrate the feasibility of extending this approach to aqueous forms of UO2F2+ xH2O. This method has general applicability to systems in which water content itself is a driving variable for structural or dynamical phase transitions.

  2. On the mechanical stability of uranyl peroxide hydrates: Implications for nuclear fuel degradation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weck, Philippe F.; Kim, Eunja; Buck, Edgar C.

    2015-09-11

    The mechanical properties and stability of studtite, (UO2)(O2)(H2O)2·2H2O, and metastudtite, (UO2)(O2)(H2O)2, two important corrosion phases observed on spent nuclear fuel exposed to water, have been investigated using density functional perturbation theory. While (UO2)(O2)(H2O)2 satisfies the necessary and sufficient Born criteria for mechanical stability, (UO2)(O2)(H2O)2·2H2O is found to be mechanically metastable, which might be the underlying cause of the irreversibility of the studtite to metastudtite transformation. According to Pugh's and Poisson's ratios and the Cauchy pressure, both phases are considered ductile and shear modulus is the parameter limiting their mechanical stability. Furthermore, debye temperatures of 294 and 271 K are predictedmore » for polycrystalline (UO2)(O2)(H2O)2·2H2O and (UO2)(O2)(H2O)2, suggesting a lower micro-hardness of metastudtite.« less

  3. On the mechanical stability of uranyl peroxide hydrates: Implications for nuclear fuel degradation

    SciTech Connect (OSTI)

    Weck, Philippe F.; Kim, Eunja; Buck, Edgar C.

    2015-09-11

    The mechanical properties and stability of studtite, (UO2)(O2)(H2O)2·2H2O, and metastudtite, (UO2)(O2)(H2O)2, two important corrosion phases observed on spent nuclear fuel exposed to water, have been investigated using density functional perturbation theory. While (UO2)(O2)(H2O)2 satisfies the necessary and sufficient Born criteria for mechanical stability, (UO2)(O2)(H2O)2·2H2O is found to be mechanically metastable, which might be the underlying cause of the irreversibility of the studtite to metastudtite transformation. According to Pugh’s and Poisson’s ratios and the Cauchy pressure, both phases are considered ductile and shear modulus is the parameter limiting their mechanical stability. Debye temperatures of 294 and 271 K are predicted for polycrystalline (UO2)(O2)(H2O)2·2H2O and (UO2)(O2)(H2O)2, suggesting a lower micro-hardness of metastudtite.

  4. The burnup dependence of light water reactor spent fuel oxidation

    SciTech Connect (OSTI)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies

  5. Barium uranyl diphosphonates

    SciTech Connect (OSTI)

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Ewing, Rodney C.; Albrecht-Schmitt, Thomas E.

    2012-08-15

    Three Ba{sup 2+}/UO{sub 2}{sup 2+} methylenediphosphonates have been prepared from mild hydrothermal treatment of uranium trioxide, methylendiphosphonic acid (C1P2) with barium hydroxide octahydrate, barium iodate monohydrate, and small aliquots of HF at 200 Degree-Sign C. These compounds, Ba[UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{center_dot}1.4H{sub 2}O (Ba-1), Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2}F{sub 6}]{center_dot}6H{sub 2}O (Ba-2), and Ba{sub 2}[(UO{sub 2}){sub 2}(CH{sub 2}(PO{sub 3}){sub 2})F{sub 4}]{center_dot}5.75H{sub 2}O (Ba-3) all adopt layered structures based upon linear uranyl groups and disphosphonate molecules. Ba-2 and Ba-3 are similar in that they both have UO{sub 5}F{sub 2} pentagonal bipyramids that are bridged and chelated by the diphosphonate moiety into a two-dimensional zigzag anionic sheet (Ba-2) and a one-dimensional ribbon anionic chain (Ba-3). Ba-1, has a single crystallographically unique uranium metal center where the C1P2 ligand solely bridges to form [UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sup 2-} sheets. The interlayer space of the structures is occupied by Ba{sup 2+}, which, along with the fluoride ion, mediates the structure formed and maintains overall charge balance. - Graphical abstract: Illustration of the stacking of the layers in Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2})F{sub 6}]{center_dot}6H{sub 2}O viewed along the c-axis. The structure is constructed from UO{sub 7} pentagonal bipyramidal units, U(1)O{sub 7}=gray, U(2)O{sub 7}=yellow, barium=blue, phosphorus=magenta, fluorine=green, oxygen=red, carbon=black, and hydrogen=light peach. Highlights: Black-Right-Pointing-Pointer The polymerization of the UO{sub 2}{sup 2+} sites to form uranyl dimers leads to structural variations in compounds. Black-Right-Pointing-Pointer Barium cations stitch uranyl diphosphonate anionic layers together, and help mediate structure formation. Black-Right-Pointing-Pointer HF acts as both a

  6. EFRC CMSNF Major Accomplishments

    SciTech Connect (OSTI)

    D. Hurley; Todd R. Allen

    2014-09-01

    The mission of the Center for Material Science of Nuclear Fuels (CMSNF) has been to develop a first-principles-based understanding of thermal transport in the most widely used nuclear fuel, UO2, in the presence of defect microstructure associated with radiation environments. The overarching goal within this mission was to develop an experimentally validated multiscale modeling capability directed toward a predictive understanding of the impact of radiation and fission-product induced defects and microstructure on thermal transport in nuclear fuel. Implementation of the mission was accomplished by integrating the physics of thermal transport in crystalline solids with microstructure science under irradiation through multi institutional experimental and computational materials theory teams from Idaho National Laboratory, Oak Ridge National Laboratory, Purdue University, the University of Florida, the University of Wisconsin, and the Colorado School of Mines. The Centers research focused on five major areas: (i) The fundamental aspects of anharmonicity in UO2 crystals and its impact on thermal transport; (ii) The effects of radiation microstructure on thermal transport in UO2; (iii) The mechanisms of defect clustering in UO2 under irradiation; (iv) The effect of temperature and oxygen environment on the stoichiometry of UO2; and (v) The mechanisms of growth of dislocation loops and voids under irradiation. The Center has made important progress in each of these areas, as summarized below.

  7. Thermophysical properties of uranium dioxide - Version 0 for peer review

    SciTech Connect (OSTI)

    Fink, J.K.; Petri, M.C.

    1997-02-01

    Data on thermophysical properties of solid and liquid UO{sub 2} have been reviewed and critically assessed to obtain consistent thermophysical property recommendations for inclusion in the International Nuclear Safety Center Database on the World Wide Web (http://www.insc.anl.gov.). Thermodynamic properties that have been assessed are enthalpy, heat capacity, melting point, enthalpy of fusion, thermal expansion, density, surface tension, and vapor pressure. Transport properties that have been assessed are thermal conductivity, thermal diffusivity, viscosity, and emissivity. Summaries of the recommendations with uncertainties and detailed assessments for each property are included in this report and in the International Nuclear Safety Center Database for peer review. The assessments includes a review of the experiments and data, an examination of previous recommendations, the basis for selecting recommendations, a determination of uncertainties, and a comparison of recommendations with data and with previous recommendations. New data and research that have led to new recommendations include thermal expansion and density measurements of solid and liquid UO{sub 2}, derivation of physically-based equations for the thermal conductivity of solid UO{sub 2}, measurements of the heat capacity of liquid UO{sub 2}, and measurements and analysis of the thermal conductivity of liquid UO{sub 2}.

  8. Characterization of urania vaporization with transpiration coupled thermogravimetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McMurray, J. W.

    2015-12-05

    Determining equilibrium vapor pressures of materials is made easier by transpiration measurements. However, the traditional technique involves condensing the volatiles entrained in a carrier gas outside of the hot measurement zone. One potential problem is deposition en route to a cooled collector. Thermogravimetric analysis (TGA) can be used to measure in situ mass loss due to vaporization and therefore obviate the need to analyze the entire gas train due to premature plating of vapor species. Therefore, a transpiration coupled TGA technique was used to determine equilibrium pressures of UO3 gas over fluorite structure UO2+x and U3O8 at T = (1573more » and 1773) K. Moreover, we compared to calculations from models and databases in the open literature. Our study gives clarity to the thermochemical data for UO3 gas and validates the mass loss transpiration method using thermogravimetry for determining equilibrium vapor pressures of non-stoichiometric oxides.« less

  9. Characterization of urania vaporization with transpiration coupled thermogravimetry

    SciTech Connect (OSTI)

    McMurray, J. W.

    2015-12-05

    Determining equilibrium vapor pressures of materials is made easier by transpiration measurements. However, the traditional technique involves condensing the volatiles entrained in a carrier gas outside of the hot measurement zone. One potential problem is deposition en route to a cooled collector. Thermogravimetric analysis (TGA) can be used to measure in situ mass loss due to vaporization and therefore obviate the need to analyze the entire gas train due to premature plating of vapor species. Therefore, a transpiration coupled TGA technique was used to determine equilibrium pressures of UO3 gas over fluorite structure UO2+x and U3O8 at T = (1573 and 1773) K. Moreover, we compared to calculations from models and databases in the open literature. Our study gives clarity to the thermochemical data for UO3 gas and validates the mass loss transpiration method using thermogravimetry for determining equilibrium vapor pressures of non-stoichiometric oxides.

  10. Calculation of the thermodynamic properties of fuel-vapor species from spectroscopic data

    SciTech Connect (OSTI)

    Green, D.W.

    1980-09-01

    Measured spectroscopic data, estimated molecular parameters, and a densty-of-states model for electronic structure have been used to calculate thermodynamic functions for gaseous ThO, ThO/sub 2/, UO, UO/sub 2/, UO/sub 3/, PuO, and PuO/sub 2/. Various methods for estimating parameters have been considered and numerically evaluated. The sensitivity of the calculated thermodynamic functions to molecular parameters has been examined quantitatively. New values of the standard enthalpies of formation at 298.15/sup 0/K have been derived from the best available ..delta..G/sup 0//sub f/ equations and the calculated thermodynamic functions. Estimates of the uncertainties have been made for measured and estimated data as well as for various mathematical and physical approximations. Tables of the thermodynamic functions to 6000/sup 0/K are recommended for gaseous thorium, uranium, and plutonium oxides.

  11. Kinetics of laser pulse vaporization of uranium dioxide by mass spectrometry

    SciTech Connect (OSTI)

    Tsai, C.

    1981-11-01

    Safety analyses of nuclear reactors require knowledge of the evaporation behavior of UO/sub 2/ at temperatures well above the melting point of 3140 K. In this study, rapid transient heating of a small spot on a UO/sub 2/ specimen was accomplished by a laser pulse, which generates a surface temperature excursion. This in turn vaporizes the target surface and the gas expands into vacuum. The surface temperature transient was monitored by a fast-response automatic optical pyrometer. The maximum surface temperatures investigated range from approx. 3700 K to approx. 4300 K. A computer program was developed to simulate the laser heating process and calculate the surface temperature evolution. The effect of the uncertainties of the high temperature material properties on the calculation was included in a sensitivity study for UO/sub 2/ vaporization. The measured surface temperatures were in satisfactory agreements.

  12. Communication: Relativistic Fock-space coupled cluster study of small building blocks of larger uranium complexes

    SciTech Connect (OSTI)

    Tecmer, Pawe? Visscher, Lucas; Severo Pereira Gomes, Andr; Knecht, Stefan

    2014-07-28

    We present a study of the electronic structure of the [UO{sub 2}]{sup +}, [UO{sub 2}]{sup 2} {sup +}, [UO{sub 2}]{sup 3} {sup +}, NUO, [NUO]{sup +}, [NUO]{sup 2} {sup +}, [NUN]{sup ?}, NUN, and [NUN]{sup +} molecules with the intermediate Hamiltonian Fock-space coupled cluster method. The accuracy of mean-field approaches based on the eXact-2-Component Hamiltonian to incorporate spinorbit coupling and Gaunt interactions are compared to results obtained with the DiracCoulomb Hamiltonian. Furthermore, we assess the reliability of calculations employing approximate density functionals in describing electronic spectra and quantities useful in rationalizing Uranium (VI) species reactivity (hardness, electronegativity, and electrophilicity)

  13. Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process

    SciTech Connect (OSTI)

    Collins, Robert T; Collins, Jack Lee; Hunt, Rodney Dale; Ladd-Lively, Jennifer L; Patton, Kaara K; Hickman, Robert

    2014-01-01

    The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

  14. On the mechanical stability of uranyl peroxide hydrates: Implications for nuclear fuel degradation

    SciTech Connect (OSTI)

    Weck, Philippe F.; Kim, Eunja; Buck, Edgar C.

    2015-09-11

    The mechanical properties and stability of studtite, (UO2)(O2)(H2O)2·2H2O, and metastudtite, (UO2)(O2)(H2O)2, two important corrosion phases observed on spent nuclear fuel exposed to water, have been investigated using density functional perturbation theory. While (UO2)(O2)(H2O)2 satisfies the necessary and sufficient Born criteria for mechanical stability, (UO2)(O2)(H2O)2·2H2O is found to be mechanically metastable, which might be the underlying cause of the irreversibility of the studtite to metastudtite transformation. According to Pugh's and Poisson's ratios and the Cauchy pressure, both phases are considered ductile and shear modulus is the parameter limiting their mechanical stability. Furthermore, debye temperatures of 294 and 271 K are predicted for polycrystalline (UO2)(O2)(H2O)2·2H2O and (UO2)(O2)(H2O)2, suggesting a lower micro-hardness of metastudtite.

  15. Diffusion and Adsorption of Uranyl Carbonate Species in Nanosized Mineral Fractures

    SciTech Connect (OSTI)

    Kerisit, Sebastien N.; Liu, Chongxuan

    2012-02-07

    Atomistic simulations were performed to study the diffusion and adsorption of Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3} and of some of its constituent species, i.e., UO{sub 2}{sup 2+}, CO{sub 3}{sup 2-}, and UO{sub 2}CO{sub 3}, in feldspar nano-sized fractures. Feldspar is important to uranium remediation efforts at the U.S. Department of Energy Hanford site as it has been found in recent studies to host contaminants within its intragrain fractures. In addition, uranyl carbonate species are known to dominate U(VI) speciation in conditions relevant to the Hanford site. Molecular dynamics (MD) simulations showed that the presence of the feldspar surface diminishes the diffusion coefficients of all the species considered in this work and that the diffusion coefficients do not reach their bulk aqueous solution values in the center of a 2.5 nm fracture. Moreover, the MD simulations showed that the rate of decrease in the diffusion coefficients with decreasing distance from the surface is greater for larger adsorbing species. Free energy profiles of the same species adsorbing on the feldspar surface revealed a large exothermic free energy of adsorption for UO{sub 2}{sup 2+} and UO{sub 2}CO{sub 3}, which are able to adsorb to the surface with their uranium atom directly bonded to a surface hydroxyl oxygen, whereas adsorption of CO{sub 3}{sup 2-} and Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}, which attach to the surface via hydrogen bonding from a surface hydroxyl group to a carbonate oxygen, was calculated to be either only slightly exothermic or endothermic.

  16. Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors (Progress report for work through June 2002, 12th quarterly report)

    SciTech Connect (OSTI)

    Mac Donald, Philip Elsworth

    2002-09-01

    The overall objective of this NERI project is to evaluate the potential advantages and disadvantages of an optimized thorium-uranium dioxide (ThO2/UO2) fuel design for light water reactors (LWRs). The project is led by the Idaho National Engineering and Environmental Laboratory (INEEL), with the collaboration of three universities, the University of Florida, Massachusetts Institute of Technology (MIT), and Purdue University; Argonne National Laboratory; and all of the Pressurized Water Reactor (PWR) fuel vendors in the United States (Framatome, Siemens, and Westinghouse). In addition, a number of researchers at the Korean Atomic Energy Research Institute and Professor Kwangheon Park at Kyunghee University are active collaborators with Korean Ministry of Science and Technology funding. The project has been organized into five tasks: · Task 1 consists of fuel cycle neutronics and economics analysis to determine the economic viability of various ThO2/UO2 fuel designs in PWRs, · Task 2 will determine whether or not ThO2/UO2 fuel can be manufactured economically, · Task 3 will evaluate the behavior of ThO2/UO2 fuel during normal, off-normal, and accident conditions and compare the results with the results of previous UO2 fuel evaluations and U.S. Nuclear Regulatory Commission (NRC) licensing standards, · Task 4 will determine the long-term stability of ThO2/UO2 high-level waste, and · Task 5 consists of the Korean work on core design, fuel performance analysis, and xenon diffusivity measurements.

  17. Dissolution of uranium oxides from simulated environmental swipes using ammonium bifluoride

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meyers, Lisa A.; Yoshida, Thomas M.; Chamberlin, Rebecca M.; Xu, Ning

    2016-04-09

    We developed an analytical chemistry method to quantitatively recover microgram quanties of solid uranium oxides from swipe media using ammonium bifluoride (ABF, NH4HF2) solution. Recovery of uranium from surrogate swipe media (filter paper) was demonstrated at initial uranium loading levels between 3 and 20 µg filter-1. Moreover, the optimal conditions for extracting U3O8 and UO2 are using 1 % ABF solution and incubating at 80 °C for one hour. The average uranium recoveries are 100 % for U3O8, and 90 % for UO2. Finally, with this method, uranium concentration as low as 3 µg filter-1 can be recovered for analysis.

  18. Measuring the Noble Metal and Iodine Composition of Extracted Noble Metal Phase from Spent Nuclear Fuel Using Instrumental Neutron Activation Analysis

    SciTech Connect (OSTI)

    Palomares, R. I.; Dayman, Kenneth J.; Landsberger, Sheldon; Biegalski, Steven R.; Soderquist, Chuck Z.; Casella, Amanda J.; Brady Raap, Michaele C.; Schwantes, Jon M.

    2015-04-01

    Mass quantities of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis (NAA). Nuclide presence is predicted using fission yield analysis, and mass quantification is derived from standard gamma spectroscopy and radionuclide decay analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. Lastly, the implications of the rapid analytic speed of instrumental NAA are discussed in relation to potential nuclear forensics applications.

  19. Analysis of the thorium axial blanket experiments in the PROTEUS reactor

    SciTech Connect (OSTI)

    White, J. R.; Ingersoll, D. T.; Schmocker, U.

    1980-01-01

    An extensive program of reactor physics experiments in GCFR fuel pin lattices has been completed recently at the PROTEUS critical facility located at EIR laboratory in Switzerland. The PROTEUS reactor consists of a central test zone surrounded by a uranium buffer and thermal driver region. The test lattices included a PuO/sub 2//UO/sub 2/ fuel region with internal and axial blankets of UO/sub 2/, ThO/sub 2/, and thorium metal. Detailed analysis of the thorium-bearing lattices has been performed at EIR and at ORNL in order to validate nuclear data and methods used for reactor physics analysis of advanced GCFR designs.

  20. Variation of stability constants of thorium and uranium oxalate complexes with ionic strength

    SciTech Connect (OSTI)

    Erten, H.N; Mohammed, A.K.; Choppin, G.R.

    1993-12-31

    Extraction of Th(IV) and UO{sub 2}{sup 2+} by a solution of TTA and HDEHP, respectively, in toluene was used to obtain stability constants of their oxalate complexes in 1, 3, 5, 7 and 9 M ionic strength (NaClO{sub 2}) solutions. The complexes formed were the MOx, MHOx, MOx{sub 2} and M(HOx){sub 2} (M = Th, UO{sub 2}) species. The values were analyzed by the Specific Interaction Theory and agreed to I {le} 3 M but required an additional term for fitting at I > 3 M.

  1. Confirmation of shutdown cooling effects

    SciTech Connect (OSTI)

    Sato, Kotaro Tabuchi, Masato; Sugimura, Naoki; Tatsumi, Masahiro

    2015-12-31

    After the Fukushima accidents, all nuclear power plants in Japan have gradually stopped their operations and have long periods of shutdown. During those periods, reactivity of fuels continues to change significantly especially for high-burnup UO{sub 2} fuels and MOX fuels due to radioactive decays. It is necessary to consider these isotopic changes precisely, to predict neutronics characteristics accurately. In this paper, shutdown cooling (SDC) effects of UO{sub 2} and MOX fuels that have unusual operation histories are confirmed by the advanced lattice code, AEGIS. The calculation results show that the effects need to be considered even after nuclear power plants come back to normal operation.

  2. Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Edward J. Mausolf; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; Bruce K. McNamara

    2015-09-08

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparationmore » and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm–1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm–1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. As a result, the phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with only one in the hexahydrate.« less

  3. Time-Resolved Infrared Reflectance Studies of the Dehydration-Induced Transformation of Uranyl Nitrate Hexahydrate to the Trihydrate Form

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-10-01

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s the different phases were studied by infrared transmission spectroscopy, but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. The phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with but one in the hexahydrate.

  4. Oxidation and crystal field effects in uranium

    SciTech Connect (OSTI)

    Tobin, J. G.; Booth, C. H.; Shuh, D. K.; van der Laan, G.; Sokaras, D.; Weng, T. -C.; Yu, S. W.; Bagus, P. S.; Tyliszczak, T.; Nordlund, D.

    2015-07-06

    An extensive investigation of oxidation in uranium has been pursued. This includes the utilization of soft x-ray absorption spectroscopy, hard x-ray absorption near-edge structure, resonant (hard) x-ray emission spectroscopy, cluster calculations, and a branching ratio analysis founded on atomic theory. The samples utilized were uranium dioxide (UO2), uranium trioxide (UO3), and uranium tetrafluoride (UF4). As a result, a discussion of the role of non-spherical perturbations, i.e., crystal or ligand field effects, will be presented.

  5. Effects of Time, Heat, and Oxygen on K Basin Sludge Agglomeration, Strength, and Solids Volume

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Daniel, Richard C.; Burns, Carolyn A.

    2011-01-04

    Sludge disposition will be managed in two phases under the K Basin Sludge Treatment Project. The first phase is to retrieve the sludge that currently resides in engineered containers in the K West (KW) Basin pool at ~10 to 18°C. The second phase is to retrieve the sludge from interim storage in the sludge transport and storage containers (STSCs) and treat and package it in preparation for eventual shipment to the Waste Isolation Pilot Plant. The work described in this report was conducted to gain insight into how sludge may change during long-term containerized storage in the STSCs. To accelerate potential physical and chemical changes, the tests were performed at temperatures and oxygen partial pressures significantly greater than those expected in the T Plant canyon cells where the STSCs will be stored. Tests were conducted to determine the effects of 50°C oxygenated water exposure on settled quiescent uraninite (UO2) slurry and a full simulant of KW containerized sludge to determine the effects of oxygen and heat on the composition and mechanical properties of sludge. Shear-strength measurements by vane rheometry also were conducted for UO2 slurry, mixtures of UO2 and metaschoepite (UO3•2H2O), and for simulated KW containerized sludge. The results from these tests and related previous tests are compared to determine whether the settled solids in the K Basin sludge materials change in volume because of oxidation of UO2 by dissolved atmospheric oxygen to form metaschoepite. The test results also are compared to determine if heating or other factors alter sludge volumes and to determine the effects of sludge composition and settling times on sludge shear strength. It has been estimated that the sludge volume will increase with time because of a uranium metal → uraninite → metaschoepite oxidation sequence. This increase could increase the number of containers required for storage and increase overall costs of sludge management activities. However, the volume

  6. Validation of MCNP with X6.XS cross-section set on the SUN Sparc Station 1+ computer for nominally 5 weight percent {sup 235}U enriched uranium systems

    SciTech Connect (OSTI)

    Lewis, K.D.

    1994-09-01

    The national Atomic Vapor Laser Isotope Separation (AVLIS) project has conducted extensive nuclear criticality safety analyses both in the design of Uranium Demonstration System (UDS) equipment and in AVLIS plant design/plant deployment activities. Currently, the design limit of an AVLIS plant calls for uranium product enriched in {sup 235}U to 5 wt %. Since an objective of an AVLIS plant is to deliver its product in a form readily usable by customers, uranium enriched in {sup 235}U will appear in a variety of forms, including metallic; as oxides, e.g., UO{sub 2}, UO{sub 3}; as fluorides, e.g., UF{sub 6}, UF{sub 4}, UO{sub 2}F{sub 2}; as nitrates or nitrides, e.g., UO{sub 2} (NO{sub 3}){sub 2}; and perhaps as uranium salts mixed with hydrocarbons such as oil. A wide range of neutron moderation levels, ranging from zero to optimal, and beyond can also be anticipated in an AVLIS plant, because of decontamination and cleaning activities and other wet chemistry processes that may be required.

  7. Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics

    SciTech Connect (OSTI)

    Yu, Jianguo Bai, Xian-Ming; El-Azab, Anter; Allen, Todd R.

    2015-03-07

    Oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation, and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO{sub 2}) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo method has been used to investigate the kinetics of oxygen transport in UO{sub 2} under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable off-stoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO{sub 2?x}, oxygen transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO{sub 2+x}, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that di-interstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence, and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing an explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.

  8. Thermodynamics of fission products in dispersion fuel designs - first principles modeling of defect behavior in bulk and at interfaces

    SciTech Connect (OSTI)

    Liu, Xiang-yand; Uberuaga, Blas P; Nerikar, Pankaj; Sickafus, Kurt E; Stanek, Chris R

    2009-01-01

    Density functional theory (DFT) calculations of fission product (Xe, Sr, and Cs) incorporation and segregation in alkaline earth metal oxides, HfO{sub 2} and UO{sub 2} oxides, and the MgO/(U, Hf, Ce)O{sub 2} interfaces have been carried out. In the case of UO{sub 2}, the calculations were performed using spin polarization and with a Hubbard U term characterizing the on-sit Coulomb repulsion between the localized 5f electrons. The fission product solution energies in bulk UO{sub 2{+-}x} have been calculated as a function of non-stoichiometry x, and were compared to that in MgO. These calculations demonstrate that the fission product incorporation energies in MgO are higher than in HfO{sub 2}. However, this trend is reversed or reduced for alkaline earth oxides with larger cation sizes. The solution energies of fission products in MgO are substantially higher than in UO{sub 2{+-}x}, except for the case of Sr in the hypostoichiometric case. Due to size effects, the thermodynamic driving force of segregation for Xe and Cs from bulk MgO to the MgO/fluorite interface is strong. However, this driving force is relatively weak for Sr.

  9. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    SciTech Connect (OSTI)

    baney, Ronald; Tulenko, James

    2012-11-20

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  10. Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; Allen, Todd R.

    2015-03-05

    In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO2-x, oxygen transport is wellmore » described by the vacancy diffusion mechanism while in hyper-stoichiometric UO2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.« less

  11. Preparation and Characterization of Uranium Oxides in Support of the K Basin Sludge Treatment Project

    SciTech Connect (OSTI)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2008-07-08

    Uraninite (UO2) and metaschoepite (UO3·2H2O) are the uranium phases most frequently observed in K Basin sludge. Uraninite arises from the oxidation of uranium metal by anoxic water and metaschoepite arises from oxidation of uraninite by atmospheric or radiolytic oxygen. Studies of the oxidation of uraninite by oxygen to form metaschoepite were performed at 21°C and 50°C. A uranium oxide oxidation state characterization method based on spectrophotometry of the solution formed by dissolving aqueous slurries in phosphoric acid was developed to follow the extent of reaction. This method may be applied to determine uranium oxide oxidation state distribution in K Basin sludge. The uraninite produced by anoxic corrosion of uranium metal has exceedingly fine particle size (6 nm diameter), forms agglomerates, and has the formula UO2.004±0.007; i.e., is practically stoichiometric UO2. The metaschoepite particles are flatter and wider when prepared at 21°C than the particles prepared at 50°C. These particles are much smaller than the metaschoepite observed in prolonged exposure of actual K Basin sludge to warm moist oxidizing conditions. The uraninite produced by anoxic uranium metal corrosion and the metaschoepite produced by reaction of uraninite aqueous slurries with oxygen may be used in engineering and process development testing. A rapid alternative method to determine uranium metal concentrations in sludge also was identified.

  12. Pyrolytic carbon-coated nuclear fuel

    DOE Patents [OSTI]

    Lindemer, Terrence B.; Long, Jr., Ernest L.; Beatty, Ronald L.

    1978-01-01

    An improved nuclear fuel kernel having at least one pyrolytic carbon coating and a silicon carbon layer is provided in which extensive interaction of fission product lanthanides with the silicon carbon layer is avoided by providing sufficient UO.sub.2 to maintain the lanthanides as oxides during in-reactor use of said fuel.

  13. Oxygen transport in off-stoichiometric uranium dioxide mediated by defect clustering dynamics

    SciTech Connect (OSTI)

    Yu, Jianguo; Bai, Xian -Ming; El-Azab, Anter; Allen, Todd R.

    2015-03-05

    In this study, oxygen transport is central to many properties of oxides such as stoichiometric changes, phase transformation and ionic conductivity. In this paper, we report a mechanism for oxygen transport in uranium dioxide (UO2) in which the kinetics is mediated by defect clustering dynamics. In particular, the kinetic Monte Carlo (KMC) method has been used to investigate the kinetics of oxygen transport in UO2 under the condition of creation and annihilation of oxygen vacancies and interstitials as well as oxygen interstitial clustering, with variable offstoichiometry and temperature conditions. It is found that in hypo-stoichiometric UO2-x, oxygen transport is well described by the vacancy diffusion mechanism while in hyper-stoichiometric UO2+x, oxygen interstitial cluster diffusion contributes significantly to oxygen transport kinetics, particularly at high temperatures and high off-stoichiometry levels. It is also found that diinterstitial clusters and single interstitials play dominant roles in oxygen diffusion while other larger clusters have negligible contributions. However, the formation, coalescence and dissociation of these larger clusters indirectly affects the overall oxygen diffusion due to their interactions with mono and di-interstitials, thus providing a explanation of the experimental observation of saturation or even drop of oxygen diffusivity at high off-stoichiometry.

  14. The Development of Models to Optimize Selection of Nuclear Fuels through Atomic-Level Simulation

    SciTech Connect (OSTI)

    Prof. Simon Phillpot; Prof. Susan B. Sinnott; Prof. Hans Seifert; Prog. James Tulenko

    2009-01-26

    Demonstrated that FRAPCON can be modified to accept data generated from first principles studies, and that the result obtained from the modified FRAPCON make sense in terms of the inputs. Determined the temperature dependence of the thermal conductivity of single crystal UO2 from atomistic simulation.

  15. Green strength of zirconium sponge and uranium dioxide powder compacts

    SciTech Connect (OSTI)

    Balakrishna, Palanki Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-07-15

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO{sub 2}) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO{sub 2} powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO{sub 2} powder was higher than that from unattrited category, accompanied by an improvement in UO{sub 2} green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel.

  16. Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide

    SciTech Connect (OSTI)

    Valderrama, Billy; He, Lingfeng; Henderson, Hunter B.; Pakarinen, Janne; Jaques, Brian; Gan, Jian; Butt, Darryl P.; Allen, Todd R.; Manuel, Michele V.

    2014-11-01

    Fission products, such as krypton (Kr), are known to be insoluble within UO2, segregating towards grain boundaries, eventually leading to a lowering of the thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO2. Polycrystalline depleted-UO2 samples was irradiated with 0.7 and 1.8 MeV Kr-ions and annealed to 1000C, 1300C, and 1600C for 1 hour to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. While Kr migration is active at elevated temperatures, no changes in grain size or texture were observed in the irradiated UO2 samples.

  17. Water-Moderated and -Reflected Slabs of Uranium Oxyfluoride

    SciTech Connect (OSTI)

    Margaret A. Marshall; John D. Bess; J. Blair Briggs; Clinton Gross

    2010-09-01

    A series of ten experiments were conducted at the Oak Ridge National Laboratory Critical Experiment Facility in December 1955, and January 1956, in an attempt to determine critical conditions for a slab of aqueous uranium oxyfluoride (UO2F2). These experiments were recorded in an Oak Ridge Critical Experiments Logbook and results were published in a journal of the American Nuclear Society, Nuclear Science and Engineering, by J. K. Fox, L. W. Gilley, and J. H. Marable (Reference 1). The purpose of these experiments was to obtain the minimum critical thickness of an effectively infinite slab of UO2F2 solution by extrapolation of experimental data. To do this the slab thickness was varied and critical solution and water-reflector heights were measured using two different fuel solutions. Of the ten conducted experiments eight of the experiments reached critical conditions but the results of only six of the experiments were published in Reference 1. All ten experiments were evaluated from which five critical configurations were judged as acceptable criticality safety benchmarks. The total uncertainty in the acceptable benchmarks is between 0.25 and 0.33 % ?k/keff. UO2F2 fuel is also evaluated in HEU-SOL-THERM-043, HEU-SOL-THERM-011, and HEU-SOL-THERM-012, but these those evaluation reports are for large reflected and unreflected spheres. Aluminum cylinders of UO2F2 are evaluated in HEU-SOL-THERM-050.

  18. Hydrofluoric Acid Corrosion Testing on Unplated and Electroless Gold-Plated Samples

    SciTech Connect (OSTI)

    Osborne, P.E.; Icenhour, A.S.; Del Cul, G.D.

    2000-08-01

    The Molten Salt Reactor Experiment (MSRE) remediation requires that almost 40 kg of uranium hexafluoride (UF6) be converted to uranium oxide (UO). In the process of this conversion, six moles of hydrofluoric acid (HP) are produced for each mole of UF6 converted.

  19. Spin-lattice coupling in uranium dioxide probed by magnetostriction measurements at high magnetic fields (P08358-E001-PF)

    SciTech Connect (OSTI)

    Gofryk, K.; Jaime, M.

    2014-12-01

    Our preliminary magnetostriction measurements have already shown a strong interplay of lattice dynamic and magnetism in both antiferromagnetic and paramagnetic states, and give unambiguous evidence of strong spin- phonon coupling in uranium dioxide. Further studies are planned to address the puzzling behavior of UO2 in magnetic and paramagnetic states and details of the spin-phonon coupling.

  20. URANIUM SEPARATION PROCESS

    DOE Patents [OSTI]

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  1. CX-011566: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mechanical Behavior of Uranium Oxide (UO2) at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing CX(s) Applied: B3.6 Date: 11/18/2013 Location(s): Arizona Offices(s): Idaho Operations Office

  2. I Mr. J. C. Delaney

    Office of Legacy Management (LM)

    ... F?UO Product is &k;e.i,j is &,,pl&' fof te"&d:,jth&r charged to the blender. A dry ... The same fume scrubber system also is connected to a hood over the U02,powder dissolver to ...

  3. Synthesis and structures of new uranyl malonate complexes with carbamide derivatives

    SciTech Connect (OSTI)

    Serezhkina, L. B.; Grigor’ev, M. S.; Medvedkov, Ya. A.; Serezhkin, V. N.

    2015-09-15

    Crystals of new malonate-containing uranyl complexes [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Imon)(H{sub 2}O)] (I) and [UO{sub 2}(C{sub 3}H{sub 2}O4)(Meur){sub 3}] (II), where Imon is imidazolidin-2-one (ethylenecarbamide) and Meur is methyl-carbamide, have been synthesized and studied by X-ray diffraction. Both compounds crystallize in the monoclinic system with the following unit-cell parameters (at 100 K): a = 11.1147(10) Å, b = 6.9900(6) Å, c = 14.4934(12) Å, β = 92.042(2)°, V = 1125.30(17) Å{sup 3}, sp. gr. P2{sub 1}/n, Z = 4, R{sub 1} = 0.0398 (I); a = 16.6613(5) Å, b = 9.5635(3) Å, c = 22.9773(6) Å, β = 103.669(2)°, V = 3557.51(18) Å{sup 3}, sp. gr. C2/c, Z = 8, R{sub 1} = 0.0207 (II). The crystals are composed of electroneutral chains [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Imon)(H{sub 2}O)] and mononuclear groups [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Meur){sub 3}] as the structural units belonging to the crystal-chemical groups AT{sup 11}M{sub 2}{sup 1} and AB{sup 01}M{sub 3}{sup 1} (A =UO{sub 2}{sup 2+}, T{sup 11} and B{sup 01} = C{sub 3}H{sub 2}, M{sup 1} = Imon, H{sub 2}O, or Meur), respectively, of uranyl complexes. The packing modes of the uranyl-containing complexes were analyzed by the method of molecular Voronoi—Dirichlet polyhedra.

  4. New three-dimensional inorganic frameworks based on the uranophane-type sheet in monoamine templated uranyl-vanadates

    SciTech Connect (OSTI)

    Jouffret, Laurent; Shao Zhenmian

    2010-10-15

    Seven new uranyl vanadates with mono-protonated amine or tetramethylammonium used as structure directing cations, (C{sub 2}NH{sub 8}){sub 2{l_brace}}[(UO{sub 2})(H{sub 2}O)][(UO{sub 2})(VO{sub 4})]{sub 4{r_brace}}.H{sub 2}O (DMetU5V4) (C{sub 2}NH{sub 8}){l_brace}[(UO{sub 2})(H{sub 2}O){sub 2}][(UO{sub 2})(VO{sub 4})]{sub 3{r_brace}}.H{sub 2}O (DMetU4V3), (C{sub 5}NH{sub 6}){sub 2{l_brace}}[(UO{sub 2})(H{sub 2}O)][(UO{sub 2})(VO{sub 4})]{sub 4{r_brace}}.H{sub 2}O (PyrU5V4), (C{sub 3}NH{sub 10}){l_brace}[(UO{sub 2})(H{sub 2}O){sub 2}][(UO{sub 2})(VO{sub 4})]{sub 3{r_brace}}.H{sub 2}O (isoPrU4V3), (N(CH{sub 3}){sub 4}){l_brace}[(UO{sub 2})(H{sub 2}O){sub 2}][(UO{sub 2})(VO{sub 4})]{sub 3{r_brace}}.H{sub 2}O (TMetU4V3), (C{sub 6}NH{sub 14}){l_brace}[(UO{sub 2})(H{sub 2}O){sub 2}][(UO{sub 2})(VO{sub 4})]{sub 3{r_brace}}.H{sub 2}O (CHexU4V3), and (C{sub 4}NH{sub 12}){l_brace}[(UO{sub 2})(H{sub 2}O)][(UO{sub 2})(VO{sub 4})]{sub 3{r_brace}} (TButU4V3) were prepared from mild-hydrothermal reactions using dimethylamine, pyridine, isopropylamine, tetramethylammonium hydroxide, cyclohexylamine and tertiobutylamine, respectively, with uranyl nitrate and vanadium oxide in acidic medium. The structures were solved using single-crystal X-ray diffraction data. The compounds exhibit three-dimensional uranyl-vanadate inorganic frameworks built from uranophane-type uranyl-vanadate layers pillared by uranyl polyhedra with cavities in between occupied by protonated organic moieties. In the uranyl-vanadate layers the orientations of the vanadate tetrahedra give new geometrical isomers leading to unprecedented pillared systems and new inorganic frameworks with U/V=4/3. Crystallographic data: (DMetU5V4) orthorhombic, Cmc2{sub 1} space group, a=15.6276(4), b=14.1341(4), c=13.6040(4) A; (DMetU4V3) monoclinic, P2{sub 1}/n space group, a=10.2312(4), b=13.5661(7), c=17.5291(7) A, {beta}=96.966(2); (PyrU5V4), triclinic, P1 space group, a=9.6981(3), b=9.9966(2), c=10.5523(2) A, {alpha}=117

  5. Analysis of key safety metrics of thorium utilization in LWRs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ade, Brian J.; Bowman, Stephen M.; Worrall, Andrew; Powers, Jeffrey

    2016-04-08

    Here, thorium has great potential to stretch nuclear fuel reserves because of its natural abundance and because it is possible to breed the 232Th isotope into a fissile fuel (233U). Various scenarios exist for utilization of thorium in the nuclear fuel cycle, including use in different nuclear reactor types (e.g., light water, high-temperature gas-cooled, fast spectrum sodium, and molten salt reactors), along with use in advanced accelerator-driven systems and even in fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on conceptsmore » that mix thorium with uranium (UO2 + ThO2) or that add fertile thorium (ThO2) fuel pins to typical LWR fuel assemblies. Utilization of mixed fuel assemblies (PuO2 + ThO2) is also possible. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts to the nuclear fuel. Thorium and its irradiation products have different nuclear characteristics from those of uranium and its irradiation products. ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These key reactor safety–related issues have been studied at Oak Ridge National Laboratory and documented in “Safety and Regulatory Issues of the Thorium Fuel Cycle” (NUREG/CR-7176, U.S. Nuclear Regulatory Commission, 2014). Various reactor analyses were performed using the SCALE code system for comparison of key performance parameters of both ThO2 + UO2 and ThO2 + PuO2 against those of UO2 and typical UO2 + PuO2 mixed oxide fuels, including reactivity coefficients and power sharing between surrounding UO2 assemblies and the assembly of interest. The decay heat and radiological source terms for spent fuel after its discharge from the reactor are also presented. Based on this evaluation, potential impacts on safety requirements and identification of

  6. Feasibility Study of MOX Fuel Online Burnup Analysis

    SciTech Connect (OSTI)

    Dennis, M.L.; Usman, S.

    2006-07-01

    This research is an extension of well established Non-Destructive Analysis of UO fuel using gamma spectroscopy of Cs-137 and other related isotopes. Given the performance similarities between UO fuel and MOX fuel, investigations are underway to develop similar correlation for MOX. MOX fuel burnup and decay simulations are being performed using ORIGEN-ARP (Oak Ridge Isotope Generation and Depletion Code - Automatic Rapid Processing). Simulation results are being analyzed and will be used to determine performance specifications of a detection system for field applications. Analysis of isotopic activity from irradiated fuel will be used to develop correlations to determine burn-up and Plutonium content of MOX fuel. These results will be particularly useful in view of the recent interest in MOX fuel. (authors)

  7. A comment on the thermal conductivity of (U,Pu)O2 and (U,Th)O2 by molecular dynamics with adjustment for phonon-spin scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cooper, Michael William D.; Liu, Xiang -Yang; Stanek, Christopher Richard; Andersson, David Anders

    2016-07-15

    In this study, a new approach for adjusting molecular dynamics results on UO2 thermal conductivity to include phonon-spin scattering has been used to improve calculations on Ux Pu1–x O2 and UxTh1xO2. We demonstrate that by including spin scattering a strong asymmetry as a function of uranium actinide fraction, x, is obtained. Greater degradation is shown for UxTh1–xO2 than UxPu1-xO2. Minimum thermal conductivities are predicted at U0.97Pu0.03O2 and U0.58Th0.42O2, although the degradation in UxPu1–xO2 is negligible relative to pure UO2.

  8. Method for fluorination of uranium oxide

    DOE Patents [OSTI]

    Petit, George S. (Oak Ridge, TN)

    1987-01-01

    Highly pure uranium hexafluoride is made from uranium oxide and fluorine. The uranium oxide, which includes UO.sub.3, UO.sub.2, U.sub.3 O.sub.8 and mixtures thereof, is introduced together with a small amount of a fluorine-reactive substance, selected from alkali chlorides, silicon dioxide, silicic acid, ferric oxide, and bromine, into a constant volume reaction zone. Sufficient fluorine is charged into the zone at a temperature below approximately 0.degree. C. to provide an initial pressure of at least approximately 600 lbs/sq. in. at the ambient atmospheric temperature. The temperature is then allowed to rise in the reaction zone until reaction occurs.

  9. AGR-2 Irradiation Test Final As-Run Report, Rev 2

    SciTech Connect (OSTI)

    Blaise Collin

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test

  10. AGR-2 IRRADIATION TEST FINAL AS-RUN REPORT

    SciTech Connect (OSTI)

    Blaise, Collin

    2014-07-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test

  11. Electrochemical behavior of simulated debris from a severe accident using a molten salt system

    SciTech Connect (OSTI)

    Takahashi, Yuya; Nakamura, Hitoshi; Yamada, Akira; Mizuguchi, Koji; Fujita, Reiko

    2013-07-01

    In a severe nuclear accident, the fuel in the reactor may melt, forming debris, which contains a UO{sub 2}-ZrO{sub 2} stable oxide mixture and parts of the reactor, such as Zircaloy and iron components. Proper handling of the debris is a critically important issue. The debris does not have the same composition as spent fuel, and so it is impossible to apply conventional reprocessing technology directly. In this study, we successfully separated Zr and Fe from simulated debris using NaCl-KCl molten salt electrolysis, and we selectively recovered the Zr and Fe. The simulated debris was made from Zr, Fe, and CeO{sub 2}. The CeO{sub 2} was used for simulating stable UO{sub 2}-ZrO{sub 2}. With this approach, it should be possible to reduce the volume of the debris by recovering metals, which can then be treated as low level radioactive wastes.

  12. Effect of Helium Accumulation on the Spent Fuel Microstructure

    SciTech Connect (OSTI)

    Ferry, Cecile; Piron, Jean-Paul; Stout, Ray

    2007-07-01

    In a nuclear spent fuel repository, the aqueous rapid release of radio-activity from exposed spent fuel surfaces will depend on the pellet microstructure at the arrival time of water into the disposal container. Research performed on spent fuel evolution in a closed system has shown that the evolution of microstructure under disposal conditions should be governed by the cumulated {alpha}-decay damage and the subsequent helium behavior. The evolution of fission gas bubble characteristics under repository conditions has to be assessed. In UO{sub 2} fuels with a burnup of 47.5 GWd/t, the pressure in fission gas bubbles, including the pressure increase from {alpha}-decay helium atoms, is not expected to reach the critical bubble pressure that will cause failure, thus micro-cracking in UO{sub 2} spent fuel grains is not expected. (authors)

  13. The behavior of measured SEU at low altitude during periods of high solar activity

    SciTech Connect (OSTI)

    Harboe-Sorensen, R.; Daly, E.J.; Adams, L. ); Underwood, C.I.; Ward, J. )

    1990-12-01

    The UoSAT-2 spacecraft, launched in 1984 into a polar orbit of altitude 700 km has a number of systems which have been observed to experience single-event upsets at significant rates. Geographically, the upsets are strongly concentrated in the South-Atlantic Anomaly region from which it has been deduced that in this region they are due to the products of proton-induced nuclear reactions in the devices. During the year 1989, several solar flare events occurred which elevated the upset rates at high latitudes. The October 19 event, in particular, resulted in very high high-latitude upset rates. The authors separate and analyze these data, deriving upset rates for the various memory devices under quiet cosmic-ray, South Atlantic anomaly and solar flare conditions. The authors report on the results of the heavy ion and proton testing of UoSAT memories which were undertaken in order to compare predictions and observations.

  14. Sulfurization behavior of cerium doped uranium oxides by CS{sub 2}

    SciTech Connect (OSTI)

    Sato, Nobuaki; Kato, Shintaro; Kirishima, Akira; Tochiyama, Osamu

    2007-07-01

    For the recovery of nuclear materials from the spent nuclear fuel, the sulfide process has been proposed and the voloxidation of spent fuel and selective sulfurization rare-earth elements has been proposed. In this paper, cerium was used as a stand-in of plutonium and sulfurization behavior of cerium doped uranium dioxide by CS{sub 2} was studied. UO{sub 2} was oxidized to U{sub 3}O{sub 8} in air, while the Ce doped UO{sub 2} solid solution was formed in the presence of CeO{sub 2} by the heat treatment in air. The effect of heating time, temperature and the ratio of uranium to cerium on the formation of solid solution was analyzed. The results were also compared with those of thermodynamic consideration. (authors)

  15. METHOD FOR DECONTAMINATION OF REACTOR SOLUTIONS

    DOE Patents [OSTI]

    Maraman, W.J.; Baxman, H.R.; Baker, R.D.

    1959-05-01

    A process for U recovery from phosphate fuel solutions is described. To fuel solution drawn from the reactor is added Fe(NO/sub 3/)/sub 3/ which destroys the U complex and forms ferric phosphate complex. The UO/sub 2/(NO/sub 3/)/sub 2/ formed is extracted into TBP-kerosene in a countercurrent column. The TBP contalning UO/sub 2/(NO/sub 3/)/sub 2/ is further purified by an aqueous Al(NO/ sub 3/)/sub 3/ scrub solution. The pregnant solution then goes to an H/sub 3/PO/ sub 4/ stripping and kerosene washing column. The H/sub 3/PO/sub 4/--uranyl phosphate solution is separated at the bottom and boiled to remove HNO/sub 3/ then diluted to fuel solution make-up strength. (T.R.H.)

  16. AGR-2 irradiation test final as-run report, Rev. 1

    SciTech Connect (OSTI)

    Collin, Blaise

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities; (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing; and, (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test

  17. Aerosols released during large-scale integral MCCI tests in the ACE Program

    SciTech Connect (OSTI)

    Fink, J.K.; Thompson, D.H.; Spencer, B.W.; Sehgal, B.R.

    1992-04-01

    As part of the internationally sponsored Advanced Containment Experiments (ACE) program, seven large-scale experiments on molten core concrete interactions (MCCIs) have been performed at Argonne National Laboratory. One of the objectives of these experiments is to collect and characterize all the aerosols released from the MCCIs. Aerosols released from experiments using four types of concrete (siliceous, limestone/common sand, serpentine, and limestone/limestone) and a range of metal oxidation for both BWR and PWR reactor core material have been collected and characterized. Release fractions were determined for UO{sup 2}, Zr, the fission-products: BaO, SrO, La{sub 2}O{sub 3}, CeO{sub 2}, MoO{sub 2}, Te, Ru, and control materials: Ag, In, and B{sub 4}C. Release fractions of UO{sub 2} and the fission products other than Te were small in all tests. However, release of control materials was significant.

  18. Aerosols released during large-scale integral MCCI tests in the ACE Program

    SciTech Connect (OSTI)

    Fink, J.K.; Thompson, D.H.; Spencer, B.W. ); Sehgal, B.R. )

    1992-01-01

    As part of the internationally sponsored Advanced Containment Experiments (ACE) program, seven large-scale experiments on molten core concrete interactions (MCCIs) have been performed at Argonne National Laboratory. One of the objectives of these experiments is to collect and characterize all the aerosols released from the MCCIs. Aerosols released from experiments using four types of concrete (siliceous, limestone/common sand, serpentine, and limestone/limestone) and a range of metal oxidation for both BWR and PWR reactor core material have been collected and characterized. Release fractions were determined for UO{sup 2}, Zr, the fission-products: BaO, SrO, La{sub 2}O{sub 3}, CeO{sub 2}, MoO{sub 2}, Te, Ru, and control materials: Ag, In, and B{sub 4}C. Release fractions of UO{sub 2} and the fission products other than Te were small in all tests. However, release of control materials was significant.

  19. Fuels for research and test reactors, status review: July 1982

    SciTech Connect (OSTI)

    Stahl, D.

    1982-12-01

    A thorough review is provided on nuclear fuels for steady-state thermal research and test reactors. The review was conducted to provide a documented data base in support of recent advances in research and test reactor fuel development, manufacture, and demonstration in response to current US policy on availability of enriched uranium. The review covers current fabrication practice, fabrication development efforts, irradiation performance, and properties affecting fuel utilization, including thermal conductivity, specific heat, density, thermal expansion, corrosion, phase stability, mechanical properties, and fission-product release. The emphasis is on US activities, but major work in Europe and elsewhere is included. The standard fuel types discussed are the U-Al alloy, UZrH/sub x/, and UO/sub 2/ rod fuels. Among new fuels, those given major emphasis include H/sub 3/Si-Al dispersion and UO/sub 2/ caramel plate fuels.

  20. Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Edward J. Mausolf; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; Bruce K. McNamara

    2015-09-08

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm–1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm–1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the

  1. Fuel System Compatibility Issues for Prometheus-1

    SciTech Connect (OSTI)

    DC Noe; KB Gibbard; MH Krohn

    2006-01-20

    Compatibility issues for the Prometheus-1 fuel system have been reviewed based upon the selection of UO{sub 2} as the reference fuel material. In particular, the potential for limiting effects due to fuel- or fission product-component (cladding, liner, spring, etc) chemical interactions and clad-liner interactions have been evaluated. For UO{sub 2}-based fuels, fuel-component interactions are not expected to significantly limit performance. However, based upon the selection of component materials, there is a potential for degradation due to fission products. In particular, a chemical liner may be necessary for niobium, tantalum, zirconium, or silicon carbide-based systems. Multiple choices exist for the configuration of a chemical liner within the cladding; there is no clear solution that eliminates all concerns over the mechanical performance of a clad/liner system. A series of tests to evaluate the performance of candidate materials in contact with real and simulated fission products is outlined.

  2. A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system

    SciTech Connect (OSTI)

    Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K.; Oomori, T.

    2013-07-01

    At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

  3. Analysis of uranium oxide weathering by molecular spectroscopy. Final report

    SciTech Connect (OSTI)

    Zickafoose, M.S.

    1997-11-01

    A preliminary study of the weathering of uranium oxide particles diluted in diamond dust at ambient environmental conditions is presented. The primary weathering reaction is oxidation of the uranium from the +4 to +6 oxidation state, although formation of compounds such as carbonates and hydroxides is possible. Identification of the state of uranium oxide has been attempted using luminescence spectroscopy and diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS). Luminescence spectra of nominal samples of three common oxides, UO3, U3O8, and UO2, have been measured showing significant spectral differences in peaks at 494 nm, 507 nm, 529 nm, and 553 nm. DRIFTS spectra of the same three oxides show significant differences in peaks at 960 /cm, 856 /cm, and 754 /cm. The differences in these peaks allow determination of the oxidation to the +6 state in these compounds.

  4. Biogeochemical Mechanisms Controlling Reduced Radionuclide Particle Properties and Stability

    SciTech Connect (OSTI)

    Jim K. Fredrickson; John M. Zachara; Matthew J. Marshall; Alex S. Beliaev

    2006-06-01

    Uranium and Technetium are the major risk-driving contaminants at Hanford and other DOE sites. These radionuclides have been shown to be reduced by dissimilatory metal reducing bacteria (DMRB) under anoxic conditions. Laboratory studies have demonstrated that reduction results in the formation of poorly soluble hydrous oxides, UO2(s) and TcO2n?H2O(s), that are believed to limit mobility in the environment. The mechanisms of microbial reduction of U and Tc have been the focus of considerable research in the Environmental Remediation Sciences Program (ERSP). In spite of equal or greater importance in terms of controlling the environmental fate of the contaminants relatively little is known regarding the precipitation mechanism(s), reactivity, persistence, and transport of biogenic UO2(s) and TcO2(s).

  5. Relocation and freezing of liquefied fuel-rod material. [PWR

    SciTech Connect (OSTI)

    Moore, R.L.; Broughton, J.M.

    1982-01-01

    Severe degraded core cooling accidents, such as occurred at TMI-2 can potentially reach temperatures in excess of cladding melting. When the molten cladding is in contact with UO/sub 2/ fuel, the UO/sub 2/ will be dissolved contributing significantly to the total amount of liquefied material flowing down the rod and eventually freezing in a lower, cooler region of the core. The primary objectives of this paper are to evaluate the relocation and freezing characteristics of liquefied fuel rod material over a wide range of system conditions, physical characteristics of the fuel rod and liquefied material, and material thermo-physical properties to determine the relative influence of the controlling parameters. First the analytical model used in the analysis is briefly reviewed. The results of the analyses are then presented and discussed, and this is followed by the conclusions.

  6. Ultrasound enhanced process for extracting metal species in supercritical fluids

    DOE Patents [OSTI]

    Wai, Chien M.; Enokida, Youichi

    2006-10-31

    Improved methods for the extraction or dissolution of metals, metalloids or their oxides, especially lanthanides, actinides, uranium or their oxides, into supercritical solvents containing an extractant are disclosed. The disclosed embodiments specifically include enhancing the extraction or dissolution efficiency with ultrasound. The present methods allow the direct, efficient dissolution of UO2 or other uranium oxides without generating any waste stream or by-products.

  7. Criticality safety evaluation report for the 100 KE Basin sandfilter backwash pit

    SciTech Connect (OSTI)

    Erickson, D.G.

    1995-01-01

    This analysis presents the technical basis for establishing a safe mass limit for continued operations of the KE Basin sandfilter backwash pit. The main analysis is based on a very conservative UO{sub 2}-PuO{sub 2}-H{sub 2}O system using the measured isotopic concentrations of uranium and plutonium in the sludge. Appendix C contains analyses of the sandfilter backwash pit utilizing all verified materials presently in the pit, and gives new limits based on assumptions made.

  8. MARMOT Enhanced | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced MARMOT Enhanced January 29, 2013 - 10:23am Addthis Lower-length-scale Model Development To develop mechanistic models for fuel thermal conductivity, the Fuel team used supercells up to 55 nm long to determine the thermal conductivity of UO2 with Xe incorporated. Atomistic simulations were used to determine thermal resistance values for four different types of grain boundaries, and these values have been used in meso-scale simulations of heat transport through representative fuel

  9. Vegetation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vegetation 250 o 250 N A Community _ Loblolly Pine D Bottomland Hardwood I!!!I Carolina Bay Wetland _ Bottomland HardwodlPine W Streams ~ Roads A/; Rails [2] SRS Bays Will Hydric Soils 500 Meters Soils Soil Series and Phase D DoA D DoB DRm rn Uo Figure 24-1. Plant COll/llll/lzities and soils associated with the Cypress Bay Set-Aside Area. sc 24-5 Set-Aside 24: Cypress Bay

  10. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  11. Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel

    DOE Patents [OSTI]

    Herrmann, Steven D.; Mariani, Robert D.

    2002-01-01

    A basket, for use in the reduction of UO.sub.2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.

  12. LANSCE | Lujan Center | Software | popLA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Instruments Reflectometers Asterix Powder Diffractometers HIPD HIPPO NPDF Engineering Diffraction SMARTS Small Angle Scattering LQD Protein Crystallography PCS Neutron Imaging Capability Neutron Radiography Contacts Lujan Center Leader Aaron Couture (acting) 505.667.1730 Deputy Leader Fredrik Tovesson 505.665.9652 Deputy Leader & Experimental Area Manager Charles Kelsey 505.665.5579 Experiment Coordinator Charles Kelsey (acting) 505.667.8755 User Program Administration lujan-uo@lanl.gov

  13. LANSCE | Lujan Center | Tips for Writing Beamtime Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aaron Couture (acting) 505.667.1730 Deputy Leader Fredrik Tovesson 505.665.9652 Deputy Leader & Experimental Area Manager Charles Kelsey 505.665.5579 Experiment Coordinator Charles Kelsey (acting) 505.667.8755 User Program Administration lujan-uo@lanl.gov Administrative Assistant Julie Quintana-Valdez 505.665.5390 Department of Energy, National Nuclear Security Administration nnsa.energy.gov Tips for Writing Beamtime Proposals LANSCE User Resources Tips for a Successful Proposal Proposals

  14. LCLS Users' Organization Executive Committee | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users' Organization Executive Committee SAVE THE DATE: SSRL/LCLS Users' Conference and Workshops, October 5-7, 2016 Read summary of 2015 users' conference. During the annual meeting, users also have the opportunity to vote for their Users Executive Committee Representatives. The LCLS Users' Organization (LCLS UO) provides an organized framework and independent vehicle for interaction between the scientists who are interested in using the Linac Coherent Light Source (the users) and LCLS/SLAC

  15. Head-end process for the reprocessing of HTGR spent fuel

    SciTech Connect (OSTI)

    Chen, J.; Wen, M.

    2013-07-01

    The reprocessing of HTGR spent fuels is in favor of the sustainable development of nuclear energy to realize the maximal use of nuclear resource and the minimum disposal of nuclear waste. The head-end of HTGR spent fuels reprocessing is different from that of the LWR spent fuels reprocessing because of the difference of spent fuel structure. The dismantling of the graphite spent fuel element and the highly effective dissolution of fuel kernel is the most difficult process in the head end of the reprocessing. Recently, some work on the head-end has been done in China. First, the electrochemical method with nitrate salt as electrolyte was studied to disintegrate the graphite matrix from HTGR fuel elements and release the coated fuel particles, to provide an option for the head-end technology of reprocessing. The results show that the graphite matrix can be effectively separated from the coated particle without any damage to the SiC layer. Secondly, the microwave-assisted heating was applied to dissolve the UO{sub 2} kernel from the crashed coated fuel particles. The ceramic UO{sub 2} as the solute has a good ability to absorb the microwave energy. The results of UO{sub 2} kernel dissolution from crushed coated particles by microwave heating show that the total dissolution percentage of UO{sub 2} is more than 99.99% after 3 times cross-flow dissolution with the following parameters: 8 mol/L HNO{sub 3}, temperature 100 Celsius degrees, initial ratio of solid to liquid 1.2 g/ml. (authors)

  16. SYNTHESIS, CHARACTERIZATION, AND STRUCTURE OF A URANYL COMPLEX WITH A DISULFIDE LIGAND, BIS(DI-n-PROPYLAMMONIUM) DISULFIDOBIS (DI-n-PROPYLMONOTHIOCARBAMATO) DIOXOURANATE(VI)

    SciTech Connect (OSTI)

    Perry, Dale L.; Zalkin, Allan; Ruben, Helena; Templeton, David H.

    1981-05-01

    Olive-green crystals of the title compound, [({underline n}-C{sub 3}H{sub 7}){sub 2}NH{sub 2}{sup +}]{sub 2} [UO(({underline n}-C{sub 3}H{sub 7}){sub 2}NCOS){sub 2}(S{sub 2}){sup -2}, are orthorhombic, space group Pcan, with {underline a}= 15.326(6) {Angstrom}, {underline b} = 17.474(6) {Angstrom}, {underline C} = 14.728(6) {Angstrom}, and Z = 4, (d{sub X} = 1.45 g/cm{sup 3}). For 1833 data, I >{sigma}, R = 0.052, and R{sub w} = 0.069. The structure was revealed by single-crystal x-ray diffraction studies to consist of [(n-C{sub 3}H{sub 7}){sub 2}NH{sub 2}]+ cations and [UO{sub 2}(({underline n|-C{sub 3}H{sub 7}){sub 2}NCOS){sub 2}(S{sub 2}){sup -2} anions with the uranium atom at the center of an irregular hexagonal bipyramid. The uranyl oxygen atoms occupy the axial positions. The equatorial coordination plane contains the disulfide (S{sub 2}{sup -2}) group bonded in a "side-on" fashion, and two oxygen and two sulfur donor atoms from the monothiocarbamate ligands. Interatomic distances are S-S = 2.05(1) {Angstrom}, U-S= 2.714(3) {Angstrom} (disulfide); U-S= 2.871(3) {Angstrom} and U-O = 2.46(1) {Angstrom} (thiocarbamate); U-O = 1.81(1) {Angstrom} (uranyl), The nitrogen atom in the dipropylammonium cation is hydrogen bonded to the uranyl oxgyen atoms,

  17. LANSCE | Lujan Center | Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HIPPO Engineering Diffraction SMARTS Protein Crystallography PCS Neutron Imaging Capability Neutron Radiography Contacts Lujan Center Leader Aaron Couture (acting) 505.667.1730 Deputy Leader Fredrik Tovesson 505.665.9652 Deputy Leader & Experimental Area Manager Charles Kelsey 505.665.5579 Experiment Coordinator Charles Kelsey (acting) 505.667.8755 User Program Administration lujan-uo@lanl.gov Administrative Assistant Julie Quintana-Valdez 505.665.5390 Department of Energy, National Nuclear

  18. Los Alamos probes mysteries of uranium dioxide's thermal conductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mysteries of uranium dioxide's thermal conductivity Los Alamos probes mysteries of uranium dioxide's thermal conductivity New research is showing that the thermal conductivity of cubic uranium dioxide is strongly affected by interactions between phonons carrying heat and magnetic spins. August 4, 2014 Illustration of anisotropic thermal conductivity in uranium dioxide (UO2). Scientists are studying the thermal conductivity related to the material's different crystallographic directions, hoping

  19. Microsoft Word - DOE-ID-13-057 Arizona State EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Mechanical Behavior of UO2 at Sub-grain Length Scales: Quantification of Elastic, Plastic and Creep Properties via Microscale Testing- Arizona State University SECTION B. Project Description Arizona State University proposes to develop techniques to measure relevant properties at sub-grain scales using depleted uranium oxide samples with different grain sizes and oxygen stoichiometries. Grain size crystallography will be characterized using Scanning Electron

  20. Microsoft Word - DOE-ID-13-071 Hunter College EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 SECTION A. Project Title: Recovery of Uranium from Seawater: Polymer-Supported Aminophosphinates as Selective - Hunter College of the City University of New York SECTION B. Project Description Hunter College proposes to develop a polymer-supported extractant for the recovery of uranium from seawater. Work includes evaluating polymers with the highest capacities with authentic seawater at 3 ppb UO 2 2+ . SECTION C. Environmental Aspects / Potential Sources of Impact Chemical Use/Storage /

  1. Microsoft Word - DOE-ID-14-080 South Florida EC B3-6.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    80 SECTION A. Project Title: Functionalized Porous Organic Polymers as Uranium Nano-Traps for Efficient Recovery of Uranium from Seawater - The University of South Florida SECTION B. Project Description The University of South Florida proposes to address the design, synthesis, and characterization of porous organic polymer (POP)- based uranium "nano-traps" as well as the investigation of their performance on UO 2 2+ adsorption in the lab scale. Collaborators will engage in ambient

  2. MEMO TO HCAs.pdf

    Energy Savers [EERE]

    Enhanced MARMOT Enhanced January 29, 2013 - 10:23am Addthis Lower-length-scale Model Development To develop mechanistic models for fuel thermal conductivity, the Fuel team used supercells up to 55 nm long to determine the thermal conductivity of UO2 with Xe incorporated. Atomistic simulations were used to determine thermal resistance values for four different types of grain boundaries, and these values have been used in meso-scale simulations of heat transport through representative fuel

  3. Draft report on melt point as a function of composition for urania-based systems

    SciTech Connect (OSTI)

    Valdez, James A; Byler, Darrin D

    2012-06-08

    This report documents the testing of a urania (UO{sub 2.00}) sample as a baseline and the attempt to determine the melt point associated with 4 compositions of urania-ceria and urania-neodymia pseudo binaries provided by ORNL, with compositions of 95/5, and 80/20 and of (U/Ce)O{sub 2.00} and (U/Nd)O{sub 2.00} in the newly developed ceramic melt point determination system. A redesign of the system using parts fabricated from tungsten was undertaken in order to help prevent contamination and tungsten carbide formation in the crucibles. The previously developed system employed mostly graphite parts that were shown to react with the sample containment black-body crucible leading to unstable temperature readings and crucible failure, thus the redesign. Measured melt point values of UO{sub 2.00} and U{sub 0.95}Ce{sub 0.05}O{sub 2.00}, U{sub 0.80}Ce{sub 0.20}O{sub 2.00}, U{sub 0.95}Nd{sub 0.05}O{sub 2.00} and U{sub 0.80}Nd{sub 0.20}O{sub 2.00} were measured using a 2-color pyrometer. The value measured for UO{sub 2.00} was consistent with the published accepted value 2845 C {+-} 25 C, although a wide range of values has been published by researchers and will be discussed later in the text. For comparison, values obtained from a published binary phase diagram of UO{sub 2}-Nd{sub 2}O{sub 3} were used for comparison with our measure values. No literature melt point values for comparison with the measurements performed in this study were found for (U/Ce)O{sub 2.00} in our stoichiometry range.

  4. Effect of Co-solutes on the Products and Solubility of Uranium(VI) Precipitated with Phosphate

    SciTech Connect (OSTI)

    Mehta, Vrajesh; Maillot, Fabien; Wang, Zheming; Catalano, Jeffrey G.; Giammar, Daniel E.

    2014-01-22

    Uranyl phosphate solids are often found with uranium ores, and their low solubility makes them promising target phases for in situ remediation of uranium-contaminated subsurface environments. The products and solubility of uranium(VI) precipitated with phosphate can be affected by the pH, dissolved inorganic carbon (DIC) concentration, and co-solute composition (e.g. Na+/Ca2+) of the groundwater. Batch experiments were performed to study the effect of these parameters on the products and extent of uranium precipitation induced by phosphate addition. In the absence of co-solute cations, chernikovite [H3O(UO2)(PO4)•3H2O] precipitated despite uranyl orthophosphate [(UO2)3(PO4)2•4H2O] being thermodynamically more favorable under certain conditions. As determined using X-ray diffraction, electron microscopy, and laser induced fluorescence spectroscopy, the presence of Na+ or Ca2+ as a co-solute led to the precipitation of sodium autunite ([Na2(UO2)2(PO4)2] and autunite [Ca(UO2)2(PO4)2]), which are structurally similar to chernikovite. In the presence of sodium, the dissolved U(VI) concentrations were generally in agreement with equilibrium predictions of sodium autunite solubility. However, in the calcium-containing systems, the observed concentrations were below the predicted solubility of autunite, suggesting the possibility of uranium adsorption to or incorporation in a calcium phosphate precipitate in addition to the precipitation of autunite.

  5. Radionuclide release from spent fuel under geologic disposal conditions: An overview of experimental and theoretical work through 1985

    SciTech Connect (OSTI)

    Reimus, P.W.; Simonson, S.A.

    1988-04-01

    This report presents an overview of experimental and theoretical work on radionuclide release from spent fuel and uranium dioxide (UO/sub 2/) under geologic disposal conditions. The purpose of the report is to provide a source book of information that can be used to develop models that describe radionuclide release from spent fuel waste packages. Modeling activities of this nature will be conducted within the Waste Package Program (WPP) of the Department of Energy's Salt Repository Project (SRP). The topics discussed include experimental methods for investigating radionuclide release, how results have been reported from radionuclide release experiments, theoretical studies of UO/sub 2/ and actinide solubility, results of experimental studies of radionuclide release from spent fuel and UO/sub 2/ (i.e., the effects of different variables on radionuclide release), characteristics of spent fuel pertinent to radionuclide release, and status of modeling of radionuclide release from spent fuel. Appendix A presents tables of data from spent fuel radionuclide release experiments. These data have been digitized from graphs that appear in the literature. An annotated bibliography of literature on spent fuel characterization is provided in Appendix B.

  6. Small cell experiments for electrolytic reduction of uranium oxides to uranium metal using fluoride salts

    SciTech Connect (OSTI)

    Haas, P.A.; Adcock, P.W.; Coroneos, A.C.; Hendrix, D.E. )

    1994-08-01

    Electrolytic reduction of uranium oxide was proposed for the preparation of uranium metal feed for the atomic vapor laser isotope separation (AVLIS) process. A laboratory cell of 25-cm ID was operated to obtain additional information in areas important to design and operation of a pilot plant cell. Reproducible test results and useful operating and control procedures were demonstrated. About 20 kg of uranium metal of acceptable purity were prepared. A good supply of dissolved UO[sub 2] feed at the anode is the most important controlling requirement for efficient cell operation. A large fraction of the cell current is nonproductive in that it does not produce a metal product nor consume carbon anodes. All useful test conditions gave some reduction of UF[sub 4] to produce CF[sub 4] in addition to the reduction of UO[sub 2], but the fraction of metal from the reduction of UF[sub 4] can be decreased by increasing the concentration of dissolved UO[sub 2]. Operation of large continuous cells would probably be limited to current efficiencies of less than 60 pct, and more than 20 pct of the metal would result from the reduction of UF[sub 4].

  7. Depleted uranium oxides and silicates as spent nuclear fuel waste package fill materials

    SciTech Connect (OSTI)

    Forsberg, C.W.

    1996-09-10

    A new repository waste package (WP) concept for spent nuclear fuel (SNF) is being investigated that uses depleted uranium (DU) to improve performance and reduce the uncertainties of geological disposal of SNF. The WP would be filled with SNF and then filled with depleted uranium (DU) ({approximately}0.2 wt % {sup 235}U) dioxide (UO{sub 2}) or DU silicate-glass beads. Fission products and actinides can not escape the SNF UO{sub 2} crystals until the UO{sub 2} dissolves or is transformed into other chemical species. After WP failure, the DU fill material slows dissolution by three mechanisms: (1) saturation of AT groundwater with DU and suppression of SNF dissolution, (2) maintenance of chemically reducing conditions in the WP that minimize SNF solubility by sacrificial oxidation of DU from the +4 valence state, and (3) evolution of DU to lower-density hydrated uranium silicates. The fill expansion seals the WP from water flow. The DU also isotopically exchanges with SNF uranium as the SNF degrades to reduce long-term nuclear-criticality concerns.

  8. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    SciTech Connect (OSTI)

    M. Chen; CM Regan; D. Noe

    2006-01-09

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

  9. The thermal conductivity of mixed fuel UxPu1-xO2: molecular dynamics simulations

    SciTech Connect (OSTI)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-10-16

    Mixed oxides (MOX), in the context of nuclear fuels, are a mixture of the oxides of heavy actinide elements such as uranium, plutonium and thorium. The interest in the UO2-PuO2 system arises from the fact that these oxides are used both in fast breeder reactors (FBRs) as well as in pressurized water reactors (PWRs). The thermal conductivity of UO2 fuel is an important material property that affects fuel performance since it is the key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. For this reason it is important to understand the thermal conductivity of MOX fuel and how it differs from UO2. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of mixing on the thermal conductivity of UxPu1-xO2, as a function of PuO2 concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel.

  10. Experimental Results for SimFuels

    SciTech Connect (OSTI)

    Buck, Edgar C.; Casella, Andrew M.; Skomurski, Frances N.; MacFarlan, Paul J.; Soderquist, Chuck Z.; Wittman, Richard S.; Mcnamara, Bruce K.

    2012-08-22

    Assessing the performance of Spent (or Used) Nuclear Fuel (UNF) in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water that may increase the waste form degradation rate and change radionuclide behavior. To study UNF, we have been working on producing synthetic UO2 ceramics, or SimFuels that can be used in testing and which will contain specific radionuclides or non-radioactive analogs so that we can test the impact of radiolysis on fuel corrosion without using actual spent fuel. Although, testing actual UNF would be ideal for understanding the long term behavior of UNF, it requires the use of hot cells and is extremely expensive. In this report, we discuss, factors influencing the preparation of SimFuels and the requirements for dopants to mimic the behavior of UNF. We have developed a reliable procedure for producing large grain UO2 at moderate temperatures. This process will be applied to a series of different formulations.

  11. Molecular Dynamics Simulation of Thermodynamic Properties in Uranium Dioxide

    SciTech Connect (OSTI)

    Wang, Xiangyu; Wu, Bin; Gao, Fei; Li, Xin; Sun, Xin; Khaleel, Mohammad A.; Akinlalu, Ademola V.; Liu, L.

    2014-03-01

    In the present study, we investigated the thermodynamic properties of uranium dioxide (UO2) by molecular dynamics (MD) simulations. As for solid UO2, the lattice parameter, density, and enthalpy obtained by MD simulations were in good agreement with existing experimental data and previous theoretical predictions. The calculated thermal conductivities matched the experiment results at the midtemperature range but were underestimated at very low and very high temperatures. The calculation results of mean square displacement represented the stability of uranium at all temperatures and the high mobility of oxygen toward 3000 K. By fitting the diffusivity constant of oxygen with the Vogel-Fulcher-Tamman law, we noticed a secondary phase transition near 2006.4 K, which can be identified as a strong to fragile supercooled liquid or glass phase transition in UO2. By fitting the oxygen diffusion constant with the Arrhenius equation, activation energies of 2.0 and 2.7 eV that we obtained were fairly close to the recommended values of 2.3 to 2.6 eV. Xiangyu Wang, Bin Wu, Fei Gao, Xin Li, Xin Sun, Mohammed A. Khaleel, Ademola V. Akinlalu and Li Liu

  12. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.; Trowbridge, Lee D.; Rondinone, Adam Justin; Anderson, Brian B.

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previousmore » measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).« less

  13. Final assessment of MOX fuel performance experiment with Japanese PWR specification fuel in the HBWR

    SciTech Connect (OSTI)

    Fujii, Hajime; Teshima, Hideyuki; Kanasugi, Katsumasa; Kosaka, Yuji; Arakawa, Yasushi

    2007-07-01

    In order to obtain high burn-up MOX fuel irradiation performance data, SBR and MIMAS MOX fuel rods with Pu-fissile enrichment of about 6 wt% had been irradiated in the HBWR from 1995 to 2006. The peak burn-up of MOX pellet achieved 72 GWd/tM. In this test, fuel centerline temperature, rod internal pressure, stack length and cladding length were measured for MOX fuel and UO{sub 2} fuel as reference. MOX fuel temperature is confirmed to have no significant difference in comparison with UO{sub 2}, taking into account of adequate thermal conductivity degradation due to PuO{sub 2} addition and burn-up development. And the measured fuel temperature agrees well with FINE code calculation up to high burn-up region. Fission gas release of MOX is possibly greater than UO{sub 2} based on temperature and pressure assessment. No significant difference is confirmed between SBR and MIMAS MOX on FGR behavior. MOX fuel swelling rate agrees well with solid swelling rate in the literature. Cladding elongation data shows onset of PCMI in high power region. (authors)

  14. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    SciTech Connect (OSTI)

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; Mamontov, Eugene; Herwig, Kenneth W.; Trowbridge, Lee D.; Rondinone, Adam Justin; Anderson, Brian B.

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO2)7F14(H2O)7] 4H2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO2F2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO2)7F14(H2O)7] 4H2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorial ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps-1) than their hydrogen-bonded partners (Dr = 28.7 ps-1).

  15. PRODUCTION OF URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-08-27

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

  16. Influence of instrument conditions on the evaporation behavior of uranium dioxide with UV laser-assisted atom probe tomography

    SciTech Connect (OSTI)

    Valderrama, B.; Henderson, H.B.; Gan, J.; Manuel, M.V.

    2015-04-01

    Atom probe tomography (APT) provides the ability to detect subnanometer chemical variations spatially, with high accuracy. However, it is known that compositional accuracy can be affected by experimental conditions. A study of the effect of laser energy, specimen base temperature, and detection rate is performed on the evaporation behavior of uranium dioxide (UO2). In laser-assisted mode, tip geometry and standing voltage also contribute to the evaporation behavior. In this investigation, it was determined that modifying the detection rate and temperature did not affect the evaporation behavior as significantly as laser energy. It was also determined that three laser evaporation regimes are present in UO2. Very low laser energy produces a behavior similar to DC-field evaporation, moderate laser energy produces the desired laser-assisted field evaporation characteristic and high laser energy induces thermal effects, negatively altering the evaporation behavior. The need for UO2 to be analyzed under moderate laser energies to produce accurate stoichiometry distinguishes it from other oxides. The following experimental conditions providing the best combination of mass resolving power, accurate stoichiometry, and uniform evaporation behavior: 50 K, 10 pJ laser energy, a detection rate of 0.003 atoms per pulse, and a 100 kHz repetition rate.

  17. Simulation of the effects of grain boundary fission gas during thermal transients

    SciTech Connect (OSTI)

    Fenske, G.R.; Emerson, J.E.; Beiersdorf, B.A.

    1984-11-01

    This report presents the results of an initial set of out-of-cell transient heating experiments performed on unirradiated UO/sub 2/ pellets fabricated to simulate the effect of grain boundary fission gas on fuel swelling and cladding failure. The fabrication involved trapping high-pressure argon on internal pores by sintering annular UO/sub 2/ pellets in a hot isostatic press (HIP). The pellet stack was subjected to two separate transients (DGF83-03A and -03B). Figures show photomicrographs of HIPped and non-HIPped UO/sub 2/, respectively, and the adjacent cladding after DGF83-03B. Fuel melting occurred at the center of both the HIPped and non-HIPped pellets; however, a dark ring is present near the center in the HIPped fuel but not in the non-HIPped fuel. This dark band is a high-porosity region due to increased grain boundary/edge swelling in that pellet. In contrast, grain boundary/edge swelling did not occur in the non-HIPped pellets. Thus, the presence of the high-pressure argon trapped on internal pores during sintering in the HIP altered the microstructural behavior. Results of these preliminary tests indicate that the microstructural behavior of HIPped fuel during thermal transients is different from the behavior of conventionally fabricated fuel.

  18. Conceptual Design of a CERMET NTR Fission Core Using Multiphysics Modeling Techniques

    SciTech Connect (OSTI)

    Jonathan A. Webb; Brian J. Gross; William T. Taitano

    2011-08-01

    An initial pre-conceptual CERMET Nuclear Thermal Propulsion reactor system is investigated within this paper. Reactor configurations are investigated where the fuel consists of 60 vol.% UO2 and 40 vol.% W where the UO2 consists of Gd2O3 concentrations of 5 and 10 mol.%.Gd2O3. The fuel configuration consisting of 5 mol.% UO2 was found to have a total mass of 2761 kg and a thrust to weight ratio of 4.10 and required a coolant channel surface area to fueled volume ratio of approximately 15.0 in order to keep the centerline temperature below 3000 K. The configuration consisting of 10 mol.% Gd2O3 required a surface area to volume ratio of approximately 12.2 to cool the reactor to a peak temperature of 3000 K and had a total mass of 3200 kg and a thrust to weight ratio of 3.54. It is not known yet what concentration of Gd2O3 is required to maintain fuel stability at 3000 K; however, both reactors offer the potential for operations at 25,000 lb, and at a specific impulse which may range from 900 to 950 seconds.

  19. On the photo and thermally stimulated luminescence properties of U doped SrBPO{sub 5}

    SciTech Connect (OSTI)

    Kumar, Mithlesh Mohapatra, M.; Natarajan, V.

    2014-12-15

    Highlights: • Synthesis of SrBPO{sub 5}:U phosphor by solid state route. • Confirmed the stabilization of uranium as UO{sub 2}{sup 2+}. • Evaluation of order of kinetics and trap parameters of the system. • ESR-TSL correlation of the observed glow peak. • Probable mechanism proposed for the TSL glow peak. - Abstract: Un-doped and uranium doped SrBPO{sub 5} samples were synthesized using solid-state reaction route and investigated for their photo and luminescence properties. Photoluminescence (PL) spectrum of uranium doped sample showed five peaks at 502, 524, 547, 569 and 597 nm. The average frequency of symmetric stretching of O=U=O in the ground electronic state was found to be about 757 cm{sup −1}. PL decay time measurements on the system confirmed the stabilization of uranium as UO{sub 2}{sup 2+} in the matrix. Thermally stimulated luminescence (TSL) measurements carried out on gamma irradiated SrBPO{sub 5}:U sample showed a glow peak at 390 °K, whose spectral characteristics was found to be typical of UO{sub 2}{sup 2+}. The trap parameters were evaluated using different heating rate method. Room temperature EPR data suggested the formation of borate and oxygen based radical centers in the gamma-irradiated sample. Detailed EPR-TSL correlation studies confirmed the destruction of the oxygen radical to be responsible for the observed glow peak.

  20. Electrochemistry of LiCl-Li2O-H2O Molten Salt Systems

    SciTech Connect (OSTI)

    Natalie J. Gese; Batric Pesic

    2013-03-01

    Uranium can be recovered from uranium oxide (UO2) spent fuel through the combination of the oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li2O salt at 650 degrees C and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li0) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li0 generation required for the chemical reduction of UO2. In order for the oxide reduction process to be an effective method for the treatment of uranium oxide fuel, the role of moisture in the LiCl-Li2O system must be understood. The behavior of moisture in the LiCl-Li2O molten salt system was studied using cyclic voltammetry, chronopotentiometry and chronoamperometry, while reduction to hydrogen was confirmed with gas chromatography.

  1. Multiscale Simulation of Thermo-mechancial Processes in Irradiated Fission-reactor Materials.

    SciTech Connect (OSTI)

    Simon R. Phillpot

    2012-06-08

    The work funded from this project has been published in six papers, with two more in draft form, with submission planned for the near future. The papers are: (1) Kinetically-Evolving Irradiation-Induced Point-Defect Clusters in UO{sub 2} by Molecular-Dynamics Simulation; (2) Kinetically driven point-defect clustering in irradiated MgO by molecular-dynamics simulation; (3) Grain-Boundary Source/Sink Behavior for Point Defect: An Atomistic Simulation Study; (4) Energetics of intrinsic point defects in uranium dioxide from electronic structure calculations; (5) Thermodynamics of fission products in UO{sub 2{+-}x}; and (6) Atomistic study of grain boundary sink strength under prolonged electron irradiation. The other two pieces of work that are currently being written-up for publication are: (1) Effect of Pores and He Bubbles on the Thermal Transport Properties of UO2 by Molecular Dynamics Simulation; and (2) Segregation of Ruthenium to Edge Dislocations in Uranium Dioxide.

  2. Uranium Oxide as a Highly Reflective Coating from 100-400 eV

    SciTech Connect (OSTI)

    Sandberg, Richard L.; Allred, David D.; Bissell, Luke J.; Johnson, Jed E.; Turley, R. Steven

    2004-05-12

    We present the measured reflectances (Beamline 6.3.2, ALS at LBNL) of naturally oxidized uranium and naturally oxidized nickel thin films from 100-460 eV (2.7 to 11.6 nm) at 5 and 15 degrees grazing incidence. These show that uranium, as UO2, can fulfill its promise as the highest known single surface reflector for this portion of the soft x-ray region, being nearly twice as reflective as nickel in the 124-250 eV (5-10 nm) region. This is due to its large index of refraction coupled with low absorption. Nickel is commonly used in soft x-ray applications in astronomy and synchrotrons. (Its reflectance at 10 deg. exceeds that of Au and Ir for most of this range.) We prepared uranium and nickel thin films via DC-magnetron sputtering of a depleted U target and resistive heating evaporation respectively. Ambient oxidation quickly brought the U sample to UO2 (total thickness about 30 nm). The nickel sample (50 nm) also acquired a thin native oxide coating (<2nm). Though the density of U in UO2 is only half of the metal, its reflectance is high and it is relatively stable against further changes.

  3. Nuclear forensic analysis of uranium oxide powders interdicted in Victoria, Australia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kristo, Michael Joseph; Keegan, Elizabeth; Colella, Michael; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; et al

    2015-04-13

    Nuclear forensic analysis was conducted on two uranium samples confiscated during a police investigation in Victoria, Australia. The first sample, designated NSR-F-270409-1, was a depleted uranium powder of moderate purity (~1000 μg/g total elemental impurities). The chemical form of the uranium was a compound similar to K2(UO2)3O4·4H2O. While aliquoting NSR-F-270409-1 for analysis, the body and head of a Tineid moth was discovered in the sample. The second sample, designated NSR-F-270409-2, was also a depleted uranium powder. It was of reasonably high purity (~380 μg/g total elemental impurities). The chemical form of the uranium was primarily UO3·2H2O, with minor phases ofmore » U3O8 and UO2. While aliquoting NSR-F-270409-2 for analysis, a metal staple of unknown origin was discovered in the sample. The presence of 236U and 232U in both samples indicates that the uranium feed stocks for these samples experienced a neutron flux at some point in their history. The reactor burn-up calculated from the isotopic composition of the uranium is consistent with that of spent fuel from natural uranium (NU) fueled Pu production. These nuclear forensic conclusions allow us to categorically exclude Australia as the origin of the material and greatly reduce the number of candidate sources.« less

  4. Dehydration of Uranyl Nitrate Hexahydrate to Uranyl Nitrate Trihydrate under Ambient Conditions as Observed via Dynamic Infrared Reflectance Spectroscopy

    SciTech Connect (OSTI)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.; Mausolf, Edward J.; Kim, Eunja; Weck, Philippe F.; Buck, Edgar C.; McNamara, Bruce K.

    2015-05-22

    the hexahydrate [UO2(NO3)2(H2O)6] (UNH) and the trihydrate [UO2(NO3)2(H2O)3] (UNT) forms. Their stabilities depend on both relative humidity and temperature. Both phases have previously been studied by infrared transmission spectroscopy, but the data were limited by both instrumental resolution and the ability to prepare the samples as pellets without desiccating them. We report time-resolved infrared (IR) measurements using an integrating sphere that allow us to observe the transformation from the hexahydrate to the trihydrate simply by flowing dry nitrogen gas over the sample. Hexahydrate samples were prepared and confirmed via known XRD patterns, then measured in reflectance mode. The hexahydrate has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample dehydrates and recrystallizes to the trihydrate, first as a blue edge shoulder but ultimately resulting in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT since UNT has two non-equivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a morphological and structural change that has the lustrous lime green crystals changing to the dull greenish yellow of the trihydrate. Crystal structures and phase transformation were confirmed theoretically using DFT calculations and experimentally via microscopy methods. Both methods showed a transformation with two distinct sites for the uranyl cation in the trihydrate, as opposed to a single crystallographic site in the hexahydrate.

  5. Pillared and open-framework uranyl diphosphonates

    SciTech Connect (OSTI)

    Adelani, Pius O.; Albrecht-Schmitt, Thomas E.

    2011-09-15

    The hydrothermal reactions of uranium trioxide, uranyl acetate, or uranyl nitrate with 1,4-benzenebisphosphonic acid in the presence of very small amount of HF at 200 deg. C results in the formation of three different uranyl diphosphonate compounds, [H{sub 3}O]{sub 2}{l_brace}(UO{sub 2}){sub 6}[C{sub 6}H{sub 4}(PO{sub 3})(PO{sub 2}OH)]{sub 2}[C{sub 6}H{sub 4}(PO{sub 2}OH){sub 2}]{sub 2}[C{sub 6}H{sub 4}(PO{sub 3}){sub 2}]{r_brace}(H{sub 2}O){sub 2} (Ubbp-1), [H{sub 3}O]{sub 4}{l_brace}(UO{sub 2}){sub 4}[C{sub 6}H{sub 4}(PO{sub 3}){sub 2}]{sub 2}F{sub 4}{r_brace}.H{sub 2}O (Ubbp-2), and {l_brace}(UO{sub 2})[C{sub 6}H{sub 2}F{sub 2}(PO{sub 2}OH){sub 2}(H{sub 2}O){r_brace}{sub 2}.H{sub 2}O (Ubbp-3). The crystal structures of these compounds were determined by single crystal X-ray diffraction experiments. Ubbp-1 consists of UO{sub 7} pentagonal bipyramids that are bridged by the phosphonate moieties to form a three-dimensional pillared structure. Ubbp-2 is composed of UO{sub 5}F{sub 2} pentagonal bipyramids that are bridged through the phosphonate oxygen atoms into one-dimensional chains that are cross-linked by the phenyl spacers into a pillared structure. The structure of Ubbp-3 is a three-dimensional open-framework with large channels containing water molecules with internal dimensions of approximately 10.9x10.9 A. Ubbp-1 and Ubbp-2 fluoresce at room temperature. - Graphical Abstract: Illustration of the three-dimensional open-framework structure of {l_brace}(UO{sub 2})[C{sub 6}H{sub 2}F{sub 2}(PO{sub 2}OH){sub 2}(H{sub 2}O){r_brace}{sub 2}.H{sub 2}O viewed along the c-axis. The structure is constructed from UO{sub 7} units, pentagonal bipyramids=green, oxygen=red, phosphorus=magenta, carbon=black, hydrogen=white. Highlights: > The influence of the uranyl salt anions and pH were critically examined in relation to structural variation. > The acetate and nitrate counter ions of uranyl may be acting as structure directing agents. > The use of rigid phenyl spacer yield

  6. Uranium diphosphonates templated by interlayer organic amines

    SciTech Connect (OSTI)

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Albrecht-Schmitt, Thomas E.; Ewing, Rodney C.

    2013-02-15

    The hydrothermal treatment of uranium trioxide and methylenediphosphonic acid with a variety of amines (2,2-dipyridyl, triethylenediamine, ethylenediamine, and 1,10-phenanthroline) at 200 Degree-Sign C results in the crystallization of a series of layered uranium diphosphonate compounds, [C{sub 10}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Ubip2), [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} (UDAB), [C{sub 2}H{sub 10}N{sub 2}]{sub 2}{l_brace}(UO{sub 2}){sub 2}(H{sub 2}O){sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sub 2}{center_dot}0.5H{sub 2}O{r_brace} (Uethyl), and [C{sub 12}H{sub 9}N{sub 2}]{l_brace}UO{sub 2}(H{sub 2}O)[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{r_brace} (Uphen). The crystal structures of the compounds are based on UO{sub 7} units linked by methylenediphosphonate molecules to form two-dimensional anionic sheets in Ubip2 and UDAB, and one-dimensional anionic chains in Uethyl and Uphen, which are charge balanced by protonated amine molecules. Interaction of the amine molecules with phosphonate oxygens and water molecules results in extensive hydrogen bonding in the interlayer. These amine molecules serve both as structure-directing agents and charge-balancing cations for the anionic uranium phosphonate sheets and chains in the formation of the different coordination geometries and topologies of each structure. Reported herein are the syntheses, structural and spectroscopic characterization of the synthesized compounds. - Graphical abstract: The Raman spectra of the synthesized compounds and an illustration of the stacking of the layers with the diprotonated triethylenediamine molecules in [C{sub 6}H{sub 14}N{sub 2}]{l_brace}(UO{sub 2}){sub 2}[CH{sub 2}(PO{sub 3})(PO{sub 3}H)]{sub 2}{center_dot}2H{sub 2}O{r_brace} UDAB. Solvent water molecules are removed for clarity. The corresponding Raman spectra for the complexes synthesized is also

  7. In-Situ Measurements of Low Enrichment Uranium Holdup Process Gas Piping at K-25 - Paper for Waste Management Symposia 2010 East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Rasmussen B.

    2010-01-01

    This document is the final version of a paper submitted to the Waste Management Symposia, Phoenix, 2010, abstract BJC/OR-3280. The primary document from which this paper was condensed is In-Situ Measurement of Low Enrichment Uranium Holdup in Process Gas Piping at K-25 Using NaI/HMS4 Gamma Detection Systems, BJC/OR-3355. This work explores the sufficiency and limitations of the Holdup Measurement System 4 (HJVIS4) software algorithms applied to measurements of low enriched uranium holdup in gaseous diffusion process gas piping. HMS4 has been used extensively during the decommissioning and demolition project of the K-25 building for U-235 holdup quantification. The HMS4 software is an integral part of one of the primary nondestructive assay (NDA) systems which was successfully tested and qualified for holdup deposit quantification in the process gas piping of the K-25 building. The initial qualification focused on the measurement of highly enriched UO{sub 2}F{sub 2} deposits. The purpose of this work was to determine if that qualification could be extended to include the quantification of holdup in UO{sub 2}F{sub 2} deposits of lower enrichment. Sample field data are presented to provide evidence in support of the theoretical foundation. The HMS4 algorithms were investigated in detail and found to sufficiently compensate for UO{sub 2}F{sub 2} source self-attenuation effects, over the range of expected enrichment (4-40%), in the North and East Wings of the K-25 building. The limitations of the HMS4 algorithms were explored for a described set of conditions with respect to area source measurements of low enriched UO{sub 2}F{sub 2} deposits when used in conjunction with a 1 inch by 1/2 inch sodium iodide (NaI) scintillation detector. The theoretical limitations of HMS4, based on the expected conditions in the process gas system of the K-25 building, are related back to the required data quality objectives (DQO) for the NBA measurement system established for the K-25

  8. Bulk and surface controlled diffusion of fission gas atoms

    SciTech Connect (OSTI)

    Andersson, Anders D.

    2012-08-09

    Fission gas retention and release impact nuclear fuel performance by, e.g., causing fuel swelling leading to mechanical interaction with the clad, increasing the plenum pressure and reducing the gap thermal conductivity. All of these processes are important to understand in order to optimize operating conditions of nuclear reactors and to simulate accident scenarios. Most fission gases have low solubility in the fuel matrix, which is especially pronounced for large fission gas atoms such as Xe and Kr, and as a result there is a significant driving force for segregation of gas atoms to extended defects such as grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. Several empirical or semi-empirical models have been developed for fission gas release in nuclear fuels, e.g. [1-6]. One of the most commonly used models in fuel performance codes was published by Massih and Forsberg [3,4,6]. This model is similar to the early Booth model [1] in that it applies an equivalent sphere to separate bulk UO{sub 2} from grain boundaries represented by the sphere circumference. Compared to the Booth model, it also captures trapping at grain boundaries, fission gas resolution and it describes release from the boundary by applying timedependent boundary conditions to the circumference. In this work we focus on the step where fission gas atoms diffuse from the grain interior to the grain boundaries. The original Massih-Forsberg model describes this process by applying an effective diffusivity divided into three temperature regimes. In this report we present results from density functional theory calculations (DFT) that are relevant for the high (D{sub 3}) and intermediate (D{sub 2}) temperature diffusivities of fission gases. The results are validated by making a quantitative comparison to Turnbull's [8-10] and Matzke's data [12]. For the intrinsic or high temperature regime we report activation energies for both Xe and Kr diffusion in UO

  9. Validation of the WATEQ4 geochemical model for uranium

    SciTech Connect (OSTI)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite (UO/sub 2/(OH)/sub 2/ . H/sub 2/O), UO/sub 2/(OH)/sub 2/, and rutherfordine ((UO/sub 2/CO/sub 3/) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions.

  10. Investigation of Backscatter X-ray imaging techniques for Uranium Dioxide Fuel Rods

    SciTech Connect (OSTI)

    Jackson, Timothy D; Hollenbach, Daniel F; Shedlock, Daniel

    2011-01-01

    Radiography by Selective Detection (RSD), was investigated for its ability to determine the presence and types of defects in a UO{sub 2} fuel rod surrounded by zirconium cladding. Images created using a Monte Carlo model compared favorably with actual X-ray backscatter images from mock fuel rods. A fuel rod was modeled as a rectangular parallelepiped with zirconium cladding, and pencil beam X-ray sources of 160 kVp (79 keV avg) and 480 kVp (218 keV avg) were generated using the Monte Carlo N-Particle Transport Code to attempt to image void and palladium (Pd) defects in the interior and on the surface of the fuel pellet. It was found that the 160 kVp spectrum was unable to detect the presence of interior defects, whereas the 480 kVp spectrum detected them with both the standard and the RSD backscatter methods, though the RSD method was very inefficient. It was also found that both energy spectra were able to detect void and Pd defects on the surface using both imaging methods. Additionally, two mock fuel rods were imaged using a backscatter X-ray imaging system, one consisting of hafnium pellets in a Zircaloy-4 cladding and the other consisting of steel pellets in a Zircalloy-4 cladding which was then encased in a steel cladding (a double encapsulation configuration employed in irradiation and experiments). It was found that the system was capable of detecting individual HfO{sub 2} pellets in a Zircaloy-4 cladding and may be capable of detecting individual steel pellets in the double-encapsulated sample. It is expected that the system would also be capable of detecting individual UO{sub 2} pellets in a Zircaloy-4 cladding, though no UO{sub 2} fuel rod was available for imaging.

  11. Synthesis, characterization, and structure of a uranyl complex with a disulfide ligand, Bis(di-n-propylammonium) Disulfidobis(di-n-propylthiocarbamato)dioxouranate(VI)

    SciTech Connect (OSTI)

    Perry, D.L.; Zalkin, A.; Ruben, H.; Templeton, D.H.

    1982-01-01

    Olive green crystals of the title compound, ((n-C/sub 3/H/sub 7/)/sub 2/NH/sub 2//sup +/)/sub 2/(UO/sub 2/((n-C/sub 3/H/sub 7/)/sub 2/NCOS)/sub 2/(S/sub 2/))/sup 2 -/, are orthorhombic, space group Pcan, with a = 15.326 (6) A, b = 17.474 (6) A, c = 14.728 (6) A, and Z = 4 (d/sub x/ = 1.45 g/cm/sup 3/). For 1833 data, I > sigma/sub I/, R = 0.052, and R/sub w/ = 0.069. The structure was revealed by single-crystal x-ray diffraction studies to consist of ((n-C/sub 3/H/sub 7/)/sub 2/NH/sub 2/)/sup +/ cations and (UO/sub 2/((n-C/sub 3/H/sub 7/)/sub 2/NCOS)/sub 2/(S/sub 2/))/sup 2 -/ anions with the uranium atom at the center of an irregular hexagonal bipyramid. The uranyl oxygen atoms occupy the axial positions. The equatorial coordiantion plane contains the disulfide (S/sub 2//sup 2 -/) group bonded in a side-on fashion and two oxygen and two sulfur donor atoms from the monothiocarbamate ligands. Interatomic distances are S-S = 2.05 (1) A and U-S = 2.711 (3) A (disulfide), U-S = 2.873 (3) A and U-O = 2.48 (1) A (thiocarbamate), and U-0 = 1.82 (1) A (uranyl). The nitrogen atom in the dipropylammonium cation is hydrogen bonded to the uranyl oxygen atoms.

  12. Uranium(VI) coordination polymers with pyromellitate ligand: Unique 1D channel structures and diverse fluorescence

    SciTech Connect (OSTI)

    Zhang, Yingjie; Bhadbhade, Mohan; Karatchevtseva, Inna; Price, Jason R.; Liu, Hao; Zhang, Zhaoming; Kong, Linggen; Čejka, Jiří; Lu, Kim; Lumpkin, Gregory R.

    2015-03-15

    Three new coordination polymers of uranium(VI) with pyromellitic acid (H{sub 4}btca) have been synthesized and structurally characterized. (ED)[(UO{sub 2})(btca)]·(DMSO)·3H{sub 2}O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH{sub 4}){sub 2}[(UO{sub 2}){sub 6}O{sub 2}(OH){sub 6}(btca)]·~6H{sub 2}O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO{sub 2}){sub 2}(H{sub 2}O)(btca)]·4H{sub 2}O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ{sub 5}-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5 Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated. - Graphical abstract: Table of content: three new uranium(VI) coordination polymers with pyromellitic acid (H{sub 4}btca) have been synthesized via room temperature and hydrothermal synthesis methods, and structurally characterized. Two to three dimensional (3D) frameworks are revealed. All 3D frameworks have unique 1D large channels. Their vibrational modes, thermal stabilities and photoluminescence properties have been investigated. - Highlights: • Three new coordination polymers of U(VI) with pyromellitic acid (H{sub 4}btca). • Structures from a 2D layer to 3D frameworks with unique 1D channels. • Unusual µ{sub 5}-(η{sub 1}:η{sub 2}:η{sub 1}:η{sub 2:}η{sub 1}) coordination mode of btca ligand. • Vibrational modes, thermal stabilities and luminescent properties reported.

  13. Nuclear forensic analysis of uranium oxide powders interdicted in Victoria, Australia

    SciTech Connect (OSTI)

    Kristo, Michael Joseph; Keegan, Elizabeth; Colella, Michael; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; Knight, Kim; Loi, Elaine; Hotchkis, Michael; Moody, Kenton; Singleton, Michael; Robel, Martin; Hutcheon, Ian

    2015-04-13

    Nuclear forensic analysis was conducted on two uranium samples confiscated during a police investigation in Victoria, Australia. The first sample, designated NSR-F-270409-1, was a depleted uranium powder of moderate purity (~1000 μg/g total elemental impurities). The chemical form of the uranium was a compound similar to K2(UO2)3O4·4H2O. While aliquoting NSR-F-270409-1 for analysis, the body and head of a Tineid moth was discovered in the sample. The second sample, designated NSR-F-270409-2, was also a depleted uranium powder. It was of reasonably high purity (~380 μg/g total elemental impurities). The chemical form of the uranium was primarily UO3·2H2O, with minor phases of U3O8 and UO2. While aliquoting NSR-F-270409-2 for analysis, a metal staple of unknown origin was discovered in the sample. The presence of 236U and 232U in both samples indicates that the uranium feed stocks for these samples experienced a neutron flux at some point in their history. The reactor burn-up calculated from the isotopic composition of the uranium is consistent with that of spent fuel from natural uranium (NU) fueled Pu production. These nuclear forensic conclusions allow us to categorically exclude Australia as the origin of the material and greatly reduce the number of candidate sources.

  14. Multiscale Speciation of U and Pu at Chernobyl, Hanford, Los Alamos,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McGuire AFB, Mayak, and Rocky Flats | Stanford Synchrotron Radiation Lightsource Multiscale Speciation of U and Pu at Chernobyl, Hanford, Los Alamos, McGuire AFB, Mayak, and Rocky Flats Friday, June 26, 2015 X-ray fluorescence maps of (clockwise from upper right) Ga, U, Ca, Pu, Ti, and K in a 350 micron PuO2-UO2 composite particle produced by the fire that consumed a nuclear armed BOMARC missile at McGuire AFB in 1960, measured with the two micron focused x-ray beam at SSRL. EST June 2,

  15. TRXP REPORT M i3UREAU 08 HINES, RWO, N,sVADA ON OCTOBIGt 9,1962

    Office of Legacy Management (LM)

    TRXP REPORT M i3UREAU 08 HINES, RWO, N,sVADA ON OCTOBIGt 9,1962 3. Marehell W. E. Shaw OBJBcTIvE OFTRIP Infometion had been reoelved that the Bureau of Xinee Station was actively engaged.ln studying the eleotrowinnlng oi uranium from 602. It was dealred to eee the equipment used and deter- mine the statue of the projeot. SUMaaRp. CONCLUSIONS AND REC~ATIONS 1. A relatively simple cell that could be coaled up has bean designed for the suoceaefu~ pxyQction of aoaleeoed uraniua from UO2 feed at

  16. Proton Radiography at Los Alamos National Laboratory (pRad)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pRad at LANL P-Division | LANSCE >> pRad Home About News Movies Proposals Contacts Team Leader Dale Tupa 505.665.1820 Project Leader Andy Saunders 505.665.7575 Area Manager Frans Trouw 505.667.3618 Fesseha Mariam 505.667.3546 Christopher Morris 505.667.5652 Frans Trouw 505.665.7575 pRad User Program pRad-uo@lanl.gov P-25 Group Leader Melynda Brooks 505.667.6909 P-25 Deputy Group Leader Frans Trouw 505.665.7575 P-25 Subatomic Physics P-Division LANSCE pRad logo Los Alamos National

  17. Thermodynamic assessment of the U–Y–O system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brese, R. G.; McMurray, J. W.; Shin, D.; Besmann, T. M.

    2015-02-03

    We developed a CALPHAD assessment of the U-Y-O system. To represent the YO2 compound in the compound energy formalism (CEF) for U1-yYyO2± x, the lattice stability was calculated using density functional theory (DFT) while a partially ionic liquid sub-lattice model is used to describe the liquid phase. Moreover, a Gibbs function for the stoichiometric rhombohedral UY6O12 phase is proposed. Models representing the phases in the U-O and Y-O systems taken from the literature along with the phases that appear in the U-Y-O ternary are combined to form a unified assessment.

  18. LANSCE | Lujan Center | People | Zoe Fisher

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gus Sinnis 505.667.6069 Deputy Leader Fredrik Tovesson 505.665.9652 Deputy Leader & Experimental Area Manager Charles Kelsey 505.665.5579 Experiment Coordinator Victor Fanelli 505.667.8755 User Program Administration lujan-uo@lanl.gov Administrative Assistant Julie Quintana-Valdez 505.665.5390 People Instrument Scientists Zoë Fisher | PCS Biographical Sketch Dr. Zoë Fisher is Staff Scientist II in the Bioscience Division of Los Alamos National Laboratory. She is also the instrument

  19. Electrochemical fluorination for processing of used nuclear fuel

    DOE Patents [OSTI]

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2016-07-05

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  20. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    SciTech Connect (OSTI)

    Rodney C. Ewing

    2004-10-07

    Spent nuclear fuel, essentially U{sub 2}, accounts for over 95% of the total radioactivity of all of the radioactive wastes in the United States that require disposal, disposition or remediation. The UO{sub 2} in SNF is not stable under oxiding conditions and may also be altered under reducing conditions. The alteration of SNF results in the formation of new uranium phases that can cause the release or retardation of actinide and fission product radionuclides. Over the long term, and depending on the extent to which the secondary uranium phases incorporate fission products and actinides, these alteration phases become the near-field source term.

  1. The AN neutron transport by nodal diffusion

    SciTech Connect (OSTI)

    Barbarino, A.; Tomatis, D.

    2013-07-01

    The two group diffusion model combined to a nodal approach in space is the preferred scheme for the industrial simulation of nuclear water reactors. The main selling point is the speed of computation, allowing a large number of parametric studies. Anyway, the drawbacks of the underlying diffusion equation may arise with highly heterogeneous interfaces, often encountered in modern UO{sub 2} and MO{sub x} fuel loading patterns, and boron less controlled systems. This paper aims at showing how the simplified AN transport model, equivalent to the well known SPN, can be implemented in standard diffusion codes with minor modifications. Some numerical results are illustrated. (authors)

  2. The Purpose and Value of Successful Technology Demonstrations … The Energy Independence and Security Act of 2007 Demonstrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Start with the End in Mind - Utility of the Near Future by Steve Pullins, Team Leader, DOE/NETL Modern Grid Strategy Some of my grid friends and I have been discussing the emotional staying power of the utility industry to deploy a Smart Grid over a very long period, maybe the next 15 to 20 years. For me, this raises a very interesting question about vision. Over the last three years, we have seen a few Utility of the Future (UoF) efforts at utilities as they formulate an over-the-horizon vision

  3. Thermodynamic assessment of the U-Y-O system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McMurray, Jake W; Shin, Dongwon; Besmann, Theodore M

    2015-01-01

    A CALPHAD assessment of the U-Y-O system is developed. To represent the YO2 compound in the compound energy formalism (CEF) for U1-yYyO2 x, the lattice stability was calculated using density functional theory (DFT) while a partially ionic liquid sub-lattice model is used to describe the liquid phase. A Gibbs function for the stoichiometric rhombohedral UY6O12 phase is proposed. Models representing the phases in the U-O and Y-O systems taken from the literature along with the phases that appear in the U-Y-O ternary are combined to form a unified assessment.

  4. Proton Radiography at Los Alamos National Laboratory (pRad)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    pRad at LANL P-Division | LANSCE >> pRad Home About News Movies Proposals Contacts Team Leader Dale Tupa 505.665.1820 Project Leader Andy Saunders 505.665.7575 Area Manager Frans Trouw 505.667.3618 Fesseha Mariam 505.667.3546 Christopher Morris 505.667.5652 Frans Trouw 505.665.7575 pRad User Program pRad-uo@lanl.gov P-25 Group Leader Melynda Brooks 505.667.6909 P-25 Deputy Group Leader Frans Trouw 505.665.7575 P-25 Subatomic Physics P-Division LANSCE pRad logo Los Alamos National

  5. Fiscal Year 2010 Summary Report on the Epsilon-Metal Phase as a Waste Form for 99 Tc

    SciTech Connect (OSTI)

    Strachan, Denis M.; Crum, Jarrod V.; Buck, Edgar C.; Riley, Brian J.; Zumhoff, Mac R.

    2010-09-30

    Epsilon metal (ε-metal) is generated in nuclear fuel during irradiation. This metal consists of Pd, Ru, Rh, Mo, and some Te. These accumulate at the UO2 grain boundaries as small (ca 5 µm) particles. These metals have limited solubility in the acid used to dissolve fuel during reprocessing and in typical borosilicate glass. These must be treated separately to improve overall waste loading in glass. This low solubility and their survival in 2 Gy-old natural reactors led us to investigate them as a waste form for the immobilization of 99Tc and 107Pd, two very long-lived isotopes.

  6. Conversion of actinide and RE oxides into nitrates and their recovery into fluids

    SciTech Connect (OSTI)

    Bondin, V.V.; Bychkov, S.I.; Efremov, I.G.; Revenko, Y.A.; Babain, V.A.; Murzin, A.A.; Romanovsky, V.N; Fedorov, Y.S.; Shadrin, A.Y.; Ryabkova, N.V.; Li, E.N.

    2007-07-01

    The conditions for uranium oxides completely convert into uranyl nitrate hexahydrate in nitrogen tetra-oxide media (75 deg. C, 0,5-3,0 MPa, [UO{sub x}]:[H{sub 2}O]:[NO{sub 2}]=1:8:6) were found out. The conversion of Pu contained simulator of oxide spent nuclear fuel of thermal reactors was successfully demonstrated. The possibility of uranium recovery up to 95% from TR SNF without plutonium separation from FP is practically showed, what corresponds with Non-proliferation Treaty. (authors)

  7. LANSCE | Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rosen Scholar Rosen Prize Users dotline User Information Planning for Arrival: Contact the User Office several weeks before arriving at LANSCE. The LANSCE User Office will assist you in preparing for your visit to LANSCE. Plan to arrive one day prior to your scheduled beam time. User Office Contacts Division Office Ph: 505.667.5051 Lujan Center User Office lujan-uo@lanl.gov WNR User Program Administrator Tanya Herrera Ph: 505.667.6797 User Office Main Desk Email: lansce-user-office@lanl.gov Ph:

  8. SSRL HEADLINES August 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - August 2013 View the Archives **Note for Outlook users: For easier reading, please click the bar at the top of this message that reads "This message was converted to plain text" and select "Display as HTML."** Science Highlights thumbnail Nanoparticulate FeS as an Effective Redox Buffer to Prevent Uraninite (UO2) Oxidation - Contacts: Yuqiang Bi and Kim F. Hayes, University of Michigan A major concern in the nuclear age is the contamination of soils and groundwater with

  9. DISPERSION HARDENING OF URANIUM METAL

    DOE Patents [OSTI]

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  10. A Scoping Analysis Of The Impact Of SiC Cladding On Late-Phase Accident Progression Involving Core–Concrete Interaction

    SciTech Connect (OSTI)

    Farmer, M. T.

    2015-11-01

    The overall objective of the current work is to carry out a scoping analysis to determine the impact of ATF on late phase accident progression; in particular, the molten core-concrete interaction portion of the sequence that occurs after the core debris fails the reactor vessel and relocates into containment. This additional study augments previous work by including kinetic effects that govern chemical reaction rates during core-concrete interaction. The specific ATF considered as part of this study is SiC-clad UO2.

  11. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOE Patents [OSTI]

    Friedman, Horace A.

    1985-01-01

    A method for decontaminating uranium product from the Purex process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO.sub.2.sup.2+) uranium and heptavalent technetium (TcO.sub.4 -). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H.sub.2 C.sub.2 O.sub.4), and the Tc-oxalate complex is readily separated from the uranium by solvent extraction with 30 vol. % tributyl phosphate in n-dodecane.

  12. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOE Patents [OSTI]

    Friedman, H.A.

    1984-06-13

    A method for decontaminating uranium product from the Purex 5 process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO/sub 2//sup 2 +/) uranium and heptavalent technetium (TcO/sub 4/-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H/sub 2/C/sub 2/O/sub 4/), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.

  13. Thin-layer chromatography of metal ions complexed with anils. V. Detection, separation, and determination

    SciTech Connect (OSTI)

    Upadhyay, R.K.; Tewari, A.P.

    1980-01-01

    p-Diethylaminoanil of phenylglyoxal, a bidentate ligand, was used for complexation with Hg(II), UO/sub 2/(II), Au(III), Pt(IV), Mg(II), Bi(II), Sb(III), and Be(II) ions. The chelates were characterized by their analysis, molar conductance, and infrared spectra. TLC detection, separation, and determination of these complexes on starch-bound silica gel layers were studied. Long persisting dark colors of the complexes rendered the spots self-descernible and no locating agent was required. A minimum of four complexes could be resolved and identified. Errors in the determinations and maximum separation limits were also deduced. 3 tables.

  14. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    SciTech Connect (OSTI)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  15. Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods

    SciTech Connect (OSTI)

    Donald Olander

    2005-08-24

    A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

  16. Microsoft PowerPoint - MOX Adventure_Reactor Subcommittee_Tamara Reavis

    National Nuclear Security Administration (NNSA)

    MOX Adventure Tamara Reavis May 2015 Page 2 Overview of Presentation > Characteristics of MOX Fuel  MOX Fuel at Duke Energy  MOX Fuel and NMMSS Page 3 MOX Fuel - General  MOX fuel pellets from former weapons plutonium  Blend of ~5% PuO 2 with ~95% depleted UO 2  Like LEU fuel pellets, MOX fuel pellets are primarily uranium  Fission power comes primarily from plutonium (Pu 239 ) instead of uranium (U 235 )  Other than the material of the fuel pellets, MOX and uranium fuel

  17. DOE - Office of Legacy Management -- Spencer Chemical Co - KS 0-01

    Office of Legacy Management (LM)

    KS 0-01 FUSRAP Considered Sites Site: SPENCER CHEMICAL CO. (KS.0-01 ) Eliminated from further consideration under FUSRAP - an AEC licensed operation Designated Name: Not Designated Alternate Name: Jayhawk Works KS.0-01-1 Location: Pittsburg , Kansas KS.0-01-1 Evaluation Year: 1985 KS.0-01-2 Site Operations: Processed enriched uranium (UF-6) and scrap to produce primarily uranium dioxide (UO-2) under AEC licenses. KS.0-01-3 KS.0-01-4 Site Disposition: Eliminated - No Authority - AEC licensed

  18. DOE - Office of Legacy Management -- Spencer Chemical Co - MO 0-01

    Office of Legacy Management (LM)

    MO 0-01 FUSRAP Considered Sites Site: SPENCER CHEMICAL CO. (MO.0-01) Eliminated from further consideration under FUSRAP - an AEC licensed operation Designated Name: Not Designated Alternate Name: Jayhawk Works MO.0-01-1 Location: Joplin , Missouri MO.0-01-1 Evaluation Year: 1985 MO.0-01-2 Site Operations: Processed enriched uranium (UF-6) and scrap to produce primarily uranium dioxide (UO-2) under AEC licenses. MO.0-01-3 MO.0-01-4 Site Disposition: Eliminated - No Authority MO.0-01-2 Radioactive

  19. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing. The PRIMA Project

    SciTech Connect (OSTI)

    Malony, Allen D.; Wolf, Felix G.

    2014-01-31

    The growing number of cores provided by todays high-end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-performance computing (HPC) users to collect and analyze relevant performance data even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensively across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish

  20. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing: the PRIMA Project

    SciTech Connect (OSTI)

    Malony, Allen D.; Wolf, Felix G.

    2014-01-31

    The growing number of cores provided by todays high-end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-performance computing (HPC) users to collect and analyze relevant performance data even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensively across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish these

  1. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    SciTech Connect (OSTI)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO2 and comparing the predictions with experiments.

  2. Newberry EGS Seismic Velocity Model

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Templeton, Dennise

    2013-10-01

    We use ambient noise correlation (ANC) to create a detailed image of the subsurface seismic velocity at the Newberry EGS site down to 5 km. We collected continuous data for the 22 stations in the Newberry network, together with 12 additional stations from the nearby CC, UO and UW networks. The data were instrument corrected, whitened and converted to single bit traces before cross correlation according to the methodology in Benson (2007). There are 231 unique paths connecting the 22 stations of the Newberry network. The additional networks extended that to 402 unique paths crossing beneath the Newberry site.

  3. DOUBLE-BAKED, SELF-CHANNELLING ELECTRODE

    DOE Patents [OSTI]

    Piper, R.D.; Leifield, R.F.

    1963-03-12

    A method is given for making an electrode for use in the electrolytic reduction of uranium oxides to uranium metal in a fused salt electrolyte. Uranlum oxide such as UO/sub 2/ is mixed with somewhat less than the stoichiometric amount of carbon needed for the reduction, and the mixture is baked and crushed to make a nonspherical material. The latter is then mixed with a carbon binder sufficient to satisfy stoichiometry, pressed into a shape such as a cylinder, and baked. (AEC)

  4. Natural radionuclides in groundwaters from J-13 well at the Nevada Test Site

    SciTech Connect (OSTI)

    Laul, J.C.; Maiti, T.C.

    1990-04-01

    The concentrations of U-238 and Th-232 chain members are extremely low in J-13 water, suggesting that their concentrations in groundwaters are largely governed by sorption/desorption processes. Relative to radon (gas), uranium, thorium, radium, and polonium radionuclides are highly sorbed in a tuffaceous matrix, and the retardation factors range from 10{sup 2} to 10{sup 5}. Uranium, unlike Th, is in the +6 state and is soluble as carbonate complex (UO{sub 2}CO{sub 3}), and the aquifer`s environment is oxidizing. There is no colloidal effect down to <0.10 {mu}m. 15 refs., 1 fig., 2 tabs.

  5. Natural radionuclides in groundwater from J-13 well at the Nevada test site

    SciTech Connect (OSTI)

    Laul, J.C.; Maiti, T.C.

    1990-10-01

    This paper discusses the concentrations of U-238 and Th-232 chain members which are extremely low in J-13 water, suggesting that their concentrations in groundwaters are largely governed by sorption/desorption processes. Relative to radon (gas), uranium, thorium, radium, and polonium radionuclides are highly sorbed in a tuffaceous matrix, and the retardation factors range from 10{sup 2} to 10{sup 5}. Uranium, unlike Th, is in the + 6 state and is soluble as carbonate complex (UO{sub 2}CO{sub 3}), and the aquifer`s environment is oxidizing. There is no colloidal effect down to {lt}0.10 {mu}m.

  6. Validating mass spectrometry measurements of nuclear materials via a non-contact volume analysis method of ion sputter craters

    SciTech Connect (OSTI)

    Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.

    2015-01-01

    A combination of secondary ion mass spectrometry, optical profilometry and a statistically-driven algorithm was used to develop a non-contact volume analysis method to validate the useful yields of nuclear materials. The volume analysis methodology was applied to ion sputter craters created in silicon and uranium substrates sputtered by 18.5 keV O- and 6.0 keV Ar+ ions. Sputter yield measurements were determined from the volume calculations and were shown to be comparable to Monte Carlo calculations and previously reported experimental observations. Additionally, the volume calculations were used to determine the useful yields of Si+, SiO+ and SiO2+ ions from the silicon substrate and U+, UO+ and UO2+ ions from the uranium substrate under 18.5 keV O- and 6.0 keV Ar+ ion bombardment. This work represents the first steps toward validating the interlaboratory and cross-platform performance of mass spectrometry for the analysis of nuclear materials.

  7. Molecular dynamics simulations of uranyl adsorption and structure on the basal surface of muscovite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Cygan, Randall T.

    2014-02-05

    Anthropogenic activities have led to an increased concentration of uranium on the Earth’s surface and potentially in the subsurface with the development of nuclear waste repositories. Uranium is soluble in groundwater, and its mobility is strongly affected by the presence of clay minerals in soils and in subsurface sediments. We use molecular dynamics simulations to probe the adsorption of aqueous uranyl (UO22+) ions onto the basal surface of muscovite, a suitable proxy for typically ultrafine-grained clay phases. Model systems include the competitive adsorption between potassium counterions and aqueous ions (0.1 M and 1.0 M UO2Cl2 , 0.1 M NaCl). Wemore » find that for systems with potassium and uranyl ions present, potassium ions dominate the adsorption phenomenon. Potassium ions adsorb entirely as inner-sphere complexes associated with the ditrigonal cavity of the basal surface. Uranyl ions adsorb in two configurations when it is the only ion species present, and in a single configuration in the presence of potassium. Finally, the majority of adsorbed uranyl ions are tilted less than 45° relative to the muscovite surface, and are associated with the Si4Al2 rings near aluminum substitution sites.« less

  8. Chemical processing programs. Monthly status report, April 1986

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    During the month of April, 99 metric tonnes uranium (MTU's) of zircaloy-clad N-Reactor fuel were charged to the PUREX dissolvers; bringing the FYTD total to 684 MTU's, 115 MTU's ahead of the 1060 commitment schedule. PUREX solvent extraction was shut down April 14 and the plant entered into a planned maintenance period to effect repairs and perform process chemical flushes to maintain acceptable waste losses and production specification. The Plutonium Oxide Conversion (N)-Cell bi-monthly nuclear material and accountability inventory, initiated in March, was completed satisfactorily in April. UO/sub 3/ Plant initiated the second fiscal year 1986 campaign. During April, 46 MTU's of UO/sub 3/ were shipped to FMPC, bringing the FYTD shipment total to 456 MTU's vs a plan of 490 MTU's. Design and procurement activities for the PUREX Aqueous Make-Up (AMU) chemical containment upgrades continued on schedule during April. The Remote Mechanical C (RMC) line began processing feed for its first fiscal year (FY) 1986 campaign on April 5, 1986. The Plutonium Reclamation Facility (PRF) maintenance outage upgrades are one and one half weeks behind schedule. Functional Design Criteria for B609, RMC Ventilation Improvement (FY 1988 GPP) has been completed. The updated Ten Year Shipping Forecast has been complete and sent to DOE-RL.

  9. PROCESS FOR PRODUCING URANIUM HEXAFLUORIDE

    DOE Patents [OSTI]

    Fowler, R.D.

    1957-10-22

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ convented to UF/sub 6/ by reaction with a fluorinating agent. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reaction chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. The oven is then swept clean of hydrogen and the water vapor formed by means of nitrogen and then while continuing to maintain the temperature between 400 and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion to uranium tetrafluoride, the temperature of the reaction chamber is lowered to ahout 400 deg C, and elemental fluorine is used as the fluorinating agent for the conversion of UF/sub 4/ into UF/sub 6/. The fluorine gas is passed into the chamber, and the UF/sub 6/ formed passes out and is delivered to a condenser.

  10. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect (OSTI)

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C.

    2004-02-04

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  11. Alteration of Coffinite (USiO{sub 4}) Under Reducing and Oxidizing Conditions

    SciTech Connect (OSTI)

    Deditius, Artur Piotr; Utsunomiya, Satoshi; Ewing, Rodney C.

    2007-07-01

    Samples of natural coffinite (USiO{sub 4}.nH{sub 2}O) from Grants uranium region, New Mexico were investigated in order to understand the alteration process of coffinite under reducing and oxidizing conditions. Alteration of the primary coffinite under reducing conditions was promoted by organic acids, and as a result, secondary coffinite precipitated. Subsequently oxidizing fluids altered the coffinite, and (Na,K)-boltwoodite [(Na,K)(UO{sub 2})(SiO{sub 3}OH)(H{sub 2}O){sub 1.5}] and jachymovite [(UO{sub 2})(SO{sub 4})(OH){sub 14}(H{sub 2}O){sub 13}] precipitated with no rare earth elements. Based on the charge balance calculation, we suggest that the amount of U{sup 6+} in the coffinite is less than 0.2 [apfu] and U{sup 6+} is accommodated in the structure via substitution: U{sup 4+} + Si{sup 4+} {r_reversible} U{sup 6+} + 2(OH){sup -}. The high and variable totals for electron microprobe analyses indicate that H{sub 2}O is not an essential component in coffinite structure. The U-Pb ages of coffinite formation vary from 36.6-0 Ma suggesting that the coffinite has precipitated continuously in this period and organic matter can preserve reducing conditions even when oxidizing conditions dominate. (authors)

  12. Thermodynamics of formation of coffinite, USiO?

    SciTech Connect (OSTI)

    Guo, Xiaofeng; Szenknect, Stphanie; Mesbah, Adel; Labs, Sabrina; Clavier, Nicolas; Poinssot, Christophe; Curtius, Hildegard; Bosbach, Dirk; Ewing, Rodney C.; Burns, Peter C.; Dacheux, Nicolas; Navrotsky, Alexandra

    2015-05-26

    Coffinite, USiO?, is an important U(IV) mineral, but its thermodynamic properties are not well-constrained. In this work, two different coffinite samples were synthesized under hydrothermal conditions and purified from a mixture of products. The enthalpy of formation was obtained by high temperature oxide melt solution calorimetry. Coffinite is energetically metastable with respect to a mixture of UO? (uraninite) and SiO? (quartz) by 25.6 3.9 kJ/mol. Its standard enthalpy of formation from the elements at 25 C is -1,970.0 4.2 kJ/mol. Decomposition of the two samples was characterized by X-ray diffraction and by thermogravimetry and differential scanning calorimetry coupled with mass spectrometric analysis of evolved gases. Coffinite slowly decomposes to U?O? and SiO? starting around 450 C in air and thus has poor thermal stability in the ambient environment. The energetic metastability explains why coffinite cannot be synthesized directly from uraninite and quartz but can be made by low temperature precipitation in aqueous and hydrothermal environments. These thermochemical constraints are in accord with observations of the occurrence of coffinite in nature and are relevant to spent nuclear fuel corrosion.

  13. A survey of alternative once-through fast reactor core designs

    SciTech Connect (OSTI)

    Fei, T.; Richard, J. G.; Kersting, A. R.; Don, S. M.; Oi, C.; Driscoll, M. J.; Shwageraus, E.

    2012-07-01

    Reprocessing of Light Water Reactor (LWR) spent fuel to recover plutonium or transuranics for use in Sodium cooled Fast Reactors (SFRs) is a distant prospect in the U.S.A. This has motivated our evaluation of potentially cost-effective operation of uranium startup fast reactors (USFRs) in a once-through mode. This review goes beyond findings reported earlier based on a UC fueled MgO reflected SFR to describe a broader parametric study of options. Cores were evaluated for a variety of fuel/coolant/reflector combinations: UC/UZr/UO{sub 2}/UN;Na/Pb; MgO/SS/Zr. The challenge is achieving high burnup while minimizing enrichment and respecting both cladding fluence/dpa and reactivity lifetime limits. These parametric studies show that while UC fuel is still the leading contender, UO{sub 2} fuel and ZrH 1.7 moderated metallic fuel are also attractive if UC proves to be otherwise inadequate. Overall, these findings support the conclusion that a competitive fuel cycle cost and uranium utilization compared to LWRs is possible for SFRs operated on a once-through uranium fueled fuel cycle. In addition, eventual transition to TRU recycle mode is studied, as is a small test reactor to demonstrate key features. (authors)

  14. ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1997-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

  15. Development of Erbia-bearing Super High Burnup Fuel

    SciTech Connect (OSTI)

    Akio, Yamamoto; Toshikazu, Takeda; Hironobu, Unesaki; Masaaki, Mori; Masatoshi Yamasaki

    2006-07-01

    In this paper, concept and development plan of the Erbia (Er{sub 2}O{sub 3})-bearing super high burnup (Er-SHB) fuel for LWRs are described. In order to reduce the number of spent fuel assemblies, utilization of high burnup fuels with higher uranium enrichment is effective. However, the upper limitation of enrichment for LWR fuels is 5 wt% and current advanced fuel assemblies for LWRs are already reaching this limit. Though various efforts to overcome the 5 wt% enrichment limit have been undergoing, it will require considerable cost that may offset the economic benefit of high burnup fuels. We are proposing another pathway. By adding low content ({>=}0.2 wt%) of Erbia in all UO{sub 2} powder, reactivity of high enrichment (>5 wt%) fuel is suppressed under that of current fuel assemblies, i.e. we leverage the negative reactivity credit of Erbia. Since Erbia is mixed into UO{sub 2} powder just after the re-conversion, we can avoid most of the criticality safety issues appearing in the front-end stream. Namely, major improvements and re-licensing for equipments in transportation, storage and fabrication process will not be necessary. Therefore, the Er-SHB fuel will significantly contribute to reduction of fuel cycle cost. (authors)

  16. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    SciTech Connect (OSTI)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO/sub 2/ oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO/sub 2/ pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs.

  17. Spectral indices measurements using miniature fission chambers at the MINERVE zero-power reactor at CEA using calibration data obtained at the BR1 reactor at SCK.CEN

    SciTech Connect (OSTI)

    De lanaute, N. Blanc; Mellier, F.; Lyoussi, A.; Domergue, C.; Di Salvo, J. [CEA, DEN, DER, SPEX, F-13108 St Paul Les Durance, (France); Borms, L.; Wagemans, J. [CEN SCK, Belgian Nucl Res Ctr, B-2400 Mol, (Belgium)

    2012-08-15

    Spectral indices measurements performed in 2004 at the CEA MINERVE facility loaded with the R-UO{sub 2} lattice, using calibration data acquired at the SCK center dot CEN BR1 facility in 2001, resulted in ambivalent conclusions. On one hand, spectral indices involving only fissile isotopes gave consistent discrepancies between calculation and experiment. On the other hand, spectral indices involving both fissile and fertile isotopes, in particular the {sup 238}U(n, f)/{sup 235}U(n, f) spectral index, showed inconsistent results depending on the type of calibration data used. For different reasons, no definitive explanation was given at that time. In 2009, the preparation of the AMMON program at the EOLE facility motivated the manufacturing of a new set of detectors. At the same time, the re-installation of the R1-UO{sub 2} lattice in MINERVE provided the opportunity to carry out again a spectral indices measurement campaign. Nevertheless, although the isotopic compositions of active deposits were better known than previously, the comparison between experimental results and calculations still lead to inconsistent discrepancies. In April 2010, a new calibration series conducted again at the BR1 facility allowed the CEA to reanalyze the spectral indices measurements performed in 2009. With these very latest calibration data, experimental values of spectral indices finally matched calculations within the uncertainty margins. This paper also sums up the work that has been achieved to explain the incoherencies observed in 2004. (authors)

  18. Analysis of fuel relocation for the NRC/PNL Halden assemblies IFA-431, IFA-432, and IFA-513

    SciTech Connect (OSTI)

    Williford, R.E.; Mohr, C.L.; Lanning, D.D.; Cunningham, M.E.; Rausch, W.N.; Bradley, E.R.

    1980-04-01

    The effects of the thermally-induced cracking and subsequent relocation of UO/sub 2/ fuel pellets on the thermal and mechanical behavior of light-water reactor fuel rods during irradiation are quantified in this report. Data from the Nuclear Regulatory Commission/Pacific Northwest Laboratory Halden experiments on instrumented fuel assemblies (IFA) IFA-431, IFA-432, and IFA-513 are analyzed. Beginning-of-life in-reactor measurements of fuel center temperatures, linear heat ratings, and cladding axial elongations are used in a new model to solve for the effective thermal conductivity and elastic moduli of the cracked fuel column. The effective thermal conductivity and elastic moduli for the cracked fuel were found to be significantly reduced from the values for solid UO/sub 2/ pellets. The calculated fuel-cladding gap remained relatively constant (closed) with respect to power level, indicating that the fuel fragments do not retreat from the cladding when the power/temperature is reduced. Recommendations are made pertaining to the work required to further refine the model. 30 refs., 81 figs., 8 tabs.

  19. Code System to Calculate Stress-Strains from Transient Pressures.

    Energy Science and Technology Software Center (OSTI)

    2000-04-28

    Version 00 The SPIRT (Stress-strains from Pressures Instigated by Reactor Transients) program was developed to predict the pressure generated by the rapid dispersal of molten UO2 from power-reactor-type fuel rods into the coolant water. This rapid dispersal of molten fuel results from very high-power excursions initiated by the rapid insertion of reactivity. SPIRT was used in the safety analyses of the ATR and ETR. The program can analyze the response of one-dimensional plane, cylindrical, andmore » spherical geometric configurations to pressure-generating heat sources with free-surface or fixed-surface boundary conditions. SPIRT can calculate the response of systems to the dispersal of hot fuel particles as a function of the following variables: enthalpy of fuel at time of dispersal, rate at which fuel is dispersed, size of dispersed fuel droplets, dispersal density of fuel (grams of fuel dispersed per cc of water), quality of water at time of fuel dispersal, enthalpy of water at time of fuel dispersal, system pressure at time of fuel dispersal, and the size and constituency of the medium enveloping the dispersed fuel. By holding all but one of the listed variables constant, and varying that one, the program computes the relative effect of that variable upon the response of systems to the dispersal of hot fuel. SPIRT exists as two releases one, written for UO2 fuel is called SPIRTU; the second, for uranium-aluminide fuel is identified as SPIRTA.« less

  20. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    SciTech Connect (OSTI)

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; Godfrey, Andrew T.; Gehin, Jess C.; Powers, Jeffrey J.

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resulting operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.

  1. Neutronics Studies of Uranium-bearing Fully Ceramic Micro-encapsulated Fuel for PWRs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    George, Nathan M.; Maldonado, G. Ivan; Terrani, Kurt A.; Godfrey, Andrew T.; Gehin, Jess C.; Powers, Jeffrey J.

    2014-12-01

    Our study evaluated the neutronics and some of the fuel cycle characteristics of using uranium-based fully ceramic microencapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR lattice designs with FCM fuel have been developed that are expected to achieve higher specific burnup levels in the fuel while also increasing the tolerance to reactor accidents. The SCALE software system was the primary analysis tool used to model the lattice designs. A parametric study was performed by varying tristructural isotropic particle design features (e.g., kernel diameter, coating layer thicknesses, and packing fraction) to understand the impact on reactivity and resultingmore » operating cycle length. Moreover, to match the lifetime of an 18-month PWR cycle, the FCM particle fuel design required roughly 10% additional fissile material at beginning of life compared with that of a standard uranium dioxide (UO2) rod. Uranium mononitride proved to be a favorable fuel for the fuel kernel due to its higher heavy metal loading density compared with UO2. The FCM fuel designs evaluated maintain acceptable neutronics design features for fuel lifetime, lattice peaking factors, and nonproliferation figure of merit.« less

  2. Evaluation of fission gas release in high-burnup light water reactor fuel rods

    SciTech Connect (OSTI)

    Barner, J.O.; Cunningham, M.E.; Freshley, M.D.; Lanning, D.D. )

    1993-05-01

    Research to define the behavior of Zircaloy-clad light water reactor (LWR) UO[sub 2] fuel irradiated to high burnup levels was conducted as part of the High Burnup Effects Program (HBEP). The HBEP was a 12-yr program that ultimately acquired, characterized, irradiated, and examined after irradiation 82 LWR fuel rods ranging in rod-average fuel burnup from 22 to 69 MWd/kgM with a peak pellet burnup of 83 MWd/kg M. A principal emphasis of the HBEP was to evaluate the effect of high burnup on fission gas release. It was confirmed that fission gas release remained as dependent on design and irradiation history parameters at high burnup levels as at low to moderate burnup levels. One observed high-burnup effect was the development of a burnup-dependent microstructure at the fuel pellet surface when pellet-edge burnup exceeded 65 MWd/kgM. This low-temperature rim region' was characterized by a loss of optically definable grain structure, a high volume of porosity, and diffusion of fission gas from the UO[sub 2] matrix to the porosity. Although the rim region has the potential for enhanced fission gas release, it is concluded that no significant enhancement of rod-average fission gas release at high burnup levels was observed for the examined fuel rods.

  3. Direct Experimental Evaluation of the Grain Boundaries Gas Content in PWR fuels: New Insight and Perspective of the ADAGIO Technique

    SciTech Connect (OSTI)

    Pontillon, Y.; Noirot, J.; Caillot, L.

    2007-07-01

    Over the last decades, many analytical experiments (in-pile and out-of-pile) have underlined the active role of the inter-granular gases on the global fuel transient behavior under accidental conditions such as RIA and/or LOCA. In parallel, the improvement of fission gas release modeling in nuclear fuel performance codes needs direct experimental determination/validation regarding the local gas distribution inside the fuel sample. In this context, an experimental program, called 'ADAGIO' (French acronym for Discriminating Analysis of Accumulation of Inter-granular and Occluded Gas), has been initiated through a joint action of CEA, EDF and AREVA NP in order to develop a new device/technique for quantitative and direct measurement of local fission gas distribution within an irradiated fuel pellet. ADAGIO technique is based on the fact that fission gas inventory (intra and inter-granular parts) can be distinguished by controlled fuel oxidation, since grain boundaries oxidize faster than the bulk. The purpose of the current paper is to present both the methodology and the associated results of the ADAGIO program performed at CEA. It has been divided into two main parts: (i) feasibility (UO{sub 2} and MOX fuels), (ii) application on high burn up UO{sub 2} fuel. (authors)

  4. Investigation of the long-term performance of betafite and zirconolite in hydrothermal veins from Adamello, Italy

    SciTech Connect (OSTI)

    Lumpkin, G.R.; Day, R.A.; McGlinn, P.J.; Payne, T.E.; Giere, R.; Williams, C.T.

    1999-07-01

    Betafite and zirconolite occur in Ti-rich hydrothermal veins emplaced within dolomite marble in the contact aureole of the Adamello batholith, northern Italy. Zirconolite contains up to 18 wt% ThO{sub 2} and 24 wt% UO{sub 2}, and exhibits strong compositional zoning. Some zirconolite grains were corroded by the hydrothermal fluid. Betafite, the Ti-rich member of the pyrochlore group, often occurs as overgrowths on zirconolite. The betafite is weakly zoned and contains 29--34 wt% UO{sub 2}. In terms of end-members, betafite contains approximately 50 mole percent CaUTi{sub 2}O{sub 7} and is the closest known natural composition to the pyrochlore phase proposed for use in titanate waste forms. Amorphization and volume expansion of the betafite caused cracks to form in the enclosing silicate mineral grains. Backscattered electron images reveal that betafite was subsequently altered along crystal rims, particularly near the cracks. EPMA data reveal little difference in composition between altered and unaltered areas, except for lower totals, suggesting that alteration is primarily due to hydration. The available evidence demonstrates that both betafite and zirconolite retained actinides for approximately 40 million years after the final stage of vein formation. During this time, betafite and zirconolite accumulated a total alpha-decay dose of 3--4 x 10{sup 16} and 0.2--2 x 10{sup 16} {alpha}/mg, respectively.

  5. Proliferation resistance of small modular reactors fuels

    SciTech Connect (OSTI)

    Polidoro, F.; Parozzi, F.; Fassnacht, F.; Kuett, M.; Englert, M.

    2013-07-01

    In this paper the proliferation resistance of different types of Small Modular Reactors (SMRs) has been examined and classified with criteria available in the literature. In the first part of the study, the level of proliferation attractiveness of traditional low-enriched UO{sub 2} and MOX fuels to be used in SMRs based on pressurized water technology has been analyzed. On the basis of numerical simulations both cores show significant proliferation risks. Although the MOX core is less proliferation prone in comparison to the UO{sub 2} core, it still can be highly attractive for diversion or undeclared production of nuclear material. In the second part of the paper, calculations to assess the proliferation attractiveness of fuel in typical small sodium cooled fast reactor show that proliferation risks from spent fuel cannot be neglected. The core contains a highly attractive plutonium composition during the whole life cycle. Despite some aspects of the design like the sealed core that enables easy detection of unauthorized withdrawal of fissile material and enhances proliferation resistance, in case of open Non-Proliferation Treaty break-out, weapon-grade plutonium in sufficient quantities could be extracted from the reactor core.

  6. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  7. Measurement of the Auger parameter and Wagner plot for uranium compounds

    SciTech Connect (OSTI)

    Holliday, Kiel S.; Siekhaus, Wigbert; Nelson, Art J.

    2013-05-15

    In this study, the photoemission from the U 4f{sub 7/2} and 4d{sub 5/2} states and the U N{sub 6}O{sub 45}O{sub 45} and N{sub 67}O{sub 45}V x-ray excited Auger transitions were measured for a range of uranium compounds. The data are presented in Wagner plots and the Auger parameter is calculated to determine the utility of this technique in the analysis of uranium materials. It was demonstrated that the equal core-level shift assumption holds for uranium. It was therefore possible to quantify the relative relaxation energies, and uranium was found to have localized core-hole shielding. The position of compounds within the Wagner plot made it possible to infer information on bonding character and local electron density. The relative ionicity of the uranium compounds studied follows the trend UF{sub 4} > UO{sub 3} > U{sub 3}O{sub 8} > U{sub 4}O{sub 9}/U{sub 3}O{sub 7} Almost-Equal-To UO{sub 2} > URu{sub 2}Si{sub 2}.

  8. Process for continuous production of metallic uranium and uranium alloys

    DOE Patents [OSTI]

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  9. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    SciTech Connect (OSTI)

    Michael A. Pope; R. Sonat Sen; Brian Boer; Abderrafi M. Ougouag; Gilles Youinou

    2011-09-01

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

  10. Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Snyder, Michelle M.V.; Wang, Guohui; Buck, Edgar C.

    2015-07-01

    Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushed grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.

  11. Molecular dynamics simulations of uranyl adsorption and structure on the basal surface of muscovite

    SciTech Connect (OSTI)

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Cygan, Randall T.

    2014-02-05

    Anthropogenic activities have led to an increased concentration of uranium on the Earth’s surface and potentially in the subsurface with the development of nuclear waste repositories. Uranium is soluble in groundwater, and its mobility is strongly affected by the presence of clay minerals in soils and in subsurface sediments. We use molecular dynamics simulations to probe the adsorption of aqueous uranyl (UO22+) ions onto the basal surface of muscovite, a suitable proxy for typically ultrafine-grained clay phases. Model systems include the competitive adsorption between potassium counterions and aqueous ions (0.1 M and 1.0 M UO2Cl2 , 0.1 M NaCl). We find that for systems with potassium and uranyl ions present, potassium ions dominate the adsorption phenomenon. Potassium ions adsorb entirely as inner-sphere complexes associated with the ditrigonal cavity of the basal surface. Uranyl ions adsorb in two configurations when it is the only ion species present, and in a single configuration in the presence of potassium. Finally, the majority of adsorbed uranyl ions are tilted less than 45° relative to the muscovite surface, and are associated with the Si4Al2 rings near aluminum substitution sites.

  12. Long-term, low-temperature oxidation of PWR spent fuel: Interim transition report

    SciTech Connect (OSTI)

    Einziger, R.E.; Buchanan, H.C.

    1988-05-01

    Since some of the fuel rods will be breached and eventually most of the cladding will corrode, exposing fuel, one factor influencing the ability of spent fuel to retain radionuclides is its oxidation state in the expected moist air atmosphere. Oxidation of the fuel could split the cladding, exposing additional fuel and changing the leaching characteristics. Thermodynamically, there is no reason why UO{sub 2} should not oxidize completely to UO{sub 3} at repository temperatures. The underlying uncertainty is the rate of oxidation. Extrapolation of higher temperature data indicates that insufficient oxidation to convert all of the fuel to U{sub 3}O{sub 8} will occur during the first 10,000 years. However, lower oxidation states, such as U{sub 4}O{sub 9} and U{sub 3}O{sub 7}, might form. To date, the tests have run between 3200 and 4100 hours out of a planned 16,000-hour duration. Some preliminary conclusions can be drawn: (1) Moisture content of the air has no significant effect on oxidation rate, (2) the data have an uncertainty of 15 to 20%, which must be accounted for in the interpretation of single sample tests, and (3) below 175{degree}C, the oxidation rate is dependent on the particle size in the sample. The smaller particles oxidize more rapidly. 19 refs., 23 figs., 7 tabs.

  13. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment. [BWR; PWR

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO/sub 2/ fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm/sup 3//s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO/sub 2/ fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%.

  14. FABRICATION PROCESS AND PRODUCT QUALITY IMPROVEMENTS IN ADVANCED GAS REACTOR UCO KERNELS

    SciTech Connect (OSTI)

    Charles M Barnes

    2008-09-01

    A major element of the Advanced Gas Reactor (AGR) program is developing fuel fabrication processes to produce high quality uranium-containing kernels, TRISO-coated particles and fuel compacts needed for planned irradiation tests. The goals of the AGR program also include developing the fabrication technology to mass produce this fuel at low cost. Kernels for the first AGR test (“AGR-1) consisted of uranium oxycarbide (UCO) microspheres that werre produced by an internal gelation process followed by high temperature steps tot convert the UO3 + C “green” microspheres to first UO2 + C and then UO2 + UCx. The high temperature steps also densified the kernels. Babcock and Wilcox (B&W) fabricated UCO kernels for the AGR-1 irradiation experiment, which went into the Advance Test Reactor (ATR) at Idaho National Laboratory in December 2006. An evaluation of the kernel process following AGR-1 kernel production led to several recommendations to improve the fabrication process. These recommendations included testing alternative methods of dispersing carbon during broth preparation, evaluating the method of broth mixing, optimizing the broth chemistry, optimizing sintering conditions, and demonstrating fabrication of larger diameter UCO kernels needed for the second AGR irradiation test. Based on these recommendations and requirements, a test program was defined and performed. Certain portions of the test program were performed by Oak Ridge National Laboratory (ORNL), while tests at larger scale were performed by B&W. The tests at B&W have demonstrated improvements in both kernel properties and process operation. Changes in the form of carbon black used and the method of mixing the carbon prior to forming kernels led to improvements in the phase distribution in the sintered kernels, greater consistency in kernel properties, a reduction in forming run time, and simplifications to the forming process. Process parameter variation tests in both forming and sintering steps led

  15. Yucca Mountain project : FY 2006 annual report for waste form testingactivities.

    SciTech Connect (OSTI)

    Ebert, W. L.; Fortner, J. A.; Guelis, A. V.; Cunnane, J. C.

    2006-11-01

    presence of UO{sub 2} resulted in the rapid precipitation at room temperature of similar amounts of Np(IV)- and Np(V)-bearing phases, probably NpO{sub 2} and Np{sub 2}O{sub 5}. Although the UO{sub 2} is presumed to act as a reducing agent for Np(V) that leads to the precipitation of a Np(IV)-bearing phase, the observed formation of a Np(V)-bearing phase suggests that the UO{sub 2} also catalyzes Np{sub 2}O5 precipitation under these test conditions.

  16. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    SciTech Connect (OSTI)

    Field, Kevin G.; Howard, Richard H.

    2015-09-28

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiation tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys

  17. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2012-04-01

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water

  18. AREVA NP Cr{sub 2}O{sub 3}-doped fuel development for BWRs

    SciTech Connect (OSTI)

    Delafoy, C.; Dewes, P.; Miles, T.

    2007-07-01

    The search for improvements in nuclear fuel cycle economics results in increasing demands for fuel discharged burnup and reliability, plant maneuverability and power up-rating. To achieve these objectives without any reduction of safety margins, fuel design and materials that enable enhanced performance capabilities have been developed or are under investigations. Research on fuel pellets focuses on the modification of the microstructure to increase fission product retention and pellet mechanical compliance. Currently, production of the desired large grain viscoplastic UO{sub 2} fuel microstructures has been extensively investigated by AREVA NP through the use of doping elements. This track is nowadays a worldwide working field. In this area, AREVA NP has launched the development of a new UO{sub 2} fuel pellet obtained by optimum chromium oxide doping. The purpose of this paper is first to present the current results with the AREVA NP optimized chromia doped fuel and to discuss the key advantages in terms of fuel performance for BWR applications. In particular, the development relies on ramp testing results, fuel temperature and fission gas release values acquired at high burnup and high power levels. Second, the paper focuses on the qualification process implemented by AREVA NP to assess the margins of the optimized Cr{sub 2}O{sub 3}-doped UO{sub 2} fuel towards safety criteria at high burnup and the risk of PCI failure, as well as to develop calculation tools to support design. The driving force in this qualification plan is to gain the accurate knowledge of the optimized doped fuel behavior under normal, transient and anticipated accident conditions. To support this effort, irradiation campaigns are under progress in PWR and BWR plants to cover a wide range of existing operating conditions and to anticipate future demands. Considering only the BWR part, the program has successfully run since 2005 and is designed to obtain data up to high burnup, at least 70 GWd

  19. Multi-scale modeling of microstructure dependent intergranular brittle fracture using a quantitative phase-field based method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.

    2015-12-07

    In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO2 and comparing themore » predictions with experiments.« less

  20. Theoretical analysis of uranium-doped thorium dioxide: Introduction of a thoria force field with explicit polarization

    SciTech Connect (OSTI)

    Shields, A. E.; Ruiz Hernandez, S. E.; Leeuw, N. H. de

    2015-08-15

    Thorium dioxide is used industrially in high temperature applications, but more insight is needed into the behavior of the material as part of a mixed-oxide (MOX) nuclear fuel, incorporating uranium. We have developed a new interatomic potential model including polarizability via a shell model, and commensurate with a prominent existing UO{sub 2} potential, to conduct configurational analyses and to investigate the thermophysical properties of uranium-doped ThO{sub 2}. Using the GULP and Site Occupancy Disorder (SOD) computational codes, we have analyzed the distribution of low concentrations of uranium in the bulk material, where we have not observed the formation of uranium clusters or the dominance of a single preferred configuration. We have calculated thermophysical properties of pure thorium dioxide and Th{sub (1−x)}U{sub x}O{sub 2} which generated values in very good agreement with experimental data.

  1. Thermodynamic properties of uranium dioxide

    SciTech Connect (OSTI)

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the thermodynamic properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, there has been international agreement on a vapor pressure equation for the total pressure over UO/sub 2/, new methods have been suggested for the calculation of enthalpy and heat capacity, and a phase change at 2670 K has been proposed. In this report, an electronic term is used in place of the Frenkel defect term in the enthalpy and heat capacity equation and the phase transition is accepted.

  2. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOE Patents [OSTI]

    Menlove, Howard O.; Stewart, James E.

    1986-01-01

    Apparatus and method for the direct, nondestructive evaluation of the .sup.235 U nuclide content of samples containing UF.sub.6, UF.sub.4, or UO.sub.2 utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1.sigma.) for cylinders containing UF.sub.6 with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF.sub.6 takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures.

  3. Direct fissile assay of enriched uranium using random self-interrogation and neutron coincidence response

    DOE Patents [OSTI]

    Menlove, H.O.; Stewart, J.E.

    1985-02-04

    Apparatus and method for the direct, nondestructive evaluation of the /sup 235/U nuclide content of samples containing UF/sub 6/, UF/sub 4/, or UO/sub 2/ utilizing the passive neutron self-interrogation of the sample resulting from the intrinsic production of neutrons therein. The ratio of the emitted neutron coincidence count rate to the total emitted neutron count rate is determined and yields a measure of the bulk fissile mass. The accuracy of the method is 6.8% (1sigma) for cylinders containing UF/sub 6/ with enrichments ranging from 6% to 98% with measurement times varying from 3-6 min. The samples contained from below 1 kg to greater than 16 kg. Since the subject invention relies on fast neutron self-interrogation, complete sampling of the UF/sub 6/ takes place, reducing difficulties arising from inhomogeneity of the sample which adversely affects other assay procedures. 4 figs., 1 tab.

  4. A practical strategy for reducing the future security risk of United States spent nuclear fuel

    SciTech Connect (OSTI)

    Chodak, P. III; Buksa, J.J.

    1997-06-01

    Depletion calculations show that advanced oxide (AOX) fuels can be used in existing light water reactors (LWRs) to achieve and maintain virtually any desired level of US (US) reactor-grade plutonium (R-Pu) inventory. AOX fuels are composed of a neutronically inert matrix loaded with R-Pu and erbium. A 1/2 core load of 100% nonfertile, 7w% R-Pu AOX and 3.9 w% UO{sub 2} has a net total plutonium ({sup TOT}Pu) destruction rate of 310 kg/yr. The 20% residual {sup TOT}Pu in discharged AOX contains > 55% {sup 242}Pu making it unattractive for nuclear explosive use. A three-phase fuel-cycle development program sequentially loading 60 LWRs with 100% mixed oxide, 50% AOX with a nonfertile component displacing only some of the {sup 238}U, and 50% AOX, which is 100% nonfertile, could reduce the US plutonium inventory to near zero by 2050.

  5. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    SciTech Connect (OSTI)

    R. L. Williamson

    2011-08-01

    A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete and smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  6. Modeling the influence of bubble pressure on grain boundary separation and fission gas release

    SciTech Connect (OSTI)

    Pritam Chakraborty; Michael R. Tonks; Giovanni Pastore

    2014-09-01

    Grain boundary (GB) separation as a mechanism for fission gas release (FGR), complementary to gas bubble interlinkage, has been experimentally observed in irradiated light water reactor fuel. However there has been limited effort to develop physics-based models incorporating this mechanism for the analysis of FGR. In this work, a computational study is carried out to investigate GB separation in UO2 fuel under the effect of gas bubble pressure and hydrostatic stress. A non-dimensional stress intensity factor formula is obtained through 2D axisymmetric analyses considering lenticular bubbles and Mode-I crack growth. The obtained functional form can be used in higher length-scale models to estimate the contribution of GB separation to FGR.

  7. NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Daniels, F.

    1962-12-18

    A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

  8. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  9. M3FT-15OR0202237: Submit Report on Results From Initial Coating Layer Development For UN TRISO Particles

    SciTech Connect (OSTI)

    Jolly, Brian C.; Lindemer, Terrence; Terrani, Kurt A.

    2015-02-01

    In support of fully ceramic matrix (FCM) fuel development, coating development work has begun at the Oak Ridge National Laboratory (ORNL) to produce tri-isotropic (TRISO) coated fuel particles with UN kernels. The nitride kernels are used to increase heavy metal density in these SiC-matrix fuel pellets with details described elsewhere. The advanced gas reactor (AGR) program at ORNL used fluidized bed chemical vapor deposition (FBCVD) techniques for TRISO coating of UCO (two phase mixture of UO2 and UCx) kernels. Similar techniques were employed for coating of the UN kernels, however significant changes in processing conditions were required to maintain acceptable coating properties due to physical property and dimensional differences between the UCO and UN kernels.

  10. Development code for sensitivity and uncertainty analysis of input on the MCNPX for neutronic calculation in PWR core

    SciTech Connect (OSTI)

    Hartini, Entin Andiwijayakusuma, Dinan

    2014-09-30

    This research was carried out on the development of code for uncertainty analysis is based on a statistical approach for assessing the uncertainty input parameters. In the butn-up calculation of fuel, uncertainty analysis performed for input parameters fuel density, coolant density and fuel temperature. This calculation is performed during irradiation using Monte Carlo N-Particle Transport. The Uncertainty method based on the probabilities density function. Development code is made in python script to do coupling with MCNPX for criticality and burn-up calculations. Simulation is done by modeling the geometry of PWR terrace, with MCNPX on the power 54 MW with fuel type UO2 pellets. The calculation is done by using the data library continuous energy cross-sections ENDF / B-VI. MCNPX requires nuclear data in ACE format. Development of interfaces for obtaining nuclear data in the form of ACE format of ENDF through special process NJOY calculation to temperature changes in a certain range.

  11. Implementation of a spark plasma sintering facility in a hermetic glovebox for compaction of toxic, radiotoxic, and air sensitive materials

    SciTech Connect (OSTI)

    Tyrpekl, V. E-mail: vaclav.tyrpekl@gmail.com; Berkmann, C.; Holzhäuser, M.; Köpp, F.; Cologna, M.; Somers, J.; Wangle, T.

    2015-02-15

    Spark plasma sintering (SPS) is a rapidly developing method for densification of powders into compacts. It belongs to the so-called “field assisted sintering techniques” that enable rapid sintering at much lower temperatures than the classical approaches of pressureless sintering of green pellets or hot isostatic pressing. In this paper, we report the successful integration of a SPS device into a hermetic glovebox for the handling of highly radioactive material containing radioisotopes of U, Th, Pu, Np, and Am. The glovebox implantation has been facilitated by the replacement of the hydraulic system to apply pressure with a compact electromechanical unit. The facility has been successfully tested using UO{sub 2} powder. Pellets with 97% of the theoretical density were obtained at 1000 °C for 5 min, significantly lower than the ∼1600 °C for 5-10 h used in conventional pellet sintering.

  12. Calculation of Critical Experiments involving U(37)O2F2 Solution

    SciTech Connect (OSTI)

    Goluoglu, K.L.

    2006-03-03

    Critical experiments were conducted at the Oak Ridge Critical Experiment Facility (ORCEF) to determine the critical concentration for an unreflected 69.2-cm-diameter sphere of UO{sub 2}F{sub 2}, at an enrichment of {approx}37 percent U{sup 235}, by weight. These experiments were a continuation of previous efforts to determine critical dimensions for fissile materials in simple geometry. Some of the earlier experiments in this vessel have been published as part of the OECD handbook. The reports concerning these experiments have only recently become available. Until August 2005, Refs. 2 and 3 were still classified. These documents, along with experimental logbooks and unclassified papers available on the experimental campaign and facility are being used to generate a computer model for this critical experiment.

  13. URANIUM OXIDE-CONTAINING FUEL ELEMENT COMPOSITION AND METHOD OF MAKING SAME

    DOE Patents [OSTI]

    Handwerk, J.H.; Noland, R.A.; Walker, D.E.

    1957-09-10

    In the past, bodies formed of a mixture of uranium dioxide and aluminum powder have been used in fuel elements; however, these mixtures were found not to be suitable when exposed to temperatures of about 600 deg C, because at such high temperatures the fuel elements were distorted. If uranosic oxide, U/sub 3/O/sub 8/, is substituted for UO/sub 2/, the mechanical properties are not impaired when these materials are used at about 600 deg C and no distortion takes place. The uranosic oxide and aluminum, both in powder form, are first mixed, and after a homogeneous mixture has been obtained, are shaped into fuel elements by extrusion at elevated temperature. Magnesium powder may be used in place of the aluminum.

  14. Winter 2013 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 CSTEC W orking G roup S chedule Thrust I --- s elected T hursdays, 1 :00---2:00pm; M SE C onference R oom ( 3062 H H D ow) January 1 7 Jimmy Chen ( Phillips g roup) February 7 Michael K uo ( Ku g roup) February 2 8 Vladimir S toica (note: l ocation c hange t o 3 158 D ow) March 1 4 Simon H uang ( Goldman g roup) March 2 8 Sung J oo K im (Pan g roup)** * *Early s tart: 1 2:30pm** April 1 8 Larry A agesen ( Thornton g roup) May 2 Michael A berre ( Yalisove g roup) Thrust II --- s elected F

  15. Synroc-D Type Ceramics Produced by Hot Isostatic Pressing and Cold Crucible Melting for Immobilisation of (Al, U) Rich Nuclear Waste

    SciTech Connect (OSTI)

    Vance, Eric R.; La Robina, Michael; Li, Huijun; Davis, Joel

    2007-07-01

    A synroc-D ceramic consisting mostly of spinel, hollandite, pyrochlore-structured CaUTi{sub 2}O{sub 7}, UO{sub 2}, and Ti-rich regions shows promise for immobilisation of a HLW containing mainly Al and U, together with fission products. Ceramics with virtually zero porosities and waste loadings of 50-60 wt% on an oxide basis were prepared by cold crucible melting (CCM) at {approx}1500 deg. C, and also by subsolidus hot isostatic pressing (HIP) at 1100 deg. C to prevent volatile losses. PCT leaching test values for Cs were < 13 g/L, with all other normalised elemental extractions being well below 1 g/L. (authors)

  16. Helium Migration Mechanisms in Polycrystalline Uranium Dioxide

    SciTech Connect (OSTI)

    Martin, Guillaume; Desgardin, Pierre; Sauvage, Thierry; Barthe, Marie-France; Garcia, Philippe; Carlot, Gaelle

    2007-07-01

    This study aims at identifying the release mechanisms of helium in uranium dioxide. Two sets of polycrystalline UO{sub 2} sintered samples presenting different microstructures were implanted with {sup 3}He ions at concentrations in the region of 0.1 at.%. Changes in helium concentrations were monitored using two Nuclear Reaction Analysis (NRA) techniques based on the {sup 3}He(d,{alpha}){sup 1}H reaction. {sup 3}He release is measured in-situ during sample annealing at temperatures ranging between 700 deg. C and 1000 deg. C. Accurate helium depth profiles are generated after each annealing stage. Results that provide data for further understanding helium release mechanisms are discussed. It is found that helium diffusion appears to be enhanced above 900 deg. C in the vicinity of grain boundaries possibly as a result of the presence of defects. (authors)

  17. How are the energy waves blocked on the way from hot to cold?

    SciTech Connect (OSTI)

    Bai, Xianming; He, Lingfeng; Khafizov, Marat; Yu, Jianguo; Chernatynskiy, Aleksandr

    2013-07-18

    Representing the Center for Materials Science of Nuclear Fuel (CMSNF), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of CMSNF to develop an experimentally validated multi-scale computational capability for the predictive understanding of the impact of microstructure on thermal transport in nuclear fuel under irradiation, with ultimate application to UO2 as a model system

  18. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect (OSTI)

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    In currently operating commercial nuclear power plants (NPP), there are two main types of nuclear fuel, low enriched uranium (LEU) fuel, and mixed-oxide uranium-plutonium (MOX) fuel. The LEU fuel is made of pure uranium dioxide (UO{sub 2} or UOX) and has been the fuel of choice in commercial light water reactors (LWRs) for a number of years. Naturally occurring uranium contains a mixture of different uranium isotopes, primarily, {sup 235}U and {sup 238}U. {sup 235}U is a fissile isotope, and will readily undergo a fission reaction upon interaction with a thermal neutron. {sup 235}U has an isotopic concentration of 0.71% in naturally occurring uranium. For most reactors to maintain a fission chain reaction, the natural isotopic concentration of {sup 235}U must be increased (enriched) to a level greater than 0.71%. Modern nuclear reactor fuel assemblies contain a number of fuel pins potentially having different {sup 235}U enrichments varying from {approx}2.0% to {approx}5% enriched in {sup 235}U. Currently in the United States (US), all commercial nuclear power plants use UO{sub 2} fuel. In the rest of the world, UO{sub 2} fuel is still commonly used, but MOX fuel is also used in a number of reactors. MOX fuel contains a mixture of both UO{sub 2} and PuO{sub 2}. Because the plutonium provides the fissile content of the fuel, the uranium used in MOX is either natural or depleted uranium. PuO{sub 2} is added to effectively replace the fissile content of {sup 235}U so that the level of fissile content is sufficiently high to maintain the chain reaction in an LWR. Both reactor-grade and weapons-grade plutonium contains a number of fissile and non-fissile plutonium isotopes, with the fraction of fissile and non-fissile plutonium isotopes being dependent on the source of the plutonium. While only RG plutonium is currently used in MOX, there is the possibility that WG plutonium from dismantled weapons will be used to make MOX for use in US reactors. Reactor-grade plutonium

  19. Current State of Knowledge of Water Radiolysis Effects on Spent Nuclear Fuel Corrosion

    SciTech Connect (OSTI)

    Christensen, H.; Sunder, S.

    2000-07-15

    Literature data on the effect of water radiolysis products on spent-fuel oxidation and dissolution are reviewed. Effects of gamma radiolysis, alpha radiolysis, and dissolved O{sub 2} or H{sub 2}O{sub 2} in unirradiated solutions are discussed separately. Also, the effect of carbonate in gamma-irradiated solutions and radiolysis effects on leaching of spent fuel are reviewed. In addition, a kinetic model for calculating the corrosion rates of UO{sub 2} in solutions undergoing radiolysis is discussed. The model gives good agreement between calculated and measured corrosion rates in the case of gamma radiolysis and in unirradiated solutions containing dissolved oxygen or hydrogen peroxide. However, the model fails to predict the results of alpha radiolysis. In a recent study, it was shown that the model gave good agreement with measured corrosion rates of spent fuel exposed in deionized water. The applications of radiolysis studies for geologic disposal of used nuclear fuel are discussed.

  20. Preliminary Criticality Analysis of Degraded SNF Accumulations to a Waste Package (SCPB: N/A) 

    SciTech Connect (OSTI)

    J.W. Davis

    2005-12-15

    This study is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide input to a separate evaluation on the probability of criticality in the far-field environment. These calculations are performed in sufficient detail to provide conservatively bounding configurations to support separate probabilistic analyses. The objective of this evaluation is to provide input to a risk analysis which will show that criticalities involving commercial spent nuclear fuel (SNF) are not credible, or indicate additional measures that are required for the Engineered Barrier Segment (EBS) to make such events incredible. Minimum critical volumes and masses of UO{sub 2}/H{sub 2}O/tuff mixtures are determined without application of regulatory safety limits. This study does not address or demonstrate compliance with regulatory limits.

  1. Incidence of High Nitrogen in Sintered Uranium Dioxide: A Case Study

    SciTech Connect (OSTI)

    Balakrishna, Palanki; Murty, B. Narasimha; Anuradha, M.; Yadav, R.B.; Jayaraj, R.N

    2005-05-15

    Nitrogen content, above the specified limit of 75 {mu}g(gU){sup -1}, was encountered in sintered uranium dioxide in the course of its manufacture. The cause was traced to the sintering process, wherein carbon, a degradation product of the die wall or admixed lubricant, was retained in the compact as a result of inadvertent reversal of gas flow in the sintering furnace. In the presence of carbon, the uranium dioxide reacted with nitrogen from the furnace atmosphere to form nitride. The compacts with high nitrogen were also those with low sintered density, arising from low green density. The low green density was due to filling problems of an inhomogeneous powder. The experiments carried out establish the causes of high nitrogen to be the carbon residue from lubricant when the UO{sub 2} is sintered in a cracked ammonia atmosphere.

  2. PROCESS FOR PRODUCING URANIUM HALIDES

    DOE Patents [OSTI]

    Murphree, E.V.

    1957-10-29

    A process amd associated apparatus for producing UF/sub 4/ from U/sub 3/ O/sub 8/ by a fluidized'' technique are reported. The U/sub 3/O/sub 8/ is first reduced to UO/sub 2/ by reaction with hydrogen, and the lower oxide of uranium is then reacted with gaseous HF to produce UF/sub 4/. In each case the reactant gas is used, alone or in combination with inert gases, to fluidize'' the finely divided reactant solid. The complete setup of the plant equipment including bins, reactor and the associated piping and valving, is described. An auxiliary fluorination reactor allows for the direct production of UF/sub 6/ from UF/sub 4/ and fluorine gas, or if desired, UF/sub 4/ may be collected as the product.

  3. Comparison of Spectroscopic Data with Cluster Calculations of Plutonium, Plutonium Dioxide and Uranium Dioxide

    SciTech Connect (OSTI)

    Tobin, J G; Yu, S W; Chung, B W; Ryzhkov, M V; Mirmelstein, A

    2012-05-15

    Using spectroscopic data produced in the experimental investigations of bulk systems, including X-Ray Absorption Spectroscopy (XAS), Photoelectron Spectroscopy (PES) and Bremstrahlung Isochromat Spectroscopy (BIS), the theoretical results within for UO{sub 2}{sup 6}, PuO{sub 2}{sup 6} and Pu{sup 7} clusters have been evaluated. The calculations of the electronic structure of the clusters have been performed within the framework of the Relativistic Discrete-Variational Method (RDV). The comparisons between the LLNL experimental data and the Russian calculations are quite favorable. The cluster calculations may represent a new and useful avenue to address unresolved questions within the field of actinide electron structure, particularly that of Pu. Observation of the changes in the Pu electronic structure as a function of size suggests interesting implications for bulk Pu electronic structure.

  4. Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steel, Annual Report (1998-1999)

    SciTech Connect (OSTI)

    PAL, UDAY B.

    1999-08-01

    Decontamination of radioactive contaminated stainless steel using the ESR process is investigated by conducting thermophysical and thermochemical laboratory studies on the slag. The ESR base slag investigated in this research project is 60wt%CaF{sub 2}-20wt%CaO-20wt%Al{sub 2}O{sub 3}. In this report, we present the data obtained to date on relevant slag properties, capacity to incorporate the radioactive contaminant (using CeO{sub 3}) as surrogate, simulant for PUO{sub 2} and UO{sub 2}, slag-metal partition coefficient, volatilization rate and volatile species, viscosity, electrical conductivity and surface tension as a function of temperature. The impact of these properties on the ESR decontamination process is presented.

  5. Methodology for Developing the REScheckTM Software through Version 4.2

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan; Lucas, R. G.; Schultz, Robert W.; Taylor, Zachary T.; Wiberg, John D.

    2009-08-31

    This report explains the methodology used to develop Version 4.2 of the REScheck software developed for the 1992, 1993, and 1995 editions of the MEC, and the 1998, 2000, 2003, and 2006 editions of the IECC, and the 2006 edition of the International Residential Code (IRC). Although some requirements contained in these codes have changed, the methodology used to develop the REScheck software for these five editions is similar. REScheck assists builders in meeting the most complicated part of the code?the building envelope Uo-, U-, and R-value requirements in Section 502 of the code. This document details the calculations and assumptions underlying the treatment of the code requirements in REScheck, with a major emphasis on the building envelope requirements.

  6. Action Sheet 36 Final Report

    SciTech Connect (OSTI)

    Kips, R E; Kristo, M J; Hutcheon, I D

    2012-02-24

    Pursuant to the Arrangement between the European Commission DG Joint Research Centre (EC-JRC) and the Department of Energy (DOE) to continue cooperation on research, development, testing, and evaluation of technology, equipment, and procedures in order to improve nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for international safeguards, dated 1 September 2008, the IRMM and LLNL established cooperation in a program on the Study of Chemical Changes in Uranium Oxyfluoride Particles under IRMM-LLNL Action Sheet 36. The work under this action sheet had 2 objectives: (1) Achieve a better understanding of the loss of fluorine in UO{sub 2}F{sub 2} particles after exposure to certain environmental conditions; and (2) Provide feedback to the EC-JRC on sample reproducibility and characteristics.

  7. Thermodynamic assessment of the U–Y–O system

    SciTech Connect (OSTI)

    Brese, R. G.; McMurray, J. W.; Shin, D.; Besmann, T. M.

    2015-02-03

    We developed a CALPHAD assessment of the U-Y-O system. To represent the YO2 compound in the compound energy formalism (CEF) for U1-yYyO2± x, the lattice stability was calculated using density functional theory (DFT) while a partially ionic liquid sub-lattice model is used to describe the liquid phase. Moreover, a Gibbs function for the stoichiometric rhombohedral UY6O12 phase is proposed. Models representing the phases in the U-O and Y-O systems taken from the literature along with the phases that appear in the U-Y-O ternary are combined to form a unified assessment.

  8. A study on a voloxidizer with an oxygen concentration controller for a scale-up DESIGN

    SciTech Connect (OSTI)

    Kim, Young-Hwan; Yoon, Ji-Sup; Park, Byung-Suk; Jung, Jae-Hoo

    2007-07-01

    For a oxidation of UO{sub 2} pellets of tens/kg in a vol-oxidizer, the existing devices take a long time, also, for their scale-up to an engineering scale, we need the optimum oxygen concentration with an maximum oxidation efficiency. In this study, we attained the optimum oxygen concentration to shorten the oxidation time of a simulation fuel using a vol-oxidizer with an oxygen concentration controller and sensor. We compared the characteristics of a galvanic sensor with a zirconium oxide (ZrO{sub 2}) one. The simulation fuel was manufactured with 14 metallic oxides, and used at a mass of 500 g HM/batch. At 500 deg. C, the galvanic and zirconium oxide sensors measured the oxidation time for the simulation fuel. Also, the oxidation time of the simulation fuel was measured according to a change of the oxygen concentration with the selected sensor, and the sample was analyzed. (authors)

  9. Development of FLUOREX Process as a Progressive LWR Reprocessing System

    SciTech Connect (OSTI)

    Sasahira, Akira; Kani, Yuko; Iino, Kenji; Hoshino, Kuniyoshi; Kawamura, Fumio

    2007-07-01

    New LWR fuel reprocessing technology named FLUOREX, the hybrid process of fluoride volatility and solvent extraction, proposed here is suitable for future thermal/fast reactors (coexistence) cycle. Recently we developed the flame reactor which was the main equipment to reduce volume of the spent nuclear fuel in order to down-size the PUREX like purification system. Newly constructed flame reactor, having 300 gU/h to 1 kgU/h production rate, was employed to examine the fluorination efficiency of UO{sub 2}. It was successfully demonstrated that we can control the residual amount of U within a range of 2 to 10 % by changing the excess amount of F{sub 2} gas during fluorination. This amount indicated that spent LWR fuel would be reduced to 8 to 15% by fluorination. (authors)

  10. Reactivity control mechanisms for a HPLWR fuel assembly

    SciTech Connect (OSTI)

    Schlagenhaufer, Marc; Schulenberg, Thomas; Vogt, Bastian

    2007-07-01

    A parametric study of different reactivity control mechanisms has been performed for the cross section of a single fuel assembly of a High Performance Light Water Reactor using the Monte Carlo code MCNP5. The fuel temperature feedback, known as the Doppler Effect, and the coolant density feedback have been determined for fresh UO{sub 2} fuel in a large range of fuel and coolant temperatures. The local shutdown reactivity of different control rods with different absorber materials has been predicted. The neutron flux inside the control rods, the power profile in the fuel pins with and without control rods and the coolant density coefficient have been evaluated for future core optimization. Methods to improve the power profile with additional absorbers mounted outside the fuel cluster have been studied exemplarily. (authors)

  11. MOX Reprocessing at Tokai Reprocessing Plant

    SciTech Connect (OSTI)

    Taguchi, Katsuya; Nagaoka, Shinichi; Yamanaka, Atsushi; Nakamura, Yoshinobu; Omori, Eiichi; SATO, Takehiko; MIURA, Nobuyuki

    2007-07-01

    In March 2007, the first reprocessing of the 'Type B' MOX spent fuels of the Prototype Advanced Thermal Reactor FUGEN was initiated at Tokai Reprocessing Plant as a plant-scale demonstration of MOX fuel reprocessing. The operation was advanced satisfactorily and it has been confirmed that the MOX fuels as well as UO{sub 2} fuels can be reprocessed safely. Some characteristics of MOX fuels on reprocessing, such as properties of undissolved residue affecting the clarification process, are becoming visible. Reprocessing of the 'Type B' MOX fuels will be continued for several more years from now on, further investigations on solubility of fuels, characteristics of undissolved residues, progress of solvent degradation and so on will be continued. (authors)

  12. Partitioning of minor actinides from PUREX raffinate by the TODGA process

    SciTech Connect (OSTI)

    Magnusson, D.; Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano Purroy, D.; Modolo, G.; Sorel, C.

    2007-07-01

    A genuine High Active Raffinate (HAR) was produced from small scale PUREX reprocessing of a UO{sub 2} spent fuel solution as feed for a subsequent TODGA/TBP process. In this process, efficient recovery of the trivalent Minor Actinides (MA) actinides could be demonstrated using a hot cell set-up of 32 centrifugal contactor stages. The feed decontamination factors obtained for Am and Cm were in the range of 4 x 10{sup 4} which corresponds to a recovery of more than 99.99 % in the product fraction. Trivalent lanthanides and Y were co-extracted, otherwise only a small part of the Ru ended up in the product. The collected actinide/lanthanide fraction can be used as feed for a SANEX (separation actinides from lanthanides) with some modification of the acidity depending on the extracting molecule. (authors)

  13. Application of the DART Code for the Assessment of Advanced Fuel Behavior

    SciTech Connect (OSTI)

    Rest, J.; Totev, T.

    2007-07-01

    The Dispersion Analysis Research Tool (DART) code is a dispersion fuel analysis code that contains mechanistically-based fuel and reaction-product swelling models, a one dimensional heat transfer analysis, and mechanical deformation models. DART has been used to simulate the irradiation behavior of uranium oxide, uranium silicide, and uranium molybdenum aluminum dispersion fuels, as well as their monolithic counterparts. The thermal-mechanical DART code has been validated against RERTR tests performed in the ATR for irradiation data on interaction thickness, fuel, matrix, and reaction product volume fractions, and plate thickness changes. The DART fission gas behavior model has been validated against UO{sub 2} fission gas release data as well as measured fission gas-bubble size distributions. Here DART is utilized to analyze various aspects of the observed bubble growth in U-Mo/Al interaction product. (authors)

  14. United abominations: Density functional studies of heavy metal chemistry

    SciTech Connect (OSTI)

    Schoendorff, George

    2012-04-02

    Carbonyl and nitrile addition to uranyl (UO{sup 2}{sup 2+}) are studied. The competition between nitrile and water ligands in the formation of uranyl complexes is investigated. The possibility of hypercoordinated uranyl with acetone ligands is examined. Uranyl is studied with diactone alcohol ligands as a means to explain the apparent hypercoordinated uranyl. A discussion of the formation of mesityl oxide ligands is also included. A joint theory/experimental study of reactions of zwitterionic boratoiridium(I) complexes with oxazoline-based scorpionate ligands is reported. A computational study was done of the catalytic hydroamination/cyclization of aminoalkenes with zirconium-based catalysts. Techniques are surveyed for programming for graphical processing units (GPUs) using Fortran.

  15. CONTINUOUS PROCESS FOR PREPARING URANIUM HEXAFLUORIDE FROM URANIUM TETRAFLUORIDE AND OXYGEN

    DOE Patents [OSTI]

    Adams, J.B.; Bresee, J.C.; Ferris, L.M.

    1961-11-21

    A process for preparing UF/sub 6/ by reacting UF/sub 4/ and oxygen is described. The UF/sub 4/ and oxygen are continuously introduced into a fluidized bed of UO/sub 2/F/sub 2/ at a temperature of 600 to 900 deg C. The concentration of UF/sub 4/ in the bed is maintained below 25 weight per cent in order to avoid sintering and intermediate compound formation. By-product U0/sub 2/F/sub 2/ is continuously removed from the top of the bed recycled. In an alternative embodiment heat is supplied to the reaction bed by burning carbon monoxide in the bed. The product UF/sub 6/ is filtered to remove entrained particles and is recovered in cold traps and chemical traps. (AEC)

  16. 2010-2011 Seminar Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ---2011 S eminar Calendar for CSTEC CSTEC S eminars i n 1 504 G GBL o n s elected T hursdays. R efreshments a t 4 :00pm. S eminar a t 4 :15pm. *MSE/CSTEC S eminars i n 1 670 C SE o n s elected F ridays. R efreshments a t 3 :30pm. S eminar a t 3 :45pm. Sept. 2 3 Zhaohui Z hong GGBL 1 504 University o f M ichigan "Photocurrent G eneration a t C arbon N anotube/Polymer H eterojunctions" Oct. 2 2* Yi L uo CSE 1 670 Carnegie M ellon "Efficient P olymeric P hotovoltaics w ith 3

  17. 2011-2012 Working Groups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ---2012 C STEC W orking G roup S chedule Inorganic P V June 29 10:30am MSE C onf r oom ( 3062 H H D ow) Sung J oo K im ( Pan) July 13 10:30am MSE C onf r oom ( 3062 H H D ow) Michael K uo ( Ku) July 27 10:30am MSE C onf r oom ( 3062 H H D ow) Simon H uang ( Goldman) August 1 0 10:30am MSE C onf r oom ( 3062 H H D ow) Andy M artin ( Millunchick) October 1 9 1:30pm MSE C onf r oom ( 3062 H H D ow) Emmanouil K iopakis Nov. 9 1:30pm MSE C onf r oom ( 3062 H H D ow) Larry A agesen ( Thornton) Nov. 2

  18. Steam Oxidation of FeCrAl and SiC in the Severe Accident Test Station (SATS)

    SciTech Connect (OSTI)

    Pint, Bruce A.; Unocic, Kinga A.; Terrani, Kurt A.

    2015-08-01

    Numerous research projects are directed towards developing accident tolerant fuel (ATF) concepts that will enhance safety margins in light water reactors (LWR) during severe accident scenarios. In the U.S. program, the high temperature steam oxidation performance of ATF solutions has been evaluated in the Severe Accident Test Station (SATS) at Oak Ridge National Laboratory (ORNL) since 2012 [1-3] and this facility continues to support those efforts in the ATF community. Compared to the current UO2/Zr-based alloy fuel system, alternative cladding materials can offer slower oxidation kinetics and a smaller enthalpy of oxidation that can significantly reduce the rate of heat and hydrogen generation in the core during a coolant-limited severe accident [4-5]. Thus, steam oxidation behavior is a key aspect of the evaluation of ATF concepts. This report summarizes recent work to measure steam oxidation kinetics of FeCrAl and SiC specimens in the SATS.

  19. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  20. Transient Testing of Nuclear Fuels and Materials in United States

    SciTech Connect (OSTI)

    Daniel M. Wachs

    2012-12-01

    The US Department of Energy (DOE) has been engaged in an effort to develop and qualify next generation LWR fuel with enhanced performance and safety and reduced waste generation since 2010. This program, which has emphasized collaboration between the DOE, U.S. national laboratories and nuclear industry, was refocused from enhanced performance to enhanced accident tolerance following the events at Fukushima in 2011. Accident tolerant fuels have been specifically described as fuels that, in comparison with standard UO2-Zircaloy, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events. The program maintains an ambitious goal to insert a lead test assembly (LTA) of the new design into a commercial power reactor by 2022 .

  1. Preliminary Investigation of Candidate Materials for Use in Accident Resistant Fuel

    SciTech Connect (OSTI)

    Jason M. Harp; Paul A. Lessing; Blair H. Park; Jakeob Maupin

    2013-09-01

    As part of a Collaborative Research and Development Agreement (CRADA) with industry, Idaho National Laboratory (INL) is investigating several options for accident resistant uranium compounds including silicides, and nitrides for use in future light water reactor (LWR) fuels. This work is part of a larger effort to create accident tolerant fuel forms where changes to the fuel pellets, cladding, and cladding treatment are considered. The goal fuel form should have a resistance to water corrosion comparable to UO2, have an equal to or larger thermal conductivity than uranium dioxide, a melting temperature that allows the material to stay solid under power reactor conditions, and a uranium loading that maintains or improves current LWR power densities. During the course of this research, fuel fabricated at INL will be characterized, irradiated at the INL Advanced Test Reactor, and examined after irradiation at INL facilities to help inform industrial partners on candidate technologies.

  2. Mechanistic prediction of fission-product release under normal and accident conditions: key uncertainties that need better resolution. [PWR; BWR

    SciTech Connect (OSTI)

    Rest, J.

    1983-09-01

    A theoretical model has been used for predicting the behavior of fission gas and volatile fission products (VFPs) in UO/sub 2/-base fuels during steady-state and transient conditions. This model represents an attempt to develop an efficient predictive capability for the full range of possible reactor operating conditions. Fission products released from the fuel are assumed to reach the fuel surface by successively diffusing (via atomic and gas-bubble mobility) from the grains to grain faces and then to the grain edges, where the fission products are released through a network of interconnected tunnels of fission-gas induced and fabricated porosity. The model provides for a multi-region calculation and uses only one size class to characterize a distribution of fission gas bubbles.

  3. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    SciTech Connect (OSTI)

    R. L. Williamson; D. A. Knoll

    2009-09-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importance of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  4. Uranium dioxide electrolysis

    SciTech Connect (OSTI)

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  5. 18 years experience on UF{sub 6} handling at Japanese nuclear fuel manufacturer

    SciTech Connect (OSTI)

    Fujinaga, H.; Yamazaki, N.; Takebe, N.

    1991-12-31

    In the spring of 1991, a leading nuclear fuel manufacturing company in Japan, celebrated its 18th anniversary. Since 1973, the company has produced over 5000 metric ton of ceramic grade UO{sub 2} powder to supply to Japanese fabricators, without major accident/incident and especially with a successful safety record on UF{sub 6} handling. The company`s 18 years experience on nuclear fuel manufacturing reveals that key factors for the safe handling of UF{sub 6} are (1) installing adequate facilities, equipped with safety devices, (2) providing UF{sub 6} handling manuals and executing them strictly, and (3) repeating on and off the job training for operators. In this paper, equipment and the operation mode for UF{sub 6} processing at their facility are discussed.

  6. Aspects of uranium chemistry pertaining to UF{sub 6} cylinder handling

    SciTech Connect (OSTI)

    Ritter, R.L.; Barber, E.J.

    1991-12-31

    Under normal conditions, the bulk of UF{sub 6} in storage cylinders will be in the solid state with an overpressure of gaseous UF{sub 6} well below one atmosphere. Corrosion of the interior of the cylinder will be very slow, with formation of a small amount of reduced fluoride, probably U{sub 2}F{sub 9}. The UO{sub 3}-HF-H{sub 2}O phase diagram indicates that reaction of any inleaking water vapor with the solid UF{sub 6} will generate the solid material [H{sub 3}O]{sub 2}(U(OH){sub 4}F{sub 4}) in equilibrium with an aqueous HF solution containing only small amounts of uranium. The corrosion of the steel cylinder by these materials may be enhanced over that observed with gaseous anhydrous UF{sub 6}.

  7. Release of UF/sub 6/ from a ruptured model 48Y cylinder at Sequoyah Fuels Corporation Facility: lessons-learned report

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The uranium hexafluoride (UF/sub 6/) release of January 4, 1986, at the Sequoyah Fuels Corporation facility has been reviewed by a NRC Lessons-Learned Group. A Model 48Y cylinder containing UF/sub 6/ ruptured upon being heated after it was grossly overfilled. The UF/sub 6/ released upon rupture of the cylinder reacted with airborne moisture to produce hydrofluoric acid (HF) and uranyl fluoride (UO/sub 2/F/sub 2/). One individual died from exposure to airborne HF and several others were injured. There were no significant immediate effects from exposure to uranyl fluoride. This supplement report contains NRC's response to the recommendations made in NUREG-1198 by the Lessons Learned Group. In developing a response to each of the recommendations, the staff considered actions that should be taken: (1) for the restart of the Sequoyah Fuels Facility; (2) to make near-term improvement; and (3) to improve the regulatory framework.

  8. NGSI FY15 Final Report. Innovative Sample Preparation for in-Field Uranium Isotopic Determinations

    SciTech Connect (OSTI)

    Yoshida, Thomas M.; Meyers, Lisa

    2015-11-10

    Our FY14 Final Report included an introduction to the project, background, literature search of uranium dissolution methods, assessment of commercial off the shelf (COTS) automated sample preparation systems, as well as data and results for dissolution of bulk quantities of uranium oxides, and dissolution of uranium oxides from swipe filter materials using ammonium bifluoride (ABF). Also, discussed were reaction studies of solid ABF with uranium oxide that provided a basis for determining the ABF/uranium oxide dissolution mechanism. This report details the final experiments for optimizing dissolution of U3O8 and UO2 using ABF and steps leading to development of a Standard Operating Procedure (SOP) for dissolution of uranium oxides on swipe filters.

  9. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO

  10. Speciation of uranium in La{sub 2}Zr{sub 2}O{sub 7} pyrochlore by TRPLS

    SciTech Connect (OSTI)

    Mohapatra, M.; Rajeswari, B.; Hon, N. S.; Kadam, R. M. Natarajan, V.

    2015-06-24

    We discuss the speciation of uranium in lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7} =LZO) pyrochlore ceramic prepared via a gel-combustion route. Uranium concentration in the pyrochlore was optimized to 2 mol%. XRD and SEM experiments were carried out to assess the phase and homogeneity of the prepared samples. Time resolved photoluminescence (TRPLS) investigations were carried out for understanding the species stabilized in the pyrochlore host. It was observed that, uranium exists as uranate ion (UO{sub 6}{sup 6−}) in the zirconate host where it replaces the ‘Zr’ ions at its regular site with surrounding defect centers created for charge compensation.

  11. Initial Neutronics Analyses for HEU to LEU Fuel Conversion of the Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Kontogeorgakos, D.; Derstine, K.; Wright, A.; Bauer, T.; Stevens, J.

    2013-06-01

    The purpose of the TREAT reactor is to generate large transient neutron pulses in test samples without over-heating the core to simulate fuel assembly accident conditions. The power transients in the present HEU core are inherently self-limiting such that the core prevents itself from overheating even in the event of a reactivity insertion accident. The objective of this study was to support the assessment of the feasibility of the TREAT core conversion based on the present reactor performance metrics and the technical specifications of the HEU core. The LEU fuel assembly studied had the same overall design, materials (UO2 particles finely dispersed in graphite) and impurities content as the HEU fuel assembly. The Monte Carlo N–Particle code (MCNP) and the point kinetics code TREKIN were used in the analyses.

  12. Removal of dissolved actinides from alkaline solutions by the method of appearing reagents

    DOE Patents [OSTI]

    Krot, Nikolai N.; Charushnikova, Iraida A.

    1997-01-01

    A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.

  13. Comparison studies of head-end reprocessing using three LWR fuels

    SciTech Connect (OSTI)

    Goode, J.H.; Stacy, R.G.; Vaughen, V.C.A.

    1980-06-01

    The removal of {sup 3}H by voloxidation and the dissolution behavior of two PWR and one BWR fuels were compared in hot-cell studies. The experiments showed that >99% of the {sup 3}H contained in the irradiated UO{sub 2} was volatilized by oxidation in air at 753{sup 0}K (480{sup 0}C). The oxidation did not affect the dissolution of the uranium and plutonium in 7 M HNO{sub 3} (0.02 to 0.03% insoluble plutonium) but did create a fission-product residue that was two to three times more insoluble. From 40 to 69% of the ternary fission-product {sup 3}H was found in the Zircaloy cladding of the fuel rods. Voloxidation had little effect on the {sup 3}H held in the Zircaloy cladding; oxidation for 6 h at 753{sup 0}K released only 0.05% of the {sup 3}H.

  14. Conversion of radioactive ferrocyanide compounds to immobile glasses

    DOE Patents [OSTI]

    Schulz, W.W.; Dressen, A.L.

    1975-11-21

    A method is described for converting complex radioactive ferrocyanide compounds of /sup 134/Cs and /sup 137/Cs to immobile glass that is resistant to leaching by water. The /sup 134/Cs and /sup 137/Cs are separated from nuclear waste solutions by precipitation from alkaline solutions by the addition of a soluble Ni/sup 2 +/, Zn/sup 2 +/, Cu/sup 2 +/, Co/sup 2 +/, UO/sub 2//sup 2 +/, or Mn/sup 2 +/ and K/sub 4/Fe(CN)/sub 6/. The dried, finely ground precipitate is mixed with Na/sub 2/CO/sub 3/ and a mixture of (a) basalt and B/sub 2/O/sub 3/ or (b) SiO/sub 2/ and CaO, melted, and allowed to solidify. (BLM)

  15. Analysis of molten debris freezing and wall erosion during a severe RIA test. [PWR; BWR

    SciTech Connect (OSTI)

    El-Genk, M.S.; Moore, R.L.

    1980-01-01

    A one-dimensional physical model was developed to study the transient freezing of the molten debris layer (a mixture of UO/sub 2/ fuel and zircaloy cladding) produced in a severe reactivity initiated accident in-pile test and deposited on the inner surface of the test shroud wall. The wall had a finite thickness and was cooled along its outer surface by coolant bypass flow. Analyzed are the effects of debris temperature, radiation cooling at the debris layer surface, zircaloy volume ratio within the debris, and initial wall temperature on the transient freezing of the debris layer and the potential melting of the wall. The governing equations of this two-component, simultaneous freezing and melting problem in a finite geometry were solved using a one-dimensional finite element code based on the method of weighted residuals.

  16. EPRI/B and W cooperative program on PWR fuel-rod performance. Final report

    SciTech Connect (OSTI)

    Papazoglou, T.P.; Davis, H.H.

    1983-03-01

    Zircaloy-4 fuel cladding specimens were irradiated in a fueled and non-fueled condition for two and four cyles of irradiation, respectively, in the Oconee 2 reactor. The purpose of this long-term surveillance program was to study the in-reactor performance of four Zircaloy-4 cladding types with distinctly different properties, in combination with two types of UO/sub 2/ fuel pellets. The cladding types included Sandvik Special Metals tubing in the cold-worked/stress relieved and cold-worked/recrystallized conditions, and German VDM cladding with two different anneal temperatures. The fuel pellets included a conventional densifying pellet type, and a special (shorter) stable pellet type intended to reduce pellet-clad mechanical interaction. The irradiation growth and creep under compressive stress of the above cladding types were studied and followed up to fluences of 1.3 x 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV).

  17. Update of Energy Efficiency Requirements for Manufactured Homes

    SciTech Connect (OSTI)

    Conner, Craig C.; Dillon, Heather E.; Lucas, Robert G.; Early, Chris; Lubliner, Michael

    2004-03-22

    Energy efficiency requirements were developed for manufactured (mobile) homes, which are regulated by the U.S. Department of Housing and Urban Development (HUD). A life-cycle cost analysis from the homeowner's perspective was used to establish parameters for a least-cost home in a large number of cities. Economic, financial, and energy-efficiency measures for the life-cycle cost analysis were selected. The resulting energy-efficiency levels were aggregated to the existing HUD zones and expressed as a maximum overall home U-value (thermal transmittance) requirement for the building envelope. The proposed revised standard's costs, benefits, and net value to the consumer were quantified. This analysis updates a similar effort completed in 1992, which was the basis for the existing HUD code Uo requirements.

  18. THERMODYNAMIC MODEL FOR URANIUM DIOXIDE BASED NUCLEAR FUEL

    SciTech Connect (OSTI)

    Thompson, Dr. William T.; Lewis, Dr. Brian J; Corcoran, E. C.; Kaye, Dr. Matthew H.; White, S. J.; Akbari, F.; Higgs, Jamie D.; Thompson, D. M.; Besmann, Theodore M; Vogel, S. C.

    2007-01-01

    Many projects involving nuclear fuel rest on a quantitative understanding of the co-existing phases at various stages of burnup. Since the many fission products have considerably different abilities to chemically associate with oxygen, and the oxygen-to-metal molar ratio is slowly changing, the chemical potential of oxygen is a function of burnup. Concurrently, well-recognized small fractions of new phases such as inert gas, noble metals, zirconates, etc. also develop. To further complicate matters, the dominant UO2 fuel phase may be non-stoichiometric and most of the minor phases themselves have a variable composition dependent on temperature and possible contact with the coolant in the event of a sheathing breach. A thermodynamic fuel model to predict the phases in partially burned CANDU (CANada Deuterium Uranium) nuclear fuel containing many major fission products has been under development. The building blocks of the model are the standard Gibbs energies of formation of the many possible compounds expressed as a function of temperature. To these data are added mixing terms associated with the appearance of the component species in particular phases. In operational terms, the treatment rests on the ability to minimize the Gibbs energy in a multicomponent system, in our case using the algorithms developed by Eriksson. The model is capable of handling non-stoichiometry in the UO2 fluorite phase, dilute solution behaviour of significant solute oxides, noble metal inclusions, a second metal solid solution U(Pd-Rh-Ru)3, zirconate, molybdate, and uranate solutions as well as other minor solid phases, and volatile gaseous species.

  19. Characterization of Suspect Fuel Rod Pieces from the 105 K West Basin

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Pool, Karl N.; Thornton, Brenda M.

    2006-07-25

    This report provides physical and radiochemical characterization results from examinations and laboratory analyses performed on {approx}0.55-inch diameter rod pieces found in the 105 K West (KW) Basin that were suspected to be from nuclear reactor fuel. The characterization results will be used to establish the technical basis for adding this material to the contents of one of the final Multi-Canister Overpacks (MCOs) that will be loaded out of the KW Basin in late FY2006 or at a later time depending on project priorities. Fifteen fuel rod pieces were found during the clean out of the KW Basin. Based on lack of specific credentials, documentation, or obvious serial numbers, none of the items could be positively identified nor could their sources or compositions be described. Item weights and dimensions measured in the KW Basin indicated densities consistent with the suspect fuel rods containing uranium dioxide (UO2), uranium metal, or being empty. Extensive review of the Hanford Site technical literature led to the postulation that these pieces likely were irradiated test fuel prepared to support of the development of the Hanford ''New Production Reactor'', later called N Reactor. To obtain definitive data on the composition of the suspect fuel, 4 representative fuel rod pieces, with densities corresponding to oxide fuel were selected from the 15 items, and shipped from the KW Basin to the Pacific Northwest National Laboratory's (PNNL) Radiological Processing Laboratory (RPL; also known at the 325 Building) for examinations and characterization. The three fuel rod that were characterized appear to contain slightly irradiated UO2 fuel, originally of natural enrichment, with zirconium cladding. The uranium-235 isotopic concentrations decreased by the irradiation and become slightly lower than the natural enrichment of 0.72% to range from 0.67 to 0.71 atom%. The plutonium concentrations, ranged from about 200 to 470 grams per metric ton of uranium and ranged in

  20. Production plant separator system conceptual design

    SciTech Connect (OSTI)

    Ng, E.; Kan, T.

    1994-12-31

    A full conceptual design has been completed for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant capable of producing {approximately}1700 metric tons of enriched uranium per year (MTU/y). This plant is the first step in the deployment of AVLIS enrichment technology, which will provide inexpensive, dependable, and environmentally safe uranium enrichment services to utility customers. Previous issues of the ISAM Semiannual Report describe other major systems in the plant, namely the laser, feed and product systems. This article describes the design of the separator system. The separator system is a a key component in the plant. After the feed conversion system converts uranium trioxide (UO{sub 3}) to a uranium-iron alloy, the alloy enters the separator system. In the separator, and intense electron beam vaporizes uranium metal in a vacuum chamber. In the laser system, fixed-frequency copper-vapor lasers pump tunable dye lasers. These precisely tuned dye lasers then selectively excite and ionize uranium-235 atoms in the vapor stream, leaving the uranium-238 atoms untouched. The photo-ions of uranium-235 are then drawn to an electrically biased collector, producing the enriched product stream. The remaining vapor flows through, producing the depleted tails stream. Both product and tails streams are continuously removed from the separator pod as flowing liquid uranium metal. Withdrawal containers are used to collect separately the enriched and depleted uranium. The enriched product will be converted by fuel fabricators to uranium dioxide (UO{sub 2}) and used to fabricate reactor fuel assemblies for utility customers.

  1. Static electric dipole polarizabilities of An{sup 5+/6+} and AnO{sub 2}{sup +/2+} (An = U, Np, and Pu) ions

    SciTech Connect (OSTI)

    Parmar, Payal E-mail: kipeters@wsu.edu Peterson, Kirk A. E-mail: kipeters@wsu.edu; Clark, Aurora E. E-mail: kipeters@wsu.edu

    2014-12-21

    The parallel components of static electric dipole polarizabilities have been calculated for the lowest lying spin-orbit states of the penta- and hexavalent oxidation states of the actinides (An) U, Np, and Pu, in both their atomic and molecular diyl ion forms (An{sup 5+/6+} and AnO{sub 2}{sup +/2+}) using the numerical finite-field technique within a four-component relativistic framework. The four-component Dirac-Hartree-Fock method formed the reference for MP2 and CCSD(T) calculations, while multireference Fock space coupled-cluster (FSCC), intermediate Hamiltonian Fock space coupled-cluster (IH-FSCC) and Kramers restricted configuration interaction (KRCI) methods were used to incorporate additional electron correlation. It is observed that electron correlation has significant (?5 a.u.{sup 3}) impact upon the parallel component of the polarizabilities of the diyls. To the best of our knowledge, these quantities have not been previously reported and they can serve as reference values in the determination of various electronic and response properties (for example intermolecular forces, optical properties, etc.) relevant to the nuclear fuel cycle and material science applications. The highest quality numbers for the parallel components (?{sub zz}) of the polarizability for the lowest ? levels corresponding to the ground electronic states are (in a.u.{sup 3}) 44.15 and 41.17 for UO{sub 2}{sup +} and UO{sub 2}{sup 2+}, respectively, 45.64 and 41.42 for NpO{sub 2}{sup +} and NpO{sub 2}{sup 2+}, respectively, and 47.15 for the PuO{sub 2}{sup +} ion.

  2. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    SciTech Connect (OSTI)

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; Andersson, David A.; Stanek, Chris R.; Uberuaga, Blas P.

    2015-03-03

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimum is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 8001800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.

  3. Multiple reaction fronts in the oxidation-reduction of iron-rich uranium ores

    SciTech Connect (OSTI)

    Dewynne, J.N. . Faculty of Mathematical Studies); Fowler, A.C. . Mathematical Inst.); Hagan, P.S. )

    1993-08-01

    When a container of radioactive waste is buried underground, it eventually corrodes, and leakage of radioactive material to the surrounding rock occurs. Depending on the chemistry of the rock, many different reactions may occur. A particular case concerns the oxidation and reduction of uranium ores by infiltrating groundwater, since UO[sub 3] is relatively soluble (and hence potentially transportable to the water supply), whereas UO[sub 2] is essentially insoluble. It is therefore of concern to those involved with radioactive waste disposal to understand the mechanics of uranium transport through reduction and oxidation reactions. This paper describes the oxidation of iron-rich uranium-bearing rocks by infiltration of groundwater. A reaction-diffusion model is set up to describe the sequence of reactions involving iron oxidation, uranium oxidation and reduction, sulfuric acid production, and dissolution of the host rock that occur. On a geological timescale of millions of years, the reactions occur very fast in very thin reaction fronts. It is shown that the redox front that separates oxidized (orange) rock from reduced (black) rock must actually consist of two separate fronts that move together, at which the two separate processes of uranium oxidation and iron reduction occur, respectively. Between these fronts, a high concentration of uranium is predicted. The mechanics of this process are not specific to uranium-mediated redox reactions, but apply generally and may be used to explain the formation of concentrated ore deposits in extended veins. On the long timescales of relevance, a quasi-static response results, and the problem can be solved explicitly in one dimension. This provides a framework for studying more realistic two-dimensional problems in fissured rocks and also for the future study of uraninite nodule formation.

  4. Fabrication of Uranium Oxycarbide Kernels for HTR Fuel

    SciTech Connect (OSTI)

    Charles Barnes; CLay Richardson; Scott Nagley; John Hunn; Eric Shaber

    2010-10-01

    Babcock and Wilcox (B&W) has been producing high quality uranium oxycarbide (UCO) kernels for Advanced Gas Reactor (AGR) fuel tests at the Idaho National Laboratory. In 2005, 350-µm, 19.7% 235U-enriched UCO kernels were produced for the AGR-1 test fuel. Following coating of these kernels and forming the coated-particles into compacts, this fuel was irradiated in the Advanced Test Reactor (ATR) from December 2006 until November 2009. B&W produced 425-µm, 14% enriched UCO kernels in 2008, and these kernels were used to produce fuel for the AGR-2 experiment that was inserted in ATR in 2010. B&W also produced 500-µm, 9.6% enriched UO2 kernels for the AGR-2 experiments. Kernels of the same size and enrichment as AGR-1 were also produced for the AGR-3/4 experiment. In addition to fabricating enriched UCO and UO2 kernels, B&W has produced more than 100 kg of natural uranium UCO kernels which are being used in coating development tests. Successive lots of kernels have demonstrated consistent high quality and also allowed for fabrication process improvements. Improvements in kernel forming were made subsequent to AGR-1 kernel production. Following fabrication of AGR-2 kernels, incremental increases in sintering furnace charge size have been demonstrated. Recently small scale sintering tests using a small development furnace equipped with a residual gas analyzer (RGA) has increased understanding of how kernel sintering parameters affect sintered kernel properties. The steps taken to increase throughput and process knowledge have reduced kernel production costs. Studies have been performed of additional modifications toward the goal of increasing capacity of the current fabrication line to use for production of first core fuel for the Next Generation Nuclear Plant (NGNP) and providing a basis for the design of a full scale fuel fabrication facility.

  5. Multiheteromacrocycles that Complex Metal Ions. Second Progress Report, 1 May 1975 -- 30 April 1976

    DOE R&D Accomplishments [OSTI]

    Cram, D. J.

    1976-01-15

    Objective is to develop cyclic and polycyclic host organic compounds to complex and lipophilize metal ions. Macrorings were synthesized: (OCH{sub 2} CH{sub 2} O CH{sub 2}COCH{sub 2} COCH{sub 2}){sub 2} and (OCH{sub 2} CH{sub 2} O CH{sub 2} COCH{sub 2} COCH{sub 2}){sub 3}. The smaller ring complexes divalent metals 10{sup 1+9} times better than the open-chain model CH{sub 3} O CH{sub 2} CO CH{sub 2} COCH{sub 2} O CH{sub 3}, and the order in which metal ions are complexed is Cu{sup 2+}, UO{sub 2}{sup 2+} greater than Ni{sup 2+} greater than Fe{sup 2+}, Co{sup 2+}, Zn{sup 2+}, Cd{sup 2+} greater than Mn{sup 2+}. The UO{sub 2}{sup 2+} and Cu{sup 2+} complexes were isolated and characterized. The larger ring complexes trivalent metals 10{sup 0.9-1.7} times better than the open- chain model compound, and the order is La{sup 3+}, Ce{sup 3+} greater than Cr{sup 3+}. Five other macrocycles were also synthesized, and their binding constants with Na, K, NH{sub 4}, and Cs picrates were measured. Six compounds containing one macroring and two inward-pointing ArOH or ArOCH{sub 3} groups were also prepared and tested for binding of Li, Na, K, Rb, and NH{sub 4} picrates. Racemic compounds containing two binaphthyls and its sulfur analog were prepared. Cage-shaped multiheteromacrocycles containing ten O ligand sites or four S and six O ligand sites were prepared and the binding capability of the first compound for picrates studied. Two ring systems with phosphonate ester groups were also prepared. (DLC)

  6. Zirconia Inert Matrix Fuel for Plutonium and Minor Actinides Management in Reactors and as an Ultimate Waste Form

    SciTech Connect (OSTI)

    Degueldre, Claude; Wiesenack, Wolfgang

    2008-07-01

    An yttria stabilised zirconia doped with plutonia and erbia has been selected as inert matrix fuel (IMF) at PSI. The results of experimental irradiation tests on yttria-stabilised zirconia doped with plutonia and erbia pellets in the Halden research reactor as well as a study of zirconia solubility are presented. Zirconia must be stabilised by yttria to form a solid solution such as MAz(Y,Er){sub y}Pu{sub x}Zr{sub 1-y}O{sub 2-{xi}} where minor actinides (MA) oxides are also soluble. (Er,Y,Pu,Zr)O{sub 2-{xi}} (with Pu containing 5% Am) was successfully prepared at PSI and irradiated in the Halden reactor. Emphasis is given on the zirconia- IMF properties under in-pile irradiation, on the fuel material centre temperatures and on the fission gas release. The retention of fission products in zirconia may be stronger at similar temperature, compared to UO{sub 2}. The outstanding behaviour of plutonia-zirconia inert matrix fuel is compared to the classical (U,Pu)O{sub 2} fuels. The properties of the spent fuel pellets are presented focusing on the once-through strategy. For this strategy, low solubility of the inert matrix is required for geological disposal. This parameter was studied in detail for a range of solutions corresponding to groundwater under near field conditions. Under these conditions the IMF solubility is about 109 times smaller than glass, several orders of magnitude lower than UO{sub 2} in oxidising conditions (Yucca Mountain) and comparable in reducing conditions, which makes the zirconia material very attractive for deep geological disposal. The behaviour of plutonia-zirconia inert matrix fuel is discussed within a 'burn and bury' strategy. (authors)

  7. Solvent extraction of thorium(IV), uranium(VI), and europium(III) with lipophilic alkyl-substituted pyridinium salts. Final report for subcontract 9-XZ2-1123E-1, June 1, 1992--December 1, 1995

    SciTech Connect (OSTI)

    Ensor, D.D.

    1997-01-01

    In the treatment of high level nuclear wastes, aromatic pyridinium salts which are radiation-resistant are desired for the extraction of actinides and lanthanides. The solvent extraction of Th{sup +4}, UO{sub 2}{sup +2}, and Eu{sup +3} by three aromatic extractants, 3,5-didodecylpyridinium nitrate (35PY), 2,6-didodecylpyridinium nitrate (26PY), and 1-methyl-3,5-didodecyl-pyridinium iodide (1M35PY) has been studied in nitric acid media. The general order of extractability of the three extractants in toluene was 1M35PY>> 26PY > 35PY. The overall extraction efficiency of the metal ions was Th{sup +4} >UO{sub 2}{sup +2} > Eu{sup +3}. The extraction of HNO{sub 3}, which was competitive with the extraction of metal ions, was quantitatively investigated by NaOH titration and UV spectrometry. The loading capacity suggested that the extracted species in the organic phase for thorium was (R{sub 4}N{sup +}){sub 2}Th(NO{sub 3}{sup -}){sub 6}, where R{sub 4}N{sup +} denotes 1M35PY. A comparison of 1M35PY to the well-characterized extractant, Aliquat-336, an aliphatic ammonium salt was made. At the same extractant concentration, 1M35PY extracted thorium more efficiently than Aliquat-336 at high acidity. Thorium could be readily stripped with dilute nitric acid from 1M35PY. After irradiation of 0.1M 1M35PY with {sup 60}Co at 40R/min for 48 hours, no change in the extraction efficiency of thorium was observed.

  8. Kinetic studies of the [NpO? (CO?)?]?? ion at alkaline conditions using C NMR

    SciTech Connect (OSTI)

    Panasci, Adele F.; Harley, Stephen J.; Zavarin, Mavrik; Casey, William H.

    2014-04-21

    Carbonate ligand-exchange rates on the [NpO? (CO?)?]?? ion were determined using a saturation-transfer C nuclear magnetic resonance (NMR) pulse sequence in the pH range of 8.1 ? pH ? 10.5. Over the pH range 9.3 ? pH ? 10.5, which compares most directly with previous work of Stout et al.,1 we find an average rate, activation energy, enthalpy, and entropy of k298ex = 40.6(4.3) s?, Ea =45.1(3.8) kJ mol?, ?H = 42.6(3.8) kJ mol?, and ?S = -72(13) J mol? K?, respectively. These activation parameters are similar to the Stout et al. results at pH 9.4. However, their room-temperature rate at pH 9.4, k298ex = 143(1.0) s?, is ~3 times faster than what we experimentally determined at pH 9.3: k298ex = 45.4(5.3) s?. Our rates for [NpO? (CO?)?]?? are also faster by a factor of ~3 relative to the isoelectronic [UO?(CO?)?]?? as reported by Brucher et al.2 of k298ex = 13(3) s?. Consistent with results for the [UO?(CO?)?]?? ion, we find evidence for a proton-enhanced pathway for carbonate exchange for the [NpO?(CO?)?]?? ion at pH < 9.0.

  9. A Green Approach to SNF Reprocessing: Are Common Household Reagents the Answer?

    SciTech Connect (OSTI)

    Peper, Shane M.; McNamara, Bruce K.; O'Hara, Matthew J.; Douglas, Matthew

    2008-04-03

    It has been discovered that UO2, the principal component of spent nuclear fuel (SNF), can efficiently be dissolved at room temperature using a combination of common household reagents, namely hydrogen peroxide, baking soda, and ammonia. This rather serendipitous discovery opens up the possibility, for the first time, of considering a non-acidic process for recycling U from SNF. Albeit at the early stages of development, our unconventional dissolution approach possesses many attractive features that could make it a reality in the future. With dissolution byproducts of water and oxygen, our approach poses a minimal threat to the environment. Moreover, the use of common household reagents to afford actinide oxide dissolution suggests a certain degree of economic favorability. With the use of a “closed” digestion vessel as a reaction chamber, our approach has substantial versatility with the option of using either aqueous or gaseous reactant feeds or a combination of both. Our approach distinguishes itself from all existing reprocessing technologies in two important ways. First and foremost, it is an alkaline rather than an acidic process, using mild non-corrosive chemicals under ambient conditions to effect actinide separations. Secondly, it does not dissolve the entire SNF matrix, but rather selectively solubilizes U and other light actinides for subsequent separation, resulting in potentially faster head-end dissolution and fewer downstream separation steps. From a safeguards perspective, the use of oxidizing alkaline solutions to effect actinide separations also potentially offers a degree of inherent proliferation resistance, by allowing the U to be selectively removed from the remaining dissolver solution while keeping Pu grouped with the other minor actinides and fission products. This paper will describe the design and general experimental setup of a “closed” digestion vessel for performing uranium oxide dissolutions under alkaline conditions using

  10. LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement

    SciTech Connect (OSTI)

    O`Connor, D.G.; Fisher, S.E.; Holdaway, R.

    1998-08-01

    The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

  11. ASSESSMENT OF POSSIBLE CYCLE LENGTHS FOR FULLY-CERAMIC MICRO-ENCAPSULATED FUEL-BASED LIGHT WATER REACTOR CONCEPTS

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal Pasamehmetoglu; Francesco Venneri

    2012-04-01

    The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with failure-proof fuel. This paper examines the feasibility of LWR-like cycle length for such a low enriched uranium fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel 'as-is' into existing LWRs while retaining their thermal-hydraulic characteristics. The feasibility of using this fuel is assessed by looking at cycle lengths and fuel failure rates. Other considerations (e.g., safety parameters, etc.) were not considered at this stage of the study. The study includes the examination of different TRISO kernel diameters without changing the coating layer thicknesses. The study shows that a naive use of UO{sub 2} results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. In this study, starting with the recognized highest packing fraction practically achievable (44%), higher enrichment, larger fuel kernel sizes, and the use of higher density fuels have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In contrast, the designs that do not depart too drastically from those of the nominal NGNP HTR fuel TRISO particles are shown to perform satisfactorily and display a high rates of survival under all considered scenarios. Finally, it is recognized that relaxing the geometry constraint will result in satisfactory cycle lengths even using UO{sub 2}-loaded TRISO particles-based fuel with enrichment at or below 20 w/o.

  12. Assessment of possible cycle lengths for fully-ceramic micro-encapsulated fuel-based light water reactor concepts

    SciTech Connect (OSTI)

    Sen, R. S.; Pope, M. A.; Ougouag, A. M.; Pasamehmetoglu, K.; Venneri, F.

    2012-07-01

    The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with accident-tolerant fuel. This paper examines the feasibility of LWR-like cycle length for such a low enriched uranium fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel 'as-is' into existing LWRs while retaining their thermal-hydraulic characteristics. The feasibility of using this fuel is assessed by looking at cycle lengths and fuel failure rates. Other considerations (e.g., safety parameters, etc.) were not considered at this stage of the study. The study includes the examination of different TRISO kernel diameters without changing the coating layer thicknesses. The study shows that a naive use of UO{sub 2} results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. In this study, starting with the recognized highest packing fraction practically achievable (44%), higher enrichment, larger fuel kernel sizes, and the use of higher density fuels have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In contrast, the designs that do not depart too drastically from those of the nominal NGNP HTR fuel TRISO particles are shown to perform satisfactorily and display a high rate of survival under all considered scenarios. Finally, it is recognized that relaxing the geometry constraint will result in satisfactory cycle lengths even using UO{sub 2}-loaded TRISO particles-based fuel with enrichment at or below 20 w/o. (authors)

  13. Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR

    SciTech Connect (OSTI)

    G. S. Chang; Hongbin Zhang

    2009-09-01

    One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

  14. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect (OSTI)

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  15. A nuclear criticality safety assessment of the loss of moderation control in 2 1/2 and 10-ton cylinders containing enriched UF{sub 6}

    SciTech Connect (OSTI)

    Newvahner, R.L.; Pryor, W.A.

    1991-12-31

    Moderation control for maintaining nuclear criticality safety in 2 {1/2}-ton, 10-ton, and 14-ton cylinders containing enriched uranium hexafluoride (UF{sub 6}) has been used safely within the nuclear industry for over thirty years, and is dependent on cylinder integrity and containment. This assessment evaluates the loss of moderation control by the breaching of containment and entry of water into the cylinders. The first objective of this study was to estimate the required amounts of water entering these large UF{sub 6} cylinders to react with, and to moderate the uranium compounds sufficiently to cause criticality. Hypothetical accident situations were modeled as a uranyl fluoride (UO{sub 2}F{sub 2}) slab above a UF{sub 6} hemicylinder, and a UO{sub 2}F{sub 2} sphere centered within a UF{sub 6} hemicylinder. These situations were investigated by computational analyses utilizing the KENO V.a Monte Carlo Computer Code. The results were used to estimate both the masses of water required for criticality, and the limiting masses of water that could be considered safe. The second objective of the assessment was to calculate the time available for emergency control actions before a criticality would occur, i.e., a {open_quotes}safetime{close_quotes}, for various sources of water and different size openings in a breached cylinder. In the situations considered, except the case for a fire hose, the safetime appears adequate for emergency control actions. The assessment shows that current practices for handling moderation controlled cylinders of low enriched UF{sub 6}, along with the continuation of established personnel training programs, ensure nuclear criticality safety for routine and emergency operations.

  16. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; Andersson, David A.; Stanek, Chris R.; Uberuaga, Blas P.

    2015-03-03

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimummore » is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800–1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.« less

  17. Design of Mega-Voltage X-ray Digital Radiography and Computed Tomography Performance Phantoms

    SciTech Connect (OSTI)

    Aufderheide, M B; Martz, H E; Curtin, M

    2009-06-22

    A number of fundamental scientific questions have arisen concerning the operation of high-energy DR and CT systems. Some of these questions include: (1) How deeply can such systems penetrate thickly shielded objects? (2) How well can such systems distinguish between dense and relatively high Z materials such as lead, tungsten and depleted uranium and lower Z materials such as steel, copper and tin? (3) How well will such systems operate for a uranium material which is an intermediate case between low density yellowcake and high density depleted uranium metal? These questions have led us to develop a set of phantoms to help answer these questions, but do not have any direct bearing on any smuggling concern. These new phantoms are designed to allow a systemic exploration of these questions by gradually varying their compositions and thicknesses. These phantoms are also good probes of the blurring behavior of radiography and tomography systems. These phantoms are composed of steel ({rho} assumed to be 7.8 g/cc), lead ({rho} assumed to be 11.4 g/cc), tungsten ({rho} assumed to be 19.25 g/cc), uranium oxide (UO{sub 3}) ({rho} assumed to be 4.6 g/cc), and depleted uranium (DU) ({rho} assumed to be 18.9 g/cc). There are five designed phantoms described in this report: (1) Cylindrical shells of Tungsten and Steel; (2) Depleted Uranium Inside Tungsten Hemi-cube Shells; (3) Nested Spherical Shells; (4) UO{sub 3} Cylinder; and (5) Shielded DU Sphere.

  18. Impact of homogeneous strain on uranium vacancy diffusion in uranium dioxide

    SciTech Connect (OSTI)

    Goyal, Anuj; Phillpot, Simon R.; Subramanian, Gopinath; Andersson, David A.; Stanek, Chris R.; Uberuaga, Blas P.

    2015-03-03

    We present a detailed mechanism of, and the effect of homogeneous strains on, the migration of uranium vacancies in UO2. Vacancy migration pathways and barriers are identified using density functional theory and the effect of uniform strain fields are accounted for using the dipole tensor approach. We report complex migration pathways and noncubic symmetry associated with the uranium vacancy in UO2 and show that these complexities need to be carefully accounted for to predict the correct diffusion behavior of uranium vacancies. We show that under homogeneous strain fields, only the dipole tensor of the saddle with respect to the minimum is required to correctly predict the change in the energy barrier between the strained and the unstrained case. Diffusivities are computed using kinetic Monte Carlo simulations for both neutral and fully charged state of uranium single and divacancies. We calculate the effect of strain on migration barriers in the temperature range 800–1800 K for both vacancy types. Homogeneous strains as small as 2% have a considerable effect on diffusivity of both single and divacancies of uranium, with the effect of strain being more pronounced for single vacancies than divacancies. In contrast, the response of a given defect to strain is less sensitive to changes in the charge state of the defect. Further, strain leads to anisotropies in the mobility of the vacancy and the degree of anisotropy is very sensitive to the nature of the applied strain field for strain of equal magnitude. Our results indicate that the influence of strain on vacancy diffusivity will be significantly greater when single vacancies dominate the defect structure, such as sintering, while the effects will be much less substantial under irradiation conditions where divacancies dominate.

  19. Polyacrylamide-hydroxyapatite composite: Preparation, characterization and adsorptive features for uranium and thorium

    SciTech Connect (OSTI)

    Baybas, Demet; Ulusoy, Ulvi

    2012-10-15

    The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO{sub 2}{sup 2+} and Th{sup 4+}. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th{sup 4+} adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements. - Graphical abstract: SEM images of hydroxyapatite (HAP) and polyacrylamide-hydroxyapatite (PAAm-HAP), and the adsorption isotherms for Uranium and Thorium. Highlights: Black-Right-Pointing-Pointer Composite of PAAm-HAP was synthesized from hydroxyapatite and polyacrylamide. Black-Right-Pointing-Pointer The materials were characterized by BET, FT-IR, XRD, SEM, TGA and PZC analysis. Black-Right-Pointing-Pointer HAP and PAAm-HAP had high sorption capacity and very rapid uptake for UO{sub 2}{sup 2+} and Th{sup 4+}. Black-Right-Pointing-Pointer Super porous PAAm was obtained from PAAm-HAP after its removal of HAP content. Black-Right-Pointing-Pointer The composite is potential for deposition of U, Th and its associate radionuclides.

  20. Development of LWR Fuels with Enhanced Accident Tolerance

    SciTech Connect (OSTI)

    Lahoda, Edward J.; Boylan, Frank A.

    2015-10-30

    Significant progress was made on the technical, licensing, and business aspects of the Westinghouse Electric Company’s Enhanced Accident Tolerant Fuel (ATF) by the Westinghouse ATF team. The fuel pellet options included waterproofed U15N and U3Si2 and the cladding options SiC composites and zirconium alloys with surface treatments. Technology was developed that resulted in U3Si2 pellets with densities of >94% being achieved at the Idaho National Laboratory (INL). The use of U3Si2 will represent a 15% increase in U235 loadings over those in UO₂ fuel pellets. This technology was then applied to manufacture pellets for 6 test rodlets which were inserted in the Advanced Test Reactor (ATR) in early 2015 in zirconium alloy cladding. The first of these rodlets are expected to be removed in about 2017. Key characteristics to be determined include verification of the centerline temperature calculations, thermal conductivity, fission gas release, swelling and degree of amorphization. Waterproofed UN pellets have achieved >94% density for a 32% U3Si2/68% UN composite pellet at Texas A&M University. This represents a U235 increase of about 31% over current UO2 pellets. Pellets and powders of UO2, UN, and U3Si2the were tested by Westinghouse and Los Alamos National Laboratory (LANL) using differential scanning calorimetry to determine what their steam and 20% oxygen corrosion temperatures were as compared to UO2. Cold spray application of either the amorphous steel or the Ti2AlC was successful in forming an adherent ~20 micron coating that remained after testing at 420°C in a steam autoclave. Tests at 1200°C in 100% steam on coatings for Zr alloy have not been successful, possibly due to the low density of the coatings which allowed steam transport to the base zirconium metal. Significant modeling and testing

  1. Irradiation Planning for Fully-Ceramic Micro-encsapsulated fuel in ATR at LWR-relevant conditions: year-end report on FY-2011

    SciTech Connect (OSTI)

    Abderrafi M. Ougouag; R. Sonat Sen; Michael A. Pope; Brian Boer

    2011-09-01

    This report presents the estimation of required ATR irradiation levels for the DB-FCM fuel design (fueled with Pu and MAs). The fuel and assembly designs are those considered in a companion report [R. S. Sen et al., FCR&D-2011- 00037 or INL/EXT-11-23269]. These results, pertaining to the DB-FCM fuel, are definitive in as much as the design of said fuel is definitive. In addition to the work performed, as required, for DB-FCM fuel, work has started in a preliminary fashion on single-cell UO2 and UN fuels. These latter activities go beyond the original charter of this project and although the corresponding work is incomplete, significant progress has been achieved. However, in this context, all that has been achieved is only preliminary because the corresponding fuel designs are neither finalized nor optimized. In particular, the UO2 case is unlikely to result in a viable fuel design if limited to enrichment at or under 20 weight % in U-235. The UN fuel allows reasonable length cycles and is likely to make an optimal design possible. Despite being limited to preliminary designs and offering only preliminary conclusions, the irradiation planning tasks for UO2 and UN fuels that are summarized in this report are useful to the overall goal of devising and deploying FCM-LWR fuel since the methods acquired and tested in this project and the overall procedure for planning will be available for planning tests for the finalized fuel design. Indeed, once the fuel design is finalized and the expected burnup level is determined, the methodology that has been assembled will allow the prompt finalization of the neutronic planning of the irradiation experiment and would provide guidance on the expected experimental performance of the fuel. Deviations from the expected behavior will then have to be analyzed and the outcome of the analysis may be corrections or modifications for the assessment models as well as, possibly, fuel design modifications, and perhaps even variation of

  2. Characterization of Suspect Fuel Rod Pieces from the 105 K West Basin

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Pool, Karl N.; Thornton, Brenda M.

    2006-09-15

    This report provides physical and radiochemical characterization results from examinations and laboratory analyses performed on ~0.55-inch diameter rod pieces found in the 105 K West (KW) Basin that were suspected to be from nuclear reactor fuel. The characterization results will be used to establish the technical basis for adding this material to the contents of one of the final Multi-Canister Overpacks (MCOs) that will be loaded out of the KW Basin in late FY2006 or at a later time depending on project priorities. Fifteen fuel rod pieces were found during the clean out of the KW Basin. Based on lack of specific credentials, documentation, or obvious serial numbers, none of the items could be positively identified nor could their sources or compositions be described. Item weights and dimensions measured in the KW Basin indicated densities consistent with the suspect fuel rods containing uranium dioxide (UO2), uranium metal, or being empty. Extensive review of the Hanford Site technical literature led to the postulation that these pieces likely were irradiated test fuel prepared to support of the development of the Hanford “New Production Reactor,” later called N Reactor. To obtain definitive data on the composition of the suspect fuel, 4 representative fuel rod pieces, with densities corresponding to oxide fuel were selected from the 15 items, and shipped from the KW Basin to the Pacific Northwest National Laboratory’s (PNNL) Radiological Processing Laboratory (RPL; also known at the 325 Building) for examinations and characterization. The three fuel rod that were characterized appear to contain slightly irradiated UO2 fuel, originally of natural enrichment, with zirconium cladding. The uranium-235 isotopic concentrations decreased by the irradiation and become slightly lower than the natural enrichment of 0.72% to range from 0.67 to 0.71 atom%. The plutonium concentrations, ranged from about 200 to 470 grams per metric ton of uranium and ranged in Plutonium

  3. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions

    SciTech Connect (OSTI)

    Stewart, B.D.; Amos, R.T.; Nico, P.S.; Fendorf, S.

    2010-03-15

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate the impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl

  4. Updated NGNP Fuel Acquisition Strategy

    SciTech Connect (OSTI)

    David Petti; Tim Abram; Richard Hobbins; Jim Kendall

    2010-12-01

    . • Additional funding will be made available beginning in fiscal year (FY) 2012 to support pebble bed fuel fabrication process development and fuel testing while maintaining the prismatic fuel schedule. Options for fuel fabrication for prismatic and pebble bed were evaluated based on the credibility of each option, along with a cost and schedule to implement each strategy. The sole prismatic option is Babcock and Wilcox (B&W) producing uranium oxycarbide (UCO) tristructural-isotropic (TRISO) fuel particles in compacts. This option finishes in the middle of 2022 . Options for the pebble bed are Nuclear Fuel Industries (NFI) in Japan producing uranium dioxide (UO2) TRISO fuel particles, and/or B&W producing UCO or UO2 TRISO fuel particles. All pebble options finish in mid to late 2022.

  5. Atomistic Simulations of Mass and Thermal Transport in Oxide Nuclear Fuels

    SciTech Connect (OSTI)

    Andersson, Anders D.; Uberuaga, Blas P.; Du, Shiyu; Liu, Xiang-Yang; Nerikar, Pankaj; Stanek, Christopher R.; Tonks, Michael; Millet, Paul; Biner, Bulent

    2012-06-04

    In this talk we discuss simulations of the mass and thermal transport in oxide nuclear fuels. Redistribution of fission gases such as Xe is closely coupled to nuclear fuel performance. Most fission gases have low solubility in the fuel matrix, specifically the insolubility is most pronounced for large fission gas atoms such as Xe, and as a result there is a significant driving force for segregation of gas atoms to grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. The first step of the fission gas redistribution is diffusion of individual gas atoms through the fuel matrix to existing sinks, which is governed by the activation energy for bulk diffusion. Fission gas bubbles are then formed by either separate nucleation events or by filling voids that were nucleated at a prior stage; in both cases their formation and latter growth is coupled to vacancy dynamics and thus linked to the production of vacancies via irradiation or thermal events. In order to better understand bulk Xe behavior (diffusion mechanisms) in UO{sub 2{+-}x} we first calculate the relevant activation energies using density functional theory (DFT) techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism, though other alternatives may exist in high irradiation fields. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next a continuum transport model for Xe and U is formulated based on the diffusion mechanisms established from DFT. After combining this model with descriptions of the interaction between Xe and grain

  6. Benchmark Evaluation of Fuel Effect and Material Worth Measurements for a Beryllium-Reflected Space Reactor Mockup

    SciTech Connect (OSTI)

    Marshall, Margaret A.; Bess, John D.

    2015-02-01

    The critical configuration of the small, compact critical assembly (SCCA) experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) in 1962-1965 have been evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The initial intent of these experiments was to support the design of the Medium Power Reactor Experiment (MPRE) program, whose purpose was to study “power plants for the production of electrical power in space vehicles.” The third configuration in this series of experiments was a beryllium-reflected assembly of stainless-steel-clad, highly enriched uranium (HEU)-O2 fuel mockup of a potassium-cooled space power reactor. Reactivity measurements cadmium ratio spectral measurements and fission rate measurements were measured through the core and top reflector. Fuel effect worth measurements and neutron moderating and absorbing material worths were also measured in the assembly fuel region. The cadmium ratios, fission rate, and worth measurements were evaluated for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The fuel tube effect and neutron moderating and absorbing material worth measurements are the focus of this paper. Additionally, a measurement of the worth of potassium filling the core region was performed but has not yet been evaluated Pellets of 93.15 wt.% enriched uranium dioxide (UO2) were stacked in 30.48 cm tall stainless steel fuel tubes (0.3 cm tall end caps). Each fuel tube had 26 pellets with a total mass of 295.8 g UO2 per tube. 253 tubes were arranged in 1.506-cm triangular lattice. An additional 7-tube cluster critical configuration was also measured but not used for any physics measurements. The core was surrounded on all side by a beryllium reflector. The fuel effect worths were measured by removing fuel tubes at various radius. An accident scenario

  7. Unexpected Actinyl Cation-Directed Structural Variation in Neptunyl(VI) A-Type Tri-lacunary Heteropolyoxotungstate Complexes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berg, John M.; Gaunt, Andrew J.; May, Iain; Pugmire, Alison L.; Reilly, Sean D.; Scott, Brian L.; Wilkerson, Marianne P.

    2015-04-22

    A-type tri-lacunary heteropolyoxotungstate anions (e.g., [PW9O34]9-, [AsW9O34]9-, [SiW9O34]10- and [GeW9O34]10-) are multi-dentate oxygen donor ligands that readily form sandwich complexes with actinyl cations ({UO2}2+, {NpO2}+, {NpO2}2+ & {PuO2}2+) in near neutral/slightly alkaline aqueous solutions. Two or three actinyl cations are sandwiched between two trilacunary anions, with additional cations (Na+, K+ or NH4 +) also often held within the cluster. Studies thus far have indicated that it is these additional +I cations, rather than the specific actinyl cation, that direct the structural variation in the complexes formed. We now report the structural characterization of the neptunyl (VI) cluster complex (NH4)13 [Na(NpO2)2(A-α-more » PW9O34)2]·12H2O. The anion in this complex, [Na(NpO2)2(PW9O34)2]13-, contains one Na+ cation and two {NpO2}2+ cations held between two [PW9O34]9- anions – with an additional partial occupancy NH4 + or {NpO2}2+ cation also present. In the analogous uranium (VI) system, under similar reaction conditions that includes an excess of NH4Cl in the parent solution, it was previously shown that [(NH4)2(UVIO2)2(A-PW9O34)2]12- is the dominant species in both solution and the crystallized salt. Spectroscopic studies provide further proof of differences in the observed chemistry for the {NpO2}2+/[PW9O34]9- and {UO2}2+/[PW9O34]9- systems, both in solution and in solid state complexes crystallized from comparable salt solutions. The work revealed that varying the actinide element (Np vs. U) can indeed measurably impact structure and complex stability in the cluster chemistry of actinyl (VI) cations with A-type tri-lacunary heteropolyoxotungstate anions.« less

  8. Student Progress Report: Summer 2012

    SciTech Connect (OSTI)

    Tucker, Lucas P

    2012-08-06

    The Los Alamos SOURCES 4C code has been benchmarked for alpha particle beam problems and common neutron source materials (e.g. those containing plutonium or beryllium), but little benchmarking has been performed for more exotic isotopic neutron sources or uranium mixtures. This work extends SOURCES 4C benchmarking effort. Experimental data was found in the literature for several isotopic neutron sources, namely Am/Be, Am/F, Am/B, Cm/Be, {sup 238}Pu/{sup 13}C, {sup 252}Cf, and Am/Li. SOURCES 4C simulations were run for each of these materials and the output was used to develop a source term for use in MCNP, which allowed other physical effects such as down scattering and multiplication to be accounted for. Neutron emission rate and energy spectra results were compared for these sources, generally yielding order-of-magnitude agreement for the neutron emission rate and qualitative agreement for the shape of the neutron energy spectra. An exception was the neutron energy spectrum calculated for {sup 238}Pu/{sup 13}C whose primary peak was calculated to be 1 MeV higher than was measured. The accuracy of SOURCES is highly dependent on an accurate material definition. This discrepancy is likely due to inhomogeneity of the source materials, which cannot be simulated by SOURCES or MCNP, and chemical impurities not reported by the experimentalist. The results of the Am/Li calculation demonstrate that even small impurities are capable of dramatically changing the results. The neutron emission rates of numerous uranium compounds were also calculated with SOURCES and benchmarked with experimentally determined values found in the literature. The calculated results were similar to the experimental results with less than 10% error for the following compounds: uranyl fluoride, uranyl nitrate, UO{sub 3}, UO{sub 2}F{sub 2}, UF{sub 4}, UF{sub 6}, and U-metal of less than 90% enrichment. This work demonstrates the robustness of SOURCES as a tool for calculating neutron emission rates

  9. Deep Burn Fuel Cycle Integration: Evaluation of Two-Tier Scenarios

    SciTech Connect (OSTI)

    S. Bays; H. Zhang; M. Pope

    2009-05-01

    The use of a deep burn strategy using VHTRs (or DB-MHR), as a means of burning transuranics produced by LWRs, was compared to performing this task with LWR MOX. The spent DB-MHR fuel was recycled for ultimate final recycle in fast reactors (ARRs). This report summarizes the preliminary findings of the support ratio (in terms of MWth installed) between LWRs, DB-MHRs and ARRs in an equilibrium two-tier fuel cycle scenario. Values from literature were used to represent the LWR and DB-MHR isotopic compositions. A reactor physics simulation of the ARR was analyzed to determine the effect that the DB-MHR spent fuel cooling time on the ARR transuranic consumption rate. These results suggest that the cooling time has some but not a significant impact on the ARRs conversion ratio and transuranic consumption rate. This is attributed to fissile worth being derived from non-fissile or threshold-fissioning isotopes in the ARRs fast spectrum. The fraction of installed thermal capacity of each reactor in the DB-MHR 2-tier fuel cycle was compared with that of an equivalent MOX 2-tier fuel cycle, assuming fuel supply and demand are in equilibrium. The use of DB-MHRs in the 1st-tier allows for a 10% increase in the fraction of fleet installed capacity of UO2-fueled LWRs compared to using a MOX 1st-tier. Also, it was found that because the DB-MHR derives more power per unit mass of transuranics charged to the fresh fuel, the front-end reprocessing demand is less than MOX. Therefore, more fleet installed capacity of DB-MHR would be required to support a given fleet of UO2 LWRs than would be required of MOX plants. However, the transuranic deep burn achieved by DB-MHRs reduces the number of fast reactors in the 2nd-tier to support the DB-MHRs back-end transuranic output than if MOX plants were used. Further analysis of the relative costs of these various types of reactors is required before a comparative study of these options could be considered complete.

  10. Alpha Radiolysis of Sorbed Water on Uranium Oxides and Uranium Oxyfluorides

    SciTech Connect (OSTI)

    Icenhour, A.S.

    2003-09-10

    The radiolysis of sorbed water and other impurities contained in actinide oxides has been the focus of a number of studies related to the establishment of criteria for the safe storage and transport of these materials. Gamma radiolysis studies have previously been performed on uranium oxides and oxyfluorides (UO{sub 3}, U{sub 3}O{sub 8}, and UO{sub 2}F{sub 2}) to evaluate the long-term storage characteristics of {sup 233}U. This report describes a similar study for alpha radiolysis. Uranium oxides and oxyfluorides (with {sup 238}U as the surrogate for {sup 233}U) were subjected to relatively high alpha radiation doses (235 to 634 MGy) by doping with {sup 244}Cm. The typical irradiation time for these samples was about 1.5 years, which would be equivalent to more than 50 years irradiation by a {sup 233}U sample. Both dry and wet (up to 10 wt % water) samples were examined in an effort to identify the gas pressure and composition changes that occurred as a result of radiolysis. This study shows that several competing reactions occur during radiolysis, with the net effect that only very low pressures of hydrogen, nitrogen, and carbon dioxide are generated from the water, nitrate, and carbon impurities, respectively, associated with the oxides. In the absence of nitrate impurities, no pressures greater than 1000 torr are generated. Usually, however, the oxygen in the air atmosphere over the oxides is consumed with the corresponding oxidation of the uranium oxide. In the presence of up to 10 wt % water, the oxides first show a small pressure rise followed by a net decrease due to the oxygen consumption and the attainment of a steady-state pressure where the rate of generation of gaseous components is balanced by their recombination and/or consumption in the oxide phase. These results clearly demonstrate that alpha radiolysis of either wet or dry {sup 233}U oxides will not produce deleterious pressures or gaseous components that could compromise the long-term storage of

  11. Microheterogeneous Thoria-Urania Fuels for Pressurized Water Reactors

    SciTech Connect (OSTI)

    Shwageraus, Eugene; Zhao Xianfeng; Driscoll, Michael J.; Hejzlar, Pavel; Kazimi, Mujid S.; Herring, J. Stephen

    2004-07-15

    A thorium-based fuel cycle for light water reactors will reduce the plutonium generation rate and enhance the proliferation resistance of the spent fuel. However, priming the thorium cycle with {sup 235}U is necessary, and the {sup 235}U fraction in the uranium must be limited to below 20% to minimize proliferation concerns. Thus, a once-through thorium-uranium dioxide (ThO{sub 2}-UO{sub 2}) fuel cycle of no less than 25% uranium becomes necessary for normal pressurized water reactor (PWR) operating cycle lengths. Spatial separation of the uranium and thorium parts of the fuel can improve the achievable burnup of the thorium-uranium fuel designs through more effective breeding of {sup 233}U from the {sup 232}Th. Focus is on microheterogeneous fuel designs for PWRs, where the spatial separation of the uranium and thorium is on the order of a few millimetres to a few centimetres, including duplex pellet, axially microheterogeneous fuel, and a checkerboard of uranium and thorium pins. A special effort was made to understand the underlying reactor physics mechanisms responsible for enhancing the achievable burnup at spatial separation of the two fuels. The neutron spectral shift was identified as the primary reason for the enhancement of burnup capabilities. Mutual resonance shielding of uranium and thorium is also a factor; however, it is small in magnitude. It is shown that the microheterogeneous fuel can achieve higher burnups, by up to 15%, than the reference all-uranium fuel. However, denaturing of the {sup 233}U in the thorium portion of the fuel with small amounts of uranium significantly impairs this enhancement. The denaturing is also necessary to meet conventional PWR thermal limits by improving the power share of the thorium region at the beginning of fuel irradiation. Meeting thermal-hydraulic design requirements by some of the microheterogeneous fuels while still meeting or exceeding the burnup of the all-uranium case is shown to be potentially feasible

  12. Experimental studies and thermodynamic modelling of volatilities of uranium, plutonium, and americium from their oxides and from their oxides interacted with ash

    SciTech Connect (OSTI)

    Krikorian, O.H.; Ebbinghaus, B.B.; Adamson, M.G.; Fontes, A.S. Jr.; Fleming, D.L.

    1993-09-15

    The purpose of this study is to identify the types and amounts of volatile gaseous species of U, Pu, and Am that are produced in the combustion chamber offgases of mixed waste oxidation processors. Primary emphasis is on the Rocky Flats Plant Fluidized Bed Incinerator. Transpiration experiments have been carried out on U{sub 3}O{sub 8}(s), U{sub 3}O{sub 8} interacted with various ash materials, PuO{sub 2}(s), PuO{sub 2} interacted with ash materials, and a 3%PuO{sub 2}/0.06%AmO{sub 2}/ash material, all in the presence of steam and oxygen, and at temperatures in the vicinity of 1,300 K. UO{sub 3}(g) and UO{sub 2}(OH){sub 2}(g) have been identified as the uranium volatile species and thermodynamic data established for them. Pu and Am are found to have very low volatilities, and carryover of Pu and Am as fine dust particulates is found to dominate over vapor transport. The authors are able to set upper limits on Pu and Am volatilities. Very little lowering of U volatility is found for U{sub 3}O{sub 8} interacted with typical ashes. However, ashes high in Na{sub 2}O (6.4 wt %) or in CaO (25 wt %) showed about an order of magnitude reduction in U volatility. Thermodynamic modeling studies were carried out that show that for aluminosilicate ash materials, it is the presence of group I and group II oxides that reduces the activity of the actinide oxides. K{sub 2}O is the most effective followed by Na{sub 2}O and CaO for common ash constituents. A more major effect in actinide activity lowering could be achieved by adding excess group I or group II oxides to exceed their interaction with the ash and lead to direct formation of alkali or alkaline earth uranates, plutonates, and americates.

  13. Uranium fate in Hanford sediment altered by simulated acid waste solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gartman, Brandy N.; Qafoku, Nikolla P.; Szecsody, James E.; Kukkadapu, Ravi K.; Wang, Zheming; Wellman, Dawn M.; Truex, Michael J.

    2015-07-31

    Many aspects of U(VI) behavior in sediments that are previously exposed to acidic waste fluids for sufficiently long times to induce significant changes in pH and other physical, mineralogical and chemical properties, are not well documented in the literature. For this reason, we conducted a series of macroscopic batch experiments combined with a variety of bulk characterization studies (Mössbauer and laser spectroscopy), micro-scale inspections (µ-XRF), and molecular scale interrogations (XANES) with the objectives to: i) determine the extent of U(VI) partitioning to Hanford sediments previously exposed to acidic waste simulants (pH = 2 and pH = 5) and under neutralmore » conditions (pH = 8) at varying background solution concentrations (i.e., NaNO3); ii) determine micron-scale solid phase associated U valence state and phase identity; and iii) provide information for a plausible conceptual model of U(VI) attenuation under waste plume acidic conditions. The results of the batch experiments showed that the acid pre-treated sediment had high affinity for aqueous U(VI), which was removed from solution via two pH dependent and apparently different mechanisms (adsorption at pH = 2 and precipitation at pH = 5). The micro-scale inspections and XANES analyses confirmed that high concentration areas were rich mainly in U(VI), demonstrating that most of the added U(VI) was not reduced to U(IV). The laser spectroscopy data showed that uranyl phosphates {e.g. metaautunite [Ca(UO2)2(PO4)2•10-12H2O] and phosphuranylite [KCa(H3O)3(UO2)7(PO4)4O4•8(H2O)]} were present in the sediments. They also showed clear differences between the U bearing phases in the experiments conducted in the presence or absence of air. As a result, the data generated from these experiments will help in a better understanding of the reactions and processes that have a significant effect and/or control U mobility.« less

  14. Uranium fate in Hanford sediment altered by simulated acid waste solutions

    SciTech Connect (OSTI)

    Gartman, Brandy N.; Qafoku, Nikolla P.; Szecsody, James E.; Kukkadapu, Ravi K.; Wang, Zheming; Wellman, Dawn M.; Truex, Michael J.

    2015-07-31

    Many aspects of U(VI) behavior in sediments that are previously exposed to acidic waste fluids for sufficiently long times to induce significant changes in pH and other physical, mineralogical and chemical properties, are not well documented in the literature. For this reason, we conducted a series of macroscopic batch experiments combined with a variety of bulk characterization studies (Mössbauer and laser spectroscopy), micro-scale inspections (µ-XRF), and molecular scale interrogations (XANES) with the objectives to: i) determine the extent of U(VI) partitioning to Hanford sediments previously exposed to acidic waste simulants (pH = 2 and pH = 5) and under neutral conditions (pH = 8) at varying background solution concentrations (i.e., NaNO3); ii) determine micron-scale solid phase associated U valence state and phase identity; and iii) provide information for a plausible conceptual model of U(VI) attenuation under waste plume acidic conditions. The results of the batch experiments showed that the acid pre-treated sediment had high affinity for aqueous U(VI), which was removed from solution via two pH dependent and apparently different mechanisms (adsorption at pH = 2 and precipitation at pH = 5). The micro-scale inspections and XANES analyses confirmed that high concentration areas were rich mainly in U(VI), demonstrating that most of the added U(VI) was not reduced to U(IV). The laser spectroscopy data showed that uranyl phosphates {e.g. metaautunite [Ca(UO2)2(PO4)2•10-12H2O] and phosphuranylite [KCa(H3O)3(UO2)7(PO4)4O4•8(H2O)]} were present in the sediments. They also showed clear differences between the U bearing phases in the experiments conducted in the presence or absence of air. As a result, the data generated from these experiments will help in a better understanding of the reactions and

  15. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    SciTech Connect (OSTI)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  16. Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, January-March 1979

    SciTech Connect (OSTI)

    Steindler, M J; Ader, M; Barletta, R E

    1980-01-01

    In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, corrosion testing of refractory metals and alloys, graphite, and SiC in PDPM environments was done. A tungsten-metallized Al/sub 2/O/sub 3/-3% Y/sub 2/O/sub 3/ crucible was successfully fabricated. Tungsten microstructure of a plasma-sprayed tungsten crucible was stabilized by nickel infiltration and heat treatment. Solubility measurements of Th in Cd and Cd-Mg alloys were continued, as were experiments to study the reduction of high-fired ThO/sub 2/. Work on the fused salt electrolysis of CaO also was continued. The method of coprocessing of U and Pu by a salt transport process was modified. Tungsten-coated molybdenum crucibles were fabricated. The proliferation resistance of chloride volatility processing of thorium-based fuels is being evaluated by studying the behavior of fission product elements during chlorination of U and Th. Thermodynamic analysis of the phase relationships in the U-Pu-Zn system was initiated. The Pyro-Civex reprocessing method is being reviewed. Reactivity of UO/sub 2/ and PuO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ is being studied along with the behavior of selected fission product elements. Work was continued on the reprocessing of actinide oxides by extracting the actinides from a bismuth solution. Rate of dissolution of UO/sub 2/ microspheres in LiCl/AlCl/sub 3/ was measured. Nitriding rates of Th and U dissolved in molten tin were measured. In work on the encapsulation of radioactive waste in metal, leach rates of a simulated waste glass were studied. Rates of dissolution of metals (potential barrier materials) in aqueous media are being studied. In work on the transport properties of nuclear waste in geologic media, the adsorption of iodate by hematite as a function of pH and iodate concentration was measured. The migration behavior of cesium in limestone was studied in relation to the cesium concentration and pH of simulated groundwater

  17. Crystal structure of α- and β-Na{sub 2}U{sub 2}O{sub 7}: From Rietveld refinement using powder neutron diffraction data

    SciTech Connect (OSTI)

    IJdo, D.J.W. Akerboom, S.; Bontenbal, A.

    2015-01-15

    The crystal structures of α- and β-Na{sub 2}U{sub 2}O{sub 7} have been determined from neutron powder diffraction. At 293 K, the compound α-Na{sub 2}U{sub 2}O{sub 7} has a monoclinic unit cell, space group P2{sub 1}/a, with a=12.7617(14) Å, b=7.8384(10) Å, c=6.8962(9) Å, β=111.285(9)°, and Z=4. At 773 K, β-Na{sub 2}U{sub 2}O{sub 7} is also monoclinic, space group C2/m, with a=12.933(1) Å, b=7.887(1) Å, c=6.9086(8) Å, β=110.816(10)°, and Z=4. The structures can be described by layers U{sub 2}O{sub 7}{sup 2−} built from corner linked deformed UO{sub 6} octahedra with pentagonal UO{sub 7} bipyramids in between linked with common edges to each other and to the octahedra. The Na atoms occupy the interlayer space. The Na{sub 2}U{sub 2}O{sub 7} layers are similar as in K{sub 2}U{sub 2}O{sub 7}, but with a different stacking sequence of the layers. The layers in β-Na{sub 2}U{sub 2}O{sub 7} are more symmetric. The relationship with the compounds A{sub 2}U{sub 2}O{sub 7} (A=K, Rb, and Cs) is discussed. - Graphical abstract: The U{sub 2}O{sub 7} layer of α-Na{sub 2}U{sub 2}O{sub 7} (left) at 293 K and of β-Na{sub 2}U{sub 2}O{sub 7} (right) at 773 K determined by neutron diffraction. Some Na atoms between the layers are visible. - Highlights: • Na{sub 2}U{sub 2}O{sub 7} has been prepared by means of a solid state reaction. • The structure has been determined using neutron diffraction. • At 293 K, the compound adopts a monoclinic structure with space group P2{sub 1}/a. • The structure at 773 K is closely related, and is described in the space group C2/m.

  18. TRIMOLECULAR REACTIONS OF URANIUM HEXAFLUORIDE WITH WATER

    SciTech Connect (OSTI)

    Westbrook, M.; Becnel, J.; Garrison, S.

    2010-02-25

    The hydrolysis reaction of uranium hexafluoride (UF{sub 6}) is a key step in the synthesis of uranium dioxide (UO{sub 2}) powder for nuclear fuels. Mechanisms for the hydrolysis reactions are studied here with density functional theory and the Stuttgart small-core scalar relativistic pseudopotential and associated basis set for uranium. The reaction of a single UF{sub 6} molecule with a water molecule in the gas phase has been previously predicted to proceed over a relatively sizeable barrier of 78.2 kJ {center_dot} mol{sup -1}, indicating this reaction is only feasible at elevated temperatures. Given the observed formation of a second morphology for the UO{sub 2} product coupled with the observations of rapid, spontaneous hydrolysis at ambient conditions, an alternate reaction pathway must exist. In the present work, two trimolecular hydrolysis mechanisms are studied with density functional theory: (1) the reaction between two UF{sub 6} molecules and one water molecule, and (2) the reaction of two water molecules with a single UF{sub 6} molecule. The predicted reaction of two UF{sub 6} molecules with one water molecule displays an interesting 'fluorine-shuttle' mechanism, a significant energy barrier of 69.0 kJ {center_dot} mol{sup -1} to the formation of UF{sub 5}OH, and an enthalpy of reaction ({Delta}H{sub 298}) of +17.9 kJ {center_dot} mol{sup -1}. The reaction of a single UF{sub 6} molecule with two water molecules displays a 'proton-shuttle' mechanism, and is more favorable, having a slightly lower computed energy barrier of 58.9 kJ {center_dot} mol{sup -1} and an exothermic enthalpy of reaction ({Delta}H{sub 298}) of -13.9 kJ {center_dot} mol{sup -1}. The exothermic nature of the overall UF{sub 6} + 2 {center_dot} H{sub 2}O trimolecular reaction and the lowering of the barrier height with respect to the bimolecular reaction are encouraging; however, the sizable energy barrier indicates further study of the UF{sub 6} hydrolysis reaction mechanism is

  19. International Nuclear Safety Center database on thermophysical properties of reactor materials

    SciTech Connect (OSTI)

    Fink, J.K.; Sofu, T.; Ley, H.

    1997-08-01

    The International Nuclear Safety Center (INSC) database has been established at Argonne National Laboratory to provide easily accessible data and information necessary to perform nuclear safety analyses and to promote international collaboration through the exchange of nuclear safety information. The INSC database, located on the World Wide Web at http://www.insc.anl.gov, contains critically assessed recommendations for reactor material properties for normal operating conditions, transients, and severe accidents. The initial focus of the database is on thermodynamic and transport properties of materials for water reactors. Materials that are being included in the database are fuel, absorbers, cladding, structural materials, coolant, and liquid mixtures of combinations of UO{sub 2}, ZrO{sub 2}, Zr, stainless steel, absorber materials, and concrete. For each property, the database includes: (1) a summary of recommended equations with uncertainties; (2) a detailed data assessment giving the basis for the recommendations, comparisons with experimental data and previous recommendations, and uncertainties; (3) graphs showing recommendations, uncertainties, and comparisons with data and other equations; and (4) property values tabulated as a function of temperature.

  20. Use of Source Term and Air Dispersion Modeling in Planning Demolition of Highly Alpha-Contaminated Buildings

    SciTech Connect (OSTI)

    Droppo, James G.; Napier, Bruce A.; Rishel, Jeremy P.; Bloom, Richard W.

    2011-06-22

    The current cleanup of structures related to cold-war production of nuclear materials includes the need to demolish a number of highly alpha-contaminated structures. The process of planning for the demolition of such structures includes unique challenges related to ensuring the protection of both workers and the public. Pre-demolition modeling analyses were conducted to evaluate potential exposures resulting from the proposed demolition of a number of these structures. Estimated emission rates of transuranic materials during demolition are used as input to an air-dispersion model. The climatological frequencies of occurrence of peak air and surface exposures at locations of interest are estimated based on years of hourly meteorological records. The modeling results indicate that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. The pre-demolition modeling directed the need for better contamination characterization and/or different demolition methods—and in the end, provided a basis for proceeding with the planned demolition activities. Post-demolition modeling was also conducted for several contaminated structures, based on the actual demolition schedule and conditions. Comparisons of modeled and monitoring results are shown. Recent monitoring data from the demolition of a UO3 plant shows increments in concentrations that were previously identified in the pre-demolition modeling predictions; these comparisons confirm the validity and value of the pre-demolition source-term and air dispersion computations for planning demolition activities for other buildings with high levels of radioactive contamination.

  1. Supercritical Fluid Extraction of Radionuclides - A Green Technology for Nuclear Waste Management

    SciTech Connect (OSTI)

    Wai, Chien M.

    2003-09-10

    Supercritical fluid carbon dioxide (SF-CO2) is capable of extracting radionuclides including cesium, strontium, uranium, plutonium and lanthanides directly from liquid and solid samples with proper complexing agents. Of particular interest is the ability of SF-CO2 to dissolve uranium dioxide directly using a CO2-soluble tri-nbutylphosphate- nitric acid (TBP-HNO3) extractant to form a highly soluble UO2(NO3)2(TBP)2 complex that can be transported and separated from Cs, Sr, and other transition metals. This method can also dissolve plutonium dioxide in SF-CO2. The SF-CO2 extraction technology offers several advantages over conventional solvent-based methods including ability to extract radionuclides directly from solids, easy separation of solutes from CO2, and minimization of liquid waste generation. Potential applications of the SF-CO2 extraction technology for nuclear waste treatment and for reprocessing of spent nuclear fuels will be discussed. Information on current demonstrations of the SF-CO2 technology by nuclear companies and research organizations in different countries will be reviewed.

  2. Uranium-233 purification and conversion to stabilized ceramic grade urania for LWBR fuel fabrication (LWBR Development Program)

    SciTech Connect (OSTI)

    Lloyd, R.

    1980-10-01

    High purity ceramic grade urania (/sup 233/UO/sub 2/) used in manufacturing the fuel for the Light Water Breeder Reactor (LWBR) core was made from uranium-233 that was obtained by irradiating thoria under special conditions to result in not more than 10 ppM of uranium-232 in the recovered uranium-233 product. A developmental study established the operating parameters of the conversion process for transforming the uranium-233 into urania powder with the appropriate chemical and physical attributes for use in fabricating the LWBR core fuel. This developmental study included the following: (a) design of an ion exchange purification process for removing the gamma-emitting alpha-decay daughters of uranium-232, to reduce the gamma-radiation field of the uranium-233 during LWBR fuel manufacture; (b) definition of the parameters for precipitating the uranium-233 as ammonium uranate (ADU) and for reducing the ADU with hydrogen to yield a urania conversion product of the proper particle size, surface area and sinterability for use in manufacturing the LWBR fuel; (c) establishment of parameters and design of equipment for stabilizing the urania conversion product to prevent it from undergoing excessive oxidation on exposure to the air during LWBR fuel manufacturing operations; and (d) development of a procedure and a facility to reprocess the unirradiated thoria-urania fuel scrap from the LWBR core manufacturing operations to recover the uranium-233 and convert it into high purity ceramic grade urania for LWBR core fabrication.

  3. Uranium vacancy mobility at the Σ5 symmetric tilt and Σ5 twist grain boundaries in UO₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Uberuaga, Blas Pedro; Andersson, David A.

    2015-10-01

    Ionic transport at grain boundaries in oxides dictates a number of important phenomena, from ionic conductivity to sintering to creep. For nuclear fuels, it also influences fission gas bubble nucleation and growth. Here, using a combination of atomistic calculations and object kinetic Monte Carlo (okMC) simulations, we examine the kinetic pathways associated with uranium vacancies at two model grain boundaries in UO2. The barriers for vacancy motion were calculated using the nudged elastic band method at all uranium sites at each grain boundary and were used as the basis of the okMC simulations. For both boundaries considered – a simplemore » tilt and a simple twist boundary – the mobility of uranium vacancies is significantly higher than in the bulk. For the tilt boundary, there is clearly preferred migration along the tilt axis as opposed to in the perpendicular direction while, for the twist boundary, migration is essentially isotropic within the boundary plane. These results show that cation defect mobility in fluorite-structured materials is enhanced at certain types of grain boundaries and is dependent on the boundary structure with the tilt boundary exhibiting higher rates of migration than the twist boundary.« less

  4. New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

    SciTech Connect (OSTI)

    Not Available

    2011-06-22

    Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amended with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.

  5. Reanalysis of the gas-cooled fast reactor experiments at the zero power facility proteus - Spectral indices

    SciTech Connect (OSTI)

    Perret, G.; Pattupara, R. M.; Girardin, G.; Chawla, R.

    2012-07-01

    The gas-cooled fast reactor (GCFR) concept was investigated experimentally in the PROTEUS zero power facility at the Paul Scherrer Inst. during the 1970's. The experimental program was aimed at neutronics studies specific to the GCFR and at the validation of nuclear data in fast spectra. A significant part of the program used thorium oxide and thorium metal fuel either distributed quasi-homogeneously in the reference PuO{sub 2}/UO{sub 2} lattice or introduced in the form of radial and axial blanket zones. Experimental results obtained at the time are still of high relevance in view of the current consideration of the Gas-cooled Fast Reactor (GFR) as a Generation-IV nuclear system, as also of the renewed interest in the thorium cycle. In this context, some of the experiments have been modeled with modern Monte Carlo codes to better account for the complex PROTEUS whole-reactor geometry and to allow validating recent continuous neutron cross-section libraries. As a first step, the MCNPX model was used to test the JEFF-3.1, JEFF-3.1.1, ENDF/B-VII.0 and JENDL-3.3 libraries against spectral indices, notably involving fission and capture of {sup 232}Th and {sup 237}Np, measured in GFR-like lattices. (authors)

  6. Ion Source Development for Ultratrace Detection of Uranium and Thorium

    SciTech Connect (OSTI)

    Liu, Yuan; Batchelder, Jon Charles; Galindo-Uribarri, Alfredo {nmn}; Stracener, Daniel W

    2015-01-01

    A hot-cavity surface ionization source and a hot-cavity laser ion source are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The work is motivated by the need for more efficient ion sources for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials and sample sizes of 20 - 40 g of U or Th. For the surface source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. Three-step resonant photoionization of U atoms is studied and an ionization efficiency of 8.7% has been obtained with the laser ion source. The positive ion sources promise more than an order of magnitude more efficient than conventional Cs-sputter negative ion sources used for AMS. In addition, the laser ion source is highly selective and effective in suppressing interfering and ions. Work is in progress to improve the efficiencies of both positive ion sources.

  7. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    SciTech Connect (OSTI)

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; Novascone, Stephen R.; Perez, Danielle M.; Spencer, Benjamin W.; Luzzi, Lelio; Uffelen, Paul Van; Williamson, Richard L.

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  8. Simplified treatment of exact resonance elastic scattering model in deterministic slowing down equation

    SciTech Connect (OSTI)

    Ono, M.; Wada, K.; Kitada, T.

    2012-07-01

    Simplified treatment of resonance elastic scattering model considering thermal motion of heavy nuclides and the energy dependence of the resonance cross section was implemented into NJOY [1]. In order to solve deterministic slowing down equation considering the effect of up-scattering without iterative calculations, scattering kernel for heavy nuclides is pre-calculated by the formula derived by Ouisloumen and Sanchez [2], and neutron spectrum in up-scattering term is expressed by NR approximation. To check the verification of the simplified treatment, the treatment is applied to U-238 for the energy range from 4 eV to 200 eV. Calculated multi-group capture cross section of U-238 is greater than that of conventional method and the increase of the capture cross sections is remarkable as the temperature becomes high. Therefore Doppler coefficient calculated in UO{sub 2} fuel pin is calculated more negative value than that on conventional method. The impact on Doppler coefficient is equivalent to the results of exact treatment of resonance elastic scattering reported in previous studies [2-7]. The agreement supports the validation of the simplified treatment and therefore this treatment is applied for other heavy nuclide to evaluate the Doppler coefficient in MOX fuel. The result shows that the impact of considering thermal agitation in resonance scattering in Doppler coefficient comes mainly from U-238 and that of other heavy nuclides such as Pu-239, 240 etc. is not comparable in MOX fuel. (authors)

  9. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    SciTech Connect (OSTI)

    G. Pastore; L.P. Swiler; J.D. Hales; S.R. Novascone; D.M. Perez; B.W. Spencer; L. Luzzi; P. Van Uffelen; R.L. Williamson

    2014-10-01

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  10. Algorithms for thermal and mechanical contact in nuclear fuel performance analysis

    SciTech Connect (OSTI)

    Hales, J. D.; Andrs, D.; Gaston, D. R.

    2013-07-01

    The transfer of heat and force from UO{sub 2} pellets to the cladding is an essential element in typical nuclear fuel performance modeling. Traditionally, this has been accomplished in a one-dimensional fashion, with a slice of fuel interacting with a slice of cladding. In this manner, the location at which the transfer occurs is set a priori. While straightforward, this limits the applicability and accuracy of the model. We propose finite element algorithms for the transfer of heat and force where the location for the transfer is not predetermined. This enables analysis of individual fuel pellets with large sliding between the fuel and the cladding. The simplest of these approaches is a node on face constraint. Heat and force are transferred from a node on the fuel to the cladding face opposite. Another option is a transfer based on quadrature point locations, which is applied here to the transfer of heat. The final algorithm outlined here is the so-called mortar method, with applicability to heat and force transfer. The mortar method promises to be a highly accurate approach which may be used for a transfer of other quantities and in other contexts, such as heat from cladding to a CFD mesh of the coolant. This paper reviews these approaches, discusses their strengths and weaknesses, and presents results from each on simplified nuclear fuel performance models. (authors)

  11. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; Novascone, Stephen R.; Perez, Danielle M.; Spencer, Benjamin W.; Luzzi, Lelio; Uffelen, Paul Van; Williamson, Richard L.

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertaintymore » in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.« less

  12. Fabrication of high exposure nuclear fuel pellets

    DOE Patents [OSTI]

    Frederickson, James R.

    1987-01-01

    A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.

  13. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    SciTech Connect (OSTI)

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A.; Duncan, D.R.

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  14. Environmental Controls on the Activity of Aquifer Microbial Communities in the 300 Area of the Hanford Site

    SciTech Connect (OSTI)

    Konopka, Allan; Plymale, Andrew E.; Carvajal, Denny A.; Lin, Xueju; McKinley, James P.

    2013-11-06

    Aquifer microbes in the 300 Area of the Hanford Site in southeastern Washington State, USA are periodically exposed to U(VI) concentrations that can range up to 10 ?M in small sediment fractures. Assays of 35 H-leucine incorporation indicated that both sediment-associated and planktonic microbes were metabolically active, and that organic C was growth-limiting in the sediments. Although bacteria suspended in native groundwater retained high activity when exposed to 100 ?M U(VI), they were inhibited by U(VI) < 1 ?M in synthetic groundwater that lacked added bicarbonate. Chemical speciation modeling suggested that positively-charged species and particularly (UO2)3(OH)5+ rose in concentration as more U(VI) was added to synthetic groundwater, but that carbonate complexes dominated U(VI) speciation in natural groundwater. U toxicity was relieved when increasing amounts of bicarbonate were added to synthetic groundwater containing 4.5 ?M U(VI). Pertechnetate, an oxyanion that is another contaminant of concern at the Hanford Site, was not toxic to groundwater microbes at concentrations up to 125 ?M.

  15. A roadmap to uranium ionic liquids: Anti-crystal engineering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja -Verena

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO22+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim tomore » establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less

  16. Modelling the thermal conductivity of (UxTh1-x)O2 and (UxPu1-x)O2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cooper, M. W. D.; Middleburgh, S. C.; Grimes, R. W.

    2015-07-15

    The degradation of thermal conductivity due to the non-uniform cation lattice of (UxTh1-x)O2 and (UxPu1-x)O2 solid solutions has been investigated by molecular dynamics, using the non-equilibrium method, from 300 to 2000 K. Degradation of thermal conductivity is predicted in (UxTh1-x)O2 and (UxPu1-x)O2 as compositions deviate from the pure end members: UO2, PuO2 and ThO2. The reduction in thermal conductivity is most apparent at low temperatures where phonon-defect scattering dominates over phonon-phonon interactions. The effect is greater for (UxTh1-x)O2 than UxPu1-x)O2 due to the greater mismatch in cation size. Parameters for an analytical expressions have been developed that describe the predictedmore » thermal conductivities over the full temperature and compositional ranges. Finally, these expressions may be used in higher level fuel performance codes.« less

  17. A physics study for negative void reactivity in compact supercritical CO{sub 2}-cooled fast reactor

    SciTech Connect (OSTI)

    Kim, Y.; Hartanto, D.; Lee, J. I.

    2013-07-01

    A compact S-CO{sub 2}-cooled fast reactor which has negative Coolant Void Reactivity (CVR) has been investigated. A negative CVR is important for the gas cooled fast reactor as an inherent safety mechanism to prevent the sudden positive reactivity insertion when the loss of coolant accident happens. An alternative solution to reduce the CVR is investigated in this study by using O-17 instead of O-16 in UO{sub 2} fuel. By using O-17 in the fuel, it is found that the CVR can even be negative. Impacts of the radial reflector on the CVR are also evaluated for the small SCO{sub 2} cooled fast reactor in this study. We have considered a pure lead (Pb) reflector and a lead magnesium eutectic (LME) reflector as alternative radial reflectors of the S-CO 2-cooled fast reactor. It has been shown that, with the LME radial reflector, the CVR can be negative, while the pure lead reflector provides a slightly positive CVR. (authors)

  18. Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550

    SciTech Connect (OSTI)

    Franceschini, F.; Lahoda, E.; Wenner, M.; Lindley, B.; Fiorina, C.; Phillips, C.

    2013-07-01

    This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principle be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)

  19. Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-05-01

    High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the standard UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

  20. LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING

    SciTech Connect (OSTI)

    Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean

    2015-09-01

    The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.