Sample records for unprecedented time scales

  1. Halanay type inequalities on time scales

    E-Print Network [OSTI]

    Ad\\ivar, Murat

    2011-01-01T23:59:59.000Z

    This paper aims to introduce Halanay type inequalities on time scales. By means of these inequalities we derive new global stability conditions for nonlinear dynamic equations on time scales. Giving several examples we show that beside generalization and extension to q-difference case, our results also provide improvements for the existing theory regarding differential and difference inequalites, which are the most important particular cases of dynamic inequalities on time scales.

  2. Time-scale for accretion of matter

    E-Print Network [OSTI]

    F. Combes

    1998-11-09T23:59:59.000Z

    Mass accretion is the key factor for evolution of galaxies. It can occur through secular evolution, when gas in the outer parts is driven inwards by dynamical instabilities, such as spirals or bars. This secular evolution proceeds very slowly when spontaneous, and can be accelerated when triggered by companions. Accretion can also occur directly through merging of small companions, or more violent interaction and coalescence. We discuss the relative importance of both processes, their time-scale and frequency along a Hubble time. Signatures of both processes can be found in the Milky Way. It is however likely that our Galaxy had already gathered the bulk of its mass about 8-10 Gyr ago, as is expected in hierarchical galaxy formation scenarios.

  3. Time scales in nuclear giant resonances

    SciTech Connect (OSTI)

    Heiss, W. D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch, 7602 Matieland (South Africa); Nazmitdinov, R. G. [Department de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, RU-141980 Dubna (Russian Federation); Smit, F. D. [iThemba LABS, Post Office Box 722, Somerset West 7129 (South Africa)

    2010-03-15T23:59:59.000Z

    We propose a general approach to characterise fluctuations of measured cross sections of nuclear giant resonances. Simulated cross sections are obtained from a particular, yet representative, self-energy that contains all information about fragmentations. Using a wavelet analysis, we demonstrate the extraction of time scales of cascading decays into configurations of different complexity of the resonance. We argue that the spreading widths of collective excitations in nuclei are determined by the number of fragmentations as seen in the power spectrum. An analytic treatment of the wavelet analysis using a Fourier expansion of the cross section confirms this principle. A simple rule for the relative lifetimes of states associated with hierarchies of different complexity is given.

  4. Observation time scale, free-energy landscapes, and molecular symmetry

    E-Print Network [OSTI]

    Salamon, Peter

    Observation time scale, free-energy landscapes, and molecular symmetry David J. Walesa,1 and Peter structures that interconvert on a given time scale are lumped together, the corresponding free-energy surface that are connected by free-energy barriers below a certain threshold. We illustrate this time dependence for some

  5. Unprecedented detail of intact neuronal receptor offers blueprint...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne, Ill.- Scientists succeeded in obtaining an unprecedented view of a type of brain-cell receptor that is implicated in a range of neurological illnesses, including...

  6. Estimating ventilation time scales using overturning stream functions

    E-Print Network [OSTI]

    Döös, Kristofer

    Estimating ventilation time scales using overturning stream functions Bijoy Thompson & Jonas for estimating ventilation time scales from overturning stream functions is proposed. The stream function may describing an ide- alized semi-enclosed ocean basin ventilated through a narrow strait over a sill

  7. Time Scales in Probabilistic Models of Wireless Sensor Networks

    E-Print Network [OSTI]

    Anatoly Manita

    2013-02-28T23:59:59.000Z

    We consider a stochastic model of clock synchronization in a wireless network consisting of N sensors interacting with one dedicated accurate time server. For large N we find an estimate of the final time sychronization error for global and relative synchronization. Main results concern a behavior of the network on different time scales $t=t_N \\to \\infty$, $N \\to \\infty$. We discuss existence of phase transitions and find exact time scales on which an effective clock synchronization of the system takes place.

  8. Estimating ventilation time scales using overturning stream functions

    E-Print Network [OSTI]

    Döös, Kristofer

    Estimating ventilation time scales using overturning stream functions Bijoy Thompson & Jonas 2014 # Springer-Verlag Berlin Heidelberg 2014 Abstract A simple method for estimating ventilation time-enclosed ocean basin ventilated through a narrow strait over a sill, and the result is compared to age estimates

  9. Detection of Polarimetric Variations Associated with the Shortest Time-Scale Variability in S5 0716$ + $714

    E-Print Network [OSTI]

    Mahito Sasada; Makoto Uemura; Akira Arai; Yasushi Fukazawa; Koji S. Kawabata; Takashi Ohsugi; Takuya Yamashita; Mizuki Isogai; Shuji Sato; Masaru Kino

    2008-12-08T23:59:59.000Z

    We present the result of near-infrared and optical observations of the BL Lac object S5 0716$ + $714 carried out by the KANATA telescope. S5 0716$ + $714 has both a long term high-amplitude variability and a short-term variability within a night. The shortest variability (microvariability) time-scale is important for understanding the geometry of jets and magnetic field, because it provides a possible minimum size of variation sources. Here, we report the detection of 15-min variability in S5 0716$ + $714, which is one of the shortest time-scales in optical and near-infrared variations observed in blazars. The detected microvariation had an amplitude of $0.061{\\pm}0.005$ mag in $V$ band and a blue color of $\\Delta(V-J)=-0.025{\\pm}0.011$. Furthermore, we successfully detected an unprecedented, short time-scale polarimetric variation which correlated with the brightness change. We revealed that the microvariation had a specific polarization component. The polarization degree of the variation component was higher than that of the total flux. These results suggest that the microvariability originated from a small and local region where the magnetic field is aligned.

  10. Wavelet analysis and scaling properties of time series

    E-Print Network [OSTI]

    P. Manimaran; Prasanta K. Panigrahi; Jitendra C. Parikh

    2005-08-30T23:59:59.000Z

    We propose a wavelet based method for the characterization of the scaling behavior of non-stationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multi-fractal behavior.

  11. Detecting separate time scales in genetic expression data

    E-Print Network [OSTI]

    Orlando, David A; Brady, Siobhan M; Fink, Thomas M A; Benfey, Philip N; Ahnert, Sebastian E

    2010-06-16T23:59:59.000Z

    experiments. Cell Cycle 2007, 6:478-488. 5. Boyle EI, Weng SA, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G: GO:: TermFinder-open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms... Orlando et al. BMC Genomics 2010, 11:381 http://www.biomedcentral.com/1471-2164/11/381Open AccessM E T H O D O L O G Y A R T I C L E Methodology articleDetecting separate time scales in genetic expression data David A Orlando1,2, Siobhan M Brady1...

  12. Finite-difference time-domain simulation of fusion plasmas at radiofrequency time scales

    SciTech Connect (OSTI)

    Smithe, David N. [Tech-X Corporation, 5621 Arapahoe Avenue, Suite A, Boulder, Colorado 80303 (United States)

    2007-05-15T23:59:59.000Z

    Simulation of dense plasmas in the radiofrequency range are typically performed in the frequency domain, i.e., by solving Laplace-transformed Maxwell's equations. This technique is well-suited for the study of linear heating and quasilinear evolution, but does not generalize well to the study of nonlinear phenomena. Conversely, time-domain simulation in this range is difficult because the time scale is long compared to the electron plasma wave period, and in addition, the various cutoff and resonance behaviors within the plasma insure that any explicit finite-difference scheme would be numerically unstable. To resolve this dilemma, explicit finite-difference Maxwell terms are maintained, but a carefully time-centered locally implicit method is introduced to treat the plasma current, such that all linear plasma dispersion behavior is faithfully reproduced at the available temporal and spatial resolution, despite the fact that the simulation time step may exceed the electron gyro and electron plasma time scales by orders of magnitude. Demonstrations are presented of the method for several classical benchmarks, including mode conversion to ion cyclotron wave, cyclotron resonance, propagation into a plasma-wave cutoff, and tunneling through low-density edge plasma.

  13. Detonation initiation on the microsecond time scale: DDTs

    SciTech Connect (OSTI)

    Kuehn, Jeffery A [ORNL; Kassoy, Dr. David R [University of Colorado; Nabity, Mr. Matthew W. [University of Colorado; Clarke, Dr. John F. [Cranfield University

    2006-01-01T23:59:59.000Z

    Spatially resolved, thermal power deposition of limited duration into a finite volume of reactive gas is the initiator for a deflagration-to-detonation transition (DDT) on the microsecond time scale. The reactive Euler equations with one-step Arrhenius kinetics are used to derive novel formulas for velocity and temperature variation that describe the physical phenomena characteristic of DDTs. A nonlinear transformation of the variables is shown to yield a canonical equation system, independent of the activation energy. Numerical solutions of the reactive Euler equations are used to describe the detailed sequence of reactive gas dynamic processes leading to an overdriven planar detonation far from the power deposition location. Results are presented for deposition into a region isolated from the planar boundary of the reactive gas as well as for that adjacent to the boundary. The role of compressions and shocks reflected from the boundary into the partially reacted hot gas is described. The quantitative dependences of DDT evolution on the magnitude of thermal power deposition and activation energy are identified.

  14. Detonation initiation on the microsecond time scale: DDTs

    SciTech Connect (OSTI)

    Kassoy, Dr. David R [University of Colorado; Kuehn, Jeffery A [ORNL; Nabity, Mr. Matthew W. [University of Colorado; Clarke, Dr. John F. [Cranfield University

    2008-01-01T23:59:59.000Z

    Spatially resolved, thermal power deposition of limited duration into a finite volume of reactive gas is the initiator for a deflagration-to-detonation transition (DDT) on the microsecond time scale. The reactive Euler equations with one-step Arrhenius kinetics are used to derive novel formulas for velocity and temperature variation that describe the physical phenomena characteristic of DDTs. A transformation of the variables is shown to yield a canonical equation system, independent of the activation energy. Numerical solutions of the reactive Euler equations are used to describe the detailed sequence of reactive gasdynamic processes leading to an overdriven planar detonation far from the power deposition location. Results are presented for deposition into a region isolated from the planar boundary of the reactive gas as well as for that adjacent to the boundary. The role of compressions and shocks reflected from the boundary into the partially reacted hot gas is described. The quantitative dependences of DDT evolution on the magnitude of thermal power deposition and activation energy are identified.

  15. Real time density functional simulations of quantum scale conductance

    E-Print Network [OSTI]

    Evans, Jeremy Scott

    2009-01-01T23:59:59.000Z

    We study electronic conductance through single molecules by subjecting a molecular junction to a time dependent potential and propagating the electronic state in real time using time-dependent density functional theory ...

  16. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    29   Appendix A. PJM Windat Multiple Time Scales Appendix A. PJM Wind Data The windpower data for the PJM control area cover the period January

  17. LINK BETWEEN COSMIC RAYS AND CLOUDS ON DIFFERENT TIME SCALES

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    , Finland Ilya.Usoskin@oulu.fi A possible mechanism of solar variability influence upon the Earth's climate of energy brought by CR into the terrestrial system is negli- gible compared to solar radiation. On daily scales, major For- bush decreases and solar energetic particle events can affect the cyclogenesis

  18. Global terrestrial biogeochemistry: Perturbations, interactions, and time scales

    SciTech Connect (OSTI)

    Braswell, B.H. Jr.

    1996-12-01T23:59:59.000Z

    Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.

  19. Telescopic Time-Scale Bridging for Modeling Dispersion in Rapidly Oscillating Flows

    E-Print Network [OSTI]

    Zakhor, Avideh

    Telescopic Time-Scale Bridging for Modeling Dispersion in Rapidly Oscillating Flows Ram K between the oscillation and dispersion time scales. Here, we present a methodology based on an implicit introduced errors. The error was found to decrease with mesh refinement, but a small inherent error

  20. Model reduction of systems exhibiting two-time scale behavior or parametric uncertainty

    E-Print Network [OSTI]

    Sun, Chuili

    2007-04-25T23:59:59.000Z

    exhibiting two-time scale behavior as well as parametric uncertainty has received little attention to date. This work addresses these types of problems in detail. Systems with two-time scale behavior can be described by differential-algebraic equations (DAEs...

  1. Time and length scales within a fire and implications for numerical simulation

    SciTech Connect (OSTI)

    TIESZEN,SHELDON R.

    2000-02-02T23:59:59.000Z

    A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principles solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.

  2. Long Time Stability of the Energy Scale Calibration of a Quantum 2000

    E-Print Network [OSTI]

    Scheithauer, Uwe

    2015-01-01T23:59:59.000Z

    According to the international standard ISO 15472 the energy scale of an XPS instrument, type Physical Electronics Quantum 2000, was calibrated. It is shown, how the procedures of the ISO 15472 were adapted to the hardware and software design of the Quantum 2000. The long time stability of the energy scale calibration of the XPS instrument was investigated. The instrumented was operated with a satisfying energy scale calibration over a period of 8 years. All the time energy differences between certain peaks could be measured with the chosen precision of the energy scale calibration.

  3. Bi-Plasma Interactions on Femtosecond Time-Scales

    SciTech Connect (OSTI)

    Not Available

    2011-06-22T23:59:59.000Z

    Ultrafast THz radiation has important applications in materials science studies, such as characterizing transport properties, studying the vibrational response of materials, and in recent years, controlling materials and elucidating their response in intense electromagnetic fields. THz fields can be generated in a lab setting using various plasma-based techniques. This study seeks to examine the interaction of two plasmas in order to better understand the fundamental physics associated with femtosecond filamentation processes and to achieve more efficient THz generation in a lab setting. The intensity of fluorescence in the region of overlap was measured as a function of polarization, power, and relative time delay of the two plasma-generating laser beams. Results of time dependent intensity studies indicate strikingly similar behaviors across polarizations and power levels; a sudden intensity spike was observed at time-zero, followed by a secondary maxima and subsequent decay to the initial plasma intensity. Dependence of the intensity on the power through either beam arm was also observed. Spectral studies of the enhanced emission were also carried out. Although this physical phenomenon is still not fully understood, future studies, including further spectral analysis of the fluorescence overlap, could yield new insight into the ultrafast processes occurring at the intersection of femtosecond filaments, and would provide a better understanding of the mechanisms for enhanced THz production.

  4. Semiclassical quantization of maps with a variable time scale

    E-Print Network [OSTI]

    A. Iomin; S. Fishman; G. M. Zaslavsky

    2002-12-02T23:59:59.000Z

    Quantization of energy balance equations, which describe a separatrix -- like motion is presented. The method is based on an exact canonical transformation of the energy--time pair to the action-angle canonical pair, $ (E,t)\\to (I,\\theta) $. Quantum mechanical dynamics can be studied in the framework of the new Hamiltonian. This transformation also establishes a relation between a wide class of the energy balance equations and dynamical localization of classical diffusion by quantum interference, that was studied in the field of quantum chaos. An exact solution for a simple system is presented as well.

  5. A multiscale mass scaling approach for explicit time integration using proper orthogonal decomposition

    SciTech Connect (OSTI)

    G. J. de Frias; W. Aquino; K. H. Pierson; M. W. Heinstein; B. W. Spencer

    2014-03-01T23:59:59.000Z

    One of the main computational issues with explicit dynamics simulations is the significant reduction of the critical time step as the spatial resolution of the finite element mesh increases. In this work, a selective mass scaling approach is presented that can significantly reduce the computational cost in explicit dynamic simulations, while maintaining accuracy. The proposed method is based on a multiscale decomposition approach that separates the dynamics of the system into low (coarse scales) and high frequencies (fine scales). Here, the critical time step is increased by selectively applying mass scaling on the fine scale component only. In problems where the response is dominated by the coarse (low frequency) scales, significant increases in the stable time step can be realized. In this work, we use the proper orthogonal decomposition (POD) method to build the coarse scale space. The main idea behind POD is to obtain an optimal low-dimensional orthogonal basis for representing an ensemble of high-dimensional data. In our proposed method, the POD space is generated with snapshots of the solution obtained from early times of the full-scale simulation. The example problems addressed in this work show significant improvements in computational time, without heavily compromising the accuracy of the results.

  6. Using Focused Regression for Accurate Time-Constrained Scaling of Scientific Applications

    SciTech Connect (OSTI)

    Barnes, B; Garren, J; Lowenthal, D; Reeves, J; de Supinski, B; Schulz, M; Rountree, B

    2010-01-28T23:59:59.000Z

    Many large-scale clusters now have hundreds of thousands of processors, and processor counts will be over one million within a few years. Computational scientists must scale their applications to exploit these new clusters. Time-constrained scaling, which is often used, tries to hold total execution time constant while increasing the problem size along with the processor count. However, complex interactions between parameters, the processor count, and execution time complicate determining the input parameters that achieve this goal. In this paper we develop a novel gray-box, focused median prediction errors are less than 13%. regression-based approach that assists the computational scientist with maintaining constant run time on increasing processor counts. Combining application-level information from a small set of training runs, our approach allows prediction of the input parameters that result in similar per-processor execution time at larger scales. Our experimental validation across seven applications showed that median prediction errors are less than 13%.

  7. Real-time, Photo-realistic, Physically Based Rendering of Fine Scale Human Skin Structure

    E-Print Network [OSTI]

    Haro, Antonio

    structure samples, build models of fine scale structure production, and then render this detail usingReal-time, Photo-realistic, Physically Based Rendering of Fine Scale Human Skin Structure Antonio, which is clearly visible in close-up shots in a film or game. Methods that rely on simple texture

  8. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Bent, Russell W. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory

    2012-07-10T23:59:59.000Z

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  9. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2

    E-Print Network [OSTI]

    Moorcroft, Paul R.

    Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography] Insights into how terrestrial ecosystems affect the Earth's response to changes in climate and rising contain detailed mechanistic representations of biological processes affecting terrestrial ecosystems

  10. Development of Real-time Closed-loop Control Algorithms for Grid-scale Battery

    E-Print Network [OSTI]

    i Development of Real-time Closed-loop Control Algorithms for Grid-scale Battery Energy Storage Systems Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy ................................................................................................. 23 6.2. Data Storage

  11. Global warming from chlorofluorocarbons and their alternatives: Time scales of chemistry and climate

    E-Print Network [OSTI]

    Ko, Malcolm K.W.; Sze, Nien Dak; Molnar, Gyula; Prather, Michael J

    1993-01-01T23:59:59.000Z

    and their replacements on global warming. Nature Hansen J. ,gas emissions to global warming. Nature London Amendment toNature 315, 649-652, Global warming time scales WMO (World

  12. Caustic Crossing Microlensing Event by Binary MACHOs and Time Scale Bias

    E-Print Network [OSTI]

    Mareki Honma

    1998-11-25T23:59:59.000Z

    Caustic crossing microlensing events provide us a unique opportunity to measure the relative proper motion of the lens to the source, and so those caused by binary MACHOs are of great importance for understanding the structure of the Galactic halo and the nature of MACHOs. The microlensing event 98-SMC-01, occurred in June 1998, is the first event for which the proper motion is ever measured through the caustic crossing, and this event may be caused by binary MACHOs as we argue in this Letter. Motivated by the possible existence of binary MACHOs, we have performed the Monte Carlo simulations of caustic crossing events by binary MACHOs and investigated the properties and detectability of the events. Our calculation shows that typical caustic crossing events have the interval between two caustic crossings ($t_{\\rm cc}$) of about 5 days. We argue that with the current strategy of binary event search the proper motions of these typical events are not measurable because of the short time scale. Therefore the proper motion distribution measured from caustic crossing events suffers significantly from {`}time scale bias{'}, which is a bias toward finding long time scale events and hence slowly moving lenses. We predict there are two times more short time scale events ($t_{\\rm cc}\\le 10$ days) than long time scale events ($t_{\\rm cc}\\ge 10$ days), and propose an hourly monitoring observation instead of the nightly monitoring currently undertaken to detect caustic crossing events by binary MACHOs more efficiently.

  13. FAST SOLA-BASED TIME SCALE MODIFICATION USING MODIFIED ENVELOPE MATCHING

    E-Print Network [OSTI]

    Wong, Peter Hon-Wah

    FAST SOLA-BASED TIME SCALE MODIFICATION USING MODIFIED ENVELOPE MATCHING Peter H. W. Wong*, Oscar C Overlap-and- Add (SOLA) is a time-domain TSM algorithm known to achieve good speech and audio quality. One problem of SOLA is that it requires a large amount of computation. In this paper, we propose a technique

  14. Time series modeling and large scale global solar radiation forecasting from geostationary satellites data

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Time series modeling and large scale global solar radiation forecasting from geostationary global solar radiation. In this paper, we use geostationary satellites data to generate 2-D time series of solar radiation for the next hour. The results presented in this paper relate to a particular territory

  15. Dynamic Voltage Scaling for the Schedulability of Jitter-Constrained Real-Time Embedded Systems*

    E-Print Network [OSTI]

    Hu, Xiaobo Sharon

    Dynamic Voltage Scaling for the Schedulability of Jitter-Constrained Real-Time Embedded Systems}@ida.ing.tu-bs.de Abstract-- Jitter is a critical problem for the design of both distributed embedded systems and real-time control systems. This work considers meeting the completion jitter constraints of a set of independent

  16. Acoustic Emission Monitoring of the Syracuse Athena Temple: Scale Invariance in the Timing of Ruptures

    SciTech Connect (OSTI)

    Niccolini, G.; Carpinteri, A.; Lacidogna, G.; Manuello, A. [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy)] [Department of Structural Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2011-03-11T23:59:59.000Z

    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activity.

  17. Capacitor placement and real time control in large-scale unbalanced distribution systems: Numerical studies

    SciTech Connect (OSTI)

    Wang, J.C.; Chiang, H.D.; Miu, K.N. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering; Darling, G. [NYSEG Corp., Binghamton, NY (United States). Distribution System Dept.

    1997-04-01T23:59:59.000Z

    A novel solution algorithm for capacitor placement and real-time control in real large-scale unbalanced distribution systems is evaluated and implemented to determine the number, locations, sizes, types and control schemes of capacitors to be placed on large-scale unbalanced distribution systems. A detailed numerical study regarding the solution algorithm in large scale unbalanced distribution systems is undertaken. Promising numerical results on both 292 bus and 394 bus real unbalanced distribution systems containing unbalanced loads and phasing and various types of transformers are presented. The computational performance for the capacitor control problem under load variations is encouraging.

  18. Wavelet-based spatial and temporal multiscaling: Bridging the atomistic and continuum space and time scales

    E-Print Network [OSTI]

    Deymier, Pierre

    and time scales G. Frantziskonis1, * and P. Deymier2 1 Department of Civil Engineering and Engineering and Engineering, University of Arizona, Tucson, Arizona 85721, USA Received 21 January 2003; revised manuscript be characterized as either serial or concurrent. In serial methods a set of calculations at a fundamental level

  19. Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing

    SciTech Connect (OSTI)

    Pang, Xiufeng; Hong, Tianzhen; Piette, Mary Ann

    2013-06-03T23:59:59.000Z

    This paper describes work in progress toward an urban-scale system aiming to reduce energy use in neighboring buildings by providing three components: a database for accessing past and present weather data from high quality weather stations; a network for communicating energy-saving strategies between building owners; and a set of modeling tools for real-time building energy simulation.

  20. The role of ocean gateways on cooling climate on long time scales Willem P. Sijp a,

    E-Print Network [OSTI]

    Sijp, Willem

    The role of ocean gateways on cooling climate on long time scales Willem P. Sijp a, , Anna S. von Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW 2052, Australia b Institute for Marine and Atmospheric Research (IMAU), Department of Physics and Astronomy

  1. Earth'sFuture Multidecadal global cooling and unprecedented ozone loss

    E-Print Network [OSTI]

    Robock, Alan

    Earth'sFuture Multidecadal global cooling and unprecedented ozone loss following a regional nuclear inertia and albedo effects in the ocean and expanded sea ice. The combined cooling and enhanced UV would put significant pressures on global food supplies and could trigger a global nuclear famine. Knowledge

  2. Fission time-scale in experiments and in multiple initiation model

    SciTech Connect (OSTI)

    Karamian, S. A., E-mail: karamian@nrmail.jinr.ru [Joint Institute for Nuclear Research (Russian Federation)

    2011-12-15T23:59:59.000Z

    Rate of fission for highly-excited nuclei is affected by the viscose character of the systemmotion in deformation coordinates as was reported for very heavy nuclei with Z{sub C} > 90. The long time-scale of fission can be described in a model of 'fission by diffusion' that includes an assumption of the overdamped diabatic motion. The fission-to-spallation ratio at intermediate proton energy could be influenced by the viscosity, as well. Within a novel approach of the present work, the cross examination of the fission probability, time-scales, and pre-fission neutron multiplicities is resulted in the consistent interpretation of a whole set of the observables. Earlier, different aspects could be reproduced in partial simulations without careful coordination.

  3. Scaling Laws and Transient Times in 3He Induced Nuclear Fission

    E-Print Network [OSTI]

    Th. Rubehn; K. X. Jing; L. G. Moretto; L. Phair; K. Tso; G. J. Wozniak

    1996-07-09T23:59:59.000Z

    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. The fact that no deviations from the transition state method have been observed within the experimentally investigated excitation energy regime allows one to assign an upper limit for the transient time of 10 zs.

  4. Multiple Time-Scale Behaviour and Network Dynamics in Liquid Methanol

    E-Print Network [OSTI]

    Ruchi Sharma; Charusita Chakravarty

    2008-11-11T23:59:59.000Z

    Canonical ensemble molecular dynamics simulations of liquid methanol, modeled using a rigid-body, pair-additive potential, are used to compute static distributions and temporal correlations of tagged molecule potential energies as a means of characterising the liquid state dynamics. The static distribution of tagged molecule potential energies shows a clear multimodal structure with three distinct peaks, similar to those observed previously in water and liquid silica. The multimodality is shown to originate from electrostatic effects, but not from local, hydrogen-bond interactions. An interesting outcome of this study is the remarkable similarity in the tagged potential energy power spectra of methanol, water and silica, despite the differences in the underlying interactions and the dimensionality of the network. All three liquids show a distinct multiple time scale (MTS) regime with a 1/f dependence with a clear positive correlation between the scaling exponent alpha and the diffusivity. The low-frequency limit of the MTS regime is determined by the frequency of crossover to white noise behaviour which occurs at approximately 0.1 cm{-1} in the case of methanol under standard temperature and pressure conditions. The power spectral regime above 200 cm{-1} in all three systems is dominated by resonances due to localised vibrations, such as librations. The correlation between $\\alpha$ and the diffusivity in all three liquids appears to be related to the strength of the coupling between the localised motions and the larger length/time-scale network reorganizations. Thus the time scales associated with network reorganization dynamics appear to be qualitatively similar in these systems, despite the fact that water and silica both display diffusional anomalies but methanol does not.

  5. Are ecosystem carbon inputs and outputs coupled at short time scales? A case study from adjacent pine and

    E-Print Network [OSTI]

    Are ecosystem carbon inputs and outputs coupled at short time scales? A case study from adjacent and responses of Rsoil have been found on time scales of hours to weeks for different ecosystems, but most ecosystems over six and four measurement years, respectively, using both autocorrelation analysis

  6. Microsecond time-scale dynamics from relaxation in the rotating frame: experiments using spin lock with alternating phase

    E-Print Network [OSTI]

    Skrynnikov, Nikolai

    be made that 180° pulses refocus the chemical shift evolution and thus prevent the build-up of randomlyMicrosecond time-scale dynamics from relaxation in the rotating frame: experiments using spin lockÞðÀxÞðxÞðÀxÞ . . ., is proposed as a new technique to probe microsecond time-scale dynamics. A series of R1q measurements using

  7. Role of entropy in the thermodynamic evolution of the time scale of molecular dynamics near the glass transition

    E-Print Network [OSTI]

    K. Grzybowska; A. Grzybowski; S. Pawlus; J. Pionteck; M. Paluch

    2014-10-23T23:59:59.000Z

    In this Letter, we investigate how changes in the system entropy influence the characteristic time scale of the system molecular dynamics near the glass transition. Independently of any model of thermodynamic evolution of the time scale, against some previous suppositions, we show that the system entropy $S$ is not sufficient to govern the time scale defined by structural relaxation time $\\tau $. In the density scaling regime, we argue that the decoupling between $\\tau $ and $S$ is a consequence of different values of the scaling exponents $\\gamma $ and $\\gamma_S $ in the density scaling laws, $\\tau = f(\\rho ^\\gamma /T)$ and $S = h(\\rho ^{\\gamma_S}/T)$, where $\\rho $ and $T$ denote density and temperature, respectively. It implies that the proper relation between $\\tau $ and $S$ requires supplementing with a density factor, $u(\\rho)$, i.e.,$\\tau = g(u(\\rho)w(S))$. This meaningful finding additionally demonstrates that the density scaling idea can be successfully used to separate physically relevant contributions to the time scale of molecular dynamics near the glass transition. As an example, we revise the Avramov entropic model of the dependence $\\tau (T,\\rho)$, giving evidence that its entropic basis has to be extended by the density dependence of the maximal energy barrier for structural relaxation. We also discuss the excess entropy $S_{ex}$, the density scaling of which is found to mimic the density scaling of the total system entropy $S$.

  8. Cascade time-scales for energy and helicity in homogeneous isotropic turbulence

    E-Print Network [OSTI]

    Susan Kurien; Mark A. Taylor; Takeshi Matsumoto

    2004-04-13T23:59:59.000Z

    We extend the Kolmogorov phenomenology for the scaling of energy spectra in high-Reynolds number turbulence, to explicitly include the effect of helicity. There exists a time-scale $\\tau_H$ for helicity transfer in homogeneous, isotropic turbulence with helicity. We arrive at this timescale using the phenomenological arguments used by Kraichnan to derive the timescale $\\tau_E$ for energy transfer (J. Fluid Mech. {\\bf 47}, 525--535 (1971)). We show that in general $\\tau_H$ may not be neglected compared to $\\tau_E$, even for rather low relative helicity. We then deduce an inertial range joint cascade of energy and helicity in which the dynamics are dominated by $\\tau_E$ in the low wavenumbers with both energy and helicity spectra scaling as $k^{-5/3}$; and by $\\tau_H$ at larger wavenumbers with spectra scaling as $k^{-4/3}$. We demonstrate how, within this phenomenology, the commonly observed ``bottleneck'' in the energy spectrum might be explained. We derive a wavenumber $k_h$ which is less than the Kolmogorov dissipation wavenumber, at which both energy and helicity cascades terminate due to dissipation effects. Data from direct numerical simulations are used to check our predictions.

  9. Scaling laws, transient times and shell effects in helium induced nuclear fission

    E-Print Network [OSTI]

    Th. Rubehn; K. X. Jing; L. G. Moretto; L. Phair; K. Tso; G. J. Wozniak

    1996-07-22T23:59:59.000Z

    Fission excitation functions of He-3 and He-4 induced compound nuclei are shown to scale exactly according to the Bohr-Wheeler transition state prediction once the shell effects are accounted for. The presented method furthermore allows one to model-independently extract values for the shell effects which are in good agreement to those obtained from liquid-drop model calculations. The fact that no deviations from the transition state method have been observed within the experimentally investigated excitation energy regime allows one to assign an upper limit for the transient time of 10 zs.

  10. Model-independent plotting of the cosmological scale factor as a function of lookback time

    SciTech Connect (OSTI)

    Ringermacher, H. I.; Mead, L. R., E-mail: ringerha@gmail.com, E-mail: Lawrence.mead@usm.edu [Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, MS 39406 (United States)

    2014-11-01T23:59:59.000Z

    In this work we describe a model-independent method of developing a plot of scale factor a(t) versus lookback time t{sub L} from the usual Hubble diagram of modulus data against redshift. This is the first plot of this type. We follow the model-independent methodology of Daly and Djorgovski used for their radio-galaxy data. Once the a(t)data plot is completed, any model can be applied and will display as described in the standard literature. We then compile an extensive data set to z = 1.8 by combining Type Ia supernovae (SNe Ia) data from SNLS3 of Conley et al., high-z SNe data of Riess et al., and radio-galaxy data of Daly and Djorgovski to validate the new plot. We first display these data on a standard Hubble diagram to confirm the best fit for ?CDM cosmology, and thus validate the joined data set. The scale factor plot is then developed from the data and the ?CDM model is again displayed from a least-squares fit. The fit parameters are in agreement with the Hubble diagram fit confirming the validity of the new plot. Of special interest is the transition time of the universe, which in the scale factor plot will appear as an inflection point in the data set. Noise is more visible in this presentation, which is particularly sensitive to inflection points of any model displayed in the plot, unlike on a modulus-z diagram, where there are no inflection points and the transition-z is not at all obvious by inspection. We obtain a lower limit of z ? 0.6. It is evident from this presentation that there is a dearth of SNe data in the range z = 1-2, exactly the range necessary to confirm a ?CDM transition-z around z = 0.76. We then compare a 'toy model' wherein dark matter is represented as a perfect fluid with an equation of state p = –(1/3) ? to demonstrate the plot sensitivity to model choice. Its density varies as 1/t {sup 2} and it enters the Friedmann equations as ?{sub dark}/t {sup 2}, replacing only the ?{sub dark}/a {sup 3} term. The toy model is a close match to ?CDM, but separates from it on the scale factor plot for similar ?CDM density parameters. It is described in the Appendix. A more complete transition time analysis will be presented in a future paper.

  11. Investigation of astrophysical phenomena in short time scales with "Pi of the Sky" apparatus

    E-Print Network [OSTI]

    Marcin Sokolowski

    2008-10-07T23:59:59.000Z

    In this thesis the data analysis designed by author for the "Pi of the Sky" experiment is presented. The data analysis consists of data reduction and specific algorithms for identification of short time scale astrophysical processes. The algorithms have been tested and their efficiency has been determined and described. The "Pi of the Sky" prototype is collecting data since June 2004 and algorithms could be intensively studied and improved during over 700 nights. A few events of confirmed astrophysical origin and above 100 events in 10s time scale of unknown nature have been discovered. During the data collection period 3 Gamma Ray Bursts (out of 231) occurred in the field of view of the telescope, but no optical counterpart has been found. The upper limits for brightness of the optical counterpart have been determined. The continuous monitoring of the sky and own trigger for optical flashes allowed to determine limits on the number of GRBs without corresponding gamma-ray detection. This allowed determining limits on the ratio of emission collimation in optical and gamma bands, which is R >= 4.4. The perspectives of the full "Pi of the Sky" system has been studied and number of positive detections has been estimated on the level of ~ 2.5 events per year.

  12. Time series modeling and large scale global solar radiation forecasting from geostationary satellites data

    E-Print Network [OSTI]

    Voyant, Cyril; Muselli, Marc; Paoli, Christophe; Nivet, Marie Laure

    2014-01-01T23:59:59.000Z

    When a territory is poorly instrumented, geostationary satellites data can be useful to predict global solar radiation. In this paper, we use geostationary satellites data to generate 2-D time series of solar radiation for the next hour. The results presented in this paper relate to a particular territory, the Corsica Island, but as data used are available for the entire surface of the globe, our method can be easily exploited to another place. Indeed 2-D hourly time series are extracted from the HelioClim-3 surface solar irradiation database treated by the Heliosat-2 model. Each point of the map have been used as training data and inputs of artificial neural networks (ANN) and as inputs for two persistence models (scaled or not). Comparisons between these models and clear sky estimations were proceeded to evaluate the performances. We found a normalized root mean square error (nRMSE) close to 16.5% for the two best predictors (scaled persistence and ANN) equivalent to 35-45% related to ground measurements. F...

  13. Earth Planets Space, 57, 895902, 2005 Short time-scale heating of the Earth's mantle by ice-sheet dynamics

    E-Print Network [OSTI]

    Hanyk, Ladislav

    by modeling the linear response of a self-gravitating viscoelastic planet, the gravity field anoma- lies haveEarth Planets Space, 57, 895­902, 2005 Short time-scale heating of the Earth's mantle by ice-scale energy transfer from the ice sheet loading and unloading processes to the Earth's interior via viscous

  14. Analysis of Wind Power and Load Data at Multiple Time Scales

    SciTech Connect (OSTI)

    Coughlin, Katie; Eto, J.H.

    2010-12-20T23:59:59.000Z

    In this study we develop and apply new methods of data analysis for high resolution wind power and system load time series, to improve our understanding of how to characterize highly variable wind power output and the correlations between wind power and load. These methods are applied to wind and load data from the ERCOT region, and wind power output from the PJM and NYISO areas. We use a wavelet transform to apply mathematically well-defined operations of smoothing and differencing to the time series data. This approach produces a set of time series of the changes in wind power and load (or ?deltas?), over a range of times scales from a few seconds to approximately one hour. A number of statistical measures of these time series are calculated. We present sample distributions, and devise a method for fitting the empirical distribution shape in the tails. We also evaluate the degree of serial correlation, and linear correlation between wind and load. Our examination of the data shows clearly that the deltas do not follow a Gaussian shape; the distribution is exponential near the center and appears to follow a power law for larger fluctuations. Gaussian distributions are frequently used in modeling studies. These are likely to over-estimate the probability of small to moderate deviations. This in turn may lead to an over-estimation of the additional reserve requirement (hence the cost) for high penetration of wind. The Gaussian assumption provides no meaningful information about the real likelihood of large fluctuations. The possibility of a power law distribution is interesting because it suggests that the distribution shape for of wind power fluctuations may become independent of system size for large enough systems.

  15. Extending the length and time scales of Gram–Schmidt Lyapunov vector computations

    SciTech Connect (OSTI)

    Costa, Anthony B., E-mail: acosta@northwestern.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Green, Jason R., E-mail: jason.green@umb.edu [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125 (United States)

    2013-08-01T23:59:59.000Z

    Lyapunov vectors have found growing interest recently due to their ability to characterize systems out of thermodynamic equilibrium. The computation of orthogonal Gram–Schmidt vectors requires multiplication and QR decomposition of large matrices, which grow as N{sup 2} (with the particle count). This expense has limited such calculations to relatively small systems and short time scales. Here, we detail two implementations of an algorithm for computing Gram–Schmidt vectors. The first is a distributed-memory message-passing method using Scalapack. The second uses the newly-released MAGMA library for GPUs. We compare the performance of both codes for Lennard–Jones fluids from N=100 to 1300 between Intel Nahalem/Infiniband DDR and NVIDIA C2050 architectures. To our best knowledge, these are the largest systems for which the Gram–Schmidt Lyapunov vectors have been computed, and the first time their calculation has been GPU-accelerated. We conclude that Lyapunov vector calculations can be significantly extended in length and time by leveraging the power of GPU-accelerated linear algebra.

  16. Fast SOLA-based Time Scale Modification using Envelope Matching Peter H. W. Wong, Oscar C. Au

    E-Print Network [OSTI]

    Wong, Peter Hon-Wah

    2 Fast SOLA-based Time Scale Modification using Envelope Matching Peter H. W. Wong, Oscar C. Au such as MPEG-4 and fast/slow browsing of pre-recorded materials. Synchronized Overlap-and-Add (SOLA) is a time-domain TSM algorithm known to achieve good speech and audio quality. One problem of SOLA is that it requires

  17. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales

    E-Print Network [OSTI]

    Hilley, George

    A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time (received for review February 15, 2008) Global silicate weathering drives long-time-scale fluctuations in atmospheric CO2. While tectonics, climate, and rock-type influence silicate weathering, it is unclear how

  18. A two-time-scale, two-temperature scenario for nonlinear rheology Ludovic Berthier,1,2

    E-Print Network [OSTI]

    Berthier, Ludovic

    functions below the glass transition temperature (Tc) display a two-time-scale relaxation pattern, similar on approaching the glass transition. Below the glass transition the same behavior subsists, but now the time or foams 4 . In all these cases, it is known that a driving force has a particularly strong influence

  19. Spatial, temporal, and hybrid decompositions for large-scale vehicle routing with time windows

    SciTech Connect (OSTI)

    Bent, Russell W [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    This paper studies the use of decomposition techniques to quickly find high-quality solutions to large-scale vehicle routing problems with time windows. It considers an adaptive decomposition scheme which iteratively decouples a routing problem based on the current solution. Earlier work considered vehicle-based decompositions that partitions the vehicles across the subproblems. The subproblems can then be optimized independently and merged easily. This paper argues that vehicle-based decompositions, although very effective on various problem classes also have limitations. In particular, they do not accommodate temporal decompositions and may produce spatial decompositions that are not focused enough. This paper then proposes customer-based decompositions which generalize vehicle-based decouplings and allows for focused spatial and temporal decompositions. Experimental results on class R2 of the extended Solomon benchmarks demonstrates the benefits of the customer-based adaptive decomposition scheme and its spatial, temporal, and hybrid instantiations. In particular, they show that customer-based decompositions bring significant benefits over large neighborhood search in contrast to vehicle-based decompositions.

  20. Adaptive control of the singularly perturbed chaotic systems based on the scale time estimation by keeping chaotic property

    E-Print Network [OSTI]

    Mozhgan Mombeini; Ali Khaki Sedigh; Mohammad Ali Nekoui

    2012-05-17T23:59:59.000Z

    In this paper, a new approach to the problem of stabilizing a chaotic system is presented. In this regard, stabilization is done by sustaining chaotic properties of the system. Sustaining the chaotic properties has been mentioned to be of importance in some areas such as biological systems. The problem of stabilizing a chaotic singularly perturbed system will be addressed and a solution will be proposed based on the OGY (Ott, Grebogi and Yorke) methodology. For the OGY control, Poincare section of the system is defined on its slow manifold. The multi-time scale property of the singularly perturbed system is exploited to control the Poincare map with the slow scale time. Slow scale time is adaptively estimated using a parameter estimation technique. Control with slow time scale circumvents the need to observe the states. With this strategy, the system remains chaotic and chaos identification is possible with online calculation of lyapunov exponents. Using this strategy on ecological system improves their control in three aspects. First that for ecological systems sustaining the dynamical property is important to survival of them. Second it removes the necessity of insertion of control action in each sample time. And third it introduces the sufficient time for census.

  1. Diagenesis in seagrass vegetated sediments: biogeochemical processes on diurnal time scales

    E-Print Network [OSTI]

    Hebert, Andrew Brian

    2005-11-01T23:59:59.000Z

    intervals (?x) of ?H2S and Fe2+. Characteristic scale lengths obtained for sediments from seagrass environments are not significantly different from those observed for unvegetated sediments and averaged 13.7?? 2.2 mm. Lateral variations in our scales...

  2. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    SciTech Connect (OSTI)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States)] [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 (United States)

    2014-01-21T23:59:59.000Z

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.

  3. 42 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 1, JANUARY 2004 Timing Driven Gate Duplication

    E-Print Network [OSTI]

    Kastner, Ryan

    42 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 1, JANUARY 2004 of transforming a set of boolean equations into a circuit comprising of gates that implement the logic while, and power) but the present work deals with delay optimization. Many timing optimization strategies have been

  4. Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications

    E-Print Network [OSTI]

    Sparks, Donald L.

    Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized of quick extended x-ray absorption fine structure QEXAFS and quick x-ray absorption near edge structure- tion spectroscopy XAS was developed in energy dispersive and quick extended x-ray absorption fine

  5. Time scale of entropic segregation of flexible polymers in confinement: Implications for chromosome segregation in filamentous bacteria

    E-Print Network [OSTI]

    Axel Arnold; Suckjoon Jun

    2007-09-07T23:59:59.000Z

    We report molecular dynamics simulations of the segregation of two overlapping chains in cylindrical confinement. We find that the entropic repulsion between the chains can be sufficiently strong to cause segregation on a time scale that is short compared to the one for diffusion. This result implies that entropic driving forces are sufficiently strong to cause rapid bacterial chromosome segregation.

  6. Title: Time to scale-up. Standfirst: The construction of modular and scalable synthetic gene networks is now a goal within

    E-Print Network [OSTI]

    Babu, M. Madan

    Title: Time to scale-up. Standfirst: The construction of modular and scalable synthetic gene demonstrated. Next, they scaled up the system by constructing a circuit with three inputs to execute a pre

  7. The 2010 Deepwater Horizon (DH) oil spill in the Gulf of Mexico was unprecedented in both its magnitude --nearly 5

    E-Print Network [OSTI]

    Entekhabi, Dara

    PROBLEM The 2010 Deepwater Horizon (DH) oil spill in the Gulf of Mexico was unprecedented in both of Mexico during the Deepwater Horizon oil spill. This satellite image shows the oil slick off its magnitude -- nearly 5 million barrels of oil spilled over nearly three months -- and its location

  8. Improving Building Performance at Urban Scale with a Framework for Real-time Data Sharing

    E-Print Network [OSTI]

    Pang, Xiufeng

    2014-01-01T23:59:59.000Z

    Real-time Data Sharing Xiufeng Pang, Tianzhen Hong, Mary AnnReal-time Data Sharing Xiufeng Pang, Tianzhen Hong*, Mary

  9. Broad-Scale Analysis Contradicts the Theory That Generation Time Affects Molecular Evolutionary Rates in Plants

    E-Print Network [OSTI]

    Johnston, Mark

    Abstract. Several studies of plant taxa have con- cluded that generation time, including annual/ perennial in animals, there is little theoretical basis for why generation-time effects would exist in plants. Furthermore, previous reports fail to establish the generality of a generation-time effect in plants be- cause

  10. Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach

    E-Print Network [OSTI]

    Bolster, Diogo

    . Le Borgne,1 D. Bolster,2 M. Dentz,3 P. de Anna,1 and A. Tartakovsky4 Received 23 January 2011, T., D. Bolster, M. Dentz, P. de Anna, and A. Tartakovsky (2011), Effective pore-scale dispersion and Brenner, 1993], volume averaging [Bear, 1972; Plumb and Whitaker, 1988; Valdes-Parada et al., 2009; Wood

  11. Symmetrized complex amplitudes for He double photoionization from the time-dependent close coupling and exterior complex scaling methods

    SciTech Connect (OSTI)

    Horner, D.A.; Colgan, J.; Martin, F.; McCurdy, C.W.; Pindzola, M.S.; Rescigno, T.N.

    2004-06-01T23:59:59.000Z

    Symmetrized complex amplitudes for the double photoionization of helium are computed by the time-dependent close-coupling and exterior complex scaling methods, and it is demonstrated that both methods are capable of the direct calculation of these amplitudes. The results are found to be in excellent agreement with each other and in very good agreement with results of other ab initio methods and experiment.

  12. Quantum Field Theory of Gravity with Spinnic $\\&$ Scaling Gauge Invariance and Space-time Dynamics with Quantum Inflation

    E-Print Network [OSTI]

    Wu, Yue-Liang

    2015-01-01T23:59:59.000Z

    Treating the gravitational force on the same footing as the electroweak and strong forces, we present a quantum field theory (QFT) of gravity based on spinnic and scaling gauge symmetries. The so-called Gravifield sided on both locally flat non-coordinate space-time and globally flat Minkowski space-time is an essential ingredient for gauging global spinnic and scaling symmetries. The locally flat Gravifield space-time spanned by the Gravifield is associated with a non-commutative geometry characterized by a gauge-type field strength of Gravifield. A gauge invariant and coordinate independent action for the quantum gravity is built in the Gravifield basis, we derive equations of motion for all quantum fields with including the gravitational effect and obtain basic conservation laws for all symmetries. The equation of motion for Gravifield tensor is deduced in connection directly with the energy-momentum tensor. When the spinnic and scaling gauge symmetries are broken down to a background structure that posses...

  13. Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths

    E-Print Network [OSTI]

    Antia Lamas-Linares; Brice Calkins; Nathan A. Tomlin; Thomas Gerrits; Adriana E. Lita; Joern Beyer; Richard P. Mirin; Sae Woo Nam

    2012-09-25T23:59:59.000Z

    Transition edge sensors (TES) have the highest reported efficiencies (>98%) for detection of single photons in the visible and near infrared. Experiments in quantum information and foundations of physics that rely critically on this efficiency have started incorporating these detectors into con- ventional quantum optics setups. However, their range of applicability has been hindered by slow operation both in recovery time and timing jitter. We show here how a conventional tungsten-TES can be operated with jitter times of < 4 ns, well within the timing resolution necessary for MHz clocking of experiments, and providing an important practical simplification for experiments that rely on the simultaneous closing of both efficiency and locality loopholes.

  14. Short time scale thermal mechanical shock wave propagation in high performance microelectronic packaging configuration

    E-Print Network [OSTI]

    Nagaraj, Mahavir

    2004-11-15T23:59:59.000Z

    joint fatigue during the prototyping stage. Vandevelde et al. [2] conducted a parameter based thermomechanical modeling of Chip Scale Package (CSP) assemblies. Using parameters related to solder joint geometry, CSP dimensions and a fatigue... GPa Poisson Ration (? ) 0.22 Density (? ) 2330 kg/m3 Specific heat (cv) 700 J/kg?C Thermal conductivity (k) 155 W/m?C Expansion coefficient (? ) 2.3 ?? /?C It can be seen that the mechanical wave speed is essentially constant for t2 less...

  15. Time-scales of passive tracers in the ocean with paleoapplications

    E-Print Network [OSTI]

    Siberlin, Charlotte

    2010-01-01T23:59:59.000Z

    Quantifying time-responses of the ocean to passive and active tracers is critical when interpreting paleodata from sediment cores. Surface-injected tracers are not spreading instantaneously or uniformly throughout the ...

  16. Constraints on the time-scale of nuclear breakup from thermal hard-photon emission

    E-Print Network [OSTI]

    R. Ortega; D. d'Enterria; G. Martinez; D. Baiborodin; H. Delagrange; J. Diaz; F. Fernandez; H. Loehner; T. Matulewicz; R. W. Ostendorf; S. Schadmand; Y. Schutz; P. Tlusty; R. Turrisi; V. Wagner; H. W. Wilschut; N. Yahlali

    2005-08-26T23:59:59.000Z

    Measured hard photon multiplicities from second-chance nucleon-nucleon collisions are used in combination with a kinetic thermal model, to estimate the break-up times of excited nuclear systems produced in nucleus-nucleus reactions at intermediate energies. The obtained nuclear break-up time for the $^{129}${Xe} + $^{nat}${Sn} reaction at 50{\\it A} MeV is $\\Delta$$\\tau$ $\\approx$ 100 -- 300 fm/$c$ for all reaction centralities. The lifetime of the radiating sources produced in seven other different heavy-ion reactions studied by the TAPS experiment are consistent with $\\Delta$$\\tau$ $\\approx$ 100 fm/$c$, such relatively long thermal photon emission times do not support the interpretation of nuclear breakup as due to a fast spinodal process for the heavy nuclear systems studied.

  17. Time scale of the thermal multifragmentation in p(3.6 GeV) + Au collisions

    E-Print Network [OSTI]

    S. P. Avdeyev; V. A. Karnaukhov; H. Oeschler; V. K. Rodionov; A. V. Simonenko; V. V. Kirakosyan; P. A. Rukoyatkin; A. Budzanowski; W. Karcz; I. Skwirczynska; B. Czech; E. A. Kuzmin; L. V. Chulkov; E. Norbeck; A. S. Botvina

    2006-03-14T23:59:59.000Z

    The relative angle correlation of intermediate mass fragments has been studied for p+Au collisions at 3.6 GeV. Strong suppression at small angles is observed caused by IMF-IMF Coulomb repulsion. Experimental correlation function is compared to that obtained by the multi-body Coulomb trajectory calculations with the various decay time of fragmenting system. The combined model including the empirically modified intranuclear cascade followed by statistical multifragmentation was used to generate starting conditions for these calculations. The model dependence of the results obtained has been carefully checked. The mean decay time of fragmenting system is found to be 85 +- 50 fm/c.

  18. Effective Prediction of Job Times in a Large-Scale Grid Environment Menno Dobber

    E-Print Network [OSTI]

    van der Mei, Rob

    of jobs on shared processors. To this end, we analyze several existing methods that are po- tentially processors, that share their available capacities, construct a tremendous source of processing power are that the wallclock times of the jobs are highly bursty, mainly because of the changing load, and that the set

  19. Observation of time dependent dispersion in laboratory scale experiments with intact tuff

    SciTech Connect (OSTI)

    Rundberg, R.S.; Triay, I.R.; Ott, M.A.; Mitchell, A.J.

    1989-12-01T23:59:59.000Z

    The migration of radionuclides through intact tuff was studied using tuff from Yucca Mountain, Nevada. The tuff samples were both highly zeolitized ash-fall tuff from the Calico Hills and densely welded devitrified tuff from the Topopah Springs member of the Paintbrush tuff. Tritiated water and pertechnetate were used as conservative tracers. The sorbing tracers {sup 85}Sr, {sup 137}Cs, and {sup 133}Ba were used with the devitrified tuff only. Greater tailing in the elution curves of the densely welded tuff samples was observed that could be fit by adjusting the dispersion coefficient in the conventional Advection Dispersion Equation, ADE. The curves could be fit using time dependent dispersion as was previously observed for sediments and alluvium by Dieulin, Matheron, and de Marsily. The peak of strontium concentration was expected to arrive after 1.5 years based on the conventional ADE and assuming a linear K{sub d} of 26 ml/g. The observed elution had significant strontium in the first sample taken at 2 weeks after injection. The peak in the strontium elution occurred at 5 weeks. The correct arrival time for the strontium peak was achieved using a one dimensional analytic solution with time dependent dispersion. The dispersion coefficient as a function of time used to fit the conservative tracers was found to predict the peak arrival of the sorbing tracers. The K{sub d} used was the K{sub d} determined by the batch method on crushed tuff. 23 refs., 9 figs., 2 tabs.

  20. Particle Falls is a large-scale public artwork that provides a real time visualization of

    E-Print Network [OSTI]

    Maccabe, Barney

    at the same time by using particulate air pollution as a basis for a cascading waterfall flowing down the side in California. Despite the invisibility of air, modern sensors can detect tiny particulate pollution levels of particulate pollution in the San Fernando Corridor in the form of a projection on the AT&T Building in San

  1. Accurate Run-Time Prediction of Performance Degradation under Frequency Scaling

    E-Print Network [OSTI]

    Heiser, Gernot

    its energy efficiency, other circuits may use more energy as a result of the longer execution time NICTA University of New South Wales Sydney, Australia Godfrey Van Der Linden NICTA University of New South Wales Sydney, Australia Stefan M. Petters NICTA University of New South Wales Sydney, Australia

  2. Real-Time Optical Characterization of Laser Oxidation Process in Bimetallic Direct Write Gray Scale Photomasks

    E-Print Network [OSTI]

    Chapman, Glenn H.

    density (OD), changes smoothly with increasing laser power, from ~3.0OD (unexposed) to developed capable of providing real time optical density and exposure power changes for the bimetallic thin) are exposed to laser light with power greater than its conversion threshold power, the thin film oxidizes

  3. Time Resolution Dependence of Information Measures for Spiking Neurons: Atoms, Scaling, and Universality

    E-Print Network [OSTI]

    Sarah E. Marzen; Michael R. DeWeese; James P. Crutchfield

    2015-04-18T23:59:59.000Z

    The mutual information between stimulus and spike-train response is commonly used to monitor neural coding efficiency, but neuronal computation broadly conceived requires more refined and targeted information measures of input-output joint processes. A first step towards that larger goal is to develop information measures for individual output processes, including information generation (entropy rate), stored information (statistical complexity), predictable information (excess entropy), and active information accumulation (bound information rate). We calculate these for spike trains generated by a variety of noise-driven integrate-and-fire neurons as a function of time resolution and for alternating renewal processes. We show that their time-resolution dependence reveals coarse-grained structural properties of interspike interval statistics; e.g., $\\tau$-entropy rates that diverge less quickly than the firing rate indicate interspike interval correlations. We also find evidence that the excess entropy and regularized statistical complexity of different types of integrate-and-fire neurons are universal in the continuous-time limit in the sense that they do not depend on mechanism details. This suggests a surprising simplicity in the spike trains generated by these model neurons. Interestingly, neurons with gamma-distributed ISIs and neurons whose spike trains are alternating renewal processes do not fall into the same universality class. These results lead to two conclusions. First, the dependence of information measures on time resolution reveals mechanistic details about spike train generation. Second, information measures can be used as model selection tools for analyzing spike train processes.

  4. Residence Time Distribution Measurement and Analysis of Pilot-Scale Pretreatment Reactors for Biofuels Production: Preprint

    SciTech Connect (OSTI)

    Sievers, D.; Kuhn, E.; Tucker, M.; Stickel, J.; Wolfrum, E.

    2013-06-01T23:59:59.000Z

    Measurement and analysis of residence time distribution (RTD) data is the focus of this study where data collection methods were developed specifically for the pretreatment reactor environment. Augmented physical sampling and automated online detection methods were developed and applied. Both the measurement techniques themselves and the produced RTD data are presented and discussed.

  5. Multiple time scale blinking in InAs quantum dot single-photon sources

    E-Print Network [OSTI]

    Marcelo Davanco; C. Stephen Hellberg; Serkan Ates; Antonio Badolato; Kartik Srinivasan

    2014-04-21T23:59:59.000Z

    We use photon correlation measurements to study blinking in single, epitaxially-grown self-assembled InAs quantum dots situated in circular Bragg grating and microdisk cavities. The normalized second-order correlation function g(2)(\\tau) is studied across eleven orders of magnitude in time, and shows signatures of blinking over timescales ranging from tens of nanoseconds to tens of milliseconds. The g(2)(\\tau) data is fit to a multi-level system rate equation model that includes multiple non-radiating (dark) states, from which radiative quantum yields significantly less than 1 are obtained. This behavior is observed even in situations for which a direct histogramming analysis of the emission time-trace data produces inconclusive results.

  6. An efficient algorithm for real-time network reconfiguration in large scale unbalanced distribution systems

    SciTech Connect (OSTI)

    Wang, J.C.; Chiang, H.D. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering; Darling, G.R. [NYSEG Corp., Binghamton, NY (United States). Distribution System Dept.

    1996-02-01T23:59:59.000Z

    Real-time applications demand fast computation, this paper proposes an efficient algorithm for real-time network reconfiguration on large unbalanced distribution networks. A novel formulation of the network reconfiguration to achieve loss minimization and load balancing is given. To reduce computational requirements for the solution algorithm, well justified power flow and loss reduction formulas in terms of the on/off status of network switches are proposed for efficient system updating. The algorithm relies only on a few full power flow studies based on system states attained by explicit expressions using backward-forward sweeps for efficient computation of system`s states at the critical system operating points. The solution algorithm runs in an amount of time linearly proportional to the number of tie switches and the number of sectionalizing switches in the system. The solution algorithm has been implemented into a software package and tested on unbalanced distribution systems including a system with 292-buses, 76-laterals, 7 transformers, 45 switches and 255 lines sections under diverse system conditions.

  7. An efficient algorithm for real-time network reconfiguration in large scale unbalanced distribution systems

    SciTech Connect (OSTI)

    Wang, J.C.; Chiang, H.D. [Cornell Univ., Ithaca, NY (United States). School of Electrical Engineering; Darling, G.R. [NYSEG Corp., Binghamton, NY (United States). Distribution System Dept.

    1995-12-31T23:59:59.000Z

    Real-time applications demand fast computation, this paper proposes an efficient algorithm for real-time network reconfiguration on large unbalanced distribution networks. A novel formulation of the network reconfiguration to achieve loss minimization and load balancing is given. To reduce computational requirements for the solution algorithm, well justified power flow and loss reduction formulas in terms of the on/off status of network switches are proposed for efficient system updating. The algorithm relies only a few full power flow studies based on system states attained by explicit expressions using backward-forward sweeps for efficient computation of system`s states at the critical system operating points. The solution algorithm runs in an amount of time linearly proportional to the number of tie switches and the number of sectionalizing switches in the system. The solution algorithm has been implemented into a software package and tested on unbalanced distribution systems including a system with 292-buses, 76-laterals, 7 transformers, 45 switches and 255 lines sections under diverse system conditions.

  8. Agent-based Large-Scale Emergency Evacuation Using Real-Time Open Government Data

    SciTech Connect (OSTI)

    Lu, Wei [ORNL; Liu, Cheng [ORNL; Bhaduri, Budhendra L [ORNL

    2014-01-01T23:59:59.000Z

    The open government initiatives have provided tremendous data resources for the transportation system and emergency services in urban areas. This paper proposes a traffic simulation framework using high temporal resolution demographic data and real time open government data for evacuation planning and operation. A comparison study using real-world data in Seattle, Washington is conducted to evaluate the framework accuracy and evacuation efficiency. The successful simulations of selected area prove the concept to take advantage open government data, open source data, and high resolution demographic data in emergency management domain. There are two aspects of parameters considered in this study: user equilibrium (UE) conditions of traffic assignment model (simple Non-UE vs. iterative UE) and data temporal resolution (Daytime vs. Nighttime). Evacuation arrival rate, average travel time, and computation time are adopted as Measure of Effectiveness (MOE) for evacuation performance analysis. The temporal resolution of demographic data has significant impacts on urban transportation dynamics during evacuation scenarios. Better evacuation performance estimation can be approached by integrating both Non-UE and UE scenarios. The new framework shows flexibility in implementing different evacuation strategies and accuracy in evacuation performance. The use of this framework can be explored to day-to-day traffic assignment to support daily traffic operations.

  9. Scaling analysis of time series of daily prices from stock markets of transitional economies in the Western Balkans

    E-Print Network [OSTI]

    Savran, Darko; Blesic, Suzana; Miljkovic, Vladimir

    2014-01-01T23:59:59.000Z

    In this paper we have analyzed scaling properties of time series of stock market indices (SMIs) of developing economies of Western Balkans, and have compared the results we have obtained with the results from more developed economies. We have used three different techniques of data analysis to obtain and verify our findings: Detrended Fluctuation Analysis (DFA) method, Detrended Moving Average (DMA) method, and Wavelet Transformation (WT) analysis. We have found scaling behavior in all SMI data sets that we have analyzed. The scaling of our SMI series changes from long-range correlated to slightly anti-correlated behavior with the change in growth or maturity of the economy the stock market is embedded in. We also report the presence of effects of potential periodic-like influences on the SMI data that we have analyzed. One such influence is visible in all our SMI series, and appears at a period $T_{p}\\approx 90$ days. We propose that the existence of various periodic-like influences on SMI data may partially...

  10. Proposal for a Full-Scale Prototype Single-Phase Liquid Argon Time Projection Chamber and Detector Beam Test at CERN

    E-Print Network [OSTI]

    Kutter, T

    2015-01-01T23:59:59.000Z

    The Deep Underground Neutrino Experiment (DUNE) will use a large liquid argon (LAr) detector to measure the CP violating phase, determine the neutrino mass hier- archy and perform precision tests of the three-flavor paradigm in long-baseline neutrino oscillations. The detector will consist of four modules each with a fiducial mass of 10 kt of LAr and due to its unprecedented size will allow sensitive searches for proton decay and the detection and measurement of electron neutrinos from core collapse supernovae [1]. The first 10 kt module will use single-phase LAr detection technique and be itself modular in design. The successful manufacturing, installation and operation of several full-scale detector components in a suitable configuration represents a critical engineering milestone prior to the construction and operation of the first full 10 kt DUNE detector module at the SURF underground site. A charged particle beam test of a prototype detector will provide critical calibration measurements as well as inva...

  11. An Unprecedented Constraint on Water Content in the Sunlit Lunar Exosphere Seen by Lunar-Based Ultraviolet Telescope of Chang'e-3 Mission

    E-Print Network [OSTI]

    Wang, J; Qiu, Y L; Meng, X M; Cai, H B; Cao, L; Deng, J S; Han, X H; Wei, J Y

    2015-01-01T23:59:59.000Z

    The content of $\\mathrm{OH/H_2O}$ molecules in the tenuous exosphere of the Moon is still an open issue at present. We here report an unprecedented upper limit of the content of the OH radicals, which is obtained from the in-situ measurements carried out \\rm by the Lunar-based Ultraviolet Telescope, a payload of Chinese Chang'e-3 mission. By analyzing the diffuse background in the images taken by the telescope, the column density and surface concentration of the OH radicals are inferred to be $<10^{11}\\ \\mathrm{cm^{-2}}$ and $<10^{4}\\ \\mathrm{cm^{-3}}$ (by assuming a hydrostatic equilibrium with a scale height of 100km), respectively, by assuming that the recorded background is fully contributed by their resonance fluorescence emission. The resulted concentration is lower than the previously reported value by about two orders of magnitude, and is close to the prediction of the sputtering model. In addition, the same measurements and method allow us to derive a surface concentration of $<10^{2}\\ \\math...

  12. An unprecedented nucleic acid capture mechanism for excision of DNA damage

    SciTech Connect (OSTI)

    Rubinson, Emily H.; Prakasha Gowda, A.S.; Spratt, Thomas E.; Gold, Barry; Eichmanbrand, Brandt F. (Pitt); (Vanderbilt); (Penn)

    2010-11-18T23:59:59.000Z

    DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.

  13. Quick extended x-ray absorption fine structure instrument with millisecond time scale, optimized for in situ applications

    SciTech Connect (OSTI)

    Khalid, S.; Caliebe, W.; Siddons, P.; So, I.; Clay, b.; Hanson, J.; Wang, Q.; Frenkel, A.; Marinkovicl, N.; Hould, N.; ginder-Vogel, M.; Landrot, G.L.; Sparks, D.L.; Ganjoo, A.

    2010-01-19T23:59:59.000Z

    In order to learn about in situ structural changes in materials at subseconds time scale, we have further refined the techniques of quick extended x-ray absorption fine structure (QEXAFS) and quick x-ray absorption near edge structure (XANES) spectroscopies at beamline X18B at the National Synchrotron Light Source. The channel cut Si (111) monochromator oscillation is driven through a tangential arm at 5 Hz, using a cam, dc motor, pulley, and belt system. The rubber belt between the motor and the cam damps the mechanical noise. EXAFS scan taken in 100 ms is comparable to standard data. The angle and the angular range of the monochromator can be changed to collect a full EXAFS or XANES spectrum in the energy range 4.7-40.0 KeV. The data are recorded in ascending and descending order of energy, on the fly, without any loss of beam time. The QEXAFS mechanical system is outside the vacuum system, and therefore changing the mode of operation from conventional to QEXAFS takes only a few minutes. This instrument allows the acquisition of time resolved data in a variety of systems relevant to electrochemical, photochemical, catalytic, materials, and environmental sciences.

  14. Linear scaling solution of the time-dependent self-consistent-field equations with quasi-independent Rayleigh quotient iteration

    SciTech Connect (OSTI)

    Challacombe, Matt [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    An algorithm for solution of the Time-Dependent Self-Consistent-Field (TD-SCF) equations is developed, based on dual solution channels for non-linear optimization of the Tsiper functional [J.Phys.B, 34 L401 (2001)]. This formulation poses the TD-SCF problem as two Rayleigh quotients, coupled weakly through biorthogonality. Convergence rates for the Random Phase Approximation (RPA) are found to be equivalent to the Tamm-Dancoff approximation (TDA). Moreover, the variational nature of the quotient is robust to approximation errors, allowing linear scaling solution to the bulk limit of the RPA matrix-eigenvalue and exchange operator problem for molecular wires with extended conjugation, including polyphenylene vinylene and the (4,3) nanotube.

  15. Scaling between structural relaxation and caged dynamics in Ca_{0.4}K_0.6(NO_{3})_{1.4} and glycerol: free volume, time scales and implications for the pressure-energy correlations

    E-Print Network [OSTI]

    Alistar Ottochian; Dino Leporini

    2011-01-14T23:59:59.000Z

    The scaling of the slow structural relaxation with the fast caged dynamics is evidenced in the molten salt Ca_{0.4}K_{0.6}(NO_{3}$)_{1.4} (CKN) over about thirteen decades of the structural relaxation time. Glycerol caling was analyzed in detail. In glycerol, the short-time mean-square displacement , a measure of the caged dynamics, is contributed by free-volume. It is seen that, in order to evidence the scaling, the observation time of the fast dynamics must be shorter than the time scales of the relaxation processes. Systems with both negligible (like CKN, glycerol and network glassformers) and high (like van der Waals liquids and polymers) pressure-energy correlations exhibit the scaling between the slow relaxation and the fast caged dynamics. According to the available experiments, an isomorph-invariant expression of the master curve of the scaled data is not distinguishable from a simpler not-invariant expression. Instead, the latter grees better with the simulations on a wide class of model polymers.

  16. Scaling dependence on time and distance in nonlinear fractional diffusion equations and possible applications to the water transport in soils

    E-Print Network [OSTI]

    Kwok Sau Fa; E. K. Lenzi

    2004-04-15T23:59:59.000Z

    Recently, fractional derivatives have been employed to analyze various systems in engineering, physics, finance and hidrology. For instance, they have been used to investigate anomalous diffusion processes which are present in different physical systems like: amorphous semicondutors, polymers, composite heterogeneous films and porous media. They have also been used to calculate the heat load intensity change in blast furnace walls, to solve problems of control theory \\ and dynamic problems of linear and nonlinear hereditary mechanics of solids. In this work, we investigate the scaling properties related to the nonlinear fractional diffusion equations and indicate the possibilities to the applications of these equations to simulate the water transport in unsaturated soils. Usually, the water transport in soils with anomalous diffusion, the dependence of concentration on time and distance may be expressed in term of a single variable given by $\\lambda _{q}=x/t^{q}.$ In particular, for $q=1/2$ the systems obey Fick's law and Richards' equation for water transport. We show that a generalization of Richards' equation via fractional approach can incorporate the above property.

  17. Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis

    SciTech Connect (OSTI)

    Dietze, Michael; Vargas, Rodrigo; Richardson, Andrew D.; Stoy, Paul C.; Barr, Alan; Anderson, Ryan; Arain, M. A.; Baker, Ian; Black, T. Andrew; Chen, Jing Ming; Ciais, Philippe; Flanagan, Lawrence; Gough, Christopher; Grant, R. F.; Hollinger, D.; Izaurralde, Roberto C.; Kucharik, Chris; Lafleur, Peter; Liu, Shuguang; Lokupitiya, Erandathie; Luo, Yiqi; Munger, J. W.; Peng, Changhui; Poulter, Benjamin; Price, David T.; Ricciuto, Daniel M.; Riley, William; Sahoo, Alok Kumar; Schaefer, Kevin; Suyker, Andrew E.; Tian, Hanqin; Tonitto, Christine; Verbeeck, Hans; Verma, Shashi B.; Wang, Weifeng; Weng, Ensheng

    2011-12-20T23:59:59.000Z

    Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Most assessments of model performance occur at individual temporal scales, but ecosystems respond to drivers at multiple time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the identification of the dominant time scales contributing to model performance in the frequency domain. In this study we used wavelet analyses to synthesize the performance of twenty-one ecosystem models at nine eddy-covariance towers as part of the North American Carbon Program's site-level inter-comparison. This study expands upon previous single-site and single-model analyses to determine what patterns of model failure are consistent across a diverse range of models and sites.

  18. Analyzing Ultra-Scale Application Communication Requirements for a Reconfigurable Hybrid Interconnect

    E-Print Network [OSTI]

    dependent on scaling up to unprecedented numbers of processors. To prevent the interconnect architecture be and/or a fee. . peta-scale computing is increasingly dependent on scaling up the number of processors, there is a critical need to ef- fectively build and utilize network topology solutions with costs that scale linearly

  19. 1999 Hazeleger, W., 1 February 1999. Variability in Mode Water Formation on the Decadal Time Scale. University of Utrecht, the Netherlands.

    E-Print Network [OSTI]

    Haak, Hein

    Time Scale. University of Utrecht, the Netherlands. Lipzig, N.P.M. van, 6 October 1999. The surfaceD-Thesis, University of Utrecht, the Netherlands. Veefkind, J.P., 11 October 1999. Aerosol Satellite Remote Sensing. PhD-Thesis, University of Utrecht, the Netherlands. Bosveld, F.C., 3 November 1999. Exchange processes between a Douglas

  20. Differential Gene Expression Profiles and Real-Time Measurements of Growth Parameters in Saccharomyces cereWisiae Grown in Microliter-Scale Bioreactors

    E-Print Network [OSTI]

    Sinskey, Anthony J.

    in Saccharomyces cereWisiae Grown in Microliter-Scale Bioreactors Equipped with Internal Stirring Paolo Boccazzi and glucose media in 150 µL bioreactors equipped with sensors for in situ and real-time measurements bioreactors, shake flasks, test tubes, and microtiter plates. These analytical platforms yield limited

  1. Observation of Discrete Oscillations in a Model-independent Plot of Cosmological Scale Factor vs. Lookback Time and a Scalar Field Model

    E-Print Network [OSTI]

    Ringermacher, H I

    2015-01-01T23:59:59.000Z

    We have observed damped longitudinal cosmological-scale oscillations in a unique model-independent plot of scale factor against lookback time for Type Ia supernovae data. We found several first-derivative relative maxima/minima spanning the range of reported transition-redshifts. These extrema comprise 2 full cycles with a period of approximately 0.15 Hubble times (H0=68 km/s/Mpc). This period corresponds to a fundamental frequency of approximately 7 cycles over the Hubble time. Transition-z values quoted in the literature generally fall near these minima and may explain the reported wide spread up to the predicted LCDM value of approximately z = 0.77. We also observe second and third harmonics of the fundamental. The scale factor data is analyzed several different ways including smoothing, Fourier transform and autocorrelation. We propose a cosmological scalar field harmonic oscillator model for the observation. On this time scale, for a quantum scalar field, the scalar field mass is extraordinarily small at...

  2. Tropical precipitation variability and convectively coupled equatorial waves1 on submonthly time-scales in reanalyses and TRMM2

    E-Print Network [OSTI]

    Alexander, M. Joan

    convection plays a vital role in global climate by driving large-scale circulation,41 releasing latent heat, modulating radiative forcing, and most importantly redistributing water in42 the earth system. Due to complex

  3. Scaling MG-RAST to Terabases (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect (OSTI)

    Desai, Narayan [ANL] [ANL

    2011-10-12T23:59:59.000Z

    Argonne National Lab's Narayan Desai on "Scaling MG-RAST to Terabases" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  4. Scaling MG-RAST to Terabases (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema (OSTI)

    Desai, Narayan [ANL

    2013-01-22T23:59:59.000Z

    Argonne National Lab's Narayan Desai on "Scaling MG-RAST to Terabases" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  5. Summary of the Midwest conference on small-scale hydropower in the Midwest: an old technology whose time has come

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    A variety of decision makers convened to examine and discuss certain significant problems associated with small-scale hydroelectric development in the Midwestern region, comprised of Illinois, Indiana, Kentucky, Michigan, Ohio, West Virginia, and Wisconsin. The conference opened with an introductory panel of resource persons who outlined the objectives of the conference, presented information on small-scale hydro, and described the materials available to conference participants. A series of workshop sessions followed. Two of the workshop sessions discussed problems and policy responses raised by state and Federal regulation. The remaining two workshops dealt with economic issues confronting small-scale hydro development and the operation and usefulness of the systems dynamics model developed by the Thayer School of Engineering at Dartmouth College. A plenary session and recommendations completed the workshop.

  6. Multi-physics investigation on the failure mechanism and short-time scale wave motion in flip-chip configuration

    E-Print Network [OSTI]

    Oh, Yoonchan

    2005-11-01T23:59:59.000Z

    scale package of 2 Watts steady state power is subjected to 1000 Watts for about 1 ms, junction temperature was seen to rise 50 o C. Mercado et al. [29] did an integrated transient thermal and mechanical analysis for a molded plastic ball grid array...

  7. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 1, FEBRUARY 2003 129 Relative Timing

    E-Print Network [OSTI]

    Stevens, Ken

    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 11, NO. 1, FEBRUARY 2003 129 synthesis and veri- fication are demonstrated on three example circuits, facilitating transformations from perfor- mance, area, power, and functional testability of up to a factor of 3 in all three cases

  8. Trophic Transfer of Atmospheric and Sedimentary Contaminants into Great Lakes Fish: Control on Ecosystem Scale Response Times

    E-Print Network [OSTI]

    Administration (FDA) advisory level is problematic. The persistence of PCBs in Great Lakes fish has led some in the Great Lakes is a natural consequence of internal recycling and continental scale atmospheric exchange atmospheric deposition) and 'in-place' (i.e., recycling from contaminated sediments) sources of contaminants

  9. SociAL Sensor Analytics: Measuring Phenomenology at Scale

    SciTech Connect (OSTI)

    Corley, Courtney D.; Dowling, Chase P.; Rose, Stuart J.; McKenzie, Taylor K.

    2013-06-04T23:59:59.000Z

    The objective of this paper is to present a system for interrogating immense social media streams through analytical methodologies that characterize topics and events critical to tactical and strategic planning. First, we propose a conceptual framework for interpreting social media as a sensor network. Time-series models and topic clustering algorithms are used to implement this concept into a functioning analytical system. Next, we address two scientific challenges: 1) to understand, quantify, and baseline phenomenology of social media at scale, and 2) to develop analytical methodologies to detect and investigate events of interest. This paper then documents computational methods and reports experimental findings that address these challenges. Ultimately, the ability to process billions of social media posts per week over a period of years enables the identification of patterns and predictors of tactical and strategic concerns at an unprecedented rate through SociAL Sensor Analytics (SALSA).

  10. Continuous wavelet transform based time-scale and multi-fractal analysis of the nonlinear oscillations in a hollow cathode glow discharge plasma

    E-Print Network [OSTI]

    Md. Nurujjaman; Ramesh Narayanan; A. N. Sekar Iyengar

    2009-09-12T23:59:59.000Z

    Continuous wavelet transform (CWT) based time-scale and multi-fractal analyses have been carried out on the anode glow related nonlinear floating potential fluctuations in a hollow cathode glow discharge plasma. CWT has been used to obtain the contour and ridge plots. Scale shift (or inversely frequency shift) which is a typical nonlinear behaviour, has been detected from the undulating contours. From the ridge plots, we have identified the presence of nonlinearity and degree of chaoticity. Using the wavelet transform modulus maxima technique we have obtained the multi-fractal spectrum for the fluctuations at different discharge voltages and the spectrum was observed to become a monofractal for periodic signals. These multi-fractal spectra were also used to estimate different quantities like the correlation and fractal dimension, degree of multi-fractality and complexity parameters. These estimations have been found to be consistent with the nonlinear time series analysis.

  11. Continuous wavelet transform based time-scale and multifractal analysis of the nonlinear oscillations in a hollow cathode glow discharge plasma

    SciTech Connect (OSTI)

    Nurujjaman, Md.; Narayanan, Ramesh; Iyengar, A. N. Sekar [Plasma Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2009-10-15T23:59:59.000Z

    Continuous wavelet transform (CWT) based time-scale and multifractal analyses have been carried out on the anode glow related nonlinear floating potential fluctuations in a hollow cathode glow discharge plasma. CWT has been used to obtain the contour and ridge plots. Scale shift (or inversely frequency shift), which is a typical nonlinear behavior, has been detected from the undulating contours. From the ridge plots, we have identified the presence of nonlinearity and degree of chaoticity. Using the wavelet transform modulus maxima technique we have obtained the multifractal spectrum for the fluctuations at different discharge voltages and the spectrum was observed to become a monofractal for periodic signals. These multifractal spectra were also used to estimate different quantities such as the correlation and fractal dimension, degree of multifractality, and complexity parameters. These estimations have been found to be consistent with the nonlinear time series analysis.

  12. A new P-velocity model for the Tethyan margin from a scaled S-velocity model and the inversion of P-and PKP-delay times

    E-Print Network [OSTI]

    van der Lee, Suzan

    A new P-velocity model for the Tethyan margin from a scaled S-velocity model and the inversion of P- and PKP-delay times Sung-Joon Chang a, , Suzan Van der Lee a , Megan P. Flanagan b a Dept. of Earth Livermore National Laboratory, P.O. Box 808, L-205, Livermore, CA 94551, USA a r t i c l e i n f o Article

  13. Time-scale structure, spectral properties and model reduction in advection-diffusion and advection-diffusion-reaction systems

    E-Print Network [OSTI]

    Gorban, Alexander N.

    ,3] to the case of open flows, such as flow in tubes or in static mixers. In the case of time-periodic velocity

  14. Problem Set # 5 1. In a stratified flow the energy containing eddies have a time scale of N-1

    E-Print Network [OSTI]

    Goodman, Louis

    kinetic energy dissipation rate. (a) Derive an expression for the time dependence (decay) of u in terms eddy of size l, where L l . (b) Obtain an expression for the turbulent kinetic energy per unit mass is the turbulent kinetic energy per unit mass 23 2 E u , u, the characteristic turbulent velocity, the turbulent

  15. Time scale of the fission process in the reaction 50A MeV 20Ne + 165Ho

    E-Print Network [OSTI]

    Mdeiwayeh, Nader

    1995-01-01T23:59:59.000Z

    The pre-scission time in the de-excitation of highly excited 178W produced in the reaction of 2ONe + 165Ho at 50A MeV was determined as a function of fission fragment mass asymmetry. The techniques employed used the pre-scission and post scission...

  16. Large-Scale Uncertainty and Error Analysis for Time-dependent Fluid/Structure Interactions in Wind Turbine Applications

    SciTech Connect (OSTI)

    Alonso, Juan J. [Stanford University; Iaccarino, Gianluca [Stanford University

    2013-08-25T23:59:59.000Z

    The following is the final report covering the entire period of this aforementioned grant, June 1, 2011 - May 31, 2013 for the portion of the effort corresponding to Stanford University (SU). SU has partnered with Sandia National Laboratories (PI: Mike S. Eldred) and Purdue University (PI: Dongbin Xiu) to complete this research project and this final report includes those contributions made by the members of the team at Stanford. Dr. Eldred is continuing his contributions to this project under a no-cost extension and his contributions to the overall effort will be detailed at a later time (once his effort has concluded) on a separate project submitted by Sandia National Laboratories. At Stanford, the team is made up of Profs. Alonso, Iaccarino, and Duraisamy, post-doctoral researcher Vinod Lakshminarayan, and graduate student Santiago Padron. At Sandia National Laboratories, the team includes Michael Eldred, Matt Barone, John Jakeman, and Stefan Domino, and at Purdue University, we have Prof. Dongbin Xiu as our main collaborator. The overall objective of this project was to develop a novel, comprehensive methodology for uncertainty quantification by combining stochastic expansions (nonintrusive polynomial chaos and stochastic collocation), the adjoint approach, and fusion with experimental data to account for aleatory and epistemic uncertainties from random variable, random field, and model form sources. The expected outcomes of this activity were detailed in the proposal and are repeated here to set the stage for the results that we have generated during the time period of execution of this project: 1. The rigorous determination of an error budget comprising numerical errors in physical space and statistical errors in stochastic space and its use for optimal allocation of resources; 2. A considerable increase in efficiency when performing uncertainty quantification with a large number of uncertain variables in complex non-linear multi-physics problems; 3. A solution to the long-time integration problem of spectral chaos approaches; 4. A rigorous methodology to account for aleatory and epistemic uncertainties, to emphasize the most important variables via dimension reduction and dimension-adaptive refinement, and to support fusion with experimental data using Bayesian inference; 5. The application of novel methodologies to time-dependent reliability studies in wind turbine applications including a number of efforts relating to the uncertainty quantification in vertical-axis wind turbine applications. In this report, we summarize all accomplishments in the project (during the time period specified) focusing on advances in UQ algorithms and deployment efforts to the wind turbine application area. Detailed publications in each of these areas have also been completed and are available from the respective conference proceedings and journals as detailed in a later section.

  17. The tale of a modern animal plague: Tracing the evolutionary history and determining the time-scale for foot and mouth disease virus

    SciTech Connect (OSTI)

    Tully, Damien C. [Smurfit Institute of Genetics, Trinity College Dublin (Ireland)], E-mail: dtully@tcd.ie; Fares, Mario A. [Smurfit Institute of Genetics, Trinity College Dublin (Ireland)], E-mail: faresm@tcd.ie

    2008-12-20T23:59:59.000Z

    Despite significant advances made in the understanding of its epidemiology, foot and mouth disease virus (FMDV) is among the most unexpected agricultural devastating plagues. While the disease manifests itself as seven immunologically distinct strains their origin, population dynamics, migration patterns and divergence times remain unknown. Herein we have assembled a comprehensive data set of gene sequences representing the global diversity of the disease and inferred the time-scale and evolutionary history for FMDV. Serotype-specific rates of evolution and divergence times were estimated using a Bayesian coalescent framework. We report that an ancient precursor FMDV gave rise to two major diversification events spanning a relatively short interval of time. This radiation event is estimated to have taken place towards the end of the 17th and the beginning of the 18th century giving us the present circulating Euro-Asiatic and South African viral strains. Furthermore our results hint that Europe acted as a possible hub for the disease from where it successfully dispersed elsewhere via exploration and trading routes.

  18. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Imam, Neena; Barhen, Jacob

    2009-01-01T23:59:59.000Z

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore »readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less

  19. VisIO: enabling interactive visualization of ultra-scale, time-series data via high-bandwidth distributed I/O systems

    SciTech Connect (OSTI)

    Mitchell, Christopher J [Los Alamos National Laboratory; Ahrens, James P [Los Alamos National Laboratory; Wang, Jun [UCF

    2010-10-15T23:59:59.000Z

    Petascale simulations compute at resolutions ranging into billions of cells and write terabytes of data for visualization and analysis. Interactive visuaUzation of this time series is a desired step before starting a new run. The I/O subsystem and associated network often are a significant impediment to interactive visualization of time-varying data; as they are not configured or provisioned to provide necessary I/O read rates. In this paper, we propose a new I/O library for visualization applications: VisIO. Visualization applications commonly use N-to-N reads within their parallel enabled readers which provides an incentive for a shared-nothing approach to I/O, similar to other data-intensive approaches such as Hadoop. However, unlike other data-intensive applications, visualization requires: (1) interactive performance for large data volumes, (2) compatibility with MPI and POSIX file system semantics for compatibility with existing infrastructure, and (3) use of existing file formats and their stipulated data partitioning rules. VisIO, provides a mechanism for using a non-POSIX distributed file system to provide linear scaling of 110 bandwidth. In addition, we introduce a novel scheduling algorithm that helps to co-locate visualization processes on nodes with the requested data. Testing using VisIO integrated into Para View was conducted using the Hadoop Distributed File System (HDFS) on TACC's Longhorn cluster. A representative dataset, VPIC, across 128 nodes showed a 64.4% read performance improvement compared to the provided Lustre installation. Also tested, was a dataset representing a global ocean salinity simulation that showed a 51.4% improvement in read performance over Lustre when using our VisIO system. VisIO, provides powerful high-performance I/O services to visualization applications, allowing for interactive performance with ultra-scale, time-series data.

  20. The OME Framework for genome-scale systems biology

    SciTech Connect (OSTI)

    Palsson, Bernhard O.; Ebrahim, Ali; Federowicz, Steve

    2014-12-19T23:59:59.000Z

    The life sciences are undergoing continuous and accelerating integration with computational and engineering sciences. The biology that many in the field have been trained on may be hardly recognizable in ten to twenty years. One of the major drivers for this transformation is the blistering pace of advancements in DNA sequencing and synthesis. These advances have resulted in unprecedented amounts of new data, information, and knowledge. Many software tools have been developed to deal with aspects of this transformation and each is sorely needed [1-3]. However, few of these tools have been forced to deal with the full complexity of genome-scale models along with high throughput genome- scale data. This particular situation represents a unique challenge, as it is simultaneously necessary to deal with the vast breadth of genome-scale models and the dizzying depth of high-throughput datasets. It has been observed time and again that as the pace of data generation continues to accelerate, the pace of analysis significantly lags behind [4]. It is also evident that, given the plethora of databases and software efforts [5-12], it is still a significant challenge to work with genome-scale metabolic models, let alone next-generation whole cell models [13-15]. We work at the forefront of model creation and systems scale data generation [16-18]. The OME Framework was borne out of a practical need to enable genome-scale modeling and data analysis under a unified framework to drive the next generation of genome-scale biological models. Here we present the OME Framework. It exists as a set of Python classes. However, we want to emphasize the importance of the underlying design as an addition to the discussions on specifications of a digital cell. A great deal of work and valuable progress has been made by a number of communities [13, 19-24] towards interchange formats and implementations designed to achieve similar goals. While many software tools exist for handling genome-scale metabolic models or for genome-scale data analysis, no implementations exist that explicitly handle data and models concurrently. The OME Framework structures data in a connected loop with models and the components those models are composed of. This results in the first full, practical implementation of a framework that can enable genome-scale design-build-test. Over the coming years many more software packages will be developed and tools will necessarily change. However, we hope that the underlying designs shared here can help to inform the design of future software.

  1. OF HEALTH CARE IN TURBULENT TIMES

    E-Print Network [OSTI]

    Feschotte, Cedric

    FIXING THE FLOW OF HEALTH CARE IN TURBULENT TIMES INNOVATION REPORT 2014 #12;Since 2012, Algorithms facing health care today. We believe there's an unprecedented opportunity to invent a new vision for health care, and academic medicine is poised to lead the way. Algorithms for Innovations is designed

  2. Global Economy and IT IT: Recovery and Growth Government and IT IT and Society Strengthening Economies Innovation in information technology (IT) has fueled unprecedented economic gains in the last 30

    E-Print Network [OSTI]

    Narasayya, Vivek

    Global Economy and IT IT: Recovery and Growth Government and IT IT and Society Strengthening Economies Innovation in information technology (IT) has fueled unprecedented economic gains in the last 30-term stimulus to local economies but also position both developed and developing economies to compete

  3. Using Soir Lucene for Large-Scale Metagenomics Data Retrieval and Analysis (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema (OSTI)

    Goll, Johannes [JCVI

    2013-01-22T23:59:59.000Z

    JCVI's Johannes Goll on "Using Solr/Lucene for Large-Scale Metagenomics Data Retrieval and Analysis" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  4. Using Soir Lucene for Large-Scale Metagenomics Data Retrieval and Analysis (MICW - Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect (OSTI)

    Goll, Johannes [JCVI] [JCVI

    2011-10-12T23:59:59.000Z

    JCVI's Johannes Goll on "Using Solr/Lucene for Large-Scale Metagenomics Data Retrieval and Analysis" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  5. PREPRINT -September 27, 2010; contact camley@physics.ucsb.edu for information Dynamic simulations of multicomponent lipid membranes over long length and time scales

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    as funda- mentally interesting soft matter systems [1­3]. Ternary mix- tures of saturated and unsaturated scales. Compelling agreement with both theory and experiment is obtained, suggesting this methodology description of the observed two-phase coexistence in ternary lipid/cholesterol systems. However, to facilitate

  6. DOE JGI Quality Metrics; Approaches to Scaling and Improving Metagenome Assembly (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema (OSTI)

    Copeland, Alex [DOE JGI]; Brown, C Titus [Michigan State University

    2013-01-22T23:59:59.000Z

    DOE JGI's Alex Copeland on "DOE JGI Quality Metrics" and Michigan State University's C. Titus Brown on "Approaches to Scaling and Improving Metagenome Assembly" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  7. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 8, AUGUST 2011 1357 A Time-Aware Fault Tolerance Scheme to Improve

    E-Print Network [OSTI]

    Zhang, Tong

    effect makes the resistance of phase-change material drift over the time, which can severely degrade A Time-Aware Fault Tolerance Scheme to Improve Reliability of Multilevel Phase-Change Memory--Because of its promising scalability potential and support of multilevel per cell storage, phase-change memory

  8. Rupture mechanism of liquid crystal thin films realized by large-scale molecular simulations

    SciTech Connect (OSTI)

    Nguyen, Trung D [ORNL] [ORNL; Carrillo, Jan-Michael Y [ORNL] [ORNL; Brown, W Michael [ORNL] [ORNL; Matheson, Michael A [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The ability of liquid crystal (LC) molecules to respond to changes in their environment makes them an interesting candidate for thin film applications, particularly in bio-sensing, bio-mimicking devices, and optics. Yet the understanding of the (in)stability of this family of thin films has been limited by the inherent challenges encountered by experiment and continuum models. Using unprecedented largescale molecular dynamics (MD) simulations, we address the rupture origin of LC thin films wetting a solid substrate at length scales similar to those in experiment. Our simulations show the key signatures of spinodal instability in isotropic and nematic films on top of thermal nucleation, and importantly, for the first time, evidence of a common rupture mechanism independent of initial thickness and LC orientational ordering. We further demonstrate that the primary driving force for rupture is closely related to the tendency of the LC mesogens to recover their local environment in the bulk state. Our study not only provides new insights into the rupture mechanism of liquid crystal films, but also sets the stage for future investigations of thin film systems using peta-scale molecular dynamics simulations.

  9. A Framework of Concurrent Task Scheduling and Dynamic Voltage and Frequency Scaling in Real-Time Embedded Systems with Energy Harvesting

    E-Print Network [OSTI]

    Pedram, Massoud

    of batteries in conventional battery-powered embedded systems. In particular, the question of how one can achieve full energy autonomy (i.e., perpetual, battery-free operation) of a real-time embedded system harvesting module is comprised of a Photovoltaic (PV) panel for harvesting energy and a supercapacitor

  10. Physical Consequences of a Momenta-Transfering Particle Theory of Induced Gravity and New Measurements Indicating Variation from Inverse Square Law at Length Scale of .1 mm: Statistical Time Properties of Gravitational Interaction and Analysis Thereof

    E-Print Network [OSTI]

    Gary Christopher Vezzoli

    2001-04-04T23:59:59.000Z

    This work presents physical consequences of our theory of induced gravity (Ref.1) regarding: 1) the requirement to consider shape and materials properties when calculating graviton cross section collision area; 2) use of Special Relativity; 3) implications regarding the shape of cosmos; 4) comparison to explanations using General Relativity; 5) properties of black holes; 6) relationship to the strong force and the theorized Higgs boson; 7) the possible origin of magnetic attraction; 8) new measurements showing variation from gravitational inverse square behavior at length scales of 0.1 mm and relationship to the Cosmological constant, and proof of the statistical time properties of the gravitational interaction.

  11. Variable dimensionality in the uranium fluoride/2-methyl-piperazine system: Synthesis and structures of UFO-5, -6, and -7; Zero-, one-, and two-dimensional materials with unprecedented topologies

    SciTech Connect (OSTI)

    Francis, R.J.; Halasyamani, P.S.; Bee, J.S.; O'Hare, D.

    1999-02-24T23:59:59.000Z

    Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-, and two-dimensional materials.

  12. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    SciTech Connect (OSTI)

    Hohenberger, M., E-mail: mhoh@lle.rochester.edu; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Albert, F.; Palmer, N. E.; Döppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lee, J. J. [National Security Technologies LLC, Livermore, California 94551 (United States)

    2014-11-15T23:59:59.000Z

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic–a multichannel, hard x-ray spectrometer operating in the 20–500 keV range–has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ?300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U K{sub ?}). The detectors impulse response function was measured in situ on NIF short-pulse (?90 ps) experiments, and in off-line tests.

  13. Transition from Large-Scale to Small-Scale Dynamo

    SciTech Connect (OSTI)

    Ponty, Y. [Universite de Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229, Nice cedex 04 (France); Plunian, F. [Institut des Sciences de la Terre, CNRS, Universite Joseph Fourier, B.P. 53, 38041 Grenoble cedex 09 (France)

    2011-04-15T23:59:59.000Z

    The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow. In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in agreement with the former Karlsruhe experimental results. The is governed by a generalized {alpha} effect, which includes both the usual {alpha} effect and turbulent diffusion, plus all higher order effects. Beyond the onset we find that this generalized {alpha} effect scales as O(Rm{sup -1}), suggesting the takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if the large-scale field is artificially suppressed.

  14. MOST Spacebased Photometry of the Transiting Exoplanet System HD 209458: Transit Timing to Search for Additional Planets

    E-Print Network [OSTI]

    E. Miller-Ricci; J. F. Rowe; D. Sasselov; J. M. Matthews; D. B. Guenther; R. Kuschnig; A. F. J Moffat; S. M. Rucinski; G. A. H Walker; W. W. Weiss

    2008-02-05T23:59:59.000Z

    We report on the measurement of transit times for the HD 209458 planetary system from photometry obtained with the MOST (Microvariability & Oscillations of STars) space telescope. Deviations from a constant orbital period can indicate the presence of additional planets in the system that are yet undetected, potentially with masses approaching an Earth mass. The MOST data sets of HD 209458 from 2004 and 2005 represent unprecedented time coverage with nearly continuous observations spanning 14 and 43 days and monitoring 3 transits and 12 consecutive transits, respectively. The transit times we obtain show no variations on three scales: (a) no long-term change in P since before 2004 at the 25 ms level, (b) no trend in transit timings during the 2005 run, and (c) no individual transit timing deviations above 80 sec level. Together with previously published transit times from Agol & Steffen (2007), this allows us to place limits on the presence of additional close-in planets in the system, in some cases down to below an Earth mass. This result, along with previous radial velocity work, now eliminates the possibility that a perturbing planet could be responsible for the additional heat source needed to explain HD 209458b's anomalous low density.

  15. Global Scale Impacts

    E-Print Network [OSTI]

    Asphaug, Erik; Jutzi, Martin

    2015-01-01T23:59:59.000Z

    Global scale impacts modify the physical or thermal state of a substantial fraction of a target asteroid. Specific effects include accretion, family formation, reshaping, mixing and layering, shock and frictional heating, fragmentation, material compaction, dilatation, stripping of mantle and crust, and seismic degradation. Deciphering the complicated record of global scale impacts, in asteroids and meteorites, will lead us to understand the original planet-forming process and its resultant populations, and their evolution in time as collisions became faster and fewer. We provide a brief overview of these ideas, and an introduction to models.

  16. Unprecedented Press Attack on WSG Emblem

    E-Print Network [OSTI]

    Journal:  Wader Study Group Bulletin Attachment Size p00040-p00040.pdf 145.38 KB Issue:  38 Year:  1983 Pages:  40

  17. Elastic strain engineering for unprecedented materials properties

    E-Print Network [OSTI]

    Li, Ju

    “Smaller is stronger.” Nanostructured materials such as thin films, nanowires, nanoparticles, bulk nanocomposites, and atomic sheets can withstand non-hydrostatic (e.g., tensile or shear) stresses up to a significant ...

  18. Nuclear scales

    SciTech Connect (OSTI)

    Friar, J.L.

    1998-12-01T23:59:59.000Z

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  19. Report on Fission Time Projection Chamber M3FT-12IN0210052

    SciTech Connect (OSTI)

    James K. Jewell

    2012-08-01T23:59:59.000Z

    The Time Projection Chamber is a collaborative effort to implement an innovative approach and deliver unprecedented fission measurements to DOE programs. This 4?-detector system will provide unrivaled 3-D data about the fission process. Shown here is a half populated TPC (2?) at the LLNL TPC laboratory as it undergoes testing before being shipped to LANSCE for beam experiments.

  20. Time-Multiplexed Measurements of Nonclassical Light at Telecom Wavelengths

    E-Print Network [OSTI]

    G. Harder; C. Silberhorn; J. Rehacek; Z. Hradil; L. Motka; B. Stoklasa; L. L. Sanchez-Soto

    2014-06-13T23:59:59.000Z

    We report the experimental reconstruction of the statistical properties of an ultrafast pulsed type-II parametric down conversion source in a periodically poled KTP waveguide at telecom wavelengths, with almost perfect photon-number correlations. We used a photon-number-resolving time-multiplexed detector based on a fiber-optical setup and a pair of avalanche photodiodes. By resorting to a germane data-pattern tomography, we assess the properties of the nonclassical light states states with unprecedented precision.

  1. Building up the screening below the femtosecond scale

    E-Print Network [OSTI]

    Muiño, Ricardo Díez

    Building up the screening below the femtosecond scale A. Borisov a;b D. S#19;anchez-Portal b;c R. D that the screening is built-up locally on a time scale well below the femtosecond for typical metallic densities. At this ultrashort time scale, the time evolution is not a#11;ected by the cluster boundary conditions, and our

  2. Multiphoton above-threshold detachment of Li-: Exterior-complex-scaling– generalized-pseudospectral method for calculations of complex-quasienergy resonances in Floquet formulation of time-dependent density-functional theory

    E-Print Network [OSTI]

    Telnov, Dmitry A.; Chu, Shih-I

    2002-10-25T23:59:59.000Z

    We extend the exterior-complex-scaling–generalized-pseudospectral (ECSGPS) method [D. A. Telnov and S. I. Chu, Phys. Rev. A 59, 2864 (1999)] to the nonperturbative calculations of complex-quasienergy resonances of many-electron quantum systems...

  3. Is Time Inhomogeneous ?

    E-Print Network [OSTI]

    S. Davood Sadatian

    2014-05-08T23:59:59.000Z

    In this article, we discuss probability of inhomogeneous time in high or low energy scale of physics. Consequently, the possibility was investigated of using theories such as varying speed of light (VSL) and fractal mathematics to build a framework within which answers can be found to some of standard cosmological problems and physics theories on the basis of time non-homogeneity.

  4. The Measurement of Time

    E-Print Network [OSTI]

    A. Boyarsky; P Gora

    2007-05-07T23:59:59.000Z

    We present a definition of time measurement based on high energy photons and the fundamental length scale, and show that, for macroscopic time, it is in accord with the Lorentz transformation of special relativity. To do this we define observer in a different way than in special relativity.

  5. DECOMPOSITION OF LARGE-SCALE STOCHASTIC OPTIMAL ...

    E-Print Network [OSTI]

    2009-03-06T23:59:59.000Z

    consider dynamical systems that can be divided into small-scale independent .... realizations of the noise process are identical up to time t, then the same ..... without our approximation, the algorithm would build primal iterates that converge ...

  6. Scaling the Web Scaling Web Sites

    E-Print Network [OSTI]

    Menascé, Daniel A.

    Scaling the Web Scaling Web Sites Through Caching A large jump in a Web site's traffic may indi, pushing the site's through- put to its maximum point. When a Web site becomes overloaded, cus- tomers grow-generated revenue and may even tarnish the reputation of organizations relying on Web sites to support mission

  7. Conjecture on the physical implications of the scale anomaly

    SciTech Connect (OSTI)

    Hill, Christopher T.; /Fermilab

    2005-10-01T23:59:59.000Z

    Murray Gell-Mann, after co-inventing QCD, recognized the interplay of the scale anomaly, the renormalization group, and the origin of the strong scale, {Lambda}{sub QCD}. I tell a story, then elaborate this concept, and for the sake of discussion, propose a conjecture that the physical world is scale invariant in the classical, {h_bar}, limit. This principle has implications for the dimensionality of space-time, the cosmological constant, the weak scale, and Planck scale.

  8. Robot calibration without scaling

    E-Print Network [OSTI]

    Ives, Thomas W.

    1995-01-01T23:59:59.000Z

    methods. Scaling is a common way of improving the condition number for a matrix. Researchers in other fields have developed specific methods of scaling matrices to improve the condition number. However, robotics researchers have not specifically addressed...

  9. Convex Optimization: from Real-Time Embedded

    E-Print Network [OSTI]

    Hall, Julian

    Convex Optimization: from Real-Time Embedded to Large-Scale Distributed Stephen Boyd Neal Parikh of Edinburgh, June 25 2014 1 #12;Outline Convex Optimization Real-Time Embedded Optimization Large-Scale Distributed Optimization Summary 2 #12;Outline Convex Optimization Real-Time Embedded Optimization Large

  10. A new, community-based effort aims to transform hydrologic science by supporting new techniques to measure hydrologic processes at a wide range of time and space scales as well by

    E-Print Network [OSTI]

    , New Hampshire; WENDROTH--Department of Plant and Soil Sciences, University of Kentucky, Lexington.g., groundwater, hydrome- teorology, surface water, etc.). Timely and emerging suites of technologies with new and existing research efforts. Here we present the consistent vision that emerged through

  11. Scaling of pressurized fluidized beds

    SciTech Connect (OSTI)

    Guralnik, S.; Glicksman, L.R.

    1994-10-01T23:59:59.000Z

    The project has two primary objectives. The first is to verify a set of hydrodynamic scaling relationships for commercial pressurized fluidized bed combustors (PFBC). The second objective is to investigate solids mixing in pressurized bubbling fluidized beds. American Electric Power`s (AEP) Tidd combined-cycle demonstration plant will provide time-varying pressure drop data to serve as the basis for the scaling verification. The verification will involve demonstrating that a properly scaled cold model and the Tidd PFBC exhibit hydrodynamically similar behavior. An important issue in PFBC design is the spacing of fuel feed ports. The feed spacing is dictated by the fuel distribution and the mixing characteristics within the bed. After completing the scaling verification, the cold model will be used to study the characteristics of PFBCs. A thermal tracer technique will be utilized to study mixing both near the fuel feed region and in the far field. The results allow the coal feed and distributor to be designed for optimal heating.

  12. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    SciTech Connect (OSTI)

    Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y., E-mail: kywong@eee.hku.hk [Photonic Systems Research Laboratory, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2014-07-28T23:59:59.000Z

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.

  13. Silica Scaling Removal Process

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sidestreams of cooling tower water by providing a substrate for the deposition and adsorption of silica. The removal of the silica prevents scaling deposition on heat transfer...

  14. Pore Scale Micromodels | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of EMSL's Subsurface Flow and Transport Laboratory (SFTL) with a focus on coupled (multiphase) flow, diffusion, and reactions processes at the microscopic scale (m to cm) that...

  15. Thermodynamics and scale relativity

    E-Print Network [OSTI]

    Robert Carroll

    2011-10-13T23:59:59.000Z

    It is shown how the fractal paths of scale relativity (following Nottale) can be introduced into a thermodynamical context (following Asadov-Kechkin).

  16. LBNO-DEMO: Large-scale neutrino detector demonstrators for phased performance assessment in view of a long-baseline oscillation experiment

    E-Print Network [OSTI]

    L. Agostino; B. Andrieu; R. Asfandiyarov; D. Autiero; O. Bésida; F. Bay; R. Bayes; A. M. Blebea-Apostu; A. Blondel; M. Bogomilov; S. Bolognesi; S. Bordoni; A. Bravar; M. Buizza-Avanzini; F. Cadoux; D. Caiulo; M. Calin; M. Campanelli; C. Cantini; L. Chaussard; D. Chesneanu; N. Colino; P. Crivelli; I. De Bonis; Y. Déclais; J. Dawson; C. De La Taille; P. Del Amo Sanchez; A. Delbart; S. Di Luise; D. Duchesneau; F. Dulucq; J. Dumarchez; I. Efthymiopoulos; S. Emery; T. Enqvist; L. Epprecht; T. Esanu; D. Franco; D. Franco; M. Friend; V. Galymov; A. Gendotti; C. Giganti; I. Gil-Botella; M. C Gomoiu; P. Gorodetzky; A. Haesler; T. Hasegawa; S. Horikawa; M. Ieva; A. Jipa; Y. Karadzhov; I. Karpikov; A. Khotjantsev; A. Korzenev; D. Kryn; Y. Kudenko; P. Kuusiniemi; I. Lazanu; J. -M. Levy; K. Loo; T. Lux; J. Maalampi; R. M. Margineanu; J. Marteau; C. Martin; G. Martin-Chassard; E. Mazzucato; A. Mefodiev; O. Mineev; B. Mitrica; S. Murphy; T. Nakadaira; M. Nessi; K. Nikolics; L. Nita; E. Noah; P. Novella; G. A. Nuijten; T. Ovsiannikova; C. Palomares; T. Patzak; E. Pennacchio; L. Periale; H. Pessard; B. Popov; M. Ravonel; M. Rayner; C. Regenfus; C. Ristea; O. Ristea; A. Robert; A. Rubbia; K. Sakashita; F. Sanchez; R. Santorelli; E. Scantamburlo; F. Sergiampietri; D. Sgalaberna; M. Slupecki; F. J. P. Soler; D. L. Stanca; A. Tonazzo; W. H. Trzaska; R. Tsenov; G. Vankova-Kirilova; F. Vannucci; G. Vasseur; A. Verdugo; T. Viant; S. Wu; N. Yershov; L. Zambelli; M. Zito

    2014-09-14T23:59:59.000Z

    In June 2012, an Expression of Interest for a long-baseline experiment (LBNO) has been submitted to the CERN SPSC. LBNO considers three types of neutrino detector technologies: a double-phase liquid argon (LAr) TPC and a magnetised iron detector as far detectors. For the near detector, a high-pressure gas TPC embedded in a calorimeter and a magnet is the baseline design. A mandatory milestone is a concrete prototyping effort towards the envisioned large-scale detectors, and an accompanying campaign of measurements aimed at assessing the detector associated systematic errors. The proposed $6\\times 6\\times 6$m$^3$ DLAr is an industrial prototype of the design discussed in the EoI and scalable to 20 kton or 50~kton. It is to be constructed and operated in a controlled laboratory and surface environment with test beam access, such as the CERN North Area (NA). Its successful operation and full characterisation will be a fundamental milestone, likely opening the path to an underground deployment of larger detectors. The response of the DLAr demonstrator will be measured and understood with an unprecedented precision in a charged particle test beam (0.5-20 GeV/c). The exposure will certify the assumptions and calibrate the response of the detector, and allow to develop and to benchmark sophisticated reconstruction algorithms, such as those of 3-dimensional tracking, particle ID and energy flow in liquid argon. All these steps are fundamental for validating the correctness of the physics performance described in the LBNO EoI.

  17. Cosmological constant in scale-invariant theories

    SciTech Connect (OSTI)

    Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R. [School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2011-10-01T23:59:59.000Z

    The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.

  18. Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    SciTech Connect (OSTI)

    Mendelsohn, M.; Lowder, T.; Canavan, B.

    2012-04-01T23:59:59.000Z

    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

  19. Entropic Time

    SciTech Connect (OSTI)

    Caticha, Ariel [Department of Physics, University at Albany-SUNY, Albany, NY 12222 (United States)

    2011-03-14T23:59:59.000Z

    The formulation of quantum mechanics within the framework of entropic dynamics includes several new elements. In this paper we concentrate on one of them: the implications for the theory of time. Entropic time is introduced as a book-keeping device to keep track of the accumulation of changes. One new feature is that, unlike other concepts of time appearing in the so-called fundamental laws of physics, entropic time incorporates a natural distinction between past and future.

  20. Finite Future Cosmological Singularity Times and Maximum Predictability Times in a Nonlinear FRW-KG Scalar Cosmology

    E-Print Network [OSTI]

    John Max Wilson; Keith Andrew

    2012-07-27T23:59:59.000Z

    We investigate the relative time scales associated with finite future cosmological singularities, especially those classified as Big Rip cosmologies, and the maximum predictability time of a coupled FRW-KG scalar cosmology with chaotic regimes. Our approach is to show that by starting with a FRW-KG scalar cosmology with a potential that admits an analytical solution resulting in a finite time future singularity there exists a Lyapunov time scale that is earlier than the formation of the singularity. For this singularity both the cosmological scale parameter a(t) and the Hubble parameter H(t) become infinite at a finite future time, the Big Rip time. We compare this time scale to the predictability time scale for a chaotic FRW-KG scalar cosmology. We find that there are cases where the chaotic time scale is earlier than the Big Rip singularity calling for special care in interpreting and predicting the formation of the future cosmological singularity.

  1. The propagation of kinetic energy across scales in turbulent flows

    E-Print Network [OSTI]

    Cardesa, José I; Dong, Siwei; Jiménez, Javier

    2015-01-01T23:59:59.000Z

    A temporal study of energy transfer across length scales is performed in 3D numerical simulations of homogeneous shear flow and isotropic turbulence, at Reynolds numbers in the range $Re_{\\lambda}=107-384$. The average time taken by perturbations in the energy flux to travel between scales is measured and shown to be additive, as inferred from the agreement between the total travel time from a given scale to the smallest dissipative motions, and the time estimated from successive jumps through intermediate scales. Our data suggests that the propagation of disturbances in the energy flux is independent of the forcing and that it defines a `velocity' that determines the energy flux itself. These results support that the cascade is, on average, a scale-local process where energy is continuously transmitted from one scale to the next in order of decreasing size.

  2. Large scale disease prediction

    E-Print Network [OSTI]

    Schmid, Patrick R. (Patrick Raphael)

    2008-01-01T23:59:59.000Z

    The objective of this thesis is to present the foundation of an automated large-scale disease prediction system. Unlike previous work that has typically focused on a small self-contained dataset, we explore the possibility ...

  3. The Improbability scale

    SciTech Connect (OSTI)

    Ritchie, David J.; /Fermilab

    2005-03-01T23:59:59.000Z

    The Improbability Scale (IS) is proposed as a way of communicating to the general public the improbability (and by implication, the probability) of events predicted as the result of scientific research. Through the use of the Improbability Scale, the public will be able to evaluate more easily the relative risks of predicted events and draw proper conclusions when asked to support governmental and public policy decisions arising from that research.

  4. abstract relational space-time: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    geometric magnitudes. Ignacio Sanchez-Rodriguez 2008-03-13 13 Scale relativity and fractal space-time: theory and applications Physics Websites Summary: Scale relativity and...

  5. Quantum Coherence Arguments for Cosmological Scale

    SciTech Connect (OSTI)

    Lindesay, James; /SLAC

    2005-05-27T23:59:59.000Z

    Homogeneity and correlations in the observed CMB are indicative of some form of cosmological coherence in early times. Quantum coherence in the early universe would be expected to give space-like phase coherence to any effects sourced to those times. If dark energy de-coherence is assumed to occur when the rate of expansion of the relevant cosmological scale parameter in the Friedmann-Lemaitre equations is no longer supra-luminal, a critical energy density is immediately defined. It is shown that the general class of dynamical models so defined necessarily requires a spatially flat cosmology in order to be consistent with observed structure formation. The basic assumption is that the dark energy density which is fixed during de-coherence is to be identified with the cosmological constant. It is shown for the entire class of models that the expected amplitude of fluctuations driven by the dark energy de-coherence process is of the order needed to evolve into the fluctuations observed in cosmic microwave background radiation and galactic clustering. The densities involved during de-coherence which correspond to the measured dark energy density turn out to be of the electroweak symmetry restoration scale. In an inflationary cosmology, this choice of the scale parameter in the FL equations directly relates the scale of dark energy decoherence to the De Sitter scales (associated with the positive cosmological constants) at both early and late times.

  6. Florida Wax Scales: Control Measures in Texas for Hollies 

    E-Print Network [OSTI]

    Drees, Bastiaan M.; Reinert, James; Williams, Michael L.

    2006-11-30T23:59:59.000Z

    mold. Wax scales injure plants by removing large amounts of plant sap. Severe infestations may discol- or the leaves, cause shoots or branches to die back and occasionally kill the entire plant. Wax scales also produce honeydew, which serves as a..., and the foliage containing acephate will kill young scales that settle on the leaves and begin to feed on the plant sap. Timing: In Texas, the Florida wax scale eggs hatch primarily twice per year, although some eggs can hatch at any time. Egg hatch occurs...

  7. Recent Developments in Dynamic Equations on Time Scales

    E-Print Network [OSTI]

    Bohner, Martin

    @marshall.edu Sarah Nowak, University of Northern Colorado, Greeley, CO, snowak87@hotmail.com Michael Otunuga, Marshall University, Huntington, WV, otunuga@marshall.edu Molly Peterson, Simpson College, Indianola, IA

  8. A POLYNOMIAL-TIME AFFINE-SCALING METHOD FOR ...

    E-Print Network [OSTI]

    2014-10-22T23:59:59.000Z

    line {z + tv : t ? R} does not intersect the interior of Ke(?), neither v or ?v is ..... reach of primal-dual methods, except in some cases where it is known how to “lift

  9. Micro-Time-Scale Network Measurements and Harmonic Effects

    E-Print Network [OSTI]

    succession of positively reinforcing router "reverberations." 1 Introduction It has been observed, equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement

  10. Time-Off Awards Scale | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive LiquidSavingsAugustPhase 2

  11. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A so-called hollow ion is formed when core electrons are removed or excited to higher energy levels, leaving an empty inner shell. Such states can be produced in He-, a...

  12. The new Integrated Biorefinery Research Facility (IBRF) offers an unprecedented

    E-Print Network [OSTI]

    Advance Commercial Success of Thin-Film PV Cells The thin-film solar cells in use today could not function and are used to form the front of the solar cell. Improving the quality and properties of TCOs is widely of flexibility for NREL's science and technology experts to develop cost-effec- tive biofuels processes and move

  13. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2you aADepartmentA Hollow-Ion

  14. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2you aADepartmentA

  15. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2you aADepartmentAA

  16. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2you aADepartmentAAA

  17. Mesh Generation for SHARP: Unprecedented Complexity | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19,Department ofEnergyMesh Generation

  18. A Hollow-Ion Resonance of Unprecedented Strength

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartment ofAugustDecember8threbuildAA Greener PARC A

  19. Scaling the Web Performance and Availability

    E-Print Network [OSTI]

    Menascé, Daniel A.

    Scaling the Web Performance and Availability of Internet Data Centers Daniel A. Menascé · George, including response time, throughput, and availability, in the context of Web scalability. In most of my past) as a motivating example to discuss how performance and availability are interrelated. IDCs provide the means

  20. Angular Scaling In Jets

    SciTech Connect (OSTI)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17T23:59:59.000Z

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  1. PAIN SCALES (ATTACHMENT A)

    E-Print Network [OSTI]

    Oliver, Douglas L.

    TOTAL SCORE: ADD INDIVIDUAL ASSESSMENT SCORES TO DETERMINE THE TOTAL PAIN SCORE. TOTAL THE 5 CATEGORIES FOR TOTAL PAIN SCORE. MAXIMUM SCORE = 10/10. Reference: Merkel SJ, et al. The FLACC: A Behavioral Pain Scale or groan. Low level speech with a negative or disapproving quality. Repeated troubled calling out. Loud

  2. Mathematics Achievement Scale Score

    E-Print Network [OSTI]

    Huang, Jianyu

    Croatia 490 New Zealand 486 Spain 482 Romania 482 Poland 481 Turkey 469 Azerbaijan 463 Chile 462 Thailand Romania 505 Spain 505 Poland 505 TIMSS Scale Centerpoint 500 New Zealand 497 Kazakhstan 495 Norway 494 Kazakhstan 487 Sweden 484 Ukraine 479 Norway 475 Armenia 467 Romania 458 United Arab Emirates 456 Turkey 452

  3. Dynamic cluster-scaling in DNA

    E-Print Network [OSTI]

    A. Bershadskii

    2010-08-07T23:59:59.000Z

    It is shown that the nucleotide sequences in DNA molecules have cluster-scaling properties (discovered for the first time in turbulent processes: Sreenivasan and Bershadskii, 2006, J. Stat. Phys., 125, 1141-1153.). These properties are relevant to both types of nucleotide pair-bases interactions: hydrogen bonds and stacking interactions. It is shown that taking into account the cluster-scaling properties can help to improve heterogeneous models of the DNA dynamics. Two human genes: BRCA2 and NRXN1, have been considered as examples.

  4. Scaling attractors for quintessence in flat universe with cosmological term

    E-Print Network [OSTI]

    V. V. Kiselev

    2007-02-08T23:59:59.000Z

    For evolution of flat universe, we classify late time and future attractors with scaling behavior of scalar field quintessence in the case of potential, which, at definite values of its parameters and initial data, corresponds to exact scaling in the presence of cosmological constant.

  5. The Dynamics of SmallScale Turbulence Driven Flows

    E-Print Network [OSTI]

    Hammett, Greg

    the existence of a linearly undamped component of the flow which could build up in time and lower the finalThe Dynamics of Small­Scale Turbulence Driven Flows M. A. Beer and G. W. Hammett PPPL APS DPP meeting, November 1997 The dynamics of small­scale fluctuation driven flows are of great in­ terest

  6. Business Time in the Foreign Exchange Markets

    E-Print Network [OSTI]

    Edinburgh, University of

    Business Time in the Foreign Exchange Markets Mark J L Orr Centre for Cognitive Science Edinburgh University June 1997 #12; Business Time in the Foreign Exchange Markets Mark J L Orr y Centre for Cognitive; Contents 1 Introduction 4 2 The Price Change Scaling Law 5 3 Business Time 7 4 The BZW Data 11 5 Volatility

  7. Parallel Stochastic Gradient Algorithms for Large-Scale Matrix ...

    E-Print Network [OSTI]

    2013-03-21T23:59:59.000Z

    parallel implementation that admits a speed-up nearly proportional to the ... On large-scale matrix completion tasks, Jellyfish is orders of magnitude more ...... get a consistent build of NNLS with mex optimizations at the time of this submission.

  8. Platforms and real options in large-scale engineering systems

    E-Print Network [OSTI]

    Kalligeros, Konstantinos C., 1976-

    2006-01-01T23:59:59.000Z

    This thesis introduces a framework and two methodologies that enable engineering management teams to assess the value of real options in programs of large-scale, partially standardized systems implemented a few times over ...

  9. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    SciTech Connect (OSTI)

    Cozzi, A.; Hansen, E.

    2011-08-03T23:59:59.000Z

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall shearing was shown to reduce the rheological properties of the grout as it was processed through the transfer line. Samples taken at the static feed tank showed that gelling impacted the rheological properties of the grout before it was fed into the pump and transfer line. A comparison of the rheological properties of samples taken at the feed tank and transfer line discharge indicated shearing of the grout was occurring in the transfer line. Bench scale testing of different mixing methods with three different salt solutions showed that method of mixing influences the rheological properties of the grouts. The paddle blade mixing method of the salt solution used for the BMSR testing provided comparable rheological properties of the grout prepared in the BMSR after 14 minutes of processing, B3. The paddle blade mixing method can be used to represent BMSR results and mixing time can be adjusted to represent larger scale mixing.

  10. Extreme Scale Visual Analytics

    SciTech Connect (OSTI)

    Steed, Chad A [ORNL] [ORNL; Potok, Thomas E [ORNL] [ORNL; Pullum, Laura L [ORNL] [ORNL; Ramanathan, Arvind [ORNL] [ORNL; Shipman, Galen M [ORNL] [ORNL; Thornton, Peter E [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Given the scale and complexity of today s data, visual analytics is rapidly becoming a necessity rather than an option for comprehensive exploratory analysis. In this paper, we provide an overview of three applications of visual analytics for addressing the challenges of analyzing climate, text streams, and biosurveilance data. These systems feature varying levels of interaction and high performance computing technology integration to permit exploratory analysis of large and complex data of global significance.

  11. Supergranulation Scale Connection Simulations

    E-Print Network [OSTI]

    R. F. Stein; A. Nordlund; D. Georgobiani; D. Benson; W. Schaffenberger

    2008-11-04T23:59:59.000Z

    Results of realistic simulations of solar surface convection on the scale of supergranules (96 Mm wide by 20 Mm deep) are presented. The simulations cover only 10% of the geometric depth of the solar convection zone, but half its pressure scale heights. They include the hydrogen, first and most of the second helium ionization zones. The horizontal velocity spectrum is a power law and the horizontal size of the dominant convective cells increases with increasing depth. Convection is driven by buoyancy work which is largest close to the surface, but significant over the entire domain. Close to the surface buoyancy driving is balanced by the divergence of the kinetic energy flux, but deeper down it is balanced by dissipation. The damping length of the turbulent kinetic energy is 4 pressure scale heights. The mass mixing length is 1.8 scale heights. Two thirds of the area is upflowing fluid except very close to the surface. The internal (ionization) energy flux is the largest contributor to the convective flux for temperatures less than 40,000 K and the thermal energy flux is the largest contributor at higher temperatures. This data set is useful for validating local helioseismic inversion methods. Sixteen hours of data are available as four hour averages, with two hour cadence, at steinr.msu.edu/~bob/96averages, as idl save files. The variables stored are the density, temperature, sound speed, and three velocity components. In addition, the three velocity components at 200 km above mean continuum optical depth unity are available at 30 sec. cadence.

  12. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    E-Print Network [OSTI]

    Arimoto, Y; Igarashi, Y; Iwashita, Y; Ino, T; Katayama, R; Kitahara, R; Kitaguchi, M; Matsumura, H; Mishima, K; Oide, H; Otono, H; Sakakibara, R; Shima, T; Shimizu, H M; Sugino, T; Sumi, N; Sumino, H; Taketani, K; Tanaka, G; Tanaka, M; Tauchi, K; Toyoda, A; Yamada, T; Yamashita, S; Yokoyama, H; Yoshioka, T

    2015-01-01T23:59:59.000Z

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  13. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    E-Print Network [OSTI]

    Y. Arimoto; N. Higashi; Y. Igarashi; Y. Iwashita; T. Ino; R. Katayama; R. Kitahara; M. Kitaguchi; H. Matsumura; K. Mishima; H. Oide; H. Otono; R. Sakakibara; T. Shima; H. M. Shimizu; T. Sugino; N. Sumi; H. Sumino; K. Taketani; G. Tanaka; M. Tanaka; K. Tauchi; A. Toyoda; T. Yamada; S. Yamashita; H. Yokoyama; T. Yoshioka

    2015-03-27T23:59:59.000Z

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  14. Scaling Analysis of Nanowire Phase Change Memory

    E-Print Network [OSTI]

    Liu, Jie; Anantram, M P

    2013-01-01T23:59:59.000Z

    This letter analyzes the scaling property of nanowire (NW) phase change memory (PCM) using analytic and numerical methods. The scaling scenarios of the three widely-used NW PCM peration schemes (constant electric field, voltage, and current) are studied and compared. It is shown that if the device size is downscaled by a factor of 1/k (k>1), the peration energy (current) will be reduced by more than k3 (k) times, and the operation speed will be increased by k2 times. It is also shown that more than 90% of operation energy is wasted as thermal flux into substrate and electrodes. We predict that, if the wasted thermal flux is effectively reduced by heat confinement technologies, the energy consumed per RESET operation can be decreased from about 1 pJ to less than 100 fJ. It is shown that reducing NW aspect ratio (AR) helps decreasing PCM energy consumption. It is revealed that cross-cell thermal proximity disturbance is counter-intuitively alleviated by scaling, leading to a desirable scaling scenario.

  15. Conformal Scaling Gauge Symmetry and Inflationary Universe

    E-Print Network [OSTI]

    Yue-Liang Wu

    2004-02-23T23:59:59.000Z

    Considering the conformal scaling gauge symmetry as a fundamental symmetry of nature in the presence of gravity, a scalar field is required and used to describe the scale behavior of universe. In order for the scalar field to be a physical field, a gauge field is necessary to be introduced. A gauge invariant potential action is constructed by adopting the scalar field and a real Wilson-like line element of the gauge field. Of particular, the conformal scaling gauge symmetry can be broken down explicitly via fixing gauge to match the Einstein-Hilbert action of gravity. As a nontrivial background field solution of pure gauge has a minimal energy in gauge interactions, the evolution of universe is then dominated at earlier time by the potential energy of background field characterized by a scalar field. Since the background field of pure gauge leads to an exponential potential model of a scalar field, the universe is driven by a power-law inflation with the scale factor $a(t) \\sim t^p$. The power-law index $p$ is determined by a basic gauge fixing parameter $g_F$ via $p = 16\\pi g_F^2[1 + 3/(4\\pi g_F^2) ]$. For the gauge fixing scale being the Planck mass, we are led to a predictive model with $g_F=1$ and $p\\simeq 62$.

  16. Scaling of Lyapunov exponents in chaotic delay systems

    E-Print Network [OSTI]

    Thomas Jüngling; Wolfgang Kinzel

    2012-10-12T23:59:59.000Z

    The scaling behavior of the maximal Lyapunov exponent in chaotic systems with time-delayed feedback is investigated. For large delay times it has been shown that the delay-dependence of the exponent allows a distinction between strong and weak chaos, which are the analogy to strong and weak instability of periodic orbits in a delay system. We find significant differences between scaling of exponents in periodic or chaotic systems. We show that chaotic scaling is related to fluctuations in the linearized equations of motion. A linear delay system including multiplicative noise shows the same properties as the deterministic chaotic systems.

  17. The San Jose Scale.

    E-Print Network [OSTI]

    Conradi, Albert F.

    1906-01-01T23:59:59.000Z

    for controlling the scale. The most important spray mixtures in use are lime-sulphur salt, lime-sulphur, whale oil soap, kero? sene, crude petroleum, Kero-water, and kerosene or crude oil emulsions. All these preparations are mainly winter sprays, being applied... applied while cold, however, it clogs the apparatus and causes considerable inconven? ience in getting it on the tree. It is more expensive than the Lime- Sulphur wash. i I o . B I 3 I 2 In some States coal oil or kerosene has been experimented...

  18. The San Jose Scale

    E-Print Network [OSTI]

    Conradi, Albert F.

    1906-01-01T23:59:59.000Z

    of which caused a violent cooking. After the lime had been slaked the salt was added ^ and the entire mixture violently boiled for 45 minutes, when it became a dark amber color. It was applied while hot. This ap? plication was made to peach trees... for controlling the scale. The most important spray mixtures in use are lime-sulphur salt, lime-sulphur, whale oil soap, kero? sene, crude petroleum, Kero-water, and kerosene or crude oil emulsions. All these preparations are mainly winter sprays, being applied...

  19. Megawatt Electrolysis Scale Up

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19, 2004MW Electrolysis Scale Up E

  20. Intermediate scalings in holographic RG flows and conductivities

    E-Print Network [OSTI]

    Jyotirmoy Bhattacharya; Sera Cremonini; Blaise Goutéraux

    2015-02-04T23:59:59.000Z

    We construct numerically finite density domain-wall solutions which interpolate between two $AdS_4$ fixed points and exhibit an intermediate regime of hyperscaling violation, with or without Lifshitz scaling. Such RG flows can be realized in gravitational models containing a dilatonic scalar and a massive vector field with appropriate choices of the scalar potential and couplings. The infrared $AdS_4$ fixed point describes a new ground state for strongly coupled quantum systems realizing such scalings, thus avoiding the well-known extensive zero temperature entropy associated with $AdS_2 \\times \\mathbb{R}^2$. We also examine the zero temperature behavior of the optical conductivity in these backgrounds and identify two scaling regimes before the UV CFT scaling is reached. The scaling of the conductivity is controlled by the emergent IR conformal symmetry at very low frequencies, and by the intermediate scaling regime at higher frequencies.

  1. Nonlinear Quantum Mechanics at the Planck Scale

    E-Print Network [OSTI]

    George Svetlichny

    2004-10-27T23:59:59.000Z

    I argue that the linearity of quantum mechanics is an emergent feature at the Planck scale, along with the manifold structure of space-time. In this regime the usual causality violation objections to nonlinearity do not apply, and nonlinear effects can be of comparable magnitude to the linear ones and still be highly suppressed at low energies. This can offer alternative approaches to quantum gravity and to the evolution of the early universe.

  2. Time Off

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis ofwas publishedThree scientistsDepartmentTime Off

  3. Horizontal structure of winter time 250 mb jet stream variations on the fifteen day time scale

    E-Print Network [OSTI]

    Park, Sangwook

    1993-01-01T23:59:59.000Z

    % of the cases, three quarters of these cases being overlaps a day or less, and only 2% of the total number of cases being overlaps of three days. In ten cases (Dec. 2nd half of 1969, 1971, Jan. 1st half of 1970, 1973, Jan. 2nd half of 1970, 1973, 1982, Feb. 1... wind speed for 24 years. (a) Nov. 2nd half (b), (c) Dec. 1st and 2nd half (d), (e) Jan. 1st and 2nd half (f) Feb. 1st half from 1965(66) to 1988(89). The contour interval is 5 ms 17 Ncv. 2hf '161 128E 128V 68E r % al 'k' 38E 'I tres I-'S rr...

  4. Scaling of fluctuations in a colloidal glass

    E-Print Network [OSTI]

    P. Wang; C. Song; H. A. Makse

    2006-11-01T23:59:59.000Z

    We report experimental measurements of particle dynamics in a colloidal glass in order to understand the dynamical heterogeneities associated with the cooperative motion of the particles in the glassy regime. We study the local and global fluctuation of correlation and response functions in an aging colloidal glass. The observables display universal scaling behavior following a modified power-law, with a plateau dominating the less heterogeneous short-time regime and a power-law tail dominating the highly heterogeneous long-time regime.

  5. Large Scale Computing and Storage Requirements for Fusion Energy Sciences Research

    E-Print Network [OSTI]

    Gerber, Richard

    2012-01-01T23:59:59.000Z

    simulations of fusion and energy systems with unprecedentedRequirements  for  Fusion  Energy  Sciences   14 General  and  Storage  Requirements  for  Fusion  Energy  Sciences  

  6. Goethite Bench-scale and Large-scale Preparation Tests

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23T23:59:59.000Z

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the ferrous ion, Fe{sup 2+}-Fe{sup 2+} is oxidized to Fe{sup 3+} - in the presence of goethite seed particles. Rhenium does not mimic that process; it is not a strong enough reducing agent to duplicate the TcO{sub 4}{sup -}/Fe{sup 2+} redox reactions. Laboratory tests conducted in parallel with these scaled tests identified modifications to the liquid chemistry necessary to reduce ReO{sub 4}{sup -} and capture rhenium in the solids at levels similar to those achieved by Um (2010) for inclusion of Tc into goethite. By implementing these changes, Re was incorporated into Fe-rich solids for testing at VSL. The changes also changed the phase of iron that was in the slurry product: rather than forming goethite ({alpha}-FeOOH), the process produced magnetite (Fe{sub 3}O{sub 4}). Magnetite was considered by Pacific Northwest National Laboratory (PNNL) and VSL to probably be a better product to improve Re retention in the melter because it decomposes at a higher temperature than goethite (1538 C vs. 136 C). The feasibility tests at VSL were conducted using Re-rich magnetite. The tests did not indicate an improved retention of Re in the glass during vitrification, but they did indicate an improved melting rate (+60%), which could have significant impact on HLW processing. It is still to be shown whether the Re is a solid solution in the magnetite as {sup 99}Tc was determined to be in goethite.

  7. Real-time capable first principle based modelling of tokamak turbulent transport

    E-Print Network [OSTI]

    Breton, S; Felici, F; Imbeaux, F; Aniel, T; Artaud, J F; Baiocchi, B; Bourdelle, C; Camenen, Y; Garcia, J

    2015-01-01T23:59:59.000Z

    A real-time capable core turbulence tokamak transport model is developed. This model is constructed from the regularized nonlinear regression of quasilinear gyrokinetic transport code output. The regression is performed with a multilayer perceptron neural network. The transport code input for the neural network training set consists of five dimensions, and is limited to adiabatic electrons. The neural network model successfully reproduces transport fluxes predicted by the original quasilinear model, while gaining five orders of magnitude in computation time. The model is implemented in a real-time capable tokamak simulator, and simulates a 300s ITER discharge in 10s. This proof-of-principle for regression based transport models anticipates a significant widening of input space dimensionality and physics realism for future training sets. This aims to provide unprecedented computational speed coupled with first-principle based physics for real-time control and integrated modelling applications.

  8. Time evolution of cascade decay

    E-Print Network [OSTI]

    Daniel Boyanovsky; Louis Lello

    2014-06-25T23:59:59.000Z

    We study non-perturbatively the time evolution of cascade decay for generic fields $\\pi \\rightarrow \\phi_1\\phi_2\\rightarrow \\phi_2\\chi_1\\chi_2$ and obtain the time dependence of amplitudes and populations for the resonant and final states. We analyze in detail the different time scales and the manifestation of unitary time evolution in the dynamics of production and decay of resonant intermediate and final states. The probability of occupation (population) "flows" as a function of time from the initial to the final states. When the decay width of the parent particle $\\Gamma_\\pi$ is much larger than that of the intermediate resonant state $\\Gamma_{\\phi_1}$ there is a "bottleneck" in the flow, the population of resonant states builds up to a maximum at $t^* = \\ln[\\Gamma_\\pi/\\Gamma_{\\phi_1}]/(\\Gamma_\\pi-\\Gamma_{\\phi_1})$ nearly saturating unitarity and decays to the final state on the longer time scale $1/\\Gamma_{\\phi_1}$. As a consequence of the wide separation of time scales in this case the cascade decay can be interpreted as evolving sequentially $\\pi \\rightarrow \\phi_1\\phi_2; ~ \\phi_1\\phi_2\\rightarrow \\phi_2\\chi_1\\chi_2$. In the opposite limit the population of resonances ($\\phi_1$) does not build up substantially and the cascade decay proceeds almost directly from the initial parent to the final state without resulting in a large amplitude of the resonant state. An alternative but equivalent non-perturbative method useful in cosmology is presented. Possible phenomenological implications for heavy sterile neutrinos as resonant states and consequences of quantum entanglement and correlations in the final state are discussed.

  9. Inflation from Broken Scale Invariance

    E-Print Network [OSTI]

    Csaba Csaki; Nemanja Kaloper; Javi Serra; John Terning

    2014-06-19T23:59:59.000Z

    We construct a model of inflation based on a low-energy effective theory of spontaneously broken global scale invariance. This provides a shift symmetry that protects the inflaton potential from quantum corrections. Since the underlying scale invariance is non-compact, arbitrarily large inflaton field displacements are readily allowed in the low-energy effective theory. A weak breaking of scale invariance by almost marginal operators provides a non-trivial inflaton minimum, which sets and stabilizes the final low-energy value of the Planck scale. The underlying scale invariance ensures that the slow-roll approximation remains valid over large inflaton displacements, and yields a scale invariant spectrum of perturbations as required by the CMB observations.

  10. Scaling of structural failure

    SciTech Connect (OSTI)

    Bazant, Z.P. [Northwestern Univ., Evanston, IL (United States); Chen, Er-Ping [Sandia National Lab., Albuquerque, NM (United States)

    1997-01-01T23:59:59.000Z

    This article attempts to review the progress achieved in the understanding of scaling and size effect in the failure of structures. Particular emphasis is placed on quasibrittle materials for which the size effect is complicated. Attention is focused on three main types of size effects, namely the statistical size effect due to randomness of strength, the energy release size effect, and the possible size effect due to fractality of fracture or microcracks. Definitive conclusions on the applicability of these theories are drawn. Subsequently, the article discusses the application of the known size effect law for the measurement of material fracture properties, and the modeling of the size effect by the cohesive crack model, nonlocal finite element models and discrete element models. Extensions to compression failure and to the rate-dependent material behavior are also outlined. The damage constitutive law needed for describing a microcracked material in the fracture process zone is discussed. Various applications to quasibrittle materials, including concrete, sea ice, fiber composites, rocks and ceramics are presented.

  11. Large scale tracking algorithms.

    SciTech Connect (OSTI)

    Hansen, Ross L.; Love, Joshua Alan; Melgaard, David Kennett; Karelitz, David B.; Pitts, Todd Alan; Zollweg, Joshua David; Anderson, Dylan Z.; Nandy, Prabal; Whitlow, Gary L.; Bender, Daniel A.; Byrne, Raymond Harry

    2015-01-01T23:59:59.000Z

    Low signal-to-noise data processing algorithms for improved detection, tracking, discrimination and situational threat assessment are a key research challenge. As sensor technologies progress, the number of pixels will increase signi cantly. This will result in increased resolution, which could improve object discrimination, but unfortunately, will also result in a significant increase in the number of potential targets to track. Many tracking techniques, like multi-hypothesis trackers, suffer from a combinatorial explosion as the number of potential targets increase. As the resolution increases, the phenomenology applied towards detection algorithms also changes. For low resolution sensors, "blob" tracking is the norm. For higher resolution data, additional information may be employed in the detection and classfication steps. The most challenging scenarios are those where the targets cannot be fully resolved, yet must be tracked and distinguished for neighboring closely spaced objects. Tracking vehicles in an urban environment is an example of such a challenging scenario. This report evaluates several potential tracking algorithms for large-scale tracking in an urban environment.

  12. Scale Insects on Ornamental Plants 

    E-Print Network [OSTI]

    Muegge, Mark A.; Merchant, Michael E.

    2000-08-21T23:59:59.000Z

    Scale insects on o rnamental plants B-6097 8-00 Mark A. Muegge and Michael Merchant* M any species of scale insects damage land- scape plants, shrubs and trees. Scale insects insert their mouthparts into plant tissues and suck out the sap. When... period. Most species never move again in their lives. Scale insects feed by inserting their hairlike mouth- parts into plant tissue and siphoning the plant?s sap. While feeding, many species excrete a sweet, sticky liquid referred to as ?honeydew...

  13. Isotopic Scaling in Nuclear Reactions

    E-Print Network [OSTI]

    M. B. Tsang; W. A. Friedman; C. K. Gelbke; W. G. Lynch; G. Verde; H. Xu

    2001-03-26T23:59:59.000Z

    A three parameter scaling relationship between isotopic distributions for elements with Z$\\leq 8$ has been observed that allows a simple description of the dependence of such distributions on the overall isospin of the system. This scaling law (termed iso-scaling) applies for a variety of reaction mechanisms that are dominated by phase space, including evaporation, multifragmentation and deeply inelastic scattering. The origins of this scaling behavior for the various reaction mechanisms are explained. For multifragmentation processes, the systematics is influenced by the density dependence of the asymmetry term of the equation of state.

  14. High-Performance Computing for Real-Time Grid Analysis and Operation

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu; Chavarría-Miranda, Daniel

    2013-10-31T23:59:59.000Z

    Power grids worldwide are undergoing an unprecedented transition as a result of grid evolution meeting information revolution. The grid evolution is largely driven by the desire for green energy. Emerging grid technologies such as renewable generation, smart loads, plug-in hybrid vehicles, and distributed generation provide opportunities to generate energy from green sources and to manage energy use for better system efficiency. With utility companies actively deploying these technologies, a high level of penetration of these new technologies is expected in the next 5-10 years, bringing in a level of intermittency, uncertainties, and complexity that the grid did not see nor design for. On the other hand, the information infrastructure in the power grid is being revolutionized with large-scale deployment of sensors and meters in both the transmission and distribution networks. The future grid will have two-way flows of both electrons and information. The challenge is how to take advantage of the information revolution: pull the large amount of data in, process it in real time, and put information out to manage grid evolution. Without addressing this challenge, the opportunities in grid evolution will remain unfulfilled. This transition poses grand challenges in grid modeling, simulation, and information presentation. The computational complexity of underlying power grid modeling and simulation will significantly increase in the next decade due to an increased model size and a decreased time window allowed to compute model solutions. High-performance computing is essential to enable this transition. The essential technical barrier is to vastly increase the computational speed so operation response time can be reduced from minutes to seconds and sub-seconds. The speed at which key functions such as state estimation and contingency analysis are conducted (typically every 3-5 minutes) needs to be dramatically increased so that the analysis of contingencies is both comprehensive and real time. An even bigger challenge is how to incorporate dynamic information into real-time grid operation. Today’s online grid operation is based on a static grid model and can only provide a static snapshot of current system operation status, while dynamic analysis is conducted offline because of low computational efficiency. The offline analysis uses a worst-case scenario to determine transmission limits, resulting in under-utilization of grid assets. This conservative approach does not necessarily lead to reliability. Many times, actual power grid scenarios are not studied, and they will push the grid over the edge and resulting in outages and blackouts. This chapter addresses the HPC needs in power grid analysis and operations. Example applications such as state estimation and contingency analysis are given to demonstrate the value of HPC in power grid applications. Future research directions are suggested for high performance computing applications in power grids to improve the transparency, efficiency, and reliability of power grids.

  15. Constraints on the quantum gravity scale from kappa - Minkowski spacetime

    E-Print Network [OSTI]

    A. Borowiec; Kumar S. Gupta; S. Meljanac; A. Pachol

    2010-11-18T23:59:59.000Z

    We compare two versions of deformed dispersion relations (energy vs momenta and momenta vs energy) and the corresponding time delay up to the second order accuracy in the quantum gravity scale (deformation parameter). A general framework describing modified dispersion relations and time delay with respect to different noncommutative kappa -Minkowski spacetime realizations is firstly proposed here and it covers all the cases introduced in the literature. It is shown that some of the realizations provide certain bounds on quadratic corrections, i.e. on quantum gravity scale, but it is not excluded in our framework that quantum gravity scale is the Planck scale. We also show how the coefficients in the dispersion relations can be obtained through a multiparameter fit of the gamma ray burst (GRB) data.

  16. Scale, scaling and multifractals in geophysics: twenty Shaun Lovejoy1

    E-Print Network [OSTI]

    Lovejoy, Shaun

    Scale, scaling and multifractals in geophysics: twenty years on Shaun Lovejoy1 and Daniel Schertzer number of degrees of freedom approaches to nonlin- ear geophysics: a) the transition from fractal are generally necessary for geophysical applications. We illustrate these ideas with data analyses from both

  17. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving...

  18. Scaling of the dynamics of flexible Lennard-Jones chains

    E-Print Network [OSTI]

    Arno A. Veldhorst; Jeppe C. Dyre; Thomas B. Schrøder

    2014-08-08T23:59:59.000Z

    The isomorph theory provides an explanation for the so-called power law density scaling which has been observed in many molecular and polymeric glass formers, both experimentally and in simulations. Power law density scaling (relaxation times and transport coefficients being functions of $\\rho^{\\gamma_S}/T$, where $\\rho$ is density, $T$ is temperature, and $\\gamma_S$ is a material specific scaling exponent) is an approximation to a more general scaling predicted by the isomorph theory. Furthermore, the isomorph theory provides an explanation for Rosenfeld scaling (relaxation times and transport coefficients being functions of excess entropy) which has been observed in simulations of both molecular and polymeric systems. Doing molecular dynamics simulations of flexible Lennard-Jones chains (LJC) with rigid bonds, we here provide the first detailed test of the isomorph theory applied to flexible chain molecules. We confirm the existence of isomorphs, which are curves in the phase diagram along which the dynamics is invariant in the appropriate reduced units. This holds not only for the relaxation times but also for the full time dependence of the dynamics, including chain specific dynamics such as the end-to-end vector autocorrelation function and the relaxation of the Rouse modes. As predicted by the isomorph theory, jumps between different state points on the same isomorph happen instantaneously without any slow relaxation. Since the LJC is a simple coarse-grained model for alkanes and polymers, our results provide a possible explanation for why power-law density scaling is observed experimentally in alkanes and many polymeric systems. The theory provides an independent method of determining the scaling exponent, which is usually treated as a empirical scaling parameter.

  19. DNA Bubble Life Time in Denaturation

    E-Print Network [OSTI]

    Zh. S. Gevorkian; Chin-Kun Hu

    2010-10-11T23:59:59.000Z

    We have investigated the denaturation bubble life time for a homogeneous as well as for a heterogeneous DNA within a Poland-Scheraga model. It is shown that at criticality the bubble life time for a homogeneous DNA is finite provided that the loop entropic exponent c>2 and has a scaling dependence on DNA length for c<2. Heterogeneity in the thermodynamical limit makes the bubble life time infinite for any entropic exponent.

  20. Method of producing nano-scaled inorganic platelets

    DOE Patents [OSTI]

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13T23:59:59.000Z

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  1. Large-scale anisotropy in stably stratified rotating flows

    SciTech Connect (OSTI)

    Marino, Dr. Raffaele [National Center for Atmospheric Research (NCAR); Mininni, Dr. Pablo D. [Universidad de Buenos Aires, Argentina; Rosenberg, Duane L [ORNL; Pouquet, Dr. Annick [National Center for Atmospheric Research (NCAR)

    2014-01-01T23:59:59.000Z

    We present results from direct numerical simulations of the Boussinesq equations in the presence of rotation and/or stratification, both in the vertical direction. The runs are forced isotropically and randomly at small scales and have spatial resolutions of up to $1024^3$ grid points and Reynolds numbers of $\\approx 1000$. We first show that solutions with negative energy flux and inverse cascades develop in rotating turbulence, whether or not stratification is present. However, the purely stratified case is characterized instead by an early-time, highly anisotropic transfer to large scales with almost zero net isotropic energy flux. This is consistent with previous studies that observed the development of vertically sheared horizontal winds, although only at substantially later times. However, and unlike previous works, when sufficient scale separation is allowed between the forcing scale and the domain size, the total energy displays a perpendicular (horizontal) spectrum with power law behavior compatible with $\\sim k_\\perp^{-5/3}$, including in the absence of rotation. In this latter purely stratified case, such a spectrum is the result of a direct cascade of the energy contained in the large-scale horizontal wind, as is evidenced by a strong positive flux of energy in the parallel direction at all scales including the largest resolved scales.

  2. No variations in transit times for Qatar-1 b

    E-Print Network [OSTI]

    Maciejewski, G; Aceituno, F J; Ohlert, J; Puchalski, D; Dimitrov, D; Seeliger, M; Kitze, M; Raetz, St; Errman, R; Gilbert, H; Pannicke, A; Schmidt, J -G; Neuhäuser, R

    2015-01-01T23:59:59.000Z

    The transiting hot Jupiter planet Qatar-1 b was presented to exhibit variations in transit times that could be of perturbative nature. A hot Jupiter with a planetary companion on a nearby orbit would constitute an unprecedented planetary configuration, important for theories of formation and evolution of planetary systems. We performed a photometric follow-up campaign to confirm or refute transit timing variations. We extend the baseline of transit observations by acquiring 18 new transit light curves acquired with 0.6-2.0 m telescopes. These photometric time series, together with data available in the literature, were analyzed in a homogenous way to derive reliable transit parameters and their uncertainties. We show that the dataset of transit times is consistent with a linear ephemeris leaving no hint for any periodic variations with a range of 1 min. We find no compelling evidence for the existence of a close-in planetary companion to Qatar-1 b. This finding is in line with a paradigm that hot Jupiters are...

  3. A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion

    E-Print Network [OSTI]

    Knowles, David William

    A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion Peer a new topological framework for the analysis of large scale, time-varying, turbulent combustion consumption thresh- olds for an entire time-dependent combustion simulation. By computing augmented merge

  4. Title of dissertation: H & NEUTRAL DENSITY SCALING IN THE MARYLAND CENTRIFUGAL EXPERI-

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of dissertation: H & NEUTRAL DENSITY SCALING IN THE MARYLAND CENTRIFUGAL EXPERI- MENT M. Ryan Clary, Doctor of Philosophy, 2009 Dissertation directed by: Professor Richard Ellis confinement time as well as to scale differently than the momentum confinement time. This dissertation

  5. Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence

    E-Print Network [OSTI]

    Lin, Zhihong

    as an explanation for the long time build up of the zonal flow in ETG turbulence and it is shown that the generationFine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence S.E. Parker , J continue to grow algebraically (proportional to time). These fine-scale zonal flows have a radial wave

  6. Implicit Scaling in Ecological Research

    E-Print Network [OSTI]

    Tullos, Desiree

    - sion, and abstruse structures, such as communities and ecosystems. The diversity of organisms and eco. It was our supposition that the often unrecognized relation- ship between organism/concept and scale should- ination, we hope to raise ecologists' awareness of scale-dependent rela- tionships among organisms and eco

  7. Fractal Dimensions for Continuous Time Random Walk Limits

    E-Print Network [OSTI]

    Mark M. Meerschaert; Erkan Nane; Yimin Xiao

    2011-02-03T23:59:59.000Z

    In a continuous time random walk (CTRW), each random jump follows a random waiting time. CTRW scaling limits are time-changed processes that model anomalous diffusion. The outer process describes particle jumps, and the non-Markovian inner process (or time change) accounts for waiting times between jumps. This paper studies fractal properties of the sample functions of a time-changed process, and establishes some general results on the Hausdorff and packing dimensions of its range and graph. Then those results are applied to CTRW scaling limits.

  8. Hydranet: network support for scaling of large scale servic es

    E-Print Network [OSTI]

    Chawla, Hamesh

    1998-01-01T23:59:59.000Z

    With the explosive growth of demand for services on the Internet, the networking infrastructure (routers 7 protocols, servers) is under considerable stress. Mechanisms are needed for current and future IP services to scale in a client transparent...

  9. Scale Insects on Ornamental Plants

    E-Print Network [OSTI]

    Muegge, Mark A.; Merchant, Michael E.

    2000-08-21T23:59:59.000Z

    of all insect groups. Scale insects are generally small ( 1 /4 inch long or less) and often mimic various plant parts, such as bark and buds. Other species appear as small, white, waxy blotches or small bits of cotton on leaves and stems. The one... crawlers are pre- sent, they will fall onto the paper, where you can eas- ily see them moving about. Using natural enemies to control scales Many natural enemies?small parasitic wasps, lady- bird beetles and some fungi?can significantly reduce scale insect...

  10. Homogeneous isotropic turbulence in dilute polymers: scale by scale budget

    E-Print Network [OSTI]

    E. De Angelis; C. M. Casciola; R. Benzi; R. Piva

    2002-08-09T23:59:59.000Z

    The turbulent energy cascade in dilute polymers solution is addressed here by considering a direct numerical simulation of homogeneous isotropic turbulence of a FENE-P fluid in a triply periodic box. On the basis of the DNS data, a scale by scale analysis is provided by using the proper extension to visco-elastic fluids of the Karman-Howarth equation for the velocity. For the microstructure, an equation, analogous to the Yaglom equation for scalars, is proposed for the free-energy density associated to the elastic behavior of the material. Two mechanisms of energy removal from the scale of the forcing are identified, namely the classical non-linear transfer term of the standard Navier-Stokes equations and the coupling between macroscopic velocity and microstructure. The latter, on average, drains kinetic energy to feed the dynamics of the microstructure. The cross-over scale between the two corresponding energy fluxes is identified, with the flux associated with the microstructure dominating at small separations to become sub-leading above the cross-over scale, which is the equivalent of the elastic limit scale defined by De Gennes-Tabor on the basis of phenomenological assumptions.

  11. Challenges in large scale distributed computing: bioinformatics.

    SciTech Connect (OSTI)

    Disz, T.; Kubal, M.; Olson, R.; Overbeek, R.; Stevens, R.; Mathematics and Computer Science; Univ. of Chicago; The Fellowship for the Interpretation of Genomes (FIG)

    2005-01-01T23:59:59.000Z

    The amount of genomic data available for study is increasing at a rate similar to that of Moore's law. This deluge of data is challenging bioinformaticians to develop newer, faster and better algorithms for analysis and examination of this data. The growing availability of large scale computing grids coupled with high-performance networking is challenging computer scientists to develop better, faster methods of exploiting parallelism in these biological computations and deploying them across computing grids. In this paper, we describe two computations that are required to be run frequently and which require large amounts of computing resource to complete in a reasonable time. The data for these computations are very large and the sequential computational time can exceed thousands of hours. We show the importance and relevance of these computations, the nature of the data and parallelism and we show how we are meeting the challenge of efficiently distributing and managing these computations in the SEED project.

  12. Commercial Scale Wind Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon’s Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up...

  13. Sizing Up Allometric Scaling Theory

    E-Print Network [OSTI]

    Savage, Van M.; Deeds, Eric J.; Fontana, Walter

    2008-09-12T23:59:59.000Z

    Metabolic rate, heart rate, lifespan, and many other physiological properties vary with body mass in systematic and interrelated ways. Present empirical data suggest that these scaling relationships take the form of power ...

  14. Pilot Scale Advanced Fogging Demonstration

    SciTech Connect (OSTI)

    Demmer, Rick L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fox, Don T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Archiblad, Kip E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01T23:59:59.000Z

    Experiments in 2006 developed a useful fog solution using three different chemical constituents. Optimization of the fog recipe and use of commercially available equipment were identified as needs that had not been addressed. During 2012 development work it was noted that low concentrations of the components hampered coverage and drying in the United Kingdom’s National Nuclear Laboratory’s testing much more so than was evident in the 2006 tests. In fiscal year 2014 the Idaho National Laboratory undertook a systematic optimization of the fogging formulation and conducted a non-radioactive, pilot scale demonstration using commercially available fogging equipment. While not as sophisticated as the equipment used in earlier testing, the new approach is much less expensive and readily available for smaller scale operations. Pilot scale testing was important to validate new equipment of an appropriate scale, optimize the chemistry of the fogging solution, and to realize the conceptual approach.

  15. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    E-Print Network [OSTI]

    Crua, Cyril

    2015-01-01T23:59:59.000Z

    In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a three dimensional laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently f...

  16. Energy-optimal schedules of real-time jobs with hard deadlines

    E-Print Network [OSTI]

    George, John Vijoe

    2005-11-01T23:59:59.000Z

    In this thesis, we develop algorithms that make optimal use of frequency scaling to schedule jobs with real??time requirements. Dynamic voltage scaling is a technique used to reduce energy consumption in wide variety of systems. Reducing supply...

  17. Completing the complex Poynting theorem: Conservation of reactive energy in reactive time

    E-Print Network [OSTI]

    Gerald Kaiser

    2014-12-11T23:59:59.000Z

    The complex Poynting theorem is extended canonically to a time-scale domain $(t, s)$ by replacing the phasors of time-harmonic fields by the analytic signals $X(r, t+is)$ of fields $X(r,t)$ with general time dependence. The imaginary time $s>0$ is shown to play the role of a time resolution scale, and the extended Poynting theorem splits into two conservation laws: its real part gives the conservation in $t$ of the scale-averaged active energy at fixed $s$, and its imaginary part gives the conservation in $s$ of the scale-averaged reactive energy at fixed $t$. At coarse scales (large $s$, slow time), where the system reduces to the circuit level, this may have applications to the theory of electric power transmission and conditioning. At fine scales (small $s$, fast time) it describes reactive energy dynamics in radiating systems.

  18. Scale-dependent seismic velocity in heterogeneous media

    SciTech Connect (OSTI)

    Mukerji, T.; Mavko, G.; Mujica, D. [Stanford Univ., CA (United States)] [Stanford Univ., CA (United States); Lucet, N. [IFP, Rueil-Malmaison (France)] [IFP, Rueil-Malmaison (France)

    1995-07-01T23:59:59.000Z

    The measurable traveltime of seismic events propagating in heterogeneous media depend on the geologic scale, the seismic wavelength, and the propagation distance. In general, the velocity inferred from arrival times is slower when the wavelength is longer than the scale of heterogeneity and faster when the wavelength is shorter. For normal incidence propagation in stratified media, this is the difference between averaging elastic compliance sin the long wavelength limit. In two and three dimensions there is also the path effect. Shorter wavelengths tend to find faster paths, thus biasing the traveltimes to lower values. In the shorter wavelength limit, the slowness inferred from the average traveltime is smaller than the mean slowness of the medium. When the propagation distance is much larger than the scale of the heterogeneity, the path effect causes the velocity increase from long to short wavelengths to be much larger in two dimensions than in one dimension, and even larger in three dimensions. The amount of velocity dispersion can be understood theoretically, but there is some discrepancy between theory and experiment as to what ratio of wavelength to heterogeneity scale separates the long and short wavelength limits. The scale-dependent traveltime implies that a measured velocity depends not just on rock properties, but also on the scale of the measurement relative to he scale of the geology.

  19. Trace contaminant determination in fish scale by laser ablation technique

    SciTech Connect (OSTI)

    Lee, I.; Coutant, C.C.; Arakawa, E.T.

    1993-06-01T23:59:59.000Z

    Laser ablation on rings of fish scale has been used to analyze the historical accumulation of polychlorinated biphenyls (PCB) in striped bass in the Watts Bar Reservoir. Rings on a fish scale grow in a pattern that forms a record of the fish`s chemical intake. In conjunction with the migration patterns of fish monitored by ecologists, relative PCB concentrations in the seasonal rings of fish scale can be used to study the PCB distribution in the reservoir. In this study, a tightly-focused laser beam from a XeCl excimer laser was used to ablate and ionize a small portion of a fish scale placed in a vacuum chamber. The ions were identified and quantified by a time-of-flight mass spectrometer. Studies of this type can provide valuable information for the Department of Energy`s (DOE) off-site clean-up efforts as well as identifying the impacts of other sources to local aquatic populations.

  20. Transverse electron-scale instability in relativistic shear flows

    E-Print Network [OSTI]

    Alves, E P; Fonseca, R A; Silva, L O

    2015-01-01T23:59:59.000Z

    Electron-scale surface waves are shown to be unstable in the transverse plane of a shear flow in an initially unmagnetized plasma, unlike in the (magneto)hydrodynamics case. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroom-like electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. Macroscopic ($\\gg c/\\omega_{pe}$) fields are shown to be generated by these microscopic shear instabilities, which are relevant for particle acceleration, radiation emission and to seed MHD processes at long time-scales.

  1. The Evolving Block Universe and the Meshing Together of Times

    E-Print Network [OSTI]

    George F R Ellis

    2014-07-27T23:59:59.000Z

    It is proposed that spacetime should be regarded as an evolving block universe, bounded to the future by the present time, which continually extends to the future. This future boundary is defined at each time by measuring proper time along Ricci eigenlines from the start of the universe. A key point is that physical reality can be represented at many different scales: hence the passage of times may be seen as different at different scales, with quantum gravity determining the evolution of space time itself but quantum field theory determining the evolution of events within spacetime .The fundamental issue then arises as to how the effective times at different scales mesh together, leading to the concept so global and local times.

  2. IEEE TRANSACTIONS ON VISUALIZATION & COMPUTER GRAPHICS 1 Radiance Transfer Biclustering for Real-time

    E-Print Network [OSTI]

    Zhou, Kun

    --We present a real-time algorithm to render all-frequency radiance transfer at both macro-scale and meso-scale. At a meso-scale, the shading is computed on a per-pixel basis by integrating the product of the local inci in a meso-scale, densely sampled at each pixel and mapped over the object. The bi-scale transfer

  3. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi

    2015-03-29T23:59:59.000Z

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  4. Mind the Gap: Supersymmetry Breaking in Scaling, Microstate Geometries

    E-Print Network [OSTI]

    Orestis Vasilakis; Nicholas P. Warner

    2011-06-30T23:59:59.000Z

    We use a multi-species supertube solution to construct an example of a scaling microstate geometry for non-BPS black rings in five dimensions. We obtain the asymptotic charges of the microstate geometry and show how the solution is related to the corresponding non-BPS black ring. The supersymmetry is broken in a very controlled manner using holonomy and this enables a close comparison with a scaling, BPS microstate geometry. Requiring that there are no closed time-like curves near the supertubes places additional restrictions on the moduli space of physical, non-BPS solutions when compared to their BPS analogs. For large holonomy the scaling non-BPS solution always has closed time-like curves while for smaller holonomy there is a "gap" in the non-BPS moduli space relative to the BPS counterpart.

  5. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    Bel, G; Toots, M; Bandi, M M

    2015-01-01T23:59:59.000Z

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  6. Adam-Gibbs model in the density scaling regime and its implications for the configurational entropy scaling

    E-Print Network [OSTI]

    Elzbieta Masiewicz; Andrzej Grzybowski; Katarzyna Grzybowska; Sebastian Pawlus; Jürgen Pionteck; Marian Paluch

    2015-01-11T23:59:59.000Z

    To solve a long-standing problem of condensed matter physics with determining a proper description of the thermodynamic evolution of the time scale of molecular dynamics near the glass transition, we extend the well-known Adam-Gibbs model to describe the temperature-volume dependence of structural relaxation times, ${\\tau}_{\\alpha} (T,V)$. We employ the thermodynamic scaling idea reflected in the density scaling power law, ${\\tau}_{\\alpha}=f(T^{-1} V^{-\\gamma } ) $, recently acknowledged as a valid unifying concept in the glass transition physics, to discriminate between physically relevant and irrelevant attempts at formulating the temperature-volume representations of the Adam-Gibbs model. As a consequence, we determine a straightforward relation between the structural relaxation time ${\\tau}_{\\alpha}$ and the configurational entropy $S_c$, giving evidence that also $S_c (T,V)=g(T^{-1} V^{-\\gamma} )$ with the exponent {\\gamma} that enables to scale ${\\tau}_{\\alpha} (T,V)$. This important finding has meaningful implications for the linkage between thermodynamics and molecular dynamics near the glass transition, because it implies that ${\\tau}_{\\alpha}$ can be scaled with $S_c$.

  7. Mechanistically-Based Field-Scale Models of Uranium Biogeochemistry from Upscaling Pore-Scale Experiments and Models

    SciTech Connect (OSTI)

    Tim Scheibe; Alexandre Tartakovsky; Brian Wood; Joe Seymour

    2007-04-19T23:59:59.000Z

    Effective environmental management of DOE sites requires reliable prediction of reactive transport phenomena. A central issue in prediction of subsurface reactive transport is the impact of multiscale physical, chemical, and biological heterogeneity. Heterogeneity manifests itself through incomplete mixing of reactants at scales below those at which concentrations are explicitly defined (i.e., the numerical grid scale). This results in a mismatch between simulated reaction processes (formulated in terms of average concentrations) and actual processes (controlled by local concentrations). At the field scale, this results in apparent scale-dependence of model parameters and inability to utilize laboratory parameters in field models. Accordingly, most field modeling efforts are restricted to empirical estimation of model parameters by fitting to field observations, which renders extrapolation of model predictions beyond fitted conditions unreliable. The objective of this project is to develop a theoretical and computational framework for (1) connecting models of coupled reactive transport from pore-scale processes to field-scale bioremediation through a hierarchy of models that maintain crucial information from the smaller scales at the larger scales; and (2) quantifying the uncertainty that is introduced by both the upscaling process and uncertainty in physical parameters. One of the challenges of addressing scale-dependent effects of coupled processes in heterogeneous porous media is the problem-specificity of solutions. Much effort has been aimed at developing generalized scaling laws or theories, but these require restrictive assumptions that render them ineffective in many real problems. We propose instead an approach that applies physical and numerical experiments at small scales (specifically the pore scale) to a selected model system in order to identify the scaling approach appropriate to that type of problem. Although the results of such studies will generally not be applicable to other broad classes of problems, we believe that this approach (if applied over time to many types of problems) offers greater potential for long-term progress than attempts to discover a universal solution or theory. We are developing and testing this approach using porous media and model reaction systems that can be both experimentally measured and quantitatively simulated at the pore scale, specifically biofilm development and metal reduction in granular porous media. The general approach we are using in this research follows the following steps: (1) Perform pore-scale characterization of pore geometry and biofilm development in selected porous media systems. (2) Simulate selected reactive transport processes at the pore scale in experimentally measured pore geometries. (3) Validate pore-scale models against laboratory-scale experiments. (4) Perform upscaling to derive continuum-scale (local darcy scale) process descriptions and effective parameters. (5) Use upscaled models and parameters to simulate reactive transport at the continuum scale in a macroscopically heterogeneous medium.

  8. Thermodynamics and Finite size scaling in Scalar Field Theory

    E-Print Network [OSTI]

    Thermodynamics and Finite size scaling in Scalar Field Theory A thesis submitted to the Tata Research, Mumbai December 2008 #12;ii #12;Synopsis In this work we study the thermodynamics of an interacting 4 theory in 4 space- time dimensions. The expressions for the thermodynamic quantities are worked

  9. Thermodynamics and Finite size scaling in Scalar Field Theory

    E-Print Network [OSTI]

    Debasish Banerjee; Saumen Datta; Sourendu Gupta

    2008-12-05T23:59:59.000Z

    In this work we consider the 1-component real scalar $\\phi^4$ theory in 4 space-time dimensions on the lattice and investigate the finite size scaling of thermodynamic quantities to study whether the thermodynamic limit is attained. The results are obtained for the symmetric phase of the theory.

  10. High-resolution, multi-scale modeling of watershed hydrology

    E-Print Network [OSTI]

    Vivoni, Enrique R.

    Enrique R. Vivoni An Opportunity to Integrate Remote Sensing Observations, Field Data Collection distribution of topography, rainfall, soils, vegetation, meteorology, soil moisture. Field Data and Remote's Hydrologic and Energetic System: Water and Heat Storages and Transports over Many Time and Space Scales P ET

  11. Test Administration Instructions for the Fullerton Advanced Balance (FAB) Scale

    E-Print Network [OSTI]

    de Lijser, Peter

    Test Administration Instructions for the Fullerton Advanced Balance (FAB) Scale 1. Stand with feet: Stopwatch with lanyard (for placing around neck). Safety Procedures: Position person being tested n a corner at eye level so participant and time can be monitored simultaneously. Testing procedures: Demonstrate

  12. Microfluidics: Fluid physics at the nanoliter scale Todd M. Squires*

    E-Print Network [OSTI]

    Quake, Stephen R.

    Microfluidics: Fluid physics at the nanoliter scale Todd M. Squires* Departments of Physics by vastly reducing the space, labor, and time required for calculations. Microfluidic systems hold similar, the long-range nature of viscous flows and the small device dimensions inherent in microfluidics mean

  13. Study of Multi-Scale Plant-Groundwater Interactions 

    E-Print Network [OSTI]

    Gou, Si

    2014-05-30T23:59:59.000Z

    groundwater-land surface model, ParFlow.CLM, to develop a spatial distributed ecohydrological model at the stand scale (~1000 m^(2)). The modified ParFlow.CLM was used to conduct a 8-year simulation with half hourly time step at a AmeriFlux oak savanna site...

  14. GLOBAL AND ADAPTIVE SCALING IN A SEPARABLE ...

    E-Print Network [OSTI]

    2007-10-19T23:59:59.000Z

    programs confirm that Adaptive Global Scaling subsumes former scaling ...... Then, the compact convex set B of symmetric matrices eigeinvalues of which.

  15. Sandia National Laboratories: characterizing Scaled Wind Farm...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterizing Scaled Wind Farm Technology facility inflow Characterizing Scaled Wind Farm Technology Facility Inflow On April 1, 2014, in Energy, News, News & Events, Partnership,...

  16. Materials Engineering Research Colloquium Time Presenter Title

    E-Print Network [OSTI]

    British Columbia, University of

    , University of British Columbia Research Summary: As the phase scale of a material changes, so does its. #12;Materials Engineering Research Colloquium April 2007 Schedule: Time Presenter Title 10:30 D. Azizi-Alizamini Microstructural Evolution and Mechanical Properties of Ultrafine Grained Low Carbon

  17. The Large Observatory For x-ray Timing

    E-Print Network [OSTI]

    Feroci, M; Bozzo, E; Barret, D; Brandt, S; Hernanz, M; van der Klis, M; Pohl, M; Santangelo, A; Stella, L; Watts, A; Wilms, J; Zane, S; Ahangarianabhari, M; Albertus, C; Alford, M; Alpar, A; Altamirano, D; Alvarez, L; Amati, L; Amoros, C; Andersson, N; Antonelli, A; Argan, A; Artigue, R; Artigues, B; Atteia, J -L; Azzarello, P; Bakala, P; Baldazzi, G; Balman, S; Barbera, M; van Baren, C; Bhattacharyya, S; Baykal, A; Belloni, T; Bernardini, F; Bertuccio, G; Bianchi, S; Bianchini, A; Binko, P; Blay, P; Bocchino, F; Bodin, P; Bombaci, I; Bidaud, J -M Bonnet; Boutloukos, S; Bradley, L; Braga, J; Brown, E; Bucciantini, N; Burderi, L; Burgay, M; Bursa, M; Budtz-Jørgensen, C; Cackett, E; Cadoux, F R; Cais, P; Caliandro, G A; Campana, R; Campana, S; Capitanio, F; Casares, J; Casella, P; Castro-Tirado, A J; Cavazzuti, E; Cerda-Duran, P; Chakrabarty, D; Château, F; Chenevez, J; Coker, J; Cole, R; Collura, A; Cornelisse, R; Courvoisier, T; Cros, A; Cumming, A; Cusumano, G; D'Aì, A; D'Elia, V; Del Monte, E; De Luca, A; De Martino, D; Dercksen, J P C; De Pasquale, M; De Rosa, A; Del Santo, M; Di Cosimo, S; Diebold, S; Di Salvo, T; 1), I Donnarumma; (32), A Drago; (33), M Durant; (107), D Emmanoulopoulos; (135), M H Erkut; (85), P Esposito; (1, Y Evangelista; 1b),; (24), A Fabian; (34), M Falanga; (25), Y Favre; (35), C Feldman; (128), V Ferrari; (3), C Ferrigno; (133), M Finger; (36), M H Finger; (35, G W Fraser; +),; (2), M Frericks; (7), F Fuschino; (125), M Gabler; (37), D K Galloway; (6), J L Galvez Sanchez; (6), E Garcia-Berro; (10), B Gendre; (62), S Gezari; (39), A B Giles; (40), M Gilfanov; (10), P Giommi; (102), G Giovannini; (102), M Giroletti; (4), E Gogus; (105), A Goldwurm; (86), K Goluchová; (16), D Götz; (16), C Gouiffes; (56), M Grassi; (42), P Groot; (17), M Gschwender; (128), L Gualtieri; (32), C Guidorzi; (3), L Guy; (2), D Haas; (50), P Haensel; (29), M Hailey; (19), F Hansen; (42), D H Hartmann; (43), C A Haswell; (88), K Hebeler; (37), A Heger; (2), W Hermsen; (28), J Homan; (19), A Hornstrup; (23, R Hudec; 72),; (45), J Huovelin; (5), A Ingram; (2), J J M in't Zand; (27), G Israel; (20), K Iwasawa; (47), L Izzo; (2), H M Jacobs; (17), F Jetter; (118, T Johannsen; 127),; (2), H M Jacobs; (2), P Jonker; (126), J Josè; (49), P Kaaret; (123), G Kanbach; (23), V Karas; (6), D Karelin; (29), D Kataria; (49), L Keek; (29), T Kennedy; (17), D Klochkov; (50), W Kluzniak; (17), K Kokkotas; (45), S Korpela; (51), C Kouveliotou; (87), I Kreykenbohm; (2), L M Kuiper; (19), I Kuvvetli; (7), C Labanti; (52), D Lai; (53), F K Lamb; (2), P P Laubert; (105), F Lebrun; (8), D Lin; (29), D Linder; (54), G Lodato; (55), F Longo; (19), N Lund; (131), T J Maccarone; (14), D Macera; (8), S Maestre; (62), S Mahmoodifar; (17), D Maier; (56), P Malcovati; (120), I Mandel; (144), V Mangano; (50), A Manousakis; (7), M Marisaldi; (109), A Markowitz; (35), A Martindale; (59), G Matt; (107), I M McHardy; (60), A Melatos; (61), M Mendez; (85), S Mereghetti; (68), M Michalska; (20), S Migliari; (85, R Mignani; 108),; (62), M C Miller; (49), J M Miller; (57), T Mineo; (112), G Miniutti; (64), S Morsink; (65), C Motch; (13), S Motta; (66), M Mouchet; (8), G Mouret; (19), J Mula?ová; (1, F Muleri; 1b),; (140), T Muñoz-Darias; (95), I Negueruela; (28), J Neilsen; (43), A J Norton; (28), M Nowak; (35), P O'Brien; (19), P E H Olsen; (102), M Orienti; (99, M Orio; 110),; (7), M Orlandini; (68), P Orleanski; (35), J P Osborne; (69), R Osten; (70), F Ozel; (1, L Pacciani; 1b),; (119), M Paolillo; (6), A Papitto; (20), J M Paredes; (83, A Patruno; 141),; (71), B Paul; (17), E Perinati; (115), A Pellizzoni; (47), A V Penacchioni; (136), M A Perez; (72), V Petracek; (10), C Pittori; (95), J Pons; (6), J Portell; (115), A Possenti; (73), J Poutanen; (122), M Prakash; (16), P Le Provost; (70), D Psaltis; (8), D Rambaud; (8), P Ramon; (76), G Ramsay; (1, M Rapisarda; 1b),; (77), A Rachevski; (77), I Rashevskaya; (78), P S Ray; (6), N Rea; (80), S Reddy; (113, P Reig; 81),; (63), M Reina Aranda; (28), R Remillard; (62), C Reynolds; (124), L Rezzolla; (20), M Ribo; (2), R de la Rie; (115), A Riggio; (138), A Rios; (82, P Rodríguez- Gil; 104),; (16), J Rodriguez; (3), R Rohlfs; (57), P Romano; (83), E M R Rossi; (50), A Rozanska; (29), A Rousseau; (84), F Ryde; (63), L Sabau-Graziati; (6), G Sala; (85), R Salvaterra; (61), A Sanna; (134), J Sandberg; (130), S Scaringi; (16), S Schanne; (86), J Schee; (87), C Schmid; (117), S Shore; (27), R Schneider; (88), A Schwenk; (89), A D Schwope; (114), J -Y Seyler; (90), A Shearer; (29), A Smith; (58), D M Smith; (29), P J Smith; (23), V Sochora; (1), P Soffitta; (61), P Soleri; (29), A Spencer

    2014-01-01T23:59:59.000Z

    The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we ...

  18. Scaling Properties of Universal Tetramers

    SciTech Connect (OSTI)

    Hadizadeh, M. R.; Yamashita, M. T. [Instituto de Fisica Teorica, Universidade Estadual Paulista, 01140-070, Sao Paulo, SP (Brazil); Tomio, Lauro [Instituto de Fisica Teorica, Universidade Estadual Paulista, 01140-070, Sao Paulo, SP (Brazil); Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminense, 24210-346, Niteroi, RJ (Brazil); Frederico, T. [Instituto Tecnologico de Aeronautica, 12228-900, Sao Jose dos Campos, SP (Brazil)

    2011-09-23T23:59:59.000Z

    We evidence the existence of a universal correlation between the binding energies of successive four-boson bound states (tetramers), for large two-body scattering lengths (a), related to an additional scale not constrained by three-body Efimov physics. Relevant to ultracold atom experiments, the atom-trimer relaxation peaks for |a|{yields}{infinity} when the ratio between the tetramer and trimer energies is {approx_equal}4.6 and a new tetramer is formed. The new scale is also revealed for a<0 by the prediction of a correlation between the positions of two successive peaks in the four-atom recombination process.

  19. Global Warming in Geologic Time

    ScienceCinema (OSTI)

    David Archer

    2010-01-08T23:59:59.000Z

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  20. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    David Archer

    2008-02-27T23:59:59.000Z

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  1. Method and appartus for converting static in-ground vehicle scales into weigh-in-motion systems

    DOE Patents [OSTI]

    Muhs, Jeffrey D. (Lenior City, TN); Scudiere, Matthew B. (Oak Ridge, TN); Jordan, John K. (Oak Ridge, TN)

    2002-01-01T23:59:59.000Z

    An apparatus and method for converting in-ground static weighing scales for vehicles to weigh-in-motion systems. The apparatus upon conversion includes the existing in-ground static scale, peripheral switches and an electronic module for automatic computation of the weight. By monitoring the velocity, tire position, axle spacing, and real time output from existing static scales as a vehicle drives over the scales, the system determines when an axle of a vehicle is on the scale at a given time, monitors the combined weight output from any given axle combination on the scale(s) at any given time, and from these measurements automatically computes the weight of each individual axle and gross vehicle weight by an integration, integration approximation, and/or signal averaging technique.

  2. Scaling the Web Composing Web

    E-Print Network [OSTI]

    Menascé, Daniel A.

    Scaling the Web Composing Web Services:A QoS View A n Internet application can invoke several ser- vices -- a stock-trading Web service, for example, could invoke a payment service, which could then invoke an authentication service. Such a scenario is called a composite Web service, and it can

  3. Buoyancy Effects on the Scaling Characteristics of Atmospheric Boundary Layer Wind Fields in the Mesoscale Range

    E-Print Network [OSTI]

    Kiliyanpilakkil, V P; Ruiz-Columbié, A; Araya, G; Castillo, L; Hirth, B; Burgett, W

    2015-01-01T23:59:59.000Z

    We have analyzed long-term wind speed time-series from five field sites up to a height of 300 m from the ground. Structure function-based scaling analysis has revealed that the scaling exponents in the mesoscale regime systematically depend on height. This anomalous behavior is shown to be caused by the buoyancy effects. In the framework of the extended self-similarity, the relative scaling exponents portray quasi-universal behavior.

  4. Quantum electrodynamics with anisotropic scaling: Heisenberg-Euler action and Schwinger pair production in the bilayer graphene

    E-Print Network [OSTI]

    M. I. Katsnelson; G. E. Volovik

    2012-03-19T23:59:59.000Z

    We discuss quantum electrodynamics emerging in the vacua with anisotropic scaling. Systems with anisotropic scaling were suggested by Horava in relation to the quantum theory of gravity. In such vacua the space and time are not equivalent, and moreover they obey different scaling laws, called the anisotropic scaling. Such anisotropic scaling takes place for fermions in bilayer graphene, where if one neglects the trigonal warping effects the massless Dirac fermions have quadratic dispersion. This results in the anisotropic quantum electrodynamics, in which electric and magnetic fields obey different scaling laws. Here we discuss the Heisenberg-Euler action and Schwinger pair production in such anisotropic QED

  5. Visualization of Large-Scale Distributed Data

    E-Print Network [OSTI]

    Johnson, Andrew

    that are now considered the "lenses" for examining large-scale data. THE LARGE-SCALE DATA VISUALIZATIONVisualization of Large-Scale Distributed Data Jason Leigh1 , Andrew Johnson1 , Luc Renambot1 representation of data and the interactive manipulation and querying of the visualization. Large-scale data

  6. Hierarchy problem, gauge coupling unification at the Planck scale, and vacuum stability

    E-Print Network [OSTI]

    Yamaguchi, Yuya

    2015-01-01T23:59:59.000Z

    To solve the hierarchy problem of the Higgs mass, it may be suggested that there are no an intermediate scale up to the Planck scale except for the TeV scale. For this motivation, we investigate possibilities of gauge coupling unification (GCU) at the Planck scale ($M_{Pl} = 2.4 \\times 10^{18}\\,{\\rm GeV}$) by adding extra particles with the TeV scale mass into the standard model. We find that the GCU at the Planck scale can be realized by extra particles including some relevant scalars, while it cannot be realized only by extra fermions with the same masses. On the other hand, when extra fermions have different masses, the GCU can be realized around $\\sqrt{8 \\pi} M_{Pl}$. By this extension, the vacuum can become stable up to the Planck scale.

  7. Large-scale Intelligent Transporation Systems simulation

    SciTech Connect (OSTI)

    Ewing, T.; Canfield, T.; Hannebutte, U.; Levine, D.; Tentner, A.

    1995-06-01T23:59:59.000Z

    A prototype computer system has been developed which defines a high-level architecture for a large-scale, comprehensive, scalable simulation of an Intelligent Transportation System (ITS) capable of running on massively parallel computers and distributed (networked) computer systems. The prototype includes the modelling of instrumented ``smart`` vehicles with in-vehicle navigation units capable of optimal route planning and Traffic Management Centers (TMC). The TMC has probe vehicle tracking capabilities (display position and attributes of instrumented vehicles), and can provide 2-way interaction with traffic to provide advisories and link times. Both the in-vehicle navigation module and the TMC feature detailed graphical user interfaces to support human-factors studies. The prototype has been developed on a distributed system of networked UNIX computers but is designed to run on ANL`s IBM SP-X parallel computer system for large scale problems. A novel feature of our design is that vehicles will be represented by autonomus computer processes, each with a behavior model which performs independent route selection and reacts to external traffic events much like real vehicles. With this approach, one will be able to take advantage of emerging massively parallel processor (MPP) systems.

  8. 2T Physics, Scale Invariance and Topological Vector Fields

    E-Print Network [OSTI]

    W. Chagas-Filho

    2007-11-22T23:59:59.000Z

    We construct, in classical two-time physics, the necessary structure for the most general configuration space formulation of quantum mechanics containing gravity in d+2 dimensions. This structure is composed of a symmetric Riemannian metric tensor and of a vector field that defines a section of a flat U(1) bundle over space-time. This construction is possible because of the existence of a finite local scale invariance of the Hamiltonian and because two-time physics contains, at the classical level, a local generalization of the discrete duality symmetry between position and momentum that underlies the structure of quantum mechanics.

  9. Progress in Fast, Accurate Multi-scale Climate Simulations

    SciTech Connect (OSTI)

    Collins, William D [Lawrence Berkeley National Laboratory (LBNL); Johansen, Hans [Lawrence Berkeley National Laboratory (LBNL); Evans, Katherine J [ORNL; Woodward, Carol S. [Lawrence Livermore National Laboratory (LLNL); Caldwell, Peter [Lawrence Livermore National Laboratory (LLNL)

    2015-01-01T23:59:59.000Z

    We present a survey of physical and computational techniques that have the potential to con- tribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enabling improved accuracy and fidelity in simulation of dynamics and allow more complete representations of climate features at the global scale. At the same time, part- nerships with computer science teams have focused on taking advantage of evolving computer architectures, such as many-core processors and GPUs, so that these approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.

  10. Brane World Models Need Low String Scale

    E-Print Network [OSTI]

    Antoniadis, Ignatios; Calmet, Xavier

    2011-01-01T23:59:59.000Z

    Models with large extra dimensions offer the possibility of the Planck scale being of order the electroweak scale, thus alleviating the gauge hierarchy problem. We show that these models suffer from a breakdown of unitarity at around three quarters of the low effective Planck scale. An obvious candidate to fix the unitarity problem is string theory. We therefore argue that it is necessary for the string scale to appear below the effective Planck scale and that the first signature of such models would be string resonances. We further translate experimental bounds on the string scale into bounds on the effective Planck scale.

  11. Challenges and Opportunities in Large-Scale Deployment of Automated Energy Consumption

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    to the locational marginal price (LMP) at that bus. We show that a key challenge in large- scale deployment of ECS, locational marginal price. I. INTRODUCTION Real-time and time-of-use electricity pricing models can- edge among users on how to respond to time-varying prices and the lack of effective home automation

  12. The Nature of Subproton Scale Turbulence in the Solar Wind

    E-Print Network [OSTI]

    Chen, C H K; Xia, Q; Perez, J C

    2013-01-01T23:59:59.000Z

    The nature of subproton scale fluctuations in the solar wind is an open question, partly because two similar types of electromagnetic turbulence can occur: kinetic Alfven turbulence and whistler turbulence. These two possibilities, however, have one key qualitative difference: whistler turbulence, unlike kinetic Alfven turbulence, has negligible power in density fluctuations. In this Letter, we present new observational data, as well as analytical and numerical results, to investigate this difference. The results show, for the first time, that the fluctuations well below the proton scale are predominantly kinetic Alfven turbulence, and, if present at all, the whistler fluctuations make up only a small fraction of the total energy.

  13. Stresses in thermally grown alumina scales near edges and corners.

    SciTech Connect (OSTI)

    Grimsditch, M.

    1998-06-03T23:59:59.000Z

    We have investigated the residual stress near edges and corners of thermally grown alumina scales. Micro-fluorescence measurements, performed on alloys with composition Fe-5Cr-28Al (at.%, bal. Fe) oxidized at 900 C, showed a large (>50%) reduction in hydrostatic stress in the vicinity of edges and corners. Surprisingly, stress relaxation persists out to distances ten times the scale thickness from the edge. Finite element analysis calculations confirm the experimental results and provide a considerably more detailed picture of the stress distribution and its components.

  14. Density-Transition Scale at Quasiperpendicular Collisionless Shocks S. D. Bale* and F. S. Mozer

    E-Print Network [OSTI]

    California at Berkeley, University of

    , the macroscopic density transition scale at 98 crossings of the quasiperpendicular terrestrial bow shock. A timing scales much smaller than a collisional mean free path. The terrestrial bow shock forms from a fast for some viscosity , where vsh is the shock velocity in the plasma frame. Thermal conduction does

  15. SCALE INSECTS in MA CRANBERRY Martha M. Sylvia and Anne L. Averill

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    bloom. This is the time when the insects spread, and build up to high densities, particularly on thick their own shell covering, which grows as the scale does. Crawlers can be picked up by the wind (Left figure again in August. The scales settle in areas where the bark has lifted up; as the bark grows over

  16. Varenna Proceedings, Sept. 1, 1998 The Dynamics of Small-Scale Turbulence-Driven Flows

    E-Print Network [OSTI]

    Hammett, Greg

    of a linearly undamped component of the flow which could build up in time and lower the final turbulence levelVarenna Proceedings, Sept. 1, 1998 The Dynamics of Small-Scale Turbulence-Driven Flows M. A. Beer investigate the dynamics of small-scale turbulence-driven sheared E B flows in nonlinear gyrofluid

  17. DRAFT August 29, 1998 The Dynamics of Small-Scale Turbulence-Driven Flows

    E-Print Network [OSTI]

    Hammett, Greg

    the existence of a linearly undamped component of the flow which could build up in time and lower the finalDRAFT August 29, 1998 The Dynamics of Small-Scale Turbulence-Driven Flows M. A. Beer and G. W the dynamics of small-scale turbulence-driven sheared ¢¡¤£ flows in nonlinear gyrofluid simulations

  18. Macro-scale Bubbles for Aligning Carbon Nanotubes Jordan Hoyt,1

    E-Print Network [OSTI]

    UG-18 Macro-scale Bubbles for Aligning Carbon Nanotubes Jordan Hoyt,1 Shota Ushiba,2-wall carbon nanotubes (SWCNTs) exhibit high aspect ratios that can lead to extreme anisotropic mechanical-scale bubble structures to align SWCNTs in larger quantities and in less time compared to pre-existing methods

  19. 2. Scaling Laws and Complexity in Fire Donald McKenzie and Maureen Kennedy

    E-Print Network [OSTI]

    to define and quantify scales in communities or ecosystems. 2.1 Scale and Contagious Disturbance A contagious disturbance is one that spreads across a landscape over time, and whose intensity depends;2 2002). Some natural hazards (Cello and Malamud 2006), such as wildfires, are therefore contagious

  20. Domain Controlled Architecture A New Approach for Large Scale Software Integrated Automotive Systems

    E-Print Network [OSTI]

    Kühnhauser, Winfried

    Domain Controlled Architecture A New Approach for Large Scale Software Integrated Automotive Scale Software Integration, LSSI, Automotive Real Time, Multi-core, Many-core, Embedded Automo- tive mobility domain. The automotive in- dustry is confronted with a rising system complexity and several

  1. Scaling of Lyapunov exponents of coupled chaotic systems Rudiger Zillmer, Volker Ahlers, and Arkady Pikovsky

    E-Print Network [OSTI]

    Pikovsky, Arkady

    Scaling of Lyapunov exponents of coupled chaotic systems Ru¨diger Zillmer, Volker Ahlers in the Lyapunov exponent in coupled chaotic systems at very small couplings. Using a continuous-time stochastic model for the coupled systems we derive a scaling relation for the largest Lyapunov exponent

  2. Proceedings of the 4th Symposium on AtomScale Surface and Interface Dynamics, March 23, 2000, Tsukuba, Japan

    E-Print Network [OSTI]

    , Tsukuba, Japan Ab inito thermodynamics and statistics of semiconductor growth, and self­functional theory based hybrid methods, which bridge the length and time scales from those of electron orbitals seconds. Thus, we are challenged by the need to bridge the length and the time scales by many orders

  3. Engineering Systems Matrix: An organizing framework for modeling large-scale complex systems

    E-Print Network [OSTI]

    Bartolomei, Jason E.

    The scope and complexity of engineered systems are ever-increasing as burgeoning global markets, unprecedented technological capabilities, rising consumer expectations, and ever-changing social requirements present difficult ...

  4. Indianapolis Power and Light- Small-Scale Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    '''''Note: The Small-Scale Renewable Energy Program is currently closed for residential customers. Applications received during this time will be placed on a waiting list. Funds are still available...

  5. Statistical Relationships of the Tropical Rainfall Measurement Mission (TRMM) Precipitation and Large-scale Flow

    E-Print Network [OSTI]

    Borg, Kyle

    2010-07-14T23:59:59.000Z

    temperatures and QuikSCAT surface divergence. We perform correlation analysis, empirical orthogonal function analysis, and logistic regression analysis on monthly, pentad, daily and near-instantaneous time scales. Logistic regression analysis is able...

  6. Centennial-scale elemental and isotopic variability in the tropical and subtropical North Atlantic Ocean

    E-Print Network [OSTI]

    Reuer, Matthew K. (Matthew Kindt), 1972-

    2002-01-01T23:59:59.000Z

    The marine geochemistry of the North Atlantic Ocean varies on decadal to centennial time scales, a consequence of natural and anthropogenic forcing. Surface corals provide a useful geochemical archive to quantify past mixed ...

  7. The scale of cosmic isotropy

    SciTech Connect (OSTI)

    Marinoni, C.; Bel, J.; Buzzi, A., E-mail: christian.marinoni@cpt.univ-mrs.fr, E-mail: Julien.Bel@cpt.univ-mrs.fr, E-mail: Adeline.Buzzi@cpt.univ-mrs.fr [Centre de Physique Théorique, Aix-Marseille Université, CNRS UMR 7332, case 907, F-13288 Marseille (France)

    2012-10-01T23:59:59.000Z

    The most fundamental premise to the standard model of the universe states that the large-scale properties of the universe are the same in all directions and at all comoving positions. Demonstrating this hypothesis has proven to be a formidable challenge. The cross-over scale R{sub iso} above which the galaxy distribution becomes statistically isotropic is vaguely defined and poorly (if not at all) quantified. Here we report on a formalism that allows us to provide an unambiguous operational definition and an estimate of R{sub iso}. We apply the method to galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7, finding that R{sub iso} ? 150h{sup ?1}Mpc. Besides providing a consistency test of the Copernican principle, this result is in agreement with predictions based on numerical simulations of the spatial distribution of galaxies in cold dark matter dominated cosmological models.

  8. Emerging universe from scale invariance

    SciTech Connect (OSTI)

    Del Campo, Sergio; Herrera, Ramón [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso (Chile); Guendelman, Eduardo I. [Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Labraña, Pedro, E-mail: sdelcamp@ucv.cl, E-mail: guendel@bgu.ac.il, E-mail: ramon.herrera@ucv.cl, E-mail: plabrana@ubiobio.cl [Departamento de Física, Universidad del Bío Bío, Avenida Collao 1202, Casilla 5-C, Concepción (Chile)

    2010-06-01T23:59:59.000Z

    We consider a scale invariant model which includes a R{sup 2} term in action and show that a stable ''emerging universe'' scenario is possible. The model belongs to the general class of theories, where an integration measure independent of the metric is introduced. To implement scale invariance (S.I.), a dilaton field is introduced. The integration of the equations of motion associated with the new measure gives rise to the spontaneous symmetry breaking (S.S.B) of S.I. After S.S.B. of S.I. in the model with the R{sup 2} term (and first order formalism applied), it is found that a non trivial potential for the dilaton is generated. The dynamics of the scalar field becomes non linear and these non linearities are instrumental in the stability of some of the emerging universe solutions, which exists for a parameter range of the theory.

  9. Use of dual plane PIV to assess scale-by-scale energy budgets in wall turbulence

    E-Print Network [OSTI]

    Marusic, Ivan

    Use of dual plane PIV to assess scale-by-scale energy budgets in wall turbulence N Saikrishnan1-layer, the buffer region, the logarithmic region and the outer region. In the space of scales, turbulent energy is produced at the large scales and transferred to smaller scales, finally dissipating in the form of heat

  10. Chameleon gravity on cosmological scales

    E-Print Network [OSTI]

    H. Farajollahi; A. Salehi

    2012-06-25T23:59:59.000Z

    In conventional approach to the chameleon mechanism, by assuming a static and spherically symmetric solutions in which matter density and chameleon field are given by $\\rho=\\rho(r)$ and $\\phi=\\phi(r)$, it has been shown that mass of chameleon field is matter density-dependent. In regions of high matter density such as earth, chameleon field is massive, in solar system it is low and in cosmological scales it is very low. In this article we revisit the mechanism in cosmological scales by assuming a redshift dependence of the matter density and chameleon field, i.e. $\\rho=\\rho(z)$, $\\phi=\\phi(z)$. To support our analysis, we best fit the model parameters with the observational data. The result shows that in cosmological scales, the mass of chameleon field increases with the redshift, i.e. more massive in higher redshifts. We also find that in both cases of power-law and exponential potential function, the current universe acceleration can be explained by the low mass chameleon field. In comparison with the high redshift observational data, we also find that the model with power-law potential function is in better agreement with the observational data.

  11. Transition physics and scaling overview

    SciTech Connect (OSTI)

    Carlstrom, T.N.

    1995-12-01T23:59:59.000Z

    This paper presents an overview of recent experimental progress towards understanding H-mode transition physics and scaling. Terminology and techniques for studying H-mode are reviewed and discussed. The model of shear E x B flow stabilization of edge fluctuations at the L-H transition is gaining wide acceptance and is further supported by observations of edge rotation on a number of new devices. Observations of poloidal asymmetries of edge fluctuations and dephasing of density and potential fluctuations after the transition pose interesting challenges for understanding H-mode physics. Dedicated scans to determine the scaling of the power threshold have now been performed on many machines. A dear B{sub t} dependence is universally observed but dependence on the line averaged density is complicated. Other dependencies are also reported. Studies of the effect of neutrals and error fields on the power threshold are under investigation. The ITER threshold database has matured and offers guidance to the power threshold scaling issues relevant to next-step devices.

  12. Scattering and; Delay, Scale, and Sum Migration

    SciTech Connect (OSTI)

    Lehman, S K

    2011-07-06T23:59:59.000Z

    How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes an object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine the direction of arrival of a signal, and seismic migration in which wide band time series are shifted but not to form images per se. Section 3 presents a mostly graphically-based motivation and summary of delay, scale, and sum beamforming. The model for incident field propagation in free space is derived in Section 4 under specific assumptions. General object scattering is derived in Section 5 and simplified under the Born approximation in Section 6. The model of this section serves as the basis in the derivation of time-domain migration. The Foldy-Lax, full point scatterer scattering, method is derived in Section 7. With the previous forward models in hand, delay, scale, and sum beamforming is derived in Section 8. Finally, proof-of-principle experiments are present in Section 9.

  13. Falsifying High-Scale Leptogenesis at the LHC

    E-Print Network [OSTI]

    Frank F. Deppisch; Julia Harz; Martin Hirsch

    2014-06-23T23:59:59.000Z

    Measuring a non-zero value for the cross section of any lepton number violating (LNV) process would put a strong lower limit on the washout factor for the effective lepton number density in the early universe at times close to the electroweak phase transition and thus would lead to important constraints on any high-scale model for the generation of the observed baryon asymmetry based on LNV. In particular, for leptogenesis models with masses of the right-handed neutrinos heavier than the mass scale observed at the LHC, the implied large washout factors would lead to a violation of the out-of-equilibrium condition and exponentially suppress the net lepton number produced in such leptogenesis models. We thus demonstrate that the observation of LNV processes at the LHC results in the falsification of high-scale leptogenesis models. However, no conclusions about the viability of leptogenesis models can be drawn from the non-observation of LNV processes.

  14. Accurate complex scaling of three dimensional numerical potentials

    SciTech Connect (OSTI)

    Cerioni, Alessandro [European Synchrotron Radiation Facility, 6 rue Horowitz, BP220 38043 Grenoble Cedex 9 (France); Genovese, Luigi; Duchemin, Ivan; Deutsch, Thierry [Laboratoire de simulation atomistique (L-Sim), SP2M, UMR-E CEA/UJF-Grenoble 1, INAC, Grenoble F-38054 (France)

    2013-05-28T23:59:59.000Z

    The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable to apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scaling of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.

  15. LAMMPS strong scaling performance optimization on Blue Gene/Q

    SciTech Connect (OSTI)

    Coffman, Paul; Jiang, Wei; Romero, Nichols A.

    2014-11-12T23:59:59.000Z

    LAMMPS "Large-scale Atomic/Molecular Massively Parallel Simulator" is an open-source molecular dynamics package from Sandia National Laboratories. Significant performance improvements in strong-scaling and time-to-solution for this application on IBM's Blue Gene/Q have been achieved through computational optimizations of the OpenMP versions of the short-range Lennard-Jones term of the CHARMM force field and the long-range Coulombic interaction implemented with the PPPM (particle-particle-particle mesh) algorithm, enhanced by runtime parameter settings controlling thread utilization. Additionally, MPI communication performance improvements were made to the PPPM calculation by re-engineering the parallel 3D FFT to use MPICH collectives instead of point-to-point. Performance testing was done using an 8.4-million atom simulation scaling up to 16 racks on the Mira system at Argonne Leadership Computing Facility (ALCF). Speedups resulting from this effort were in some cases over 2x.

  16. Inflation with a Planck-scale frequency cutoff

    E-Print Network [OSTI]

    J. C. Niemeyer

    2000-11-22T23:59:59.000Z

    The implementation of a Planck-scale high frequency and short wavelength cutoff in quantum theories on expanding backgrounds may have potentially nontrivial implications, such as the breaking of local Lorentz invariance and the existence of a yet unknown mechanism for the creation of vacuum modes. In scenarios where inflation begins close to the cutoff scale, these effects could have observable consequences as trans-Planckian modes are redshifted to cosmological scales. In close analogy with similar studies of Hawking radiation, a simple theory of a minimally coupled scalar field in de Sitter space is studied, with a high frequency cutoff imposed by a nonlinear dispersion relation. Under certain conditions the model predicts deviations from the standard inflationary scenario. We also comment on the difficulties in generalizing fluid models of Hawking radiation to cosmological space-times.

  17. Toward Improved Support for Loosely Coupled Large Scale Simulation Workflows

    SciTech Connect (OSTI)

    Boehm, Swen [ORNL] [ORNL; Elwasif, Wael R [ORNL] [ORNL; Naughton, III, Thomas J [ORNL; Vallee, Geoffroy R [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    High-performance computing (HPC) workloads are increasingly leveraging loosely coupled large scale simula- tions. Unfortunately, most large-scale HPC platforms, including Cray/ALPS environments, are designed for the execution of long-running jobs based on coarse-grained launch capabilities (e.g., one MPI rank per core on all allocated compute nodes). This assumption limits capability-class workload campaigns that require large numbers of discrete or loosely coupled simulations, and where time-to-solution is an untenable pacing issue. This paper describes the challenges related to the support of fine-grained launch capabilities that are necessary for the execution of loosely coupled large scale simulations on Cray/ALPS platforms. More precisely, we present the details of an enhanced runtime system to support this use case, and report on initial results from early testing on systems at Oak Ridge National Laboratory.

  18. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    SciTech Connect (OSTI)

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.; Zachara, John M.; Zhu, Weihuang

    2013-03-15T23:59:59.000Z

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on the temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.

  19. Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens Using Proteomic Data from a Field Biostimulation Experiment

    SciTech Connect (OSTI)

    Fang, Yilin; Wilkins, Michael J.; Yabusaki, Steven B.; Lipton, Mary S.; Long, Philip E.

    2012-12-12T23:59:59.000Z

    Biomass and shotgun global proteomics data that reflected relative protein abundances from samples collected during the 2008 experiment at the U.S. Department of Energy Integrated Field-Scale Subsurface Research Challenge site in Rifle, Colorado, provided an unprecedented opportunity to validate a genome-scale metabolic model of Geobacter metallireducens and assess its performance with respect to prediction of metal reduction, biomass yield, and growth rate under dynamic field conditions. Reconstructed from annotated genomic sequence, biochemical, and physiological data, the constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low fluxes through amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.

  20. Reliable Downlink Scheduling for Wireless Networks with Real-Time and Non-Real Time Clients 

    E-Print Network [OSTI]

    Jain, Abhishek

    2014-08-05T23:59:59.000Z

    is general enough to be implemented in IEEE 802.11e based wireless network [44]. 3.2 Wireless Channel Model We consider fading wireless channel and assume that the channel change over time on the scale of fast fading. The channel is considered to be constant...

  1. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01T23:59:59.000Z

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  2. Dynamic Correlation Length Scales under Isochronal Conditions

    E-Print Network [OSTI]

    R. Casalini; D. Fragiadakis; C. M. Roland

    2014-11-24T23:59:59.000Z

    The origin of the dramatic changes in the behavior of liquids as they approach their vitreous state - increases of many orders of magnitude in transport properties and dynamic time scales - is a major unsolved problem in condensed matter. These changes are accompanied by greater dynamic heterogeneity, which refers to both spatial variation and spatial correlation of molecular mobilities. The question is whether the changing dynamics is coupled to this heterogeneity; that is, does the latter cause the former? To address this we carried out the first nonlinear dielectric experiments at elevated hydrostatic pressures on two liquids, to measure the third-order harmonic component of their susceptibilities. We extract from this the number of dynamically correlated molecules for various state points, and find that the dynamic correlation volume for non-associated liquids depends primarily on the relaxation time, sensibly independent of temperature and pressure. We support this result by molecular dynamic simulations showing that the maximum in the four-point dynamic susceptibility of density fluctuations varies less than 10% for molecules that do not form hydrogen bonds. Our findings are consistent with dynamic heterogeneity serving as the principal control parameter for the slowing down of molecular motions in supercooled materials.

  3. Modeling Sustainable Agricultural Residue Removal at the Subfield Scale

    SciTech Connect (OSTI)

    Muth, D.J.; McCorkle, D.S.; Koch, J.B.; Bryden, K.M.

    2012-05-02T23:59:59.000Z

    This study developed a computational strategy that utilizes data inputs from multiple spatial scales to investigate how variability within individual fields can impact sustainable residue removal for bioenergy production. Sustainable use of agricultural residues for bioenergy production requires consideration of the important role that residues play in limiting soil erosion and maintaining soil C, health, and productivity. Increased availability of subfield-scale data sets such as grain yield data, high-fidelity digital elevation models, and soil characteristic data provides an opportunity to investigate the impacts of subfield-scale variability on sustainable agricultural residue removal. Using three representative fields in Iowa, this study contrasted the results of current NRCS conservation management planning analysis with subfield-scale analysis for rake-and-bale removal of agricultural residue. The results of the comparison show that the field-average assumptions used in NRCS conservation management planning may lead to unsustainable residue removal decisions for significant portions of some fields. This highlights the need for additional research on subfield-scale sustainable agricultural residue removal including the development of real-time variable removal technologies for agricultural residue.

  4. Preliminary Scaling Estimate for Select Small Scale Mixing Demonstration Tests

    SciTech Connect (OSTI)

    Wells, Beric E.; Fort, James A.; Gauglitz, Phillip A.; Rector, David R.; Schonewill, Philip P.

    2013-09-12T23:59:59.000Z

    The Hanford Site double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions’ Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems.

  5. Scaling exponents of Forced Polymer Translocation through a nano-pore

    E-Print Network [OSTI]

    Aniket Bhattacharya; William H. Morrison; Kaifu Luo; Tapio Ala-Nissila; See-Chen Ying; Andrey Milchev; Kurt Binder

    2008-11-10T23:59:59.000Z

    We investigate several scaling properties of a translocating homopolymer through a thin pore driven by an external field present inside the pore only using Langevin Dynamics (LD) simulation in three dimension (3D). Specifically motivated by several recent theoretical and numerical studies that are apparently at odds with each other, we determine the chain length dependence of the scaling exponents of the average translocation time, the average velocity of the center of mass, $$, the effective radius of gyration during the translocation process, and the scaling exponent of the translocation coordinate ($s$-coordinate) as a function of the translocation time. We further discuss the possibility that in the case of driven translocation the finite pore size and its geometry could be responsible that the veclocity scaling exponent is less than unity and discuss the dependence of the scaling exponents on the pore geometry for the range of $N$ studied here.

  6. Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere

    SciTech Connect (OSTI)

    Eliasson, B. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Stenflo, L. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Department of Physics, Linkoeping University, SE-581 83 Linkoeping (Sweden); Shukla, P. K. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2008-10-15T23:59:59.000Z

    We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuir wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.

  7. Comprehensive energy transport scalings derived from DIII-D similarity experiments

    SciTech Connect (OSTI)

    Petty, C.C.; Luce, T.C. [General Atomics, San Diego, CA (United States); Baity, F.W. [Oak Ridge National Lab., TN (United States)] [and others

    1998-12-01T23:59:59.000Z

    The dependences of heat transport on the dimensionless plasma physics parameters has been measured for both L-mode and H-mode plasmas on the DIII-D tokamak. Heat transport in L-mode plasmas has a gyroradius scaling that is gyro-Bohm-like for electrons and worse than Bohm-like for ions, with no measurable beta or collisionality dependence; this corresponds to having an energy confinement time that scales like {tau}{sub E} {proportional_to} n{sup 0.5}P{sup {minus}0.5}. H-mode plasmas have gyro-Bohm-like scaling of heat transport for both electrons and ions, weak beta scaling, and moderate collisionality scaling. In addition, H-mode plasmas have a strong safety factor scaling ({chi} {approximately} q{sup 2}) at all radii. Combining these four dimensionless parameter scalings together gives an energy confinement time scaling for H-mode plasmas like {tau}{sub E} {proportional_to} B{sup {minus}1}{rho}{sup {minus}3.15}{beta}{sup 0.03}v{sup {minus}0.42}q{sub 95}{sup {minus}1.43} {proportional_to} I{sup 0.84}B{sup 0.39}n{sup 0.18}P{sup {minus}0.41}L{sup 2.0}, which is similar to empirical scalings derived from global confinement databases.

  8. Holographic Superconductors with Lifshitz Scaling

    E-Print Network [OSTI]

    E. J. Brynjolfsson; U. H. Danielsson; L. Thorlacius; T. Zingg

    2010-03-27T23:59:59.000Z

    Black holes in asymptotically Lifshitz spacetime provide a window onto finite temperature effects in strongly coupled Lifshitz models. We add a Maxwell gauge field and charged matter to a recently proposed gravity dual of 2+1 dimensional Lifshitz theory. This gives rise to charged black holes with scalar hair, which correspond to the superconducting phase of holographic superconductors with z > 1 Lifshitz scaling. Along the way we analyze the global geometry of static, asymptotically Lifshitz black holes at arbitrary critical exponent z > 1. In all known exact solutions there is a null curvature singularity in the black hole region, and, by a general argument, the same applies to generic Lifshitz black holes.

  9. Scaled Solar | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSaltonSprings,Sardinia,SawasdeeSayreville, NewScaled

  10. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -EnergyProcess HeatingatSawDepartment ofScale

  11. Small-Scale Energy Loan Program

    Broader source: Energy.gov [DOE]

    The Oregon Small-Scale Energy Loan Program (SELP) - created in 1981 after voters approved a constitutional amendment authorizing the sale of bonds to finance small-scale, local energy projects - is...

  12. Proton Decay and the Planck Scale

    E-Print Network [OSTI]

    Larson, Daniel T.

    2009-01-01T23:59:59.000Z

    LBNL- 56556 PROTON DECAY AND THE PLANCK SCALE DANIEL T.ph/0410035v1 2 Oct 2004 PROTON DECAY AND THE PLANCK SCALE ?without grand uni?cation, proton decay can be a powerful

  13. Scale in object and process ontologies 

    E-Print Network [OSTI]

    Reitsma, Femke; Bittner, Thomas

    2003-01-01T23:59:59.000Z

    Scale is of great importance to the analysis of real world phenomena, be they enduring objects or perduring processes. This paper presents a new perspective on the concept of scale by considering it within two complementary ...

  14. Bench-Scale Fermentation Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Bench-Scale Fermentation Laboratory capabilities and applications at NREL's National Bioenergy Center.

  15. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing...

  16. Range Fuels Commercial-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  17. Florida Wax Scales: Control Measures in Texas for Hollies

    E-Print Network [OSTI]

    Drees, Bastiaan M.; Reinert, James; Williams, Michael L.

    2006-11-30T23:59:59.000Z

    treatments on other landscape plants may help control other pests such as azalea lace bugs and crape myrtle aphids, but check the timing of ap- plications because they vary for different pests and plants. Systemic soil treatments: Because systemic... or any other drain. Acknowledgments The authors are grateful to Carlos Bogran and Scott Ludwig for review comments; to Gary Plaia of Katy, TX, for monitoring scale crawler hatches and reporting success in treating infested hollies in southeast Texas...

  18. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01T23:59:59.000Z

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  19. Research-scale melter test report

    SciTech Connect (OSTI)

    Cooper, M.F.; Elliott, M.L.; Eyler, L.L.; Freeman, C.J.; Higginson, J.J.; Mahoney, L.A.; Powell, M.R.

    1994-05-01T23:59:59.000Z

    The Melter Performance Assessment (MPA) activity in the Pacific Northwest Laboratory`s (PNL) Hanford Waste Vitrification Plant (HWVP) Technology Development (PHTD) effort is intended to determine the impact of noble metals on the operational life of the reference HWVP melter. As a part of this activity, a parametric melter test was completed using a Research-Scale Melter (RSM). The RSM is a small, approximately 1/100-scale melter, 6-in.-diameter, that allows rapid changing of process conditions and subsequent re-establishment of a steady-state condition. The test matrix contained nine different segments that varied the melter operating parameters (glass and plenum temperatures) and feed properties (oxide concentration, redox potential, and noble metal concentrations) so that the effects of these parameters on noble metal agglomeration on the melter floor could be evaluated. The RSM operated for 48 days and consumed 1,300 L of feed, equating to 153 tank turnovers. The run produced 531 kg of glass. During the latter portion of the run, the resistance between the electrodes decreased. Upon destructive examination of the melter, a layer of noble metals was found on the bottom. This was surprising because the glass residence time in the RSM is only 10% of the HWVP plant melter. The noble metals layer impacted the melter significantly. Approximately 1/3 of one paddle electrode was melted or corroded off. The cause is assumed to be localized heating from short circuiting of the electrode to the noble metal layer. The metal layer also removed approximately 1/2 in. of the refractory on the bottom of the melter. The mechanism for this damage is not presently known.

  20. Engineering-Scale Liquid Cadmium Cathode Experiments

    SciTech Connect (OSTI)

    D Vaden; B. R. Westphal; S. X. Li; T. A. Johnson; K. B. Davies; D. M. Pace

    2006-08-01T23:59:59.000Z

    Recovery of transuranic actinides (TRU) using electrorefining is a process being investigated as part of the Department of Energy (DOE) Advanced Fuel Cycle Initiative (AFCI). TRU recovery via electrorefining onto a solid cathode is very difficult as the thermodynamic properties of transuranics are not favourable for them to remain in the metal phase while significant quantities of uranium trichloride exist in the electrolyte. Theoretically, the concentration of transuranics in the electrolyte must be approximately 106 greater than the uranium concentration in the electrolyte to produce a transuranic deposit on a solid cathode. Using liquid cadmium as a cathode contained within a LiCl-KCl eutectic salt, the co-deposition of uranium and transuranics is feasible because the activity of the transuranics in liquid cadmium is very small. Depositing transuranics and uranium in a liquid cadmium cathode (LCC) theoretically requires the concentration of transuranics to be two to three times the uranium concentration in the electrolyte. Three LCC experiments were performed in an Engineering scale elecdtrorefiner, which is located in the argon hot cell of the Fuel Conditioning Facility at the Materials and Fuels Complex on the Idaho National Laboratory. Figure 1 contains photographs of the LCC assembly in the hot cell prior to the experiment and a cadmium ingot produced after the first LCC test. Figure 1. Liquid Cadmium Cathode (left) and Cadmium Ingot (right) The primary goal of the engineering-scale liquid cadmium cathode experiments was to electrochemically collect kilogram quantities of uranium and plutonium via a LCC. The secondary goal was to examine fission product contaminations in the materials collected by the LCC. Each LCC experiment used chopped spent nuclear fuel from the blanket region of the Experimental Breeder Reactor II loaded into steel baskets as the anode with the LCC containing 26 kg of cadmium metal. In each experiment, between one and two kilograms of heavy metal was collected in the LCC after passing an integrated current over 500 amp hours. Analysis of samples from the liquid cadmium cathode ingots showed detectable amounts of transuranics and rare-earth elements. Acknowledgements K. B. Davies and D. M. Pace for the mechanical and electrical engineering needed to prepare the equipment for the engineering-scale liquid cadmium cathode experiments.

  1. Nuclear Reactions & Scaling Arguments 11 October 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    Nuclear Reactions & Scaling Arguments 11 October 2011 Goals · Review nuclear reaction rates · Practice using scaling arguments Nuclear Reactions 1. Consider the simple reaction A k1 ---- B k2 ---- C = 3. #12;nuclear reactions & scaling arguments 2 3. Frequently, we approximate nuclear reaction rates

  2. Nuclear Reactions & Scaling Arguments 11 October 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    Nuclear Reactions & Scaling Arguments 11 October 2011 Goals · Review nuclear reaction rates · Practice using scaling arguments Nuclear Reactions 1. Consider the simple reaction A k1 ---- B k2 ---- C rate for something like p + p D scales like n2 p. Think in microscopic terms. #12;nuclear reactions

  3. Web Scale Taxonomy Cleansing Taesung Lee ,

    E-Print Network [OSTI]

    Hwang, Seung-won

    Web Scale Taxonomy Cleansing Taesung Lee , Zhongyuan Wang Haixun Wang Seung-won Hwang POSTECH.wang,haixunw}@microsoft.com ABSTRACT Large ontologies and taxonomies are automatically harvested from web-scale data. These taxonomies- scale taxonomies becomes a great challenge. A natural way to en- rich a taxonomy is to map the taxonomy

  4. 6, 1092910958, 2006 Regional scale CO2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using radon A. I. Hirsch Title Page Chemistry and Physics Discussions On using radon-222 and CO2 to calculate regional-scale CO2 fluxes A. I (Adam.Hirsch@noaa.gov) 10929 #12;ACPD 6, 10929­10958, 2006 Regional scale CO2 flux estimation using

  5. A parallel scaled conjugate-gradient

    E-Print Network [OSTI]

    Aykanat, Cevdet

    . The scaled conjugate- gradient method is a powerful technique for solving large sparse linear systems for form-factor computation. Key words: Gathering radiosity -- Scaled conjugate-gradient method -- Parallel, the Gauss--Jacobi (GJ) method is used in the solution phase. The scaled conjugate-gradient (SCG) method

  6. Large-Scale Renewable Energy Guide Webinar

    Broader source: Energy.gov [DOE]

    Webinar introduces the “Large Scale Renewable Energy Guide." The webinar will provide an overview of this important FEMP guide, which describes FEMP's approach to large-scale renewable energy projects and provides guidance to Federal agencies and the private sector on how to develop a common process for large-scale renewable projects.

  7. Conundrum of the Large Scale Streaming

    E-Print Network [OSTI]

    T. M. Malm

    1999-09-12T23:59:59.000Z

    The etiology of the large scale peculiar velocity (large scale streaming motion) of clusters would increasingly seem more tenuous, within the context of the gravitational instability hypothesis. Are there any alternative testable models possibly accounting for such large scale streaming of clusters?

  8. Engineering scale electrostatic enclosure demonstration

    SciTech Connect (OSTI)

    Meyer, L.C.

    1993-09-01T23:59:59.000Z

    This report presents results from an engineering scale electrostatic enclosure demonstration test. The electrostatic enclosure is part of an overall in-depth contamination control strategy for transuranic (TRU) waste recovery operations. TRU contaminants include small particles of plutonium compounds associated with defense-related waste recovery operations. Demonstration test items consisted of an outer Perma-con enclosure, an inner tent enclosure, and a ventilation system test section for testing electrostatic curtain devices. Three interchangeable test fixtures that could remove plutonium from the contaminated dust were tested in the test section. These were an electret filter, a CRT as an electrostatic field source, and an electrically charged parallel plate separator. Enclosure materials tested included polyethylene, anti-static construction fabric, and stainless steel. The soil size distribution was determined using an eight stage cascade impactor. Photographs of particles containing plutonium were obtained with a scanning electron microscope (SEM). The SEM also provided a second method of getting the size distribution. The amount of plutonium removed from the aerosol by the electrostatic devices was determined by radiochemistry from input and output aerosol samplers. The inner and outer enclosures performed adequately for plutonium handling operations and could be used for full scale operations.

  9. A first large-scale flood inundation forecasting model

    SciTech Connect (OSTI)

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04T23:59:59.000Z

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode revealed that it is crucial to account for basin-wide hydrological response time when assessing lead time performances notwithstanding structural limitations in the hydrological model and possibly large inaccuracies in precipitation data.

  10. Lightweight and Statistical Techniques for Petascale PetaScale Debugging

    SciTech Connect (OSTI)

    Miller, Barton

    2014-06-30T23:59:59.000Z

    This project investigated novel techniques for debugging scientific applications on petascale architectures. In particular, we developed lightweight tools that narrow the problem space when bugs are encountered. We also developed techniques that either limit the number of tasks and the code regions to which a developer must apply a traditional debugger or that apply statistical techniques to provide direct suggestions of the location and type of error. We extend previous work on the Stack Trace Analysis Tool (STAT), that has already demonstrated scalability to over one hundred thousand MPI tasks. We also extended statistical techniques developed to isolate programming errors in widely used sequential or threaded applications in the Cooperative Bug Isolation (CBI) project to large scale parallel applications. Overall, our research substantially improved productivity on petascale platforms through a tool set for debugging that complements existing commercial tools. Previously, Office Of Science application developers relied either on primitive manual debugging techniques based on printf or they use tools, such as TotalView, that do not scale beyond a few thousand processors. However, bugs often arise at scale and substantial effort and computation cycles are wasted in either reproducing the problem in a smaller run that can be analyzed with the traditional tools or in repeated runs at scale that use the primitive techniques. New techniques that work at scale and automate the process of identifying the root cause of errors were needed. These techniques significantly reduced the time spent debugging petascale applications, thus leading to a greater overall amount of time for application scientists to pursue the scientific objectives for which the systems are purchased. We developed a new paradigm for debugging at scale: techniques that reduced the debugging scenario to a scale suitable for traditional debuggers, e.g., by narrowing the search for the root-cause analysis to a small set of nodes or by identifying equivalence classes of nodes and sampling our debug targets from them. We implemented these techniques as lightweight tools that efficiently work on the full scale of the target machine. We explored four lightweight debugging refinements: generic classification parameters, such as stack traces, application-specific classification parameters, such as global variables, statistical data acquisition techniques and machine learning based approaches to perform root cause analysis. Work done under this project can be divided into two categories, new algorithms and techniques for scalable debugging, and foundation infrastructure work on our MRNet multicast-reduction framework for scalability, and Dyninst binary analysis and instrumentation toolkits.

  11. Solar cycle variations of large scale flows in the Sun

    E-Print Network [OSTI]

    Sarbani Basu; H. M. Antia

    2000-01-17T23:59:59.000Z

    Using data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory (SOHO), we study the large-scale velocity fields in the outer part of the solar convection zone using the ring diagram technique. We use observations from four different times to study possible temporal variations in flow velocity. We find definite changes in both the zonal and meridional components of the flows. The amplitude of the zonal flow appears to increase with solar activity and the flow pattern also shifts towards lower latitude with time.

  12. Building Scale vs. Community Scale Net-Zero Energy Performance

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Fernandez, Nicholas; Brambley, Michael R.; Reddy, T. A.

    2010-06-30T23:59:59.000Z

    Many government and industry organizations are focusing building energy-efficiency goals around producing individual net-zero buildings (nZEBs), using photovoltaic (PV) technology to provide on-site renewable energy after substantially improving the energy efficiency of the buildings themselves. Seeking net-zero energy (NZE) at the community scale instead introduces the possibility of using a wider range of renewable energy technologies, such as solar-thermal electricity generation, solar-assisted heating/cooling systems, and wind energy, economically. This paper reports results of a study comparing NZE communities to communities consisting of individual nZEBs. Five scenarios are examined: 1) base case – a community of nZEBs with roof mounted PV systems; 2) NZE communities served by wind turbines on leased land; 3) NZE communities served by wind turbines on owned land; 4) communities served by solar-thermal electric generation; and 5) communities served by photovoltaic farms. All buildings are assumed to be highly efficient, e.g., 70% more efficient than current practice. The scenarios are analyzed for two climate locations (Chicago and Phoenix), and the levelized costs of electricity for the scenarios are compared. The results show that even for the climate in the U.S. most favorable to PV (Phoenix), more cost-effective approaches are available to achieving NZE than the conventional building-level approach (rooftop PV with aggressive building efficiency improvements). The paper shows that by expanding the measurement boundary for NZE, a community can take advantage of economies of scale, achieving improved economics while reaching the same overall energy-performance objective.

  13. Lightweight Time Modeling in Timed Creol

    E-Print Network [OSTI]

    Bjørk, Joakim; Owe, Olaf; Schlatte, Rudolf; 10.4204/EPTCS.36.4

    2010-01-01T23:59:59.000Z

    Creol is an object-oriented modeling language in which inherently concurrent objects exchange asynchronous method calls. The operational semantics of Creol is written in an actor-based style, formulated in rewriting logic. The operational semantics yields a language interpreter in the Maude system, which can be used to analyze models. Recently, Creol has been applied to the modeling of systems with radio communication, such as sensor systems. With radio communication, messages expire and, if sent simultaneously, they may collide in the air. In order to capture these and other properties of distributed systems, we extended Creol's operational semantics with a notion of time. We exploit the framework of a language interpreter to use a lightweight notion of time, in contrast to that needed for a general purpose specification language. This paper presents a timed extension of Creol, including the semantics and the implementation strategy, and discusses its properties using an extended example. The approach can be...

  14. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect (OSTI)

    Oji, L.

    2014-09-23T23:59:59.000Z

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10.8 hours. Based on averaging the two half-lives from the 2H scale acid dissolution in 1.25 and 1.5 M nitric acid solutions, a reasonable half-live for the dissolution of 2H scales in dilute nitric acid is 11.7 ± 1.3 hours. The plant operational time for chemically cleaning (soaking) the 2H evaporator with dilute nitric acid is 32 hours. It therefore may require about 3 half-lives or less to completely dissolve most of the scales in the Evaporator pot which come into contact with the dilute nitric acid solution. On a mass basis, the Al-to-Si ratio for the scale dissolution in 1.5 M nitric acid averaged 1.30 ± 0.20 and averaged 1.18 ± 0.10 for the 2H scale dissolution in 1.25 M nitric acid. These aluminum-to-silicon ratios are in fairly good agreement with ratios from previous studies. Therefore, there is still more aluminum in the 2H evaporator scales than silicon which implies that there are no significant changes in scale properties which will exclude nitric acid as a viable protic solvent for aluminosilicate scale buildup dissolution from the 2H evaporator. Overall, the monitoring of the scale decomposition reaction in 1.25 and 1.5 M nitric acid may be better ascertained through the determination of aluminum concentration in solution than monitoring silicon in solution. Silicon solution chemistry may lead to partial precipitating of silicon with time as the scale and acid solution is heated.

  15. Noncommutative Two Time Physics

    E-Print Network [OSTI]

    W. Chagas-Filho

    2006-05-10T23:59:59.000Z

    We present a classical formalism describing two-time physics with Abelian canonical gauge field backgrounds. The formalism can be used as a starting point for the construction of an interacting quantized two-time physics theory in a noncommutative soace-time.

  16. Quantum Operation Time Reversal

    SciTech Connect (OSTI)

    Crooks, Gavin E.

    2008-03-25T23:59:59.000Z

    The dynamics of an open quantum system can be described by a quantum operation: A linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes toward equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.

  17. Millennial-scale oscillations in the Southern Ocean in response to atmospheric CO2 increase

    E-Print Network [OSTI]

    Álvarez-Solas, Jorge

    time scale under several global warming long-term scenarios, stabilized at different levels ranging: millennial oscillations climate variability abrupt change global warming ice sheets ocean behaviour Southern from 2 to 7 times the pre-industrial CO2 level. The climate response is mainly analyzed in terms

  18. Large scale quantum mechanical enzymology

    E-Print Network [OSTI]

    Lever, Greg

    2014-10-07T23:59:59.000Z

    , during which many words of wisdom were imparted on me that I shall remember for a long time. Of course I can not forget my office mates who have always made TCM fun and interesting who, in chronological order, are Sam, Emma, Andrew, Daniel, Gen, Edgar...

  19. Renewable Energy: Utility-Scale Policies and Programs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Policies & Programs Renewable Energy: Utility-Scale Policies and Programs Renewable Energy: Utility-Scale Policies and Programs Utility-scale renewable energy projects are...

  20. DLFM library tools for large scale dynamic applications.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DLFM library tools for large scale dynamic applications DLFM library tools for large scale dynamic applications Large scale Python and other dynamic applications may spend huge...

  1. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    SciTech Connect (OSTI)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.; Bickford, Jody; Foote, Martin W.

    2011-09-23T23:59:59.000Z

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are still too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.

  2. Comparing Scales of Environmental Effects from Gasoline and Ethanol Production

    SciTech Connect (OSTI)

    Parish, Esther S [ORNL; Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; McBride, Allen [ORNL; Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Hilliard, Michael R [ORNL; Bielicki, Dr Jeffrey M [University of Minnesota

    2013-01-01T23:59:59.000Z

    Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the scales (i.e., spatial extent and temporal duration) of ethanol and gasoline production processes and environmental effects based on a literature review, and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

  3. Matter: Space without Time

    E-Print Network [OSTI]

    Yousef Ghazi-Tabatabai

    2012-11-19T23:59:59.000Z

    While Quantum Gravity remains elusive and Quantum Field Theory retains the interpretational difficulties of Quantum Mechanics, we have introduced an alternate approach to the unification of particles, fields, space and time, suggesting that the concept of matter as space without time provides a framework which unifies matter with spacetime and in which we anticipate the development of complete theories (ideally a single unified theory) describing observed 'particles, charges, fields and forces' solely with the geometry of our matter-space-time universe.

  4. Manage Your Time 

    E-Print Network [OSTI]

    White, Lynn

    2000-06-27T23:59:59.000Z

    , you expect unused time to come around again, so that when the same opportunities appear you will be wiser about how to use it. Consider how your cultural background af_fects the w ay you plan and manage time. W *Both cited in Bauer, J. It?s Time.... Effective time management means decid- ing which activity should be done from all the possibilities available, and then doing it. It is a matter of setting priorities. Deciding which jobs are most important and working on those may be better than doing less...

  5. Intrinsic Time Quantum Geometrodynamics

    E-Print Network [OSTI]

    Eyo Eyo Ita III; Chopin Soo; Hoi-Lai Yu

    2015-02-06T23:59:59.000Z

    Quantum Geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl Curvature Hypothesis, and thermodynamic and gravitational `arrows of time' point in the same direction. Ricci scalar potential corresponding to Einstein's General Relativity emerges as a zero-point energy contribution. A new set of fundamental commutation relations without Planck's constant emerges from the unification of Gravitation and Quantum Mechanics.

  6. Intrinsic Time Quantum Geometrodynamics

    E-Print Network [OSTI]

    Ita, Eyo Eyo; Yu, Hoi-Lai

    2015-01-01T23:59:59.000Z

    Quantum Geometrodynamics with intrinsic time development and momentric variables is presented. An underlying SU(3) group structure at each spatial point regulates the theory. The intrinsic time behavior of the theory is analyzed, together with its ground state and primordial quantum fluctuations. Cotton-York potential dominates at early times when the universe was small; the ground state naturally resolves Penrose's Weyl Curvature Hypothesis, and thermodynamic and gravitational `arrows of time' point in the same direction. Ricci scalar potential corresponding to Einstein's General Relativity emerges as a zero-point energy contribution. A new set of fundamental canonical commutation relations without Planck's constant emerges from the unification of Gravitation and Quantum Mechanics.

  7. Scaling Rules for Pre-Injector Design

    SciTech Connect (OSTI)

    Tom Schwarz; Dan Amidei

    2003-07-13T23:59:59.000Z

    Proposed designs of the prebunching system of the NLC and TESLA are based on the assumption that scaling the SLC design to NLC/TESLA requirements should provide the desired performance. A simple equation is developed to suggest a scaling rule in terms of bunch charge and duration. Detailed simulations of prebunching systems scaled from a single design have been run to investigate these issues.

  8. How to calibrate the jet energy scale?

    SciTech Connect (OSTI)

    Hatakeyama, K.; /Rockefeller U.

    2006-01-01T23:59:59.000Z

    Top quarks dominantly decay into b-quark jets and W bosons, and the W bosons often decay into jets, thus the precise determination of the jet energy scale is crucial in measurements of many top quark properties. I present the strategies used by the CDF and D0 collaborations to determine the jet energy scale. The various cross checks performed to verify the determined jet energy scale and evaluate its systematic uncertainty are also discussed.

  9. Developing Improved Travel Time Reliability Measures For Real-time

    E-Print Network [OSTI]

    Bertini, Robert L.

    reliability Use for prioritizing improvements Outline #12; 95th Percentile Travel Time Travel Time Index: mean travel time divided by free flow travel time Buffer Index: difference between 95th percentile travel time and mean travel time, divided by mean travel time Planning Time Index: 95th percentile

  10. Scaling the practical education experience Joel Sommers

    E-Print Network [OSTI]

    Haddadi, Hamed

    Scaling the practical education experience Joel Sommers Colgate University jsommers outline a successful This work was done in part while Joel Sommers was visiting the University

  11. Small-Scale Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Vermont's Small Scale Renewable Energy Incentive Program (SSREIP), initiated in June 2003, provides funding for new solar water heating, solar electric (photovoltaic), modern wood pellet heating,...

  12. Extreme Scale Computing, Co-design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Extreme Scale (ACES) partnership to design and develop the supercomputer Cielo (Spanish for "sky"), which was built by Cray Inc. Cielo can perform more than one quadrillion...

  13. Extreme Scale Computing, Co-Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Analyzing the evolution of large scale structures in the universe with velocity based methods," IEEE Pacific Visualization Symposium, 49-56 (2012). Christopher M. Brislawn,...

  14. Commercial-Scale Renewable-Energy Grants

    Broader source: Energy.gov [DOE]

    The Rhode Island Commerce Corporation (Commerce RI) seeks to fund commercial scale renewable energy projects to generate electricity for onsite consumption. Commerce RI provides incentives for...

  15. Sandia National Laboratories: utility-scale power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utility-scale power Sandia Has Signed a Memorandum of Understanding with Case Western Reserve University On January 28, 2014, in Computational Modeling & Simulation, Energy, Energy...

  16. Fully kinetic simulations of megajoule-scale dense plasma focus

    SciTech Connect (OSTI)

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M. [Lawrence Livermore National Laboratory, Livermore California 94550 (United States); Welch, D. [Voss Scientific, LLC, Albuquerque, New Mexico 87108 (United States); Meehan, B. T.; Hagen, E. C. [National Security Technologies, LLC, Las Vegas, Nevada 89030 (United States)

    2014-10-15T23:59:59.000Z

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  17. Opening angles and shapes of parsec-scale AGN jets

    E-Print Network [OSTI]

    Pushkarev, Alexander B; Kovalev, Yuri Y; Savolainen, Tuomas

    2015-01-01T23:59:59.000Z

    We used 15 GHz VLBA observations of 366 sources having at least 5 epochs within a time interval 1995-2013 from the MOJAVE program and/or its predecessor, the 2 cm VLBA Survey. For each source we produced a corresponding stacked image averaging all available epochs for a better reconstruction of the cross section of the flow. We have analyzed jet profiles transverse to the local jet ridge line and derived both apparent and intrinsic opening angles of the parsec-scale outflows. The sources detected by the Fermi Large Area Telescope (LAT) during the first 24 months of operation show wider apparent jet opening angle and smaller viewing angles on a very high level of significance supporting our early findings. Analyzing transverse shapes of the outflows we found that most sources have conical jet geometry at parsec scales, though there are also sources that exhibit active jet collimation.

  18. Probabilistic time-series

    E-Print Network [OSTI]

    Roweis, Sam

    SCIA 2003 Tutorial: Hidden Markov Models Sam Roweis, University of Toronto June 29, 2003 Probabilistic Generative Models for Time Series #15; Stochastic models for time-series: y 1 ; y 2 ; : : : ; y #15; Add noise to make the system stochastic: p(y t jy t 1 ;y t 2 ; : : : ;y t k ) #15; Markov models

  19. Short Time Cycles of Purely Quantum Refrigerators

    E-Print Network [OSTI]

    Tova Feldmann; Ronnie Kosloff

    2012-04-18T23:59:59.000Z

    Four stroke Otto refrigerator cycles with no classical analogue are studied. Extremely short cycle times with respect to the internal time scale of the working medium characterize these refrigerators. Therefore these cycles are termed sudden. The sudden cycles are characterized by the stable limit cycle which is the invariant of the global cycle propagator. During their operation the state of the working medium possesses significant coherence which is not erased in the equilibration segments due to the very short time allocated. This characteristic is reflected in a difference between the energy entropy and the Von Neumann entropy of the working medium. A classification scheme for sudden refrigerators is developed allowing simple approximations for the cooling power and coefficient of performance.

  20. Measurable Maximal Energy and Minimal Time Interval

    E-Print Network [OSTI]

    Eiman Abou El Dahab; Abdel Nasser Tawfik

    2014-01-14T23:59:59.000Z

    The possibility of finding the measurable maximal energy and the minimal time interval is discussed in different quantum aspects. It is found that the linear generalized uncertainty principle (GUP) approach gives a non-physical result. Based on large scale Schwarzshild solution, the quadratic GUP approach is utilized. The calculations are performed at the shortest distance, at which the general relativity is assumed to be a good approximation for the quantum gravity and at larger distances, as well. It is found that both maximal energy and minimal time have the order of the Planck time. Then, the uncertainties in both quantities are accordingly bounded. Some physical insights are addressed. Also, the implications on the physics of early Universe and on quantized mass are outlined. The results are related to the existence of finite cosmological constant and minimum mass (mass quanta).

  1. Scale-up considerations relevant to experimental studies of nuclear waste-package behavior

    SciTech Connect (OSTI)

    Coles, D.G.; Peters, R.D.

    1986-04-01T23:59:59.000Z

    Results from a study that investigated whether testing large-scale nuclear waste-package assemblages was technically warranted are reported. It was recognized that the majority of the investigations for predicting waste-package performance to date have relied primarily on laboratory-scale experimentation. However, methods for the successful extrapolation of the results from such experiments, both geometrically and over time, to actual repository conditions have not been well defined. Because a well-developed scaling technology exists in the chemical-engineering discipline, it was presupposed that much of this technology could be applicable to the prediction of waste-package performance. A review of existing literature documented numerous examples where a consideration of scaling technology was important. It was concluded that much of the existing scale-up technology is applicable to the prediction of waste-package performance for both size and time extrapolations and that conducting scale-up studies may be technically merited. However, the applicability for investigating the complex chemical interactions needs further development. It was recognized that the complexity of the system, and the long time periods involved, renders a completely theoretical approach to performance prediction almost hopeless. However, a theoretical and experimental study was defined for investigating heat and fluid flow. It was concluded that conducting scale-up modeling and experimentation for waste-package performance predictions is possible using existing technology. A sequential series of scaling studies, both theoretical and experimental, will be required to formulate size and time extrapolations of waste-package performance.

  2. Emergence of Time

    E-Print Network [OSTI]

    M. Heller; W. Sasin

    1997-11-17T23:59:59.000Z

    In the groupoid approach to noncommutative quantization of gravity, gravitational field is quantized in terms of a C*-algebra A of complex valued funcions on a groupoid G (with convolution as multiplication). In the noncommutative quantum gravitational regime the concepts of space and time are meaningless. We study the "emergence of time" in the transition process from the noncommutative regime to the standard space-time geometry. Precise conditions are specified under which modular groups of the von Neumann algebra generated by A can be defined. These groups are interpreted as a state depending time flow. If the above conditions are further refined one obtains a state independent time flow. We show that quantum gravitational dynamics can be expressed in terms of modular groups.

  3. Propulsion engineering study for small-scale Mars missions

    SciTech Connect (OSTI)

    Whitehead, J.

    1995-09-12T23:59:59.000Z

    Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardware mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.

  4. Abstract--This paper presents the work program of DESIMAX, a collaborative research project looking at wide-scale

    E-Print Network [OSTI]

    Aickelin, Uwe

    , and aggregated demand displays for network operators. The expected outcome of the work in the DESIMAX project looking at wide-scale implementation of demand side management (DSM) within electricity networks. To fully that will be able to capture, predict and demonstrate the response of the power system at time scales ranging from

  5. Engineering Time-Reversal Invariant Topological Insulators With Ultra-Cold Atoms

    E-Print Network [OSTI]

    N. Goldman; I. Satija; P. Nikolic; A. Bermudez; M. A. Martin-Delgado; M. Lewenstein; I. B. Spielman

    2010-06-01T23:59:59.000Z

    Topological insulators are a broad class of unconventional materials that are insulating in the interior but conduct along the edges. This edge transport is topologically protected and dissipationless. Until recently, all existing topological insulators, known as quantum Hall states, violated time-reversal symmetry. However, the discovery of the quantum spin Hall effect demonstrated the existence of novel topological states not rooted in time-reversal violations. Here, we lay out an experiment to realize time-reversal topological insulators in ultra-cold atomic gases subjected to synthetic gauge fields in the near-field of an atom-chip. In particular, we introduce a feasible scheme to engineer sharp boundaries where the "edge states" are localized. Besides, this multi-band system has a large parameter space exhibiting a variety of quantum phase transitions between topological and normal insulating phases. Due to their unprecedented controllability, cold-atom systems are ideally suited to realize topological states of matter and drive the development of topological quantum computing.

  6. SUPERCONDUCTING NON-SCALING FFAG GANTRY FOR CARBON-PROTON CANCER THERAPY

    SciTech Connect (OSTI)

    TRBOJEVIC,D.; GUPTA, R.; PARKER, B.; KEIL, E.; SESSLER, A.M.

    2007-06-25T23:59:59.000Z

    We report on improvements in the non-scaling Fixed Field Alternating Gradient (FFAG) gantry design. As we previously reported, a major challenge of the carbodproton cancer therapy facilities is isocentric gantry design. The weight of the isocentric gantry transport elements in the latest Heidelberg carbon/proton facility is 135 tons. In this report we detail improvements to the previous non-scaling gantry design. We estimate that this non-scaling FFAG gantry would be almost hundred times lighter than traditional heavy ion gantries. Very strong focusing with small dispersion permits passage of different energies of carbon beams through the gantry's fixed magnetic field.

  7. Scaling of the Longitudinal Electric Field and Transformer Ratio in a Nonlinear Plasma Wakefield Accelerator

    SciTech Connect (OSTI)

    Blumenfeld, I.; /SLAC; Clayton, C.E.; /UCLA; Decker, F.J.; Hogan, M.J.; /SLAC; Huang, C.; /UCLA; Ischebeck, R.; Iverson, R.H.; /SLAC; Joshi, C.; /UCLA; Katsouleas, T.; /Southern California U.; Kirby, N.; /SLAC; Lu, W.; Marsh, K.A.; Mori, W.B.; /UCLA; Muggli, P.; Oz, E.; /Southern California U.; Siemann, R.H.; Walz, D.R.; /SLAC; Zhou, M.; /UCLA

    2012-06-12T23:59:59.000Z

    The scaling of the two important figures of merit, the transformer ratio T and the longitudinal electric field E{sub z}, with the peak drive-bunch current I{sub p}, in a nonlinear plasma wakefield accelerator is presented for the first time. The longitudinal field scales as I{sub P}{sup 0.623{+-}0.007}, in good agreement with nonlinear wakefield theory ({approx}I{sub P}{sup 0.5}), while the unloaded transformer ratio is shown to be greater than unity and scales weakly with the bunch current. The effect of bunch head erosion on both parameters is also discussed.

  8. A Pore Scale Evaluation of the Kinetics of Mineral Dissolution and Precipitation Reactions (EMSI)

    SciTech Connect (OSTI)

    Steefel, Carl I.

    2006-06-01T23:59:59.000Z

    The chief goals for CEKA are to (1) collect and synthesize molecular-level kinetic data into a coherent framework that can be used to predict time evolution of environmental processes over a range of temporal and spatial scales; (2) train a cohort of talented and diverse students to work on kinetic problems at multiple scales; (3) develop and promote the use of new experimental techniques in environmental kinetics; (4) develop and promote the use of new modeling tools to conceptualize reaction kinetics in environmental systems; and (5) communicate our understanding of issues related to environmental kinetics and issues of scale to the broader scientific community and to the public.

  9. The Pulse Scale Conjecture and the Case of BATSE Trigger 2193

    E-Print Network [OSTI]

    Robert J. Nemiroff

    2000-07-14T23:59:59.000Z

    The pulses that compose gamma-ray bursts (GRBs) are hypothesized to have the same shape at all energies, differing only by scale factors in time and amplitude. This "Pulse Scale Conjecture" is confirmed here between energy channels of the dominant pulse in GRB 930214c (BATSE trigger 2193), the single most fluent single-pulsed GRB that occurred before May 1998. Furthermore, pulses are hypothesized to start at the same time independent of energy. This "Pulse Start Conjecture" is also confirmed in GRB 930214c. Analysis of GRB 930214c also shows that, in general, higher energy channels show shorter temporal scale factors. Over the energy range 100 KeV - 1 MeV, it is found that the temporal scale factors between a pulse measured at different energies are related to that energy by a power law, possibly indicating a simple relativistic mechanism is at work. To test robustness, the Pulse Start and Pulse Scale Conjectures were also tested on the four next most fluent single-pulse GRBs. Three of the four clearly passed, with a second smaller pulse possibly confounding the discrepant test. Models where the pulse rise and decay are created by different phenomena do not typically predict pulses that satisfy both the Pulse Start Conjecture and the Pulse Scale Conjecture, unless both processes are seen to undergo common time dilation.

  10. 6, 43254340, 2006 Scaling in ozone and

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 6, 4325­4340, 2006 Scaling in ozone and temperature C. Varotsos and D. Kirk-Davidoff Title Chemistry and Physics Discussions Long-memory processes in global ozone and temperature variations C #12;ACPD 6, 4325­4340, 2006 Scaling in ozone and temperature C. Varotsos and D. Kirk-Davidoff Title

  11. Scale invariance, unimodular gravity and dark energy

    E-Print Network [OSTI]

    Mikhail Shaposhnikov; Daniel Zenhausern

    2008-12-16T23:59:59.000Z

    We demonstrate that the combination of the ideas of unimodular gravity, scale invariance, and the existence of an exactly massless dilaton leads to the evolution of the universe supported by present observations: inflation in the past, followed by the radiation and matter dominated stages and accelerated expansion at present. All mass scales in this type of theories come from one and the same source.

  12. Dynamic method to measure calcium carbonate scaling

    SciTech Connect (OSTI)

    Zidovec, D. [Ashland Chemical, Boonton, NJ (United States)

    1999-11-01T23:59:59.000Z

    A method to measure scaling rate and the effect of scale control agents are discussed. It is based on calcium carbonate growth under controlled conditions in a capillary stainless steel column. The efficacy of blended compositions can be predicted when the response of individual components is known.

  13. OVERVIEW OF SCALE 6.2

    SciTech Connect (OSTI)

    Rearden, Bradley T [ORNL] [ORNL; Dunn, Michael E [ORNL] [ORNL; Wiarda, Dorothea [ORNL] [ORNL; Celik, Cihangir [ORNL] [ORNL; Bekar, Kursat B [ORNL] [ORNL; Williams, Mark L [ORNL] [ORNL; Peplow, Douglas E. [ORNL] [ORNL; Perfetti, Christopher M [ORNL] [ORNL; Gauld, Ian C [ORNL] [ORNL; Wieselquist, William A [ORNL] [ORNL; Lefebvre, Jordan P [ORNL] [ORNL; Lefebvre, Robert A [ORNL] [ORNL; Havluj, Frantisek [Nuclear Research Institute, Rez, Czech Republic] [Nuclear Research Institute, Rez, Czech Republic; Skutnik, Steven [The University of Tennessee] [The University of Tennessee; Dugan, Kevin [Texas A& M University] [Texas A& M University

    2013-01-01T23:59:59.000Z

    SCALE is an industry-leading suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a plug-and-play framework that includes three deterministic and three Monte Carlo radiation transport solvers that are selected based on the desired solution. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport as well as activation, depletion, and decay calculations. SCALE s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 provides several new capabilities and significant improvements in many existing features, especially with expanded CE Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. A brief overview of SCALE capabilities is provided with emphasis on new features for SCALE 6.2.

  14. Jet Energy Scale March 31, 2009

    E-Print Network [OSTI]

    Jet Energy Scale March 31, 2009 #12;Jet energy vs parton energy Eta-dependent corrections: even scale: conversion from calo measurement to underlying jet Underlying event and out-of-cone corrections region, near-100% efficiency ·Excellent momentum measurement #12;Jet clustering · Jets are formed

  15. Scale evolution of double parton correlations

    E-Print Network [OSTI]

    Tomas Kasemets

    2014-11-17T23:59:59.000Z

    We review the effect of scale evolution on a number of different correlations in double parton scattering (DPS). The strength of the correlations generally decreases with the scale but at a rate which greatly varies between different types. Through studies of the evolution, an understanding of which correlations can be of experimental relevance in different processes and kinematical regions is obtained.

  16. Microfluidic Large-Scale Integration: The Evolution

    E-Print Network [OSTI]

    Quake, Stephen R.

    Microfluidic Large-Scale Integration: The Evolution of Design Rules for Biological Automation, polydimethylsiloxane Abstract Microfluidic large-scale integration (mLSI) refers to the develop- ment of microfluidic, are discussed. Several microfluidic components used as building blocks to create effective, complex, and highly

  17. The Association of Large-Scale Climate Variability and Teleconnections on Wind Energy Resource over Europe and its Intermittency

    E-Print Network [OSTI]

    Kriesche, Pascal

    In times of increasing importance of wind power in the world’s energy mix, this study focuses on a better understanding of the influences of large-scale climate variability on wind power resource over Europe. The impact ...

  18. Environment Induced Time Arrow

    E-Print Network [OSTI]

    Janos Polonyi

    2012-06-25T23:59:59.000Z

    The spread of the time arrows from the environment to an observed subsystem is followed within a harmonic model. A similarity is pointed out between irreversibility and a phase with spontaneously broken symmetry. The causal structure of interaction might be lost in the irreversible case, as well. The Closed Time Path formalism is developed for classical systems and shown to handle the time arrow problem in a clear and flexible manner. The quantum case is considered, as well, and the common origin of irreversibility and decoherence is pointed out.

  19. Gutenberg-Richter Scaling - A New Paradigm

    E-Print Network [OSTI]

    Serino, C A; Klein, W

    2010-01-01T23:59:59.000Z

    We introduce a new model for an earthquake fault system that is composed of non-interacting simple lattice models with different levels of damage denoted by $q$. The undamaged lattice models ($q=0$) have Gutenberg-Richter scaling with a cumulative exponent $\\beta=1/2$, whereas the damaged models do not have well defined scaling. However, if we consider the "fault system" consisting of all models, damaged and undamaged, we get excellent scaling with the exponent depending on the relative frequency with which faults with a particular amount of damage occur in the fault system. This paradigm combines the idea that Gutenberg-Richter scaling is associated with an underlying critical point with the notion that the structure of a fault system also affects the statistical distribution of earthquakes. In addition, it provides a framework in which the variation, from one tectonic region to another, of the scaling exponent, or $b$-value, can be understood.

  20. Bare Higgs mass at Planck scale

    E-Print Network [OSTI]

    Yuta Hamada; Hikaru Kawai; Kin-ya Oda

    2015-01-19T23:59:59.000Z

    We compute one- and two-loop quadratic divergent contributions to the bare Higgs mass in terms of the bare couplings in the Standard Model. We approximate the bare couplings, defined at the ultraviolet cutoff scale, by the MS-bar ones at the same scale, which are evaluated by the two-loop renormalization group equations for the Higgs mass around 126GeV in the Standard Model. We obtain the cutoff scale dependence of the bare Higgs mass, and examine where it becomes zero. We find that when we take the current central value for the top quark pole mass, 173GeV, the bare Higgs mass vanishes if the cutoff is about 10^{23}GeV. With a 1.3 sigma smaller mass, 170GeV, the scale can be of the order of the Planck scale.

  1. A SUB-GRID VOLUME-OF-FLUIDS (VOF) MODEL FOR MIXING IN RESOLVED SCALE AND IN UNRESOLVED SCALE COMPUTATIONS

    SciTech Connect (OSTI)

    VOLD, ERIK L. [Los Alamos National Laboratory; SCANNAPIECO, TONY J. [Los Alamos National Laboratory

    2007-10-16T23:59:59.000Z

    A sub-grid mix model based on a volume-of-fluids (VOF) representation is described for computational simulations of the transient mixing between reactive fluids, in which the atomically mixed components enter into the reactivity. The multi-fluid model allows each fluid species to have independent values for density, energy, pressure and temperature, as well as independent velocities and volume fractions. Fluid volume fractions are further divided into mix components to represent their 'mixedness' for more accurate prediction of reactivity. Time dependent conversion from unmixed volume fractions (denoted cf) to atomically mixed (af) fluids by diffusive processes is represented in resolved scale simulations with the volume fractions (cf, af mix). In unresolved scale simulations, the transition to atomically mixed materials begins with a conversion from unmixed material to a sub-grid volume fraction (pf). This fraction represents the unresolved small scales in the fluids, heterogeneously mixed by turbulent or multi-phase mixing processes, and this fraction then proceeds in a second step to the atomically mixed fraction by diffusion (cf, pf, af mix). Species velocities are evaluated with a species drift flux, {rho}{sub i}u{sub di} = {rho}{sub i}(u{sub i}-u), used to describe the fluid mixing sources in several closure options. A simple example of mixing fluids during 'interfacial deceleration mixing with a small amount of diffusion illustrates the generation of atomically mixed fluids in two cases, for resolved scale simulations and for unresolved scale simulations. Application to reactive mixing, including Inertial Confinement Fusion (ICF), is planned for future work.

  2. Nonlinear analysis of time series of vibration data from a friction brake: SSA, PCA, and MFDFA

    E-Print Network [OSTI]

    Nikolay K. Vitanov; Norbert P. Hoffmann; Boris Wernitz

    2014-10-23T23:59:59.000Z

    We use the methodology of singular spectrum analysis (SSA), principal component analysis (PCA), and multi-fractal detrended fluctuation analysis (MFDFA), for investigating characteristics of vibration time series data from a friction brake. SSA and PCA are used to study the long time-scale characteristics of the time series. MFDFA is applied for investigating all time scales up to the smallest recorded one. It turns out that the majority of the long time-scale dynamics, that is presumably dominated by the structural dynamics of the brake system, is dominated by very few active dimensions only and can well be understood in terms of low dimensional chaotic attractors. The multi-fractal analysis shows that the fast dynamical processes originating in the friction interface are in turn truly multi-scale in nature.

  3. Lower scaling dimensions of quarks and gluons and new energy scales

    E-Print Network [OSTI]

    F. Palumbo

    1996-05-08T23:59:59.000Z

    We consider the possibility that quarks and gluons, due to confinement, have lower scaling dimensions. In such a case there appear naturally new energy scales below which the standard theory is recovered. Arguments are given whereby for dimension $1/2$ of the quarks the theory is unitary also above these energy scales.

  4. Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling

    E-Print Network [OSTI]

    Shaw, Bruce E.

    . Shaw Lamont­Doherty Earth Observatory, Columbia University, New York, USA The radiated energy coming271 Impact of Friction and Scale-Dependent Initial Stress on Radiated Energy-Moment Scaling Bruce E of elucidat- ing their radiated energy-moment scaling. We find, contrary to expectations, that apparent stress

  5. Time, energy & form

    E-Print Network [OSTI]

    McInnis, Martha Jane

    1982-01-01T23:59:59.000Z

    Physical manifestations of time occur in natural forms of all sizes. Architectural form serves as shelter while providing a built envelope of human life, simultaneously influencing and influenced by energetic activities ...

  6. Drug Retention Times

    SciTech Connect (OSTI)

    Center for Human Reliability Studies

    2007-05-01T23:59:59.000Z

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user

  7. Drug Retention Times

    SciTech Connect (OSTI)

    Center for Human Reliability Studies

    2007-05-01T23:59:59.000Z

    The purpose of this monograph is to provide information on drug retention times in the human body. The information provided is based on plausible illegal drug use activities that might be engaged in by a recreational drug user.

  8. Reynolds and Mach Number Scaling in Stationary Compressible Turbulence Using Massively Parallel High Resolution Direct Numerical Simulations

    E-Print Network [OSTI]

    Jagannathan, Shriram

    2014-07-24T23:59:59.000Z

    on the acous- tic time scale leading to a simplified set of equations (Erlebacher et al., 1990; Sarkar et al., 1991). This leads to a flow regime known as low-Mach number quasi-isentropic regime, where the flow evolves only on acoustic time scale... and characterized by small dilatational fluctuations (Sagaut & Cambon, 2008). Under these conditions, Sarkar et al. (1991) observed an equipartition of energy between the compressible kinetic energy and potential energy due to the pressure. The phenomenon...

  9. A Tree Swaying in a Turbulent Wind: A Scaling Analysis

    E-Print Network [OSTI]

    Theo Odijk

    2014-07-10T23:59:59.000Z

    A tentative scaling theory is presented of a tree swaying in a turbulent wind. It is argued that the turbulence of the air within the crown is in the inertial regime. An eddy causes a dynamic bending response of the branches according to a time criterion. The resulting expression for the penetration depth of the wind yields an exponent which appears to be consistent with that pertaining to the morphology of the tree branches. An energy criterion shows that the dynamics of the branches is basically passive. The possibility of hydrodynamic screening by the leaves is discussed.

  10. From the Micro-scale to Collective Crowd Dynamics

    E-Print Network [OSTI]

    Nicola Bellomo; Abdelghani Bellouquid; Damian Knopoff

    2013-01-23T23:59:59.000Z

    This paper deals with the kinetic theory modeling of crowd dynamics with the aim of showing how the dynamics at the micro-scale is transferred to the dynamics of collective behaviors. The derivation of a new model is followed by a qualitative analysis of the initial value problem. Existence of solutions is proved for arbitrary large times, while simulations are developed by computational schemes based on splitting methods, where the transport equations treated by finite difference methods for hyperbolic equations. Some preliminary reasonings toward the modeling of panic conditions are proposed.

  11. Low-Q scaling, duality, and the EMC effect

    SciTech Connect (OSTI)

    J. Arrington; R. Ent; C. E. Keppel; J. Mammei; I. Niculescu

    2003-07-01T23:59:59.000Z

    High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Data on the proton and deuteron have shown that there is a fundamental connection between the low and high energy regimes, referred to as quark-hadron duality. We present the results of similar studies to more carefully examine scaling, duality, and in particular the EMC effect in nuclei. We extract nuclear modifications to the structure function in the resonance region, and for the first time demonstrate that nuclear effects in the resonance region are identical to those measured in deep inelastic scattering.

  12. Optimal temporal planning at reactive time scales via dynamic backtracking branch and bound

    E-Print Network [OSTI]

    Effinger, Robert T

    2006-01-01T23:59:59.000Z

    Autonomous robots are being considered for increasingly capable roles in our society, such as urban search and rescue, automation for assisted living, and lunar habitat construction. To fulfill these roles, teams of ...

  13. The Miocene astronomical time scale 912 Ma: New constraints on tidal dissipation and their

    E-Print Network [OSTI]

    Utrecht, Universiteit

    , and Lucas L. Lourens1 1 Faculty of Geosciences, University of Utrecht, Utrecht, Netherlands, 2 Now at Chair 'Fort Hoofddijk', Faculty of Geosciences, Utrecht University, Utrecht, Netherlands Abstract Orbital

  14. Astronomical forcing in Upper Miocene continental sequences: implications for the Geomagnetic Polarity Time Scale

    E-Print Network [OSTI]

    Utrecht, Universiteit

    a Paleomagnetic Laboratory `Fort Hoofddijk', Utrecht University, Budapestlaan 17, 3584 CD Utrecht, The Netherlands b Faculty of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands `Fort Hoofddijk', Utrecht University, Budapestlaan 17, 3584 CD, Utrecht, The Netherlands. Fax: +31

  15. A model for universal time scale of vortex ring formation Kamran Mohseni

    E-Print Network [OSTI]

    Mohseni, Kamran

    and Applied Science, 104-44, California Institute of Technology, Pasadena, California 91125 Morteza Gharib Graduate Aeronautical Laboratory, California Institute of Technology, Pasadena, California 91125 Received of the fluid out of the cylinder and the approximation of the vortex at the pinch off moment by a vortex

  16. A new time-scale for ray-finned fish evolution ELECTRONIC SUPPLEMENTARY MATERIAL

    E-Print Network [OSTI]

    Yang, Ziheng

    , 1975; Polypterus Bartsch & Gemballa 1992, Bartsch et al. 1997; Pteronisculus Nielsen 1942, Coates 1998

  17. Interannual Atmospheric Variability Affects Continental Ice Sheet Simulations on Millennial Time Scales

    E-Print Network [OSTI]

    Pritchard, Michael S; Bush, Andrew B. G; Marshall, Shawn J

    2008-01-01T23:59:59.000Z

    Wu, P. , and W. R. Peltier, 1982: Viscous gravitationalG. K. C. Clarke, and W. R. Peltier, 2000: Gla- ciologicalTech. Rep. 2, 17 pp. Peltier, W. R. , 1985: The LAGEOS

  18. Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales

    E-Print Network [OSTI]

    Cummer, Steven A.

    for lightninginduced electron precipitation), or geomagnetic activities. These measurements suggest that nighttime D through measuring the electrical currents to an electrode at a fixed potential [Smith, 1969]. Although. We probed the ionospheric D region by measuring the highpower broadband very low frequency (VLF

  19. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    2008. Analysis of Wind Generation Impact on ERCOT Ancillarythe integration of wind generation. Analysis of Wind Powerwind is far more similar to load than to conventional generation

  20. Completing the Neogene geological time scale between 8.5 and 12.5 Ma

    E-Print Network [OSTI]

    Utrecht, Universiteit

    , H. Abdul Aziz a,1 , W. Krijgsman a a Paleomagnetic Laboratory `Fort Hoofddijk', Utrecht University

  1. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    Wan, Yih-Huei. 2004. Wind Power Plant Behaviors: Analyses ofthe output of wind power plants. In a typical studyfluctuations across wind power plants located in the same

  2. A MULTI-SCALE WAVELET-LQR CONTROLLER FOR LINEAR TIME VARYING SYSTEMS

    E-Print Network [OSTI]

    Nagarajaiah, Satish

    , Houston, TX; 3 Professor, Dept. of Civil & Environmental Engineering and Mechanical Engineering & Material or non-uniform flexibility, cable stayed structures, offshore structures, variable speed wind turbines and helicopter blades to name a few. Such systems often exhibit instabilities including parametric and internal

  3. Second order coherence of broadband down-converted light on ultrashort time scale

    E-Print Network [OSTI]

    Boyer, Edmond

    correlation is carried out thanks to a modified Hanbury Brown-Twiss interferometer based on two photon. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature 177(4497), 27

  4. Cognitive Components of Speech at Different Time Scales Ling Feng (lf@imm.dtu.dk)

    E-Print Network [OSTI]

    representation. Our hypothesis is now basi- cally ecological: We hypothesize that features that are essen- tially of the ecology, the process of natural selection, and learning. Robust statistical regularities will be exploited producing processes. The optimized representations for low level perception are indeed based on independence

  5. MCODE-3 : time-dependent depletion isotopics with MCNP-5 and SCALE-6.1

    E-Print Network [OSTI]

    Gerrity, Thomas P., III

    2012-01-01T23:59:59.000Z

    In order to operate a reactor safely and efficiently, computer simulations must be used to predict certain nuclear characteristics of the reactor. To determine how materials change in a fission power environment, a ...

  6. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    Huei. 2005. Primer on Wind Power for Utility Applications.Wan, Yih-Huei. 2004. Wind Power Plant Behaviors: Analysesof Long-Term Wind Power Data. National Renewable Energy Lab

  7. Intermediate- to Deep-Water Circulation Changes on Short and Long Time Scales

    E-Print Network [OSTI]

    Murphy, Daniel Patrick

    2012-07-16T23:59:59.000Z

    ). In the subtropical eastern North Pacific, interstadials are characterized by increases in sea surface temperature (Kennett and Venz, 1995; Hendy and Kennett, 1999) and primary productivity (Ortiz et al., 2004; Pospelova et al., 2006) as well as diminished... levels at the seafloor via oxidation of organic matter during interstadials (e.g. Ortiz et al., 2004). The second hypothesis calls for a change in intermediate water circulation, in which a younger, relatively oxygen-rich stadial water mass...

  8. Distributed Model Predictive Control of Nonlinear and Two-Time-Scale Process Networks

    E-Print Network [OSTI]

    Chen, Xianzhong

    2012-01-01T23:59:59.000Z

    Computers & Chemical Engineering, 28:1193–1218, 2004. [8] L.Computers & Chemical Engineering, 28:1169–1192, 2004. [9] M.nonlinear processes. Chemical Engineering Science, [29] N.

  9. Implementation of BEE: a Real-time Large-scale Hardware Emulation Engine

    E-Print Network [OSTI]

    Southern California, University of

    . Categories: I. Computing Methodologies I.6 Simulation and Modeling I.6.7 Simulation Support Systems Subject complexity and integration of digital and analog systems, the computing power required for detailed cycle verification of integrated systems with heterogeneous components very difficult. In communication systems

  10. Distributed Model Predictive Control of Nonlinear and Two-Time-Scale Process Networks

    E-Print Network [OSTI]

    Chen, Xianzhong

    2012-01-01T23:59:59.000Z

    process . . . . . . . . . . . . Process and control problem147 Process description and control systemof benzene pro- cess Process and control problem description

  11. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    The spectrum of power from wind turbines. Journal of PowerAWEA 2010. American Wind Energy Association ProjectsErik and Jason Kemper. 2009. Wind Plant Ramping Behavior.

  12. Distributed Model Predictive Control of Nonlinear and Two-Time-Scale Process Networks

    E-Print Network [OSTI]

    Chen, Xianzhong

    2012-01-01T23:59:59.000Z

    reactors as well as chemical process networks in which the individual processes evolve in a fastreactors (CSTRs) and a ?ash separator with recycle. The proposed fast-reactors (CSTRs) and a ?ash separator with recycle. The proposed fast-

  13. Distributed Model Predictive Control of Nonlinear and Two-Time-Scale Process Networks

    E-Print Network [OSTI]

    Chen, Xianzhong

    2012-01-01T23:59:59.000Z

    process of alkylation of benzene with ethylene to produce ethylbenzene is widely used in the petrochemicalprocess of alkylation of benzene with ethylene to produce ethylbenzene is widely used in the petrochemical

  14. Influence of Mean State on Climate Variability at Interannual and Decadal Time Scales 

    E-Print Network [OSTI]

    Zhu, Xiaojie

    2013-05-17T23:59:59.000Z

    for many phenomena associated with variables that are nonlinear by definition, such as the vertical wind shear and surface wind speed. In the first part of this dissertation, the influence of mean flow and anomalous flow on vertical wind shear variability...

  15. Distributed Model Predictive Control of Nonlinear and Two-Time-Scale Process Networks

    E-Print Network [OSTI]

    Chen, Xianzhong

    2012-01-01T23:59:59.000Z

    layer) employs automatic feedback control systems to forcenonlinear systems. IEEE Transactions on Automatic Control,dynamical systems. IEEE Transactions on Automatic Control,

  16. Lifetime of Anthropogenic Climate Change: Millennial Time Scales of Potential CO2 and Surface Temperature Perturbations

    E-Print Network [OSTI]

    Scherer, Norbert F.

    ). Earth system models can be used to simulate the ev- olution of the climate system under different anthro

  17. The Grumps Architecture: Run-time Evolution in a Large Scale Distributed System

    E-Print Network [OSTI]

    Evans, J.H.

    Evans,J.H. Dickman,P. Atkinson,M. Proceedings of the Workshop on Engineering Complex Object-Oriented Solutions for Evolution (ECOOSE), held as part of OOPSLA 2001

  18. Prediction of communication delay in torus networks under multiple time-scale correlated traffic

    E-Print Network [OSTI]

    Min, G.; Ould-Khaoua, M.

    Min,G. Ould-Khaoua,M. Performance Evaluation: An International Journal, vol. 60, no 1-4, May 2005 pp 255â??273 Elsevier Science

  19. Distributed Model Predictive Control of Nonlinear and Two-Time-Scale Process Networks

    E-Print Network [OSTI]

    Chen, Xianzhong

    2012-01-01T23:59:59.000Z

    pC , C pD Heat capacity of A, B, C, D at liquid phase ? A ,M +1 Liquid hold-up in each vessel C P V ,i Heat capacity of

  20. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01T23:59:59.000Z

    by a set of integrated wind farms increases, the behavior ofto the spatial distribution of wind farms and the total MW.line dates for the various wind farms were not provided, so

  1. BROWNIAN MOTION INDEXED BY A TIME SCALE DAVID GROW AND SUMAN SANYAL

    E-Print Network [OSTI]

    Sanyal, Suman

    on the proba- bility space (C0[0, ), P) and the increments Wti - Wti-1 are normally distributed with mean zero

  2. How Much Energy Is Transferred from the Winds to the Thermocline on ENSO Time Scales?

    E-Print Network [OSTI]

    the winds (via wind power) and changes in the storage of available potential energy in the tropical ocean~o is characterized by a decrease in wind power that leads to a decrease in available potential energy, and hence to an increase in the available potential energy and a steeper thermocline. The wind power alters the available

  3. Radiative Influences on Glaciation Time-Scales of Mixed-Phase Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The FederalRadiativeRadiative

  4. COLLOQUIUM - PLEASE NOTE SPECIAL DATE/TIME: The Magnetospheric MultiScale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8Critical4CO2Laboratory:Mission

  5. Time reversal duality of magnetohydrodynamic shocks

    SciTech Connect (OSTI)

    Goedbloed, J. P. [FOM-Institute for Plasma Physics 'Rijnhuizen', Nieuwegein and Astronomical Institute, Utrecht University, Utrecht 3439 MN (Netherlands)

    2008-06-15T23:59:59.000Z

    The shock conditions in magnetohydrodynamics (MHD) are reduced to their most concise, three-parameter, distilled form by consistent use of the scale independence of the MHD equations and of the de Hoffmann-Teller transformation. They then exhibit a distinct time reversal duality between entropy-allowed shocks and entropy-forbidden jumps. This yields a new classification of MHD shocks by means of the monotonicity properties with respect to upstream and downstream Alfven Mach numbers, it exhibits the central role of intermediate discontinuities, and permits straightforward construction of all relevant dimensionless quantities of the shocks. An exhaustive overview is presented of solutions in the different parameter regimes.

  6. Holographic Space-time and Newton's Law

    E-Print Network [OSTI]

    Tom Banks; Willy Fischler

    2013-10-25T23:59:59.000Z

    We derive Newton's Law from the formalism of Holographic Space-Time (HST). More precisely, we show that for a large class of Hamiltonians of the type proposed previously for the HST description of a geodesic in Minkowski space, the eikonal for scattering of two massless particles at large impact parameter scales as expected with the impact parameter and the energies of the particles in the center of mass (CM) frame. We also discuss the criteria for black hole production in this collision, and find an estimate, purely within the HST framework, for the impact parameter at which it sets in, which coincides with the estimate based on general relativity.

  7. The four fixed points of scale invariant single field cosmological models

    SciTech Connect (OSTI)

    Xue, BingKan, E-mail: bxue@princeton.edu [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

    2012-10-01T23:59:59.000Z

    We introduce a new set of flow parameters to describe the time dependence of the equation of state and the speed of sound in single field cosmological models. A scale invariant power spectrum is produced if these flow parameters satisfy specific dynamical equations. We analyze the flow of these parameters and find four types of fixed points that encompass all known single field models. Moreover, near each fixed point we uncover new models where the scale invariance of the power spectrum relies on having simultaneously time varying speed of sound and equation of state. We describe several distinctive new models and discuss constraints from strong coupling and superluminality.

  8. Arctic sea ice declined rapidly to unprec-edented low extents in the summer of 2007,

    E-Print Network [OSTI]

    Clements, Craig

    Arctic sea ice declined rapidly to unprec- edented low extents in the summer of 2007, raising concern that the Arctic may be on the verge of a fundamental transition toward a seasonal ice cover. Arctic sea ice extent typically attains a seasonal maximum in March and minimum in September. Over

  9. Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS

    E-Print Network [OSTI]

    Curceanu, C; Bazzi, M; Berucci, C; Bosnar, D; Bragadireanu, A M; Clozza, A; Cargnelli, M; D'uffizi, A; Fabbietti, L; Fiorini, C; Ghio, F; Guaraldo, C; Iliescu, M; Sandri, P Levi; Marton, J; Pietreanu, D; Lener, M Poli; Quaglia, R; Vidal, A Romero; Sbardella, E; Scordo, A; Shi, H; Sirghi, D; Sirghi, F; Skurzok, M; Tucakovic, I; Doce, O Vazquez; Widmann, E; Zmeskal, J

    2015-01-01T23:59:59.000Z

    The AMADEUS experiment aims to provide unique quality data of $K^-$ hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the $\\Lambda(1405)$ state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon $K^-$ absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the DA$\\Phi$NE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for $K^-$ nuclear capture on H, ${}^4$He, ${}^{9}$Be and ${}^{12}$C, both at-rest and in-flight. During the second half of 2012 a successful data taking was performed with a dedicated pure carbon target implemented in the central region of KLOE, providing a high statistic sample of pure at-rest $K^-$ nuclear i...

  10. Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS

    E-Print Network [OSTI]

    C. Curceanu; K. Piscicchia; M. Bazzi; C. Berucci; D. Bosnar; A. M. Bragadireanu; A. Clozza; M. Cargnelli; A. D'uffizi; L. Fabbietti; C. Fiorini; F. Ghio; C. Guaraldo; M. Iliescu; P. Levi Sandri; J. Marton; D. Pietreanu; M. Poli Lener; R. Quaglia; A. Romero Vidal; E. Sbardella; A. Scordo; H. Shi; D. Sirghi; F. Sirghi; M. Skurzok; I. Tucakovic; O. Vazquez Doce; E. Widmann; J. Zmeskal

    2015-01-23T23:59:59.000Z

    The AMADEUS experiment aims to provide unique quality data of $K^-$ hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the $\\Lambda(1405)$ state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon $K^-$ absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the DA$\\Phi$NE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for $K^-$ nuclear capture on H, ${}^4$He, ${}^{9}$Be and ${}^{12}$C, both at-rest and in-flight. During the second half of 2012 a successful data taking was performed with a dedicated pure carbon target implemented in the central region of KLOE, providing a high statistic sample of pure at-rest $K^-$ nuclear interactions. For the future dedicated setups involving cryogenic gaseous targets are under preparation.

  11. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect (OSTI)

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M. [Swedish Institute of Space Physics, Uppsala (Sweden); BAE Systems Advanced Technologies, Washington, D.C. (United States)

    2009-02-13T23:59:59.000Z

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  12. Identification of Quaternary Shape Memory Alloys with Near-Zero Thermal Hysteresis and Unprecedented

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Identification of Quaternary Shape Memory Alloys with Near-Zero Thermal Hysteresis the class of materials showing a reversible martensitic phase transformation and a shape memory effect (SME fatigue of shape memory alloys (SMAs) resulting in changes of physical, mechan- ical, and shape memory (SM

  13. Studies on Oximidine II - Total Synthesis by an Unprecedented Reductive Coupling

    E-Print Network [OSTI]

    Schneider, Christopher Mark

    2009-10-20T23:59:59.000Z

    -N-acetylglucosamine enolpyruvyl transferase (MurA) catalyzes the first committed step of cell wall biosynthesis. Using highthroughput screening, 5 scaffolds were identified with MurA inhibitory activity. Analog development of the pyrrole-benzoic acid scaffold failed to generate...

  14. U.S. Virgin Islands Clears the Way for Unprecedented Levels of Solar Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation&Department ofDepartment of Energy|

  15. U.S. Virgin Islands Clears the Way for Unprecedented Levels of Solar Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTestFeedEnergy Navy MoanaluaDepartment of4: Project

  16. Space Chamber Reaches Cold Target at Unprecedented Efficiency | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School Rules, Forms, andOffice

  17. EEHG Performance and Scaling Laws

    SciTech Connect (OSTI)

    Penn, Gregory

    2013-10-09T23:59:59.000Z

    This note will calculate the idealized performance of echo-enabled harmonic generation performance (EEHG), explore the parameter settings, and look at constraints determined by incoherent synchrotron radiation (ISR) and intrabeam scattering (IBS). Another important effect, time-of-flight variations related to transverse emittance, is included here but without detailed explanation because it has been described previously. The importance of ISR and IBS is that they lead to random energy shifts that lead to temporal shifts after the various beam manipulations required by the EEHG scheme. These effects give competing constraints on the beamline. For chicane magnets which are too compact for a given R56, the magnetic fields will be sufficiently strong that ISR will blur out the complex phase space structure of the echo scheme to the point where the bunching is strongly suppressed. The effect of IBS is more omnipresent, and requires an overall compact beamline. It is particularly challenging for the second pulse in a two-color attosecond beamline, due to the long delay between the first energy modulation and the modulator for the second pulse.

  18. Pressurized melt ejection into scaled reactor cavities

    SciTech Connect (OSTI)

    Tarbell, W.W.; Pilch, M.; Brockmann, J.E.; Ross, J.W.; Gilbert, D.W.

    1986-10-01T23:59:59.000Z

    This report describes four tests performed in the High-Pressure Melt Streaming Program (HIPS) using linear-scaled cavities of the Zion Nuclear Power Plant. These experiments were conducted to study the phenomena involved in high-pressure ejection of core debris into the cavity beneath the reactor pressure vessel. One-tenth and one-twentieth linear scale models of reactor cavities were constructed and instrumented. The first test used an apparatus constructed of alumina firebrick to minimize the potential interaction between the ejected melt and cavity material. The remaining three experiments used scaled representations of the Zion nuclear plant geometry, constructed of prototypic concrete composition.

  19. Method and system for small scale pumping

    DOE Patents [OSTI]

    Insepov, Zeke (Darien, IL); Hassanein, Ahmed (Bolingbrook, IL)

    2010-01-26T23:59:59.000Z

    The present invention relates generally to the field of small scale pumping and, more specifically, to a method and system for very small scale pumping media through microtubes. One preferred embodiment of the invention generally comprises: method for small scale pumping, comprising the following steps: providing one or more media; providing one or more microtubes, the one or more tubes having a first end and a second end, wherein said first end of one or more tubes is in contact with the media; and creating surface waves on the tubes, wherein at least a portion of the media is pumped through the tube.

  20. Nuclear Scaling and the EMC Effect

    E-Print Network [OSTI]

    D. W. Higinbotham; J. Gomez; E. Piasetzky

    2010-09-20T23:59:59.000Z

    Results of recent EMC effect measurements and nuclear scaling measurements have both been attributed to local nuclear density effects and not properties of the bulk nuclear system. This lead us to the phenomenological observation that the ratio of the slopes in the 0.3 EMC data scale as the ratio of the x_B > 1 nuclear scaling plateaus. Using this correlation, we developed a phenomenological relation which reproduces the general trends and features of the EMC effect for nuclei from 3He to 56Fe.

  1. Competitive Non-migratory Scheduling for Flow Time and Energy

    E-Print Network [OSTI]

    Wong, Prudence W.H.

    @liv.ac.uk ABSTRACT Energy usage has been an important concern in recent re- search on online scheduling technology to reduce energy usage is dynamic speed scaling (see, e.g., [9, 15, 24, 28]) where the processorCompetitive Non-migratory Scheduling for Flow Time and Energy Tak-Wah Lam Department of Computer

  2. Competitive Nonmigratory Scheduling for Flow Time and Energy

    E-Print Network [OSTI]

    Lam, Tak-Wah

    @liv.ac.uk ABSTRACT Energy usage has been an important concern in recent re­ search on online scheduling technology to reduce energy usage is dynamic speed scaling (see, e.g., [9, 15, 24, 28]) where the processorCompetitive Non­migratory Scheduling for Flow Time and Energy Tak­Wah Lam Department of Computer

  3. Improved Multi-processor Scheduling for Flow Time and Energy

    E-Print Network [OSTI]

    Wong, Prudence W.H.

    . To Prudence W. H. Wong October 29, 2009 Abstract Energy usage has been an important concern in recent research energy usage is dynamic speed scaling (see, e.g., [8, 14, 24, 28]) where the processor can vary its speedImproved Multi-processor Scheduling for Flow Time and Energy Tak-Wah Lam Lap-Kei Lee Isaac K. K

  4. Energy-Efficient Flow Time Scheduling: An Experimental Study

    E-Print Network [OSTI]

    Wong, Prudence W.H.

    of modern processors. A pop- ular technology to reduce energy usage is dynamic speed scaling [5, 8] where and energy, Albers and Fujiwara [3] initiated the study of minimizing a linear combination of total flowEnergy-Efficient Flow Time Scheduling: An Experimental Study Jude-Thaddeus Ojiaku (speaker) Daniel

  5. Topological Effects of Synaptic Time Dependent Plasticity

    E-Print Network [OSTI]

    James R. Kozloski; Guillermo A. Cecchi

    2010-03-19T23:59:59.000Z

    We show that the local Spike Timing-Dependent Plasticity (STDP) rule has the effect of regulating the trans-synaptic weights of loops of any length within a simulated network of neurons. We show that depending on STDP's polarity, functional loops are formed or eliminated in networks driven to normal spiking conditions by random, partially correlated inputs, where functional loops comprise weights that exceed a non-zero threshold. We further prove that STDP is a form of loop-regulating plasticity for the case of a linear network comprising random weights drawn from certain distributions. Thus a notable local synaptic learning rule makes a specific prediction about synapses in the brain in which standard STDP is present: that under normal spiking conditions, they should participate in predominantly feed-forward connections at all scales. Our model implies that any deviations from this prediction would require a substantial modification to the hypothesized role for standard STDP. Given its widespread occurrence in the brain, we predict that STDP could also regulate long range synaptic loops among individual neurons across all brain scales, up to, and including, the scale of global brain network topology.

  6. Large-Scale Molecular Dynamics Simulations for Highly Parallel Infrastructures

    E-Print Network [OSTI]

    Pazúriková, Jana

    2014-01-01T23:59:59.000Z

    Computational chemistry allows researchers to experiment in sillico: by running a computer simulations of a biological or chemical processes of interest. Molecular dynamics with molecular mechanics model of interactions simulates N-body problem of atoms$-$it computes movements of atoms according to Newtonian physics and empirical descriptions of atomic electrostatic interactions. These simulations require high performance computing resources, as evaluations within each step are computationally demanding and billions of steps are needed to reach interesting timescales. Current methods decompose the spatial domain of the problem and calculate on parallel/distributed infrastructures. Even the methods with the highest strong scaling hit the limit at half a million cores: they are not able to cut the time to result if provided with more processors. At the dawn of exascale computing with massively parallel computational resources, we want to increase the level of parallelism by incorporating parallel-in-time comput...

  7. Low-Q scaling, duality, and the EMC effect

    E-Print Network [OSTI]

    J. Arrington; R. Ent; C. E. Keppel; J. Mammei; I. Niculescu

    2005-10-03T23:59:59.000Z

    High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Data on the proton and deuteron have shown that there is a fundamental connection between the low and high energy regimes, referred to as quark-hadron duality. We present the results of similar studies to more carefully examine scaling, duality, and in particular the EMC effect in nuclei. We extract nuclear modifications to the structure function in the resonance region, and for the first time demonstrate that nuclear effects in the resonance region are identical to those measured in deep inelastic scattering. With the improved precision of the data at large $x$, we for the first time observe that the large-x crossover point appears to occur at lower $x$ values in carbon than in iron or gold.

  8. Low-Q scaling, duality, and the EMC effect

    SciTech Connect (OSTI)

    Arrington, J. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Ent, R. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Keppel, C.E. [Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 (United States); Hampton University, Hampton, Virginia 23668 (United States); Mammei, J. [Juniata College, Huntingdon, Pennsylvania 16652 (United States); Niculescu, I. [James Madison University, Harrisonburg, Virginia 22807 (United States)

    2006-03-15T23:59:59.000Z

    High energy lepton scattering has been the primary tool for mapping out the quark distributions of nucleons and nuclei. Data on the proton and deuteron have shown that there is a fundamental connection between the low and high energy regimes, referred to as quark-hadron duality. We present the results of similar studies to more carefully examine scaling, duality, and in particular the EMC effect in nuclei. We extract nuclear modifications to the structure function in the resonance region, and for the first time demonstrate that nuclear effects in the resonance region are identical to those measured in deep inelastic scattering. With the improved precision of the data at large x, we for the first time observe that the large-x crossover point appears to occur at lower x values in carbon than in iron or gold.

  9. New Efficient Sparse SpaceTime Algorithms for Superparameterization on Mesoscales

    E-Print Network [OSTI]

    Xing, Yulong

    New Efficient Sparse Space­Time Algorithms for Superparameterization on Mesoscales YULONG XING-scale and mesoscale processes provided by a cloud-resolving model (CRM) embedded in each column of a large-scale model for limited-area mesoscale ensemble forecasting. 1. Introduction Atmospheric processes of weather and climate

  10. Scaling Reinforcement Learning Paradigms for Motor Control 

    E-Print Network [OSTI]

    Vijayakumar, Sethu; Peters, Jan; Schaal, Stefan

    Reinforcement learning offers a general framework to explain reward related learning in artificial and biological motor control. However, current reinforcement learning methods rarely scale to high dimensional movement systems ...

  11. Scaling Up Nascent Photovoltaics AT Home

    Broader source: Energy.gov [DOE]

    Three awardees are helping the nation reclaim its competitive edge in solar manufacturing through SUNPATH, which stands for Scaling Up Nascent PV AT Home. This program strengthens the domestic...

  12. Integrating Fermentation and Transesterification Industrial Scale Processes

    E-Print Network [OSTI]

    Pike, Ralph W.

    Integrating Fermentation and Transesterification Industrial Scale Processes in the Lower l d CO2 hanol, acetic acid etc. from CO2 Algae growth for use as biomass M lti it i O ti i ti P bl

  13. Extreme Scaling and Performance across Diverse Architectures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extreme Scaling and Performance across Diverse Architectures Start Date: Mar 31 2015 - 11:00am BuildingRoom: Online Webinar Speaker(s): Salman Habib (Argonne National Laboratory;...

  14. On the seismic scaling relations $\\Delta \

    E-Print Network [OSTI]

    Belkacem, K; Mosser, B; Goupil, M J; Ludwig, H -G

    2013-01-01T23:59:59.000Z

    Scaling relations between asteroseismic quantities and stellar parameters are essential tools for studying stellar structure and evolution. We will address two of them, namely, the relation between the large frequency separation ($\\Delta \

  15. Large-scale simulations of reionization

    SciTech Connect (OSTI)

    Kohler, Katharina; /JILA, Boulder /Fermilab; Gnedin, Nickolay Y.; /Fermilab; Hamilton, Andrew J.S.; /JILA, Boulder

    2005-11-01T23:59:59.000Z

    We use cosmological simulations to explore the large-scale effects of reionization. Since reionization is a process that involves a large dynamic range--from galaxies to rare bright quasars--we need to be able to cover a significant volume of the universe in our simulation without losing the important small scale effects from galaxies. Here we have taken an approach that uses clumping factors derived from small scale simulations to approximate the radiative transfer on the sub-cell scales. Using this technique, we can cover a simulation size up to 1280h{sup -1} Mpc with 10h{sup -1} Mpc cells. This allows us to construct synthetic spectra of quasars similar to observed spectra of SDSS quasars at high redshifts and compare them to the observational data. These spectra can then be analyzed for HII region sizes, the presence of the Gunn-Peterson trough, and the Lyman-{alpha} forest.

  16. Agricultural Research for Development Scales & Diversity

    E-Print Network [OSTI]

    Agricultural Research for Development Scales & Diversity SLU, Uppsala 28-29 September 2011 28th September 2011 (morning) Agricultural Investments ..... Shenggen Fan, IFPRI Livestock production­ Global and local importance and development John McDermott, ILRI Smallholder agricultural intensification ­ means

  17. Planet-scale Human Mobility Measurement

    E-Print Network [OSTI]

    Pan Hui; Richard Mortier; Tristan Henderson; Jon Crowcroft

    2009-09-18T23:59:59.000Z

    Research into, and design and construction of mobile systems and algorithms requires access to large-scale mobility data. Unfortunately, the wireless and mobile research community lacks such data. For instance, the largest available human contact traces contain only 100 nodes with very sparse connectivity, limited by experimental logistics. In this paper we pose a challenge to the community: how can we collect mobility data from billions of human participants? We re-assert the importance of large-scale datasets in communication network design, and claim that this could impact fundamental studies in other academic disciplines. In effect, we argue that planet-scale mobility measurements can help to save the world. For example, through understanding large-scale human mobility, we can track and model and contain the spread of epidemics of various kinds.

  18. Extragalactic jets on subpc and large scales

    E-Print Network [OSTI]

    F. Tavecchio

    2007-08-20T23:59:59.000Z

    Jets can be probed in their innermost regions (d~0.1 pc) through the study of the relativistically-boosted emission of blazars. On the other extreme of spatial scales, the study of structure and dynamics of extragalactic relativistic jets received renewed impulse after the discovery, made by Chandra, of bright X-ray emission from regions at distances larger than hundreds of kpc from the central engine. At both scales it is thus possible to infer some of the basic parameters of the flow (speed, density, magnetic field intensity, power). After a brief review of the available observational evidence, I discuss how the comparison between the physical quantities independently derived at the two scales can be used to shed light on the global dynamics of the jet, from the innermost regions to the hundreds of kpc scale.

  19. Program Management for Large Scale Engineering Programs

    E-Print Network [OSTI]

    Oehmen, Josef

    The goal of this whitepaper is to summarize the LAI research that applies to program management. The context of most of the research discussed in this whitepaper are large-scale engineering programs, particularly in the ...

  20. Predictions From High Scale Mixing Unification Hypothesis

    E-Print Network [OSTI]

    Srivastava, Rahul

    2015-01-01T23:59:59.000Z

    Starting with 'High Scale Mixing Unification' hypothesis, we investigate the renormalization group evolution of mixing parameters and masses for both Dirac and Majorana type neutrinos. Following this hypothesis, the PMNS mixing parameters are taken to be identical to the CKM ones at a unifying high scale. Then, they are evolved to a low scale using MSSM renormalization-group equations. For both type of neutrinos, the renormalization group evolution 'naturally' results in a non-zero and small value of leptonic mixing angle $\\theta_{13}$. One of the important predictions of this analysis is that, in both cases, the mixing angle $\\theta_{23}$ turns out to be non-maximal for most of the parameter range. We also elaborate on the important differences between Dirac and Majorana neutrinos within our framework and how to experimentally distinguish between the two scenarios. Furthermore, for both cases, we also derive constraints on the allowed parameter range for the SUSY breaking and unification scales, for which th...

  1. External Surveillance of Geothermal Scale Deposits Employing...

    Open Energy Info (EERE)

    can detect scale buildup in pipes to 1-2 m accuracy. Radiography has also detected corrosion in piping. Development of this technique is shown to be useful of monitoring...

  2. Large scale prediction models and algorithms

    E-Print Network [OSTI]

    Monsch, Matthieu (Matthieu Frederic)

    2013-01-01T23:59:59.000Z

    Over 90% of the data available across the world has been produced over the last two years, and the trend is increasing. It has therefore become paramount to develop algorithms which are able to scale to very high dimensions. ...

  3. Multilevel method for modeling large-scale networks.

    SciTech Connect (OSTI)

    Safro, I. M. (Mathematics and Computer Science)

    2012-02-24T23:59:59.000Z

    Understanding the behavior of real complex networks is of great theoretical and practical significance. It includes developing accurate artificial models whose topological properties are similar to the real networks, generating the artificial networks at different scales under special conditions, investigating a network dynamics, reconstructing missing data, predicting network response, detecting anomalies and other tasks. Network generation, reconstruction, and prediction of its future topology are central issues of this field. In this project, we address the questions related to the understanding of the network modeling, investigating its structure and properties, and generating artificial networks. Most of the modern network generation methods are based either on various random graph models (reinforced by a set of properties such as power law distribution of node degrees, graph diameter, and number of triangles) or on the principle of replicating an existing model with elements of randomization such as R-MAT generator and Kronecker product modeling. Hierarchical models operate at different levels of network hierarchy but with the same finest elements of the network. However, in many cases the methods that include randomization and replication elements on the finest relationships between network nodes and modeling that addresses the problem of preserving a set of simplified properties do not fit accurately enough the real networks. Among the unsatisfactory features are numerically inadequate results, non-stability of algorithms on real (artificial) data, that have been tested on artificial (real) data, and incorrect behavior at different scales. One reason is that randomization and replication of existing structures can create conflicts between fine and coarse scales of the real network geometry. Moreover, the randomization and satisfying of some attribute at the same time can abolish those topological attributes that have been undefined or hidden from researchers. We propose to develop multilevel methods to model complex networks. The key point of the proposed strategy is that it will help to preserve part of the unknown structural attributes by guaranteeing the similar behavior of the real and artificial model on different scales.

  4. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect (OSTI)

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H. [Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS/Université de Lyon, Ecole Centrale de Lyon/Université Lyon 1/INSA de Lyon, ECL, 36 Avenue Guy de Collongue, 69134 Ecully Cedex (France); Garandet, J.-P. [CEA, Laboratoire d’Instrumentation et d’Expérimentation en Mécanique des Fluides et Thermohydraulique, DEN/DANS/DM2S/STMF/LIEFT, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2014-09-15T23:59:59.000Z

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  5. Multi-scale thermalhydraulic analyses performed in Nuresim and Nurisp projects

    SciTech Connect (OSTI)

    Bestion, D. [CEA-Grenoble, DEN-DANS-DM2S, Grenoble, (France); Lucas, D. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden, (Germany); Anglart, H. [KTH Royal Institute of Technology, Stockholm, (Sweden); Niceno, B. [Paul Scherrer Institute, Villingen, (Switzerland); Vyskocil, L. [Nuclear Research Institute Rez plc, Rez, (Czech Republic)

    2012-07-01T23:59:59.000Z

    The NURESIM and NURISP successive projects of the 6. and 7. European Framework Programs joined the efforts of 21 partners for developing and validating a reference multi-physics and multi-scale platform for reactor simulation. The platform includes system codes, component codes, and also CFD or CMFD simulation tools. Fine scale CFD simulations are useful for a better understanding of physical processes, for the prediction of small scale geometrical effects and for solving problems that require a fine space and/or time resolution. Many important safety issues usually treated at the system scale may now benefit from investigations at a CFD scale. The Pressurized Thermal Shock is investigated using several simulation scales including Direct Numerical Simulation, Large Eddy Simulation, Very Large Eddy Simulation and RANS approaches. At the end a coupling of system code and CFD is applied. Condensation Induced Water-Hammer was also investigated at both CFD and 1-D scale. Boiling flow in a reactor core up to Departure from Nucleate Boiling or Dry-Out is investigated at scales much smaller than the classical subchannel analysis codes. DNS was used to investigate very local processes whereas CFD in both RANS and LES was used to simulate bubbly flow and Euler-Lagrange simulations were used for annular mist flow investigations. Loss of Coolant Accidents are usually treated by system codes. Some related issues are now revisited at the CFD scale. In each case the progress of the analysis is summarized and the benefit of the multi-scale approach is shown. (authors)

  6. Acoustofluidics 10: Scaling laws in acoustophoresis

    E-Print Network [OSTI]

    of sound c0 in a liquid scales like the density r0 of the liquid to the power minus one-half, written as c0 in a microfluidic system scales like the pressure drop Dp to the power one, written as Q f Dp, and the speed), as well as density r0 and viscosity h of the liquid. We know the full answer to be1 Q ¼ pa4 8hL Dp

  7. A regional-scale particle-tracking method for nonstationary fractured media

    SciTech Connect (OSTI)

    Ohman, Johan; Niemi, Auli; Tsang, Chin-Fu

    2004-11-01T23:59:59.000Z

    A regional scale transport model is introduced that is applicable to non-stationary and statistically inhomogeneous fractured media, provided that hydraulic flow, but not necessarily solute transport, can be approximated by equivalent continuum properties at some block scale. Upscaled flow and transport block properties are transferred from multiple fracture network realizations to a regional model with grid elements of equal size to that found valid for continuum approximation of flow. In the large-scale model, flow is solved in a stochastic continuum framework, whereas the transport calculations employ a random walk procedure. Block-wise transit times are sampled from distributions linked to each block-conductivity based on its underlying fracture network. To account for channeled transport larger than the block scale, several alternatives in sampling algorithm are introduced and compared. The most reasonable alternative incorporates a spatial persistence length in sampling the particle transit times; this tracer transport persistence length is related to interblock channeling, and is quantified by the number N of blocks. The approach is demonstrated for a set of field data, and the obtained regional-scale particle breakthroughs are analyzed. These are fitted to the one-dimensional advective-dispersive equation to determine an effective macroscale dispersion coefficient. An interesting finding is that this macroscale dispersion coefficient is found to be a linear function of the transport persistence, N, with a slope equal to a representative mean block-scale dispersion coefficient and a constant that incorporates background dispersion arising from the regional heterogeneous conductivity field.

  8. Relating Pore-Scale Uranium Aquatic Speciation to Intermediate-Scale Aquifer Heterogeneity

    SciTech Connect (OSTI)

    Ranville, James

    2013-04-01T23:59:59.000Z

    The speciation and transport of uranium (VI) through porous media is highly dependent on solution conditions, the presence of complexing ligands, and the nature of the porous media. The dependency on many variables makes prediction of U transport in bench-scale experiments and in the field difficult. In particular, the identification of colloidal U phases poses a technical challenge. Transport of U in the presence and absence of natural organic matter (Suwannee River humic acid, SRHA) through silica sand and hematite coated silica sand was tested at pH 4 and 5 using static columns, where flow is controlled by gravity and residence time between advective pore volume exchanges can be strictly controlled. The column effluents were characterized by traditional techniques including ICPMS quantification of total [U] and [Fe], TOC analysis of [DOC], and pH analysis, and also by non-traditional techniques: flow field flow fractionation with online ICPMS detection (FlFFF-ICPMS) and specific UV absorbance (SUVA) characterization of effluent fractions. Key results include that the transport of U through the columns was enhanced by pre-equilibration with SRHA, and previously deposited U was remobilized by the addition of SRHA. The advanced techniques yielded important insights on the mechanisms of transport: FlFFF-ICPMS identified a U?SRHA complex as the mobile U species and directly quantified relative amounts of the complex, while specific UV absorbance (SUVA) measurements indicated a composition-based fractionation onto the porous media.

  9. Time-Encoded Imagers.

    SciTech Connect (OSTI)

    Marleau, Peter; Brubaker, Erik

    2014-11-01T23:59:59.000Z

    This report provides a short overview of the DNN R&D funded project, Time-Encoded Imagers. The project began in FY11 and concluded in FY14. The Project Description below provides the overall motivation and objectives for the project as well as a summary of programmatic direction. It is followed by a short description of each task and the resulting deliverables.

  10. Bootstrapping Time Dilation Decoherence

    E-Print Network [OSTI]

    Cisco Gooding; William G. Unruh

    2015-03-18T23:59:59.000Z

    We present a general relativistic model of a spherical shell of matter with a perfect fluid on its surface coupled to an internal oscillator, which generalizes a model recently introduced by the authors to construct a self-gravitating interferometer [1]. The internal oscillator evolution is defined with respect to the local proper time of the shell, allowing the oscillator to serve as a local clock that ticks differently depending on the shell's position and momentum. A Hamiltonian reduction is performed on the system, and an approximate quantum description is given to the reduced phase space. If we focus only on the external dynamics, we must trace out the clock degree of freedom, and this results in a form of intrinsic decoherence that shares some features with a proposed "universal" decoherence mechanism attributed to gravitational time dilation [2]. We show that the proposed decoherence remains present in the (gravity-free) limit of flat spacetime, indicating that the effect can be attributed entirely to proper time differences, and thus is not necessarily related to gravity. Finally, we point out a way to bootstrap the gravitational contribution to the time dilation decoherence by including self-interaction, and comment on how this can be considered a fundamentally gravitational intrinsic decoherence effect.

  11. Time and Attendance Reporting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-10-22T23:59:59.000Z

    DOE O 535.1 establishes the Department's requirements and responsibilities governing time and attendance reporting. The purpose of this revision is to reflect the transition of payroll processing from the Capital Accounting Center to the Defense Finance and Accounting System. Cancels DOE O 3600.1B. Canceled by DOE O 322.1C.

  12. Time reversal communication system

    DOE Patents [OSTI]

    Candy, James V. (Danville, CA); Meyer, Alan W. (Danville, CA)

    2008-12-02T23:59:59.000Z

    A system of transmitting a signal through a channel medium comprises digitizing the signal, time-reversing the digitized signal, and transmitting the signal through the channel medium. The channel medium may be air, earth, water, tissue, metal, and/or non-metal.

  13. Time Evolution of the Mutual Fund Size Distribution Yonathan Schwarzkopf1,2

    E-Print Network [OSTI]

    empirically and theoreti- cally. The size of large mutual funds has a heavy tailed distribution that has been into a power law only over long time scales, suggesting that log-normality comes about because the industry

  14. A decomposition approach for commodity pickup and delivery with time-windows under uncertainty

    E-Print Network [OSTI]

    Marla, Lavanya

    We consider a special class of large-scale, network-based, resource allocation problems under uncertainty, namely that of multi-commodity flows with time-windows under uncertainty. In this class, we focus on problems ...

  15. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    SciTech Connect (OSTI)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16T23:59:59.000Z

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area. In a synergistic add-on to our workplan, we analyzed data from field experiments performed at the DOE Naturita Site under a separate DOE SBR grant, on which PI Day-Lewis served as co-PI. Techniques developed for application to Hanford datasets also were applied to data from Naturita. 1. Introduction The Department of Energy (DOE) faces enormous scientific and engineering challenges associated with the remediation of legacy contamination at former nuclear weapons production facilities. Selection, design and optimization of appropriate site remedies (e.g., pump-and-treat, biostimulation, or monitored natural attenuation) requires reliable predictive models of radionuclide fate and transport; however, our current modeling capabilities are limited by an incomplete understanding of multi-scale mass transfer—its rates, scales, and the heterogeneity of controlling parameters. At many DOE sites, long “tailing” behavior, concentration rebound, and slower-than-expected cleanup are observed; these observations are all consistent with multi-scale mass transfer [Haggerty and Gorelick, 1995; Haggerty et al., 2000; 2004], which renders pump-and-treat remediation and biotransformation inefficient and slow [Haggerty and Gorelick, 1994; Harvey et al., 1994; Wilson, 1997]. Despite the importance of mass transfer, there are significant uncertainties associated with controlling parameters, and the prevalence of mass transfer remains a point of debate [e.g., Hill et al., 2006; Molz et al., 2006] for lack of experimental methods to verify and measure it in situ or independently of tracer breakthrough. There is a critical need for new field-experimental techniques to measure mass transfer in-situ and estimate multi-scale and spatially variable mass-transfer parame

  16. TeV Scale Lepton Number Violation and Baryogenesis

    E-Print Network [OSTI]

    Dev, P S Bhupal; Mohapatra, R N

    2015-01-01T23:59:59.000Z

    Contrary to the common lore based on naive dimensional analysis, the seesaw scale for neutrino masses can be naturally in the TeV range, with small parameters coming from radiative corrections. We present one such class of type-I seesaw models, based on the left-right gauge group $SU(2)_L\\times SU(2)_R\\times U(1)_{B-L}$ realized at the TeV scale, which fits the observed neutrino oscillation parameters as well as other low energy constraints. We discuss how the small parameters of this scenario can arise naturally from one loop effects. The neutrino fits in this model use quasi-degenerate heavy Majorana neutrinos, as also required to explain the matter-antimatter asymmetry in our Universe via resonant leptogenesis mechanism. We discuss the constraints implied by the dynamics of this mechanism on the mass of the right-handed gauge boson in this class of models with enhanced neutrino Yukawa couplings compared to the canonical seesaw model and find a lower bound of $m_{W_R}\\geq 9.9$ TeV for successful leptogenesi...

  17. Interactive, graphical processing unitbased evaluation of evacuation scenarios at the state scale

    SciTech Connect (OSTI)

    Perumalla, Kalyan S [ORNL; Aaby, Brandon G [ORNL; Yoginath, Srikanth B [ORNL; Seal, Sudip K [ORNL

    2011-01-01T23:59:59.000Z

    In large-scale scenarios, transportation modeling and simulation is severely constrained by simulation time. For example, few real- time simulators scale to evacuation traffic scenarios at the level of an entire state, such as Louisiana (approximately 1 million links) or Florida (2.5 million links). New simulation approaches are needed to overcome severe computational demands of conventional (microscopic or mesoscopic) modeling techniques. Here, a new modeling and execution methodology is explored that holds the potential to provide a tradeoff among the level of behavioral detail, the scale of transportation network, and real-time execution capabilities. A novel, field-based modeling technique and its implementation on graphical processing units are presented. Although additional research with input from domain experts is needed for refining and validating the models, the techniques reported here afford interactive experience at very large scales of multi-million road segments. Illustrative experiments on a few state-scale net- works are described based on an implementation of this approach in a software system called GARFIELD. Current modeling cap- abilities and implementation limitations are described, along with possible use cases and future research.

  18. A Metascalable Computing Framework for Large Spatiotemporal-Scale Atomistic Simulations

    SciTech Connect (OSTI)

    Nomura, K; Seymour, R; Wang, W; Kalia, R; Nakano, A; Vashishta, P; Shimojo, F; Yang, L H

    2009-02-17T23:59:59.000Z

    A metascalable (or 'design once, scale on new architectures') parallel computing framework has been developed for large spatiotemporal-scale atomistic simulations of materials based on spatiotemporal data locality principles, which is expected to scale on emerging multipetaflops architectures. The framework consists of: (1) an embedded divide-and-conquer (EDC) algorithmic framework based on spatial locality to design linear-scaling algorithms for high complexity problems; (2) a space-time-ensemble parallel (STEP) approach based on temporal locality to predict long-time dynamics, while introducing multiple parallelization axes; and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework to map these O(N) algorithms onto a multicore cluster based on hybrid implementation combining message passing and critical section-free multithreading. The EDC-STEP-HCD framework exposes maximal concurrency and data locality, thereby achieving: (1) inter-node parallel efficiency well over 0.95 for 218 billion-atom molecular-dynamics and 1.68 trillion electronic-degrees-of-freedom quantum-mechanical simulations on 212,992 IBM BlueGene/L processors (superscalability); (2) high intra-node, multithreading parallel efficiency (nanoscalability); and (3) nearly perfect time/ensemble parallel efficiency (eon-scalability). The spatiotemporal scale covered by MD simulation on a sustained petaflops computer per day (i.e. petaflops {center_dot} day of computing) is estimated as NT = 2.14 (e.g. N = 2.14 million atoms for T = 1 microseconds).

  19. The dark energy scale in superconductors: Innovative theoretical and experimental concepts

    E-Print Network [OSTI]

    Christian Beck; Clovis Jacinto de Matos

    2008-04-24T23:59:59.000Z

    We revisit the cosmological constant problem using the viewpoint that the observed value of dark energy density in the universe actually represents a rather natural value arising as the geometric mean of two vacuum energy densities, one being extremely large and the other one being extremely small. The corresponding mean energy scale is the Planck-Einstein scale l_PE = (l_P l_E)^1/2 = (hbar G/ c^3 Lambda)^1/4 ~ 0.037 mm, a natural scale both for dark energy and the physics of superconductors. We deal with the statistics of quantum fluctuations underlying dark energy in superconductors and consider a scale transformation from the Planck scale to the Planck-Einstein scale which leaves the quantum physics invariant. Our approach unifies various experimentally confirmed or conjectured effects in superconductors into a common framework: Cutoff of vacuum fluctuation spectra, formation of Tao balls, anomalous gravitomagnetic fields, non-classical inertia, and time uncertainties in radioactive superconductors. We propose several new experiments which may further elucidate the role of the Planck-Einstein scale in superconductors.

  20. Holographic Noise in Michelson Interferometers: A Direct Experimental Probe of Unification at the Planck Scale

    ScienceCinema (OSTI)

    Craig Hogan

    2010-01-08T23:59:59.000Z

    Classical spacetime and quantum mass-energy form the basis of all of physics. They become inconsistent at the Planck scale, 5.4 times 10^{-44} seconds, which may signify a need for reconciliation in a unified theory. Although proposals for unified theories exist, a direct experimental probe of this scale, 16 orders of magnitude above Tevatron energy, has seemed hopelessly out of reach. However in a particular interpretation of holographic unified theories, derived from black hole evaporation physics, a world assembled out of Planck-scale waves displays effects of unification with a new kind of uncertainty in position at the Planck diffraction scale, the geometric mean of the Planck length and the apparatus size. In this case a new phenomenon may measurable, an indeterminacy of spacetime position that appears as noise in interferometers. The colloquium will discuss the theory of the effect, and our plans to build a holographic interferometer at Fermilab to measure it.

  1. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOE Patents [OSTI]

    Zhamu, Aruna (Centerville, OH); Shi, Jinjun (Columbus, OH); Guo, Jiusheng (Centerville, OH); Jang, Bor Z. (Centerville, OH)

    2010-11-02T23:59:59.000Z

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  2. Effect of wettability on scale-up of multiphase flow from core-scale to reservoir fine-grid-scale

    SciTech Connect (OSTI)

    Chang, Y.C.; Mani, V.; Mohanty, K.K. [Univ. of Houston, TX (United States)

    1997-08-01T23:59:59.000Z

    Typical field simulation grid-blocks are internally heterogeneous. The objective of this work is to study how the wettability of the rock affects its scale-up of multiphase flow properties from core-scale to fine-grid reservoir simulation scale ({approximately} 10{prime} x 10{prime} x 5{prime}). Reservoir models need another level of upscaling to coarse-grid simulation scale, which is not addressed here. Heterogeneity is modeled here as a correlated random field parameterized in terms of its variance and two-point variogram. Variogram models of both finite (spherical) and infinite (fractal) correlation length are included as special cases. Local core-scale porosity, permeability, capillary pressure function, relative permeability functions, and initial water saturation are assumed to be correlated. Water injection is simulated and effective flow properties and flow equations are calculated. For strongly water-wet media, capillarity has a stabilizing/homogenizing effect on multiphase flow. For small variance in permeability, and for small correlation length, effective relative permeability can be described by capillary equilibrium models. At higher variance and moderate correlation length, the average flow can be described by a dynamic relative permeability. As the oil wettability increases, the capillary stabilizing effect decreases and the deviation from this average flow increases. For fractal fields with large variance in permeability, effective relative permeability is not adequate in describing the flow.

  3. Conservation of reactive electromagnetic energy in reactive time

    E-Print Network [OSTI]

    Kaiser, Gerald

    2015-01-01T23:59:59.000Z

    The complex Poynting theorem (CPT) is extended to a canonical time-scale domain $(t,s)$. Time-harmonic phasors are replaced by the positive-frequency parts of general fields, which extend analytically to complex time $t+is$, with $s>0$ interpreted as a time resolution scale. The real part of the extended CPT gives conservation in $t$ of a time-averaged field energy, and its imaginary part gives conservation in $s$ of a time-averaged reactive energy. In both cases, the averaging windows are determined by a Cauchy kernel of width $\\Delta t\\sim \\pm s$. This completes the time-harmonic CPT, whose imaginary part is generally supposed to be vaguely `related to' reactive energy without giving a conservation law, or even an expression, for the latter. The interpretation of $s$ as reactive time, tracking the leads and lags associated with stored capacitative and inductive energy, gives a simple explanation of the volt-ampere reactive (var) unit measuring reactive power: a var is simply one Joule per reactive second. T...

  4. Identification of an elasticity-tensor random field at mesoscopic scale using experimental measurements at mesoscopic and macroscopic scales for

    E-Print Network [OSTI]

    Boyer, Edmond

    of the random field at meso-scale (1) using image field measurements at macro- and meso-scales, (2) introducing- and meso-scales for a given sample submitted to a given load. The experimental displacement (strain) field is measured on the whole domain (1x1 cm) at the macro-scale while, at the meso-scale, the displacement (strain

  5. Tevatron injection timing

    SciTech Connect (OSTI)

    Saritepe, S.; Annala, G.

    1993-06-01T23:59:59.000Z

    Bunched beam transfer from one accelerator to another requires coordination and synchronization of many ramped devices. During collider operation timing issues are more complicated since one has to switch from proton injection devices to antiproton injection devices. Proton and antiproton transfers are clearly distinct sequences since protons and antiprotons circulate in opposite directions in the Main Ring (MR) and in the Tevatron. The time bumps are different, the kicker firing delays are different, the kickers and lambertson magnets are different, etc. Antiprotons are too precious to be used for tuning purposes, therefore protons are transferred from the Tevatron back into the Main Ring, tracing the path of antiprotons backwards. This tuning operation is called ``reverse injection.`` Previously, the reverse injection was handled in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. Then the orbit closure was performed in the MR. In the new scheme the lambertson magnets have to be moved and separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS clock event $D8 as MRBS $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the MR. Injection devices are clock event driven. The TCLK is used as the reference clock. Certain TCLK events are triggered by the MR beam synchronized clock (MRBS) events. Some delays are measured in terms of MRBS ticks and MR revolutions. See Appendix A for a brief description of the beam synchronized clocks.

  6. Fact Sheet: Grid-Scale Flywheel Energy Storage Plant | Department...

    Office of Environmental Management (EM)

    Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Beacon Power will design, build, and operate a utility-scale 20 MW...

  7. Updated Capital Cost Estimates for Utility Scale Electricity

    E-Print Network [OSTI]

    Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii for Utility Scale Electricity Generating Plants ii Contents Introduction

  8. Citizen implementation of sustainability measures at the neighborhood scale

    E-Print Network [OSTI]

    Heilke, Ingrid (Ingrid Elizabeth)

    2010-01-01T23:59:59.000Z

    There is the potential for citizens to make a profound impact on the sustainability of cities at the neighborhood scale. This is the scale that people relate to spatially, economically, and socially. It is also a scale ...

  9. Dynamic time expansion and compression using nonlinear waveguides

    SciTech Connect (OSTI)

    Findikoglu, Alp T. (Los Alamos, NM); Hahn, Sangkoo F. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2004-06-22T23:59:59.000Z

    Dynamic time expansion or compression of a small-amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small-amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.

  10. Real-time calibration of a feedback trap

    SciTech Connect (OSTI)

    Gavrilov, Mom?ilo; Jun, Yonggun; Bechhoefer, John, E-mail: johnb@sfu.ca [Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada)

    2014-09-15T23:59:59.000Z

    Feedback traps use closed-loop control to trap or manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. These applications have been hampered by drifts in the electric forces used to manipulate the particles. Although the drifts are small for measurements on the order of seconds, they dominate on time scales of minutes or slower. Here, we show that a recursive maximum likelihood (RML) algorithm can allow real-time measurement and control of electric and stochastic forces over time scales of hours. Simulations show that the RML algorithm recovers known parameters accurately. Experimental estimates of diffusion coefficients are also consistent with expected physical properties.

  11. Dynamic Time Expansion and Compression Using Nonlinear Waveguides

    DOE Patents [OSTI]

    Findikoglu, Alp T.; Hahn, Sangkoo F.; Jia, Quanxi

    2004-06-22T23:59:59.000Z

    Dynamic time expansion or compression of a small amplitude input signal generated with an initial scale is performed using a nonlinear waveguide. A nonlinear waveguide having a variable refractive index is connected to a bias voltage source having a bias signal amplitude that is large relative to the input signal to vary the reflective index and concomitant speed of propagation of the nonlinear waveguide and an electrical circuit for applying the small amplitude signal and the large amplitude bias signal simultaneously to the nonlinear waveguide. The large amplitude bias signal with the input signal alters the speed of propagation of the small-amplitude signal with time in the nonlinear waveguide to expand or contract the initial time scale of the small-amplitude input signal.

  12. Fractal power spectra plotted upside-down Comment on ``Scaling of power spectrum of extinction events

    E-Print Network [OSTI]

    Kirchner, James W.

    Discussion Fractal power spectra plotted upside-down Comment on ``Scaling of power spectrum. Dimri and Pra- kash interpret their results as demonstrating a fractal pattern in the fossil record or not the underlying data are fractal. Similarly, their use of interpolated time series (in their ¢gures 1b,d, 2a,b, 3a

  13. Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation

    E-Print Network [OSTI]

    Zreda, Marek

    of the non-dipole contributions to the geomagnetic field on the cosmic ray flux. The currently used scaling geomagnetic parameters (inclination, horizontal field strength) can be reconstructed for the time of measurement. The absorption free pathlengths 1 for cosmic rays selected for this study are based

  14. High Performance Computations of Subsurface Reactive Transport Processes at the Pore Scale

    E-Print Network [OSTI]

    such as carbon sequestration drive the geochemistry of porous media far from equilibrium in relatively short time in reservoir scale models. In the DOE Energy Frontier Research Center for Nanoscale Control of Geologic Carbon such as reactive surface area or reaction rates as they affect CO2 sequestration, with an objective of upscaling

  15. Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds

    E-Print Network [OSTI]

    Myers, Ransom A.

    Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds with increasing eutrophication. As eutrophication increased, phytoplankton biomass increased on average 1.8 times to increasing tissue nitrogen content above ground with eutrophication. Despite province- and species

  16. Novel machine interface for scaled telesurgery S. Clanton, D. Wang, Y. Matsuoka, D. Shelton, G. Stetten

    E-Print Network [OSTI]

    Stetten, George

    . In this system, a scaled real-time video image of the workspace of a small robotic arm, taken from a surgical. The robot arm holds a small tool, such as a microsurgical needle holder or microsurgical forceps, and the surgeon grasps a second tool connected to a position encoder, in this case, a second robot arm. The views

  17. Temporal Scales of Tropospheric CO2, Precipitation, and Ecosystem Responses in the Central U.S.

    E-Print Network [OSTI]

    Cochran, Ferdouz V.

    2011-08-31T23:59:59.000Z

    with AIRS mid-tropospheric CO2 on a four-day time scale, while the tallgrass prairie site showed agreement at one month. Local, surface CO2 measurements and regional PPT and normalized difference vegetation index (NDVI) values show greatest correlations...

  18. Hop Doubling Label Indexing for Point-to-Point Distance Querying on Scale-Free Networks

    E-Print Network [OSTI]

    Wong, Raymond Chi-Wing

    , 20, 30, 33, 34] can only handle relatively small graphs due to high index construction cost and large, in terms of both querying time and indexing costs. Our empirical study shows that our method can handle unweighted scale-free graph G = (V, E), construct a disk-based index for processing This work is licensed

  19. MULTIPLE-SCALE DYNAMIC LEACHING OF A MUNICIPAL SOLID WASTE INCINERATION ASH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 MULTIPLE-SCALE DYNAMIC LEACHING OF A MUNICIPAL SOLID WASTE INCINERATION ASH Waste Management (in source such as municipal solid waste (MSW) incineration ash, requires a knowledge of the so percolating through waste evolve over time, for a given percolation scenario (infiltration rate, waste source

  20. Performance of Hybrid Methods for Large-Scale Unconstrained Optimization as Applied

    E-Print Network [OSTI]

    Navon, Michael

    Performance of Hybrid Methods for Large-Scale Unconstrained Optimization as Applied to Models. It is shown that for the optimal parameters the hybrid approach is typically two times more efficient in terms­1231, 2003 Key words: energy minimization; proteins; loops; hybrid method; truncated Newton; dielectric