National Library of Energy BETA

Sample records for unseasonably warm temperatures

  1. Warm Springs Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Greenhouses Greenhouse Low Temperature Geothermal Facility...

  2. Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Resort Pool & Spa Low Temperature Geothermal Facility Facility Warm Springs Resort...

  3. Warm Springs State Hospital Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility...

  4. Warm Springs Water District District Heating Low Temperature...

    Open Energy Info (EERE)

    Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

  5. Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Pool & Spa Low Temperature Geothermal Facility Facility...

  6. Borehole temperatures and a baseline for 20th-century global warming estimates

    SciTech Connect (OSTI)

    Harris, R.N.; Chapman, D.S.

    1997-03-14

    Lack of a 19th-century baseline temperature against which 20th-century warming can be referenced constitutes a deficiency in understanding recent climate change. Combination of borehole temperature profiles, which contain a memory of surface temperature changes in previous centuries, with the meteorologicl archive of surface air temperatures can provide a 19th-century baseline temperature tied to the current observational record. A test case in Utah, where boreholes are interspersed with meteorological stations belonging to the Historical Climatological network, Yields a noise reduction in estimates of 20th-century warming and a baseline temperature that is 0.6{degrees} {+-} 0.1{degrees}C below the 1951 to 1970 mean temperature for the region. 22 refs., 3 figs., 1 tab.

  7. Reduced diurnal temperature range does not change warming impacts on ecosystem carbon balance of Mediterranean grassland mesocosms

    SciTech Connect (OSTI)

    Phillips, Claire L.; Gregg, Jillian W.; Wilson, John K.

    2011-11-01

    Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest these trends are likely to continue in many regions, particularly northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal-night-and-day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night-only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We report on the first experiment to examine ecosystem-scale impacts of faster increases in Tmin than Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day-night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found the ecosystem lost more carbon at elevated than ambient temperatures, but was unaffected by the 3C difference in DTR between symmetric warming (constantly ambient +3.5C) and asymmetric warming (dawn Tmin=ambient +5C, afternoon Tmax= ambient +2C). Reducing DTR had no apparent effect on photosynthesis, likely because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.

  8. Reduced diurnal temperature range does not change warming impacts on ecosystem carbon balance of Mediterranean grassland mesocosms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Phillips, Claire L.; Gregg, Jillian W.; Wilson, John K.

    2011-11-01

    Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest these trends are likely to continue in many regions, particularly northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal-night-and-day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night-only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We reportmore » on the first experiment to examine ecosystem-scale impacts of faster increases in Tmin than Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day-night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found the ecosystem lost more carbon at elevated than ambient temperatures, but was unaffected by the 3ºC difference in DTR between symmetric warming (constantly ambient +3.5ºC) and asymmetric warming (dawn Tmin=ambient +5ºC, afternoon Tmax= ambient +2ºC). Reducing DTR had no apparent effect on photosynthesis, likely because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.« less

  9. Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Global Warming and Methane Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as "greenhouse gases." These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro- carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a

  10. Microsoft Word - Test4.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    since 1995. As a reflection of the unseasonably warm temperatures that much of the nation experienced recently, two of the three regions covered in the AGA report reported net...

  11. A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY GLOBAL WARMING SCENARIOS

    SciTech Connect (OSTI)

    Race, Caitlin; Steinbach, Michael; Ganguly, Auroop R; Semazzi, Fred; Kumar, Vipin

    2010-01-01

    The connections among greenhouse-gas emissions scenarios, global warming, and frequencies of hurricanes or tropical cyclones are among the least understood in climate science but among the most fiercely debated in the context of adaptation decisions or mitigation policies. Here we show that a knowledge discovery strategy, which leverages observations and climate model simulations, offers the promise of developing credible projections of tropical cyclones based on sea surface temperatures (SST) in a warming environment. While this study motivates the development of new methodologies in statistics and data mining, the ability to solve challenging climate science problems with innovative combinations of traditional and state-of-the-art methods is demonstrated. Here we develop new insights, albeit in a proof-of-concept sense, on the relationship between sea surface temperatures and hurricane frequencies, and generate the most likely projections with uncertainty bounds for storm counts in the 21st-century warming environment based in turn on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Our preliminary insights point to the benefits that can be achieved for climate science and impacts analysis, as well as adaptation and mitigation policies, by a solution strategy that remains tailored to the climate domain and complements physics-based climate model simulations with a combination of existing and new computational and data science approaches.

  12. ARM - What is Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is Global Warming? The surface temperature of each of the planets in our solar system depends on a process called the heat budget. This budget, like any other type of budget, remains balanced if the amount (of energy)

  13. Minimization of steam requirements and enhancement of water-gas shift reaction with warm gas temperature CO2 removal

    DOE Patents [OSTI]

    Siriwardane, Ranjani V; Fisher, II, James C

    2013-12-31

    The disclosure utilizes a hydroxide sorbent for humidification and CO.sub.2 removal from a gaseous stream comprised of CO and CO.sub.2 prior to entry into a water-gas-shift reactor, in order to decrease CO.sub.2 concentration and increase H.sub.2O concentration and shift the water-gas shift reaction toward the forward reaction products CO.sub.2 and H.sub.2. The hydroxide sorbent may be utilized for absorbtion of CO.sub.2 exiting the water-gas shift reactor, producing an enriched H.sub.2 stream. The disclosure further provides for regeneration of the hydroxide sorbent at temperature approximating water-gas shift conditions, and for utilizing H.sub.2O product liberated as a result of the CO.sub.2 absorption.

  14. U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    ramps up with unseasonably cold weather Unseasonably cold temperatures this week led to big increases in heating demand for natural gas from the residential and commercial...

  15. Roosevelt Warm Springs Institute for Rehab. Space Heating Low...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility...

  16. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Ultrafast Spectroscopy of Warm Dense Matter Print Wednesday, 25 April 2012 00:00 Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material

  17. ARM - Greenhouse Effect and Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListGreenhouse Effect and Global Warming Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Greenhouse Effect and Global Warming The Greenhouse Effect refers to a naturally occurring phenomenon that is responsible for maintaining a temperature that supports life on earth. However, this is often

  18. ARM - Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Warming Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Global Warming Click on one of the links below to learn more about global warming! But first, take a look at this presentation given by former Atmospheric Radiation Measurement (ARM) Program Chief Scientist Tom Ackerman to a group of

  19. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme temperatures and

  20. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme

  1. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its temperature can range between that of planetary cores (tens of thousands K) to that of stellar cores (hundreds of thousands K). Not only is it prevalent throughout the universe, it is relevant to inertial confinement fusion (ICF) and material performance under extreme conditions. However, because of its extreme

  2. Integrated assessment of global warming

    SciTech Connect (OSTI)

    Ott, K.O.

    1996-12-31

    The anomalies of sea surface temperatures, which show a warming trend since the 1850s through the decade 1960/70 of {Delta}SST {approximately} 0.3 C, are complemented by changes of the ground surface temperature ({Delta}GST). The global surface temperature change, based on these data, allows an integrated assessment of the associated increase in black-body irradiance and a comparison with the enhanced greenhouse-gas back-scattering. Information on the GST history is obtained from unfolding analyses of underground temperature distributions measured in 90 boreholes in Alaskan permafrost and Canadian bedrock. These analyses show GST increases ({Delta}GST) since the 19th century through 1960/70 of 3 C on average, with standard deviations of +1.8 C and {minus}0.9 C on the high and low end respectively. The onset of the warming trend, which is uncertain in the GST data, is timed more accurately by detailed length records of large valley glaciers in the US and the Alps. Evaluation of the heat capacities and heat transfer indicates that the temperature response to an increase in radiative forcing must be much larger on land than on the sea. Conversely, the observed large ratio of {Delta}GST and {Delta}SST can only be explained by increased radiative forcing. From 1960/70 through the warmest decade on record, 1980/90, global {Delta}SST and {Delta}SAT have further increased to 0.6 C and 0.8 C respectively, But, the most recent GST data are not accurate enough to extend the comparison through 1990. Calculation of the increase of radiative forcing from back-scattering of greenhouse gases for 1850 to 1970 yields 1.3 W/cm{sup 2}. The increase in black-body irradiance from 3.6 C warming on land and 0.3 C on sea provides the required balance. The warming on land of 3.6 C is larger than the average value of 3.0 C, but well within the observed range.

  3. Confederated Tribes of Warm Springs - Biomass Project

    Office of Environmental Management (EM)

    05 June 2005 A Case Study: A Case Study: Warm Springs Warm Springs Cal Mukumoto Cal Mukumoto Warm Springs Forest Warm Springs Forest Products Industries Products Industries Warm Springs Indian Warm Springs Indian Reservation of Oregon Reservation of Oregon Warm Springs Forest Warm Springs Forest Products Industries (WSFPI) Products Industries (WSFPI) Enterprise of the Confederated Enterprise of the Confederated Tribes of the Warm Springs Tribes of the Warm Springs Reservation of Oregon

  4. End Calorimeter Warm Tube Heater

    SciTech Connect (OSTI)

    Primdahl, K.; /Fermilab

    1991-08-06

    The Tevatron accelerator beam tube must pass through the End Calorimeter cryostats of the D-Zero Collider Detector. Furthermore, the End Calorimeter cryostats must be allowed to roll back forty inches without interruption of the vacuum system; hence, the Tev tube must slide through the End Calorimeter cryostat as it is rolled back. The Tev pass through the End Calorimeter can actually be thought of as a cluster of concentric tubes: Tev tube, warm (vacuum vessel) tube, IS layers of superinsulation, cold tube (argon vessel), and Inner Hadronic center support tube. M. Foley generated an ANSYS model to study the heat load. to the cryostat. during collider physics studies; that is, without operation of the heater. A sketch of the model is included in the appendix. The vacuum space and superinsulation was modeled as a thermal solid, with conductivity derived from tests performed at Fermilab. An additional estimate was done. by this author, using data supplied by NR-2. a superinsulation manufacturer. The ANSYS result and hand calculation are in close agreement. The ANSYS model was modified. by this author. to incorporate the effect of the heater. Whereas the earlier model studied steady state operation only. the revised model considers the heater-off steady state mode as the initial condition. then performs a transient analysis with a final load step for time tending towards infinity. Results show the thermal gradient as a function of time and applied voltage. It should be noted that M. Foley's model was generated for one half the warm tube. implying the tube to be symmetric. In reality. the downstream connection (relative to the collision point) attachment to the vacuum shell is via several convolutions of a 0.020-inch wall bellows; hence. a nearly adiabatic boundary condition. Accordingly. the results reported in the table reflect extrapolation of the curves to the downstream end of the tube. Using results from the ANSYS analysis, that is, tube temperature and corresponding heat flux, temperature of the nichrome wire can be estimated. The possibility of frost is of genuine concern, as evidenced by the 250 K minimum temperature for the warm tube while heaters are not operating. Noting that steady state operation at 1 Amp (40 volts) allows the nichrome wire to stay below the critical temperature for Kapton, a conservative plan is to allow several days of heater operation, at 1 Amp (40 volts), before roll-back. Warm-up can be accelerated by operating the heaters in excess of 1 Amp, as evidenced by the test where a maximum of 3.2 Amp was supplied. Operating the heaters in excess of 1 Amp must be done with care since a rapid rise in temperature will likely occur once any ice present has been melted.

  5. ARM - What Causes Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BeginnersWhat Causes Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What Causes Global Warming? On earth we get energy from the sun's light. As you know, it gets hot outside if the sun is shining brightly on a summer day. The reason it warms up is because the earth is

  6. ARM - What Causes Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ThinkersWhat Causes Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What Causes Global Warming? What is the basis for the predictions concerning global warming? There are several gases in the air, collectively called greenhouse gases, that trap the infrared radiation emitted

  7. ARM - Lesson Plans: Global Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Warming Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Global Warming Objective The objective is to understand the enhanced greenhouse effect and the effects of global warming. Important Points to Understand If the emission of greenhouse gases continues at the present

  8. The Climate Policy Narrative for a Dangerously Warming World

    SciTech Connect (OSTI)

    Sanford, Todd; Frumhoff, Peter; Luers, Amy; Gulledge, Jay

    2014-01-01

    It is time to acknowledge that global average temperatures will likely rise above the 2 C policy target and consider how that deeply troubling prospect should affect priorities for communicating and managing the risks of a dangerously warming climate.

  9. Latitudinal distribution of the recent Arctic warming

    SciTech Connect (OSTI)

    Chylek, Petr; Lesins, Glen K; Wang, Muyin

    2010-12-08

    Increasing Arctic temperature, disappearance of Arctic sea ice, melting of the Greenland ice sheet, sea level rise, increasing strength of Atlantic hurricanes are these impending climate catastrophes supported by observations? Are the recent data really unprecedented during the observational records? Our analysis of Arctic temperature records shows that the Arctic and temperatures in the 1930s and 1940s were almost as high as they are today. We argue that the current warming of the Arctic region is affected more by the multi-decadal climate variability than by an increasing concentration of carbon dioxide. Unfortunately, none of the existing coupled Atmosphere-Ocean General Circulation Models used in the IPCC 2007 cIimate change assessment is able to reproduce neither the observed 20th century Arctic cIimate variability nor the latitudinal distribution of the warming.

  10. Measurement of electron-ion relaxation in warm dense copper

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; Correa, A. A.; Ping, Y.; Lee, J. W.; Bae, L. J.; Prendergast, D.; Falcone, R. W.; Heimann, P. A.

    2016-01-06

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.

  11. Global warming from HFC

    SciTech Connect (OSTI)

    Johnson, E.

    1998-11-01

    Using a variety of public sources, a computer model of hydrofluorocarbon (HFC) refrigerant emissions in the UK has been developed. This model has been used to estimate and project emissions in 2010 under three types of scenarios: (1) business as usual; (2) voluntary agreements to reduce refrigerant leakage; and (3) comprehensive regulations to reduce refrigerant leakage. This resulting forecast is that UK emissions of HFC refrigerants in 2010 will account for 2% to 4% of the UK`s 1990 baseline global warming contribution.

  12. NERSC Calculations Provide Independent Confirmation of Global Land Warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Since 1901 Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, 2013 Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 campo.jpg These maps show the changes in air temperatures over land as measured using thermometers (left side) and as calculated by the 20th Century Reanalysis project (left side). While more than 80 percent of the observed variation is captured by

  13. Computer modeling of the global warming effect

    SciTech Connect (OSTI)

    Washington, W.M.

    1993-12-31

    The state of knowledge of global warming will be presented and two aspects examined: observational evidence and a review of the state of computer modeling of climate change due to anthropogenic increases in greenhouse gases. Observational evidence, indeed, shows global warming, but it is difficult to prove that the changes are unequivocally due to the greenhouse-gas effect. Although observational measurements of global warming are subject to ``correction,`` researchers are showing consistent patterns in their interpretation of the data. Since the 1960s, climate scientists have been making their computer models of the climate system more realistic. Models started as atmospheric models and, through the addition of oceans, surface hydrology, and sea-ice components, they then became climate-system models. Because of computer limitations and the limited understanding of the degree of interaction of the various components, present models require substantial simplification. Nevertheless, in their present state of development climate models can reproduce most of the observed large-scale features of the real system, such as wind, temperature, precipitation, ocean current, and sea-ice distribution. The use of supercomputers to advance the spatial resolution and realism of earth-system models will also be discussed.

  14. Microclimatic performance of a free-air warming and CO? enrichment experiment in windy Wyoming, USA

    SciTech Connect (OSTI)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO?) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0C day/night) and growing season free-air CO? enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5C day/night) but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms? average) and significant daily and seasonal temperature fluctuations (as much as 30C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO? had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO?. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.

  15. Stronger warming effects on microbial abundances in colder regions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Ji; Luo, Yiqi; Xia, Jianyang; Jiang, Lifen; Zhou, Xuhui; Lu, Meng; Liang, Junyi; Shi, Zheng; Shelton, Shelby; Cao, Junji

    2015-12-10

    Soil microbes play critical roles in regulating terrestrial carbon (C) cycle and its feedback to climate change. However, it is still unclear how the soil microbial community and abundance respond to future climate change scenarios. In this meta-analysis, we synthesized the responses of microbial community and abundance to experimental warming from 64 published field studies. Our results showed that warming significantly increased soil microbial abundance by 7.6% on average. When grouped by vegetation or soil types, tundras and histosols had the strongest microbial responses to warming with increased microbial, fungal, and bacterial abundances by 15.0%, 9.5% and 37.0% in tundra,more » and 16.5%, 13.2% and 13.3% in histosols, respectively. We found significant negative relationships of the response ratios of microbial, fungal and bacterial abundances with the mean annual temperature, indicating that warming had stronger effects in colder than warmer regions. Moreover, the response ratios of microbial abundance to warming were positively correlated with those of soil respiration. Our results therefore indicate that the large quantities of C stored in colder regions are likely to be more vulnerable to climate warming than the soil C stored in other warmer regions.« less

  16. Cosmic Rays and Global Warming

    SciTech Connect (OSTI)

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  17. More data needed to support or disprove global warming theory

    SciTech Connect (OSTI)

    1997-05-26

    Reports of global warming are prevalent in the popular press. With the exception of Scandinavia, no major energy tax laws have been passed to date. But environmental pressures may change this, and the change could have a profound effect on refiners. These are the views of Gerald T. Westbrook, of TSBV Consultants, Houston. Westbrook summarized recent global-warming research, and his position on the subject, at the National Petroleum Refiners Association annual meeting, held March 16--18, in San Antonio. The greenhouse effect is real, says Westbrook. It is important, however, to distinguish between the two major mechanisms of the greenhouse effect: natural warming and anthropogenic warming (changes in the concentration of greenhouse gases caused by man). Without greenhouse gases the earth`s equilibrium temperature would be {minus}18 C. The effect of the gases is to raise the equilibrium temperature to 15 C. In the early 1980s, computer models estimated global warming over the past 100 years to be as much as 2.3 C. By 1986, those estimates had been reduced to 1.0 C, and in 1988, a range of 0.63 {+-} 0.2 C was reported. In 1995, a report by the Intergovernmental Panel on Climate change (IPCC) cited a range of 0.3--0.6 C. Westbrook asserts that the earth`s motion anomalies--orbit eccentricity, axial tilt, and wobbles--lead to dramatic changes in insolation, and are the dominant force over the last 160,000 years.

  18. Global warming and the regions in the Middle East

    SciTech Connect (OSTI)

    Alvi, S.H.; Elagib, N.

    1996-12-31

    The announcement of NASA scientist James Hansen made at a United States Senate`s hearing in June 1988 about the onset of global warming ignited a whirlwind of public concern in United States and elsewhere in the world. Although the temperature had shown only a slight shift, its warming has the potential of causing environmental catastrophe. According to atmosphere scientists, the effect of higher temperatures will change rainfall patterns--some areas getting drier, some much wetter. The phenomenon of warming in the Arabian Gulf region was first reported by Alvi for Bahrain and then for Oman. In the recent investigations, the authors have found a similar warming in other regions of the Arabian Gulf and in several regions of Sudan in Africa. The paper will investigate the observed data on temperature and rainfall of Seeb in Oman, Bahrain, International Airport in Kuwait as index stations for the Arabian Gulf and Port Sudan, Khartoum and Malakal in the African Continent of Sudan. Based on various statistical methods, the study will highlight a drying of the regions from the striking increase in temperature and decline of rainfall amount. Places of such environmental behavior are regarded as desertifying regions. Following Hulme and Kelly, desertification is taken to mean land degradation in dryland regions, or the permanent decline in the potential of the land to support biological activity, and hence human welfare. The paper will also, therefore, include the aspect of desertification for the regions under consideration.

  19. Global warming and nuclear power

    SciTech Connect (OSTI)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two-fold reduction might be attained. Even the first such halving of carbon intensivity of stationary-source energy production world-wide might permit continued slow power-demand growth in the highly developed countries and rapid development of the other 80% of the world, both without active governmental suppression of fossil fuel usage - while also stabilizing carbon input-rates into the Earth`s atmosphere. The second two-fold reduction might obviate most global warming concerns.

  20. COLLOQUIUM: Extreme Global Warming: Examples from the Past | Princeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Lab April 16, 2014, 4:00pm to 5:30pm MBG Auditorium COLLOQUIUM: Extreme Global Warming: Examples from the Past Professor Mark Pagani Yale University Earth's climate 50 million years ago was the warmest time of the Cenozoic and characterized by expansive high-latitude warmth and low meridional temperature gradients. Starting at about 55 million years ago, a series of rapid and extreme carbon-induced global warming events, known as hyperthermals, are evident. This presentation

  1. {sup 85}Kr induced global warming

    SciTech Connect (OSTI)

    Zakharov, V.I.

    1996-12-31

    It`s well known that the trace atmospheric constituent as {sup 85}Kr is at present about 10{sup 6} cm{sup {minus}3} and increasing considerably (twice every 8--10 years) as a result of nuclear fuel utilization. This paper presents the model of influence of {sup 85}Kr accumulation in the earth atmosphere on climate perturbation and global warming. The process of increasing the concentrations in the troposphere due to the anthropogenic emission of {sup 85}Kr and its radioactive decay is analyzed, based on master kinetic equations. Results indicate that anthropogenic emissions contributing to the total equilibrium concentration of tropospheric ions due to {sup 85}Kr is about equal to the natural level of tropospheric ions. The influence of atmospheric electricity on the transformation between water vapor and clouds which result in an increase in the concentration of ions in troposphere is investigated. The paper shows that the process of anthropogenic accumulation of {sup 85}Kr in the troposphere at present rate up to 2005--2010 increases the mean of the dew-point temperature several degrees on the global scale. Relevant change of height for the lower level of clouds has been obtained. Positive feedback between the process of warming of the lower atmosphere and the concentration of tropospheric ions has been considered.

  2. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its...

  3. Ultrafast Spectroscopy of Warm Dense Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrafast Spectroscopy of Warm Dense Matter Print Being neither solid, liquid, gas, nor plasma, warm dense matter (WDM) occupies a no man's land in the map of material phases. Its...

  4. Warming trends: Adapting to nonlinear change

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jonko, Alexandra K.

    2015-01-28

    As atmospheric carbon dioxide concentrations rise, some regions are expected to warm more than others. Research suggests that whether warming will intensify or slow down over time also depends on location.

  5. Hydrological consequences of global warming

    SciTech Connect (OSTI)

    Miller, Norman L.

    2009-06-01

    The 2007 Intergovernmental Panel for Climate Change indicates there is strong evidence that the atmospheric concentration of carbon dioxide far exceeds the natural range over the last 650,000 years, and this recent warming of the climate system is unequivocal, resulting in more frequent extreme precipitation events, earlier snowmelt runoff, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. The effects of recent warming has been well documented and climate model projections indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99 percent) of occurring with significant to severe consequences in response to a warmer lower atmosphere with an accelerating hydrologic cycle.

  6. Global Warming and Human Health

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Geophysical Union Global Warming and Human Health WHEN: Jul 27, 2015 5:30 PM - 6:30 PM WHERE: Eldorado Hotel 309 W San Francisco Street, Santa Fe SPEAKER: Robert Davis, University of Virginia CONTACT: Shermonta Grant (202) 777-7329 CATEGORY: Community Science TYPE: Lecture INTERNAL: Calendar Login Event Description The main reason we are concerned about human-induced climate change is that climate shifts might impact the health of Earth's populace. These impacts can be direct, such as

  7. Direct health effects of global warming in Japan and China

    SciTech Connect (OSTI)

    Ando, M.; Yamamoto, S.; Tamura, K.

    1997-12-31

    Combustion of fossil fuels and industrial and agricultural activities are resulting in greater emissions of some greenhouse gases such as carbon dioxide and methane into the atmosphere, therefore contributing to global warming. Using general circulation models, it is estimated that surface temperatures in temperate regions will rise 1 to 3 degrees C during the next 100 years. Because global warming may increase the frequency and length of high temperatures during hot summer months, various health risks caused by heat stress have been studied. According to our epidemiological survey, the incidence of heat-related illness was significantly correlated to hot environments in Tokyo, Japan and in Nanjing and Wuhan, China. The epidemiological results also showed that the incidence of heat-related morbidity and mortality in the elderly increased very rapidly in summer. The regression analysis on these data showed that the number of heat stroke patients increased exponentially when the mean daily temperature and maximum daily temperature exceeded 27C and 32C in Tokyo and 31C and 36C in Wuhan and Nanjing, respectively. Since the incidence of heat-related morbidity and mortality has been shown to increase as a result of exposure to long periods of hot summer temperatures, it is important to determine to what extent the incidence of heat stress-related morbidity and mortality will be affected as a result of global warming.

  8. 100 LPW 800 Lm Warm White LED

    SciTech Connect (OSTI)

    Decai Sun

    2010-10-31

    An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramic™ and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package efficiency (PPE) through improvement in phosphor-package interactions. Another achievement in the development of the phosphor integration technology is the demonstration of tight color control. The high power WW LED product developed has been proven to have good reliability. The manufacturing of the product will be done in Philips Lumileds’ LUXEON Rebel production line which has produced billions of high power LEDs. The first high power WW LED product will be released to the market in 2011.

  9. Global warming: A geothermal evidence from northern Finland

    SciTech Connect (OSTI)

    Bodri, L.

    1996-12-31

    The greatest potential climatic changes induced by an increasing greenhouse effect are expected to occur in the high latitudes. Due to the great natural climatic variability in such areas, it is difficult to detect the greenhouse signal from meteorologic records. A reliable documentation of climate changes requires the examining of all available climatic records. In present study, temperature-depth profiles from two Finnish boreholes from over the Arctic circle have been considered to reconstruct ground surface temperature histories. The holes have been carefully selected to exclude any possible disturbances from underground water circulation, and to minimize the human effects as completely as possible. Both boreholes indicate continuous warming by {approximately}1--1.5 K through the last hundred years. The rate of warming increases from about the 1960`s. The results are in good agreement with those obtained for the Alaskan Arctic in a similar study by Lachenbruch and Marshall.

  10. GIS applications to evaluate public health effects of global warming

    SciTech Connect (OSTI)

    Regens, J.L.; Hodges, D.G.

    1996-12-31

    Modeling projections of future climatic conditions suggest changes in temperature and precipitation patterns that might induce direct adverse effects on human health by altering the extent and severity of infectious and vector-borne diseases. The incidence of mosquito-borne diseases, for example, could increase substantially in areas where temperature and relative humidity rise. The application of Geographic Information Systems (GIS) offers new methodologies to evaluate the impact of global warming on changes in the incidence of infectious and vector-borne diseases. This research illustrates the potential analytical and communication uses of GIS for monitoring historical patterns of climate and human health variables and for projecting changes in these health variables with global warming.

  11. Microclimatic performance of a free-air warming and CO₂ enrichment experiment in windy Wyoming, USA

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LeCain, Daniel; Smith, David; Morgan, Jack; Kimball, Bruce A.; Pendall, Elise; Miglietta, Franco; Liang, Wenju

    2015-02-06

    In order to plan for global changing climate experiments are being conducted in many countries, but few have monitored the effects of the climate change treatments (warming, elevated CO₂) on the experimental plot microclimate. During three years of an eight year study with year-round feedback-controlled infra-red heater warming (1.5/3.0°C day/night) and growing season free-air CO₂ enrichment (600 ppm) in the mixed-grass prairie of Wyoming, USA, we monitored soil, leaf, canopy-air, above-canopy-air temperatures and relative humidity of control and treated experimental plots and evaluated ecologically important temperature differentials. Leaves were warmed somewhat less than the target settings (1.1 & 1.5°C day/night)more » but soil was warmed more creating an average that matched the target settings extremely well both during the day and night plus the summer and winter. The site typically has about 50% bare or litter covered soil, therefore soil heat transfer is more critical than in dense canopy ecosystems. The Wyoming site commonly has strong winds (5 ms⁻¹ average) and significant daily and seasonal temperature fluctuations (as much as 30°C daily) but the warming system was nearly always able to maintain the set temperatures regardless of abiotic variation. The within canopy-air was only slightly warmed and above canopy-air was not warmed by the system, therefore convective warming was minor. Elevated CO₂ had no direct effect nor interaction with the warming treatment on microclimate. Relative humidity within the plant canopy was only slightly reduced by warming. Soil water content was reduced by warming but increased by elevated CO₂. This study demonstrates the importance of monitoring the microclimate in manipulative field global change experiments so that critical physiological and ecological conclusions can be determined. Highly variable energy demand fluctuations showed that passive IR heater warming systems will not maintain desired warming for much of the time.« less

  12. Evidences of global warming for various regions of Russia

    SciTech Connect (OSTI)

    Batyreva, O.V.; Pischehko, V.A.; Vilfand, R.M.; Vasiliev, A.A.

    1997-12-31

    The automatical classification of mean monthly temperature fields of Russia was carried out. The data of 42 years in regular grid-points 5 x 10{degree} of Northern Hemisphere were used. The combination of land`s algorithm of K-averages was applied. The increasing of prevailing occurrence of warm types during last decades was discovered. It turned out that different regions had different dynamics of type occurrences.

  13. Nuclear stopping power in warm and hot dense matter

    SciTech Connect (OSTI)

    Faussurier, Gerald; Blancard, Christophe; Gauthier, Maxence

    2013-01-15

    We present a method to estimate the nuclear component of the stopping power of ions propagating in dense matter. Three kinds of effective pair potentials are proposed. Results from the warm dense matter regime and the domain of high energy density physics are presented and discussed for proton and helium. The role of ionic temperature is examined. The nuclear stopping power can play a noticeable role in hot dense matter.

  14. ARM - Word Seek: Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Temperature

  15. Global Warming Solutions Inc previously Southern Investments...

    Open Energy Info (EERE)

    Solutions Inc previously Southern Investments Inc Jump to: navigation, search Name: Global Warming Solutions Inc (previously Southern Investments Inc) Place: Houston, Texas...

  16. Nuclear energy output slows as climate warms

    SciTech Connect (OSTI)

    Kramer, David

    2014-06-01

    New reports from the Intergovernmental Panel on Climate Change and the US government say the window is closing for actions to avert the worst effects of warming.

  17. Atmospheric Radiation Measurement Tropical Warm Pool International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program ...

  18. Global warming, insurance losses and financial industry

    SciTech Connect (OSTI)

    Low, N.C.

    1996-12-31

    Global warming causes extremely bad weather in the near term. They have already caught the attention of the insurance industry, as they suffered massive losses in the last decade. Twenty-one out of the 25 largest catastrophes in the US, mainly in the form of hurricanes have occurred in the last decade. The insurance industry has reacted by taking the risk of global warming in decisions as to pricing and underwriting decisions. But they have yet to take a more active role in regulating the factors that contributes to global warming. How global warming can impact the financial industry and the modern economy is explored. Insurance and modern financial derivatives are key to the efficient functioning of the modern economy, without which the global economy can still function but will take a giant step backward. Any risk as global warming that causes economic surprises will hamper the efficient working of the financial market and the modern economy.

  19. Toxicological and epidemiological aspects of global warming on human health

    SciTech Connect (OSTI)

    Ando, M.; Yamamoto, S.; Wakamatsu, K.; Kawahara, I.; Asanuma, S.

    1996-12-31

    Since human activities are responsible for anthropogenic greenhouse gases emissions, climate models project an increase in the global surface temperature of 0.9 C to 4.0 C by 2100. For human health, it is projected that global warming may have a critical effect on the increased periods of severe heat stress in summer throughout the world. Global warming may have a critical issue on the increased periods of severe heat stress that have a potential impact on peroxidative damage in humans and animals. Lipid peroxidative damage is markedly related to GSH peroxidase activities, therefore the study was carried out to analyze the relationship between biochemical adaptability and the lipid peroxidative damage especially intracellular structure, such as mitochondria and endoplasmic reticulum depending on the exposure time of heat stress.

  20. Remote sensing, global warming, and vector-borne disease

    SciTech Connect (OSTI)

    Wood, B.; Beck, L.; Dister, S.; Lobitz, B.

    1997-12-31

    The relationship between climate change and the pattern of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are changes such as global warming, which are continental in scale and occur over periods of years, decades, or longer. At the opposite extreme are changes associated with severe weather events, which can occur at local and regional scales over periods of days, weeks, or months. Key ecological factors affecting the distribution of vector-borne diseases include temperature, precipitation, and habitat availability, and their impact on vectors, pathogens, reservoirs, and hosts. Global warming can potentially alter these factors, thereby affecting the spatial and temporal patterns of disease.

  1. ARM - What is Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be a little hotter than normal where YOU live but it may be a little cooler where other people live So, when you look at the average temperature everywhere on the earth for a...

  2. ON THE INSTABILITY OF TROPICAL WESTERN PACIFIC WARM POOL DURING THE BOREAL WINTER AND SPRING

    SciTech Connect (OSTI)

    BARR-KUMARAKULASINGHE,S.A.

    1998-03-23

    A source of instability in the western Pacific warm pool is shown to be due to sea surface elevation variations caused by changes in the zonal sea-surface temperature (SST) gradient and the changes in the Pacific Ocean basin length in relation to the warm pool latitudinal location. The variation of the sea-surface elevation is measured by using the thermocline depth response calculated from a two-layer ocean. The warm pool is shown to be barely at equilibrium during the boreal late winter and early spring by comparing the measured thermocline at 110{degree}W, 0{degree}E with the calculated thermocline depth. Based on this analysis, a failure or reversal of the climatological zonal winds are apparently not a necessary precursor for the instability of the warm pool and initiation of a warm event. A warm event can be initiated by an increase in the size of the warm pool and/or an increase in zonal SST differences during the boreal/winter spring. This mechanism could be an alternate mechanism for El-Nino Southern Oscillation (ENSO) dynamics to that postulated by Bjeknes (1969).

  3. Electronic Structure of Warm Dense Matter via Multicenter Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure of Warm Dense Matter via Multicenter Green's Function Technique Research Personnel Modeling The proposed research addresses the Warm Dense Matter area...

  4. Working Fluids Low Global Warming Potential Refrigerants - 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies ...

  5. Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global-Warming-Potential Refrigerants Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Lead Performer: National Institute of Standards and Technology - ...

  6. High-efficiency Low Global-Warming Potential (GWP) Compressor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-efficiency Low Global-Warming Potential (GWP) Compressor High-efficiency Low Global-Warming Potential (GWP) Compressor Lead Performer: United Technologies Research Center - ...

  7. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Warming Potential Refrigerants - 2013 Peer Review Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies Project for ...

  8. Potential Effect of Pollutantn Emissions on Global Warming: First...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses Potential Effect of Pollutantn Emissions on Global Warming: First ...

  9. Confederated Tribes of the Warm Springs Reservation- 2007 Wind Project

    Broader source: Energy.gov [DOE]

    Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon.

  10. Confederated Tribes of the Warm Springs Reservation- 2007 Project

    Broader source: Energy.gov [DOE]

    Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon.

  11. Wildfires may contribute more to global warming than previously...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot...

  12. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle...

  13. North Florida Global Warming Study Group | Open Energy Information

    Open Energy Info (EERE)

    Global Warming Study Group Jump to: navigation, search Name: North Florida Global Warming Study Group Address: 8342 Compass Rose Dr S Place: Jacksonville, Florida Zip: 32216 Year...

  14. Signal and noise in global warming detection. Final report

    SciTech Connect (OSTI)

    North, G.R.

    1998-11-01

    The specific objectives of this study were the following: (1) What is the expected sampling error and bias incurred in estimation of the global average temperature from a finite number of point gauges? (2) What is the best one can do by optimally arranging N point gauges, how can one make best use of existing data at N point gauges by optimally weighting them? (3) What is a good estimation of the signal of global warming based upon simple models of the climate system? (4) How does one develop an optimal signal detection technique from the knowledge of signal and noise?

  15. Are we seeing global warming?

    SciTech Connect (OSTI)

    Hasselmann, K.

    1997-05-09

    Despite considerable progress, the question of whether the observed gradual increase in global mean temperature over the last century is indeed caused by human activities or is simply an expression of natural climate variation on a larger spatial and temporal scales remains a controversial issue. To answer this question three things are needed: prediction of the anthropogenic climate change signal; determination of the natural climate variability noise; and computation of the signal-to-noise ratio and test of whether the ratio exceeds some predefined statistical detection threshold. This article discusses all these issues and the uncertainties involved in getting definitive answers. 12 refs., 1 fig.

  16. Interpretation of simulated global warming using a simple model

    SciTech Connect (OSTI)

    Watterson, I.G.

    2000-01-01

    A simple energy balance model with two parameters, an effective heat capacity and an effective climate sensitivity, is used to interpret six GCM simulations of greenhouse gas-induced global warming. By allowing the parameters to vary in time, the model can be accurately calibrated for each run. It is found that the sensitivity can be approximated as a constant in each case. However, the effective heat capacity clearly varies, and it is important that the energy equation is formulated appropriately, and thus unlike many such models. For simulations with linear forcing and from a cold start, the capacity is in each case close to that of a homogeneous ocean with depth initially 200 m, but increasing some 4.3 m each year, irrespective of the sensitivity and forcing growth rate. Analytic solutions for t his linear capacity function are derived, and these reproduce the GCM runs well, even for cases where the forcing is stabilized after a century or so. The formation of a subsurface maximum in the mean ocean temperature anomaly is a significant feature of such cases. A simple model for a GCM run with a realistic forcing scenario starting from 1,880 is constructed using component results for forcing segments. Given this, an estimate of the cold start error of a simulation of the warming due to forcing after the present would be given by the negative of the temperature drift of the anomaly due to the past forcing. The simple model can evidently be used to give an indication of likely warming curves, at lest for this range of scenarios and GCM sensitivities.

  17. Hot surface ignition system control module with accelerated igniter warm-up test program

    SciTech Connect (OSTI)

    Brown, B.T.

    1986-10-07

    This patent describes a gas burner control system which consists of: a burner; an electrical resistance igniter for igniting the burner; valve means for controlling flow of gas to the burner; and a control module, including a microcomputer, for controlling operation of the igniter and the valve means, the microcomputer being programmed to provide a preselected igniter warm-up time period for enabling the igniter to attain a temperature sufficient to ignite gas, the microcomputer being further programmed to provide a test routine including a program for providing an accelerated igniter warm-up time period which is shorter than the preselected igniter warm-up time period but sufficiently long for enabling the igniter to attain at least the minimum temperature required to ignite gas, the program in the test routine being executed in response to a unique signal effected by the control module and a test device which is external from and detachably connected to the control module.

  18. ARM - Temperature Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsTemperature Converter Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Temperature Converter The Fahrenheit scale, invented by German physicist Daniel Gabriel Fahrenheit (1686-1736), is based on 32 °F for the freezing point of water and 212 °F for the boiling point of water. The

  19. Geothermal-resource assessment of Ranger Warm Spring, Colorado. Resources Series 24

    SciTech Connect (OSTI)

    Zacharakis, T.G.; Pearl, R.H.; Ringrose, C.D.

    1983-01-01

    In 1977 a program was initiated to delineate the geological features controlling the occurrence of geothermal resources in Colorado. This program consisted of literature search, reconnaissance geologic and hydrogeologic mapping and geophysical and geochemical surveys. During 1980 and 1981 geothermal resource assessment efforts were conducted in the Cement Creek Valley south of Crested Butte. In this valley are two warm springs, Cement Creek and Ranger, about 4 mi (6.4 km) apart. The temperature of both springs is 77 to 79/sup 0/F (25 to 26/sup 0/C) and the discharge ranges from 60 to 195 gallons per minute. Due to access problems no work was conducted in the Cement Creek Warm Springs area. At Ranger Warm Springs electrical resistivity and soil mercury surveys were conducted. The warm springs are located in the Elk Mountains of west central Colorado. The bedrock of the area consists of sedimentary rocks ranging in age from Precambrian to Recent. Several faults with displacements of up to 3000 ft (194 m) are found in the area. One of these faults passes close to the Ranger Warm Springs. The electrical resistivity survey indicated that the waters of Ranger Warm Springs are moving up along a buried fault which parallels Cement Creek.

  20. Confederated Tribes of Warm Springs - Geothermal Feasibility Study

    Office of Environmental Management (EM)

    Water Enterprises Geothermal Power Development Feasibility Study Warm Springs Indian Reservation US Department of Energy Tribal Energy Program Review October 23-27 2006 Confederated Tribes of Warm Springs Warm Springs, Oregon Project Participants Project Participants * * Jim Manion, GM, Warm Springs Power & Water Ent. Jim Manion, GM, Warm Springs Power & Water Ent. * * David McClain, DW McClain Associates David McClain, DW McClain Associates * * GeothermEx Inc. GeothermEx Inc. * * Power

  1. Future warming patterns linked to today’s climate variability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dai, Aiguo

    2016-01-11

    The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations during 1950–1979more » having more GHG-induced warming in the 21st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less

  2. Why the Earth has not warmed as much as expected?

    SciTech Connect (OSTI)

    Schwartz, S.E.

    2010-05-01

    The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change. Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15%. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation, by empirical determination of the earth's climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluted by their performance over this period, is shown to require substantial reduction in the uncertainty of aerosol forcing over this period.

  3. Why hasn't earth warmed as much as expected?

    SciTech Connect (OSTI)

    Schwartz, S.E.; Charlson, R.; Kahn, R.; Ogren, J.; Rodhe, H.

    2010-03-15

    The observed increase in global mean surface temperature (GMST) over the industrial era is less than 40% of that expected from observed increases in long-lived greenhouse gases together with the best-estimate equilibrium climate sensitivity given by the 2007 Assessment Report of the Intergovernmental Panel on Climate Change. Possible reasons for this warming discrepancy are systematically examined here. The warming discrepancy is found to be due mainly to some combination of two factors: the IPCC best estimate of climate sensitivity being too high and/or the greenhouse gas forcing being partially offset by forcing by increased concentrations of atmospheric aerosols; the increase in global heat content due to thermal disequilibrium accounts for less than 25% of the discrepancy, and cooling by natural temperature variation can account for only about 15%. Current uncertainty in climate sensitivity is shown to preclude determining the amount of future fossil fuel CO2 emissions that would be compatible with any chosen maximum allowable increase in GMST; even the sign of such allowable future emissions is unconstrained. Resolving this situation by empirical determination of Earths climate sensitivity from the historical record over the industrial period or through use of climate models whose accuracy is evaluated by their performance over this period is shown to require substantial reduction in the uncertainty of aerosol forcing over this period.

  4. Global warming: Science or politics. Part 1

    SciTech Connect (OSTI)

    Dorweiler, V.P.

    1998-04-01

    ``The balance of evidence suggests that there has been a discernible influence of human activity on global climate`` is a statement employed as the foundation basis to intervene on behalf of the globe and the future. That statement, as scientific evidence of human-produced greenhouse gases (primarily CO{sub 2}) having a warming effect on global climate is a political statement only. Further, the Kyoto conference to consider intervention in human activities regarding global warming was a political conference. Political and treaty issues were the focus; scientific issues were not much discussed. What change is needed then to scientifically determine global warming and to ascertain whether human activity is involved? A better understanding of the natural climate variations related to solar variation can improve understanding of an anthropogenic greenhouse effect on the climate. The purpose of this article is to pose the scientific question. Part 2 will present an answer.

  5. Cold stress on Russian territory during last global warming

    SciTech Connect (OSTI)

    Vinogradov, V.V.

    1996-12-31

    A great part of Russian territory is characterized by climate discomfort of life. In winter cold stress covers nearly all territory. The purpose of this work is to learn how the climatic discomfort of life is affected by climate change. The effect of global warming for the period 1981--1990 on geographical distribution of bioclimatic indexes by seasons (compared with average figures) is analyzed. Indexes of enthalpy, dry cooling, wind chill, wet cooling, effective temperature, physiological deficit index for monthly average figures were calculated and the data bank for the period 1981--1990 was made up. The indexes of enthalpy, wet cooling, and dry cooling according to Bodman were chosen as the most informative and independent. Maps of the climatic indexes taking into account temperature, humidity and wind speed were made up on the basis of the calculated figures.

  6. Carbonyl sulfide: No remedy for global warming

    SciTech Connect (OSTI)

    Taubman, S.J.; Kasting, J.F. [Pennsylvania State Univ., University Park, PA (United States)] [Pennsylvania State Univ., University Park, PA (United States)

    1995-04-01

    The authors look at the possibility of counteracting global warming forces by the injection of carbonyl sulfide (OCS) into the stratosphere at levels high enough to balance the impact say of a doubling of carbon dioxide concentrations, which are projected to result in a global 3{degrees} C warming. OCS injections at densities to provide such cooling will result a 30 percent impact of global ozone, whereas the carbon dioxide only made a 5% impact. In addition levels which would be found on the earths surface would be in the range 10 ppmv which is questionable as a safe exposure limit for humans, in addition to its impact on the ph of rainwater.

  7. "Hot" for Warm Water Cooling

    SciTech Connect (OSTI)

    IBM Corporation; Energy Efficient HPC Working Group; Hewlett Packard Corporation; SGI; Cray Inc.; Intel Corporation; U.S. Army Engineer Research Development Center; Coles, Henry; Ellsworth, Michael; Martinez, David J.; Bailey, Anna-Maria; Banisadr, Farhad; Bates, Natalie; Coghlan, Susan; Cowley, David E.; Dube, Nicholas; Fields, Parks; Greenberg, Steve; Iyengar, Madhusudan; Kulesza, Peter R.; Loncaric, Josip; McCann, Tim; Pautsch, Greg; Patterson, Michael K.; Rivera, Richard G.; Rottman, Greg K.; Sartor, Dale; Tschudi, William; Vinson, Wade; Wescott, Ralph

    2011-08-26

    Liquid cooling is key to reducing energy consumption for this generation of supercomputers and remains on the roadmap for the foreseeable future. This is because the heat capacity of liquids is orders of magnitude larger than that of air and once heat has been transferred to a liquid, it can be removed from the datacenter efficiently. The transition from air to liquid cooling is an inflection point providing an opportunity to work collectively to set guidelines for facilitating the energy efficiency of liquid-cooled High Performance Computing (HPC) facilities and systems. The vision is to use non-compressor-based cooling, to facilitate heat re-use, and thereby build solutions that are more energy-efficient, less carbon intensive and more cost effective than their air-cooled predecessors. The Energy Efficient HPC Working Group is developing guidelines for warmer liquid-cooling temperatures in order to standardize facility and HPC equipment, and provide more opportunity for reuse of waste heat. This report describes the development of those guidelines.

  8. Global crop yield losses from recent warming

    SciTech Connect (OSTI)

    Lobell, D; Field, C

    2006-06-02

    Global yields of the world-s six most widely grown crops--wheat, rice, maize, soybeans, barley, sorghum--have increased since 1961. Year-to-year variations in growing season minimum temperature, maximum temperature, and precipitation explain 30% or more of the variations in yield. Since 1991, climate trends have significantly decreased yield trends in all crops but rice, leading to foregone production since 1981 of about 12 million tons per year of wheat or maize, representing an annual economic loss of $1.2 to $1.7 billion. At the global scale, negative impacts of climate trends on crop yields are already apparent. Annual global temperatures have increased by {approx}0.4 C since 1980, with even larger changes observed in several regions (1). While many studies have considered the impacts of future climate changes on food production (2-5), the effects of these past changes on agriculture remain unclear. It is likely that warming has improved yields in some areas, reduced them in others, and had negligible impacts in still others; the relative balance of these effects at the global scale is unknown. An understanding of this balance would help to anticipate impacts of future climate changes, as well as to more accurately assess recent (and thereby project future) technologically driven yield progress. Separating the contribution of climate from concurrent changes in other factors--such as crop cultivars, management practices, soil quality, and atmospheric carbon dioxide (CO{sub 2}) levels--requires models that describe the response of yields to climate. Studies of future global impacts of climate change have typically relied on a bottom-up approach, whereby field scale, process-based models are applied to hundreds of representative sites and then averaged (e.g., ref 2). Such approaches require input data on soil and management conditions, which are often difficult to obtain. Limitations on data quality or quantity can thus limit the utility of this approach, especially at the local scale (6-8). At the global scale, however, many of the processes and impacts captured by field scale models will tend to cancel out, and therefore simpler empirical/statistical models with fewer input requirements may be as accurate (8, 9). Empirical/statistical models also allow the effects of poorly modeled processes (e.g., pest dynamics) to be captured and uncertainties to be readily quantified (10). Here we develop new, empirical/statistical models of global yield responses to climate using datasets on broad-scale yields, crop locations, and climate variability. We focus on global average yields for the six most widely grown crops in the world: wheat, rice, maize, soybeans, barley, and sorghum. Production of these crops accounts for over 40% of global cropland area (11). 55% of non-meat calories, and over 70% of animal feed (12).

  9. The stability of the thermohaline circulation in global warming experiments

    SciTech Connect (OSTI)

    Schmittner, A.; Stocker, T.F.

    1999-04-01

    A simplified climate model of the coupled ocean-atmosphere system is used to perform extensive sensitivity studies concerning possible future climate change induced by anthropogenic greenhouse gas emissions. Supplemented with an active atmospheric hydrological cycle, experiments with different rates of CO{sub 2} increase and different climate sensitivities are performed. The model exhibits a threshold value of atmospheric CO{sub 2} concentration beyond which the North Atlantic Deep Water formation stops and never recovers. For a climate sensitivity that leads to an equilibrium warming of 3.6 C for a doubling of CO{sub 2} and a rate of CO{sub 2} increase of 1% yr{sup {minus}1}, the threshold lies between 650 and 700 ppmv. Moreover, it is shown that the stability of the thermohaline circulation depends on the rate of increase of greenhouse gases. For a slower increase of atmospheric pCO{sub 2} the final amount that can be reached without a shutdown of the circulation is considerably higher. This rate-sensitive response is due to the uptake of heat and excess freshwater from the uppermost layers to the deep ocean. The increased equator-to-pole freshwater transport in a warmer atmosphere is mainly responsible for the cessation of deep water formation in the North Atlantic. Another consequence of the enhanced latent heat transport is a stronger warming at high latitudes. A model version with fixed water vapor transport exhibits uniform warming at all latitudes. The inclusion of a simple parameterization of the ice-albedo feedback increases the model sensitivity and further decreases the pole-to-equator temperature difference in a greenhouse climate. The possible range of CO{sub 2} threshold concentrations and its dependency on the rate of CO{sub 2} increase, on the climate sensitivity, and on other model parameters are discussed.

  10. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect (OSTI)

    Rudd, A.

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  11. Measure Guideline: Supplemental Dehumidification in Warm-Humid Climates

    SciTech Connect (OSTI)

    Rudd, Armin

    2014-10-01

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisture being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.

  12. Confederated Tribes of Warm Springs - Wind Energy Power Development

    Office of Environmental Management (EM)

    Springs Power and Water Enterprise Use of DOE Grant DE-PS36-06GO96037 For Engineering Cost Assessment For Wind Energy Power Development On The Warm Springs Indian Reservation of Oregon. Prepared by: Warm Springs Power & Water Enterprises The Confederated Tribes of Warm Springs * Home of the Warm Springs, Wasco, and Paiute tribes, the Warm Springs Reservation is inhabited by nearly 4,500 tribal members, most of whom live in or around the town of Warm Springs. * Within the community, the

  13. Thermal Plasticity of Photosynthesis: the Role of Acclimation in Forest Responses to a Warming Climate

    SciTech Connect (OSTI)

    Gunderson, Carla A; O'Hara, Keiran H; Campion, Christina M; Walker, Ashley V; Edwards, Nelson T

    2010-01-01

    The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open-top chambers supplied three levels of warming (+0, +2, and +4 C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17 to 34 were observed. Across species, acclimation potentials varied from 0.55 C to 1.07 C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.

  14. Long-term soil warming and Carbon Cycle Feedbacks to the Climate System

    SciTech Connect (OSTI)

    Melillo, Jerry M.

    2014-04-30

    The primary objective of the proposed research was to quantify and explain the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem. The research was done at an established soil warming experiment at the Harvard Forest in central Massachusetts Barre Woods site established in 2001. In the field, a series of plant and soil measurements were made to quantify changes in C storage in the ecosystem and to provide insights into the possible relationships between C-storage changes and nitrogen (N) cycling changes in the warmed plots. Field measurements included: 1) annual woody increment; 2) litterfall; 3) carbon dioxide (CO2) efflux from the soil surface; 4) root biomass and respiration; 5) microbial biomass; and 6) net N mineralization and net nitrification rates. This research was designed to increase our understanding of how global warming will affect the capacity of temperate forest ecosystems to store C. The work explored how soil warming changes the interactions between the C and N cycles, and how these changes affect land-atmosphere feedbacks. This core research question framed the project What are the effects of a sustained in situ 5oC soil temperature increase on net carbon (C) storage in a northeastern deciduous forest ecosystem? A second critical question was addressed in this research What are the effects of a sustained in situ 5{degrees}C soil temperature increase on nitrogen (N) cycling in a northeastern deciduous forest ecosystem?

  15. Persisting cold extremes under 21st-century warming scenarios

    SciTech Connect (OSTI)

    Kodra, Evan A; Steinhaeuser, Karsten J K; Ganguly, Auroop R

    2011-01-01

    Analyses of climate model simulations and observations reveal that extreme cold events are likely to persist across each land-continent even under 21st-century warming scenarios. The grid-based intensity, duration and frequency of cold extreme events are calculated annually through three indices: the coldest annual consecutive three-day average of daily maximum temperature, the annual maximum of consecutive frost days, and the total number of frost days. Nine global climate models forced with a moderate greenhouse-gas emissions scenario compares the indices over 2091 2100 versus 1991 2000. The credibility of model-simulated cold extremes is evaluated through both bias scores relative to reanalysis data in the past and multi-model agreement in the future. The number of times the value of each annual index in 2091 2100 exceeds the decadal average of the corresponding index in 1991 2000 is counted. The results indicate that intensity and duration of grid-based cold extremes, when viewed as a global total, will often be as severe as current typical conditions in many regions, but the corresponding frequency does not show this persistence. While the models agree on the projected persistence of cold extremes in terms of global counts, regionally, inter-model variability and disparity in model performance tends to dominate. Our findings suggest that, despite a general warming trend, regional preparedness for extreme cold events cannot be compromised even towards the end of the century.

  16. Where contributes most to the present century-scale global warming?

    SciTech Connect (OSTI)

    Zhaomei Zeng; Zhongwei Yan; Duzheng Ye

    1997-12-31

    In recent years, the temporal and spatial patterns of climate changes have received serious attention, by which some authors tried to recognize anthropogenic influences on climate and others tended to explain signals as resulted from natural processes. Yet, there are still many features of the present climate changes remaining open to be explained. As implied in many numerical modeling reviewed in recent literature, the warming induced by enhanced atmospheric greenhouse effect should be larger at higher latitudes. Proxy data indicated also that during past warm periods temperature anomalies at high latitudes were larger than at low latitudes. It gives people the impression that the enhanced greenhouse effect induced global warming should be more easily looked for in near-polar regions. However, this paper will show some new findings.

  17. Confederated Tribes of the Warm Springs Reservation- 2002 Project

    Broader source: Energy.gov [DOE]

    Warm Springs Power Enterprises, a corporate entity owned and operated by the Confederated Tribes of Warm Springs, will conduct a 36-month comprehensive wind energy resource assessment and development feasibility study.

  18. The role of water vapor feedback in unperturbed climate variability and global warming

    SciTech Connect (OSTI)

    Hall, A.; Manabe, Syukuro

    1999-08-01

    To understand the role of water vapor feedback in unperturbed surface temperature variability, a version of the Geophysical Fluid Dynamics Laboratory coupled ocean-atmosphere model is integrated for 1,000 yr in two configurations, one with water vapor feedback and one without. To understand the role of water vapor feedback in global warming, two 500-yr integrations were also performed in which CO{sub 2} was doubled in both model configurations. The final surface global warming in the model with water vapor feedback is 3.38 C, while in the one without it is only 1.05 C. However, the model`s water vapor feedback has a larger impact on surface warming in response to a doubling of CO{sub 2} than it does on internally generated, low-frequency, global-mean surface temperature anomalies. Water vapor feedback`s strength therefore depends on the type of temperature anomaly it affects. Finally, the authors compare the local and global-mean surface temperature time series from both unperturbed variability experiments to the observed record. The experiment without water vapor feedback does not have enough global-scale variability to reproduce the magnitude of the variability in the observed global-mean record, whether or not one removes the warming trend observed over the past century. In contrast, the amount of variability in the experiment with water vapor feedback is comparable to that of the global-mean record, provided the observed warming trend is removed. Thus, the authors are unable to simulate the observed levels of variability without water vapor feedback.

  19. Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Peer Review | Department of Energy Global Warming Potential Refrigerants - 2013 Peer Review Thermodynamic Evaluation of Low-Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech13_mclinden_040213.pdf More Documents & Publications Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Research & Development Roadmap: Next-Generation Low Global Warming

  20. Electronic Structure of Warm Dense Matter via Multicenter Green's Function

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technique | The Ames Laboratory Electronic Structure of Warm Dense Matter via Multicenter Green's Function Technique Research Personnel Publications Modeling The proposed research addresses the Warm Dense Matter area identified in the Report of the ReNeW in HEDLP. The electronic structure, equation of state, radiative, and transport properties of warm electrons in an amorphous or disordered configuration of ions are not well described by either solid state or plasma models. Such warm-dense

  1. Confederated Tribes of Warm Springs - Wind Feasibility Study

    Office of Environmental Management (EM)

    Water Enterprises Wind Energy Development Feasibility Study Warm Springs Indian Reservation Oregon Confederated Tribes of Warm Springs Warm Springs, Oregon US Department of Energy Tribal Energy Program Review October 23-27 2006 Project Participants * Warm Springs Power & Water Enterprises * CTWS Dept. of Natural Resources * DW McClain and Associates: Project Management * OSU Energy Research Laboratory: Wind Modeling * Elcon Associates: Transmission System Studies * Northwest Wildlife

  2. A global warning for global warming

    SciTech Connect (OSTI)

    Paepe, R.

    1996-12-31

    The problem of global warming is a complex one not only because it is affecting desert areas such as the Sahel leading to famine disasters of poor rural societies, but because it is an even greater threat to modern well established industrial societies. Global warming is a complex problem of geographical, economical and societal factors together which definitely are biased by local environmental parameters. There is an absolute need to increase the knowledge of such parameters, especially to understand their limits of variance. The greenhouse effect is a global mechanism which means that in changing conditions at one point of the Earth, it will affect all other regions of the globe. Industrial pollution and devastation of the forest are quoted as similar polluting anthropogenic activities in far apart regions of the world with totally different societies and industrial compounds. The other important factor is climatic cyclicity which means that droughts are bound to natural cycles. These natural cycles are numerous as is reflected in the study of geo-proxydata from several sequential geological series on land, ice and deepsea. Each of these cycles reveals a drought cycle which occasionally interfere at the same time. It is believed that the present drought might well be a point of interference between the natural cycles of 2,500 and 1,000 years and the man induced cycle of the last century`s warming up. If the latter is the only cycle involved, man will be able to remediate. If not, global warming will become even more disastrous beyond the 21st century.

  3. Working Fluids: Low Global Warming Potential Refrigerants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Fluids: Low Global Warming Potential Refrigerants 2014 Building Technologies Office Peer Review Omar Abdelaziz, abdelazizoa@ornl.gov Oak Ridge National Laboratory Honeywell University of Maryland Project Summary Timeline: Start date: 01-Oct-2010 Planned end date: 30-Sep-2016 Key Milestones 1. Data analysis and reporting of supermarket system: baseline and alternative refrigerants; 12/31/2014 2. Perform initial field testing of alternative refrigerant in 3 rd party installation; 9/30/2014

  4. Aridity changes in the Tibetan Plateau in a warming climate

    SciTech Connect (OSTI)

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.

  5. Aridity changes in the Tibetan Plateau in a warming climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Yanhong; Li, Xia; Leung, Lai-Yung R.; Chen, Deliang; Xu, Jianwei

    2015-03-10

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of P/PET (precipitation to potential evapotranspiration) as an aridity index to indicate changes in dryness and wetness in a given area, P/PET was calculated using observed records at 83 stations in the TP, with PET calculated using the Penman–Monteith (PM) algorithm. Spatial and temporal changes of P/PET in 1979-2011 are analyzed.more » Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter and stations in the semi-humid southeastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with precipitation, sunshine duration and diurnal temperature range changes at confidence level of 99.9% from two-tail t-test. Temporal correlations also confirm the significant correlation between aridity changes with the three variables, with precipitation being the most dominant driver of P/PET changes at interannual time scale. PET changes are insignificant but negatively correlated with P/PET in the cold season. In the warm season, however, correlation between PET changes and P/PET changes are significant at confidence level of 99.9% when the cryosphere melts near the surface. Significant correlation between wind speed changes and aridity changes occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring.« less

  6. Effects of Warming on Tree Species’ Recruitment in Deciduous Forests of the Eastern United States

    SciTech Connect (OSTI)

    Melillo, Jerry M.; Clark, James S.; Mohan, Jacqueline

    2015-03-25

    Climate change is restructuring forests of the United States, although the details of this restructuring are currently uncertain. Rising temperatures of 2 to 8oC and associated changes in soil moisture will shift the competitive balance between species that compete for light and water, and so change their abilities to produce seed, germinate, grow, and survive. We have used large-scale experiments to determine the effects of warming on the most sensitive stage of species distributions, i.e., recruitment, in mixed deciduous forests in southern New England and in the Piedmont region of North Carolina. Two questions organized our research: (1) Might temperate tree species near the “warm” end of their range in the eastern United States decline in abundance during the coming century due to projected warming? and (2) Might trees near the “cool” end of their range in the eastern United States increase in abundance, or extend their range, during the coming 100 years because of projected warming? To explore these questions, we exposed seedlings to air and soil warming experiments in two eastern deciduous forest sites; one at the Harvard Forest (HF) in central Massachusetts, and the other at the Duke Forest (DF) in the Piedmont region of North Carolina. We focused on tree species common to both Harvard and Duke Forests (such as red, black, and white oaks), those near northern range limits (black oak, flowing dogwood, tulip poplar), and those near southern range limits (yellow birch, sugar maple, Virginia pine). At each site, we planted seeds and seedlings in common gardens established in temperature-controlled, open-top chambers. The experimental design was replicated and fully factorial and involved three temperature regimes (ambient, +3oC and +5oC) and two light regimes (closed forest canopy (low light) and gap conditions (high light)). Measured variables included Winter/Spring responses to temperature and mid-Summer responses to low soil moisture. This research will advance our understanding of how the abundances and geographic distributions of several important eastern tree species near the cool and warm ends of their ranges will change during the century because of projected warming. Warming-induced changes in eastern tree abundances and distributions have the potential to affect both the quality and quantity of goods and services provided by eastern forests, and will therefore be of importance to society.

  7. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  8. Estimating present climate in a warming world: a model-based approach

    SciTech Connect (OSTI)

    Raeisaenen, J.; Ruokolainen, L. [University of Helsinki (Finland). Division of Atmospheric Sciences and Geophysics

    2008-09-30

    Weather services base their operational definitions of 'present' climate on past observations, using a 30-year normal period such as 1961-1990 or 1971-2000. In a world with ongoing global warming, however, past data give a biased estimate of the actual present-day climate. Here we propose to correct this bias with a 'delta change' method, in which model-simulated climate changes and observed global mean temperature changes are used to extrapolate past observations forward in time, to make them representative of present or future climate conditions. In a hindcast test for the years 1991-2002, the method works well for temperature, with a clear improvement in verification statistics compared to the case in which the hindcast is formed directly from the observations for 1961-1990. However, no improvement is found for precipitation, for which the signal-to-noise ratio between expected anthropogenic changes and interannual variability is much lower than for temperature. An application of the method to the present (around the year 2007) climate suggests that, as a geographical average over land areas excluding Antarctica, 8-9 months per year and 8-9 years per decade can be expected to be warmer than the median for 1971-2000. Along with the overall warming, a substantial increase in the frequency of warm extremes at the expense of cold extremes of monthly-to-annual temperature is expected.

  9. 130 LPW 1000 Lm Warm White LED for Illumination

    SciTech Connect (OSTI)

    Soer, Wouter

    2012-06-14

    An illumination-grade warm-white LED, having correlated color temperature (CCT) between 2700 and 3500 K and capable of producing 1000 lm output at over 130 lm/W at room temperature, has been developed in this program. The high-power warm-white LED is an ideal source for use in indoor and outdoor lighting applications. Over the two year period, we have made the following accomplishments: • Developed a low-cost high-power white LED package and commercialized a series of products with CCT ranging from 2700 to 5700 K under the product name LUXEON M; • Demonstrated a record efficacy of 124.8 lm/W at a flux of 1023 lm, CCT of 3435 K and color rendering index (CRI) over 80 at room temperature in the productized package; • Demonstrated a record efficacy of 133.1 lm/W at a flux of 1015 lm, CCT of 3475 K and CRI over 80 at room temperature in an R&D package. The new high-power LED package is a die-on-ceramic surface mountable LED package. It has four 2 mm2 InGaN pump dice, flip-chip attached to a ceramic submount in a 2x2 array configuration. The submount design utilizes a design approach that combines a high-thermal- conductivity ceramic core for die attach and a low-cost and low-thermal-conductivity ceramic frame for mechanical support and as optical lens carrier. The LED package has a thermal resistance of less than 1.25 K/W. The white LED fabrication also adopts a new batch level (instead of die-by-die) phosphor deposition process with precision layer thickness and composition control, which provides not only tight color control, but also low cost. The efficacy performance goal was achieved through the progress in following key areas: (1) high-efficiency royal blue pump LED development through active region design and epitaxial growth quality improvement (funded by internal programs); (2) improvement in extraction efficiency from the LED package through improvement of InGaN-die-level and package-level optical extraction efficiency; and (3) improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package efficiency (PPE) through improvement in phosphor-package interactions. The high-power warm-white LED product developed has been proven to have good reliability through extensive reliability tests. The new kilo-lumen package has been commercialized under the product name LUXEON M. As of the end of the program, the LUXEON M product has been released in the following CCT/CRI combinations: 3000K/70, 4000K/70, 5000K/70, 5700K/70, 2700K/80, 3000K/80 and 4000K/80. LM-80 tests for the products with CCTs of 4000 K and higher have reached 8500 hours, and per IESNA TM-21-11 have established an L70 lumen maintenance value of >51,000 hours at A drive current and up to 120 °C board temperature.

  10. Global warming: Science or politics? Part 2

    SciTech Connect (OSTI)

    Dorweiler, V.P.

    1998-05-01

    Supplementing the conclusion that ``there has been a discernible influence of human activity on global climate`` is a set of dire consequences to the globe and human population. One consequence is the spread of tropical diseases. It has not been concluded whether the spread of disease is due to global conditions or to opening of tropical forests to commerce, allowing spread by travelers. Whether these forecasts abet the claimed relation of human activity to global warming, they are not a new phenomenon. In the space of several decades, dire consequences have been forecast in three sectors: natural resource consumption, energy resources and environmental fate. These three areas are reviewed.

  11. Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests

    SciTech Connect (OSTI)

    Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-15

    Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

  12. Black carbon contribution to global warming

    SciTech Connect (OSTI)

    Chylek, P.; Johnson, B.; Kou, L.; Wong, J.

    1996-12-31

    Before the onset of industrial revolution the only important source of black carbon in the atmosphere was biomass burning. Today, black carbon production is divided between the biomass and fossil fuel burning. Black carbon is a major agent responsible for absorption of solar radiation by atmospheric aerosols. Thus black carbon makes other aerosols less efficient in their role of reflecting solar radiation and cooling the earth-atmosphere system. Black carbon also contributes to the absorption of solar radiation by clouds and snow cover. The authors present the results of black carbon concentrations measurements in the atmosphere, in cloud water, in rain and snow melt water collected during the 1992--1996 time period over the southern Nova Scotia. Their results are put into the global and historical perspective by comparing them with the compilation of past measurements at diverse locations and with their measurements of black carbon concentrations in the Greenland and Antarctic ice cores. Black carbon contribution to the global warming is estimated, and compared to the carbon dioxide warming, using the radiative forcing caused by the black carbon at the top of the atmosphere.

  13. A warm air poultry brooding system

    SciTech Connect (OSTI)

    Nulte, W.H.

    1980-12-01

    As the energy crisis escalated during the mid-70's, it became apparent that energy intensive industries must seek alternate fuel sources. Georgia Tech realized that one of these industries was the poultry industry. Consequently, a demonstration project of a wood-fired, warm air poultry brooding system was designed and built. Since its completion in mid-1978, the system has demonstrated considerable cost savings as well as being a very functional and reliable system. The system consists of 3 main components--a wood burning furnace, a supply distribution and return duct, and 20 flexible ducts which simulate the function of the propane brooders by providing warm air close to the ground. A separate structure houses the furnace and wood supply. This house is located at the midpoint of the growout house to allow symmetrical and naturally balanced air distribution. Since the system became operational, 16 flocks of birds have been brooded. During this time, wood usage has averaged approximately 30 cords per year while in a neighboring house, that is used as a control house, the propane usage has averaged 3,800 gallons per year. In the area of Georgia where the demonstration project is located, the cost of fuelwood has remained stable over the last 2 years, whereas the price of propane has continually increased. Thus the grower has the benefit of constantly increasing cost savings while utilizing a renewable resource as fuel.

  14. Valuation of mountain glaciation response on global warming

    SciTech Connect (OSTI)

    Ananicheva, M.D.; Davidovich, N.V.

    1997-12-31

    Quantitative estimates of main climatic parameters, influencing the glacier regime (summer air temperature and annual solid precipitation), and glaciologic characteristics (mass balance components, equilibrium line altitude and rate of air temperature at this height), received on the basis of the scenario for a climate development according to R. Wetherald and S. Manabe (1982) are submitted. The possible reaction of mountain glaciation on global warming is considered for two mountain countries: South-eastern Alaska and Pamir-Alay (Central Asia). In given paper we have tried to evaluate changes of the mountain glaciation regime for a time of CO{sub 2} doubling in the atmosphere, basing on the scenario of climate development and modern statistical relationships between climatic and glaciologic parameters. The GCM scenario of R. Wetherald and C. Manabe (GFDL model) which is made with respect of mountain territories is in the basis our calculations. As initial materials we used data of long-term observations and the maps of World Atlas of Snow and Ice Resources (WASIR).

  15. Global surface temperature changes since the 1850s

    SciTech Connect (OSTI)

    Jones, P.D.

    1996-12-31

    Temperature data from land and marine areas form the basis for many studies of climatic variations on local, regional and hemispheric scales, and the global mean temperature is a fundamental measure of the state of the climate system. In this paper it is shown that the surface temperature of the globe has warmed by about 0.5{degrees}C since the mid-nineteenth century. This is an important part of the evidence in the {open_quote}global warming{close_quote} debate. How certain are we about the magnitude of the warming? Where has it been greatest? In this paper, these and related issues will be addressed.

  16. Wildfires may contribute more to global warming than previously predicted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and

  17. Wildfires may contribute more to global warming than previously predicted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot more to the observed climate warming than current estimates show. July 9, 2013 Haze of smoke emanating from the 2011 Las Conchas, NM fire. Haze of smoke emanating from the 2011 Las Conchas, NM fire. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email "The fact that we are experiencing more fires and

  18. Geoengineering: Plan B Remedy for Global Warming Andrew A. Lacis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan B Remedy for Global Warming Andrew A. Lacis NASA Goddard Institute for Space Studies Accelerated melting of Greenland ice is a clear indication that consequences of global warming are real and impending. The underlying causes of global warming are well enough understood, but the necessary reduction of greenhouse gases to prevent irreversible climate change is unlikely to happen before the point of no return is reached. To reverse the impending sea level rise, geoengineering counter-

  19. Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Global-Warming-Potential Refrigerants Thermodynamic Evaluation of Low-Global-Warming-Potential Refrigerants Lead Performer: National Institute of Standards and Technology - Gaithersburg, MD Partners: -- Catholic University of America - Washington, DC -- George Mason University - Fairfax, VA DOE Funding: $1,750,000 Cost Share: N/A Project Term: 2/1/2011 - 3/31/2015 Project Objective This project evaluates alternative refrigerants with low global warming potential (GWP) to

  20. ARM - What Are the Effects of Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Are the Effects of Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What Are the Effects of Global Warming? Changes in Crop and Plant Life In the mid-latitudes (this includes most of the United States), the amount of moisture in the soil will probably decrease in the summer.

  1. ARM - What Are the Effects of Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What Are the Effects of Global Warming? As greenhouse gases continue to increase, the earth may experience significant climate changes. In addition, there are many other impacts that global warming can have on the earth. You can learn more

  2. ARM - What Will Happen as a Result of Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Will Happen as a Result of Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What Will Happen as a Result of Global Warming? Major Stratospheric Cooling Virtually certain. Because there is erosion of upper stratospheric ozone by chlorofluorocarbons (CFCs), there is less

  3. ARM - Possible Benefits of Global Warming on Agriculture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListPossible Benefits of Global Warming on Agriculture Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Possible Benefits of Global Warming on Agriculture Pros and Cons Given the need for caution, it may still be possible to make a few general comments. With more carbon dioxide in the

  4. Are You Keeping Warm This Winter? | Department of Energy

    Energy Savers [EERE]

    Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while saving

  5. Research & Development Roadmap: Next-Generation Low Global Warming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential Refrigerants | Department of Energy Low Global Warming Potential Refrigerants Research & Development Roadmap: Next-Generation Low Global Warming Potential Refrigerants Refrigerants are used in a wide variety of heating, ventilation, air conditioning, and refrigeration (HVAC&R) equipment. The current generation of refrigerants, hydrofluorocarbons (HFCs), have significant global warming potential (GWP) when released to the atmosphere. This research and development (R&D)

  6. Confederated Tribes of Warm Springs - Geothermal Feasibility Study

    Office of Environmental Management (EM)

    Springs The Confederated Tribes Of Warm Springs Presentation to DOE Department of Renewable Energy Presentation to DOE Department of Renewable Energy October, 2005 for Geothermal Development Potential on Confederated Tribes of Warm Springs Reservation of Oregon repared by: Warm Springs Power Enterprises History with Energy Developments History with Energy Developments * * Intro to Power business in 1955 with the development of the Pelt Intro to Power business in 1955 with the development of the

  7. Confederated Tribes of Warm Springs - Geothermal Feasibility Study

    Office of Environmental Management (EM)

    Springs Presentation to DOE Department of Renewable Energy October , 2007 For Geothermal Development Potential On Confederated Tribes of Warm Springs Reservation of Oregon Lands Prepared by: Warm Springs Power & Water Enterprises History With Energy Developments Intro to Power business in 1955 with the development of the Pelton Project. 1970 with the installation of three 3 MW steam turbines at Warm Springs Forest Products Industries (WSFPI). 1982 completed the installation of the Pelton

  8. Call for emission limits heats debate on global warming

    SciTech Connect (OSTI)

    Singer, S.F.

    1997-08-01

    Emission limits on carbon dioxide is recommended by an Intergovernmental Panel in a discussion on global warming. (AIP) {copyright} {ital 1997 American Institute of Physics.}

  9. Scientists uncover combustion mechanism to better predict warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predict warming by wildfires Scientists have uncovered key attributes of so-called "brown carbon" from wildfires. August 4, 2014 Wildfire fuel being burned in the fire...

  10. First-principles opacity table of warm dense deuterium forinertial...

    Office of Scientific and Technical Information (OSTI)

    ...ial-confinement-fusion applications Citation Details In-Document Search Title: First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications ...

  11. Research & Development Roadmap: Next-Generation Low Global Warming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Global Warming Potential Refrigerants Research & Development Roadmap: Next-Generation ... This research and development (R&D) roadmap for next-generation low-GWP refrigerants ...

  12. The Tropical Warm Pool International Cloud Experiment: Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tropical Warm Pool International Cloud Experiment: Overview May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob,...

  13. Effects of experimental warming and clipping on metabolic change of microbial community in a US Great Plains tallgrass prairie

    SciTech Connect (OSTI)

    Xie, Jianping; Liu, Xinxing; Liu, Xueduan; Nostrand, Joy D. Van; Deng, Ye; Wu, Liyou; He, Zhili; Qiu, Guanzhou; Zhou, Jizhong

    2010-05-17

    While more and more studies are being conducted on the effects of global warming, little is known regarding the response of metabolic change of whole soil microbial communities to this phenomenon. In this study, functional gene changes at the mRNA level were analyzed by our new developed GeoChip 3.0. Soil samples were taken from a long-term climate warming experiment site, which has been conducted for ~;;8 years at the Kessler Farm Field Laboratory, a 137.6-ha farm located in the Central Redbed Plains, in McClain County, Oklahoma. The experiment uses a paired factorial design with warming as the primary factor nested with clipping as a secondary factor. An infrared heater was used to simulate global warming, and clipping was used to mimic mowing hay. Twelve 2m x 2m plots were divided into six pairs of warmed and control plots. The heater generates a constant output of ~;;100 Watts m-2 to approximately 2 oC increase in soil temperature above the ambient plots, which is at the low range of the projected climate warming by IPCC. Soil whole microbial communities? mRNA was extracted, amplified, labeled and hybridized with our GeoChip 3.0, a functional gene array covering genes involved in N, C, P, and S cycling, metal resistance and contaminant degradation, to examine expressed genes. The results showed that a greater number and higher diversity of genes were expressed under warmed plots compared to control. Detrended correspondence analysis (DCA) of all detected genes showed that the soil microbial communities were clearly altered by warming, with or without clipping. The dissimilarity of the communities based on functional genes was tested and results showed that warming and control communities were significantly different (P<0.05), with or without clipping. Most genes involved in C, N, P and S cycling were expressed at higher levels in warming samples compared to control samples. All of the results demonstrated that the whole microbial communities increase functional gene expression under warming with or without clipping in order to adapt the changed out environment. More detail analysis is underway.

  14. Global warming and changes in ocean circulation

    SciTech Connect (OSTI)

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  15. Global warming, global research, and global governing

    SciTech Connect (OSTI)

    Preining, O.

    1997-12-31

    The anticipated dangers of Global Warming can be mitigated by reducing atmospheric greenhouse gas concentrations, especially CO{sub 2}. To reach acceptable, constant levels within the next couple of centuries it might be necessary to accept stabilization levels higher than present ones, The annual CO{sub 2} emissions must be reduced far below today`s values. This is a very important result of the models discussed in the 1995 IPCC report. However, any even very modest scenario for the future must take into account a substantial increase in the world population which might double during the 21st century, There is a considerable emission reduction potential of the industrialized world due to efficiency increase, However, the demand for energy services by the growing world population will, inspite of the availability of alternative energy resources, possibly lead to a net increase in fossil fuel consumption. If the climate models are right, and the science community believes they are, we will experience a global warming of the order of a couple of degrees over the next century; we have to live with it. To be prepared for the future it is essential for us to use new research techniques embracing not only the familiar fields of hard sciences but also social, educational, ethical and economic aspects, We must find a way to build up the essential intellectual capacities needed to deal with these kinds of general problems within all nations and all societies. But this is not Although, we also have to find the necessary dynamical and highly flexible structures for a global governing using tools such as the environmental regime. The first step was the Framework Convention On Climate Change, UN 1992; for resolution of questions regarding implementations the Conference of the Parties was established.

  16. Predictive study on the risk of malaria spreading due to global warming

    SciTech Connect (OSTI)

    Ono, Masaji

    1996-12-31

    Global warming will bring about a temperature elevation, and the habitat of vectors of infectious diseases, such as malaria and dengue fever, will spread into subtropical or temperate zone. The purpose of this study is to simulate the spreading of these diseases through reexamination of existing data and collection of some additional information by field survey. From these data, the author will establish the relationship between meteorological conditions, vector density and malaria occurrence. And then he will simulate and predict the malaria epidemics in case of temperature elevation in southeast Asia and Japan.

  17. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    SciTech Connect (OSTI)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many of the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.

  18. Ultrabright x-ray laser scattering for dynamic warm dense matter physics

    SciTech Connect (OSTI)

    Fletcher, L. B.; Lee, H. J.; Doppner, T.; Galtier, E.; Nagler, B.; Heimann, P.; Fortmann, C.; Mao, T.; Millot, M.; Pak, A.; Turnbull, D.; Chapman, D. A.; Gericke, D. O.; Vorberger, J.; White, T.; Gregori, G.; Wei, M.; Barbrel, B.; Falcone, R. W.; Kao, C. -C.; Nuhn, H.; Welch, J.; Zastrau, U.; Neumayer, P.; Hastings, J. B.; Glenzer, S. H.

    2015-03-23

    In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions). Here, we apply record peak brightness X-rays at the Linac Coherent Light Source to resolve ionic interactions at atomic (ngstrm) scale lengths and to determine their physical properties. Our in situ measurements characterize the compressed lattice and resolve the transition to warm dense matter, demonstrating that short-range repulsion between ions must be accounted for to obtain accurate structure factor and equation of state data. Additionally, the unique properties of the X-ray laser provide plasmon spectra that yield the temperature and density with unprecedented precision at micrometre-scale resolution in dynamic compression experiments.

  19. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  20. A policy synthesis approach for slowing global warming

    SciTech Connect (OSTI)

    Timilsina, G.R.

    1996-12-31

    Global warming is a burning environmental issue today but confronting with subjective as well as policy conflicts. The findings of various studies indicate that developed countries that are capable of affording effective measures towards the global warming mitigation have fewer incentives for doing so because they will have a minimal damage from global warming. The developing countries, although they will have greater damage, are unlikely to divert their development budget for taking preventive actions towards global warming. The only solution in this situation is to design a policy that encourages all the nation in the world to participate in the programs for slowing global warming. Without active participation of all nations, it seems unlikely to reduce the global warming problem in an effective way. This study presents a qualitative policy recommendation extracted from a comprehensive analysis of the findings of several studies conducted so far in this field. This study has categorized the policy approaches for mitigating the global warming in three groups: Engineering approach, forestry approach and economic approach.

  1. Small inner companions of warm Jupiters: Lifetimes and legacies

    SciTech Connect (OSTI)

    Van Laerhoven, Christa; Greenberg, Richard

    2013-12-01

    Although warm Jupiters are generally too far from their stars for tides to be important, the presence of an inner planetary companion to a warm Jupiter can result in tidal evolution of the system. Insight into the process and its effects comes form classical secular theory of planetary perturbations. The lifetime of the inner planet may be shorter than the age of the system, because the warm Jupiter maintains its eccentricity and hence promotes tidal migration into the star. Thus a warm Jupiter observed to be alone in its system might have previously cleared away any interior planets. Before its demise, even if an inner planet is of terrestrial scale, it may promote damping of the warm Jupiter's eccentricity. Thus any inferences of the initial orbit of an observed warm Jupiter must include the possibility of a greater initial eccentricity than would be estimated by assuming it had always been alone. Tidal evolution involving multiple planets also enhances the internal heating of the planets, which readily exceeds that of stellar radiation for the inner planet, and may be great enough to affect the internal structure of warm Jupiters. Secular theory gives insight into the tidal processes, providing, among other things, a way to constrain eccentricities of transiting planets based on estimates of the tidal parameter Q.

  2. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    SciTech Connect (OSTI)

    Lthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses.

  3. Rising Sea Levels Due to Global Warming Are Unstoppable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rising Sea Levels Due to Global Warming Are Unstoppable Rising Sea Levels Due to Global Warming Are Unstoppable Mitigation can slow down but not prevent sea level rise for centuries to come August 5, 2013 Contact: Linda Vu, Lvu@lbl.gov, +1 510 495 2402 washington.jpg Because seawater absorbs heat more slowly than the atmosphere above it, our oceans won't feel the full impact of the greenhouse gases already in the air for hundreds of years. Warm water expands, raising sea levels. (Courtesy W.

  4. WARM MOLECULAR GAS IN LUMINOUS INFRARED GALAXIES

    SciTech Connect (OSTI)

    Lu, N.; Zhao, Y.; Xu, C. K.; Mazzarella, J. M.; Howell, J.; Appleton, P.; Lord, S.; Schulz, B.; Gao, Y.; Armus, L.; Daz-Santos, T.; Surace, J.; Isaak, K. G.; Petric, A. O.; Charmandaris, V.; Evans, A. S.; Inami, H.; Iwasawa, K.; Leech, J.; Sanders, D. B.; and others

    2014-06-01

    We present our initial results on the CO rotational spectral line energy distribution (SLED) of the J to J1 transitions from J = 4 up to 13 from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey. The observed SLEDs change on average from one peaking at J ? 4 to a broad distribution peaking around J ? 6 to 7 as the IRAS 60-to-100?m color, C(60/100), increases. However, the ratios of a CO line luminosity to the total infrared luminosity, L {sub IR}, show the smallest variation for J around 6 or 7. This suggests that, for most LIRGs, ongoing star formation (SF) is also responsible for a warm gas component that emits CO lines primarily in the mid-J regime (5 ? J ? 10). As a result, the logarithmic ratios of the CO line luminosity summed over CO(54), (65), (76), (87) and (109) transitions to L {sub IR}, log R {sub midCO}, remain largely independent of C(60/100), and show a mean value of 4.13 (?log?R{sub midCO}{sup SF}) and a sample standard deviation of only 0.10 for the SF-dominated galaxies. Including additional galaxies from the literature, we show, albeit with a small number of cases, the possibility that galaxies, which bear powerful interstellar shocks unrelated to the current SF, and galaxies, in which an energetic active galactic nucleus contributes significantly to the bolometric luminosity, have their R {sub midCO} higher and lower than R{sub midCO}{sup SF}, respectively.

  5. ARM - Lesson Plans: Air Density and Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Density and Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. Materials Each group of students will need the following: Balloon

  6. Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Mechanical ...

  7. Project Reports for Confederated Tribes of the Warm Springs Reservation- 2007 Project

    Broader source: Energy.gov [DOE]

    Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon.

  8. Modelling estimation on the impacts of global warming on rice production in China

    SciTech Connect (OSTI)

    Wang Futang

    1997-12-31

    In this paper, based on the validation and sensitivity analyses of two rice growth models (ORYZA1 and DRISIC--Double Rice Cropping Simulation Model for China), and their joining with global warming scenarios projected by GCMs (GFDL, UKMO-H, MPI and DKRZ OPYC, DKRZ LSG, respectively), the modelling experiments were carried out on the potential impacts of global warming on rice production in China. The results show that although there are the some features for each rice cropping patterns because of different models and estimated methods, the rice production for all cropping patterns in China will trend to decrease with different degrees. In average, early, middle and later rice production, as well as, double-early and double-later rice production in different areas of China will decrease 3.7%, 10.5% and 10.4%, as well as, 15.9% and 14.4%, respectively. It do illustrates that the advantage effects induced by elevated CO{sub 2} concentration on photosynthesis does not compensate the adverse effects of temperature increase. Thus, it is necessary to adjusting rice cropping patterns, cultivars and farming techniques to the global warming timely.

  9. Press Pass - Press Release - Fermilab Hosts Global Warming Presentatio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Office, 630-840-5588 For immediate release Fermilab Hosts Presentation on Global Warming on Feb. 28 Program is free and open to the public Dr. David Carlson,...

  10. ARM - Field Campaign - Warm-Season Data Assimilation and ISS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below or call us at 1-888-ARM-DATA. Send Campaign : Warm-Season Data Assimilation and ISS Test 1993.06.01 - 1993.06.30 Lead Scientist : Dave Parsons Data Availability Complete...

  11. ARM - Tropical Warm Pool - International Cloud Experiment (TWP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    width"16"> Tropical Warm Pool - International Cloud Experiment (TWP-ICE) twp-ice-big One of the most complete data sets of tropical cirrus and convection observations ever...

  12. Picture of the Week: Climate feedbacks from a warming arctic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in brown tones based on elevation) change from low centered (such as those on the top right) to high centered (such as those on the lower left) in a warming climate, resulting in...

  13. ARM - Field Campaign - Tropical Warm Pool - International Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsTropical Warm Pool - International Cloud Experiment (TWP-ICE) Campaign Links TWP-ICE Website ARM Data Discovery Browse Data Comments? We would love to hear from you...

  14. Modeling the effects of fire severity and climate warming on...

    Office of Scientific and Technical Information (OSTI)

    in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal...

  15. Optimization of High-Volume Warm Forming for Lightweight Sheet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm061harrison2012o.pdf More Documents & Publications Development of High-Volume Warm Forming of ...

  16. Geographical features of global water cycle during warm geological epochs

    SciTech Connect (OSTI)

    Georgiadi, A.G.

    1996-12-31

    The impact of global warming on the water cycle can be extremely complex and diverse. The goal of the investigation was to estimate the geographic features of the mean annual water budget of the world during climatic optimums of the Holocene and the Eemian interglacial periods. These geological epochs could be used as analogs of climatic warming on 1 degree, centigrade and 2 degrees, centigrade. The author used the results of climatic reconstructions based on a simplified version of a GCM.

  17. Scientists uncover combustion mechanism to better predict warming by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wildfires Scientists uncover combustion mechanism to better predict warming by wildfires Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Scientists uncover combustion mechanism to better predict warming by wildfires Scientists have uncovered key attributes of so-called "brown carbon" from wildfires September 2, 2014 Wildfire fuel being burned in the fire laboratory as the aerosols from the top are being

  18. First-principles opacity table of warm dense deuterium for

    Office of Scientific and Technical Information (OSTI)

    inertial-confinement-fusion applications (Journal Article) | SciTech Connect First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications Citation Details In-Document Search Title: First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications Authors: Hu, S. X. ; Collins, L. A. ; Goncharov, V. N. ; Boehly, T. R. ; Epstein, R. ; McCrory, R. L. ; Skupsky, S. Publication Date: 2014-09-23 OSTI Identifier: 1180259

  19. Potential Effect of Pollutantn Emissions on Global Warming: First

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparisong Using External Costs on Urban Buses | Department of Energy Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses Potential Effect of Pollutantn Emissions on Global Warming: First Comparisong Using External Costs on Urban Buses 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Aaqius and Aaqius PDF icon 2004_deer_joubert1.pdf More Documents & Publications A New Active DPF System for "Stop and

  20. Theory of factors limiting high gradient operation of warm accelerating

    Office of Scientific and Technical Information (OSTI)

    structures (Technical Report) | SciTech Connect Theory of factors limiting high gradient operation of warm accelerating structures Citation Details In-Document Search Title: Theory of factors limiting high gradient operation of warm accelerating structures This final report summarizes the research performed during the time period from 8/1/2010 to 7/31/2013. It consists of two parts describing our studies in two directions: (a) analysis of factors limiting operation of dielectric-loaded

  1. Confederated Tribes of Warm Springs - Human Capacity Building

    Office of Environmental Management (EM)

    Grant DE-PS36-06G096038 Human Capacity Building for Renewable Energy Development. Warm Spring Power and Water Enterprise Mark K. Johnson Jr. Prepared by: Warm Springs Power & Water Enterprises Project Goals * To build a knowledge base within the tribal community regarding renewable energy development. * To educate the tribal community regarding energy development processes & impacts to reservation lands when developing renewable energy projects * Defining the benefits of renewable

  2. A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming

    SciTech Connect (OSTI)

    Shen, W.; Tuleya, R.E.; Ginis, I.

    2000-01-01

    In this study, the effect of thermodynamic environmental changes on hurricane intensity is extensively investigated with the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory hurricane model for a suite of experiments with different initial upper-tropospheric temperature anomalies up to {+-}4 C and sea surface temperatures ranging from 26 to 31 C given the same relative humidity profile. The results indicate that stabilization in the environmental atmosphere and sea surface temperature (SST) increase cause opposing effects on hurricane intensity. The offsetting relationship between the effects of atmospheric stability increase (decrease) and SST increase (decrease) is monotonic and systematic in the parameter space. This implies that hurricane intensity increase due to a possible global warming associated with increased CO{sub 2} is considerably smaller than that expected from warming of the oceanic waters alone. The results also indicate that the intensity of stronger (weaker) hurricanes is more (less) sensitive to atmospheric stability and SST changes. The model-attained hurricane intensity is found to be well correlated with the maximum surface evaporation and the large-scale environmental convective available potential energy. The model-attained hurricane intensity if highly correlated with the energy available from wet-adiabatic ascent near the eyewall relative to a reference sounding in the undisturbed environment for all the experiments. Coupled hurricane-ocean experiments show that hurricane intensity becomes less sensitive to atmospheric stability and SST changes since the ocean coupling causes larger (smaller) intensity reduction for stronger (weaker) hurricanes. This implies less increase of hurricane intensity related to a possible global warming due to increased CO{sub 2}.

  3. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; Hengartner, Nicholas; Higdon, Dave; Lesins, Glen; Dubey, Manvendra K.

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosolmore » effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.« less

  4. Terrain and Ambient Wind Effects on the Warming Footprint of a Wind Machine

    SciTech Connect (OSTI)

    Mcmeeking, Gavin R.; Whiteman, Charles D.; Powell, Stuart G.; Clements, Craig B.

    2002-05-20

    An experiment in a vineyard in south-central Washington is described in which a vineyard wind machine used for frost protection was turned on and off while monitoring the air temperature in the vineyard. The wind machine fan, with a hub height of 12 m, rotated around a quasi-horizontal axis that was tilted downward into the vineyard at an angle of 6 degrees. The fan also rotated around a vertical axis once every 4 minutes to protect a roughly circular area surrounding the wind machine tower. A temperature inversion of about 3.5 C occurred above the vineyard between the 3-m and hub-height levels during the experiments. The 300-m diameter warming footprint of the fan was displaced down the south-facing 1-2{sup o} slope of the vineyard when the ambient wind speed was low, showing the effect of the weak and shallow nighttime drainage flow that often occurred in the vineyard. When the ambient wind speed increased, the footprint was displaced downwind and downslope of the tower. The mean warming footprint magnitude when the fan was switched on was about 1-2 C, and the temperature excess in the footprint relative to the surroundings dissipated quickly when the fan was switched off.

  5. A coupled theory of tropical climatology: Warm pool, cold tongue, and Walker circulation

    SciTech Connect (OSTI)

    Zhengyu Liu; Boyin Huang

    1997-07-01

    Based on results from analytic and general circulation models, the authors propose a theory for the coupled warm pool, cold tongue, and Walker circulation system. The intensity of the coupled system is determined by the coupling strength, the local equilibrium time, and latitudinal differential heating. Most importantly, this intensity is strongly regulated in the coupled system, with a saturation level that can be reached at a modest coupling strength. The saturation west-east sea surface temperature difference (and the associated Walker circulation) corresponds to about one-quarter of the latitudinal differential equilibrium temperature. This regulation is caused primarily by the decoupling of the SST gradient from a strong ocean current. The author`s estimate suggests that the present Pacific is near the saturation state. Furthermore, the much weaker Walker circulation system in the Atlantic Ocean is interpreted as being the result of the influence of the adjacent land, which is able to extend into the entire Atlantic to change the zonal distribution of the trade wind. The theory is also applied to understand the tropical climatology in coupled GCM simulations, in the Last Glacial Maximum climate, and in the global warming climate, as well as in the regulation of the tropical sea surface temperature. 41 refs., 15 figs.

  6. Visualizing expanding warm dense matter heated by laser-generated ion beams

    SciTech Connect (OSTI)

    Bang, Woosuk

    2015-08-24

    This PowerPoint presentation concluded with the following. We calculated the expected heating per atom and temperatures of various target materials using a Monte Carlo simulation code and SESAME EOS tables. We used aluminum ion beams to heat gold and diamond uniformly and isochorically. A streak camera imaged the expansion of warm dense gold (5.5 eV) and diamond (1.7 eV). GXI-X recorded all 16 x-ray images of the unheated gold bar targets proving that it could image the motion of the gold/diamond interface of the proposed target.

  7. Large amplitude solitary waves in a warm magnetoplasma with kappa distributed electrons

    SciTech Connect (OSTI)

    El-Tantawy, S. A.; El-Bedwehy, N. A.; Abd El-Razek, H. N.; Mahmood, S.

    2013-02-15

    The large amplitude nonlinear ion acoustic solitary wave propagating obliquely to an external magnetic field in a magnetized plasma with kappa distributed electrons and warm ions is investigated through deriving energy-balance-like expression involving a Sagdeev potential. Analytical and numerical calculations of the values of Mach number reveal that both of subsonic and supersonic electrostatic solitary structures can exist in this system. The influence on the soliton characteristics of relevant physical parameters such as the Mach number, the superthermal parameter, the directional cosine, the ratio of ion-to-electron temperature, and the ion gyrofrequency has been investigated.

  8. Filament velocity scaling laws for warm ions

    SciTech Connect (OSTI)

    Manz, P.; Max-Planck-Institut fr Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching ; Carralero, D.; Birkenmeier, G.; Mller, H. W.; Scott, B. D.; Mller, S. H.; Fuchert, G.; Stroth, U.; Physik-Department E28, Technische Universitt Mnchen, James-Franck-Str. 1, 85748 Garching

    2013-10-15

    The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvn fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.

  9. Military implications of global warming. Strategy research project

    SciTech Connect (OSTI)

    Greene, P.E.

    1999-05-20

    The 1998 National Security Strategy repeatedly cites global environmental issues as key to the long-term security of the United States. Similarly, US environmental issues also have important global implications. This paper analyzes current US Policy as it pertains to global warming and climate change. It discusses related economic factors and environmental concerns. It assesses current White House policy as it relates to the US military. It reviews the Department of Defense strategy for energy conservation and reduction of greenhouse gases. Finally, it offers recommendations and options for military involvement to reduce global warming. Global warming and other environmental issues are important to the US military. As the United States leadership in environmental matters encourages global stability, the US military will be able to focus more on readiness and on military training and operations.

  10. Equations of state and transport properties of mixtures in the warm dense regime

    SciTech Connect (OSTI)

    Hou, Yong; Dai, Jiayu; Kang, Dongdong; Ma, Wen; Yuan, Jianmin

    2015-02-15

    We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide region of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.

  11. The 7. global warming international conference and expo: Abstracts

    SciTech Connect (OSTI)

    1996-12-31

    This conference was held April 1--3, 1996 in Vienna, Austria. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on global warming. Topics of interest include the following: global and regional natural resource management; energy, transportation, minerals and natural resource management; industrial technology and greenhouse gas emission; strategies for the mitigation of greenhouse gas emission; greenhouse gas production/utilization and carbon budgets; strategies for promoting the understanding of global change; international policy strategy and economics; and global warming and public health. Individual papers have been processed separately for inclusion in the appropriate data bases.

  12. Stay Warm in Your Apartment | Department of Energy

    Energy Savers [EERE]

    Stay Warm in Your Apartment Stay Warm in Your Apartment October 19, 2009 - 11:43am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Yes, the Ghost of Winters Future has officially knocked on our front doors again. The leaves here in Washington, D.C., have started to turn toward their colorful crescendo, that spectacular finish before their end on the chilly ground. It makes me cold just thinking about it. Like me, you're probably not

  13. Changes in Concurrent Precipitation and Temperature Extremes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes.more » The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.« less

  14. Changes in Concurrent Precipitation and Temperature Extremes

    SciTech Connect (OSTI)

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes. The number of occurrences of these four combinations during the second half of the 20th century (19512004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 19782004 relative to 19511977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.

  15. Global warming. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The bibliography contains citations concerning policies and general studies on global warming. Topics include the greenhouse effect, global climatic models, and climatic effects from combustion of fossil fuels. (Contains a minimum of 173 citations and includes a subject term index and title list.)

  16. 8th Global warming international conference and exposition

    SciTech Connect (OSTI)

    1997-12-31

    Abstracts are presented from The 8th Annual Global Warming international conference and expo. Topics centered around greenhouse gas emission and disposal methods, policy and economics, carbon budget, and resource management. Individual reports have been processed separately for the United States Department of Energy databases.

  17. Cold weather encourages warm hearts in Kansas City | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration weather encourages warm hearts in Kansas City | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo

  18. Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech12_vineyard_040313.pdf More Documents & Publications Brian Fricke conducts research in ORNL's Building Technologies Research & Integration Center. Working Fluids Low Global Warming Potential Refrigerants Workshop 2: Advanced HVAC&R Research Effort

  19. Tracing ram-pressure stripping with warm molecular hydrogen emission

    SciTech Connect (OSTI)

    Sivanandam, Suresh; Rieke, Marcia J.; Rieke, George H.

    2014-12-01

    We use the Spitzer Infrared Spectrograph to study four infalling cluster galaxies with signatures of ongoing ram-pressure stripping. H{sub 2} emission is detected in all four, and two show extraplanar H{sub 2} emission. The emission usually has a warm (T ? 115-160 K) and a hot (T ? 400-600 K) component that is approximately two orders of magnitude less massive than the warm one. The warm component column densities are typically 10{sup 19} to 10{sup 20} cm{sup 2} with masses of 10{sup 6} to 10{sup 8} M {sub ?}. The warm H{sub 2} is anomalously bright compared with normal star-forming galaxies and therefore may be excited by ram-pressure. In the case of CGCG 97-073, the H{sub 2} is offset from the majority of star formation along the direction of the galaxy's motion in the cluster, suggesting that it is forming in the ram-pressure wake of the galaxy. Another galaxy, NGC 4522, exhibits a warm H{sub 2} tail approximately 4 kpc in length. These results support the hypothesis that H{sub 2} within these galaxies is shock-heated from the interaction with the intracluster medium. Stripping of dust is also a common feature of the galaxies. For NGC 4522, where the distribution of dust at 8 ?m is well resolved, knots and ripples demonstrate the turbulent nature of the stripping process. The H? and 24 ?m luminosities show that most of the galaxies have star-formation rates comparable to similar mass counterparts in the field. Finally, we suggest a possible evolutionary sequence primarily related to the strength of ram-pressure that a galaxy experiences to explain the varied results observed in our sample.

  20. Remarkable waxing, waning, and wandering of populations of Mimulus guttatus: An unexpected example of global warming

    SciTech Connect (OSTI)

    Vickery, R.K. Jr.

    1999-04-01

    The purpose of this study was to observe the dynamics of a meta-population of Mimulus guttatus. Changes in size and location of 16 original populations and the new populations established in their vicinities in Big Cottonwood Canyon, Salt Lake county, Utah, were observed for 25 yr. Twenty-three new populations appeared. Seven original populations and 13 new populations had become extinct by the end of the observation period in 1996. Many populations died out and were reestablished, often repeatedly, during the observation period. Altogether there were 54 population disappearances and 34 reappearances. Many populations changed size as much as 100-fold or more from year to year. There were spectacular examples of populations expanding to fill newly available, large habitats. Frequent extinctions were due overwhelmingly to the canyon drying trend, which led to the drying up of most Mill D North drainage springs, creeks, and ponds. Precipitation and minimum temperatures increased moderately during the observation period. The growing season lengthened almost 50%, a typical consequence of global warming. The drying trend, lengthened growing season, and disappearance of Mimulus populations in Big Cottonwood Canyon appear to be a clear, local example of global warming.

  1. Ion-acoustic cnoidal waves in plasmas with warm ions and kappa distributed electrons and positrons

    SciTech Connect (OSTI)

    Kaladze, T.; I.Vekua Institute of Applied Mathematics, Tbilisi State University, 0186 Georgia ; Mahmood, S.

    2014-03-15

    Electrostatic ion-acoustic periodic (cnoidal) waves and solitons in unmagnetized electron-positron-ion (EPI) plasmas with warm ions and kappa distributed electrons and positrons are investigated. Using the reductive perturbation method, the Korteweg-de Vries (KdV) equation is derived with appropriate boundary conditions for periodic waves. The corresponding analytical and various numerical solutions are presented with Sagdeev potential approach. Differences between the results caused by the kappa and Maxwell distributions are emphasized. It is revealed that only hump (compressive) structures of the cnoidal waves and solitons are formed. It is shown that amplitudes of the cnoidal waves and solitons are reduced in an EPI plasma case in comparison with the ordinary electron-ion plasmas. The effects caused by the temperature variations of the warm ions are also discussed. It is obtained that the amplitude of the cnoidal waves and solitons decreases for a kappa distributed (nonthermal) electrons and positrons plasma case in comparison with the Maxwellian distributed (thermal) electrons and positrons EPI plasmas. The existence of kappa distributed particles leads to decreasing of ion-acoustic frequency up to thermal ions frequency.

  2. High-Power Warm-White Hybrid LED Package for Illumination

    SciTech Connect (OSTI)

    Soer, Wouter

    2013-09-19

    In this project, an integrated warm-white hybrid light engine was developed. The hybrid approach involves combining phosphor-converted off-white InGaN LEDs and direct-emitting red AlInGaP LEDs in a single light engine to achieve high efficacy together with high color rendering index. We developed and integrated technology improvements in InGaN and AlInGaP die technology, phosphor technology, package architecture and encapsulation, to realize a hybrid warm-white LED package with an efficacy of 140 lm/W at a correlated color temperature of 3000K and a color rendering index of 90, measured under representative operating conditions. This efficacy is 26% higher than the best warm-white LEDs of similar specification that are commercially available at the end of the project. Since the InGaN- and AlInGaP-based LEDs used in the hybrid engine show different behavior as a function of current and temperature, a control system needs to be in place to ensure a stable color point over all operating conditions. In this project, we developed an electronic control circuit that is fully integrated into the light engine in such a way that the module can simply be driven by a conventional single-channel driver. The integrated control circuit uses a switch-mode boost converter topology to control the LED drive currents based on the temperature and the input current of the light engine. A color control performance of 5 SDCM was demonstrated, and improvement to 3 SDCM is considered well within reach. The combination of high efficacy and ease of integration with existing single-channel drivers is expected to facilitate the adoption of the hybrid technology and accelerate the energy savings associated with solid-state lighting. In the product commercialization plan, downlights and indirect-lit troffers have been selected as the first target applications for this product concept. Fully functional integrated prototypes have been developed for both applications, and the business case evaluation is ongoing as of the end of the project.

  3. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  4. Development of High-Volume Warm Forming of Low-Cost Magnesium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2010 DOE Vehicle Technologies and Hydrogen Programs...

  5. Project Reports for Confederated Tribes of the Warm Springs Reservation- 2002 Project

    Broader source: Energy.gov [DOE]

    Warm Springs Power Enterprises, a corporate entity owned and operated by the Confederated Tribes of Warm Springs, will conduct a 36-month comprehensive wind energy resource assessment and development feasibility study.

  6. Scientific American: "Tall Trees Sucked Dry by Global Warming"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like California's redwoods. June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like California's redwoods Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle describing how water

  7. ARM - What is the ARM Climate Research Facility Doing About Global Warming?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WarmingWhat is the ARM Climate Research Facility Doing About Global Warming? Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans What is the ARM Climate Research Facility Doing About Global Warming? Atmospheric Radiation Measurement (ARM) scientists are studying the effects of clouds on weather

  8. The 2007 Eastern US Spring Freeze: Increased Cold Damage in a Warming World

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect The 2007 Eastern US Spring Freeze: Increased Cold Damage in a Warming World Citation Details In-Document Search Title: The 2007 Eastern US Spring Freeze: Increased Cold Damage in a Warming World Plant ecologists have long been concerned with a seemingly paradoxical scenario in the relationship between plant growth and climate change: warming may actually increase the risk of plant frost damage. The underlying hypothesis is that mild winters and warm, early

  9. Management of Philippine tropical forests: Implications to global warming

    SciTech Connect (OSTI)

    Lasco, R.D.

    1997-12-31

    The first part of the paper presents the massive changes in tropical land management in the Philippines as a result of a {open_quotes}paradigm shift{close_quotes} in forestry. The second part of the paper analyzes the impacts of the above management strategies on global warming, in general, preserved forests are neither sinks not sources of greenhouse gasses (GHG). Reforestation activities are primarily net sinks of carbon specially the use of fast growing reforestation species. Estimates are given for the carbon-sequestering ability of some commonly used species. The last part of the paper policy recommendations and possible courses of action by the government to maximize the role of forest lands in the mitigation of global warming. Private sector initiatives are also explored.

  10. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in an old-field grassland

    SciTech Connect (OSTI)

    Wan, Shiqiang [Chinese Academy of Sciences; Norby, Richard J [ORNL; Childs, Joanne [ORNL; Weltzin, Jake [University of Tennessee, Knoxville (UTK)

    2007-01-01

    Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global C cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, rising temperature, and changing precipitation in a constructed old-field grassland in eastern Tennessee, USA. Model ecosystems of seven old-field species in 12 open-top chambers (4 m in diameter) were treated with two CO2 (ambient and ambient plus 300 ppm) and two temperature (ambient and ambient plus 3 C) levels. Two split plots with each chamber were assigned with high and low soil moisture levels. During the 19-month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of testing time period. Temperature sensitivity of soil respiration was reduced by air warming, lower in the wet than the dry side, and not affected by CO2 treatment. Variations of soil respiration responses with soil temperature and soil moisture ranges could be primarily attributable to the seasonal dynamics of plant growth and its responses to the three treatments. Using a conceptual model to interpret the significant relationships of treatment-induced changes in soil respiration with changes in soil temperature and moisture observed in this study, we conclude that elevated CO2, air warming, and changing soil water availability had both direct and indirect effects on soil respiration via changes in the three controlling factors: soil temperature, soil moisture, and C substrate. Our results demonstrate that the response of soil respiration to climatic warming should not be represented in models as a simple temperature response function. A more mechanistic understanding of the direct and indirect impacts of concurrent global change drivers on soil respiration is needed to facilitate the interpretation and projection of ecosystem and global C cycling in response to atmospheric and climate change.

  11. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    SciTech Connect (OSTI)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Palmer, Carl D.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 61 C/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 C) to over 175 C. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  12. Study reveals urban smoke absorbs sunlight, exacerbating climate warming

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study reveals urban smoke absorbs sunlight Study reveals urban smoke absorbs sunlight, exacerbating climate warming Cloaking urban areas and wildfire zones, tiny smoke particles suspended in the atmosphere have a sizeable effect on our climate. September 30, 2015 A new study by a science team led by Los Alamos National Laboratory stresses the importance of understanding mixed black and brown carbon in smoke emissions for climate models. The particulates found in urban smoke are especially prone

  13. Measurement of charged-particle stopping in warm-dense plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; Li, C.  K.; Collins, G.  W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S.  B.; Hu, S. X.; et al

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(kBTe + EF ) ~ 0.3] and moderately-degenerate [kBTe/EF ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories inmore » WDM plasma.« less

  14. Can reducing black carbon emissions counteract global warming?

    SciTech Connect (OSTI)

    Tami C. Bond; Haolin Sun

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. Black carbon is produced by poor combustion, from our example hard coal cooking fires for and industrial pulverized coal boilers. The authors review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. It is argued that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. Results from published climate-modeling studies are synthesized to obtain a global warming potential for black carbon relative to that of CO{sub 2} (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. It is found that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, a role for black carbon in climate mitigation strategies is proposed that is consistent with the apparently conflicting arguments raised during the discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement. 31 refs., 3 figs., 1 tab.

  15. ARM - Lesson Plans: Temperature of the Pacific Ocean

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature of the Pacific Ocean Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Lesson Plans: Temperature of the Pacific Ocean Objective The objective of this activity is to demonstrate how the earth's temperature has varied gradually in the past. Materials Each student or group of students

  16. Alternative Refrigerant Evaluation for High-Ambient-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners | Department of Energy Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners The Oak Ridge National Laboratory High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP)

  17. Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report

    SciTech Connect (OSTI)

    Bradford, M A; Melillo, J M; Reynolds, J F; Treseder, K K; Wallenstein, M D

    2010-06-10

    The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with higher-temperature optima for soils exposed to warmer temperatures. To relate these changes within the microbial community to potential positive feedbacks between climate warming and soil respiration, we develop a microbial-enzyme model to simulate the responses of soil carbon to warming. We find that declines in microbial biomass and degradative enzymes can explain the observed attenuation of soil-carbon emissions in response to warming. Specifically, reduced carbon-use efficiency limits the biomass of microbial decomposers and mitigates loss of soil carbon. However, microbial adaptation or a change in microbial communities could lead to an upward adjustment of the efficiency of carbon use, counteracting the decline in microbial biomass and accelerating soil-carbon loss. We conclude that the soil-carbon response to climate warming depends on the efficiency of soil microbes in using carbon.

  18. Winners and losers in a world with global warming: Noncooperation, altruism, and social welfare

    SciTech Connect (OSTI)

    Caplan, A.J.; Ellis, C.J.; Silva, E.C.D.

    1999-05-01

    In this paper, global warming is an asymmetric transboundary externality which benefits some countries or regions and harms others. Few environmental problems have captured the public`s imagination as much and attracted as much scrutiny as global warming. The general perception is that global warming is a net social bad, and that across-the-board abatement of greenhouse gas emissions is therefore desirable. Despite many interesting academic contributions, not all of the basic economics of this phenomenon have been fully worked out. The authors use a simple two-country model to analyze the effects of global warming on resource allocations, the global-warming stock, and national and global welfare.

  19. Humidity trends imply increased sensitivity to clouds in a warming Arctic

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cox, Christopher J.; Walden, Von P.; Rowe, Penny M.; Shupe, Matthew D.

    2015-12-10

    Infrared radiative processes are implicated in Arctic warming and sea-ice decline. The infrared cloud radiative effect (CRE) at the surface is modulated by cloud properties; however, CRE also depends on humidity because clouds emit at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. Here we show how temperature and humidity control CRE through competing influences between the mid- and far-infrared. At constant relative humidity, CRE does not decrease with increasing temperature/absolute humidity as expected, but rather is found to be approximately constant for temperatures characteristic of the Arctic. This stability is disrupted if relative humidity varies. Ourmore » findings explain observed seasonal and regional variability in Arctic CRE of order 10Wm 2. With the physical properties of Arctic clouds held constant, we calculate recent increases in CRE of 1–5Wm 2 in autumn and winter, which are projected to reach 5–15Wm 2 by 2050, implying increased sensitivity of the surface to clouds.« less

  20. Humidity trends imply increased sensitivity to clouds in a warming Arctic

    SciTech Connect (OSTI)

    Cox, Christopher J.; Walden, Von P.; Rowe, Penny M.; Shupe, Matthew D.

    2015-12-10

    Infrared radiative processes are implicated in Arctic warming and sea-ice decline. The infrared cloud radiative effect (CRE) at the surface is modulated by cloud properties; however, CRE also depends on humidity because clouds emit at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. Here we show how temperature and humidity control CRE through competing influences between the mid- and far-infrared. At constant relative humidity, CRE does not decrease with increasing temperature/absolute humidity as expected, but rather is found to be approximately constant for temperatures characteristic of the Arctic. This stability is disrupted if relative humidity varies. Our findings explain observed seasonal and regional variability in Arctic CRE of order 10Wm 2. With the physical properties of Arctic clouds held constant, we calculate recent increases in CRE of 1–5Wm 2 in autumn and winter, which are projected to reach 5–15Wm 2 by 2050, implying increased sensitivity of the surface to clouds.

  1. Heat sources within the Greenland Ice Sheet: dissipation, temperate paleo-firn and cryo-hydrologic warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lüthi, M. P.; Ryser, C.; Andrews, L. C.; Catania, G. A.; Funk, M.; Hawley, R. L.; Hoffman, M. J.; Neumann, T. A.

    2015-01-01

    Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore » in deep crevasses.« less

  2. Current status and direction of US global warming policy

    SciTech Connect (OSTI)

    Gardiner, D.

    1997-12-31

    The pace and intensity of U.S. global warming efforts have been increasing over the past few years for three main reasons: (1) steady improvement in the underlying science that is in turn strengthening public support for action; (2) the likelihood that the United States will fall short of our national goal of stabilizing greenhouse gas emissions at 1990 levels by the year 2000; and (3) U.S. participation in international negotiations to address global climate change. The expansion of U.S. global warming activities can be seen at the state, federal, and international levels. At the state level, for example, a majority of states have completed greenhouse gas emissions inventories, several have undertaken analyses of mitigation options, and some are already beginning to take action to reduce greenhouse gas emissions. At the federal level, all federal agencies with an interest in global warming are working together to define the likely consequences of continued increases in greenhouse gas emissions, inform the public about Such consequences, and assess the costs and benefits of different response options. Among the response options being assessed are actions to expand the use of energy efficient technologies; new controls on greenhouse gas emissions through -- for example - government standards, regulations, or emissions trading programs; and increased research and development of technologies less dependent on fossil fuels. Finally, at the international level, the United States is continuing to develop the position it will take to the climate change negotiations to be held in Japan this December. Among, other things, we have proposed enforceable emissions targets for developed countries, a strong program of reporting and compliance, new efforts by developing countries to prepare emissions inventories and mitigate emissions, and an international emissions trading program.

  3. FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON

    SciTech Connect (OSTI)

    Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

    2009-03-30

    Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

  4. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System  SWATS In the realm of global climate modeling, numerous variables affect the state of the atmosphere and climate. One important area is soil moisture and temperature. The ARM Program uses several types of instruments to gather soil moisture information. An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located at each of 21 extended facility sites within the CART site boundary. Each system is configured to measure soil

  5. Sheet metal stamping die design for warm forming

    DOE Patents [OSTI]

    Ghosh, Amit K.

    2003-04-22

    In metal stamping dies, by taking advantage of improved material flow by selectively warming the die, flat sections of the die can contribute to the flow of material throughout the workpiece. Local surface heating can be accomplished by placing a heating block in the die. Distribution of heating at the flat lower train central regions outside of the bend region allows a softer flow at a lower stress to enable material flow into the thinner, higher strain areas at the bend/s. The heating block is inserted into the die and is powered by a power supply.

  6. Beamline Temperatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Energy: 3.0000 GeV Current: 495.5347 mA Date: 09-Jan-2016 04:18:38 Beamline Temperatures Energy 3.0000 GeV Current 495.5 mA 09-Jan-2016 04:18:38 LN:MainTankLevel 112.0...

  7. ISSUANCE 2015-05-01: Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

    Broader source: Energy.gov [DOE]

    Commercial Package Air Conditioners and Commercial Warm Air Furnaces Working Group; Notice of Open Meetings

  8. Subarctic warming: Results from the global treeline project

    SciTech Connect (OSTI)

    Siren, G.; Shen, S.

    1996-12-31

    The authors reported last year at the 6th Global Warming Science and Policy Conference (GW6), April 3--6, 1995, San Francisco USA, the Global Treeline Project (BLECSCO) has definitively established the northward movement in the 20th century of the northernmost limit for pine trees in Finland. this movement is due to climate warming. The Finnish Forest Research Institute has been working on this problem between 1951 and 1996. The authors have observed over half a century the movements of the coniferous treeline. The subarctic pine tree line is used as a permanent bioindicator of climate change. The dynamic pine tree line in the subarctic of Finland serves as a reliable indicator of expected climate change in the future as well as of climatic fluctuations in the past. The FFRI has tracked comprehensively seed year frequencies, performed dendrochronological studies, fire studies, and ecological studies since the abundant seed year of 1948--50 to the present, and discovered that climate change has favored the northward movement of the pine limit. The authors report the detailed scientific methodology, data, and conclusions.

  9. Impacts of global warming on climate change over East Asia as simulated by 15 GCMs

    SciTech Connect (OSTI)

    Zong-ci Zhao; Xiaodong Li

    1997-12-31

    About 15 GCMs (GFDL1, GISS, LLNL, MPI, OSU, UKMOL, UKMOH, GCMs90-92, GFDL2, NCAR, OPYC, LSG, HADL, GCMs95) obtained from the IPCC WG 1 1990, 1992 and 1995 reports have been chosen to examine the impacts of global warming, on the climate chance over East Asia. Although the models scenarios of the human activities were different for the different GCMs, the climate change over East Asia (70E-140E, 15N-60N) for tile doubled CO{sub 2} as simulated by about 15 GCMs have been analysed. The Simulations shown that the temperature might increased by about 0.5 - 1.5 C over East Asia, especially in winter and northwestern parts of East Asia. The precipitation might increase in northwestern and northeastern parts of East Asia and decrease in the central part of East Asia. The evaluations and assessments of the GCMs over East Asia have indicated that the GCMs have the abilities to simulate the climate change over East Asia, especially for the temperature and the winter season. There are some uncertainties for the simulations to compare with the observations, especially for tile precipitation and tile summer season.

  10. The Transient Circulation Response to Radiative Forcings and Sea Surface Warming

    SciTech Connect (OSTI)

    Staten, Paul; Reichler, Thomas; Lu, Jian

    2014-12-15

    Tropospheric circulation shifts have strong potential to impact surface climate. But the magnitude of these shifts in a changing climate, and the attending regional hydrological changes, are difficult to project. Part of this difficulty arises from our lack of understanding of the physical mechanisms behind the circulation shifts themselves. In order to better delineate circulation shifts and their respective causes, we decompose the circulation response into (1) the "direct" response to radiative forcings themselves, and (2) the "indirect" response to changing sea surface temperatures. Using ensembles of 90-day climate model simulations with immediate switch-on forcings, including perturbed greenhouse gas concentrations, stratospheric ozone concentrations, and sea surface temperatures, we document the direct and indirect transient responses of the zonal mean general circulation, and investigate the roles of previously proposed mechanisms in shifting the midlatitude jet. We find that both the direct and indirect wind responses often begin in the lower stratosphere. Changes in midlatitude eddies are ubiquitous and synchronous with the midlatitude zonal wind response. Shifts in the critical latitude of wave absorption on either flank of the jet are not indicted as primary factors for the poleward shifting jet, although we see some evidence for increasing equatorward wave reflection over the southern hemisphere in response to sea surface warming. Mechanisms for the northern hemisphere jet shift are less clear.

  11. Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USAMP AMD 602 - High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Project ID "LM10" AMD 602 1 This presentation does not contain any proprietary, confidential or otherwise protected information 2010 DOE Merit Review Presentation Prepared by: Peter Friedman, Ford Motor Company USAMP AMD 602 - High-Volume Warm Forming of Low-Cost Magnesium Sheet Acknowledgement This presentation does not contain any proprietary,

  12. Optimization of High-Volume Warm Forming for Lightweight Sheet Alloys |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Volume Warm Forming for Lightweight Sheet Alloys Optimization of High-Volume Warm Forming for Lightweight Sheet Alloys 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm061_harrison_2012_o.pdf More Documents & Publications Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Vehicle Technologies

  13. Coal-Derived Warm Syngas Purification and CO2 Capture-Assisted Methane Production

    SciTech Connect (OSTI)

    Dagle, Robert A.; King, David L.; Li, Xiaohong S.; Xing, Rong; Spies, Kurt A.; Zhu, Yunhua; Rainbolt, James E.; Li, Liyu; Braunberger, B.

    2014-10-31

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currently available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO2, important in the regulation and control of greenhouse gas emissions. CO2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO3 can promote MgO and MgO-based double salts to capture CO2 with high cycling capacity. A stable cycling CO2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330oC when using a 20 wt% Ni/MgAl2O4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na2CO3 was found to optimally remove chlorides at an operating temperature of 450C. For sulfur removal two regenerable ZnO beds are used for bulk H2S removal at 450C (<5 ppm S) and a non-regenerable ZnO bed for H2S polishing at 300C (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH3 and PH3 when operating at 300C. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration. ?

  14. CWS-fired residential warm-air heating system

    SciTech Connect (OSTI)

    Balsavich, J.C.; Becker, F.E.; Smolensky, L.A.

    1990-03-01

    The objective of the CWS-Fired Residential Warm-Air Heating System program was the development of an economically viable coal water slurry (CWS) fueled furnace that is competitive with current oil and natural gas systems. During the first phase of the program, a novel state-of-the-art Inertial Reactor with Internal Separation (IRIS) combustor was designed and tested. The second phase of the program focused on evaluating the interaction between the individual components and system design optimization. Testing was conducted on the prototype furnace. This work concentrated on optimizing the combustor configuration to yield high combustion efficiencies and prevent the possible agglomeration of coal within the combustor. Also, a new twin-fluid CWS atomizer was designed and tested. This atomizer employed a supersonic airstream to shear the CWS external to the nozzle and thereby eliminated erosion problems. Also, a new furnace system was designed, constructed, and extensively tested. This furnace, called the third-generation system, served as a basis for a manufacturing prototype and included all the necessary controls needed for automatic operation. In life testing of the third-generation furnace system, the unit operated for 200 hours and burned 1,758 pounds of CWS. This translated into an average input rate throughout the test period of 87,200 Btu/hr. During this period, combustion efficiencies ranged from 98.2 to 99.1 percent, with a noted increase in efficiency with time. This furnace was also tested in a cyclic manner for an additional period of 54 hours to evaluate the effect of thermal transients. During cyclic testing, the furnace went through repeated transient cycles, which included startup on oil, transition to CWS, and cool-down. As part of an economic evaluation the high volume cost of a CWS-fired warm air furnace was determined. 90 figs., 7 tabs.

  15. Finished genome assembly of warm spring isolate Francisella novicida DPG 3A-IS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Shannon L.; Minogue, Timothy D.; Daligault, Hajnalka E.; Wolcott, Mark J.; Teshima, Hazuki; Coyne, Susan R.; Davenport, Karen W.; Jaissle, James G.; Chain, Patrick S.

    2015-09-17

    We sequenced the complete genome of Francisella novicida DPG 3A-IS to closed and finished status. This is a warm spring isolate recovered from Hobo Warm Spring (Utah, USA). The last assembly is available in NCBI under accession number CP012037.

  16. Linear accelerator design study with direct plasma injection scheme for warm dense matter

    SciTech Connect (OSTI)

    Kondo, K.; Kanesue, T; Okamura, M.

    2011-03-28

    Warm Dense Matter (WDM) is a challenging science field, which is related to heavy ion inertial fusion and planetary science. It is difficult to expect the behavior because the state with high density and low temperature is completely different from ideal condition. The well-defined WDM generation is required to understand it. Moderate energy ion beams ({approx} MeV/u) slightly above Bragg peak is an advantageous method for WDM because of the uniform energy deposition. Direct Plasma Injection Scheme (DPIS) with a Interdigital H-mode (IH) accelerator has a potential for the beam parameter. We show feasible parameters of the IH accelerator for WDM. WDM physics is a challenging science and is strongly related to Heavy Ion Fusion science. WDM formation by Direct Plasma Injection Scheme (DPIS) with IH accelerator, which is a compact system, is proposed. Feasible parameters for IH accelerator are shown for WDM state. These represents that DPIS with IH accelerator can access a different parameter region of WDM.

  17. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    SciTech Connect (OSTI)

    Shi, Hongying; Deng, Lingling; Chen, Shufen E-mail: wei-huang@njupt.edu.cn; Xu, Ying; Zhao, Xiaofei; Cheng, Fan; Huang, Wei E-mail: wei-huang@njupt.edu.cn; Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816

    2014-04-15

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range of 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  18. After Kyoto, science still probes global warming causes

    SciTech Connect (OSTI)

    Westbrook, G.

    1998-01-19

    The Kyoto meeting has come and gone. In the US, the treaty still has to be signed by President Bill Clinton and ratified by the Senate, an action that is most unlikely in view of last year`s 95-0 vote on the issue. In the short term 36 senators are up for reelection in November and therefore likely to come under intense pressure to change their positions, to support the Kyoto treaty, and to push for Senate action. Senators will need support, additional inputs, and overall reinforcement of their positions. One area that this writer believes still has much to offer in this context is the quality--more specifically, the lack of quality--of much of the scientific evidence behind this treaty. Part of that subject is the natural variability in the climate. Natural climate variability is based on cyclical forces, random events, and the Earth`s response to these two factors. These forces create the variability in the climate, the background noise above which any signal of anthropogenic warming must rise in order to be detected. A review of key climatic cycles is the subject of this article.

  19. Warm and cold fermionic dark matter via freeze-in

    SciTech Connect (OSTI)

    Klasen, Michael; Yaguna, Carlos E. E-mail: carlos.yaguna@uni-muenster.de

    2013-11-01

    The freeze-in mechanism of dark matter production provides a simple and intriguing alternative to the WIMP paradigm. In this paper, we analyze whether freeze-in can be used to account for the dark matter in the so-called singlet fermionic model. In it, the SM is extended with only two additional fields, a singlet scalar that mixes with the Higgs boson, and the dark matter particle, a fermion assumed to be odd under a Z{sub 2} symmetry. After numerically studying the generation of dark matter, we analyze the dependence of the relic density with respect to all the free parameters of the model. These results are then used to obtain the regions of the parameter space that are compatible with the dark matter constraint. We demonstrate that the observed dark matter abundance can be explained via freeze-in over a wide range of masses extending down to the keV range. As a result, warm and cold dark matter can be obtained in this model. It is also possible to have dark matter masses well above the unitarity bound for WIMPs.

  20. Exploring the parameter space of warm-inflation models

    SciTech Connect (OSTI)

    Bastero-Gil, Mar; Berera, Arjun; Kronberg, Nico

    2015-12-22

    Warm inflation includes inflaton interactions with other fields throughout the inflationary epoch instead of confining such interactions to a distinct reheating era. Previous investigations have shown that, when certain constraints on the dynamics of these interactions and the resultant radiation bath are satisfied, a low-momentum-dominated dissipation coefficient ∝T{sup 3}/m{sub χ}{sup 2} can sustain an era of inflation compatible with CMB observations. In this work, we extend these analyses by including the pole-dominated dissipation term ∝√(m{sub χ}T)exp (−m{sub χ}/T). We find that, with this enhanced dissipation, certain models, notably the quadratic hilltop potential, perform significantly better. Specifically, we can achieve 50 e-folds of inflation and a spectral index compatible with Planck data while requiring fewer mediator field (O(10{sup 4}) for the quadratic hilltop potential) and smaller coupling constants, opening up interesting model-building possibilities. We also highlight the significance of the specific parametric dependence of the dissipative coefficient which could prove useful in even greater reduction in field content.

  1. Dust Bowl migration as an analog for possible global warming-induced migration from Mexico

    SciTech Connect (OSTI)

    Turner, M.H.; Longstreth, J.D.; Johnson, A.K.; Rosenberg, N.J.

    1994-06-01

    As a result of increases in CO{sub 2} and other radiatively important trace gases, scientists have predicted increases in mean worldwide temperatures of 2--5 degrees C over the next 50 to 100 years. Such temperature increases may result in climate modifications that would in turn be associated with increases in drought and desertification and could even change the patterns of the monsoons and tropical rains, which are important to agriculture throughout the world. They predicted that the rise in sea level caused by melting and thermal expansion of glaciers and polar icecaps could flood large population centers, destroying habitation and displacing populations. This will result in approximately 50 million ``environmental refugees`` worldwide, triple the number of today. The expected shifts in precipitation are also likely to result in (1) increased runoff contaminated with pesticides, salts, garbage, sewage, and eroded soil, and (2) drought also leading to increased soil erosion and salinization, as well as depletion of limited water resources. The total impact of global warming on agriculture and human habitation could considerably slow the economic development of some nations and would particularly affect agricultural production. Loss of homes, the inability to raise food, an increased prevalence of disease and worsened economic conditions may drive people to leave their homelands, seeking entry into countries which have more resources and greater resistance to the economic consequences of climatic change. This report looks at the possible environmental impacts and economic impacts of the greenhouse effect on Mexico while using the American Dust Bowl event as an analog.

  2. Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for Commercial Warm Air Furnaces, Notice of Proposed Rulemaking

  3. WARM MOLECULAR HYDROGEN EMISSION IN NORMAL EDGE-ON GALAXIES NGC 4565 AND NGC 5907

    SciTech Connect (OSTI)

    Laine, Seppo; Appleton, Philip N.; Gottesman, Stephen T.; Ashby, Matthew L. N.; Garland, Catherine A. E-mail: apple@ipac.caltech.ed E-mail: mashby@cfa.harvard.ed

    2010-09-15

    We have observed warm molecular hydrogen in two nearby edge-on disk galaxies, NGC 4565 and NGC 5907, using the Spitzer high-resolution infrared spectrograph. The 0-0 S(0) 28.2 {mu}m and 0-0 S(1) 17.0 {mu}m pure rotational lines were detected out to 10 kpc from the center of each galaxy on both sides of the major axis, and in NGC 4565 the S(0) line was detected at r = 15 kpc on one side. This location is beyond the transition zone where diffuse neutral atomic hydrogen starts to dominate over cold molecular gas and marks a transition from a disk dominated by high surface-brightness far-infrared (far-IR) emission to that of a more quiescent disk. It also lies beyond a steep drop in the radio continuum emission from cosmic rays (CRs) in the disk. Despite indications that star formation activity decreases with radius, the H{sub 2} excitation temperature and the ratio of the H{sub 2} line and the far-IR luminosity surface densities, {Sigma}(L{sub H{sub 2}})/{Sigma}(L{sub TIR}), change very little as a function of radius, even into the diffuse outer region of the disk of NGC 4565. This suggests that the source of excitation of the H{sub 2} operates over a large range of radii and is broadly independent of the strength and relative location of UV emission from young stars. Although excitation in photodissociation regions is the most common explanation for the widespread H{sub 2} emission, CR heating or shocks cannot be ruled out. At r = 15 kpc in NGC 4565, outside the main UV- and radio-continuum-dominated disk, we derived a higher than normal H{sub 2} to 7.7 {mu}m polycyclic aromatic hydrocarbon (PAH) emission ratio, but this is likely due to a transition from mainly ionized PAH molecules in the inner disk to mainly neutral PAH molecules in the outer disk. The inferred mass surface densities of warm molecular hydrogen in both edge-on galaxies differ substantially, being 4(-60) M{sub sun} pc{sup -2} and 3(-50) M{sub sun} pc{sup -2} at r = 10 kpc for NGC 4565 and NGC 5907, respectively. The higher values represent very unlikely point-source upper limits. The point-source case is not supported by the observed emission distribution in the spectral slits. These mass surface densities cannot support the observed rotation velocities in excess of 200 km s{sup -1}. Therefore, warm molecular hydrogen cannot account for dark matter in these disk galaxies, contrary to what was implied by a previous Infrared Space Observatory study of the nearby edge-on galaxy NGC 891.

  4. Elevated air temperature alters an old-field insect community in a multi-factor climate change experiment

    SciTech Connect (OSTI)

    Villalpando, Sean [Appalachian State University; Williams, Ray [ORNL; Norby, Richard J [ORNL

    2009-01-01

    To address how multiple, interacting climate drivers may affect plant-insect community associations, we sampled the insect community from a constructed old-field plant community grown under simultaneous [CO2], temperature, and water manipulation. Insects were identified to morphospecies, assigned to feeding guilds and abundance, richness and evenness quantified. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Non-metric multidimensional scaling clearly supported the effect of warming on insect community composition. Reductions in richness for herbivores and parasitoids suggest trophic-level effects within the insect community. Analysis of dominant insects demonstrated the effects of warming were limited to a relatively small number of morphospecies. Reported reductions in whole-community foliar N at elevated [CO2] unexpectedly did not result in any effects on herbivores. These results demonstrate climatic warming may alter certain insect communities via effects on insect species most responsive to higher temperature, contributing to a change in community structure.

  5. Scientific American: "Tall Trees Sucked Dry by Global Warming"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle describing how water moves through plants can help explain why trees may struggle to survive as the planet warms, scientists say in a new study. Using an equation called Darcy's law, the research also helps explain why iconic giant trees like the California redwood could be especially vulnerable to rising

  6. How Do You Stay Warm While Saving Money and Energy in Extreme Weather? |

    Energy Savers [EERE]

    Department of Energy Stay Warm While Saving Money and Energy in Extreme Weather? How Do You Stay Warm While Saving Money and Energy in Extreme Weather? February 3, 2011 - 6:30am Addthis Many states are getting extreme weather this week, with deep freezes, huge blizzards, and ice storms causing various problems across the country. Such weather can cause us to use energy a bit differently to stay warm and keep things running. Depending on where you are, you may be keeping the faucet dripping

  7. A Warm Weather Win-Win: Summer Fun and Clean Energy with Hydropower Dams |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Warm Weather Win-Win: Summer Fun and Clean Energy with Hydropower Dams A Warm Weather Win-Win: Summer Fun and Clean Energy with Hydropower Dams June 24, 2015 - 2:18pm Addthis A Warm Weather Win-Win: Summer Fun and Clean Energy with Hydropower Dams Hoyt Battey Market Acceleration and Deployment Program Manager, Wind and Water Power Technologies Office Summer is a time for going to the beach-or at least going out on the water to beat the heat. But not every splashy

  8. Effects of warming on the structure and function of a boreal black spruce forest

    SciTech Connect (OSTI)

    Stith T.Gower

    2010-03-03

    A strong argument can be made that there is a greater need to study the effect of warming on boreal forests more than on any other terrestrial biome. Boreal forests, the second largest forest biome, are predicted to experience the greatest warming of any forest biome in the world, but a process-based understanding of how warming will affect the structure and function of this economically and ecologically important forest biome is lacking. The effects of warming on species composition, canopy structure and biogeochemical cycles are likely to be complex; elucidating the underlying mechanisms will require long-term whole-ecosystem manipulation to capture all the complex feedbacks (Shaver et al. 2000, Rustad et al. 2001, Stromgren 2001). The DOE Program for Ecosystem Research funded a three year project (2002-2005) to use replicated heated chambers on soil warming plots in northern Manitoba to examine the direct effects of whole-ecosystem warming. We are nearing completion of our first growing season of measurements (fall 2004). In spite of the unforeseen difficulty of installing the heating cable, our heating and irrigation systems worked extremely well, maintaining environmental conditions within 5-10% of the specified design 99% of the time. Preliminary data from these systems, all designed and built by our laboratory at the University of Wisconsin, support our overall hypothesis that warming will increase the carbon sink strength of upland boreal black spruce forests. I request an additional three years of funding to continue addressing the original objectives: (1) Examine the effect of warming on phenology of overstory, understory and bryophyte strata. Sap flux systems and dendrometer bands, monitored by data loggers, will be used to quantify changes in phenology and water use. (2) Quantify the effects of warming on nitrogen and water use by overstory, understory and bryophytes. (3) Compare effects of warming on autotrophic respiration and above- and belowground net primary production (NPP) budgets. Autotrophic respiration budgets will be constructed using chamber measurements for each tissue and NPP and standard allometry techniques (Gower et al. 1999). (4) Compare microbial and root dynamics, and net soil surface CO2 flux, of control and warmed soils to identify causes that may explain the hypothesized minimal effect of soil warming on soil surface CO2 flux. Fine root production and turnover will be quantified using minirhizotrons, and microbial dynamics will be determined using laboratory mineralization incubations. Soil surface CO2 flux will be measured using automated soil surface CO2 flux systems and portable CO2 analyzers. The proposed study builds on the existing research programs Gower has in northern Manitoba and would not be possible without in-kind services and financial support from Manitoba Hydro and University of Wisconsin.

  9. SPECIAL EARTH DAY COLLOQUIUM: How Global Warming Is Heating Things Up at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work | Princeton Plasma Physics Lab April 18, 2013, 12:00pm to 1:30pm Colloquia MBG Auditorium SPECIAL EARTH DAY COLLOQUIUM: How Global Warming Is Heating Things Up at Work Dr. John P. Dunne Geophysical Fluid Dynamics Laboratory Presentation: PDF icon Earth_Day_18APR2013.pdf A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in

  10. Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Volume Warm Forming of Low-Cost Magnesium Sheet Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon lm_19_quinn.pdf More Documents & Publications Development of High-Volume Warm Forming of Low-Cost Magnesium Sheet Magnesium Front End Research and Development AMD 604 Magnesium Front End Research

  11. H.E.A.T. SQUAD WARMS VERMONT UP TO EFFICIENCY | Department of Energy

    Energy Savers [EERE]

    H.E.A.T. SQUAD WARMS VERMONT UP TO EFFICIENCY H.E.A.T. SQUAD WARMS VERMONT UP TO EFFICIENCY H.E.A.T. SQUAD WARMS VERMONT UP TO EFFICIENCY Because Rutland County, Vermont, residents often experience seven-month winters, a nonprofit housing organization that promotes affordable and sustainable homeownership decided to tackle the challenge of making the county's historic building stock more comfortable and energy-efficient through the long winter season. Using $4.5 million in seed funding from the

  12. Philips Lumileds Develops a Low-Cost, High-Power, Warm-White LED Package |

    Energy Savers [EERE]

    Department of Energy Research & Development » R&D Highlights » Philips Lumileds Develops a Low-Cost, High-Power, Warm-White LED Package Philips Lumileds Develops a Low-Cost, High-Power, Warm-White LED Package High-power white LED die-on-ceramic package developed by Philips Lumileds. With the help of DOE funding, Philips Lumileds has developed a low-cost, high-power, warm-white LED package for general illumination. During the course of the two-year project, this package was used to

  13. Global Cooling: Policies to Cool the World and Offset Global Warming from CO2 Using Reflective Roofs and Pavements

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen; Rosenfeld, Arthur; Elliot, Matthew

    2009-08-28

    Increasing the solar reflectance of the urban surface reduce its solar heat gain, lowers its temperatures, and decreases its outflow of thermal infrared radiation into the atmosphere. This process of 'negative radiative forcing' can help counter the effects of global warming. In addition, cool roofs reduce cooling-energy use in air conditioned buildings and increase comfort in unconditioned buildings; and cool roofs and cool pavements mitigate summer urban heat islands, improving outdoor air quality and comfort. Installing cool roofs and cool pavements in cities worldwide is a compelling win-win-win activity that can be undertaken immediately, outside of international negotiations to cap CO{sub 2} emissions. We propose an international campaign to use solar reflective materials when roofs and pavements are built or resurfaced in temperate and tropical regions.

  14. Optimized Phosphors for Warm White LED Light Engines

    SciTech Connect (OSTI)

    Setlur, Anant; Brewster, Megan; Garcia, Florencio; Hill, M. Christine; Lyons, Robert; Murphy, James; Stecher, Tom; Stoklosa, Stan; Weaver, Stan; Happek, Uwe; Aesram, Danny; Deshpande, Anirudha

    2012-07-30

    The objective of this program is to develop phosphor systems and LED light engines that have steady-state LED efficacies (using LEDs with a 60% wall-plug efficiency) of 105–120 lm/W with correlated color temperatures (CCT) ~3000 K, color rendering indices (CRI) >85, <0.003 distance from the blackbody curve (dbb), and <2% loss in phosphor efficiency under high temperature, high humidity conditions. In order to reach these goals, this involves the composition and processing optimization of phosphors previously developed by GE in combination with light engine package modification.

  15. American exceptionalism? Similarities and differences in national attitudes toward energy policy and global warming

    SciTech Connect (OSTI)

    D.M. Reiner; T.E. Curry; M.A. de Figueiredo; H.J. Herzog; S.D. Ansolabehere; K. Itaoka; F. Johnsson; M. Odenberger

    2006-04-01

    Despite sharp differences in government policy, the views of the U.S. public on energy and global warming are remarkably similar to those in Sweden, Britain, and Japan. Americans do exhibit some differences, placing lower priority on the environment and global warming, and with fewer believing that 'global warming has been established as a serious problem and immediate action is necessary'. There also remains a small hard core of skeptics (<10%) who do not believe in the science of climate change and the need for action, a group that is much smaller in the other countries surveyed. The similarities are, however, pervasive. Similar preferences are manifest across a wide range of technology and fuel choices, in support of renewables, in research priorities, in a basic understanding of which technologies produce or reduce carbon dioxide (or misunderstandings in the case of nuclear power), and in willingness to pay for solving global warming. 29 refs., 3 figs., 2 tabs.

  16. The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost: An Experimental and Field Based Study Citation Details In-Document Search Title: The Impact...

  17. How Do You Stay Warm While Saving Money and Energy in Extreme...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    faucet dripping (so pipes don't freeze), your furnace might be working overtime in the cold, or you may be spending extra time warming up your car. In extreme conditions, it's...

  18. Global warming and the challenge of international cooperation: An interdisciplinary assessment

    SciTech Connect (OSTI)

    Bryner, G.C.

    1995-07-01

    This book focuses on ozone depletion first, global warming second. It is a collection of perspectives from a variety of disciplines and includes a limited amount of technical assessment information.

  19. Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compression | Department of Energy Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Low-Global Warming Potential HVAC System with Ultra-Small Centrifugal Compression Mechanical Solutions, Inc.'s ultra-small centrifugal compressor concept will facilitate low-GWP refrigerant adoption.<br />Photo Credit: Mechanical Solutions, Inc. Mechanical Solutions, Inc.'s ultra-small centrifugal compressor concept will facilitate low-GWP refrigerant adoption. Photo Credit:

  20. High-efficiency Low Global-Warming Potential (GWP) Compressor | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy High-efficiency Low Global-Warming Potential (GWP) Compressor High-efficiency Low Global-Warming Potential (GWP) Compressor Lead Performer: United Technologies Research Center - East Hartford, CT DOE Total Funding: $974,000 Cost Share: $417,000 Project Term: Sep 2015 - Aug 2017 Funding Opportunity: Building Energy Efficiency Frontiers and Innovation Technologies (BENEFIT) - 2015, DE-FOA-0001166 Project Objective United Technologies Research Center (UTRC) proposes to demonstrate a

  1. Fuels for Schools Program Uses Leftover Wood to Warm Buildings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuels for Schools Program Uses Leftover Wood to Warm Buildings Fuels for Schools Program Uses Leftover Wood to Warm Buildings May 10, 2010 - 1:11pm Addthis Darby Schools received a woodchip heating system in 2003. Rick Scheele, facilities manager for the Darby schools, shows off the wood firebox | Photo Courtesy USFS Fuels for Schools, Dave Atkins Darby Schools received a woodchip heating system in 2003. Rick Scheele, facilities manager for the Darby schools, shows off the wood

  2. Saving Energy and Keeping Seniors Warm This Season | Department of Energy

    Energy Savers [EERE]

    and Keeping Seniors Warm This Season Saving Energy and Keeping Seniors Warm This Season January 7, 2013 - 12:44pm Addthis Seniors check out the new energy-efficient fitness facility at the Rockville Senior Center. | Photo courtesy of Chris Galm, Energy Department. Seniors check out the new energy-efficient fitness facility at the Rockville Senior Center. | Photo courtesy of Chris Galm, Energy Department. Using money from a Energy Efficiency and Conservation Block Grant, the Greater Randolph

  3. EECBG Success Story: Saving Energy and Keeping Seniors Warm This Season |

    Office of Environmental Management (EM)

    Department of Energy Saving Energy and Keeping Seniors Warm This Season EECBG Success Story: Saving Energy and Keeping Seniors Warm This Season January 7, 2013 - 12:44pm Addthis Seniors check out the new energy-efficient fitness facility at the Rockville Senior Center. | Photo courtesy of Chris Galm, Energy Department. Seniors check out the new energy-efficient fitness facility at the Rockville Senior Center. | Photo courtesy of Chris Galm, Energy Department. The Greater Randolph Senior

  4. Natural gas and efficient technologies: A response to global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-02-01

    It has become recognized by the international scientific community that global warming due to fossil fuel energy buildup of greenhouse CO{sub 2} in the atmosphere is a real environmental problem. Worldwide agreement has also been reached to reduce CO{sub 2} emissions. A leading approach to reducing CO{sub 2} emissions is to utilize hydrogen-rich fuels and improve the efficiency of conversion in the power generation, transportation and heating sectors of the economy. In this report, natural gas, having the highest hydrogen content of all the fossil fuels, can have an important impact in reducing CO{sub 2} emissions. This paper explores natural gas and improved conversion systems for supplying energy to all three sectors of the economy. The improved technologies include combined cycle for power generation, the Carnol system for methanol production for the transportation sector and fuel cells for both power generation and transportation use. The reduction in CO{sub 2} from current emissions range from 13% when natural gas is substituted for gasoline in the transportation sector to 45% when substituting methanol produced by the Carnol systems (hydrogen from thermal decomposition of methane reacting with CO{sub 2} from coal-fired power plants) used in the transportation sector. CO{sub 2} reductions exceeding 60% can be achieved by using natural gas in combined cycle for power generation and Carnol methanol in the transportation sector and would, thus, stabilize CO{sub 2} concentration in the atmosphere predicted to avoid undue climate change effects. It is estimated that the total fossil fuel energy bill in the US can be reduced by over 40% from the current fuel bill. This also allows a doubling in the unit cost for natural gas if the current energy bill is maintained. Estimates of the total net incremental replacement capital cost for completing the new improved equipment is not more than that which will have to be spent to replace the existing equipment conducting business as usual.

  5. Intense Ion Beam for Warm Dense Matter Physics

    SciTech Connect (OSTI)

    Coleman, Joshua Eugene

    2008-05-23

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K{sup +} ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of improved experimental and calculated axial focus (> 100 x axial compression, < 2 ns pulses) and higher peak energy deposition on target are also presented. These achievements demonstrate the capabilities for near term target heating experiments to T{sub e} {approx} 0.1 eV and for future ion accelerators to heat targets to T{sub e} > 1 eV.

  6. Global warming accelerates drought-induced forest death

    ScienceCinema (OSTI)

    McDowell, Nathan; Pockman, William

    2014-06-02

    Many southwestern forests in the United States will disappear or be heavily altered by 2050, according to a series of joint Los Alamos National Laboratory-University of New Mexico studies. Nathan McDowell, a Los Alamos plant physiologist, and William Pockman, a UNM biology professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most conifer forests should be heavily disturbed, if not gone, as air temperatures rise in combination with drought. "Everybody knows trees die when there's a drought, if there's bark beetles or fire, yet nobody in the world can predict it with much accuracy." McDowell said. "What's really changed is that the temperature is going up," thus the researchers are imposing artificial drought conditions on segments of wild forest in the Southwest and pushing forests to their limit to discover the exact processes of mortality and survival. The study is centered on drought experiments in woodlands at both Los Alamos and the Sevilleta National Wildlife Refuge in central New Mexico. Both sites are testing hypotheses about how forests die on mature, wild trees, rather than seedlings in a greenhouse, through the ecosystem-scale removal of 50 percent of yearly precipitation through large water-diversion trough systems.

  7. Global warming accelerates drought-induced forest death

    SciTech Connect (OSTI)

    McDowell, Nathan; Pockman, William

    2013-07-09

    Many southwestern forests in the United States will disappear or be heavily altered by 2050, according to a series of joint Los Alamos National Laboratory-University of New Mexico studies. Nathan McDowell, a Los Alamos plant physiologist, and William Pockman, a UNM biology professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most conifer forests should be heavily disturbed, if not gone, as air temperatures rise in combination with drought. "Everybody knows trees die when there's a drought, if there's bark beetles or fire, yet nobody in the world can predict it with much accuracy." McDowell said. "What's really changed is that the temperature is going up," thus the researchers are imposing artificial drought conditions on segments of wild forest in the Southwest and pushing forests to their limit to discover the exact processes of mortality and survival. The study is centered on drought experiments in woodlands at both Los Alamos and the Sevilleta National Wildlife Refuge in central New Mexico. Both sites are testing hypotheses about how forests die on mature, wild trees, rather than seedlings in a greenhouse, through the ecosystem-scale removal of 50 percent of yearly precipitation through large water-diversion trough systems.

  8. WARM BREEZE FROM THE STARBOARD BOW: A NEW POPULATION OF NEUTRAL HELIUM IN THE HELIOSPHERE

    SciTech Connect (OSTI)

    Kubiak, M. A.; Bzowski, M.; Sok?, J. M.; Swaczyna, P.; Grzedzielski, S.; Alexashov, D. B.; Izmodenov, V. V.; Mbius, E.; Leonard, T.; Fuselier, S. A.; McComas, D. J.; Wurz, P.

    2014-08-01

    We investigate the signals from neutral helium atoms observed in situ from Earth orbit in 2010 by the Interstellar Boundary Explorer (IBEX). The full helium signal observed during the 2010 observation season can be explained as a superposition of pristine neutral interstellar He gas and an additional population of neutral helium that we call the Warm Breeze. The Warm Breeze is approximately 2 times slower and 2.5 times warmer than the primary interstellar He population, and its density in front of the heliosphere is ?7% that of the neutral interstellar helium. The inflow direction of the Warm Breeze differs by ?19 from the inflow direction of interstellar gas. The Warm Breeze seems to be a long-term, perhaps permanent feature of the heliospheric environment. It has not been detected earlier because it is strongly ionized inside the heliosphere. This effect brings it below the threshold of detection via pickup ion and heliospheric backscatter glow observations, as well as by the direct sampling of GAS/Ulysses. We discuss possible sources for the Warm Breeze, including (1) the secondary population of interstellar helium, created via charge exchange and perhaps elastic scattering of neutral interstellar He atoms on interstellar He{sup +} ions in the outer heliosheath, or (2) a gust of interstellar He originating from a hypothetic wave train in the Local Interstellar Cloud. A secondary population is expected from models, but the characteristics of the Warm Breeze do not fully conform to modeling results. If, nevertheless, this is the explanation, IBEX-Lo observations of the Warm Breeze provide key insights into the physical state of plasma in the outer heliosheath. If the second hypothesis is true, the source is likely to be located within a few thousand AU from the Sun, which is the propagation range of possible gusts of interstellar neutral helium with the Warm Breeze characteristics against dissipation via elastic scattering in the Local Cloud. Whatever the nature of the Warm Breeze, its discovery exposes a critical new feature of our heliospheric environment.

  9. Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges

    SciTech Connect (OSTI)

    Huesemann, Michael H.

    2006-07-03

    The most stringent emission scenarios published by the Intergovernmental Panel on Climate Change (IPCC) would result in the stabilization of atmospheric carbon dioxide (CO2) at concentrations of approximately 550 ppm which would produce a global temperature increase of at least 2 C by 2100. Given the large uncertainties regarding the potential risks associated with this degree of global warming, it would be more prudent to stabilize atmospheric CO2 concentrations at or below current levels which, in turn, would require a greater than 20-fold reduction (i.e., ?95%) in per capita carbon emissions in industrialized nations within the next 50 to 100 years. Using the Kaya equation as a conceptual framework, this paper examines whether CO2 mitigation approaches such as energy efficiency improvements, carbon sequestration, and the development of carbon-free energy sources would be sufficient to bring about the required reduction in per capita carbon emissions without creating unforeseen negative impacts elsewhere. In terms of energy efficiency, large improvements (?5-fold) are in principle possible given aggressive investments in R&D and if market imperfections such as corporate subsidies are removed. However, energy efficiency improvements per se will not result in a reduction in carbon emissions if, as predicted by the IPCC, the size of the global economy has expanded 12-26 fold by 2100. Terrestrial carbon sequestration via reforestation and improved agricultural soil management has many environmental advantages but has only limited CO2 mitigation potential because the global terrestrial carbon sink (ca. 200 Gt C) is small relative to the size of fossil fuel deposits (?4000 Gt C). By contrast, very large amounts of CO2 can potentially be removed from the atmosphere via sequestration in geologic formations and oceans, but carbon storage is not permanent and is likely to create many unpredictable environmental consequences. Renewable solar energy can in theory provide large amounts of carbon-free power. However, biomass and hydroelectric energy can only be marginally expanded and large-scale solar energy installations (i.e., wind, photovoltaics, and direct thermal) are likely to have significant negative environmental impacts. Expansion of nuclear energy is highly unlikely due to concerns over reactor safety, radioactive waste management, weapons proliferation, and cost. In view of the serious limitations and liabilities of many proposed CO2 mitigation approaches it appears that there remain only few no-regrets options such as drastic energy efficiency improvements, extensive terrestrial carbon sequestration, and cautious expansion of renewable energy generation. These promising CO2 mitigation technologies have the potential to bring about the required 20-fold reduction in per capita carbon emission only if population and economic growth are halted without delay. Thus, addressing the problem of global warming requires not only technological research and development but also a reexamination of core values that mistakenly equate material consumption and economic growth to happiness and well-being.

  10. WARM DUSTY DEBRIS DISKS AND DISTANT COMPANION STARS: V488 PER AND 2M1337

    SciTech Connect (OSTI)

    Zuckerman, B.

    2015-01-10

    A possible connection between the presence of large quantities of warm (T ? 200K) circumstellar dust at youthful stars and the existence of wide-separation companion stars has been noted in the literature. Here we point out the existence of a distant companion star to V488 Per, a K-type member of the ? Persei cluster with the largest known fractional excess infrared luminosity (?16%) of any main sequence star. We also report the presence of a distant companion to the previously recognized warm dust star 2M1337. With these discoveries the existence of a cause and effect relationship between a distant companion and large quantities of warm dust in orbit around youthful stars now seems compelling.

  11. An Inconvenient Truth. The Planetary Emergency of Global Warming and What We Can Do About It

    SciTech Connect (OSTI)

    Gore, Al

    2006-06-15

    This book is published to tie in with a documentary film of the same name. Both the book and film were inspired by a series of multimedia presentations on global warming that the author created and delivers to groups around the world. With this book, Gore, brings together leading-edge research from top scientists around the world; photographs, charts, and other illustrations; and personal anecdotes and observations to document the fast pace and wide scope of global warming. He presents, with alarming clarity and conclusiveness, and with humor, too, that the fact of global warming is not in question and that its consequences for the world we live in will be disastrous if left unchecked.

  12. Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III

    SciTech Connect (OSTI)

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1997-06-01

    The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

  13. Global warming impact of gasoline and alcohol use in light-duty highway vehicles in Brazil

    SciTech Connect (OSTI)

    Uria, L.A.B.; Schaeffer, R.

    1997-12-31

    This paper examines the direct and indirect global warming impact of gasoline and alcohol use in light-duty highway vehicles in Brazil. In order to do that, it quantifies emissions of CO{sub 2}, CO{sub 2} HC and NO{sub x} in terms of CO{sub 2}-equivalent units for time spans of 20, 100 and 500 years. It shows that the consideration of CO{sub 2} HC and NO{sub x} emissions in addition to CO{sub 2} provides an important contribution for better understanding the total warming impact of transportation fuels in Brazil.

  14. Stay Warm and Save Money This Winter with Tips from the Energy Department |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Stay Warm and Save Money This Winter with Tips from the Energy Department Stay Warm and Save Money This Winter with Tips from the Energy Department December 19, 2011 - 1:24pm Addthis Department of Energy headquarters during the winter months. | DOE file photo. Department of Energy headquarters during the winter months. | DOE file photo. What does this mean for me? Help your family save money by saving energy with these tips this winter. Click "start now" on

  15. COLLOQUIUM: Effects of a Rapidly Warming Arctic on Weather Patterns in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mid-Latitudes | Princeton Plasma Physics Lab October 9, 2013, 3:00pm to 4:30pm Colloquia MBG Auditorium COLLOQUIUM: Effects of a Rapidly Warming Arctic on Weather Patterns in Mid-Latitudes Professor Jennifer Francis Rutgers University *** PLEASE NOTE EARLIER TIME OF 3:00PM *** In this presentation I will build on the study presented in Francis and Vavrus (GRL, 2012) in which mechanisms were proposed and demonstrated that link enhanced warming in the Arctic during recent decades with changes

  16. SUBTASK 3.12 - GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS

    Office of Scientific and Technical Information (OSTI)

    PRODUCTION WITH ILLINOIS COAL (Other) | SciTech Connect Other: SUBTASK 3.12 - GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL Citation Details In-Document Search Title: SUBTASK 3.12 - GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL The goal of this project was to evaluate the performance of Illinois No. 6 coal blended with biomass in a small-scale entrained-flow gasifier and demonstrate the production of liquid fuels under three

  17. Energy Tax Credits: Stay Warm and Save MORE Money! | Department of Energy

    Energy Savers [EERE]

    Tax Credits: Stay Warm and Save MORE Money! Energy Tax Credits: Stay Warm and Save MORE Money! October 29, 2008 - 6:00am Addthis Allison Casey Senior Communicator, NREL With all of the news this month about the Emergency Economic Stabilization Act of 2008, you may have heard about the energy tax incentives that were included for both consumers and for business, utilities, and governments. If you are already preparing for winter and working to make your home more efficient, this is good news. The

  18. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-04-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming process, mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or in or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  19. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-07-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or in or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRB and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  20. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-09-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  1. Global Cooling: Effect of Urban Albedo on Global Temperature

    SciTech Connect (OSTI)

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2007-05-22

    In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). The roof and the pavement albedo can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60%. We estimate U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills. Increasing albedo of urban surfaces can reduce the summertime urban temperature and improve the urban air quality. Increasing the urban albedo has the added benefit of reflecting more of the incoming global solar radiation and countering the effect of global warming. We estimate that increasing albedo of urban areas by 0.1 results in an increase of 3 x 10{sup -4} in Earth albedo. Using a simple global model, the change in air temperature in lowest 1.8 km of the atmosphere is estimated at 0.01K. Modelers predict a warming of about 3K in the next 60 years (0.05K/year). Change of 0.1 in urban albedo will result in 0.01K global cooling, a delay of {approx}0.2 years in global warming. This 0.2 years delay in global warming is equivalent to 10 Gt reduction in CO2 emissions.

  2. Improved time-space method for 3-D heat transfer problems including global warming

    SciTech Connect (OSTI)

    Saitoh, T.S.; Wakashima, Shinichiro

    1999-07-01

    In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

  3. Demonstration of space-resolved x-ray Thomson scattering capability for warm dense matter experiments on the Z accelerator

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ao, T.; Harding, E. C.; Bailey, J. E.; Lemke, R. W.; Desjarlais, M. P.; Hansen, S. B.; Smith, I. C.; Geissel, M.; Maurer, A.; Reneker, J.; et al

    2016-01-13

    Experiments on the Sandia Z pulsed-power accelerator demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (> 20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature ofmore » 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data is composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Furthermore, these spectra provide detailed information on three target locations: the laser spot, the unshocked foam, and the shocked foam.« less

  4. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    SciTech Connect (OSTI)

    Habibi, M.; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration of the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.

  5. Response of precipitation extremes to idealized global warming in an aqua-planet climate model: Towards robust projection across different horizontal resolutions

    SciTech Connect (OSTI)

    Li, F.; Collins, W.D.; Wehner, M.F.; Williamson, D.L.; Olson, J.G.

    2011-04-15

    Current climate models produce quite heterogeneous projections for the responses of precipitation extremes to future climate change. To help understand the range of projections from multimodel ensembles, a series of idealized 'aquaplanet' Atmospheric General Circulation Model (AGCM) runs have been performed with the Community Atmosphere Model CAM3. These runs have been analysed to identify the effects of horizontal resolution on precipitation extreme projections under two simple global warming scenarios. We adopt the aquaplanet framework for our simulations to remove any sensitivity to the spatial resolution of external inputs and to focus on the roles of model physics and dynamics. Results show that a uniform increase of sea surface temperature (SST) and an increase of low-to-high latitude SST gradient both lead to increase of precipitation and precipitation extremes for most latitudes. The perturbed SSTs generally have stronger impacts on precipitation extremes than on mean precipitation. Horizontal model resolution strongly affects the global warming signals in the extreme precipitation in tropical and subtropical regions but not in high latitude regions. This study illustrates that the effects of horizontal resolution have to be taken into account to develop more robust projections of precipitation extremes.

  6. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  7. Temperature measurements of shocked silica aerogel foam

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Falk, K.; McCoy, C. A.; Fryer, C. L.; Greeff, C. W.; Hungerford, A. L.; Montgomery, D. S.; Schmidt, D. W.; Sheppard, D. G.; Williams, J. R.; Boehly, T. R.; et al

    2014-09-12

    We present recent results of equation-of-state (EOS) measurements of shocked silica (SiO2) aerogel foam at the OMEGA laser facility. Silica aerogel is an important low-density pressure standard used in many high energy density experiments, including the novel technique of shock and release. Due to its many applications, it has been a heavily studied material and has a well-known Hugoniot curve. This work then complements the velocity and pressure measurements with additional temperature data providing the full EOS information within the warm dense matter regime for the temperature interval of 1–15 eV and shock velocities between 10 and 40 km/s correspondingmore » to shock pressures of 0.3–2 Mbar. The experimental results were compared with hydrodynamic simulations and EOS models. We found that the measured temperature was systematically lower than suggested by theoretical calculations. As a result, simulations provide a possible explanation that the emission measured by optical pyrometry comes from a radiative precursor rather than from the shock front, which could have important implications for such measurements.« less

  8. High Temperature ESP Monitoring

    Broader source: Energy.gov [DOE]

    The purpose of the High Temperature ESP Monitoring project is to develop a down-hole monitoring system to be used in wells with bottom hole temperature up to 300 °C for measuring motor temperature; pump discharge pressure; and formation temperature and pressure.

  9. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  10. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  11. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Y.; Ramanathan, V.; Washington, W. M.

    2015-07-10

    Himalayan mountain glaciers and the snowpack over the Tibetan Plateau provide the headwater of several major rivers in Asia. In-situ observations of snow cover fraction since the 1960s suggest that the snow pack in the region have retreated significantly, accompanied by a surface warming of 22.5 C observed over the peak altitudes (5000 m). Using a high-resolution oceanatmosphere global climate model and an observationally constrained black carbon (BC) aerosol forcing, we attribute the observed altitude dependence of the warming trends as well as the spatial pattern of reductions in snow depths and snow cover fraction to various anthropogenic factors. Atmorethe Tibetan Plateau altitudes, the increase of atmospheric CO2 concentration exerted a warming of 1.7 C, BC 1.3 C where as cooling aerosols cause about 0.7 C cooling, bringing the net simulated warming consistent with the anomalously large observed warming. We therefore conclude that BC together with CO2 has contributed to the snow retreat trends. Especially, BC increase is the major factor in the strong elevation dependence of the observed surface warming. The atmospheric warming by BC as well as its surface darkening of snow are coupled with the positive snow albedo feedbacks to account for the disproportionately large role of BC in high-elevation regions. These findings reveal that BC impact needs to be properly accounted for in future regional climate projections, in particular on high-altitude cryosphere.less

  12. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  13. Implications of televised news coverage of global warming for organizational decisions

    SciTech Connect (OSTI)

    Nitz, M.

    1997-12-31

    Television is an important source of information for political issues in the eyes of many people. This also holds true for environmental issues. Television news is also deemed more credible than print news because {open_quotes}seeing is believing{close_quotes}. This research is also buttressed by evidence that one of the primary conversation topics among individuals is television content. So how well does television cover global warming? Unfortunately, previous research indicates that television news suffers from some serious inadequacies in its portrayal of global warming issues. This paper examines the potential impact of this coverage on organizational decisions. Organizations include businesses, government agencies, environmental action groups, media organizations, and other parties interested with the environment. The paper proposes framing theory and involvement theory as springboards for organizational decision-making.

  14. Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting

    SciTech Connect (OSTI)

    Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

    2012-03-31

    GE Lighting Solutions will develop precise and efficient manufacturing techniques for the remote phosphor platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

  15. Ponderomotive self-focusing of Gaussian laser beam in warm collisional plasma

    SciTech Connect (OSTI)

    Jafari Milani, M. R.; Niknam, A. R.; Farahbod, A. H.

    2014-06-15

    The propagation characteristics of a Gaussian laser beam through warm collisional plasma are investigated by considering the ponderomotive force nonlinearity and the complex eikonal function. By introducing the dielectric permittivity of warm unmagnetized plasma and using the WKB and paraxial ray approximations, the coupled differential equations defining the variations of laser beam parameters are obtained and solved numerically. Effects of laser and plasma parameters such as the collision frequency, the initial laser intensity and its spot size on the beam width parameter and the axis laser intensity distribution are analyzed. It is shown that, self-focusing of the laser beam takes place faster by increasing the collision frequency and initial laser spot size and then after some distance propagation the laser beam abruptly loses its initial diameter and vastly diverges. Furthermore, the modified electron density distribution is obtained and the collision frequency effect on this distribution is studied.

  16. Detecting Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data H. Shao and G. Liu Florida State University Tallahassee, Florida Introduction Determining the radiative effects of aerosols is one of the most important areas in climate research. There are observational evidences showing that aerosols can affect the radiative balance of the earth indirectly - as the number of aerosols increases, water in the cloud spreads over many more particles. Large concentrations of small

  17. Wildfires Lead to More Warming than Climate Models Predicted | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Wildfires Lead to More Warming than Climate Models Predicted Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW

  18. Battery self-warming mechanism using the inverter and the battery main disconnect circuitry

    DOE Patents [OSTI]

    Ashtiani, Cyrus N.; Stuart, Thomas A.

    2005-04-19

    An apparatus connected to an energy storage device for powering an electric motor and optionally providing a warming function for the energy storage device is disclosed. The apparatus includes a circuit connected to the electric motor and the energy storage device for generating a current. The apparatus also includes a switching device operably associated with the circuit for selectively directing the current to one of the electric motor and the energy storage device.

  19. Insulation Troubles: A Story of a House That Never Stayed Warm, Part 1 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 Insulation Troubles: A Story of a House That Never Stayed Warm, Part 1 November 4, 2015 - 5:50pm Addthis A certified Home Energy Professionals auditor can identify sources of energy loss throughout the home. Photo by Dennis Schroeder/NREL A certified Home Energy Professionals auditor can identify sources of energy loss throughout the home. Photo by Dennis Schroeder/NREL Elizabeth Spencer Communicator, National Renewable Energy Laboratory What does this mean for me?

  20. Warm Bavarian-Style Pretzels 6. Raye's Mustard & Smoked Cheddar Sauce

    Broader source: Energy.gov (indexed) [DOE]

    Warm Bavarian-Style Pretzels 6. Raye's Mustard & Smoked Cheddar Sauce Buffalo Wings - Bleu Cheese, Celery Sticks 9. Pigs In A Blanket 7. Sliced All-Beef Dog, Puff Pastry, Raye's Mustard House Made Potato Chips 7. Lardon, Scallions, Bleu Cheese Sauce Chilled Jumbo Shrimp - Cocktail Sauce 13. Hummus In A Jar 8. Sun Dried Tomato, Lemon Zest, Cucumber, Sea Salt Flat Bread Nice Small Salad 5. Red Onions, Cucumbers, Tomatoes Meatball - 3 Hour Sauce, Bruschetta 6. Flash Fried Calamari 12. Cherry

  1. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    SciTech Connect (OSTI)

    Habib, Komal; Schmidt, Jannick H.; Christensen, Per

    2013-09-15

    Highlights: Five scenarios are compared based on different waste management systems from 1970 to 2010. Technology development for incineration and vehicular exhaust system throughout the time period is considered. Compared scenarios show continuous improvement regarding environmental performance of waste management system. Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup ?1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup ?1} of MSWM.

  2. ULTRALUMINOUS STAR-FORMING GALAXIES AND EXTREMELY LUMINOUS WARM MOLECULAR HYDROGEN EMISSION AT z = 2.16 IN THE PKS 1138-26 RADIO GALAXY PROTOCLUSTER

    SciTech Connect (OSTI)

    Ogle, P.; Davies, J. E.; Helou, G.; Appleton, P. N.; Bertincourt, B.; Seymour, N.

    2012-05-20

    A deep Spitzer Infrared Spectrograph map of the PKS 1138-26 galaxy protocluster reveals ultraluminous polycyclic aromatic hydrocarbon (PAH) emission from obscured star formation in three protocluster galaxies, including H{alpha}-emitter (HAE) 229, HAE 131, and the central Spiderweb Galaxy. Star formation rates of {approx}500-1100 M{sub Sun} yr{sup -1} are estimated from the 7.7 {mu}m PAH feature. At such prodigious formation rates, the galaxy stellar masses will double in 0.6-1.1 Gyr. We are viewing the peak epoch of star formation for these protocluster galaxies. However, it appears that extinction of H{alpha} is much greater (up to a factor of 40) in the two ULIRG HAEs compared to the Spiderweb. This may be attributed to different spatial distributions of star formation-nuclear star formation in the HAEs versus extended star formation in accreting satellite galaxies in the Spiderweb. We find extremely luminous mid-IR rotational line emission from warm molecular hydrogen in the Spiderweb Galaxy, with L(H{sub 2} 0-0 S(3)) = 1.4 Multiplication-Sign 10{sup 44} erg s{sup -1} (3.7 Multiplication-Sign 10{sup 10} L{sub Sun }), {approx}20 times more luminous than any previously known H{sub 2} emission galaxy (MOHEG). Depending on the temperature, this corresponds to a very large mass of >9 Multiplication-Sign 10{sup 6}-2 Multiplication-Sign 10{sup 9} M{sub Sun} of T > 300 K molecular gas, which may be heated by the PKS 1138-26 radio jet, acting to quench nuclear star formation. There is >8 times more warm H{sub 2} at these temperatures in the Spiderweb than what has been seen in low-redshift (z < 0.2) radio galaxies, indicating that the Spiderweb may have a larger reservoir of molecular gas than more evolved radio galaxies. This is the highest redshift galaxy yet in which warm molecular hydrogen has been directly detected.

  3. Enzymatic temperature change indicator

    DOE Patents [OSTI]

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  4. Hydrologic responses of a tropical catchment in Thailand and two temperate/cold catchments in north America to global warming

    SciTech Connect (OSTI)

    Gan, T.Y.; Ahmad, Z.

    1997-12-31

    The hydrologic impact or sensitivities of three medium-sized catchments to global warming, one of tropical climate in Northern Thailand and two of temperate climate in the Sacramento and San Joaquin River basins of California, were investigated.

  5. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  6. Temperature-profile detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  7. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  8. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  9. Atmospheric lifetimes and global warming potentials of hydrofluoroethers: Reactivity toward OH, UV spectra, and IR absorption cross sections

    SciTech Connect (OSTI)

    Orkin, V.L.; Villenave, E.; Huie, R.E.; Kurylo, M.J.

    1999-12-02

    The rate constants for the reactions of OH radicals with the fluorinated ethers, CHF{sub 2}-O-CHF{sub 2} (HFOC-134) and CF{sub 3}CH{sub 2}-O-CH{sub 2}CF{sub 3} (HFOC-356mff), were measured using the flash photolysis resonance fluorescence technique over the temperature range 277--370 K to give the following Arrhenius expressions: k{sub HFOC-356mff}(T) = (2.32{sub {minus}0.41}{sup +0.46}) x 10{sup {minus}12} exp{l{underscore}brace}{minus}(790 {+-} 47)/T{r{underscore}brace} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. On the basis of the analysis of the available experimental results, the following Arrhenius expression can be recommended for the rate constant of the reaction between OH and HFOC-134: k{sub HFOC-134}(T) = (0.82{sub {minus}0.24}{sup +0.34}) x 10{sup {minus}12} exp{l{underscore}brace}{minus}(1,730 {+-} 110)/T{r{underscore}brace} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. Atmospheric lifetimes were estimated to be 24.8 years for HFOC-134 (23.8 years based on the results of this study alone) and 0.3 years for HFOC-356mff. Infrared absorption cross sections of HFOC-134, HFOC-356mff, and HFOC-125 (CHF{sub 2}-O-CF{sub 3}) were measured at T = 295 K from 500 to 1,600 cm{sup {minus}1} and the global warming potentials of the three compounds were estimated. Ultraviolet absorption spectra of the ethers were measured between 160 and 220 nm. The general pattern of reactivity of hydrofluoroethers toward OH is discussed.

  10. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  11. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  12. Global warming impacts of ozone-safe refrigerants and refrigeration, heating, and air-conditioning technologies

    SciTech Connect (OSTI)

    Fischer, S.; Sand, J.; Baxter, V.

    1997-12-01

    International agreements mandate the phase-out of many chlorine containing compounds that are used as the working fluid in refrigeration, air-conditioning, and heating equipment. Many of the chemical compounds that have been proposed, and are being used in place of the class of refrigerants eliminated by the Montreal Protocol are now being questioned because of their possible contributions to global warming. Natural refrigerants are put forth as inherently superior to manufactured refrigerants because they have very low or zero global warming potentials (GWPs). Questions are being raised about whether or not these manufactured refrigerants, primarily hydrofluorocarbons (HFCs), should be regulated and perhaps phased out in much the same manner as CFCs and HCFCs. Several of the major applications of refrigerants are examined in this paper and the results of an analysis of their contributions to greenhouse warming are presented. Supermarket refrigeration is shown to be an application where alternative technologies have the potential to reduce emissions of greenhouse gases (GHG) significantly with no clear advantage to either natural or HFC refrigerants. Mixed results are presented for automobile air conditioners with opportunities to reduce GHG emissions dependent on climate and comfort criteria. GHG emissions for hermetic and factory built systems (i.e. household refrigerators/freezers, unitary equipment, chillers) are shown to be dominated by energy use with much greater potential for reduction through efficiency improvements than by selection of refrigerant. The results for refrigerators also illustrate that hydrocarbon and carbon dioxide blown foam insulation have lower overall effects on GHG emissions than HFC blown foams at the cost of increased energy use.

  13. The contribution of Paris to limit global warming to 2 C

    SciTech Connect (OSTI)

    Iyer, Gokul C.; Edmonds, James A.; Fawcett, Allen A.; Hultman, Nathan; Alsalam, Jameel; Asrar, Ghassem R.; Calvin, Katherine V.; Clarke, Leon E.; Creason, Jared; Jeong, Minji; McFarland, Jim; Mundra, Anupriya; Patel, Pralit L.; Shi, Wenjing; McJeon, Haewon C.

    2015-11-24

    International negotiators have clearly articulated a goal to limit global warming to 2C. In preparation for the 21st Conference of Parties (COP21) in Paris in December 2015, countries are submitting their Intended Nationally Determined Contributions (INDCs) to the United Nations Framework Convention on Climate Change indicating their emissions reduction commitments through 2025 or 2030. Limiting global warming to 2C is a challenging goal and will entail a dramatic transformation of the global energy system, largely complete by 2040. The deliberations in Paris will help determine the balance of challenges faced in the near-term and long-term. We use GCAM, a global integrated assessment model, to analyze the energy and economic-cost implications of INDCs. The INDCs imply near-term actions that reduce the level of mitigation needed in the post-2030 period, particularly when compared with an alternative path, in which nations are unable to undertake emissions mitigation until after 2030. We find that the latter case could require up to 2300 GW of premature retirements of fossil fuel power plants and up to 2900 GW of additional low-carbon power capacity installations within a five-year period of 2031 to 2035. INDCs have the effect of reducing premature retirements and new-capacity installations after 2030 by 50% and 34% respectively. However, if presently announced INDCs were strengthened to achieve greater near-term emissions mitigation, the 2031-2035 transformation could be tempered to require 84% fewer premature retirements of power generation capacity and 56% fewer new-capacity additions. Our results suggest that the ensuing COP21 in Paris will be critical in shaping the challenges of limiting global warming to 2C.

  14. Public responses to global warming in Newcastle, Australia: Environmental values and environmental decision making

    SciTech Connect (OSTI)

    Bulkeley, H.

    1997-12-31

    This paper seeks to address tile social and cultural dimensions of the global warming issue through an analysis of `public` responses in Newcastle, Australia, based on recent research undertaken for a PhD thesis. Given the history of Australian involvement in the F.C.C.C process this case-study will provides an interesting context in which to analyse discourses of environmental values. It is argued that these discourses shape and are shaped by public responses to global environmental issues in ways which have important implications for the definition of issues as `problems` with acceptable solutions, for the implementation of such solutions and for their political consequences.

  15. Residual Stresses in 21-6-9 Stainless Steel Warm Forgings

    SciTech Connect (OSTI)

    Everhart, Wesley A.; Lee, Jordan D.; Broecker, Daniel J.; Bartow, John P.; McQueen, Jamie M.; Switzner, Nathan T.; Neidt, Tod M.; Sisneros, Thomas A.; Brown, Donald W.

    2012-11-14

    Forging residual stresses are detrimental to the production and performance of derived machined parts due to machining distortions, corrosion drivers and fatigue crack drivers. Residual strains in a 21-6-9 stainless steel warm High Energy Rate Forging (HERF) were measured via neutron diffraction. The finite element analysis (FEA) method was used to predict the residual stresses that occur during forging and water quenching. The experimentally measured residual strains were used to calibrate simulations of the three-dimensional residual stress state of the forging. ABAQUS simulation tools predicted residual strains that tend to match with experimental results when varying yield strength is considered.

  16. Households to pay more than expected to stay warm this winter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Households to pay more than expected to stay warm this winter Following a colder-than-expected November, U.S. households are forecast to consume more heating fuels than previously expected....resulting in higher heating bills. Homeowners that rely on natural gas will see their total winter expenses rise nearly 13 percent from last winter....while users of electric heat will see a 2.6 percent increase in costs. That's the latest forecast from the U.S. Energy Information Administration. Propane

  17. NREL Solar Technology Will Warm Air at 'Home' - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Solar Technology Will Warm Air at 'Home' July 30, 2010 Photo of a building coved in perforated metal, with two men standing next to it. Enlarge image NREL's Craig Christensen and Chuck Kutscher stand next to a wall at the RSF that uses their award-winning transpired air collector technology. Credit: Dennis Schroeder Sometimes the way back home isn't straightforward. But once you find your way, you know you'll be welcomed with open arms. Transpired solar air collector technology PDF ,

  18. Insulation Troubles: A Story of a House That Never Stayed Warm, Part 2 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 Insulation Troubles: A Story of a House That Never Stayed Warm, Part 2 November 10, 2015 - 4:37pm Addthis An insulated door was an easy upgrade from the steel cellar door that let cold air into our house. Photo by Elizabeth Spencer An insulated door was an easy upgrade from the steel cellar door that let cold air into our house. Photo by Elizabeth Spencer Our contractors layered radiant barriers with dense-pack insulation and sealed air vents. Photo by Elizabeth

  19. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    SciTech Connect (OSTI)

    Luo, Yiyong; Lu, Jian; Liu, Fukai; Liu, Wei

    2015-10-10

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although the weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.

  20. Method for low temperature preparation of a noble metal alloy

    DOE Patents [OSTI]

    Even, Jr., William R. (Livermore, CA)

    2002-01-01

    A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.

  1. A HUBBLE SPACE TELESCOPE/COSMIC ORIGINS SPECTROGRAPH SEARCH FOR WARM-HOT BARYONS IN THE Mrk 421 SIGHT LINE

    SciTech Connect (OSTI)

    Danforth, Charles W.; Stocke, John T.; Keeney, Brian A.; Penton, Steven V.; Shull, J. Michael; Yao Yangsen; Green, James C., E-mail: danforth@colorado.edu [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States)

    2011-12-10

    Thermally broadened Ly{alpha} absorbers (BLAs) offer an alternate method to using highly ionized metal absorbers (O VI, O VII, etc.) to probe the warm-hot intergalactic medium (WHIM, T = 10{sup 5}-10{sup 7} K). Until now, WHIM surveys via BLAs have been no less ambiguous than those via far-UV and X-ray metal-ion probes. Detecting these weak, broad features requires background sources with a well-characterized far-UV continuum and data of very high quality. However, a recent Hubble Space Telescope/Cosmic Origins Spectrograph (COS) observation of the z = 0.03 blazar Mrk 421 allows us to perform a metal-independent search for WHIM gas with unprecedented precision. The data have high signal-to-noise ratio (S/N Almost-Equal-To 50 per {approx}20 km s{sup -1} resolution element) and the smooth, power-law blazar spectrum allows a fully parametric continuum model. We analyze the Mrk 421 sight line for BLA absorbers, particularly for counterparts to the proposed O VII WHIM systems reported by Nicastro et al. based on Chandra/Low Energy Transmission Grating observations. We derive the Ly{alpha} profiles predicted by the X-ray observations. The S/N of the COS data is high (S/N Almost-Equal-To 25 pixel{sup -1}), but much higher S/N can be obtained by binning the data to widths characteristic of the expected BLA profiles. With this technique, we are sensitive to WHIM gas over a large (N{sub H}, T) parameter range in the Mrk 421 sight line. We rule out the claimed Nicastro et al. O VII detections at their nominal temperatures (T {approx} 1-2 Multiplication-Sign 10{sup 6} K) and metallicities (Z = 0.1 Z{sub Sun }) at {approx}> 2{sigma} level. However, WHIM gas at higher temperatures and/or higher metallicities is consistent with our COS non-detections.

  2. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  3. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  4. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  5. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  6. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  7. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Zenon F. (Orland Park, IL)

    1989-01-01

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperature of 77 degrees Kelvin.

  8. Temperature and RH Targets

    Broader source: Energy.gov [DOE]

    Presented by Vishal O Mittal of the Florida Solar Energy Center at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006.

  9. Analysis of energy conversion systems, including material and global warming aspects

    SciTech Connect (OSTI)

    Zhang, M.; Reistad, G.M.

    1998-12-31

    This paper addresses a method for the overall evaluation of energy conversion systems, including material and global environmental aspects. To limit the scope of the work reported here, the global environmental aspects have been limited to global warming aspects. A method is presented that uses exergy as an overall evaluation measure of energy conversion systems for their lifetime. The method takes the direct exergy consumption (fuel consumption) of the conventional exergy analyses and adds (1) the exergy of the energy conversion system equipment materials, (2) the fuel production exergy and material exergy, and (3) the exergy needed to recover the total global warming gases (equivalent) of the energy conversion system. This total, termed Total Equivalent Resource Exergy (TERE), provides a measure of the effectiveness of the energy conversion system in its use of natural resources. The results presented here for several example systems illustrate how the method can be used to screen candidate energy conversion systems and perhaps, as data become more available, to optimize systems. It appears that this concept may be particularly useful for comparing systems that have quite different direct energy and/or environmental impacts. This work should be viewed in the context of being primarily a concept paper in that the lack of detailed data available to the authors at this time limits the accuracy of the overall results. The authors are working on refinements to data used in the evaluation.

  10. Global warming risk assessment as it is taught at the university level

    SciTech Connect (OSTI)

    Tarassova, N.P.; Malkov, A.V.

    1997-12-31

    It has already become a common place that global warming is the price payed by the civilization for the commodities of the modem life. Various branches of human activities, different types of industrial enterprises make their contributions (direct or indirect) to the Global Warming process, the impact being quite different under the {open_quote}normal{close_quotes} and {open_quote}accident{close_quotes} modes of functioning. The development of industry resulted in the considerable number of techogenic catastrophes, the consequences of the man-made disasters exceeding the ones of the natural disasters. Our statement is that in the modern education at the university level the problems of the risk analysis must be dealt with in the standard curriculum especially if technical universities are under consideration. The students are to be tought how to access the risk at the local, regional and global levels, and how to apply the skills and knowledge gained at the university to the already existing technologies, as well as to the ones under projection. The reliability of risk assessment approaches will determine the level of risk and the amount of economic resources needed to manage the risk.

  11. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion

    SciTech Connect (OSTI)

    Pesaran, A.A. )

    1992-11-01

    This paper presents the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions. Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving the predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7 percent to 60 percent of the dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 35 to 9 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20 percent to 60 percent. The data also indicated that at typical OC-OTEC evaporator pressures, when flash evaporation in the evaporator occurred, 75 percent to 95 percent of the dissolved oxygen was desorbed overall from the warm seawater. The results were used to find the impact of a single-stage predeaeration scheme on the power to remove noncondensable gases in an OC-OTEC plant.

  12. Global warming implications of non-fluorocarbon technologies as CFC replacements

    SciTech Connect (OSTI)

    Fischer, S.K.; Tomlinson, J.J.

    1993-12-31

    Many technologies could be developed for use in place of conventional compression systems for refrigeration and air conditioning. Comparisons of the global warming impacts using TEWI (Total Equivalent Warming Impact) can be used to identify alternatives that have the potential for lower environmental impacts than electric-driven vapor compression systems using HCFCs and HFCs. Some options, such as secondary heat transfer loops in commercial refrigeration systems to reduce refrigerant charge and emission rates, could be useful in reducing the losses of refrigerants to the atmosphere. Use of ammonia instead of a fluorocarbon in a system with a secondary loop offers only a small potential for decreasing TEWI, and this may not warrant the increased complexity and risks of using ammonia in a retail sales environment. A few technologies, such as adsorption heat pumps, have efficiency levels that show reduced TEWI levels compared to conventional and state of the art compression systems, and further development could lead to an even more favorable comparison. Health and safety risks of the alternative technologies and the materials they employ must also be considered.

  13. Response of snow-dependent hydrologic extremes to continued global warming

    SciTech Connect (OSTI)

    Diffenbaugh, Noah; Scherer, Martin; Ashfaq, Moetasim

    2012-01-01

    Snow accumulation is critical for water availability in the Northern Hemisphere1,2, raising concern that global warming could have important impacts on natural and human systems in snow-dependent regions1,3. Although regional hydrologic changes have been observed (for example, refs 1,3 5), the time of emergence of extreme changes in snow accumulation and melt remains a key unknown for assessing climate- change impacts3,6,7. We find that the CMIP5 global climate model ensemble exhibits an imminent shift towards low snow years in the Northern Hemisphere, with areas of western North America, northeastern Europe and the Greater Himalaya showing the strongest emergence during the near- termdecadesandat2 Cglobalwarming.Theoccurrenceof extremely low snow years becomes widespread by the late twenty-first century, as do the occurrences of extremely high early-season snowmelt and runoff (implying increasing flood risk), and extremely low late-season snowmelt and runoff (implying increasing water stress). Our results suggest that many snow-dependent regions of the Northern Hemisphere are likely to experience increasing stress from low snow years within the next three decades, and from extreme changes in snow-dominated water resources if global warming exceeds 2 C above the pre-industrial baseline.

  14. Increasing water cycle extremes in California and relation to ENSO cycle under global warming

    SciTech Connect (OSTI)

    Yoon, Jin-Ho; Wang, S-Y; Gillies, Robert R.; Kravitz, Benjamin S.; Hipps, Lawrence; Rasch, Philip J.

    2015-10-21

    California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1) and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. The projected increase in water cycle extremes is associated with tighter relation to El Nio and Southern Oscillation (ENSO), particularly extreme El Nio and La Nia events, which modulates Californias climate not only through its warm and cold phases, but also ENSOs precursor patterns.

  15. Coral reef bleaching and sea surface temperature anomalies: 1991-1996 global patterns

    SciTech Connect (OSTI)

    Goreau, T.J.; Hayes, R.L.; Strong, A.

    1997-12-31

    Global spatio-temporal patterns of mass coral reef bleaching during the first half of the 1990s continued to show the strong temperature correlations which first became established in the 1980s. Satellite sea surface temperature data and field observations were used to track thermal bleaching events in real time. Most bleaching events followed warm season sea surface temperature anomalies of around +1 degree celsius above historical means. Global bleaching patterns appear to have been strongly affected by worldwide cooling which followed eruption of Mount Pinatubo in June 1991. High water temperatures and mass coral reef bleaching took place in the Caribbean, Indian Ocean, and South Pacific in 1991, but there were few thermal anomalies or bleaching events in 1992 and 1993, years which were markedly cooler worldwide. Following the settling of Mount Pinatubo aerosols and resumption of global warming trends, extensive ocean thermal hot spots and bleaching events resumed in the South Pacific, South Atlantic, and Indian Oceans in 1994. Bleaching again took place in hot spots in the Indian Ocean and Caribbean in 1995, and in the South Atlantic, Caribbean, South Pacific, North Pacific, and Persian Gulf in 1996. Coral reefs worldwide are now very close to their upper temperature tolerance limits. This sensitivity, and the fact that the warmest ecosystems have no source of immigrant species pre-adapted to warmer conditions, may make coral reef ecosystems the first to be severely impacted if global temperatures and sea levels remain at current values or increase further.

  16. Fingerprints of anthropogenic and natural variability in global-mean surface temperature

    SciTech Connect (OSTI)

    Wallace, J.M.; Zhang, Yuan

    1997-11-01

    This paper presents an analysis designed to detect greenhouse warming by distinguishing between temperature rises induced by increasing atmospheric concentrations of greenhouse gases and those induced by background variability that are present without changes in atmospheric composition. The strategy is based on the surface temperature field. At each observation time, the projection of the anomalous temperature field on the presumed anthropogenic fingerprint is removed in order to obtain a temperature deviation field; i.e., the temperature anomalies in the phase space orthogonal to the anthropogenic fingerprint, which are presumed to be entirely natural. The time series of the expansion coefficients of the fingerprint a(t) is then regressed on this temperature deviation field to identify the axis in the orthogonal phase space along which the variations are most strongly correlated, and an index n(t) of the temporal variations along that axis is generated. The index a(t) is then regressed upon n(t) and the resulting least squares fit is regarded as the component of a(t) that can be ascribed to natural causes. The analysis was performed for monthly global surface temperature anomaly fields for the period 1900-95. Results indicate that two well defined patterns of natural variability contribute to variations in global mean temperature: the synthetic cold ocean-warm land (COWL) pattern and the El Nino-Southern Oscillation (ENSO). In domains that include surface air temperature over Eurasia and North America, the COWL pattern tends to be dominant. The ENSO signature emerges as the pattern most strongly linearly correlated with global sea surface temperature and with tropospheric layer-averaged temperatures. 24 refs., 3 figs.

  17. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  18. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

  19. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  20. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  1. ARM - Measurement - Virtual temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to

  2. EVALUATION OF ZERO-POWER, ELEVATED-TEMPERATURE MEASUREMENTS AT JAPANS HIGH TEMPERATURE ENGINEERING TEST REACTOR

    SciTech Connect (OSTI)

    John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

    2011-03-01

    The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The experimental benchmark performed and currently evaluated in this report pertains to the data available for two zero-power, warm-critical measurements with the fully-loaded HTTR core. Six isothermal temperature coefficients for the fully-loaded core from approximately 340 to 740 K have also been evaluated. These experiments were performed as part of the power-up tests (References 1 and 2). Evaluation of the start-up core physics tests specific to the fully-loaded core (HTTR-GCR-RESR-001) and annular start-up core loadings (HTTR-GCR-RESR-002) have been previously evaluated.

  3. Global Warming: A Science Overview for the A/C Industry

    SciTech Connect (OSTI)

    MacCracken, M.C.

    1999-12-06

    Fossil fuels (i.e., coal, oil, and natural gas) provide about 85% of the world's energy, sustaining our standard-of-living. They are inexpensive, transportable, safe, and relatively abundant. At the same time, their use contributes to problems such as air quality and acid rain that are being addressed through various control efforts and to the problem of global warming, which is now being considered by governments of the world. This talk will focus on six key aspects of the scientific findings that are leading to proposals for significant limitation of the emissions of fossil-fuel-derived carbon dioxide and limitations on emissions of other greenhouse gases that can influence the global climate, including substances used in the refrigeration and air-conditioning industries.

  4. International potential of IGCC technology for use in reducing global warming and climate change emissions

    SciTech Connect (OSTI)

    Lau, F.S.

    1996-12-31

    High efficiency advanced coal-based technologies such as Integrated Gasification Combined Cycle (IGCC) that can assist in reducing CO{sub 2} emissions which contribute to Global Warming and Climate Change are becoming commercially available. U-GAS is an advanced gasification technology that can be used in many applications to convert coal in a high efficiency manner that will reduce the total amount of CO{sub 2} produced by requiring less coal-based fuel per unit of energy output. This paper will focus on the status of the installation and performance of the IGT U-GAS gasifiers which were installed at the Shanghai Cooking and Chemical Plant General located in Shanghai, China. Its use in future IGCC project for the production of power and the benefits of IGCC in reducing CO{sub 2} emissions through its high efficiency operation will be discussed.

  5. Global warming and the potential spread of vector-borne diseases

    SciTech Connect (OSTI)

    Patz, J.

    1996-12-31

    Climatic factors influence many vector-borne infectious diseases, in addition to demographic, biological, and ecological determinants. The United Nation`s Intergovernmental Panel on Climate Change (IPCC) estimates an unprecedented global rise of 2.0 C by the year 2100. Of major concern is that these changes can affect the spread of many serious infectious diseases, including malaria and dengue fever. Global warming would directly affect disease transmission by shifting the mosquito`s geographic range, increasing reproductive and biting rates, and shortening pathogen incubation period. Human migration and damage to health infrastructures from the projected increase in climate variability and sea level rise could indirectly contribute to disease transmission. A review of this literature, as well as preliminary data from ongoing studies will be presented.

  6. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms

    SciTech Connect (OSTI)

    Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-24

    We report the first systematic study of the ejected charge dynamics surrounding laser-produced 30- nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under the high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region followed by the formation of hemispherical clouds of electrons on both sides of the film, which are escaping into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We also developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.

  7. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms

    SciTech Connect (OSTI)

    Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-24

    We report the first systematic study of the ejected charge dynamics surrounding laser-produced 30-nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under the high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region followed by the formation of hemispherical clouds of electrons on both sides of the film, which are escaping into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We also developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.

  8. Dynamics of charge clouds ejected from laser-induced warm dense gold nanofilms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Jun; Li, Junjie; Correa, Alfredo A.; Tang, Shao; Ping, Yuan; Ogitsu, Tadashi; Li, Dong; Zhou, Qiong; Cao, Jianming

    2014-10-24

    We report the first systematic study of the ejected charge dynamics surrounding laser-produced 30-nm warm dense gold films using single-shot femtosecond electron shadow imaging and deflectometry. The results reveal a two-step dynamical process of the ejected electrons under the high pump fluence conditions: an initial emission and accumulation of a large amount of electrons near the pumped surface region followed by the formation of hemispherical clouds of electrons on both sides of the film, which are escaping into the vacuum at a nearly isotropic and constant velocity with an unusually high kinetic energy of more than 300 eV. We alsomore » developed a model of the escaping charge distribution that not only reproduces the main features of the observed charge expansion dynamics but also allows us to extract the number of ejected electrons remaining in the cloud.« less

  9. How America can look within to achieve energy security and reduce global warming.

    SciTech Connect (OSTI)

    Richter, B.; Goldston, D.; Crabtree, G.; Glicksman, L.; Goldstein, D.; Greene, D.; Kammen, D.; Levin, M.; Lubell, M.; Savitz, M.; Sperling, D.; Schlachter, F.; Scofield, J.; Dawson, J.

    2008-12-01

    Making major gains in energy efficiency is one of the most economical and effective ways our nation can wean itself off its dependence on foreign oil and reduce its emissions of greenhouse gases. Transportation and buildings, which account for two thirds of American energy usage, consume far more than they need to, but even though there are many affordable energy efficient technologies that can save consumers money, market imperfections inhibit their adoption. To overcome the barriers, the federal government must adopt policies that will transform the investments into economic and societal benefit. And the federal government must invest in research and development programs that target energy efficiency. Energy efficiency is one of America's great hidden energy reserves. We should begin tapping it now. Whether you want the United States to achieve greater energy security by weaning itself off foreign oil, sustain strong economic growth in the face of worldwide competition or reduce global warming by decreasing carbon emissions, energy efficiency is where you need to start. Thirty-five years ago the U.S. adopted national strategies, implemented policies and developed technologies that significantly improved energy efficiency. More than three decades have passed since then, and science and technology have progressed considerably, but U.S. energy policy has not. It is time to revisit the issue. In this report we examine the scientific and technological opportunities and policy actions that can make the United States more energy efficient, increase its security and reduce its impact on global warming. We believe the findings and recommendations will help Congress and the next administration to realize these goals. Our focus is on the transportation and buildings sectors of the economy. The opportunities are huge and the costs are small.

  10. Global warming and the future of coal carbon capture and storage

    SciTech Connect (OSTI)

    Ken Berlin; Robert M. Sussman

    2007-05-15

    The paper considers how best to change the economic calculus of power plant developers so they internalize CCS costs when selecting new generation technologies. Five policy tools are analyzed: establishing a greenhouse gas cap-and-trade program; imposing carbon taxes; defining CCS systems as a so-called Best Available Control Technology for new power plants under the USA Clean Air Act's New Source Review program; developing a 'low carbon portfolio' standard that requires utilities to provide an increasing proportion of power from low-carbon generation sources over time; and requiring all new coal power plants to meet an 'emission performance' standard that limits CO{sub 2} emissions to levels achievable with CCS systems. Each of these tools has advantages and drawbacks but an emission performance standard for new power plants is likely to be most effective in spurring broad-scale adoption of CCS systems. Chapter headings are: global warming and the future of coal; new coal-fired power plants threaten all other efforts to combat global warming; a potential path to zero emissions through carbon capture and storage; CO{sub 2} capture at coal plants: the promise of IGCC and other technologies; barriers to commercialization of IGCC technology; crossing the chasm: a new policy framework to push ccs implementation forward; encouraging CCS systems with carbon caps and trading programs; using the existing Clean Air Act to require CCS systems for new coal plants; retail low carbon portfolio standard; carbon tax; emission performance standards for new coal power plants; and conclusions. 16 figs.

  11. Temperature | Open Energy Information

    Open Energy Info (EERE)

    C Property:Combustion Intake Air Temperature F Property:FirstWellTemp G Property:GeochemReservoirTemp Property:GeofluidTemp M Property:MeanReservoirTemp R...

  12. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  13. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Z.F.

    1988-04-12

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

  14. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  15. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Bionta, Richard M. (Livermore, CA)

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  16. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  17. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  18. High Temperature Aqueous Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accurate knowledge of aqueous chemistry at high temperatures and pressures is important in many applications including nuclear waste disposal and energy extraction. Sandia's Defense Waste Management Programs is equipped with a state-of-the-art hydrothermal experimental system that allows us to obtain high quality kinetic and equilibrium data at temperatures and pressures of interest up to 600 o C and 1,000 bars (100 MPa). This state-of-the-art hydrothermal experimental system includes the

  19. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  20. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  1. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    SciTech Connect (OSTI)

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50W20E; 10N20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.

  2. Areas of Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Routt Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359681.975000 m Bottom: 4447251.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  3. Areas of Anomalous Surface Temperature in Dolored County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  4. Areas of Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  5. Areas of Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Garfield Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4441550.552290 m Left: 271445.053363 m Right: 359825.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  6. Areas of Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Archuleta Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4144691.792023 m Left: 285531.662851 m Right: 348694.182686 m Bottom: 4097005.210304 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  7. Global warming, January 1988-March 1991 (citations from the NTIS database). Rept. for Jan 88-Mar 91

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The bibliography contains citations concerning policies and general studies on global warming. Topics include the greenhouse effect, global climatic models, and climatic effects from combustion of fossil fuels. (The new bibliography contains 150 citations.) (Also includes title list and subject index.)

  8. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect (OSTI)

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  9. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  10. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  11. Assessment of boreal forest historical C dynamics in Yukon River Basin: relative roles of warming and fire regime change

    SciTech Connect (OSTI)

    Yuan, Fengming [ORNL; Yi, Shuhua [Cold and Arid Regions Environmental and Engineering Research Institute, CAS; McGuire, A. David [University of Alaska; Johnson, Kristopher D [University of Alaska, Fairbanks; Liang, Jingjing [University of Alaska, Fairbanks; Harden, Jennifer [USGS, Menlo Park, CA; Kasischke, Eric S. [University of Maryland, College Park; Kurz, Werner [Canadian Forest Service

    2012-01-01

    Carbon (C) dynamics of boreal forest ecosystems have substantial implications for efforts to mitigate the rise of atmospheric CO2 and may be substantially influenced by warming and changing wildfire regimes. In this study we applied a large-scale ecosystem model that included dynamics of organic soil horizons and soil organic matter characteristics of multiple pools to assess forest C stock changes of the Yukon River Basin (YRB) in Alaska, USA, and Canada from 1960 through 2006, a period characterized by substantial climate warming and increases in wildfire. The model was calibrated for major forests with data from long-term research sites and evaluated using a forest inventory database. The regional assessment indicates that forest vegetation C storage increased by 46 Tg C, but that total soil C storage did not change appreciably during this period. However, further analysis suggests that C has been continuously lost from the mineral soil horizon since warming began in the 1970s, but has increased in the amorphous organic soil horizon. Based on a factorial experiment, soil C stocks would have increased by 158 Tg C if the YRB had not undergone warming and changes in fire regime. The analysis also identified that warming and changes in fire regime were approximately equivalent in their effects on soil C storage, and interactions between these two suggests that the loss of organic horizon thickness associated with increases in wildfire made deeper soil C stocks more vulnerable to loss via decomposition. Subbasin analyses indicate that C stock changes were primarily sensitive to the fraction of burned forest area within each subbasin and that boreal forest ecosystems in the YRB are currently transitioning from being sinks to sources at ;0.7% annual area burned. We conclude that it is important for international mitigation efforts focused on controlling atmospheric CO2 to consider how climate warming and changes in fire regime may concurrently affect the CO2 sink strength of boreal forests. It is also important for large-scale biogeochemical and earth system models to include organic soil dynamics in applications to assess regional C dynamics of boreal forests responding to warming and changes in fire regime.

  12. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W. (Livermore, CA); Shell, Thomas E. (Livermore, CA)

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  13. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  14. U.S. commitments and responsibilities to reduce global warmings: Contributions of state-level policies and programs

    SciTech Connect (OSTI)

    Wilt, C.A.; Feldman, D.L.

    1995-12-01

    Global warming is one of the most contentious and complex environmental issues confronting scientists and public policy makers. The scope and potential impacts of global warming are immense, affecting virtually all natural processes at many levels, including coastal zone erosion, estuarine habitat, forests, and agriculture. We hypothesize that managing the natural and societal impacts of global warming, including the costs of its management, abatement, and adaptation, requires not only the cooperation of international agencies and national government, but of individual states and provinces as well. There has been a considerable increase in state-level activity to reduce global warming in the United States, but there has been little assessment of its extent or state motivations. This paper will provide an overview of possible U.S. states` commitments and responsibilities under international treaties and agreements, as well as national policy decrees such as the Clinton Administrations` Climate Change Action Plan. A review of current states` activities with brief case studies of the more progressive state programs (Connecticut, Iowa, California, Missouri, Oregon), their achievements, and their significance. We focus upon federally-mandated global change activities imposed upon states (e.g., national regulations to conserve energy or reduce emissions) and state-motivated policies not required by any national regulation (e.g., land use, transportation, regional planning policies with impacts on global change.) The latter policies may be aimed specifically at global warming prevention or mitigation or they may be incidental, beneficial by-products of policies intended for other purposes--so called `no regrets` policies. We compare the performance of state policies in these two categories in order to ascertain their relative effectiveness and promise for addressing climate change problems.

  15. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  16. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  17. Reservoir Temperature Estimator

    Energy Science and Technology Software Center (OSTI)

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of themore » weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.« less

  18. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  19. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, D.M.; Bionta, R.M.

    1995-01-17

    The joining technique is disclosed that requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process. 5 figures.

  20. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  1. Ch. VII, Temperature, heat flow maps and temperature gradient...

    Open Energy Info (EERE)

    Report: Ch. VII, Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  2. Temperature, heat flow maps and temperature gradient holes |...

    Open Energy Info (EERE)

    to library Report: Temperature, heat flow maps and temperature gradient holes Author T. G. Zacharakis Organization Colorado Geological Survey in Cooperation with the U.S....

  3. Establishment of warm-season native grasses and forbs on drastically disturbed lands

    SciTech Connect (OSTI)

    Miller, S.

    1998-12-31

    Establishment of warm-season native grasses and forbs (WSNGs) has been viewed by landowners, agronomists, natural resource managers and reclamation specialists as being too expensive and difficult, especially for reclamation, which requires early stand closure and erosion control. Natural resource managers have learned a great deal about establishing WSNGs since the implementation of the 1985 Farm Bill`s Conservation Reserve Program (CRP). Reclamation specialists must begin to use this information to improve reclamation success. Quality control of seed equipment and planting methods has been proven to be the crucial first step in successful establishment. Seedling germination, growth and development of WSNGs are different from that of introduced cool-season grasses and legumes. Specialized seed drills and spring planting periods are essential. Because shoot growth lags far behind root growth the first two seasons, WSNGs often are rejected for reclamation use. Usually, the rejection is based on preconceived notions that bare ground will erode and on reclamation specialists` desire for a closed, uniform, grassy lawn. WSNG`s extensive root systems inhibit rill and gully erosion by the fall of the first season. Planting a weakly competitive, short-lived nurse crop such as perennial ryegrass (Lolium perenne) at low rates with the WSNG mixture can reduce first-season sheet and rill erosion problems and give an appearance of a closed stand. Benefits of WSNGs in soil building and their acid-tolerance make them ideal species for reclamation of drastically disturbed lands. WSNGs and forbs enhance wildlife habitat and promote natural succession and the invasion of the reclamation site by other native species, particularly hardwood trees, increasing diversity and integrating the site into the local ecosystem. This is perhaps their most important attribute. Most alien grasses and legumes inhibit natural succession, slowing the development of a stable mine soil ecosystem. This paper outlines one successful methodology to establish warm-season grasses and forbs on abandoned mine lands in Missouri. The methodology can be successfully adapted for reclamation of all drastically disturbed lands including Title V lands under the Surface Mining Control Reclamation Act of 1977 (PL95-87) to promote ecosystem diversity and stability.

  4. CO2 Reduction by Dry Methane Reforming Over Hexaluminates: A Promising Technology for Decreasing Global Warming in a Cost Effective Manner

    SciTech Connect (OSTI)

    Salazar-Villalpando, M.D.; Gardner, T.H.

    2008-03-01

    Efficient utilization of CO2 can help to decrease global warming. Methane reforming using carbon dioxide has been of interest for many years, but recently that interest has experienced a rapid increase for both environmental and commercial reasons. The use of CO2 provides a source of clean oxygen, which eliminates the need for costly oxygen separation plants. The product of dry reforming is useful syn-gas, which can be used to generate electrical power in a SOFC or in the production of synthetic fuels (hydrocarbons and alcohols). Hexaaluminate catalysts prepared at NETL may represent a product that can be utilized for the conversion of CO2 to syn-gas. In this work, transition metals dispersed in barium hexaaluminate have shown to be promising new catalysts for dry methane reforming. In this investigation, a series of BaNixAl12-yO19-? catalysts with varying Ni content were prepared by co-precipitation followed by calcination at 1400C. CO2 reduction by dry methane reforming was carried out to determine catalyst performance as a function of temperature and carbon formation was also quantified after the reforming tests. Results of catalysts characterization, dispersion and surface area, were correlated to catalytic performance.

  5. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, P.M.

    1986-04-22

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions. 2 figs.

  6. Temperature differential detection device

    DOE Patents [OSTI]

    Girling, Peter M.

    1986-01-01

    A temperature differential detection device for detecting the temperature differential between predetermined portions of a container wall is disclosed as comprising a Wheatstone bridge circuit for detecting resistance imbalance with a first circuit branch having a first elongated wire element mounted in thermal contact with a predetermined portion of the container wall, a second circuit branch having a second elongated wire element mounted in thermal contact with a second predetermined portion of a container wall with the wire elements having a predetermined temperature-resistant coefficient, an indicator interconnected between the first and second branches remote from the container wall for detecting and indicating resistance imbalance between the first and second wire elements, and connector leads for electrically connecting the wire elements to the remote indicator in order to maintain the respective resistance value relationship between the first and second wire elements. The indicator is calibrated to indicate the detected resistance imbalance in terms of a temperature differential between the first and second wall portions.

  7. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    The High Temperature Membrane Working Group consists of government, industry, and university researchers interested in developing high temperature membranes for fuel cells.

  8. ARM - Measurement - Sea surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sea surface temperature The temperature of sea water near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the...

  9. Response of the regional water cycle to an increase of atmosphere moisture related to global warming

    SciTech Connect (OSTI)

    Frei, C.; Widmann, M.; Luethi, D.

    1997-11-01

    This study examines the sensitivity of the mid-latitude regional hydrological cycle to an imposed warming. Mesoscale limited-area climate simulations over Europe are performed. The modelling study is complemented with a detailed analysis of the observed precipitation and circulation trends in the same region. It is demonstrated that an increase of the moisture content leads to an enhancement of the model`s water cycle during the synoptically active seasons. The simulations suggest that this mechanism may contribute towards an increase in mean precipitation and more frequency occurrence of heavy precipitation events. Observational analysis results illustrate that the relationship between precipitation and atmospheric moisture seen in the climate simulations constitutes a possible physical mechanism relevant for the interpretation of the observed trends. A key feature of the model results is the pronounced increase in the frequency of strong precipitation events associated with the intensification of the water cycle. This large sensitivity highlights the vulnerability of the precipitation climate with respect to global climate change. 19 refs., 2 figs., 1 tab.

  10. Persistent Cold Air Outbreaks over North America in a Warming Climate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Yang; Leung, Lai-Yung R.; Lu, Jian; Masato, Giacomo

    2015-03-30

    This study examines future changes of cold air outbreaks (CAO) using a multi-model ensemble of global climate simulations from the Coupled Model Intercomparison Project Phase 5 as well as regional high resolution climate simulations. In the future, while robust decrease of CAO duration dominates in most regions, the magnitude of decrease over northwestern U.S. is much smaller than the surrounding regions. We identified statistically significant increases in sea level pressure during CAO events centering over Yukon, Alaska, and Gulf of Alaska that advects continental cold air to northwestern U.S., leading to blocking and CAO events. Changes in large scale circulationmorecontribute to about 50% of the enhanced sea level pressure anomaly conducive to CAO in northwestern U.S. in the future. High resolution regional simulations revealed potential contributions of increased existing snowpack to increased CAO in the near future over the Rocky Mountain, southwestern U.S., and Great Lakes areas through surface albedo effects, despite winter mean snow water equivalent decreases in the future. Overall, the multi-model projections emphasize that cold extremes do not completely disappear in a warming climate. Concomitant with the relatively smaller reduction in CAO events in northwestern U.S., the top 5 most extreme CAO events may still occur in the future, and wind chill warning will continue to have societal impacts in that region.less

  11. Intensity, duration, and frequency of precipitation extremes under 21st-century warming scenarios

    SciTech Connect (OSTI)

    Kao, Shih-Chieh; Ganguly, Auroop R

    2011-01-01

    Recent research on the projection of precipitation extremes has either focused on conceptual physical mechanisms that generate heavy precipitation or rigorous statistical methods that extrapolate tail behavior. However, informing both climate prediction and impact assessment requires concurrent physically and statistically oriented analysis. A combined examination of climate model simulations and observation-based reanalysis data sets suggests more intense and frequent precipitation extremes under 21st-century warming scenarios. Utilization of statistical extreme value theory and resampling-based uncertainty quantification combined with consideration of the Clausius-Clapeyron relationship reveals consistently intensifying trends for precipitation extremes at a global-average scale. However, regional and decadal analyses reveal specific discrepancies in the physical mechanisms governing precipitation extremes, as well as their statistical trends, especially in the tropics. The intensifying trend of precipitation extremes has quantifiable impacts on intensity-duration-frequency curves, which in turn have direct implications for hydraulic engineering design and water-resources management. The larger uncertainties at regional and decadal scales suggest the need for caution during regional-scale adaptation or preparedness decisions. Future research needs to explore the possibility of uncertainty reduction through higher resolution global climate models, statistical or dynamical downscaling, as well as improved understanding of precipitation extremes processes.

  12. Marine methane cycle simulations for the period of early global warming

    SciTech Connect (OSTI)

    Elliott, S.; Maltrud, M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2011-01-02

    Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH{sub 4} distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface waters act as a barrier to atmospheric transfer, diverting products into the deep return flow. Uncertainties in the logic and calculations are enumerated including those inherent in high-latitude clathrate abundance, buoyant effluent rise through the column, representation of the general circulation, and bacterial growth kinetics.

  13. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect (OSTI)

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  14. Persistent Cold Air Outbreaks over North America in a Warming Climate

    SciTech Connect (OSTI)

    Gao, Yang; Leung, Lai-Yung R.; Lu, Jian; Masato, Giacomo

    2015-03-30

    This study examines future changes of cold air outbreaks (CAO) using a multi-model ensemble of global climate simulations from the Coupled Model Intercomparison Project Phase 5 as well as regional high resolution climate simulations. In the future, while robust decrease of CAO duration dominates in most regions, the magnitude of decrease over northwestern U.S. is much smaller than the surrounding regions. We identified statistically significant increases in sea level pressure during CAO events centering over Yukon, Alaska, and Gulf of Alaska that advects continental cold air to northwestern U.S., leading to blocking and CAO events. Changes in large scale circulation contribute to about 50% of the enhanced sea level pressure anomaly conducive to CAO in northwestern U.S. in the future. High resolution regional simulations revealed potential contributions of increased existing snowpack to increased CAO in the near future over the Rocky Mountain, southwestern U.S., and Great Lakes areas through surface albedo effects, despite winter mean snow water equivalent decreases in the future. Overall, the multi-model projections emphasize that cold extremes do not completely disappear in a warming climate. Concomitant with the relatively smaller reduction in CAO events in northwestern U.S., the top 5 most extreme CAO events may still occur in the future, and wind chill warning will continue to have societal impacts in that region.

  15. Evolution of Elastic X-ray Scattering in Laser-Shocked Warm Dense Li

    SciTech Connect (OSTI)

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C; Brown, C; Constantin, C; Glenzer, S H; Khattak, F; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-06-02

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4 ns long laser pulses. Separate 1 ns long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-{alpha} photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120{sup o} using a HOPG crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state {bar Z}, and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  16. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    SciTech Connect (OSTI)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    2015-04-30

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehicle climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.

  17. Zero Temperature Hope Calculations

    SciTech Connect (OSTI)

    Rozsnyai, B F

    2002-07-26

    The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task. The Amaldi correction is an attempt to address this problem by distorting the outer part of the self-consistent potential in such a way that in the final state after photoexcitation or photoionization the newly occupied orbital sees the hole left in the initial state. This is very important to account for the large number of Rydberg states in the case of low densities. In the next Section we show calculated photoabsorptions compared with experimental data in figures with some rudimentary explanations.

  18. Localized temperature stability of low temperature cofired ceramics

    DOE Patents [OSTI]

    Dai, Steven Xunhu

    2013-11-26

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  19. Engine Cylinder Temperature Control

    DOE Patents [OSTI]

    Kilkenny, Jonathan Patrick (Peoria, IL); Duffy, Kevin Patrick (Metamora, IL)

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  20. Observed 1970-2005 cooling of summer daytime temperatures in coastal California

    SciTech Connect (OSTI)

    Lebassi, B.; Gonzalez, J.; Fabris, D.; Maurer, E.; Miller, N.; Milesi, C.; Bornstein, R.

    2009-05-15

    The study evaluated 1948-2004 summer (JJA) mean monthly air temperatures for two California air basins: SoCAB and SFBA. The study focuses on the more rapid post-1970 warming period, and its daily T{sub min} and T{sub max} values were used to produce average monthly values and spatial distributions of trends for each air basins. Additional analyses included T{sub D} values at two NWS sites, SSTs, NCEP reanalysis sea-level pressures, and GCM T{sub ave}-values. Results for all California COOP sites together showed increased JJA T{sub ave}-values; asymmetric warming, as T{sub min}-values increase faster than T{sub max}-values; and thus decreased DTR values. The spatial distribution of observed SoCAB and SFBA T{sub max} values exhibited a complex pattern, with cooling in low-elevation coastal-areas open to marine air penetration and warming at inland areas. Results also showed that decreased DTR values in the valleys arose from small increases at 'inland' sites combined with large decreases at 'coastal' sites. Previous studies suggest that cooling JJA T{sub max}-values in coastal California were due to increased irrigation, coastal upwelling, or cloud cover, while the current hypothesis is that they arises from GHG-induced global-warming of 'inland' areas, which results in increased sea breeze flow activity. Sea level pressure trends showed increases in the oceanic Pacific High and decreases in the central-California Thermal Low. The corresponding gradient thus showed a trend of 0.02 hPa 100-km{sup -1} decade{sup -1}, supportive of the hypothesis of increased sea breeze activity. Trends in T{sub D} values showed a larger value at coastal SFO than at inland SEC, which indicative of increased sea breeze activity; calculated SST trends (0.15 C decade{sup -1}) could also have increase T{sub D}-values. GCM model Tave-values showed warming that decreases from 0.13 C decade{sup -1} at inland California to 0.08 C decade{sup -1} at coastal areas. Significant societal impacts may result from this observed 'reverse-reaction' to GHG-warming, i.e., the decreased JJA T{sub max}-values in coastal areas. Possible beneficial effects include decreased: maximum O{sub 3} levels, human thermal-stress, and energy requirements for cooling.

  1. High-Temperature Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Materials - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  2. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  3. AAPG Low-Temperature Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Name or Ancillary Text eere.energy.gov Low Temperature Geothermal Resources Tim Reinhardt Low Temperature and Coproduced Resources Team Lead Geothermal Technologies Program U.S. Department of Energy AAPG's Low Temperature Webinar November 18, 2010 Energy Efficiency & Renewable Energy eere.energy.gov Presentation Overview * What are Low Temperature Geothermal Resources? * Where do low temperature geothermal resources fit within petroleum exploration and production? * What is

  4. Warm dust around cool stars: field M dwarfs with Wise 12 or 22 ?m excess emission

    SciTech Connect (OSTI)

    Theissen, Christopher A.; West, Andrew A.

    2014-10-20

    Using the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) spectroscopic catalog, we searched the WISE AllWISE catalog to investigate the occurrence of warm dust, as inferred from IR excesses, around field M dwarfs (dMs). We developed SDSS/WISE color selection criteria to identify 175 dMs (from 70,841) that show IR flux greater than the typical dM photosphere levels at 12 and/or 22 ?m, including seven new stars within the Orion OB1 footprint. We characterize the dust populations inferred from each IR excess and investigate the possibility that these excesses could arise from ultracool binary companions by modeling combined spectral energy distributions. Our observed IR fluxes are greater than levels expected from ultracool companions (>3?). We also estimate that the probability the observed IR excesses are due to chance alignments with extragalactic sources is <0.1%. Using SDSS spectra we measure surface gravity-dependent features (K, Na, and CaH 3) and find <15% of our sample indicates low surface gravities. Examining tracers of youth (H?, UV fluxes, and Li absorption), we find <3% of our sample appear young, indicating we are observing a population of field stars ?1 Gyr, likely harboring circumstellar material. We investigate age-dependent properties probed by this sample, studying the disk fraction as a function of Galactic height. The fraction remains small and constant to |Z| ? 700 pc and then drops, indicating little to no trend with age. Possible explanations for disks around field dMs include (1) collisions of planetary bodies, (2) tidal disruption of planetary bodies, or (3) failed planet formation.

  5. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    de la Peña, S.; Howat, I. M.; Nienow, P. W.; van den Broeke, M. R.; Mosley-Thompson, E.; Price, S. F.; Mair, D.; Noël, B.; Sole, A. J.

    2015-06-11

    Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0–20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone,more » which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, compared to the 1958–1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging –0.80 ± 0.39 m yr⁻¹ between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. If current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.« less

  6. H? and [SII] emission from warm Ionized GAS in the Scutum-Centaurus Arm

    SciTech Connect (OSTI)

    Hill, Alex S. [CSIRO Astronomy and Space Science, Marsfield, NSW (Australia); Benjamin, Robert A.; Gostisha, Martin C. [Department of Physics, University of Wisconsin-Whitewater, Whitewater, WI (United States); Haffner, L. Matthew [Department of Astronomy, University of Wisconsin-Madison, Madison, WI (United States); Barger, Kathleen A., E-mail: alex.hill@csiro.au [Department of Physics, University of Notre Dame, South Bend, IN (United States)

    2014-06-01

    We present Wisconsin H-Alpha Mapper [SII] ?6716 and H? spectroscopic maps of the warm ionized medium (WIM) in the Scutum-Centaurus Arm at Galactic longitudes 310 < l < 345. Using extinction-corrected H? intensities (I{sub H?}{sup c}), we measure an exponential scale height of electron density squared in the arm of H{sub n{sub e{sup 2}}}=0.30 kpc (assuming a distance of 3.5 kpc), intermediate between that observed in the inner Galaxy and in the Perseus Arm. The [S II]/H? line ratio is enhanced at large |z| and in sightlines with faint I{sub H?}{sup c}. We find that the [S II]/H? line ratio has a power-law relationship with I{sub H?}{sup c} from a value of ?1.0 at I{sub H?}{sup c}<0.2 R (Rayleighs) to a value of ?0.08 at I{sub H?}{sup c}?100 R. The line ratio is better correlated with H? intensity than with height above the plane, indicating that the physical conditions within the WIM vary systematically with electron density. We argue that the variation of the line ratio with height is a consequence of the decrease of electron density with height. Our results reinforce the well-established picture in which the diffuse H? emission is due primarily to emission from in situ photoionized gas, with scattered light only a minor contributor.

  7. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    SciTech Connect (OSTI)

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Du, Lin-Xiu; Liu, Yong-Ning

    2014-09-15

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 ?m, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4( 0.6) ?m, which yields a critical grain size for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. Reduction of grain size makes pearlite morphology from lamellar to granular. Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. Cr carbide resists grain growth and facilitates pearlitic transformation by DET.

  8. Experiments on oxygen desorption from surface warm seawater under open-cycle ocean thermal energy conversion (OC-OTEC) conditions

    SciTech Connect (OSTI)

    Pesaran, A.A.

    1989-12-01

    This paper reports the results of scoping deaeration experiments conducted with warm surface seawater under open-cycle ocean thermal energy conversion (OC-OTEC). Concentrations of dissolved oxygen in seawater at three locations (in the supply water, water leaving a predeaerator, and discharge water from an evaporator) were measured and used to estimate oxygen desorption levels. The results suggest that 7% to 60% of dissolved oxygen in the supply water was desorbed from seawater in the predeaerator for pressures ranging from 9 to 35 kPa. Bubble injection in the upcomer increased the oxygen desorption rate by 20% to 60%. The dependence of oxygen desorption with flow rate could not be determined. The data also indicated that at typical OC-OTEC evaporator pressures when flashing occurred, 75% to 95% of dissolved oxygen was desorbed overall from the warm seawater. The uncertainty in results is larger than one would desire. These uncertainties are attributed to the uncertainties and difficulties in the dissolved oxygen measurements. Methods to improve the measurements for future gas desorption studies for warm surface and cold deep seawater under OC-OTEC conditions are recommended. 14 refs., 5 figs., 2 tabs.

  9. Changes in diurnal temperature range and national cereal yields

    SciTech Connect (OSTI)

    Lobell, D

    2007-04-26

    Models of yield responses to temperature change have often considered only changes in average temperature (Tavg), with the implicit assumption that changes in the diurnal temperature range (DTR) can safely be ignored. The goal of this study was to evaluate this assumption using a combination of historical datasets and climate model projections. Data on national crop yields for 1961-2002 in the 10 leading producers of wheat, rice, and maize were combined with datasets on climate and crop locations to evaluate the empirical relationships between Tavg, DTR, and crop yields. In several rice and maize growing regions, including the two major nations for each crop, there was a clear negative response of yields to increased DTR. This finding reflects a nonlinear response of yields to temperature, which likely results from greater water and heat stress during hot days. In many other cases, the effects of DTR were not statistically significant, in part because correlations of DTR with other climate variables and the relatively short length of the time series resulted in wide confidence intervals for the estimates. To evaluate whether future changes in DTR are relevant to crop impact assessments, yield responses to projected changes in Tavg and DTR by 2046-2065 from 11 climate models were estimated. The mean climate model projections indicated an increase in DTR in most seasons and locations where wheat is grown, mixed projections for maize, and a general decrease in DTR for rice. These mean projections were associated with wide ranges that included zero in nearly all cases. The estimated impacts of DTR changes on yields were generally small (<5% change in yields) relative to the consistently negative impact of projected warming of Tavg. However, DTR changes did significantly affect yield responses in several cases, such as in reducing US maize yields and increasing India rice yields. Because DTR projections tend to be positively correlated with Tavg, estimates of yields under extreme warming scenarios were particularly affected by including DTR (up to 10%). Finally, based on the relatively poor performance of climate models in reproducing the magnitude of past DTR trends, it is possible that future DTR changes and associated yield responses will exceed the ranges considered here.

  10. Low-temperature geothermal assessment of the Santa Clara and Virgin River Valleys, Washington County, Utah

    SciTech Connect (OSTI)

    Budding, K.E.; Sommer, S.N.

    1986-01-01

    Exploration techniques included the following: (1) a temperature survey of springs, (2) chemical analyses and calculated geothermometer temperatures of water samples collected from selected springs and wells, (3) chemical analyses and calculated geothermometer temperatures of spring and well water samples in the literature, (4) thermal gradients measured in accessible wells, and (5) geology. The highest water temperature recorded in the St. George basin is 42/sup 0/C at Pah Tempe Hot Springs. Additional spring temperatures higher than 20/sup 0/C are at Veyo Hot Spring, Washington hot pot, and Green Spring. The warmest well water in the study area is 40/sup 0/C in Middleton Wash. Additional warm well water (higher than 24.5/sup 0/C) is present north of St. George, north of Washington, southeast of St. George, and in Dameron Valley. The majority of the Na-K-Ca calculated reservoir temperatures range between 30/sup 0/ and 50/sup 0/C. Anomalous geothermometer temperatures were calculated for water from Pah Tempe and a number of locations in St. George and vicinity. In addition to the known thermal areas of Pah Tempe and Veyo Hot Spring, an area north of Washington and St. George is delineated in this study to have possible low-temperature geothermal potential.

  11. High temperature detonator

    DOE Patents [OSTI]

    Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  12. Thermionic converter temperature controller

    DOE Patents [OSTI]

    Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

    2001-04-24

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  13. Drexel University Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  14. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity

    SciTech Connect (OSTI)

    Li, Jianwei; Wang, Gangsheng; Allison, Steven D.; Mayes, Melanie; Luo, Yiqi

    2014-01-01

    Global ecosystem models may require microbial components to accurately predict feedbacks between climate warming and soil decomposition, but it is unclear what parameters and levels of complexity are ideal for scaling up to the globe. Here we conducted a model comparison using a conventional model with first-order decay and three microbial models of increasing complexity that simulate short- to long-term soil carbon dynamics. We focused on soil carbon responses to microbial carbon use efficiency (CUE) and temperature. Three scenarios were implemented in all models: constant CUE (held at 0.31), varied CUE ( 0.016 C 1), and 50 % acclimated CUE ( 0.008 C 1). Whereas the conventional model always showed soil carbon losses with increasing temperature, the microbial models each predicted a temperature threshold above which warming led to soil carbon gain. The location of this threshold depended on CUE scenario, with higher temperature thresholds under the acclimated and constant scenarios. This result suggests that the temperature sensitivity of CUE and the structure of the soil carbon model together regulate the long-term soil carbon response to warming. Equilibrium soil carbon stocks predicted by the microbial models were much less sensitive to changing inputs compared to the conventional model. Although many soil carbon dynamics were similar across microbial models, the most complex model showed less pronounced oscillations. Thus, adding model complexity (i.e. including enzyme pools) could improve the mechanistic representation of soil carbon dynamics during the transient phase in certain ecosystems. This study suggests that model structure and CUE parameterization should be carefully evaluated when scaling up microbial models to ecosystems and the globe.

  15. Final Report and Strategic Plan on the Feasibility Study to Assess Geothermal Potential on Warm Springs Reservation Lands. Report No. DOE/GO/15177

    SciTech Connect (OSTI)

    James Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates

    2007-05-17

    In 2005 the Confederated Tribes of Warm Springs Tribal Council authorized an evaluation of the geothermal development potential on the Confederated Tribes of Warm Springs Reservation of Oregon. Warm Springs Power & Water Enterprises obtained a grant from the U.S. Department of Energy to conduct a geological assessment and development estimate. Warm Springs Power & Water Enterprises utilized a team of expert consultants to conduct the study and develop a strategic plan. The resource assessment work was completed in 2006 by GeothermEx Inc., a consulting company specializing in geothermal resource assessments worldwide. The GeothermEx report indicates there is a 90% probability that a commercial geothermal resource exists on tribal lands in the Mt. Jefferson area. The geothermal resource assessment and other cost, risk and constraints information has been incorporated into the strategic plan.

  16. Possible changes for mudflow and avalanche activity in former Soviet Union due to the global warming

    SciTech Connect (OSTI)

    Glazovskaya, T.G.; Sidorova, T.L.; Seliverstov, Y.G.

    1996-12-31

    Past research, as well as laboratory evidence have revealed a relationship between climate, mudflow, and avalanche activity. It is possible to predict changes in mudflow and avalanche activity by using climate models. In this study, the GFDL model was used which contained data on mean monthly air temperature, precipitation, and carbon dioxide concentrations.

  17. How do elevated [CO2], warming, and reduced precipitation interact to affect soil moisture and LAI in an old field ecosystem?

    SciTech Connect (OSTI)

    Dermody, Orla [University of Tennessee, Knoxville (UTK); Weltzin, Jake [University of Tennessee, Knoxville (UTK); Engel, Elizabeth C. [University of Tennessee, Knoxville (UTK); Allen, Phillip [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

    2007-01-01

    Soil moisture content and leaf area index (LAI) are properties that will be particularly important in mediating whole system responses to the combined effects of elevated atmospheric [CO2], warming and altered precipitation. Warming and drying will likely reduce soil moisture, and this effect may be exacerbated when these factors are combined. However, elevated [CO2] may increase soil moisture contents and when combined with warming and drying may partially compensate for their effects. The response of LAI to elevated [CO2] and warming will be closely tied to soil moisture status and may mitigate or exacerbate the effects of global change on soil moisture. Using open-top chambers (4-m diameter), the interactive effects of elevated [CO2], warming, and differential irrigation on soil moisture availability were examined in the OCCAM (Old-Field Community Climate and Atmospheric Manipulation) experiment at Oak Ridge National Laboratory in eastern Tennessee. Warming consistently reduced soil moisture contents and this effect was exacerbated by reduced irrigation. However, elevated [CO2] partially compensated for the effects of warming and drying on soil moisture. Changes in LAI were closely linked to soil moisture status. LAI was determined using an AccuPAR ceptometer and both the leaf area duration (LAD) and canopy size were increased by irrigation and elevated [CO2]. The climate of the southeastern United States is predicted to be warmer and drier in the future. This research suggests that although elevated [CO2] will partially ameliorate the effects of warming and drying, losses of soil moisture will increase from old field ecosystems in the future.

  18. Areas of Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  19. High-temperature-measuring device

    DOE Patents [OSTI]

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  20. ARM - Measurement - Surface skin temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    skin temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Surface skin temperature The radiative surface skin temperature, from an IR thermometer measuring the narrowband radiating temperature of the ground surface in its field of view. Categories Radiometric, Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the

  1. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  2. Effect of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ziming; Wullschleger, Stan D.; Liang, Liyuan; Graham, David E.; Gu, Baohua

    2016-01-16

    The fate of soil organic carbon (SOC) stored in the Arctic permafrost is a key concern as temperatures continue to rise in the northern hemisphere. Studies and conceptual models suggest that SOC degradation is affected by the composition of SOC, but it is unclear exactly what portions of SOC are vulnerable to rapid breakdown and what mechanisms may be controlling SOC degradation upon permafrost thaw. Here, we examine the dynamic consumption and production of labile SOC in an anoxic incubation experiment using soil samples from the active layer at the Barrow Environmental Observatory, Barrow, Alaska, USA. Free-reducing sugars, alcohols, andmore » low-molecular-weight (LMW) organic acids were analyzed during incubation at either –2 or 8 °C for up to 240 days. Results show that simple sugar and alcohol SOC largely account for the initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products, acetate and formate, are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important role as an electron acceptor in tundra SOC respiration. These observations are further supported in a glucose addition experiment, in which rapid CO2 and CH4 production occurred concurrently with rapid production and consumption of labile organics such as acetate. However, addition of tannic acid, as a more complex organic substrate, showed little influence on the overall production of CO2 and CH4 and organic acids. Together our study shows that LMW labile organics in SOC control the initial rapid release of green-house gases upon warming. We thus present a conceptual framework for the labile SOC transformations and their relations to fermentation, iron reduction and methanogenesis, thereby providing the basis for improved model prediction of climate feedbacks in the Arctic.« less

  3. The analysis of climate variability at local and regional scales in the global warming context

    SciTech Connect (OSTI)

    Mares, I.; Mares, C.

    1996-12-31

    The time series of the seasonal and annual temperatures and precipitation amounts from two stations with observations for more than 100 years and from one mountain station (data since 1928), in Romania have been analyzed. For the entire territory of Romania, 33 stations have also been studied using EOF components, for the 1950--1993 period. In order to find climate change-points, nonparametric tests Pettitt and Mann-Kendall have been used. Quantification of the significant change-points was made estimating the signal-to-noise ratio. Some of the change-points in the temperature and precipitation fields could be associated with the changes in the geopotential field at 500hPa, represented by EOFs and blocking index calculated for the Atlantic-European region. The comparison with other results obtained from the European stations or from the entire Northern Hemisphere shows several common points, but also some differences in the climate jumps, reflecting the local peculiarities.

  4. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  5. Global warming commitment concept and its application for relative evaluation of greenhouse gas current and future radiative forcing

    SciTech Connect (OSTI)

    Karol, I.L.; Frolkis, V.A.; Kiselev, A.A.

    1996-12-31

    The Global Warming Commitment (GWC) of gas X relative to standard gas A for time period T is proposed, as determined by the formula GWC{sub X}{sup T} = {integral}RF{sub X}(t)dt/{integral}RF{sub A}(t)dt both integrals between limits 0 and T, where RF{sub X}(t) = {Delta}F{sub X}(t) is the Radiative Forcing (RF) of gas X (the net total radiation flux change at the tropopause level caused by the gas X content variation during the 0 to t time period). The well known Global Warming Potential (GWP) is determined by the same formula, where {Delta}F{sub x}(t) is due to instantaneous releases into the atmosphere of the same definite mass (1 kg) of gas X and of standard gas A. In GWC the actual measured or modeled gas contents evolutions are used for estimation of gas X relative input into the current and future greenhouse warming. GWC of principal Greenhouse Gases (GG) are calculated and analyzed for the time period before 1990, based on observed GG content evolution. For periods from now to 2050 the modeled global GG content projections from radiative photochemical atmospheric model are used for several of IPCC-94 scenarios of GG anthropogenic emissions up to 2050. The GWC of CH{sub 4}, N{sub 2}O and CFCs with CO{sub 2} as standard GG are 2--4 times lower, and they are much more accurately reflecting the reality in the above periods than the widely used RFs of these GG relative to GG of CO{sub 2}, when the GG content evolutions during the time period T is not considered.

  6. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  7. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  8. Effect of nonthermality of electrons on the speed and shape of ion-acoustic solitary waves in a warm plasma

    SciTech Connect (OSTI)

    Abdelwahed, H. G.; El-Shewy, E. K.

    2012-07-15

    Nonlinear ion-acoustic solitary waves in a warm collisionless plasma with nonthermal electrons are investigated by a direct analysis of the field equations. The Sagdeev's potential is obtained in terms of ion acoustic speed by simply solving an algebraic equation. It is found that the amplitude and width of the ion-acoustic solitons as well as the parametric regime where the solitons can exist are sensitive to the population of energetic non-thermal electrons. The soliton and double layer solutions are obtained as a small amplitude approximation.

  9. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    SciTech Connect (OSTI)

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  10. COSMIC ORIGINS SPECTROGRAPH OBSERVATIONS OF WARM INTERVENING GAS AT z {approx} 0.325 TOWARD 3C 263

    SciTech Connect (OSTI)

    Narayanan, Anand [Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala (India); Savage, Blair D.; Wakker, Bart P., E-mail: anand@iist.ac.in, E-mail: savage@astro.wisc.edu, E-mail: wakker@astro.wisc.edu [Department of Astronomy, University of Wisconsin-Madison, 5534 Sterling Hall, 475 N. Charter Street, Madison, WI 53706-1582 (United States)

    2012-06-10

    We present HST/COS high-S/N observations of the z = 0.32566 multiphase absorber toward 3C 263. The Cosmic Origins Spectrograph (COS) data show absorption from H I (Ly{alpha} to Ly{theta}), O VI, C III, N III, Si III, and C II. The Ne VIII in this absorber is detected in the FUSE spectrum along with O III, O IV, and N IV. The low and intermediate ions are kinematically aligned with each other and H I and display narrow line widths of b {approx} 6-8 km s{sup -1}. The O VI {lambda}{lambda}1031, 1037 lines are kinematically offset by {Delta}v {approx} 12 km s{sup -1} from the low ions and are a factor of {approx}4 broader. All metal ions except O VI and Ne VIII are consistent with an origin in gas photoionized by the extragalactic background radiation. The bulk of the observed H I is also traced by this photoionized medium. The metallicity in this gas phase is Z {approx}> 0.15 Z{sub Sun} with carbon having near-solar abundances. The O VI and Ne VIII favor an origin in collisionally ionized gas at T = 5.2 Multiplication-Sign 10{sup 5} K. The H I absorption associated with this warm absorber is a broad-Ly{alpha} absorber (BLA) marginally detected in the COS spectrum. This warm gas phase has a metallicity of [X/H] {approx}-0.12 dex, and a total hydrogen column density of N( H) {approx} 3 Multiplication-Sign 10{sup 19} cm{sup -2}, which is {approx}2 dex higher than what is traced by the photoionized gas. Simultaneous detection of O VI, Ne VIII, and BLAs in an absorber can be a strong diagnostic of gas with T {approx} 10{sup 5}-10{sup 6} K corresponding to the warm phase of the warm-hot intergalactic medium or shock-heated gas in the extended halos of galaxies.

  11. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  12. Method for determining hydrogen mobility as a function of temperature in superconducting niobium cavities

    DOE Patents [OSTI]

    May, Robert (Virginia Beach, VA)

    2008-03-11

    A method for determining the mobility of hydrogen as a function of temperature in superconducting niobium cavities comprising: 1) heating a cavity under test to remove free hydrogen; 2) introducing hydrogen-3 gas into the cavity; 3) cooling the cavity to allow absorption of hydrogen-3; and 4) measuring the amount of hydrogen-3 by: a) cooling the cavity to about 4.degree. K while flowing a known and regulated amount of inert carrier gas such as argon or helium into the cavity; b) allowing the cavity to warm at a stable rate from 4.degree. K to room temperature as it leaves the chamber; and c) directing the exit gas to an ion chamber radiation detector.

  13. Performance and energy costs associated with scaling infrared heater arrays for warming field plots from 1 to 100 m

    SciTech Connect (OSTI)

    Kimball B. A.; Lewin K.; Conley, M. M.

    2012-04-01

    To study the likely effects of global warming on open-field vegetation, hexagonal arrays of infrared heaters are currently being used for low-stature (<1 m) plants in small ({le}3 m) plots. To address larger ecosystem scales, herein we show that excellent uniformity of the warming can be achieved using nested hexagonal and rectangular arrays. Energy costs depend on the overall efficiency (useable infrared energy on the plot per electrical energy in), which varies with the radiometric efficiency (infrared radiation out per electrical energy in) of the individual heaters and with the geometric efficiency (fraction of thermal radiation that falls on useable plot area) associated with the arrangement of the heaters in an array. Overall efficiency would be about 26% at 4 ms{sup -1} wind speed for a single hexagonal array over a 3-m-diameter plot and 67% for a 199-hexagon honeycomb array over a 100-m-diameter plot, thereby resulting in an economy of scale.

  14. The Role of Subtropical Irreversible PV Mixing in the Zonal Mean Circulation Response to Global Warming-like Thermal Forcing

    SciTech Connect (OSTI)

    Lu, Jian; Sun, Lantao; Wu, Yutian; Chen, Gang

    2014-03-15

    The atmospheric circulation response to the global warming-like tropical upper tropospheric heating is revisited using a dry atmospheric general circulation model (AGCM) in light of a new diagnostics based on the concept of finite-amplitude wave activity (FAWA) on equivalent latitude. For a given tropical heating profile, the linear Wentzel-Kramers-Brillouin (WKB) wave refraction analysis sometimes gives a very different and even opposite prediction of the eddy momentum flux response to that of the actual full model simulation, exposing the limitation of the traditional linear approach in understanding the full dynamics of the atmospheric response under global warming. The implementation of the FAWA diagnostics reveals that in response to the upper tropospheric heating, effective diffusivity, a measure of the mixing efficiency, increases and advances upward and poleward in the subtropics and the resultant enhancement and the poleward encroachment of eddy potential vorticity mixing leads to a poleward displaced potential vorticity (PV) gradient peak in the upper troposphere. The anomalous eddy PV flux, in balance with the PV dissipation, gives rise to a poleward shift in the eddy-driven jet and eddy-driven mean meridional circulation. Sensitivity experiments show that these irreversible dissipation processes in the upper troposphere are robust, regardless of the width of the tropical heating.

  15. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea

    SciTech Connect (OSTI)

    Kim, Mi-Hyung; Song, Yul-Eum; Song, Han-Byul; Kim, Jung-Wk; Hwang, Sun-Jin

    2011-09-15

    Highlights: > Various food waste disposal options were evaluated from the perspective of global warming. > Costs of the options were compared by the methodology of life cycle assessment and life cycle cost analysis. > Carbon price and valuable by-products were used for analyzing environmental credits. > The benefit-cost ratio of wet feeding scenario was the highest. - Abstract: The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO{sub 2} reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest.

  16. Sensors for low temperature application

    DOE Patents [OSTI]

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A method and apparatus for low temperature sensing which uses gas filled micro-size hollow glass spheres that are exposed in a confined observation area to a low temperature range (Kelvin) and observed microscopically to determine change of state, i.e., change from gaseous state of the contained gas to condensed state. By suitable indicia and classification of the spheres in the observation area, the temperature can be determined very accurately.

  17. ARM - Measurement - Soil surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Soil surface temperature The temperature of the soil measured near the surface. Categories Surface Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those

  18. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect (OSTI)

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  19. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  20. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  1. Areas of Weakly Anomalous to Anomalous Surface Temperature in Routt County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Routt Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Routt County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4501071.574000 m Left: 311351.975000 m Right: 359411.975000 m Bottom: 4447521.574000 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  2. Areas of Weakly Anomalous to Anomalous Surface Temperature in Chaffee County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Chaffee Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Chaffee County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4333432.368072 m Left: 366907.700763 m Right: 452457.816015 m Bottom: 4208271.566715 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  3. Areas of Weakly Anomalous to Anomalous Surface Temperature in Archuleta County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Archuleta Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Archuleta County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies). Spatial Domain: Extent: Top: 4144825.235807 m Left: 285446.256851 m Right: 350577.338852 m Bottom: 4096962.250137 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  4. Areas of Weakly Anomalous to Anomalous Surface Temperature in Alamosa and Saguache Counties, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Alamosa Saguache Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Alamosa and Saguache Counties identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4217727.601630 m Left: 394390.400264 m Right: 460179.841813 m Bottom: 4156258.036086 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  5. Areas of Weakly Anomalous to Anomalous Surface Temperature in Dolores County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Very Warm Modeled Temperature Dolores Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Dolores County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature greater than 2? were considered ASTER modeled very warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4186234.213315 m Left: 212558.673056 m Right: 232922.811862 m Bottom: 4176781.467043 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  6. Areas of Weakly Anomalous to Anomalous Surface Temperature in Garfield County, Colorado, as Identified from ASTER Thermal Data

    SciTech Connect (OSTI)

    Hussein, Khalid

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Warm Modeled Temperature Garfield Edition: First Note: This Weakly Anomalous to Anomalous Surface Temperature dataset differs from the Anomalous Surface Temperature dataset for this county (another remotely sensed CIRES product) by showing areas of modeled temperatures between 1? and 2? above the mean, as opposed to the greater than 2? temperatures contained in the Anomalous Surface Temperature dataset. Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains areas of anomalous surface temperature in Garfield County identified from ASTER thermal data and spatial based insolation model. The temperature is calculated using the Emissivity Normalization Algorithm that separate temperature from emissivity. The incoming solar radiation was calculated using spatial based insolation model developed by Fu and Rich (1999). Then the temperature due to solar radiation was calculated using emissivity derived from ASTER data. The residual temperature, i.e. temperature due to solar radiation subtracted from ASTER temperature was used to identify thermally anomalous areas. Areas that had temperature between 1? and 2? were considered ASTER modeled warm surface exposures (thermal anomalies) Spatial Domain: Extent: Top: 4442180.552290 m Left: 268655.053363 m Right: 359915.053363 m Bottom: 4312490.552290 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  7. Temperature-associated increases in the global soil respiration record

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin; Thomson, Allison M.

    2010-03-25

    Soil respiration (RS), the flux of CO2 from the soil surface to the atmosphere, comprises the second-largest terrestrial carbon flux, but its dynamics are incompletely understood, and the global flux remains poorly constrained. Ecosystem warming experiments, modelling analyses, and biokinetics all suggest that RS should change with climate. This has been difficult to confirm observationally because of the high spatial variability of RS, inaccessibility of the soil medium, and inability of remote sensing instruments to measure large-scale RS fluxes. Given these constraints, is it possible to discern climate-driven changes in regional or global RS fluxes in the extant four-decade record of RS chamber measurements? Here we use a database of worldwide RS observations, matched with high-resolution historical climate data, to show a previously unknown temporal trend in the RS record after accounting for mean annual climate, leaf area, nitrogen deposition, and changes in CO2 measurement technique. Air temperature anomaly (deviation from the 1961-1990 mean) is significantly and positively correlated with changes in RS fluxes; both temperature and precipitation anomalies exert effects in specific biomes. We estimate that the current (2008) annual global RS flux is 9812 Pg and has increased 0.1 Pg yr-1 over the last 20 years, implying a global RS temperature response (Q10) of 1.5. An increasing global RS flux does not necessarily constitute a positive feedback loop to the atmosphere; nonetheless, the available data are consistent with an acceleration of the terrestrial carbon cycle in response to global climate change.

  8. Long-range global warming impact of gaseous diffusion plant operation

    SciTech Connect (OSTI)

    Trowbridge, L.D.

    1992-09-01

    The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is on the Montreal Protocol list of materials scheduled for production curtailment, a substitute must be found. In addition to physical cooling properties, the gaseous diffusion application imposes the unique requirement of chemical inertness to fluorinating agents. This has narrowed the selection of a near-term substitute to two fully fluorinated material, FC-318 and FC-3110, which are likely to be strong, long-lived greenhouse gases. In this document, calculations are presented showing, for a number of plausible scenarios of diffusion plant operation and coolant replacement strategy, the future course of coolant use, greenhouse gas emissions (including coolant and power-related indirect CO{sub 2} emissions), and the consequent global temperature impacts of these scenarios.

  9. Low Temperature/Coproduced/Geopressured Subprogram Overview ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low TemperatureCoproducedGeopressured Subprogram Overview Low TemperatureCoproducedGeopressured Subprogram Overview This overview of GTP's Low TemperatureCoproduced...

  10. Ultra High Temperature | Open Energy Information

    Open Energy Info (EERE)

    Ultra High Temperature Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Sanyal Temperature Classification: Ultra High Temperature Dictionary.png Ultra High...

  11. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  12. Pion dynamics at finite temperature

    SciTech Connect (OSTI)

    Toublan, D.

    1997-11-01

    The pion decay constant and mass are computed at low temperature within chiral perturbation theory to two loops. The effects of the breaking of Lorentz symmetry by the thermal equilibrium state are discussed. The validity of the Gell-Mann{endash}Oakes{endash}Renner relation at finite temperature is examined. {copyright} {ital 1997} {ital The American Physical Society}

  13. Low-Temperature Biodiesel Research Reveals Potential Key to Successful Blend Performance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Relatively low-cost solutions could improve reliability while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now, issues with cold weather performance have prevented biodiesel blends from being widely adopted. Some biodiesel blends have exhibited unexplained low-temperature performance problems even at blend levels as low as 2% by volume. The most common low-temperature performance issue is vehicle stalling caused by fuel filter clogging, which prevents fuel from reaching the engine. Research at the National Renewable Energy Laboratory (NREL) reveals the properties responsible for these problems, clearing a path for the development of solutions and expanded use of energy-conserving and low-emissions alternative fuel. NREL researchers set out to study the unpredictable nature of biodiesel crystallization, the condition that impedes the flow of fuel in cold weather. Their research revealed for the first time that saturated monoglyceride impurities common to the biodiesel manufacturing process create crystals that can cause fuel filter clogging and other problems when cooling at slow rates. Biodiesel low-temperature operational problems are commonly referred to as 'precipitates above the cloud point (CP).' NREL's Advanced Biofuels team spiked distilled soy and animal fat-derived B100, as well as B20, B10, and B5 biodiesel blends with three saturated monoglycerides (SMGs) at concentration levels comparable to those of real-world fuels. Above a threshold or eutectic concentration, the SMGs (monomyristin, monopalmitin, and monostearin) were shown to significantly raise the biodiesel CP, and had an even greater impact on the final melting temperature. Researchers discovered that upon cooling, monoglyceride initially precipitates as a metastable crystal, but it transforms over time or upon slight heating into a more stable crystal with a much lower solubility and higher melting temperature - and with increased potential to cause vehicle performance issues. This explains why fuel-filter clogging typically occurs over the course of long, repeated diurnal cooling cycles. The elevated final melting points mean that restarting vehicles with clogged filters can be difficult even after ambient temperatures have warmed to well above CP. By examining how biodiesel impurities affect filtration and crystallization during warming and cooling cycles, NREL researchers uncovered an explanation for poor biodiesel performance at low temperatures. The observation of a eutectic point, or a concentration below which SMGs have no effect, indicates that SMGs do not have to be completely removed from biodiesel to solve low-temperature performance problems.

  14. Assessing Summer and Fall Chinook Salmon Restoration in the Upper Clearwater River and Principal Tributaries, 1994 Annual Report.

    SciTech Connect (OSTI)

    Arnsberg, Billy D.; Statler, David P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a baseline release of 1,300 cfs to a maximum release of 25,530 cfs with an overall temperature depression in the lower Clearwater River exceeding 10 C. With continued Dworshak Dam operations as those documented in 1994, there is potential risk to the continued existence of the endangered fall chinook salmon in the Clearwater River. Additional data and conclusions will be contained in successive years` annual reports.

  15. Environmental screening tools for assessment of infrastructure plans based on biodiversity preservation and global warming (PEIT, Spain)

    SciTech Connect (OSTI)

    Garcia-Montero, Luis G.

    2010-04-15

    Most Strategic Environmental Assessment (SEA) research has been concerned with SEA as a procedure, and there have been relatively few developments and tests of analytical methodologies. The first stage of the SEA is the 'screening', which is the process whereby a decision is taken on whether or not SEA is required for a particular programme or plan. The effectiveness of screening and SEA procedures will depend on how well the assessment fits into the planning from the early stages of the decision-making process. However, it is difficult to prepare the environmental screening for an infrastructure plan involving a whole country. To be useful, such methodologies must be fast and simple. We have developed two screening tools which would make it possible to estimate promptly the overall impact an infrastructure plan might have on biodiversity and global warming for a whole country, in order to generate planning alternatives, and to determine whether or not SEA is required for a particular infrastructure plan.

  16. Global Climate Change Response Program: Potential regional impacts of global warming on precipitation in the western United States. Final report

    SciTech Connect (OSTI)

    Leverson, V.

    1997-01-01

    This study was designed to build upon a previous Global Climate Change Response Program investigation in which an initial `first guess` climate change scenario was derived for the Western United States. Using the scenario`s hypothesized northward shift in the mean wintertime storm track, historical upper-air patterns in the atmosphere were searched to identify winter months (December, January, or February) that would serve as appropriate global warming analogues (GWA). Contour charts were generated of four geopotential height parameters. Specific pattern configurations of the four parameters were identified that reflected the altered storm track pattern, and guidelines for selecting suitable analogues based on the configurations were developed. Monthly mean precipitation values for the GWA months at three climatological divisions in Western Montana, northern Utah, and east central Arizona were compared with median values for the 1946-89 period to determine if any significant differences existed.

  17. A procedure for analyzing energy and global warming impacts of foam insulation in U.S. commercial buildings

    SciTech Connect (OSTI)

    Kosny, J.; Yarbrough, D.W.; Desjarlais, A.O.

    1998-11-01

    The objective of this paper is to develop a procedure for evaluating the energy and global warming impacts of alternative insulation technologies for US commercial building applications. The analysis is focused on the sum of the direct contribution of greenhouse gas emissions from a system and the indirect contribution of the carbon dioxide emission resulting from the energy required to operate the system over its expected lifetime. In this paper, parametric analysis was used to calculate building related CO{sub 2} emission in two US locations. A retail mail building has been used as a model building for this analysis. For the analyzed building, minimal R-values of insulation are estimated using ASHRAE 90.1 requirements.

  18. THE ABSENCE OF COLD DUST AND THE MINERALOGY AND ORIGIN OF THE WARM DUST ENCIRCLING BD +20 307

    SciTech Connect (OSTI)

    Weinberger, A. J.; Becklin, E. E.; Zuckerman, B.; Song, I. E-mail: becklin@astro.ucla.edu E-mail: song@uga.edu

    2011-01-10

    Spitzer Space Telescope photometry and spectroscopy of BD +20 307 show that all of the dust around this remarkable Gyr-old spectroscopic binary arises within 1 AU. No additional cold dust is needed to fit the infrared excess. Peaks in the 10 and 20 {mu}m spectrum are well fit with small silicates that should be removed on a timescale of years from the system. This is the dustiest star known for its age, which is {approx}>1 Gyr. The dust cannot arise from a steady-state collisional cascade. A catastrophic collision of two rocky, planetary-scale bodies in the terrestrial zone is the most likely source for this warm dust because it does not require a reservoir of planetesimals in the outer system.

  19. Fish Producers Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Fish Producers Aquaculture Low Temperature Geothermal Facility Facility Fish Producers...

  20. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization Capabilities at the High Temperature Materials Laboratory: ... Success Stories from the High Temperature Materials Laboratory (HTML) User ...

  1. Biodiesel's Enabling Characteristics in Attaining Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion Discusses ...

  2. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature ...

  3. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Characterization Capabilities at the High Temperature Materials Laboratory and ... Materials Characterization Capabilities at the High Temperature Materials Laboratory and ...

  4. Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Jackson...

  5. Aqua Farms International Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Farms International Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Farms International Aquaculture Low Temperature Geothermal Facility...

  6. Flint Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Flint Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Flint...

  7. Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sunnybrook Farms Aquaculture Low Temperature Geothermal Facility Facility...

  8. Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Bigfork Greenhouses Greenhouse Low Temperature Geothermal Facility Facility...

  9. Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Crook's Greenhouse Greenhouse Low Temperature Geothermal Facility Facility...

  10. Duckwater Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Duckwater Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Duckwater Aquaculture Low Temperature Geothermal Facility Facility Duckwater Sector...

  11. Castlevalley Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Castlevalley Greenhouses Greenhouse Low Temperature Geothermal Facility...

  12. Global warming and climate change - predictive models for temperate and tropical regions

    SciTech Connect (OSTI)

    Malini, B.H.

    1997-12-31

    Based on the assumption of 4{degree}C increase of global temperature by the turn of 21st century due to the accumulation of greenhouse gases an attempt is made to study the possible variations in different climatic regimes. The predictive climatic water balance model for Hokkaido island of Japan (a temperate zone) indicates the possible occurrence of water deficit for two to three months, which is a unknown phenomenon in this region at present. Similarly, India which represents tropical region also will experience much drier climates with increased water deficit conditions. As a consequence, the thermal region of Hokkaido which at present is mostly Tundra and Micro thermal will change into a Meso thermal category. Similarly, the moisture regime which at present supports per humid (A2, A3 and A4) and Humid (B4) climates can support A1, B4, B3, B2 and B1 climates indicating a shift towards drier side of the climatic spectrum. Further, the predictive modes of both the regions have indicated increased evapotranspiration rates. Although there is not much of change in the overall thermal characteristics of the Indian region the moisture regime indicates a clear shift towards the aridity in the country.

  13. COLD DUST BUT WARM GAS IN THE UNUSUAL ELLIPTICAL GALAXY NGC 4125

    SciTech Connect (OSTI)

    Wilson, C. D.; Cridland, A.; Foyle, K.; Parkin, T. J.; Cooper, E. Mentuch; Roussel, H.; Sauvage, M.; Lebouteiller, V.; Madden, S.; Baes, M.; De Looze, I.; Bendo, G.; Boquien, M.; Boselli, A.; Ciesla, L.; Clements, D. L.; Cooray, A.; Galametz, M.; and others

    2013-10-20

    Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and H I emission. Depending on the dust emissivity, the total dust mass is 2-5 10{sup 6} M {sub ?}. While the neutral gas-to-dust mass ratio is extremely low (<12-30), including the ionized gas traced by [C II] emission raises this limit to <39-100. The dust emission follows a similar r {sup 1/4} profile to the stellar light and the dust to stellar mass ratio is toward the high end of what is found in nearby elliptical galaxies. We suggest that NGC 4125 is currently in an unusual phase where evolved stars produced in a merger-triggered burst of star formation are pumping large amounts of gas and dust into the interstellar medium. In this scenario, the low neutral gas-to-dust mass ratio is explained by the gas being heated to temperatures ?10{sup 4} K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.

  14. Method for measuring surface temperature

    DOE Patents [OSTI]

    Baker, Gary A. (Los Alamos, NM); Baker, Sheila N. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2009-07-28

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  15. ACCRETION-INHIBITED STAR FORMATION IN THE WARM MOLECULAR DISK OF THE GREEN-VALLEY ELLIPTICAL GALAXY NGC3226?

    SciTech Connect (OSTI)

    Appleton, P. N.; Bitsakis, T.; Alatalo, K.; Mundell, C.; Lacy, M.; Armus, L.; Charmandaris, V.; Duc, P.-A.; Lisenfeld, U.; Ogle, P.

    2014-12-20

    We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar ''Green Valley'' elliptical galaxy NGC3226. The galaxy, which contains a low-luminosity active galactic nucleus (AGN), forms a pair with NGC3227 and is shown to lie in a complex web of stellar and H I filaments. Imaging at 8 and 16?m reveals a curved plume structure 3kpc in extent, embedded within the core of the galaxy and coincident with the termination of a 30kpc long H I tail. In situ star formation associated with the infrared (IR) plume is identified from narrowband Hubble Space Telescope (HST) imaging. The end of the IR plume coincides with a warm molecular hydrogen disk and dusty ring containing 0.7-1.1 10{sup 7} M {sub ?} detected within the central kiloparsec. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H{sub 2} is in a warm state. Photometry derived from the ultraviolet (UV) to the far-IR shows evidence for a low star-formation rate of ?0.04 M {sub ?} yr{sup 1} averaged over the last 100Myr. A mid-IR component to the spectral energy distribution (SED) contributes ?20% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC3226's global UV-optical ''green'' colors via the resurgence of star formation in a ''red and dead'' galaxy. This form of ''cold accretion'' from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies and may actually inhibit star formation.

  16. Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bouskill, N. J.; Riley, W. J.; Tang, J. Y.

    2014-12-11

    Accurate representation of ecosystem processes in land models is crucial for reducing predictive uncertainty in energy and greenhouse gas feedbacks with the climate. Here we describe an observational and modeling meta-analysis approach to benchmark land models, and apply the method to the land model CLM4.5 with two versions of belowground biogeochemistry. We focused our analysis on the aboveground and belowground responses to warming and nitrogen addition in high-latitude ecosystems, and identified absent or poorly parameterized mechanisms in CLM4.5. While the two model versions predicted similar soil carbon stock trajectories following both warming and nitrogen addition, other predicted variables (e.g., belowgroundmore » respiration) differed from observations in both magnitude and direction, indicating that CLM4.5 has inadequate underlying mechanisms for representing high-latitude ecosystems. On the basis of observational synthesis, we attribute the model–observation differences to missing representations of microbial dynamics, aboveground and belowground coupling, and nutrient cycling, and we use the observational meta-analysis to discuss potential approaches to improving the current models. However, we also urge caution concerning the selection of data sets and experiments for meta-analysis. For example, the concentrations of nitrogen applied in the synthesized field experiments (average = 72 kg ha-1 yr-1) are many times higher than projected soil nitrogen concentrations (from nitrogen deposition and release during mineralization), which precludes a rigorous evaluation of the model responses to likely nitrogen perturbations. Overall, we demonstrate that elucidating ecological mechanisms via meta-analysis can identify deficiencies in ecosystem models and empirical experiments.« less

  17. WARM SPITZER PHOTOMETRY OF THREE HOT JUPITERS: HAT-P-3b, HAT-P-4b AND HAT-P-12b

    SciTech Connect (OSTI)

    Todorov, Kamen O.; Deming, Drake; Knutson, Heather A.; Burrows, Adam; Fortney, Jonathan J.; Laughlin, Gregory; Lewis, Nikole K.; Cowan, Nicolas B.; Agol, Eric; Desert, Jean-Michel; Sada, Pedro V.; Charbonneau, David; Langton, Jonathan; Showman, Adam P.

    2013-06-20

    We present Warm Spitzer/IRAC secondary eclipse time series photometry of three short-period transiting exoplanets, HAT-P-3b, HAT-P-4b and HAT-P-12b, in both the available 3.6 and 4.5 {mu}m bands. HAT-P-3b and HAT-P-4b are Jupiter-mass objects orbiting an early K and an early G dwarf star, respectively. For HAT-P-3b we find eclipse depths of 0.112%+0.015%-0.030% (3.6 micron) and 0.094%+0.016%-0.009% (4.5 {mu}m). The HAT-P-4b values are 0.142%+0.014%-0.016% (3.6 micron) and 0.122%+0.012%-0.014% 4.5 {mu}m). The two planets' photometry is consistent with inefficient heat redistribution from their day to night sides (and low albedos), but it is inconclusive about possible temperature inversions in their atmospheres. HAT-P-12b is a Saturn-mass planet and is one of the coolest planets ever observed during secondary eclipse, along with the hot Neptune GJ 436b and the hot Saturn WASP-29b. We are able to place 3{sigma} upper limits on the secondary eclipse depth of HAT-P-12b in both wavelengths: <0.042% (3.6 {mu}m) and <0.085% (4.5 {mu}m). We discuss these results in the context of the Spitzer secondary eclipse measurements of GJ 436b and WASP-29b. It is possible that we do not detect the eclipses of HAT-P-12b due to high eccentricity, but find that weak planetary emission in these wavelengths is a more likely explanation. We place 3{sigma} upper limits on the |e cos {omega}| quantity (where e is eccentricity and {omega} is the argument of periapsis) for HAT-P-3b (<0.0081) and HAT-P-4b (<0.0042), based on the secondary eclipse timings.

  18. The influence of warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a Colorado subalpine forest site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burns, S. P.; Blanken, P. D.; Turnipseed, A. A.; Hu, J.; Monson, R. K.

    2015-12-15

    Precipitation changes the physical and biological characteristics of an ecosystem. Using a precipitation-based conditional sampling technique and a 14 year data set from a 25 m micrometeorological tower in a high-elevation subalpine forest, we examined how warm-season precipitation affected the above-canopy diel cycle of wind and turbulence, net radiation Rnet, ecosystem eddy covariance fluxes (sensible heat H, latent heat LE, and CO2 net ecosystem exchange NEE) and vertical profiles of scalars (air temperature Ta, specific humidity q, and CO2 dry mole fraction χc). This analysis allowed us to examine how precipitation modified these variables from hourly (i.e., the diel cycle)more » to multi-day time-scales (i.e., typical of a weather-system frontal passage). During mid-day we found the following: (i) even though precipitation caused mean changes on the order of 50–70 % to Rnet, H, and LE, the surface energy balance (SEB) was relatively insensitive to precipitation with mid-day closure values ranging between 90 and 110 %, and (ii) compared to a typical dry day, a day following a rainy day was characterized by increased ecosystem uptake of CO2 (NEE increased by ≈ 10 %), enhanced evaporative cooling (mid-day LE increased by ≈ 30 W m−2), and a smaller amount of sensible heat transfer (mid-day H decreased by ≈ 70 W m−2). Based on the mean diel cycle, the evaporative contribution to total evapotranspiration was, on average, around 6 % in dry conditions and between 15 and 25 % in partially wet conditions. Furthermore, increased LE lasted at least 18 h following a rain event. At night, even though precipitation (and accompanying clouds) reduced the magnitude of Rnet, LE increased from ≈ 10 to over 20 W m−2 due to increased evaporation. Any effect of precipitation on the nocturnal SEB closure and NEE was overshadowed by atmospheric phenomena such as horizontal advection and decoupling that create measurement difficulties. Above-canopy mean χc during wet conditions was found to be about 2–3 μmol mol−1 larger than χc on dry days. This difference was fairly constant over the full diel cycle suggesting that it was due to synoptic weather patterns (different air masses and/or effects of barometric pressure). Finally, the effect of clouds on the timing and magnitude of daytime ecosystem fluxes is described.« less

  19. The effect of warm-season precipitation on the diel cycle of the surface energy balance and carbon dioxide at a Colorado subalpine forest site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burns, S. P.; Blanken, P. D.; Turnipseed, A. A.; Monson, R. K.

    2015-06-16

    Precipitation changes the physical and biological characteristics of an ecosystem. Using a precipitation-based conditional sampling technique and a 14 year dataset from a 25 m micrometeorological tower in a high-elevation subalpine forest, we examined how warm-season precipitation affected the above-canopy diel cycle of wind and turbulence, net radiation Rnet, ecosystem eddy covariance fluxes (sensible heat H, latent heat LE, and CO2 net ecosystem exchange NEE) and vertical profiles of scalars (air temperature Ta, specific humidity q, and CO2 dry mole fraction ?c). This analysis allowed us to examine how precipitation modified these variables from hourly (i.e., the diel cycle) tomoremulti-day time-scales (i.e., typical of a weather-system frontal passage). During mid-day we found: (i) even though precipitation caused mean changes on the order of 5070% to Rnet, H, and LE, the surface energy balance (SEB) was relatively insensitive to precipitation with mid-day closure values ranging between 7080%, and (ii) compared to a typical dry day, a day following a rainy day was characterized by increased ecosystem uptake of CO2 (NEE increased by ≈ 10%), enhanced evaporative cooling (mid-day LE increased by ≈ 30 W m-2), and a smaller amount of sensible heat transfer (mid-day H decreased by ≈ 70 W m-2). Based on the mean diel cycle, the evaporative contribution to total evapotranspiration was, on average, around 6% in dry conditions and 20% in wet conditions. Furthermore, increased LE lasted at least 18 h following a rain event. At night, precipitation (and accompanying clouds) reduced Rnet and increased LE. Any effect of precipitation on the nocturnal SEB closure and NEE was overshadowed by atmospheric phenomena such as horizontal advection and decoupling that create measurement difficulties. Above-canopy mean ?c during wet conditions was found to be about 23 ?mol mol-1 larger than ?c on dry days. This difference was fairly constant over the full diel cycle suggesting that it was due to synoptic weather patterns (different air masses and/or effects of barometric pressure). In the evening hours during wet conditions, weakly stable conditions resulted in smaller vertical ?c differences compared to those in dry conditions. Finally, the effect of clouds on the timing and magnitude of daytime ecosystem fluxes is described.less

  20. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  1. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  2. Moderate Temperature | Open Energy Information

    Open Energy Info (EERE)

    temperature level. Thus, reservoirs in the 190 to 230C range should have liquid water as the mobile fluid phase, and as such, this class is reasonably well constrained....

  3. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, III, Raymond B. (Melbourne, FL)

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  4. Investigating the Effects of Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigating the Effects of Temperature on Power Output Objective: Students will use concepts learned in class to explore the many variables that effect the efficiency of solar panels in regards to power output. Materials: * PV Array or Solar Panel * 2 Multimeter * Frozen Ice Packs * Low Power DC Bulb * Halogen Lamp (500 Watts) * 4 or 5 Alligator clip wires * Timer Investigative Question: How does the power output change as the temperature of the PV system changes. Procedure: 1) Attach the

  5. Temperature sensors for OTEC applications

    SciTech Connect (OSTI)

    Seren, L.; Panchal, C.B.; Rote, D.M.

    1984-05-01

    Ocean thermal energy conversion (OTEC) applications require accurate measurement of temperatures in the 0 to 30/sup 0/C range. This report documents an experimental examination of commercially available quartz-crystal thermometers and thermistors. Three fixed-point baths were used for temperature measurements: the distilled-water/distilled-ice-water slurry, the triple-point-of-water cell, and the gallium melting-point cell. The temperature of carefully prepared ice-water slurries was verified routinely as 0.001 +- 0.003/sup 0/C. Quartz-crystal probes proved accurate to about 1 to 2 mK, with drift errors of the same order over a few days. Bead- and disk-type thermistor probes were found to be about equally stable with time in the 0 to 30/sup 0/C range. The overall probable error of using thermistors was found to be +-4 mK. A solid-block temperature bath suitable for on-site calibrations in OTEC work was used in the temperature-sweeping mode. Various polynomial fits were examined for the purpose of thermistor calibration; fits of order two and higher yielded about equally accurate calculated temperatures.

  6. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  7. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  8. Method and apparatus for scientific analysis under low temperature vacuum conditions

    DOE Patents [OSTI]

    Winefordner, James D. (Gainesville, FL); Jones, Bradley T. (Gainesville, FL)

    1990-01-01

    A method and apparatus for scientific analysis of a sample under low temperature vacuum conditions uses a vacuum chamber with a conveyor belt disposed therein. One end of the conveyor belt is a cool end in thermal contact with the cold stage of a refrigerator, whereas the other end of the conveyor belt is a warm end spaced from the refrigerator. A septum allows injection of a sample into the vacuum chamber on top of the conveyor belt for spectroscopic or other analysis. The sample freezes on the conveyor belt at the cold end. One or more windows in the vacuum chamber housing allow spectroscopic analysis of the sample. Following the spectroscopic analysis, the conveyor belt may be moved such that the sample moves toward the warm end of the conveyor belt where upon it evaporates, thereby cleaning the conveyor belt. Instead of injecting the sample by way of a septum and use of a syringe and needle, the present device may be used in series with capillary-column gas chromatography or micro-bore high performance liquid chromatography.

  9. Possible Impacts of Global Warming on Hydrology of the Ogallala Aquifer Region

    SciTech Connect (OSTI)

    Rosenberg, Norman J. ); Epstein, Daniel J. ); Wang, Dahong; Vail, Lance W. ); Srinivasan, Ragahvan; Arnold, J G.

    1998-12-01

    The Ogallala or High Plains aquifer provides water for about 20% of the irrigated land in the United States. About 20 km{sup 3} (16.6 million acre-feet) of water are withdrawn annually from this aquifer. In general, recharge has not compensated for withdrawals since major irrigation development began in this region in the 1940s. The mining of the Ogallala has been pictured as an analogue to climate change in that many GCMs predict a warmer and drier future for this region. We anticipate the possible impacts of climate change on the sustainability of the aquifer as a source of water for irrigation and other purposes in the region. We have applied HUMUS, the Hydrologic Unit Model of the U.S. to the Missouri and Arkansas-White-Red water resource regions that overlie the Ogallala. We have imposed three general circulation model (GISS, UKTR and BMRC) projections of future climate change on this region and simulated the changes that may be induced in water yields (runoff plus lateral flow) and ground water recharge. Each GCM was applied to HUMUS at three levels of global mean temperature (GMT) to represent increasing severity of climate change (a surrogate for time). HUMUS was also run at three levels of atmospheric CO2 concentration (hereafter denoted by[CO2]) in order to estimate the impacts of direct CO2 effects on photosynthesis and evapotranspiration. Since the UKTR and GISS GCMs project increased precipitation in the Missouri basin, water yields increase there. The BMRC GCM predicts sharply decreased precipitation and, hence, reduced water yields. Precipitation reductions are even greater in the Arkansas basin under BMRC as are the consequent water yield losses. GISS and UKTR climates lead to only moderate yield losses in the Arkansas. CO2-fertilization reverses these losses and yields increase slightly. CO2 fertilization increases recharge in the base (no climate change) case in both basins. Recharge is reduced under all three GCMs and severities of climate change.

  10. Apparatus and method for high temperature viscosity and temperature measurements

    DOE Patents [OSTI]

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  11. Low to moderate temperature nanolaminate heater

    DOE Patents [OSTI]

    Eckels, J. Del; Nunes, Peter J.; Simpson, Randall L.; Hau-Riege, Stefan; Walton, Chris; Carter, J. Chance; Reynolds, John G.

    2011-01-11

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  12. An updated global grid point surface air temperature anomaly data set: 1851--1990

    SciTech Connect (OSTI)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  13. Integrated Emissivity And Temperature Measurement

    DOE Patents [OSTI]

    Poulsen, Peter (Livermore, CA)

    2005-11-08

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  14. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  15. High Temperature Thermoelectric Materials Characterization for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program | Department of Energy High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program 2009 DOE

  16. High Temperature Superconductivity Partners | Department of Energy

    Office of Environmental Management (EM)

    High Temperature Superconductivity Partners High Temperature Superconductivity Partners Map showing DOE's partners/stakeholders in the High Temperature Superconductivity Program PDF icon High Temperature Superconductivity Partners More Documents & Publications DOE Superconductivity Program Stakeholders DOE Provides up to $51.8 Million to Modernize the U.S. Electric Grid System. June 27, 2007 High-Temperature Superconductivity Cable Demonstration Projects

  17. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  18. Crystal face temperature determination means

    DOE Patents [OSTI]

    Nason, D.O.; Burger, A.

    1994-11-22

    An optically transparent furnace having a detection apparatus with a pedestal enclosed in an evacuated ampule for growing a crystal thereon is disclosed. Temperature differential is provided by a source heater, a base heater and a cold finger such that material migrates from a polycrystalline source material to grow the crystal. A quartz halogen lamp projects a collimated beam onto the crystal and a reflected beam is analyzed by a double monochromator and photomultiplier detection spectrometer and the detected peak position in the reflected energy spectrum of the reflected beam is interpreted to determine surface temperature of the crystal. 3 figs.

  19. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  20. High temperature current mirror amplifier

    DOE Patents [OSTI]

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  1. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  2. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  3. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  4. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

    2004-04-20

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  5. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E. (Vashon, WA); Poole, Donald R. (Woodinville, WA); Schmidt, Eckart W. (Bellevue, WA); Wang, Charles (Lafayette, IN)

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  6. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  7. High temperature turbine engine structure

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ)

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  8. Catalysts for low temperature oxidation

    DOE Patents [OSTI]

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  9. Measures used to tackle environmental problems related to global warming and climate change resulting from the use of coal

    SciTech Connect (OSTI)

    Hoppe, J.A.

    1996-12-31

    Environmental issues continue to play a major role in strategic planning associated with the use of coal for power generation. Problems, such as Acid Rain resulting from SO{sub 2} emissions produced from the sulfur content of coal during coal combustion, have recently cornered the attention of policy makers and planners. More recently the carbon content of coal, which provides for most of the coals heating value, has been identified as the major contributor to the production of CO{sub 2} and other emissions associated with Global Warming and Climate Change. Total world carbon emissions resulting from the burning of fossil fuels were approximately 6 billion metric tons in 1990, of which 44% were from the consumption of oil, 39% from coal, and 17% from natural gas. Assuming no change in current regulations, carbon emissions are anticipated to grow by 1.5% per year, and are predicted to reach more than 8 billion tons by the year 2010. Most of this increase in carbon emissions is expected to come from developing countries in the Asian Pacific Region such as China where coal use dominates the power production industry and accounts for 71% of its total CO{sub 2} emissions. Asian Pacific coal demand is expected to double over the next 15 years accounting for a 46% increase in total primary energy demand, and China currently produces approximately 11% of the world`s global greenhouse gas emissions which is expected to grow to 15% by the year 2010.

  10. Practical ways to abate air and water pollution worldwide including a unique way to significantly curb global warming

    SciTech Connect (OSTI)

    Snell, J.R.

    1998-07-01

    This paper points out that in the next 50 years it will largely be the developing countries of the world which will continue to industrialize rapidly and hence pollute the water and air of not only their countries but that this pollution is becoming global (80% of the World's population.) From the author's 25 years of consulting experience in the developing countries, their greatest need is to have available to them low cost, innovative processes for pollution abatement will be neglected and the whole world will suffer immensely. The paper discusses in some detail the type of innovative low cost methods which have successfully been used in the categories of wastewater and solid wastes and names 6 other categories where many others exist. All these innovative methods need to be discovered, listed, and tested for quality and dependability, and then made widely available. Large Environmental Engineering Universities and International Consulting Engineering firms need to be organized to undertake these important tasks. The paper also points out the connection between Global Warming and the Solid waste industry and shows how it can be controlled inexpensively by employing a new, unique, and rapid method of converting municipal refuse into methane and then using that to make electricity. Information given in this paper could lead to a vast reduction in future pollution, with the resulting better global health and at the same time save trillions of dollars.

  11. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  12. Review of water, lighting, and cooling energy efficiency measures for low-income homes located in warm climates

    SciTech Connect (OSTI)

    Martin, M.A.; Gettings, M.B.

    1998-02-01

    In support of the U.S. Department of Energy`s Weatherization Assistance Program, Oak Ridge National Laboratory has performed a literature review of weatherization measures applicable for homes located in warm climate regions. Sources for this information included: (1) documented engineering estimates, (2) vendor information, (3) reported performance from research and field tests, and (4) direct discussions with researchers, vendors, and field reporters. Estimated savings are extrapolated from reported energy savings and applied to the end-use energy consumption for low-income homes reported by the Energy Information Administration. Additionally, installation costs, savings-to-investment ratios, and parameters indicating performance sensitivity to issues such as occupancy, construction, client education, and maintenance requirements are presented. The report is comprised of two sections: (1) an overview of measure performance, and (2) an appendix. The overview of measures is in a tabular format, which allows for quick reference. More detailed discussions and references for each measure are presented in the Appendix and it is highly recommended that these be reviewed prior to measure selection.

  13. Probable Causes of the Abnormal Ridge Accompanying the 2013-2014 California Drought: ENSO Precursor and Anthropogenic Warming Footprint

    SciTech Connect (OSTI)

    Wang, S-Y; Hipps, Lawrence; Gillies, Robert R.; Yoon, Jin-Ho

    2014-05-16

    The 2013-14 California drought was accompanied by an anomalous high-amplitude ridge system. The anomalous ridge was investigated using reanalysis data and the Community Earth System Model (CESM). It was found that the ridge emerged from continual sources of Rossby wave energy in the western North Pacific starting in late summer, and subsequently intensified into winter. The ridge generated a surge of wave energy downwind and deepened further the trough over the northeast U.S., forming a dipole. The dipole and associated circulation pattern is not linked directly with either ENSO or Pacific Decadal Oscillation; instead it is correlated with a type of ENSO precursor. The connection between the dipole and ENSO precursor has become stronger since the 1970s, and this is attributed to increased GHG loading as simulated by the CESM. Therefore, there is a traceable anthropogenic warming footprint in the enormous intensity of the anomalous ridge during winter 2013-14, the associated drought and its intensity.

  14. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  15. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  16. High-Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  17. Lakeview Residences Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Lakeview Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lakeview Residences Space Heating Low Temperature Geothermal Facility...

  18. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  19. Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Nichinghsiang Fish Farm Aquaculture Low Temperature Geothermal Facility...

  20. Oregon Trail Mushrooms Industrial Low Temperature Geothermal...

    Open Energy Info (EERE)

    Mushrooms Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Facility Oregon...