Powered by Deep Web Technologies
Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Working Group Reports Unmanned Aerospace Vehicle Workshop J. Vitko, Jr.  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Group Reports Unmanned Aerospace Vehicle Workshop J. Vitko, Jr. Sandia National Laboratories Livermore, California The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments are summarized below. UDF Experiments 1. Clear sky, daylight Scientific questions: Do models and observations agree? Under varying conditions (low/high humidity, low/high aerosols)? How accurately can we measure fluxes? What is the impact of surface "patchiness" in the visible? In the IR? At what length scales does it average out? Flight profiles: Minimum of 2 hrs centered on solar noon, clear sky, three altitude tiers, 10- to 20-km legs;

2

Determination of Clear-Sky Radiative Flux Profiles, Heating Rates, and Optical Depths Using Unmanned Aerospace Vehicles as a Platform  

Science Conference Proceedings (OSTI)

In this paper the authors report results obtained using an unmanned aerospace vehicle (UAV) as an experimental platform for atmospheric radiative transfer research. These are the first ever climate measurements made from a UAV and represent a ...

Francisco P. J. Valero; Shelly K. Pope; Robert G. Ellingson; Anthony W. Strawa; John Vitko Jr.

1996-10-01T23:59:59.000Z

3

Unmanned submarine vehicle  

SciTech Connect

An unmanned self-propelled submarine vehicle is provided with a material exchanger-container having a vertical axis of symmetry aligned with both the vehicle's center of gravity and its center of volume. The exchanger-container has a moveable diaphragm which divides the interior into two compartments, a lower ballast compartment equipped with an unloading apparatus and an upper compartment adapted to receive collected material. Ballast is unloaded during material loading to maintain the weight of the vehicle constant during loading.

Hervieu

1984-05-15T23:59:59.000Z

4

Natural language processing for unmanned aerial vehicle guidance interfaces  

E-Print Network (OSTI)

In this thesis, the opportunities and challenges involved in applying natural language processing techniques to the control of unmanned aerial vehicles (UAVs) are addressed. The problem of controlling an unmanned aircraft ...

Craparo, Emily M. (Emily Marie), 1980-

2004-01-01T23:59:59.000Z

5

Study on Hydrodynamic Outline of an Unmanned Underwater Vehicle  

Science Conference Proceedings (OSTI)

Unmanned Underwater Vehicle (UUV) is being widely developed and used in many areas. In order to meet the low resistance and low noise requirements of a kind of UUV for long voyage, the outline curve and parameters of different sections of the UUV are ... Keywords: Unmanned underwater vehicle, Hydrodynamic outline, Low resistance, Low noise

Shao Zhiyu, Fang Jing, Feng Shunshan, Cheng Yufeng

2013-01-01T23:59:59.000Z

6

Trajectory planning for unmanned vehicles using robust receding horizon control  

E-Print Network (OSTI)

This thesis presents several trajectory optimization algorithms for a team of cooperating unmanned vehicles operating in an uncertain and dynamic environment. The first, designed for a single vehicle, is the Robust Safe ...

Kuwata, Yoshiaki, 1978-

2007-01-01T23:59:59.000Z

7

Development of a snorkel for unmanned underwater vehicles  

E-Print Network (OSTI)

The development of unmanned underwater vehicles (UUV) has provided a bevy of opportunities for the exploration of the ocean. However, one limitation has kept UUVs from truly becoming mass produced, its limited range. The ...

Tia, Peter (Peter M.)

2012-01-01T23:59:59.000Z

8

Design for manufacturing analysis on the Small Unmanned Ground Vehicle  

E-Print Network (OSTI)

iRobot is responsible for delivering the Small Unmanned Ground Vehicle (SUGV) as part of the U.S. Army's Future Combat Systems (FCS) initiative. With increasing external competition and pressures, iRobot must deliver an ...

Yu, Ada (Ada Cheuk Ying)

2008-01-01T23:59:59.000Z

9

Avionics and control system development for mid-air rendezvous of two unmanned aerial vehicles  

E-Print Network (OSTI)

A flight control system was developed to achieve mid-air rendezvous of two unmanned aerial vehicles (UAVs) as a part of the Parent Child Unmanned Aerial Vehicle (PCUAV) project at MIT and the Draper Laboratory. A lateral ...

Park, Sanghyuk, 1973-

2004-01-01T23:59:59.000Z

10

A Continuous Local Motion Planning Framework for Unmanned Vehicles in Complex Environments  

Science Conference Proceedings (OSTI)

As the complexity of an unmanned vehicle's operational environment increases so does the need to consider the obstacle space continually, and this is aided by splitting the motion planning functionality into distinct global and local layers. This paper ... Keywords: Autonomous, Control, Local motion planning, Model predictive control, Motion planning, Optimization, Quadrotor, Receding horizon control, Sense and avoid, UAV, Unmanned, Unmanned air vehicle

Andrew J. Berry; Jeremy Howitt; Da-Wei Gu; Ian Postlethwaite

2012-06-01T23:59:59.000Z

11

Rex 2 : design, construction, and operation of an unmanned underwater vehicle  

E-Print Network (OSTI)

The practical usage of unmanned underwater vehicles (UUVs) is limited by vehicle and operation cost, difficulty in accurate navigation, and communication between the vehicle and operator. The "Rex 2" UUV employs a system ...

Owens, Dylan

2009-01-01T23:59:59.000Z

12

Intelligent Systems Software for Unmanned Air Vehicles  

E-Print Network (OSTI)

weighted fuzzy AND and OR nodes, but can also have pre-trained neural networks as nodes. Fuzzy logic, where vehicles use a consensus algorithm based upon graph theory in order to arrive at the correct., and Gibson, R. E., "A Fuzzy-Logic Architecture for Autonomous Multisensor Data Fusion," IEEE Trans. Ind

13

Evaluation of an OPNET model for unmanned aerial vehicle (UAV) networks  

Science Conference Proceedings (OSTI)

The concept of Unmanned Aerial Vehicles (UAV) was first used as early as the American Civil War, when the North and the South launched balloons with explosive devices. Since the American Civil War, the UAV concept has been used in some form in subsequent ... Keywords: mobile ad hoc networks, simulation validation, unmanned aerial vehicle

Clifton M. Durham; Todd R. Andel; Kenneth M. Hopkinson; Stuart H. Kurkowski

2009-03-01T23:59:59.000Z

14

Embedded Estimation of Fault Parameters in an Unmanned Aerial Vehicle Sikandar Samar  

E-Print Network (OSTI)

Embedded Estimation of Fault Parameters in an Unmanned Aerial Vehicle Sikandar Samar Information of the Aerosonde unmanned aerial vehicle (UAV) in the presence of winds and turbulence. An excellent performance studied in the controls community for the past two decades; see survey papers [1], [2], [3

15

Wind-Energy based Path Planning For Unmanned Aerial Vehicles Using Markov Decision Processes  

E-Print Network (OSTI)

Wind-Energy based Path Planning For Unmanned Aerial Vehicles Using Markov Decision Processes Wesam H. Al-Sabban, Luis F. Gonzalez and Ryan N. Smith Abstract-- Exploiting wind-energy is one possible way to extend the flight duration of an Unmanned Aerial Vehicle. Wind-energy can also be used

Smith, Ryan N.

16

Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision Processes  

E-Print Network (OSTI)

Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy sources of wind energy available to exploit for this problem [5]: 1) Vertical air motion, such as thermal

Smith, Ryan N.

17

Dynamic human-computer collaboration in real-time unmanned vehicle scheduling  

E-Print Network (OSTI)

Advances in autonomy have made it possible to invert the operator-to-vehicle ratio so that a single operator can control multiple heterogeneous Unmanned Vehicles (UVs). This autonomy will reduce the need for the operator ...

Clare, Andrew S

2010-01-01T23:59:59.000Z

18

Underwater Unmanned Vehicle Boeing gave us the opportunity to compete against the Electrical Engineering Dept. The competition was  

E-Print Network (OSTI)

Underwater Unmanned Vehicle Overview Boeing gave us the opportunity to compete against Underwater Unmanned Vehicles. Basically we had to build remote controlled submarines from the ground up. Objectives To design a Underwater Unmanned Vehicle that meets the following Specs: Has an internal Ballast

Demirel, Melik C.

19

Thermal soaring flight of birds and unmanned aerial vehicles  

E-Print Network (OSTI)

Thermal soaring saves much energy, but flying large distances in this form represents a great challenge for birds, people and Unmanned Aerial Vehicles (UAVs). The solution is to make use of so-called thermals, which are localized, warmer regions in the atmosphere moving upwards with a speed exceeding the descent rate of birds and planes. Saving energy by exploiting the environment more efficiently is an important possibility for autonomous UAVs as well. Successful control strategies have been developed recently for UAVs in simulations and in real applications. This paper first presents an overview of our knowledge of the soaring flight and strategy of birds, followed by a discussion of control strategies that have been developed for soaring UAVs both in simulations and applications on real platforms. To improve the accuracy of simulation of thermal exploitation strategies we propose a method to take into account the effect of turbulence. Finally we propose a new GPS independent control strategy for exploiting...

Ákos, Zsuzsa; Leven, Severin; Vicsek, Tamás; 10.1088/1748-3182/5/4/045003

2010-01-01T23:59:59.000Z

20

A Lightweight Observation System for Atmospheric Carbon Dioxide Concentration Using a Small Unmanned Aerial Vehicle  

Science Conference Proceedings (OSTI)

To make the investigation of the temporal and spatial variations of atmospheric CO2 in and above the planetary boundary layer more flexible and economical, a lightweight observation system using a small unmanned aerial vehicle has been developed ...

T. Watai; T. Machida; N. Ishizaki; G. Inoue

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hazard avoidance for high-speed rough-terrain unmanned ground vehicles  

E-Print Network (OSTI)

High-speed unmanned ground vehicles have important applications in rough-terrain. In these applications unexpected and dangerous situations can occur that require rapid hazard avoidance maneuvers. At high speeds, there is ...

Spenko, Matthew J. (Matthew Julius), 1976-

2005-01-01T23:59:59.000Z

22

Development and validation of a conceptual design program for unmanned underwater vehicles  

E-Print Network (OSTI)

With a renewed focus on the Asia-Pacific region, the United States Navy will increasingly rely on high-endurance unmanned underwater vehicles (UUVs) to support successful operations in a challenging threat environment. ...

Laun, Alexander Walter, Ensign

2013-01-01T23:59:59.000Z

23

Determining Bottom Reflectance and Water Optical Properties Using Unmanned Underwater Vehicles under Clear or Cloudy Skies  

Science Conference Proceedings (OSTI)

An unmanned underwater vehicle (UUV) with hyperspectral optical sensors that measure downwelling irradiance and upwelling radiance was deployed over sandy bottoms, sea grass patches, and coral reefs near Lee Stocking Island, Bahamas, during the ...

David C. English; Kendall L. Carder

2006-02-01T23:59:59.000Z

24

Unmanned air vehicle (UAV) ultra-persitence research  

DOE Green Energy (OSTI)

Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were considered. Fundamental cost driver analysis was also performed. System development plans were drafted in order to determine where the technological and programmatic critical paths lay. As a result of this effort, UAVs were to be able to provide far more surveillance time and intelligence information per mission while reducing the high cost of support activities. This technology was intended to create unmatched global capabilities to observe and preempt terrorist and weapon of mass destruction (WMD) activities. Various DOE laboratory and contractor personnel and facilities could have been used to perform detailed engineering, fabrication, assembly and test operations including follow-on operational support. Unfortunately, none of the results will be used in the near-term or mid-term future. NGIS UMS and SNL felt that the technical goals for the project were accomplished. NGIS UMS was quite pleased with the results of analysis and design although it was disappointing to all that the political realities would not allow use of the results. Technology and system designs evaluated under this CRADA had previously never been applied to unmanned air vehicles (UAVs). Based upon logistic support cost predictions, because the UAVs would not have had to refuel as often, forward basing support costs could have been reduced due to a decrease in the number and extent of support systems and personnel being required to operate UAVs in remote areas. Basic application of the advanced propulsion and power approach is well understood and industry now understands the technical, safety, and political issues surrounding implementation of these strategies. However, the overall economic impact was not investigated. The results will not be applied/implemented. No near-term benefit to industry or the taxpayer will be encountered as a result of these studies.

Dron, S. B.

2012-03-01T23:59:59.000Z

25

A Real-Time, Interactive Simulation Environment for Unmanned Ground Vehicles: The Autonomous Navigation Virtual Environment Laboratory (ANVEL)  

Science Conference Proceedings (OSTI)

Modeling and simulation tools have become an integral part of modern engineering processes. In particular, accurate and efficient simulation tools are critical for the design, development, and testing of autonomous unmanned ground vehicles (UGVs). However, ... Keywords: unmanned ground vehicles, computer games and simulation, physics-based modeling, intelligent systems, military applications

Phillip J. Durst; Christopher Goodin; Chris Cummins; Burhman Gates; Burney Mckinley; Taylor George; Mitchell M. Rohde; Matthew A. Toschlog; Justin Crawford

2012-07-01T23:59:59.000Z

26

DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES  

E-Print Network (OSTI)

DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES (AERSP 597/497-K) SPRING 814 865 9871 cxc11@psu.edu Summary : The proposed course is a three-credit gas turbine design course will be evaluated against (agreed) deadlines by the instructor. A number of lecturers from the gas turbine industry

Camci, Cengiz

27

Metric selection for evaluating human supervisory control of unmanned vehicles  

Science Conference Proceedings (OSTI)

Broad metric classes were proposed in the literature in order to facilitate metric selection for evaluating human-autonomous vehicle interaction. However, there still lacks a systematic method for selecting an efficient set of metrics from the many metrics ... Keywords: AHP, analytic hierarchy process, experiments, human supervisory control, metric quality, metrics

Birsen Donmez; M. L. Cummings

2010-09-01T23:59:59.000Z

28

Divergence-Free Spatial Velocity Flow Field Interpolator for Improving Measurements from ADCP-Equipped Small Unmanned Underwater Vehicles  

Science Conference Proceedings (OSTI)

Applying a two-dimensional (2D) divergence-free (DF) interpolation to a one-person deployable unmanned underwater vehicle’s (UUV) noisy moving-vessel acoustic Doppler current profiler (MV-ADCP) measurements improves the results and increases the ...

Jamie MacMahan; Ross Vennell; Rick Beatson; Jenna Brown; Ad Reniers

2012-03-01T23:59:59.000Z

29

Use of Micro Unmanned Aerial Vehicles in Transportation Infrastructure Condition Surveys  

E-Print Network (OSTI)

This thesis provides an assessment of the effectiveness of micro unmanned aerial vehicles (MUAVs) as a tool for collecting condition data for transportation infrastructure based on multiple field experiments. The primary experiment entails performing a level of service (LOS) condition assessment on multiple roadside sample units at various locations across the state of Texas. A secondary field experiment entails performing a pavement condition index (PCI) survey on airfield pavements. The condition of these sample units were assessed twice: onsite (i.e., ground truth) and by observing digital images (still and video) collected via a MUAV. The results of these surveys are then analyzed to determine if there are statistically significant differences in the standard deviation and mean values of the condition ratings. This study shows that in favorable site conditions, the MUAV demonstrates promise for improving current roadway inspection methods. However, limitations of the MUAVs field performance show that there is need for improvement in this technology before it can be implemented.

Hart, William Scott

2010-12-01T23:59:59.000Z

30

Design of a four rotor unmanned aerial vehicle capable of sustaining zero-roll and zero-pitch flight using vector thrusting  

E-Print Network (OSTI)

In recent decades, remote controlled airplanes and helicopters equipped with video cameras have been used by the movie industry, photographers, and for surveillance. The military deploys these unmanned aerial vehicles ...

Hilton, Danny Charles

2005-01-01T23:59:59.000Z

31

Terminal phase vision-based target recognition and 3d pose estimation for a tail-sitter, vertical takeoff and landing unmanned air vehicle  

Science Conference Proceedings (OSTI)

This paper presents an approach to accurately identify landing targets and obtain 3D pose estimates for vertical takeoff and landing unmanned air vehicles via computer vision methods. The objective of this paper is to detect and recognize a pre-known ... Keywords: computer vision, moment invariants, parallel lines, perspective transformation and vision-based autonomous landing, tail-sitter vertical takeoff and landing unmanned air vehicle, target identification/detection, vanishing points, vision-based pose/attitude estimation

Allen C. Tsai; Peter W. Gibbens; R. Hugh Stone

2006-12-01T23:59:59.000Z

32

Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems  

SciTech Connect

The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

Robert P. Breckenridge

2005-09-01T23:59:59.000Z

33

Human-guided management of collaborating unmanned vehicles in degraded communication environments  

E-Print Network (OSTI)

Unmanned Aerial Systems (UASs) currently fulfill important roles in modern military operations. Present commitments to research and development efforts for future UASs indicate that their ubiquity and the scope of their ...

Southern, Daniel Noel

2010-01-01T23:59:59.000Z

34

Safety considerations for operation of different classes of unmanned aerial vehicles in the National Airspace System  

E-Print Network (OSTI)

There is currently a broad effort underway in the United States and internationally by several organizations to craft regulations enabling the safe operation of UAVs in the NAS. Current federal regulations governing unmanned ...

Weibel, Roland E. (Roland Everett)

2005-01-01T23:59:59.000Z

35

Safety Considerations for Operation of Unmanned Aerial Vehicles in the National Airspace System  

E-Print Network (OSTI)

There is currently a broad effort underway in the United States and internationally by several organizations to craft regulations enabling the safe operation of UAVs in the NAS. Current federal regulations governing unmanned ...

Weibel, Roland E

2006-11-21T23:59:59.000Z

36

Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems  

SciTech Connect

Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be feasible and can collect imagery for very large areas in a short period of time. It was accurate for bare ground and grasses. Both UAV systems have limitations, but these will be reduced as the technology advances. In both cases, the UAV systems collected data at a much faster rate than possible on the ground. The study concluded that improvements in automating the image processing efforts would greatly improve use of the technology. In the near future, UAV technology may revolutionize rangeland monitoring in the same way Global Positioning Systems have affected navigation while conducting field activities.

Robert Paul Breckenridge

2007-05-01T23:59:59.000Z

37

Design Methodology of a Hybrid Propulsion Driven Electric Powered Miniature Tailsitter Unmanned Aerial Vehicle  

Science Conference Proceedings (OSTI)

Contrary to the manned tailsitter aircraft concepts, which have been shelved and forgotten after mid 1960's, the unmanned versions of these concepts have become popular. Since, tailsitter type UAVs combine both vertical takeoff and landing (VTOL) operation ... Keywords: Electric propulsion, Tailsitter, UAV, VTOL

Mirac Aksugur; Gokhan Inalhan

2010-01-01T23:59:59.000Z

38

Flying on Hydrogen GeorgiaTech researchers use fuel cells to power unmanned aerial vehicle.  

E-Print Network (OSTI)

and the GeorgiaTech Research Institute (GTRI), the project was attractive as energy sources because of their high energy density. Higher energy density translates into longer endurance. Though fuel cells don't produce: Researchers have developed a hydro- gen-powered unmanned aircraft believed to be the largest to fly

Sherrill, David

39

Vision-Based Target Geolocation and Optimal Surveillance on an Unmanned Aerial Vehicle  

E-Print Network (OSTI)

of ground vehicles include Hanford and Long,3 Hanford et al.4 and Janrathitikarn and Long.5 One important

40

UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING  

SciTech Connect

UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation Measurement  

NLE Websites -- All DOE Office Websites (Extended Search)

ARMlUnmanned Air VehiclelSatelites ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation Measurement Unmanned Aerospace Vehicle Program: An Overview P. A. Crowley Environmental Sciences Division U.S. Department of Energy Washington, D.C. J. Vitko, Jr. Sandia National Laboratories Livermore, CA 94550 Introduction for leased UA V operation over the next year. Examples include, but are not limited to, the existing Gnat 750-45, with its 7-8 km ceiling, as well as the planned FY93 demonstration of two 20 km capable UA Vs-the Perseus- B and the Raptor. Thus the funding of some initial flights and the availability of leased UAVs will enable us to start up the ARM-UAV program. Additional funding will be required to continue this program. Interim Science Team This paper and the one that follows describe the start-up

42

Environmental effects on composite airframes: A study conducted for the ARM UAV Program (Atmospheric Radiation Measurement Unmanned Aerospace Vehicle)  

SciTech Connect

Composite materials are affected by environments differently than conventional airframe structural materials are. This study identifies the environmental conditions which the composite-airframe ARM UAV may encounter, and discusses the potential degradation processes composite materials may undergo when subjected to those environments. This information is intended to be useful in a follow-on program to develop equipment and procedures to prevent, detect, or otherwise mitigate significant degradation with the ultimate goal of preventing catastrophic aircraft failure.

Noguchi, R.A.

1994-06-01T23:59:59.000Z

43

Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation  

SciTech Connect

The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

Robert P. Breckenridge

2006-04-01T23:59:59.000Z

44

Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument  

SciTech Connect

Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-amp mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.

NONE

1998-12-01T23:59:59.000Z

45

Sandia National Laboratories: Careers: Aerospace Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

for the design and analysis of flight vehicles since the 1950s. Aerospace engineers at Sandia support atmospheric and space flight vehicles across the speed regimes, from subsonic...

46

A NETWORK PROCESSING NODE FOR LIGHT UNMANNED AIRCRAFT.  

E-Print Network (OSTI)

??Over the last decade, research into unmanned and autonomous vehicles has greatly increased. With applications ranging from science and exploration to humanitarian and military efforts,… (more)

Arrowsmith, Timothy William

2007-01-01T23:59:59.000Z

47

Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios  

Science Conference Proceedings (OSTI)

The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs require wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.

Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

2005-10-01T23:59:59.000Z

48

Aerospace Meteorology: Some Lessons Learned from the Development and Application of NASA Terrestrial Environment Design Criteria  

Science Conference Proceedings (OSTI)

Aerospace meteorology plays an important role in the design, development, and operation of aerospace vehicles. Many of the issues and lessons presented occurred during the involvement of the authors with the development and interpretation of aerospace ...

William W. Vaughan; Dale L. Johnson

2011-09-01T23:59:59.000Z

49

An Embedded Nonlinear Control Implementation for a Hovering Small Unmanned Aerial System.  

E-Print Network (OSTI)

??This thesis presents the design, development, and experimental verification of an embedded vehicle controller applied to a hovering small unmanned aerial system dubbed the UFO.… (more)

Althaus, Joseph H.

2010-01-01T23:59:59.000Z

50

Using Multiple Unmanned Systems for a Site Security Task  

SciTech Connect

Unmanned systems are often used to augment the ability of humans to perform challenging tasks. While the value of individual unmanned vehicles have been proven for a variety of tasks, it is less understood how multiple unmanned systems should be used together to accomplish larger missions such as site security. The purpose of this paper is to discuss efforts by researchers at the Idaho National Laboratory (INL) to explore the utility and practicality of operating multiple unmanned systems for a site security mission. This paper reviews the technology developed for a multi-agent mission and summarizes the lessons-learned from a technology demonstration.

Matthew O. Anderson; Curtis W. Nielsen; Mark D. McKay; Derek C. Wadsworth; Ryan C. Hruska; John A. Koudelka

2009-04-01T23:59:59.000Z

51

Business case assessment of unmanned systems level of autonomy  

E-Print Network (OSTI)

The federal government has continually increased its spending on unmanned aerial vehicles (UAVs) during the past decade. Efforts to drive down UAV costs have primarily focused on the physical characteristics of the UAV, ...

Liu, Edward W

2012-01-01T23:59:59.000Z

52

Behavioral representation of military tactics for single-vehicle autonomous rotorcraft via statecharts  

E-Print Network (OSTI)

Over the past several years, aerospace companies have developed unmanned helicopters suitable for integration into military operations as reconnaissance platforms. These rotorcraft, however, require ground-based human ...

Hickie, Mark M

2005-01-01T23:59:59.000Z

53

Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials....

54

A Reference Software Architecture to Support Unmanned Aircraft Integration in the National Airspace System  

Science Conference Proceedings (OSTI)

This paper outlines an architecture that provides data and software services to enable a set of Unmanned Aircraft (UA) platforms to operate in a wide range of air domains which may include terminal, en route, oceanic and tactical. The architecture allows ... Keywords: Reference architecture, Sense and Avoid, Service Oriented Architecture, Testbed, Unmanned Air vehicle

Curtis W. Heisey; Adam G. Hendrickson; Barbara J. Chludzinski; Rodney E. Cole; Mark Ford; Larry Herbek; Magnus Ljungberg; Zakir Magdum; D. Marquis; Alexander Mezhirov; John L. Pennell; Ted A. Roe; Andrew J. Weinert

2013-01-01T23:59:59.000Z

55

THE AEROSPACE  

Office of Legacy Management (LM)

Suile 4000, 955 L' Suile 4000, 955 L' Enfant Plnra, S. W., Washingmn, D.C. 20024-2174. Telephorre: (202) 488-6000 7117-03.87.cdy.27 27 May 1987 . Mr. 'Andrew Wallo, III, NE:23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland? 20545 Dear Mr. Wallo: . STATUS OF ACTIONS - FUSRAP SITE LIST Aerospace recently completed ~a comprehensive review of sites listed in the FL&RAP Site Investigation and Remedial Action Summary Report, dated Uecember 31, 1986. The primary objectives of this review were to examine the status of each site identified in Sections II,and III of the Reportwith respect to actions required to complete.the~ Identification and Characterization .' : Process; to provide.'DFSD-a current status of these actions; and to identify

56

THE AEROSPACE  

Office of Legacy Management (LM)

Suire 4000, 955 L' Suire 4000, 955 L' Enfant Plax. S.W.., Wahinpon. KC. 200242174. Telephone: (202) 488.6000 7117~03.87.cdy.27 27 May 1987 Mr. Andrew Wallo, III, NE;23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: STATUS OF ACTIONS - FUSRAP SITE LIST Aerospace recently conipleted a comprehensive review of sites listed in the FUSRAP Site Investigation and Remedial Action Summary Report, dated Uecember 31, 1986. The primary objectives of this review were to examine the status of each site identified in Sections II and III of the Report with respect to actions required to complete the Identification and Characterization Process; to provide DFSD a current status of these actions; and to identify

57

Dynamic mission planning for communication control in multiple unmanned aircraft teams  

E-Print Network (OSTI)

As autonomous technologies continue to progress, teams of multiple unmanned aerial vehicles will play an increasingly important role in civilian and military applications. A multi-UAV system relies on communications to ...

Kopeikin, Andrew N. (Andrew Normand)

2012-01-01T23:59:59.000Z

58

Subsonic Tests of a Flush Air Data Sensing System Applied to a Fixed-Wing Micro Air Vehicle  

Science Conference Proceedings (OSTI)

Flush air data sensing (FADS) systems have been successfully tested on the nose tip of large manned/unmanned air vehicles. In this paper we investigate the application of a FADS system on the wing leading edge of a micro (unmanned) air vehicle (MAV) ... Keywords: Extended minimum resource allocating neural networks, Fault accommodation, Flush air data sensing systems, Micro (unmanned) air vehicle

Ihab Samy; Ian Postlethwaite; Dawei Gu

2009-03-01T23:59:59.000Z

59

Autonomous Underwater Vehicle–Based Hydrographic Sampling  

Science Conference Proceedings (OSTI)

An autonomous underwater vehicle (AUV), the U.S. Navy’s Large Diameter Unmanned Underwater Vehicle (LDUUV), was used as a stable platform for rapid, repeated, near-synoptic CTD measurements of estuarine variability in Narragansett Bay. Surveys ...

Edward R. Levine; Donald N. Connors; Richard R. Shell; Robert C. Hanson

1997-12-01T23:59:59.000Z

60

Remotely piloted vehicles; A selective bibliography  

SciTech Connect

This report is a bibliography from the International Aerospace Abstracts and the Scientific and Technical Aerospace Abstracts on remotely piloted vehicles. Most of the applications of these RPV`s are military in nature.

Farley, R. [comp.

1975-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Aerosol Sampling from a Unmanned Aerial Vehicle  

Disclosure Number 201202873 Technology Summary ... The present invention enhances the ability to collect such samples, and enables collection of ...

62

Modal analysis of PATHFINDER unmanned air vehicle  

DOE Green Energy (OSTI)

An experimental modal analysis was performed on PATHFINDER, a 450-lb, 100-ft wing span, flying-wing-design aircraft powered by solar/electric motors. The aircraft was softly suspended and then excited using random input from a long-stroke shaker. Modal data was taken from 92 measurement locations on the aircraft using newly designed, lightweight, tri-axial accelerometers. A conventional PC-based data acquisition system provided data handling. Modal parameters were calculated, and animated mode shapes were produced using SMS STARStruct{trademark} Modal Analysis System software. The modal parameters will be used for validation of finite element models, optimum placement of onboard accelerometers during flight testing, and vibration isolation design of sensor platforms.

Woehrle, T.G.; Costerus, B.W.; Lee, C.L.

1994-10-19T23:59:59.000Z

63

Architectural disruption in aerospace  

E-Print Network (OSTI)

Distinctive technology and customer / supplier relationships are currently the primary sources of competitive advantage in the Aerospace industry. Modular Open System Architecture (MOSA) requirements represent a significant ...

Ashworth, Geoffrey (Geoffrey John)

2009-01-01T23:59:59.000Z

64

Safe trajectory planning of autonomous vehicles  

E-Print Network (OSTI)

This thesis presents a novel framework for safe online trajectory planning of unmanned vehicles through partially unknown environments. The basic planning problem is formulated as a receding horizon optimization problem ...

Schouwenaars, Tom

2006-01-01T23:59:59.000Z

65

AIAA Paper No. 2005-6982 InfoTech@Aerospace Conference, American Institute of Aeronautics and Astronautics, Sept., 2005  

E-Print Network (OSTI)

and Astronautics, Sept., 2005 1 An Undergraduate Course in Unmanned Air Vehicles Lyle N. Long* , Scott D. Hanford the students about aircraft construction, electric power systems, servos, transmitters and receivers

66

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

f3 i.%# f3 i.%# r' f y -f THE AEROSPACE CORPORATION S&e 4000, 955 L' Enfant Plaza, S. W., WaJ>on, D.C. 20024, Telephone: (202) 488-6000 7005.82.aw.35 21 July 1982 Mr. Arthur J. Whitman Public Safety Division Office of Operational Safety, (EP-323) U.S. Department of Energy Germantown, Maryland 20585 Dear Mr. Whitman: UNIVERSAL CYCLOPS (VULCAN CRUCIBLE) SITE Enclosed are copies of AEC contracts and letters regarding the clean-up of the subject site. With a copy of this letter I am sending Hr. Steve Miller copies of the enclosed records. Aerospace is scheduled to review the Final Argonne survey report in order to determine the need for and priority of a remedial action at this site. This will be done using the PSD procedure for assigning priorities. Aerospace will begin this review as soon as other priorities

67

Project Brief: Michigan Aerospace Corporation  

Science Conference Proceedings (OSTI)

... RECIPIENT: Michigan Aerospace Corporation, Ann Arbor, MI. Project duration: 3 Years; Total NIST Funding: $1,499,463. ...

2010-10-05T23:59:59.000Z

68

An Unmanned Aircraft System for Automatic Forest Fire Monitoring and Measurement  

Science Conference Proceedings (OSTI)

The paper presents an Unmanned Aircraft System (UAS), consisting of several aerial vehicles and a central station, for forest fire monitoring. Fire monitoring is defined as the computation in real-time of the evolution of the fire front shape and potentially ... Keywords: Cooperative perception, Forest fire fighting, UAS

Luis Merino; Fernando Caballero; J. Ramiro Martínez-De-Dios; Iván Maza; Aníbal Ollero

2012-01-01T23:59:59.000Z

69

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

CT-. \5- 02/ CT-. \5- 02/ 'W Suite fOO0, 951 L'EnJanl Pluo. S. W., WaJhington. DC. 20021. Telephone: (202, 488.6000 7117-01.85.cdy.Z 19 September 1985 . Mr. Arthur Whitman, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 T-'.- ___.- -__ -.-. __ Dear Mr. Whitman: AUTHORITY REVIEW - METAL FABRICATION CONTRACTOR SITES ~__~ /,." ..x_- The attached-authoGty review prepared by Aerospace is provided for your considAerospace in that several sites are included< This

70

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

THE AEROSPACE CORPORATION THE AEROSPACE CORPORATION 20030 Century Blvd., Germanlown, Maryland 20767, Telephone: (301) 428-2700 7848-02.80.eav.34 16 September 1980 m777 Dr. William E. Mott Acting Director Environmental & Safety Engineering Division U. S. Department of Energy Germantown, Maryland 20767 Dear Dr. Mott: - UNIVERSITY OF CHICAGO BUILDINGS USED BY THE MANHATTAN ENGINEER DISTRICT During a recent investigation of the official Manhattan Engineer District history, I came across some additional information that may be a reason to expand the survey work at the University of Chicago. It appears that several buildings werein use for research in physics (pile project), chemistry (separation and purification of U-235 and Pu-239) and health effects (metal toxicology and radiation

71

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

. . . . s ,-- :; 2 5 Y THE AEROSPACE CORPORATION . Suite 4000, 955 L' EnJant Flax. S. Iv., Wah' gt cn on, D.C. 20024-2174, Telephone: (202) 488-6000 7117-03.87.cdy.27 27 May 1987 Mr. Andrew Wallo, III, NE:23 Division of Facility,& Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: STATUS OF ACTIONS - FUSRAP SITE LIST Aerospace recently completed a comprehensive review of sites listed fin the FUSRAP Site Investigation and Remedial Action Summary Report, dated December 31, 1986. The primary objectives of this review were to examine the status of each site identified in Sections II and III of the Report with respect to actions required to complete the Identification and Characterization Process; to provide DFSD a current status of these actions; and to identify

72

THE AEROSPACE CORPORATION \  

Office of Legacy Management (LM)

'Al ... 'Al ... 35-y 3 fl+ I, .* THE AEROSPACE CORPORATION \ Suite 4000, 955 L'Enfant Plaza, S. W., Washington, D.C. 20024, Telephone: (202) 488.6000 7117-01.87.sej.16 28 July 1987 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: FINAL ELIMINATION REPORTS AND SITE SUMMARIES Aerospace has completed its review and is forwarding the final elimination reports and site summaries for the following sites: University of Arizona, Tucson, AZ TVA, Muscle Shoals, AL Dow Chemical Company, Walnut Creek, CA Colorado School of Mines, Golden, CO Havens Lab, Bridgeport Brass, Bridgeport, CT General Chemical (Allied Chemical), N. Claymont, DE Slater Steels (Joslyn Stainless Steels), Ft. Wayne, IN

73

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

1 . 1 . ' . THE AEROSPACE CORPORATION SUMAC 79oOs955 L' En/Mt Ph. S. W., Wahingron. D.C. 200242174, T&jhone (20.?) 48&&700 7117-03.87.cdy.43 23 September 1987 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordance with your suggestion during our meeting on 22 September. The recommendation includes 26 colleges and universities identified.in Enclosure 4 to Aerospace letter subject: Status of Actions - FIJSRAP Site List, dated 27 May 1987; three institutions (Tufts College, University of Virginia, and the University of Washington) currently identified on the FUSRAP

74

Arms control for armed uninhabited vehicles: an ethical issue  

Science Conference Proceedings (OSTI)

Arming uninhabited vehicles (UVs) is an increasing trend. Widespread deployment can bring dangers for arms-control agreements and international humanitarian law (IHL). Armed UVs can destabilise the situation between potential opponents. Smaller systems ... Keywords: Arms control, Disarmament, Military robot, UAV, UGV, UMS, USV, UUV, Uninhabited vehicle, Unmanned vehicle

Jürgen Altmann

2013-06-01T23:59:59.000Z

75

MECHANICS AND NONLINEAR CONTROL: MAKING UNDERWATER VEHICLES  

E-Print Network (OSTI)

MECHANICS AND NONLINEAR CONTROL: MAKING UNDERWATER VEHICLES RIDE AND GLIDE Naomi Ehrich Leonard \\Lambda \\Lambda Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 naomi@princeton.edu Abstract: Methods from geometric mechanics and dynamical systems theory make

Leonard, Naomi

76

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

Lie i9w, 9.55 L%n/anl Ph. S. W., Washington. D.C. 20024-2174, Tekphonc (202) 488-6000 Lie i9w, 9.55 L%n/anl Ph. S. W., Washington. D.C. 20024-2174, Tekphonc (202) 488-6000 7117-03.87.cdy.43 23 September 1987 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordance with your suggestion during our meeting on 22 September. The recommendation includes 26 colleges and universities identified-in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated 27 May 1987; three institutions (Tufts College, University of Virginia, and the University of Washington) currently identified on the FUSRAP

77

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

CORPORATION CORPORATION Suite 7900, 955 L'Enfan Plaza, S.W., Washington, D.C. 20024-2174, Telephone: (202) 488-6000 7117-03.87.cdy.43 23 September 1987 cA Mr. Andrew Wallo, III, NE-23 C 0o Division of Facility & Site FL 'o-o Decommissioning Projects U.S. Department of Energy j /.o° Germantown, Maryland 20545 A/»O 2 - Dear Mr. Wallo: A0 .5 ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES A ,-O° -1 9.O?- The attached elimination recommendation was prepared in accordance 1L.°~ with your suggestion during our meeting on 22 September. The recommendation ^ O.0-O0 includes 26 colleges and universities identified in Enclosure 4 to r .a. Aerospace letter subject: Status of Actions - FUSRAP Site List, dated 27 May 1987; three institutions (Tufts College, University of Virginia, A/COI

78

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

,' ,' \ -_e /' Suite 4000, 955 L' Erzfunt Plaza. S. W , bhrhrnqton, D.C. 20024, Telephone: (202) 488.6000 7117-01.87.sej.16 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: FINAL ELIMINATION REPORTS AND SITE SUMMARIES Aerospace has completed its review and is forwarding the final elimination reports and site summaries for the following sites: /jZ.~la pi.0; I) PAA 0 z 0 p 1.7 , Cd> I 0 ( ' i ' 7 ' !, 0 ' C E q ' I) ~~~I' ~~ . LG.0 I@ iJ r; r>7, 0 w,or l University of Arizona, Tucson, AZ TVA, Muscle Shoals, AL Dow Chemical Company, Walnut Creek, CA Colorado School of M ines, Golden, CO Havens Lab, Bridgeport Brass, Bridgeport, CT General Chemical (Allied Chemical), N. Claymont, DE

79

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

363, 955 L' 363, 955 L' Enfant Plaza. S. W.. Washiq on. DC. 2002~2174. Telephone: (202)' 4&&6OOU 7117-03.87.cdy.43 23 September 1987 CA CAlOL) Mr. Andrew Wallo, III, NE-23 Division of Facility E Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: In/ . O-01 r~A.os ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES : M/f).0-oS k1 El.o3- The attached elimination reconuaendation was prepared in accordance' - with your suggestion during our meeting on 22 September. The recommendation includes 26 colleges and universities identified in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated 27 May 1987; three institutions (Tufts College, University of Virginia, and the University of Washington) currently identified on the FUSP.AP

80

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

.55 LyEnfant Plaro. S.W., Washingzon, D.C. 20024.2174, Telephone: (202) 488-6000 .55 LyEnfant Plaro. S.W., Washingzon, D.C. 20024.2174, Telephone: (202) 488-6000 7117-03.87.cdy.27 27 May 1987 Mr. 'Andrew Wallo, III, NE:23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland: 20545 Dear Mr. Wallo: I STATUS OF ACTIONS - FUSRAP SITE LIST Aerospace recently completed .a comprehensive review of sites listed in the FUSRAP Site Investigation and Remedial Action Summary Report, dated Uecember 31, 1986. The primary objectives of this review were to examine the status of each site identified in Sections II and III of the Reportwith respect to actions required to complete the Identification and Characterization Process; to provide,DFSD a current-status of these actions; and to identify

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

53 L' 53 L' Enfant Plwn. S. W.. W w tn h. go on. D.C. 20024-2174. Telephone: (202) 488.6000 7117-03.87.cdy.27 27 May 1987 Mr. 'Andrew Wallo, III, NE:23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: STATUS OF ACTIOiVS - FUSRAP SITE LIST Aerospace recently completed a comprehensive review of sites listed in the FUSRAP Site Investigation and Remedial Action Summary Report, dated Uecerober 31, 1986. The primary objectives of this review were to examine the status of each site identified in Sections II and III 'of the Repkt,with respect to actions required to complete the Identification and Characterization Process; to provide DFSD a current status of these actions; and to identify

82

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

.%ilc 7900, 955 L*Enfam Plora. S. W.. Washingron. D.C. 20024.2174~ Tekphonr: (202) 488s .%ilc 7900, 955 L*Enfam Plora. S. W.. Washingron. D.C. 20024.2174~ Tekphonr: (202) 488s 7117-03.87.cdy.43 23 September 1987 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Genantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordance' /I- PlL.oE with your suggestion during our meeting on 22 September. The recommendation flo.O-oz includes 26 colleges and universities identified,in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated M0.03' 27 May 1987; three institutions (Tufts College, University of Virginia, rJcPo0 and the University of Washington) currently identified on the FUSRAP /

83

THE AEROSPACE CORPORATION  

Office of Legacy Management (LM)

CORPORATION CORPORATION Sut e 4000, 955 L En/ant Plaa,. S W.. Walshngton, D C (0024, I'eicphone 1202) 488-6000 7117-03.85.aw.44 6 August 1985 Mr. Arthur Whitman Division of Remedial Action Projects, NE-24 U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Whitman: VANADIUM CORPORATION OF AMERICA PLANT NEAR 3RIDGEVILLE,PENNSYLVANIA Enclosed please find a brief summary on the Former VCA vanadium plant in Bridgeville, Pennsylvania. This site was used under contract, during the MED era, to support activities at several UMTRAP sites. In view of the relationship of this site to the UMTRAP sites, it is recommended that you evaluate it for consideration for inclusion as a vicinity property under UMTRAP. Aerospace will await your direction before conducting any additional site specific investigations.

84

Dept. of Aerospace Engg. Department of Aerospace Engineering  

E-Print Network (OSTI)

· Laboratories: - Aerodynamics - Gas Dynamics - Rarefied Gas Dynamics - Rockets & Missiles - Combustion & Flow Three groups: - Aerodynamics & Flight Mechanics - Propulsion & Combustion - Aerospace Structures Fluid Dynamics Vortex Dynamics, Supersonic Mixing and Combustion Helicopters, MAVs Rotating

Das, Bijoy Krishna

85

Aerodynamic Experiments on a Ducted Fan in Hover and Edgewise Flight.  

E-Print Network (OSTI)

??Ducted fans and ducted rotors have been integrated into a wide range of aerospace vehicles, including manned and unmanned systems. Ducted fans offer many potential… (more)

Myers, Leighton

2009-01-01T23:59:59.000Z

86

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

September 30, 2004 Facility News New Instrumentation on Proteus Aircraft Tested This fall, the ARM-Unmanned Aerospace Vehicle Program-specifically, the Proteus aircraft-is...

87

THE AEROSPACE CORPORATION /  

Office of Legacy Management (LM)

/ / @ St& i900.955 L' E+t Pk. S. W., Washingron. D.C. 20024-2174. Tdephonr: (202) 4884400 7117-03.87.cdy.43 23 September 1987 CA CA,OLf Mr. Andrew'Wallo. III, NE-23 Division of Facility & Site c r-05 Deconnnissioning Projects f-L .0-d U.S. Department of Energy lr\/.QL Germantown, Maryland ,20,54B ., iAl*Oz I., a,:,. :.. ,.. i. ,i < Dear Mr. Wallo: 1hJ *o-o1 flA.QS ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES MA.o-05 rl D.OF The attached elimination recommendation was prepared in accordance ML.03 with your suggestion during our meeting on 22 September. The recommendation flo.o-02 includes 26 colleges and universities identified.in Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated N0.03. 27~May 1987; three institutions (Tufts College, University of Virginia, ~JcQol

88

16.901 Computational Methods in Aerospace Engineering, Spring 2003  

E-Print Network (OSTI)

Introduction to computational techniques arising in aerospace engineering. Applications drawn from aerospace structures, aerodynamics, dynamics and control, and aerospace systems. Techniques include: numerical integration ...

Darmofal, David L.

89

Dynamic response and maneuvering strategies of a hybrid autonomous underwater vehicle in hovering  

E-Print Network (OSTI)

The Odyssey IV autonomous underwater vehicle (AUV) is the next generation of unmanned subsurface robots from the MIT Sea Grant AUV Laboratory. The Odyssey IV AUV has a novel propulsion system, which includes a pair of ...

Cooney, Lauren Alise

2009-01-01T23:59:59.000Z

90

Measuring the Wind Vector Using the Autonomous Mini Aerial Vehicle M2AV  

Science Conference Proceedings (OSTI)

The meteorological mini unmanned aerial vehicle (M2AV) was used for measuring the meteorological wind. The wind is the vector difference between the aircraft speed relative to the earth (inertial velocity) and relative to the airflow (true ...

Aline van den Kroonenberg; Tim Martin; Marco Buschmann; Jens Bange; Peter Vörsmann

2008-11-01T23:59:59.000Z

91

An Experimental Test Bed for Small Unmanned Helicopters  

Science Conference Proceedings (OSTI)

This paper introduces a custom experimental test bed for the evaluation of autonomous flight controllers for unmanned helicopters. The development of controllers for unmanned helicopters is a difficult procedure which involves testing through simulation ... Keywords: Aerial robotics, Experimental test bed, Flight control, Fuzzy control, Unmanned helicopters

Nikos I. Vitzilaios; Nikos C. Tsourveloudis

2009-05-01T23:59:59.000Z

92

Toward Reliable Off Road Autonomous Vehicles Operating in Challenging Environments  

Science Conference Proceedings (OSTI)

The DARPA PerceptOR program has implemented a rigorous evaluative test program which fosters the development of field relevant outdoor mobile robots. Autonomous ground vehicles were deployed on diverse test courses throughout the USA and quantitatively ... Keywords: UAV, UGV, autonomous mobility, ladar, mobile robot, motion planning, obstacle avoidance, stereo, unmanned ground vehicle

Alonzo Kelly; Anthony Stentz; Omead Amidi; Mike Bode; David Bradley; Antonio Diaz-Calderon; Mike Happold; Herman Herman; Robert Mandelbaum; Tom Pilarski; Pete Rander; Scott Thayer; Nick Vallidis; Randy Warner

2006-05-01T23:59:59.000Z

93

Civilian applications and policy implications of commercial unmanned aerial vehicles  

E-Print Network (OSTI)

As UAV capabilities continue to improve the technology will spill out of the military sector and into commercial and civil applications. Already, UAVs have demonstrated commercial marketability in such diverse areas as ...

Sprague, Kara Lynn, 1980-

2004-01-01T23:59:59.000Z

94

An Unmanned Aerial Vehicle as Human-Assistant Robotics System  

E-Print Network (OSTI)

According to the American Heritage Dictionary [1],Robotics is the science or study of the technology associated with the design, fabrication, theory, and application of Robots. The term Hoverbot is also often used to refer to sophisticated mechanical devices that are remotely controlled by human beings even though these devices are not autonomous. This paper describes a remotely controlled hoverbot by installing a transmitter and receiver on both sides that is the control computer (PC) and the hoverbot respectively. Data is transmitted as signal or instruction via a infrastructure network which is converted into a command for the hoverbot that operates at a remote site.

Chingtham, Tejbanta Singh; Ghose, M K; 10.1109/ICCIC.2010.5705731

2011-01-01T23:59:59.000Z

95

AEC AEROSPACE SAFETY PROGRAMS AND PHILOSOPHY  

SciTech Connect

Work in aerospace safety analysis, research, development, and testing is discussed. Studies for the SNAP program are outlined. The engineering andd test program for aerospace safety ls described. (M.C.G.)

Pittman, F.K.

1963-10-01T23:59:59.000Z

96

WEB RESOURCE: Aerospace Structural Materials Database - TMS  

Science Conference Proceedings (OSTI)

Oct 29, 2007 ... The Aerospace Structural Materials Database (ASMD) was developed by CINDAS LLC under a Cooperative Research and Development ...

97

Design and Performance Validation of a Fuel Cell Unmanned  

E-Print Network (OSTI)

This paper describes methods for design of an unmanned aerial vehicle which uses a proton exchange membrane fuel cell as its primary powerplant. The proposed design methods involve the development of empirical and physics-based contributing analyses to model the performance of the aircraft subsystems. The contributing analyses are collected into a design structure matrix which is used to map aircraft performance metrics as a function of design variables over a defined design space. An exhaustive search within the design space is performed to identify optimal design configurations and to characterize trends within the design space so as to inform lower-level design decisions. The results of the design process are used to construct a demonstration fuel cell-powered aircraft. Test results from the demonstration aircraft and its subsystems are compared to predicted results to validate the contributing analyses and improve their accuracy in further design iterations. Nomenclature A = Metal hydride tank area AR = Aspect ratio CL CMH = Lift coefficient (Referenced to the planform wing area) = Specific heat capacity of metal hydride, 419 J/kg o C dtank h = Diameter of metal hydride tank, m

Blake A. Moffitt; Thomas H. Bradley; David E. Parekh; Dimitri Mavris

2006-01-01T23:59:59.000Z

98

Flight Plan Specification and Management for Unmanned Aircraft Systems  

Science Conference Proceedings (OSTI)

This paper presents a new concept for specifying Unmanned Aircraft Systems (UAS) flight operations that aims at improving the waypoint based approach, found in most autopilot systems, by providing higher level fligh plan specification primitives. The ... Keywords: Flight plan management, Flight plan specification, Unmanned aircraft systems (UAS)

Eduard Santamaria; Enric Pastor; Cristina Barrado; Xavier Prats; Pablo Royo; Marc Perez

2012-07-01T23:59:59.000Z

99

The Collaborative Colorado–Nebraska Unmanned Aircraft System Experiment  

Science Conference Proceedings (OSTI)

The Collaborative Colorado–Nebraska Unmanned Aircraft System Experiment (CoCoNUE) was executed on 1 March and 30 September 2009. The principal objective of this project was to examine the feasibility of using a small unmanned aircraft operating semi-...

Adam L. Houston; Brian Argrow; Jack Elston; Jamie Lahowetz; Eric W. Frew; Patrick C. Kennedy

2012-01-01T23:59:59.000Z

100

Consortium for Robotics and Unmanned Systems Education and Research Captain Jeff Kline, USN (ret)  

E-Print Network (OSTI)

Agents With Unmanned Aircraft Systems (Uas) In Support Of Tagging, Tracking, Locating, And Identification

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Consortium for Robotics and Unmanned Systems Education and Research Captain Jeff Kline, USN (ret)  

E-Print Network (OSTI)

With Unmanned Aircraft Systems (UAS) In Support Of Tagging, Tracking, Locating, And Identification (TTLI

102

Alternative Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehicles—or vehicles that run on alternative fuels. Learn more about the following types of vehicles:

103

The 1990 NASA Aerospace Battery Workshop  

SciTech Connect

This document contains the proceedings of the 21st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on December 4-6, 1990. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers as well as participation in like kind from the European Space Agency member nations. The subjects covered included nickel-cadmium, nickel-hydrogen, silver-zinc, lithium based chemistries, and advanced technologies as they relate to high reliability operations in aerospace applications.

Kennedy, L.M.

1991-05-01T23:59:59.000Z

104

Structural dynamics test simulation and optimization for aerospace components  

SciTech Connect

This paper initially describes an innovative approach to product realization called Knowledge Based Testing (KBT). This research program integrates test simulation and optimization software, rapid fabrication techniques and computational model validation to support a new experimentally-based design concept. This design concept implements well defined tests earlier in the design cycle enabling the realization of highly reliable aerospace components. A test simulation and optimization software environment provides engineers with an essential tool needed to support this KBT approach. This software environment, called the Virtual Environment for Test Optimization (VETO), integrates analysis and test based models to support optimal structural dynamic test design. A goal in developing this software tool is to provide test and analysis engineers with a capability of mathematically simulating the complete structural dynamics test environment within a computer. A developed computational model of an aerospace component can be combined with analytical and/or experimentally derived models of typical structural dynamic test instrumentation within the VETO to determine an optimal test design. The VETO provides the user with a unique analysis and visualization environment to evaluate new and existing test methods in addition to simulating specific experiments designed to maximize test based information needed to validate computational models. The results of both a modal and a vibration test design are presented for a reentry vehicle and a space truss structure.

Klenke, S.E.; Baca, T.J.

1996-06-01T23:59:59.000Z

105

IT management in the aerospace industry  

E-Print Network (OSTI)

(cont.) payoff IT investments. When the North American Aerospace Industry invests less than any other industry in the high risk investments, its foreign counterpart invests more than any other industry. The second major ...

Ferre, Gregoire, 1978-

2004-01-01T23:59:59.000Z

106

Global Innovations in Manufacturing of Aerospace Materials  

Science Conference Proceedings (OSTI)

Feb 1, 2010 ... 307-314]Manufacturing of ?-Titanium Ti-10V-2Fe-3Al Spin-Extruded Hollow Shafts for High Strength Power Train Applications in Aerospace ...

107

Materials Innovation in the Aerospace Industry  

Science Conference Proceedings (OSTI)

Detailed schedule information follows. ... to composites to hybrid materials offers the aerospace market unique design solutions to meet ever demanding requirements in ... Director of the Office of Economic Analysis U.S. Department of Energy

108

Inventory optimization in an aerospace supply chain  

E-Print Network (OSTI)

Strategic inventory management has become a major focus for Honeywell Aerospace as the business unit challenged itself to meeting cost reduction goals while maintaining a high level of service to its customers. This challenge ...

Lo, Billy S. (Billy Si Yee)

2007-01-01T23:59:59.000Z

109

Integrated analysis procedure of aerospace composite structure  

E-Print Network (OSTI)

The emergence of composite material application in major commercial aircraft design, represented by the Boeing 787 and Airbus A350-XWB, signals a new era in the aerospace industry. The high stiffness to weight ratio of ...

Ahn, Junghyun

2008-01-01T23:59:59.000Z

110

Information System Using Remote Aerospace Archive  

Science Conference Proceedings (OSTI)

A system of interaction and exchange of information on natural sciences between the Center of Aerospace Information and the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of the Russian Academy of Sciences was prototyped ...

A. V. Veselovskii; A. N. Plate

2003-12-01T23:59:59.000Z

111

German Aerospace Center (DLR) | Open Energy Information  

Open Energy Info (EERE)

Aerospace Center (DLR) Aerospace Center (DLR) Jump to: navigation, search Logo: German Aerospace Center (DLR) Name German Aerospace Center (DLR) Place Cologne, Germany Number of employees 5001-10,000 Coordinates 50.9406645°, 6.9599115° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.9406645,"lon":6.9599115,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

112

Unmanned and autonomous systems mission based test and evaluation  

Science Conference Proceedings (OSTI)

We propose to apply principles from the Army Evaluation Center's Mission Based Test and Evaluation (MBT&E) to Unmanned and Autonomous Systems (UAS) Test and Evaluation (T&E) in order to conduct rigorous, real-world testing based on anticipated military ... Keywords: capability based evaluation, measures of effectiveness, measures of performance, mission and means framework, mission based test and evaluation, simulation based test and evaluation, unmanned and autonomous system test and evaluation

Philipp A. Djang; Frank Lopez

2009-09-01T23:59:59.000Z

113

Adaptive control of Unmanned Aerial Systems  

E-Print Network (OSTI)

Adaptive control is considered to be one of the key enabling technologies for future high-performance, safety-critical systems such as air-breathing hypersonic vehicles. Adaptive flight control systems offer improved ...

Dydek, Zachary Thompson

2010-01-01T23:59:59.000Z

114

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

115

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

116

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

117

Energy Basics: Alternative Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Learn more about the following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

118

EERE: Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office and initiatives, using efficient vehicles, and access vehicle and fuel information. Photo of a ethanol and biodiesel fueling station Photo of three big-rig...

119

Assessment of Lifetime Calculation of Forged IN718 Aerospace ...  

Science Conference Proceedings (OSTI)

Keywords: Fatigue analysis, Thermo-mechanical processing, Aerospace components, Microstructural modelling .... de?ned 'worst-case' forging scenario.

120

Research Opportunities in Advanced Aerospace Concepts  

Science Conference Proceedings (OSTI)

This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics ...

Jones Gregory S.; Bangert Linda S.; Garber Donald P.; Huebner Lawrence D.; Jr Robert E. McKinley; Sutton Kenneth; Jr Roy C. Swanson; Weinstein Leonard M.

2000-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Flying eyes: free-space content creation using autonomous aerial vehicles  

Science Conference Proceedings (OSTI)

Highly effective 3D-camerawork techniques that do not have physical limitations have been developed for creating three-dimensional (3D) computer games. Recent techniques used for real-world visual content creation, such as those used for sports broadcasting ... Keywords: autonomous camerawork, unmanned aerial vehicle, video content

Keita Higuchi; Yoshio Ishiguro; Jun Rekimoto

2011-05-01T23:59:59.000Z

122

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Hybrid and Vehicle Systems to someone by E-mail Share Vehicle Technologies Office: Hybrid and Vehicle Systems on Facebook Tweet about Vehicle Technologies Office: Hybrid and Vehicle Systems on Twitter Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Google Bookmark Vehicle Technologies Office: Hybrid and Vehicle Systems on Delicious Rank Vehicle Technologies Office: Hybrid and Vehicle Systems on Digg Find More places to share Vehicle Technologies Office: Hybrid and Vehicle Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Modeling & Simulation Integration & Validation Benchmarking Parasitic Loss Reduction Propulsion Systems Advanced Vehicle Evaluations Energy Storage Advanced Power Electronics & Electrical Machines

123

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

124

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles Toyota Urban Electric Vehicle Urban electric vehicles (UEVs) are regular passenger vehicles with top speeds of about 60 miles per hour (mph) and a...

125

Advanced Vehicle Testing Activity: Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Urban Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Urban...

126

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Hybrid...

127

May 12, 2011, Visiting Speakers Program Events - Aerospace Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

work (2011) Aerospace Industries Association of America, Inc. Definition from AIA white paper Definition: - Counterfeit product or part: A product produced or altered...

128

Global Innovations in Manufacturing Aerospace Materials: A Rolls ...  

Science Conference Proceedings (OSTI)

Manufacturing of ?-Titanium Ti-10V-2Fe-3Al Spin-Extruded Hollow Shafts for High Strength Power Train Applications in Aerospace and Automotive Industries.

129

Modeling in Aerospace Materials and Manufacturing in AFRL  

Science Conference Proceedings (OSTI)

Manufacturing of ?-Titanium Ti-10V-2Fe-3Al Spin-Extruded Hollow Shafts for High Strength Power Train Applications in Aerospace and Automotive Industries.

130

Vehicle Technologies Office: Vehicle Technologies Office Recognizes  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Vehicle Technologies Office Recognizes Outstanding Researchers to someone by E-mail Share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Facebook Tweet about Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Twitter Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Google Bookmark Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Delicious Rank Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on Digg Find More places to share Vehicle Technologies Office: Vehicle Technologies Office Recognizes Outstanding Researchers on AddThis.com...

131

Performance measures framework for unmanned systems (PerMFUS): models for contextual metrics  

Science Conference Proceedings (OSTI)

In the development of the Performance Measures Framework for Unmanned Systems (PerMFUS), we have established a multiple-axis performance metrics model for the unmanned systems (UMS). This model characterizes the UMS performance requirements by the missions ... Keywords: ALFUS, HSI, UMS, autonomy, collaboration, communication, contextual autonomy, contextual metrics, energy, environment, goal, human-system interaction, measure, metrics, mission, mobility, perception, performance, power, robot, sensing, task, terminology, test, unmanned system

Hui-Min Huang; Elena Messina; Adam Jacoff; Robert Wade; Michael McNair

2010-09-01T23:59:59.000Z

132

Electric vehicles  

SciTech Connect

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

133

Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage device, such as a battery.

134

Energy Basics: Propane Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline vehicles. Dedicated propane vehicles are designed to run only on propane; bi-fuel propane vehicles have two separate fueling systems that enable the vehicle to use...

135

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

136

Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles A neighborhood electric vehicle (NEV) is 4-wheeled vehicle, larger than a golf cart but smaller than most light-duty passenger vehicles. NEVs are...

137

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing...

138

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Vehicles SuperShuttle CNG Van Alternative fuel vehicles (AFVs) are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas,...

139

Vehicle Technologies Office: Hybrid and Vehicle Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the technology research and development (R&D) activities of...

140

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Neighborhood Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles What's New 2013 BRP Commander Electric (PDF 195KB) A Neighborhood Electric Vehicle (NEV) is technically defined as a Low Speed Vehicle (LSV)...

142

Advanced Vehicle Testing Activity - Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

NEVAmerica Baseline Performance Testing 2010 Electric Vehicles International Neighborhood Electric Vehicle 2010 Electric Vehicles International E-Mega 2009 NEVAmerica Baseline...

143

Diesel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Vehicles Audi A3 Diesel vehicles may be making a comeback. Diesel engines are more powerful and fuel-efficient than similar-sized gasoline engines (about 30-35% more fuel efficient). Plus, today's diesel vehicles are much improved over diesels of the past. Better Performance Improved fuel injection and electronic engine control technologies have Increased power Improved acceleration Increased efficiency New engine designs, along with noise- and vibration-damping technologies, have made them quieter and smoother. Cold-weather starting has been improved also. Cleaner Mercedes ML320 BlueTEC Today's diesels must meet the same emissions standards as gasoline vehicles. Advances in engine technologies, ultra-low sulfur diesel fuel, and improved exhaust treatment have made this possible.

144

INSTITUTE FOR UNMANNED SPACE EXPERIMENT FREE FLYER August-September, 2010  

E-Print Network (OSTI)

Solar Power System ASER: Advanced Satellite Engineering Research Project (Quasi Zenith Satellite SystemINSTITUTE FOR UNMANNED SPACE EXPERIMENT FREE FLYER August-September, 2010 Institute for Unmanned Space Experiment Free Flyer ( USEF ) The Summary of the USEF Activities Contact: Dr. Koichi IJICHI

145

Real-Time Participant Feedback from the Symposium for Civilian Applications of Unmanned Aircraft Systems  

Science Conference Proceedings (OSTI)

The Symposium for Civilian Applications of Unmanned Aircraft Systems was held 1---3 October 2007 in Boulder, Colorado. The purpose of the meeting was to develop an integrated vision of future Unmanned Aircraft Systems with input from stakeholders in ... Keywords: Civil applications, UAS, Unmannned aircraft system

Brian Argrow; Elizabeth Weatherhead; Eric W. Frew

2009-03-01T23:59:59.000Z

146

Testing and evaluation aspects of integration of unmanned air systems into the national air space  

Science Conference Proceedings (OSTI)

Current developments show that the integration of Unmanned Aerial Systems (UAS) into the National Airspace System (NAS) is a process that will inevitably happen. Arguably, it may be viewed as one of the key milestones in the history of aviation. Whereas ... Keywords: NAS integration, modeling and simulation, test and evaluation, unmanned aerial systems, verification and validation

Mauricio Castillo-Effen; Nikita Visnevski

2010-09-01T23:59:59.000Z

147

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

148

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

149

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

150

Energy Basics: Natural Gas Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

151

Mr. Andy Wall0 The Aerospace Corporation  

Office of Legacy Management (LM)

'k.f' :, , j '"; ,,' 'k.f' :, , j '"; ,,' DEC 5 1984 Mr. Andy Wall0 The Aerospace Corporation suite 4000 955 L'Enfant Plaza, S.W. Washington, D.C. 20024 Dear Mr. Wallo: The Divisfon of Remedial Action Projects staff has reviewed the authority review documents for Gardinler, Inc., Tampa, Florida; Conserv (formerly Virginia-Carolina Chemical Co.), Nichols, Florida; and Blockson Chemical co., Joliet, Illinois. Based on the content therein and in consultation with Mr. Steve Miller, Office of General Counsel (C&11), Departamt of Energy, It has been determined that the Department has no authority, through the Atomic Energy Act of 1954, as amended, to conduct remedial action at the aforementioned sites, Therefore, please prepare the document packages necessary to notify the appropriate state authorities and the

152

Hr. Andrew Wallo The Aerospace Corporation  

Office of Legacy Management (LM)

Department of Energy Department of Energy Washington, b.C. 20545 OCT 28 1985 // && ' Q Hr. Andrew Wallo The Aerospace Corporation Suite 4000 955 L'Enfant Plaza, S.W. Washington, D.C. 20024 Dear Andy: The comTIents and authority decision from the following sites are set out 2cL.f I below. No additional cments are included; therefore, a careful editoria review of these documents should be made when the documents are finalized. t 1. Watertown Arsenal, Watertown, HA NY.4 Although building 421 was used for AEC operation under contract #AT(30-I)-956, there is insufficient evidence that DOE has the authority to conduct remedial action at this site. Buildings 34, 41, and the GSA site are not, nor were they, the responsibility of the DOE. Therefore, based on the evidence noted in the authority review, it is .

153

THE AEROSPACE CORPORA-iION  

Office of Legacy Management (LM)

CORPORA-iION CORPORA-iION Suite 4000. 955 L' EnJant Plnro. S. W.. Washingion. D.C. 20024-2174. Telephone: (2d2) 488-6000 7117~03.87.cdy.27 27 May 1987 Mr. Andrew Wallo, III, NE:23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: STATUS OF ACTIONS - FUSRAP SITE LIST Aerospace recently completed a comprehensive review of sites listed in the FUSRAP Site Investigation and Remeaial Action Summary Report, dated December 31, 1986. The primary objectives of this review were to examine the,status of each site identified in Sections II and III of the Report.with respect to actions required to complete the Identification and Characterization Process; to provide DFSD a current status of these actions; and to identify

154

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities in Key Activities in Vehicles to someone by E-mail Share Vehicle Technologies Office: Key Activities in Vehicles on Facebook Tweet about Vehicle Technologies Office: Key Activities in Vehicles on Twitter Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Google Bookmark Vehicle Technologies Office: Key Activities in Vehicles on Delicious Rank Vehicle Technologies Office: Key Activities in Vehicles on Digg Find More places to share Vehicle Technologies Office: Key Activities in Vehicles on AddThis.com... Key Activities Mission, Vision, & Goals Plans, Implementation, & Results Organization & Contacts National Laboratories Budget Partnerships Key Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or

155

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 5 Page 1 of 5 VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Class: Mid-size Seatbelt Positions: 5 Type: EV Motor Type: Three-Phase, Four-Pole Permanent Magnet AC Synchronous Max. Power/Torque: 80 kW/280 Nm Max. Motor Speed: 10,390 rpm Cooling: Active - Liquid cooled Battery Manufacturer: Automotive Energy Supply Corporation Type: Lithium-ion - Laminate type Cathode/Anode Material: LiMn 2 O 4 with LiNiO 2 /Graphite Pack Location: Under center of vehicle Number of Cells: 192 Cell Configuration: 2 parallel, 96 series Nominal Cell Voltage: 3.8 V Nominal System Voltage: 364.8 V Rated Pack Capacity: 66.2 Ah Rated Pack Energy: 24 kWh Max. Cell Charge Voltage 2 : 4.2 V Min. Cell Discharge Voltage 2 : 2.5 V

156

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E27C177982 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

157

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

E87C172351 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 105 kW Battery: NiMH Seatbelt Positions: Five Payload: 981 lbs Features: Regenerative braking Traction...

158

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z07S838122 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

159

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2AR194699 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

160

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

2WD VIN 1FMYU95H75KC45881 Vehicle Specifications Engine: 2.3 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4AR144757 Vehicle Specifications Engine: 2.5 L 4-cylinder Electric Motor: 60 kW Battery: NiMH Seatbelt Positions: Five Payload: 850 lbs Features: Regenerative braking Traction...

162

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

Z37S813344 Vehicle Specifications Engine: 2.4 L 4 cylinder Electric Motor: 14.5 kW Battery: NiMH Seatbelt Positions: Five Payload: 1,244 lbs Features: Regenerative braking wABS 4...

163

Vehicle Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

4WD VIN 1FMCU96H15KE18237 Vehicle Specifications Engine: 2.4 L 4-cylinder Electric Motor: 70 kW Battery: NiMH Seatbelt Positions: Five Features: Four wheel drive Regenerative...

164

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

SPECIFICATIONS 1 Vehicle VIN:19XFB5F57CE002590 Class: Compact Seatbelt Positions: 5 Type: Sedan CARB 2 : AT-PZEV EPA CityHwyCombined 3 : 273832 MPGe Tires Manufacturer:...

165

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

Box, W.D.

1997-02-11T23:59:59.000Z

166

Investigating the use of wing sweep for pitch control of a small unmanned air vehicle  

E-Print Network (OSTI)

Control Systems. New York: McGraw-Hill, 1995. Print. [DIYDrones] DIY Drones. Web. . [Dorf 05]of small UAV enthusiasts [DIY Drones] who use these

Wright, Kim

2011-01-01T23:59:59.000Z

167

Flood disaster mitigation: a real-world challenge problem for multi-agent unmanned surface vehicles  

Science Conference Proceedings (OSTI)

As we advance the state of technology for robotic systems, there is a need for defining complex real-world challenge problems for the multi-agent/robot community to address. A well-defined challenge problem can motivate researchers to aggressively address ... Keywords: autonomy, challenge, communication, coordination, multi-agent systems, path-planning, task-allocation

Paul Scerri; Balajee Kannan; Pras Velagapudi; Kate Macarthur; Peter Stone; Matt Taylor; John Dolan; Alessandro Farinelli; Archie Chapman; Bernadine Dias; George Kantor

2011-05-01T23:59:59.000Z

168

Airborne Inventory and Inspection of Transmission Lines: Unmanned Airborne Vehicle (UAV)  

Science Conference Proceedings (OSTI)

Deregulation and competition have changed the electrical power industry business environment. The emphasis of utility companies has shifted to increasing the reliability of the power delivery system while minimizing costs and maximizing the use of existing facilities. This new emphasis results in a reduction of capital spending on upgrades and new construction. Consequently, there is a need to effectively apply reduced budgets to minimize inspection and maintenance cost.

2000-09-14T23:59:59.000Z

169

Vision-Based Following of Structures Using an Unmanned Aerial Vehicle (UAV)  

E-Print Network (OSTI)

as a parabola. A cubic B-spline is used to represent theto initialize this B-spline. Then an iterative algorithm is

Rathinam, Sivakumar; Kim, ZuWhan; Sengupta, Raja

2006-01-01T23:59:59.000Z

170

Automated ground maintenance and health management for autonomous unmanned aerial vehicles  

E-Print Network (OSTI)

Automated ground maintenance is a necessity for multi-UAV systems. Without such automation, these systems will become more of a burden than a benefit as human operators struggle to contend with maintenance operations for ...

Dale, Daniel R., M. Eng. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

171

Experimental Dependability Evaluation of a Fail-Bounded Jet Engine Control System for Unmanned Aerial Vehicles  

E-Print Network (OSTI)

to the Boeing X45 variants B and C [2], which use a similar engine (F404-GE- 102D). The controller decreased. Previously, such upsets mainly occurred in electronic equipment in space because of heavy

Karlsson, Johan

172

Development of an Efficient Solar Powered Unmanned Aerial Vehicle with an Onboard Solar Tracker.  

E-Print Network (OSTI)

??Methods were developed for the design of a solar powered UAV capable of tracking the sun to achieve maximum solar energy capture. A single-axis solar… (more)

Tegeder, Troy Dixon 1979-

2007-01-01T23:59:59.000Z

173

Reduction of rework at a large aerospace manufacturer  

E-Print Network (OSTI)

It is an axiom of the manufacturing of any complex product that errors will occur that require repair or discard of said product. In building aircraft, Raptor Aerospace encounters and repairs numerous deviations from the ...

Lieberman, Jeremy A. (Jeremy Alan)

2012-01-01T23:59:59.000Z

174

Development of alternate parts for the aerospace industry  

E-Print Network (OSTI)

This thesis explores the topic of the development of alternate parts for the aerospace industry, drawing on industry examples to demonstrate methods and approaches and the benefits to firms engaged in these activities. I ...

Tapley, James Paul

2010-01-01T23:59:59.000Z

175

Inventory optimization in high volume aerospace supply chains  

E-Print Network (OSTI)

The supply chains of aerospace products can be complex, involving thousands of components per product and hundreds of vendors spaced out over an increasingly global landscape. Managing all inputs necessary for these complex ...

Masse, Brian Robert

2011-01-01T23:59:59.000Z

176

New AB-Thermonuclear Reactor for Aerospace  

E-Print Network (OSTI)

There are two main methods of nulcear fusion: inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). Existing thermonuclear reactors are very complex, expensive, large, and heavy. They cannot achieve the Lawson creterion. The author offers an innovation. ICF has on the inside surface of the shell-shaped combustion chamber a covering of small Prism Reflectors (PR) and plasma reflector. These prism reflectors have a noteworthy advantage, in comparison with conventional mirror and especially with conventional shell: they multi-reflect the heat and laser radiation exactly back into collision with the fuel target capsule (pellet). The plasma reflector reflects the Bremsstrahlung radiation. The offered innovation decreases radiation losses, creates significant radiation pressure and increases the reaction time. The Lawson criterion increases by hundreds of times. The size, cost, and weight of a typical installation will decrease by tens of times. The author is researching the efficiency of these innovations. Keywords: Thermonuclear reactor, Multi-reflex AB-thermonuclear reactor, aerospace thermonuclear engine. This work is presented as paper AIAA-2006-7225 to Space-2006 Conference, 19-21 September, 2006, San Jose, CA, USA.

Alexander Bolonkin

2007-06-14T23:59:59.000Z

177

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

VEHICLE SPECIFICATIONS 1 Vehicle Features Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BUI00815 Class: Compact Seatbelt Positions: 4 Type 2 : Multi-Mode PHEV (EV, Series, and Power-split) Motor Type: 12-pole permanent magnet AC synchronous Max. Power/Torque: 111 kW/370 Nm Max. Motor Speed: 9500 rpm Cooling: Active - Liquid cooled Generator Type: 16-pole permanent magnet AC synchronous Max. Power/Torque: 55 kW/200 Nm Max. Generator Speed: 6000 rpm Cooling: Active - Liquid cooled Battery Manufacturer: LG Chem Type: Lithium-ion Cathode/Anode Material: LiMn 2 O 4 /Hard Carbon Number of Cells: 288 Cell Config.: 3 parallel, 96 series Nominal Cell Voltage: 3.7 V Nominal System Voltage: 355.2 V Rated Pack Capacity: 45 Ah Rated Pack Energy: 16 kWh Weight of Pack: 435 lb

178

Vehicles | Open Energy Information  

Open Energy Info (EERE)

Vehicles Jump to: navigation, search TODO: Add description Related Links List of Companies in Vehicles Sector List of Vehicles Incentives Retrieved from "http:en.openei.orgw...

179

Advanced Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban...

180

Alternative Vehicle Basics  

Energy.gov (U.S. Department of Energy (DOE))

There are a number of alternative and advanced vehicles—or vehicles that run on alternative fuels. Learn more about the following types of vehicles:

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vehicles News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies http://energy.gov/eere/articles/energy-department-announces-45-million-advance-next-generation Energy Department Announces $45 Million to Advance Next-Generation Vehicle Technologies

182

Improving High-Resolution Numerical Weather Simulations by Assimilating Data from an Unmanned Aerial System  

Science Conference Proceedings (OSTI)

In this study, it is demonstrated how temperature, humidity, and wind profile data from the lower troposphere obtained with a lightweight unmanned aerial system (UAS) can be used to improve high-resolution numerical weather simulations by four-...

Marius O. Jonassen; Haraldur Ólafsson; Hálfdán Ágústsson; Ólafur Rögnvaldsson; Joachim Reuder

2012-11-01T23:59:59.000Z

183

Integrated simulation environment for unmanned autonomous systems: towards a conceptual framework  

Science Conference Proceedings (OSTI)

The paper initiates a comprehensive conceptual framework for an integrated simulation environment for unmanned autonomous systems (UAS) that is capable of supporting the design, analysis, testing, and evaluation from a "system of systems" perspective. ...

M. G. Perhinschi; M. R. Napolitano; S. Tamayo

2010-01-01T23:59:59.000Z

184

Transforming the DoD test and evaluation enterprise to enable unmanned autonomous systems of systems  

E-Print Network (OSTI)

Many US Department of Defense (DoD) systems operate within a systems of systems construct, which present many challenges and will be ever increasing for test and evaluation of unmanned autonomous systems of systems. ...

Cowart, Karl K., 1975-

2011-01-01T23:59:59.000Z

185

Advanced Vehicle Testing Activity: Neighborhood Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Neighborhood Electric Vehicles Ford Think Neighbor A neighborhood electric vehicle (NEV) is a four-wheeled vehicle that has a top speed of 20-25 miles per hour (mph). It is larger...

186

VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS, BATTERY DESCRIPTION AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Nissan Leaf VIN: JN1AZ0CP5BT000356 Propulsion System: BEV Electric Machine: 80 kW...

187

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 11 figures.

Box, W.D.

1994-03-15T23:59:59.000Z

188

Robotic vehicle  

DOE Patents (OSTI)

A robotic vehicle is described for travel through an enclosed or partially enclosed conduit or pipe including vertical and/or horizontal conduit or pipe. The robotic vehicle comprises forward and rear housings each provided with a surface engaging mechanism for selectively engaging the walls of the conduit through which the vehicle is travelling, whereby the housings are selectively held in a stationary position within the conduit. The vehicle also includes at least three selectively extendable members, each of which defines a cavity therein. The forward end portion of each extendable member is secured to the forward housing and the rear end portion of each housing is secured to the rear housing. Each of the extendable members is independently extendable from a retracted position to an extended position upon the injection of a gas under pressure into the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively increased. Further, each of the extendable members is independently retractable from the extended position to the retracted position upon the application of a vacuum to the cavity of the extendable member such that the distance between the forward housing and the rear housing can be selectively decreased. 14 figs.

Box, W.D.

1996-03-12T23:59:59.000Z

189

Vehicle Smart  

E-Print Network (OSTI)

Abstract: This article explores criteria necessary for reliable communication between electric vehicles (EVs) and electric vehicle service equipment (EVSE). Data will demonstrate that a G3-PLC system has already met the criteria established by the automotive and utility industries. Multiple international tests prove that a G3-PLC implementation is the optimal low-frequency solution. A similar version of this article appeared in the August 2011 issue of Power Systems Design magazine. For the first time, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are building a viable market of mobile electrical energy consumers. Not surprisingly, new relationships between electricity providers (the utility companies) and automobile owners are emerging. Many utilities already offer, or are planning to offer, special tariffs, including fixed monthly rates, to EV owners. EVs impose new dynamics and demands on the electrical supply itself. There is, in fact, a symbiotic relationship developing between the EV and energy provider. Because of their large storage capacity, often 10kVH, EVs draw currents of 80A or greater over a period of hours. This strains electrical grid components, especially low-voltage transformers which can overheat and fail while serving consumers ' homes. Meanwhile, the EVs ' electrical storage capacity can also reverse the current flow. It can then supply power back to the grid, thereby helping the utilities to meet demand peaks without starting up high-carbon-output diesel generators. To enable this new dynamic relationship, the EV and the energy provider must communicate. The utility must be able to authenticate the individual vehicle, and bidirectional communications is needed to support negotiation of power flow rates and direction. To

Jim Leclare; Principal Member; Technical Staff

2012-01-01T23:59:59.000Z

190

Advanced Vehicle Testing Activity - Urban Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are designed to carry two or four passengers. Click here for more information About Urban Electric Vehicles (PDF 128KB) Vehicle Testing Reports Ford THINK City Ford Thnk...

191

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

that feature one or more advanced technologies, including: Plug-in hybrid electric vehicle technologies Extended range electric vehicle technologies Hybrid electric, pure...

192

Alternative Vehicle Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

following types of vehicles: Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane Vehicles Addthis Related Articles...

193

Design of clamping mechanism for securing sections of unmanned submarine  

E-Print Network (OSTI)

A clamping mechanism was designed for securing together two sections of a 12.75" diameter autonomous underwater vehicle. Two semicylindrical sections are secured together by sixteen 1/4"-20 bolts around the machined ends ...

Aronson, Reuben M

2012-01-01T23:59:59.000Z

194

Photon Tools for Fuel Spray Studies in Aerospace Propulsion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools for Fuel Spray Studies in Aerospace Tools for Fuel Spray Studies in Aerospace Propulsion Systems Kuo-Cheng Lin, 1 Campbell D. Carter, 2 and Stephen A. Schumaker 3 1 Taitech, Inc., 1430 Oak Court, Suite 301, Beavercreek, OH 45430, USA; 2 Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA; 3 Air Force Research Laboratory, Edwards Air Force Base, CA 93524, USA Fuel injection plays an important role in establishing stable and efficient combustion inside the combustor of a liquid-fueled aerospace propulsion system. Depending on the application of interest, fuel injection conditions range from high-speed crossflows in the air-breathing propulsion systems to quiescent environments with extremely high pressures in the rocket engines. In addition to the typical liquid

195

Multistate analysis and design : case studies in aerospace design and long endurance systems  

E-Print Network (OSTI)

This research contributes to the field of aerospace engineering by proposing and demonstrating an integrated process for the early-stage, multistate design of aerospace systems. The process takes into early consideration ...

Agte, Jeremy S. (Jeremy Sundermeyer)

2011-01-01T23:59:59.000Z

196

Service bulletin inventory management and modeling for aerospace parts in customer service organization  

E-Print Network (OSTI)

The Customer Service department of United Technology Corporation (UTC) Aerospace System is primarily responsible for providing spare parts, repair services, training, and technical support for products that UTC Aerospace ...

Pardede, Erna K. (Erna Kertasasmita)

2013-01-01T23:59:59.000Z

197

Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Apps for Vehicles Apps for Vehicles Challenge Spurs Innovation in Vehicle Data to someone by E-mail Share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Facebook Tweet about Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Twitter Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Google Bookmark Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Delicious Rank Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on Digg Find More places to share Vehicle Technologies Office: Apps for Vehicles Challenge Spurs Innovation in Vehicle Data on AddThis.com... Apps for Vehicles Challenge Spurs Innovation in Vehicle Data

198

Vehicle barrier  

DOE Patents (OSTI)

A vehicle security barrier which can be conveniently placed across a gate opening as well as readily removed from the gate opening to allow for easy passage. The security barrier includes a barrier gate in the form of a cable/gate member in combination with laterally attached pipe sections fixed by way of the cable to the gate member and lateral, security fixed vertical pipe posts. The security barrier of the present invention provides for the use of cable restraints across gate openings to provide necessary security while at the same time allowing for quick opening and closing of the gate areas without compromising security.

Hirsh, Robert A. (Bethel Park, PA)

1991-01-01T23:59:59.000Z

199

Voltage Vehicles | Open Energy Information  

Open Energy Info (EERE)

Sector Vehicles Product Voltage Vehicles is a nascent, full-service alternative fuel vehicle distributor specializing in the full spectrum of electric vehicles (EV) and...

200

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Traction Battery for the ETX-II Vehicle, EGG-EP-9688, IdahoElectric Vehicle Powertrain (ETX-II) Performance: VehicleDevelopment Program - ETX-II, Phase II Technical Report, DOE

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,1-5): Electric/Hybrid Vehicles: An Emerging Global Industry,

Delucchi, Mark

1992-01-01T23:59:59.000Z

202

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Electric Vehicle Workshop Proceedings Vehicle Safety DesignElectric Vehicle Workshop Proceedings Federal Motor Vehicle SafetyElectric Vehicle Workshop Proceedings FEDERAL MOTOR VEHICLE SAFETY

Lipman, Timothy

1994-01-01T23:59:59.000Z

203

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Association Conference Transportation Association Conference Vancouver, Canada December 2005 Hybrid Electric Vehicle Testing Jim Francfort U.S. Department of Energy - FreedomCAR & Vehicle Technologies Program, Advanced Vehicle Testing Activity INL/CON-05-00964 Presentation Outline * Background & goals * Testing partners * Hybrid electric vehicle testing - Baseline performance testing (new HEV models) - 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) - Benchmark data: vehicle & battery performance, fuel economy, maintenance & repairs, & life-cycle costs * WWW information location Background * Advanced Vehicle Testing Activity (AVTA) - part of the

204

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL. National Clean Fleets partners are investing in hybrid vehicles to reduce their oil use, vehicle emissions and fuel costs. What's Your PEV Readiness Score? PEV readiness...

205

Vehicles | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and...

206

Vehicles and Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Learn more about exciting technologies and ongoing research in alternative and advanced vehicles—or vehicles that run on fuels other than traditional petroleum.

207

Vehicle Technologies Office: Features  

NLE Websites -- All DOE Office Websites (Extended Search)

Event June 2013 The eGallon Tool Advances Deployment of Electric Vehicles May 2013 Vehicle Technologies Office Recognizes Outstanding Researchers December 2012 Apps for...

208

Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Volt Vehicle Summary Report: April - June 2013 (PDF 1.3MB) EV Project Electric Vehicle Charging Infrastructure Summary Report: April - June 2013 (PDF 11MB) Residential...

209

Vehicle Technologies Office: Vehicle Technologies Office Organization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization and Contacts Organization Chart for the Vehicle Technologies Program Fuel Technologies and Deployment, Technology Managers Advanced Combustion Engines, Technology...

210

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing Alternative Maximizing Alternative Fuel Vehicle Efficiency to someone by E-mail Share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Facebook Tweet about Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Twitter Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Google Bookmark Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Delicious Rank Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on Digg Find More places to share Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

211

Vehicle Technologies Office: Fact #257: March 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: March 3, 2003 Vehicle Occupancy by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 257: March 3, 2003 Vehicle Occupancy by Type of Vehicle on...

212

Vehicle Technologies Office: Fact #253: February 3, 2003 Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

3: February 3, 2003 Vehicle Age by Type of Vehicle to someone by E-mail Share Vehicle Technologies Office: Fact 253: February 3, 2003 Vehicle Age by Type of Vehicle on Facebook...

213

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

214

I I THE AEROSPACE CORPORATION I I,W. I  

Office of Legacy Management (LM)

s s I I THE AEROSPACE CORPORATION I I,W. I .%tc 7900,955 L%nfam Plaza. S. W., Wahingron. D.C. 20024-2174, T~kpdnc: (202) 488-6@~ 7117~03.87.cdy.43 23 September 1987 CR CA*03 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Deconnnissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND "NIVERSITIiS M/&b-s pl p.o- The attached elimination recommendation was prepared in accordance ML.05 with your suggestion during our meeting on 22 September. The recommendation nO.o-02 .includes 26 colleges and universities identified,in Enclosure 14 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated M0.63. 27 May 1987; three institutions (Tufts College, University oftVirginia,

215

Vehicle Technologies Office: About the Vehicle Technologies Office: Moving  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Vehicle About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles to someone by E-mail Share Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Facebook Tweet about Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Twitter Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Google Bookmark Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Delicious Rank Vehicle Technologies Office: About the Vehicle Technologies Office: Moving America Forward with Clean Vehicles on Digg Find More places to share Vehicle Technologies Office: About the

216

Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: August 6, 9: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts to someone by E-mail Share Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Facebook Tweet about Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Twitter Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Google Bookmark Vehicle Technologies Office: Fact #739: August 6, 2012 Light Vehicle Dealership Sales Trends - New Vehicles, Used Vehicles, and Service/Parts on Delicious

217

Beijing Jinfeng Aerospace S T Developments Company | Open Energy  

Open Energy Info (EERE)

Jinfeng Aerospace S T Developments Company Jinfeng Aerospace S T Developments Company Jump to: navigation, search Name Beijing Jinfeng Aerospace S&T Developments Company Place Beijing, Beijing Municipality, China Zip 100000 Sector Hydro, Hydrogen Product Producer of hydrogen storing metals and one of 13 manufacturers which have a combined production capacity of 7,000 tons/year. The company is working on possible uses of hydrogen for transport applications. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

This report contains data on the number of onroad alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities and data on the use of alternative fueled vehicles and the amount of fuel they consume.

Information Center

2013-04-08T23:59:59.000Z

219

Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 25, 5: November 25, 2013 Vehicle Technology Penetration to someone by E-mail Share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Facebook Tweet about Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Twitter Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Google Bookmark Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Delicious Rank Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on Digg Find More places to share Vehicle Technologies Office: Fact #805: November 25, 2013 Vehicle Technology Penetration on AddThis.com... Fact #805: November 25, 2013

220

Non-linear Control of Heave for an Unmanned Helicopter Using a Neural Network  

Science Conference Proceedings (OSTI)

This paper describes a new non-linear control technique applied to the heave control of an unmanned rotorcraft. First a hybrid plant model consisting of exactly known dynamics is combined with a black-box representation of the unknown dynamics. Desired ... Keywords: Autonomous, Control, Helicopter, Neural network, Non-linear, UAV

Matthew Garratt; Sreenatha Anavatti

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Standoff Target Tracking using a Vector Field for Multiple Unmanned Aircrafts  

Science Conference Proceedings (OSTI)

This paper presents strategies for standoff target tracking by a team of unmanned aircrafts using vector field. Many methods to the vector field approach were investigated in other papers, but a modified vector field is introduced to obtain new interesting ... Keywords: Cooperative control, Target tracking, UAV, Vector field, Vector field control, Vector field guidance

Seunghan Lim; Yeongju Kim; Dongjin Lee; Hyochoong Bang

2013-01-01T23:59:59.000Z

222

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors to someone Ambassadors to someone by E-mail Share Vehicle Technologies Office: Ambassadors on Facebook Tweet about Vehicle Technologies Office: Ambassadors on Twitter Bookmark Vehicle Technologies Office: Ambassadors on Google Bookmark Vehicle Technologies Office: Ambassadors on Delicious Rank Vehicle Technologies Office: Ambassadors on Digg Find More places to share Vehicle Technologies Office: Ambassadors on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the

223

WUI Fire Data Collection and Exposure Modeling Project  

Science Conference Proceedings (OSTI)

... f. Unmanned Aerial Vehicles (UAVs) – New Activity ... by the UAV manufacturer and accepted by ... Completed unmanned aerial vehicle (UAV) flights ...

2012-12-27T23:59:59.000Z

224

PerMIS 2010 Special Sessions  

Science Conference Proceedings (OSTI)

... discussion from end users, manufacturers of palletizing ... autonomous unmanned ground vehicle technology ... of unmanned ground vehicles in military ...

2010-10-05T23:59:59.000Z

225

DOE Hydrogen Analysis Repository: Advanced Vehicle Introduction...  

NLE Websites -- All DOE Office Websites (Extended Search)

Keywords: Vehicle characteristics; market penetration; advanced technology vehicles; hybrid electric vehicle (HEV) Purpose Vehicle Choice Model - Estimate market penetration...

226

Accelerating Electric Vehicle Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment Accelerating Electric Vehicle Deployment More Documents &...

227

Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

6: February 9, 6: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled to someone by E-mail Share Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Facebook Tweet about Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Twitter Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Google Bookmark Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Delicious Rank Vehicle Technologies Office: Fact #306: February 9, 2004 Vehicle Type Differences on Vehicle Miles Traveled on Digg Find More places to share Vehicle Technologies Office: Fact #306:

228

Advanced Vehicle Testing Activity: Urban Electric Vehicle Special...  

NLE Websites -- All DOE Office Websites (Extended Search)

Special Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

229

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

230

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO) to...

231

Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

232

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

233

Advanced Vehicle Testing Activity: Urban Electric Vehicle Specificatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Urban Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

234

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Special Projects on Facebook Tweet about Advanced Vehicle Testing Activity:...

235

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Testing Reports on Facebook Tweet about Advanced Vehicle Testing Activity:...

236

Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specificati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

237

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced Vehicle...

238

Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Supply Equipment (EVSE) Testing to someone by E-mail Share Advanced Vehicle Testing Activity: Electric Vehicle Supply Equipment (EVSE) Testing on Facebook Tweet...

239

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network (OSTI)

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase of the owning Unit. Vehicle Homebase: Enter the City, Zip Code, Building, or other location designation. Week

Johnston, Daniel

240

Search for Model Year 2014 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Type Model Year: 2014 Select Class... Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles...

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Search for Model Year 2000 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

242

FLAMELESS COMBUSTION APPLICATION FOR GAS TURBINE ENGINES IN THE AEROSPACE INDUSTRY.  

E-Print Network (OSTI)

??The objective of this thesis is to review the potential application of flameless combustion technology in aerospace gas turbine engines. Flameless combustion is a regime… (more)

OVERMAN, NICHOLAS

2006-01-01T23:59:59.000Z

243

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants to someone by Lubricants to someone by E-mail Share Vehicle Technologies Office: Lubricants on Facebook Tweet about Vehicle Technologies Office: Lubricants on Twitter Bookmark Vehicle Technologies Office: Lubricants on Google Bookmark Vehicle Technologies Office: Lubricants on Delicious Rank Vehicle Technologies Office: Lubricants on Digg Find More places to share Vehicle Technologies Office: Lubricants on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research Materials Technologies Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is

244

Chapter 2. Vehicle Characteristics  

U.S. Energy Information Administration (EIA) Indexed Site

2. Vehicle Characteristics 2. Vehicle Characteristics Chapter 2. Vehicle Characteristics U.S. households used a fleet of nearly 157 million vehicles in 1994. Despite remarkable growth in the number of minivans and sport-utility vehicles, passenger cars continued to predominate in the residential vehicle fleet. This chapter looks at changes in the composition of the residential fleet in 1994 compared with earlier years and reviews the effect of technological changes on fuel efficiency (how efficiently a vehicle engine processes motor fuel) and fuel economy (how far a vehicle travels on a given amount of fuel). Using data unique to the Residential Transportation Energy Consumption Survey, it also explores the relationship between residential vehicle use and family income.

245

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

246

Advanced Vehicle Testing Activity: Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

are vehicles designed to operate on alternative fuels such as compressed and liquefied natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, electricity, and...

247

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai Sonata (4932) Battery Report 2010 Ultra-Battery Honda Civic Battery Report Some hybrid electric vehicles (HEVs) combine a conventional internal combustion engine (using...

248

VEHICLE TECHNOLOGIES PROGRAM Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Activity North American PHEV Demonstration Monthly Summary Report - Hymotion Prius (V2Green data logger) Total Number Vehicles - 169 (May 2010) Total Cumulative Test...

249

Advanced Vehicle Testing Activity: Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

motor of an electric vehicle. Other hybrids combine a fuel cell with batteries to power electric propulsion motors. Fuel Cell Concept: Fuel passes through an anode, electrolyte,...

250

Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Medium- and Medium- and Heavy-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Medium- and Heavy-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Transit Vehicles Trucks Idle Reduction Oil Bypass Filter Airport Ground Support Equipment Medium and Heavy Duty Hybrid Electric Vehicles

251

Vehicle Research Laboratory - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Research Laboratory Vehicle Research Laboratory Expertise The overall FEERC team has been developed to encompass the many disciplines necessary for world-class fuels, engines, and emissions-related research, with experimental, analytical, and modeling capabilities. Staff members specialize in areas including combustion and thermodynamics, emissions measurements, analytical chemistry, catalysis, sensors and diagnostics, dynamometer cell operations, engine controls and control theory. FEERC engineers have many years of experience in vehicle research, chassis laboratory development and operation, and have developed specialized systems and methods for vehicle R&D. Selected Vehicle Research Topics In-use investigation of Lean NOx Traps (LNTs). Vehicle fuel economy features such as lean operation GDI engines,

252

Emission Impacts of Electric Vehicles  

E-Print Network (OSTI)

greenhouse effect, and electric vehicles," Proceedingso/9thInternational Electric Vehicles Symposium, 1988. 14. R. M.of 9th International Electric Vehicles Sympo- sium, 1988.

Wang, Quanlu; DeLuchi, Mark A.; Sperling, Daniel

1990-01-01T23:59:59.000Z

253

The Case for Electric Vehicles  

E-Print Network (OSTI)

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

254

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

255

Alternative Fuels Data Center: Vehicle Conversions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

256

Vehicle Detection by Sensor Network Nodes  

E-Print Network (OSTI)

frequency. Table 4.2: ? and ? Ground truth (# of vehicles)truth (# of vehicles) Detection result (# of vehicles) Tabletruth ( of vehicles) Detection result ( of vehicles) Table

Ding, Jiagen; Cheung, Sing-Yiu; Tan, Chin-woo; Varaiya, Pravin

2004-01-01T23:59:59.000Z

257

Vehicle Technologies Office: Fact #586: August 31, 2009 New Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

6: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type to someone by E-mail Share Vehicle Technologies Office: Fact 586: August 31, 2009 New Vehicle Fuel Economies by...

258

Advanced Vehicle Testing Activity - Stop-Start Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Stop-Start Vehicles Stop-start Vehicles allow the internal combustion engine to shut-down when the vehicle stops in traffic, and re-start quickly to launch the vehicle. Fuel is...

259

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

260

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Basics to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing...

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Advanced Vehicle Testing Activity: Full-Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity:...

262

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Basics to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Basics on Facebook Tweet about Vehicle Technologies Office: Plug-in...

263

Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

5: September 15, 5: September 15, 2003 Vehicles per Thousand People: An International Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Google Bookmark Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Delicious Rank Vehicle Technologies Office: Fact #285: September 15, 2003 Vehicles per Thousand People: An International Comparison on Digg

264

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites to someone by Favorites to someone by E-mail Share Vehicle Technologies Office: Favorites on Facebook Tweet about Vehicle Technologies Office: Favorites on Twitter Bookmark Vehicle Technologies Office: Favorites on Google Bookmark Vehicle Technologies Office: Favorites on Delicious Rank Vehicle Technologies Office: Favorites on Digg Find More places to share Vehicle Technologies Office: Favorites on AddThis.com... Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002

265

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: News to someone by E-mail Share Vehicle Technologies Office: News on Facebook Tweet about Vehicle Technologies Office: News on Twitter Bookmark Vehicle Technologies Office: News on Google Bookmark Vehicle Technologies Office: News on Delicious Rank Vehicle Technologies Office: News on Digg Find More places to share Vehicle Technologies Office: News on AddThis.com... Vehicle Technologies News Blog Newsletters Information for Media Subscribe to News Updates News December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as

266

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 6,598 All operation Overall gasoline fuel economy (mpg) 73.7 Overall AC electrical energy consumption (AC Whmi) 170...

267

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 145 Number of vehicle days driven: 6,817 All operation Overall gasoline fuel economy (mpg) 66.6 Overall AC electrical energy consumption (AC Whmi) 171...

268

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All operation Overall gasoline fuel economy (mpg) 68.6 Overall AC electrical energy consumption (AC Whmi) 175...

269

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2011 Number of vehicles: 66 Number of vehicle days driven: 845 All operation Overall gasoline fuel economy (mpg) 85.0 Overall AC electrical energy consumption (AC Whmi) 181...

270

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 143 Number of vehicle days driven: 5,795 All operation Overall gasoline fuel economy (mpg) 67.8 Overall AC electrical energy consumption (AC Whmi) 180...

271

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Number of vehicles: 110 Number of vehicle days driven: 3,227 All operation Overall gasoline fuel economy (mpg) 74.8 Overall AC electrical energy consumption (AC Whmi) 185...

272

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Number of vehicles: 144 Number of vehicle days driven: 7,129 All operation Overall gasoline fuel economy (mpg) 72.5 Overall AC electrical energy consumption (AC Whmi) 166...

273

Social networking in vehicles  

E-Print Network (OSTI)

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

274

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicles. In fact, every hybrid vehicle on the market currently uses Nickel-Metal-Hydride high-voltage batteries in its battery system. Lithium ion batteries appear to be the...

275

Vehicle Technologies Office: Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Partners to someone by Partners to someone by E-mail Share Vehicle Technologies Office: Partners on Facebook Tweet about Vehicle Technologies Office: Partners on Twitter Bookmark Vehicle Technologies Office: Partners on Google Bookmark Vehicle Technologies Office: Partners on Delicious Rank Vehicle Technologies Office: Partners on Digg Find More places to share Vehicle Technologies Office: Partners on AddThis.com... Goals Research & Development Testing and Analysis Workplace Charging Partners Ambassadors Resources Community and Fleet Readiness Workforce Development Plug-in Electric Vehicle Basics Partners The interactive map below highlights Workplace Charging Challenge Partners across the country who are installing plug-in electric vehicle charging infrastructure for their employees. Select a worksite to learn more about

276

Hybrid Electric Vehicle Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1.5 million miles of HEV fleet testing (160k miles per vehicle in 36 months) - End-of-life HEV testing (rerun fuel economy & conduct battery testing @ 160k miles per vehicle) -...

277

An Assessment of the Degree of Implementation of the Lean Aerospace Initiative Principles and Practices within the US Aerospace and Defense Industry  

E-Print Network (OSTI)

This report is a formal documentation of the results of an assessment of the degree to which Lean Principles and Practices have been implemented in the US Aerospace and Defense Industry. An Industry Association team prepared ...

Shaw, Thomas E.

278

Flexible Fuel Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85% ethanol, 15% gasoline), or a mixture of both. There are almost 8 million flexible fuel vehicles on U.S. roads today, but many FFV owners don't know their vehicle is one.

279

Realising low carbon vehicles  

E-Print Network (OSTI)

MorganMotorCompany #12;Hybrid and electric vehicle design and novel power trains Cranfield has an impressive track record in the design and integration of near-to-market solutions for hybrid, electric and fuel cell vehicles coupe body the vehicle is powered by advanced lithium-ion batteries, and also features a novel all-electric

280

Codification vs personalisation: A study of the information evaluation practice between aerospace and construction industries  

Science Conference Proceedings (OSTI)

In the emerging digital economy, the management of information in aerospace and construction organisations is facing a particular challenge due to the ever-increasing volume of information and the extensive use of information and communication technologies ... Keywords: Aerospace, Construction, Information value, Through-life

Llewellyn C. M. Tang; Yuyang Zhao; Simon Austin; Mansur Darlington; Steve Culley

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

2: October 3, 2: October 3, 2005 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #392: October 3, 2005 Household Vehicle Ownership on AddThis.com... Fact #392: October 3, 2005 Household Vehicle Ownership Household vehicle ownership has changed significantly over the last 40

282

Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: February 5, 5: February 5, 2007 Household Vehicle Miles to someone by E-mail Share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Facebook Tweet about Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Twitter Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Google Bookmark Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Delicious Rank Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on Digg Find More places to share Vehicle Technologies Office: Fact #455: February 5, 2007 Household Vehicle Miles on AddThis.com... Fact #455: February 5, 2007 Household Vehicle Miles The graphs below show the average vehicle miles of travel (VMT) - daily

283

Hybrid System Design for Formations of Autonomous Vehicles  

E-Print Network (OSTI)

Cooperative control of multiple unmanned aerial vehicles (UAVs) poses significant theoretical and technical challenges. Recent advances in sensing, communication and computation enable the conduct of cooperative multiple-UAV missions deemed impossible in the recent past. We are interested in solving the Formation Reconfiguration Planning (FRP) problem which is focused on determining a nominal state and input trajectory for each vehicle such that the group can start from the given initial configuration and reach its given final configuration at the specified time while satisfying a set of given inter- and intra- vehicle constraints. Each solution of a FRP problem represents a distinct reconfiguration mode. When coupled with formation keeping modes, they can form a hybrid automaton of formation maneuvers in which a transition from one formation maneuver to another formation maneuver is governed by a finite automaton. This paper focuses on the implementation of the optimized hybrid system approach to formation reconfiguration for a group of 1 real and 3 virtual UAVs. Experimental results performed in the Richmond Field Station by using a helicopter-based Berkeley Aerial Robot are presented. 1

Shannon Zelinski; T. John Koo; Shankar Sastry

2003-01-01T23:59:59.000Z

284

Aerospace and Industrial Applications of C/C, C/SiC, SiC/SiC ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Ceramic Matrix Composites. Presentation Title, Aerospace and Industrial ...

285

VEHICLE FOR SLAVE ROBOT  

DOE Patents (OSTI)

A reeling device is designed for an electrical cable supplying power to the slave slde of a remote control manipulator mounted on a movable vehicle. As the vehicle carries the slave side about in a closed room, the device reels the cable in and out to maintain a variable length of the cable between the vehicle and a cable inlet in the wall of the room. The device also handles a fixed length of cable between the slave side and the vehicle, in spite of angular movement of the slave side with respect to the vehicle. (AEC)

Goertz, R.C.; Lindberg, J.F.

1962-01-30T23:59:59.000Z

286

Applying technology strategy with enterprise architecting : a case study in transformation planning for integrating Unmanned Aircraft Systems into the National Airspace  

E-Print Network (OSTI)

The research presented in this thesis combines Enterprise Architecture and Technology Strategy for analyzing, evaluating, and recommending appropriate solutions for integrating Unmanned Aircraft Systems (UAS) into the ...

Richardson, Kristina L. (Kristina Lynn)

2009-01-01T23:59:59.000Z

287

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

288

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries to someone by Batteries to someone by E-mail Share Vehicle Technologies Office: Batteries on Facebook Tweet about Vehicle Technologies Office: Batteries on Twitter Bookmark Vehicle Technologies Office: Batteries on Google Bookmark Vehicle Technologies Office: Batteries on Delicious Rank Vehicle Technologies Office: Batteries on Digg Find More places to share Vehicle Technologies Office: Batteries on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Batteries Battery Systems Applied Battery Research Long-Term Exploratory Research Ultracapacitors Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Materials Technologies Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various

289

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Image of three semi truck cabs. The one on the left is yellow, the middle is green, and the far right truck is red. The U.S. Department of Energy (DOE) supports the development and deployment of advanced vehicle technologies, including advances in electric vehicles, engine efficiency, and lightweight materials. Since 2008, the Department of

290

Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 8, 1: January 8, 2007 Household Vehicle Trips to someone by E-mail Share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Facebook Tweet about Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Twitter Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Google Bookmark Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Delicious Rank Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on Digg Find More places to share Vehicle Technologies Office: Fact #451: January 8, 2007 Household Vehicle Trips on AddThis.com... Fact #451: January 8, 2007 Household Vehicle Trips In a day, the average household traveled 32.7 miles in 2001 (the latest

291

Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy  

NLE Websites -- All DOE Office Websites (Extended Search)

3: March 8, 2010 3: March 8, 2010 Vehicle Occupancy Rates to someone by E-mail Share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Facebook Tweet about Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Twitter Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Google Bookmark Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Delicious Rank Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on Digg Find More places to share Vehicle Technologies Office: Fact #613: March 8, 2010 Vehicle Occupancy Rates on AddThis.com... Fact #613: March 8, 2010 Vehicle Occupancy Rates The average number of persons occupying a car is 1.59 and has not changed

292

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

293

Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: February 16, 8: February 16, 2009 Transit Vehicle Age and Cost to someone by E-mail Share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Facebook Tweet about Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Twitter Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Google Bookmark Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Delicious Rank Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on Digg Find More places to share Vehicle Technologies Office: Fact #558: February 16, 2009 Transit Vehicle Age and Cost on AddThis.com... Fact #558: February 16, 2009 Transit Vehicle Age and Cost

294

Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3: January 22, 3: January 22, 2007 Household Vehicle Ownership to someone by E-mail Share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Facebook Tweet about Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Twitter Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Google Bookmark Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Delicious Rank Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on Digg Find More places to share Vehicle Technologies Office: Fact #453: January 22, 2007 Household Vehicle Ownership on AddThis.com... Fact #453: January 22, 2007 Household Vehicle Ownership

295

Vehicle Technologies Office: Key Activities in Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Vehicles Activities in Vehicles We conduct work in four key areas to develop and deploy vehicle technologies that reduce the use of petroleum while maintaining or improving performance, power, and comfort. Research and development (R&D); testing and analysis; government and community stakeholder support; and education help people access and use efficient, clean vehicles that meet their transportation needs. Researcher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Research and Development of New Technologies Develop durable and affordable advanced batteries as well as other forms of energy storage. Improve the efficiency of combustion engines.

296

Vehicle Technologies Office: Advanced Vehicle Testing Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

October 1-2, 2013 2013 Natural Gas Vehicle Conference & Expo November 18-21, 2013 World LNG Fuels Conference & Expo January 21-23, 2014 More Events Contacts | Web Site Policies |...

297

Advanced Vehicle Testing Activity - Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Electric Vehicles What's New 2012 Hyundai Sonata (4932) Battery Report (PDF 574KB) 2010 Ultra-Battery Honda Civic Battery Report (PDF 614KB) 2013 Chevrolet Malibu Baseline...

298

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29359 Electric Vehicle Preparedness Task 1: Assessment of Data and Survey Results for Joint Base...

299

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

state or reflect those of the U.S. Government or any agency thereof. INLEXT-13-29360 Electric Vehicle Preparedness Task 1: Assessment of Data and Survey Results for NAS...

300

Search for Model Year 2001 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Search for Model Year 2004 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Bifuel (Propane) Compressed Natural Gas Vehicles Diesel Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

302

Search for Model Year 2008 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

303

Search for Model Year 2003 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

304

Search for Model Year 2002 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

(Propane) Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Search by Make Search by Model Search by EPA Size Class...

305

German Aerospace Center (DLR)Feed | Open Energy Information  

Open Energy Info (EERE)

Feed Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP) Information for Development Program (infoDev)

306

THE AEROSPACE CORPORATION Suite X00, 955 L'  

Office of Legacy Management (LM)

X00, 955 L' X00, 955 L' Enfam Plaza, S. W., Washing on. D.C. 20024.2174~ Tekphonr: (202) 48&6000 7117-03.87.cdy.43 23 September 1987 CR CA.& Mr. Andrew Wallo, III, NE-23 Division bf Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordance' - ltE.o= with your suggestion during ourmeeting on 22 September. The recommendation ~0.0-02 includes 26 colleges and universities identified fin Enclosure 4 to Aerospace letter subject: Status of Actions - FUSRAP Site List, dated MO.03. 27 May 1~987; three institutions (Tufts College, University of Virginia, ~C.ol and the University of Washington) currently identified on the FUSRAP

307

Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

9: May 10, 2004 9: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison to someone by E-mail Share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Facebook Tweet about Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Twitter Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Google Bookmark Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Delicious Rank Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on Digg Find More places to share Vehicle Technologies Office: Fact #319: May 10, 2004 Highway Vehicle Emissions: 1970-2001 Comparison on

308

Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

300: December 29, 300: December 29, 2003 World Vehicle Production by Country/Region to someone by E-mail Share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Facebook Tweet about Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Twitter Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Google Bookmark Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Delicious Rank Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on Digg Find More places to share Vehicle Technologies Office: Fact #300: December 29, 2003 World Vehicle Production by Country/Region on

309

Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Progress Report 3 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2003 Progress Report for Heavy Vehicle Propulsion Materials Program on

310

Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

5: January 11, 5: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 to someone by E-mail Share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Facebook Tweet about Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Twitter Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Google Bookmark Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Delicious Rank Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on Digg Find More places to share Vehicle Technologies Office: Fact #605: January 11, 2010 Light Vehicle Sales by Month, 2008-2009 on AddThis.com...

311

Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

39: October 6, 39: October 6, 2008 Light Vehicle Production by State to someone by E-mail Share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Facebook Tweet about Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Twitter Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Google Bookmark Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Delicious Rank Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on Digg Find More places to share Vehicle Technologies Office: Fact #539: October 6, 2008 Light Vehicle Production by State on AddThis.com... Fact #539: October 6, 2008

312

Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: January 23, 1: January 23, 2012 Top Vehicles around the Globe, 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Google Bookmark Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Delicious Rank Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on Digg Find More places to share Vehicle Technologies Office: Fact #711: January 23, 2012 Top Vehicles around the Globe, 2011 on AddThis.com...

313

Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Progress Report 4 Progress Report for Heavy Vehicle Propulsion Materials Program to someone by E-mail Share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Facebook Tweet about Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Twitter Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Google Bookmark Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Delicious Rank Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on Digg Find More places to share Vehicle Technologies Office: FY 2004 Progress Report for Heavy Vehicle Propulsion Materials Program on

314

Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

8: November 23, 8: November 23, 2009 Hybrid Vehicle Sales by Model to someone by E-mail Share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Facebook Tweet about Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Twitter Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Google Bookmark Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Delicious Rank Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on Digg Find More places to share Vehicle Technologies Office: Fact #598: November 23, 2009 Hybrid Vehicle Sales by Model on AddThis.com... Fact #598: November 23, 2009

315

Vehicle Technologies Office: Favorites  

NLE Websites -- All DOE Office Websites (Extended Search)

Favorites Favorites #248 Top Ten Net Petroleum Importing Countries, 2000 December 23, 2002 #246 U.S. Oil Imports - Top 10 Countries of Origin December 9, 2002 #244 Sport Utility Vehicle Spotlight November 25, 2002 #243 Fuel Economy Leaders for 2003 Model Year Light Trucks November 18, 2002 #242 Fuel Economy Leaders for 2003 Model Year Cars November 11, 2002 #238 Automobile and Truck Population by Vehicle Age, 2001 October 14, 2002 #234 2003 Model Year Alternative Fuel Vehicles September 16, 2002 #233 Vehicles per Thousand People: U.S. Compared to Other Countries September 9, 2002 #230 Hybrid Electric Vehicles in the United States August 19, 2002 #229 Medium and Heavy Truck Sales August 12, 2002 #228 New Light Vehicle Sales Shares, 1976-2001 August 5, 2002

316

Vehicle Technologies Office: Lubricants  

NLE Websites -- All DOE Office Websites (Extended Search)

Lubricants Lubricants As most vehicles are on the road for more than 15 years before they are retired, investigating technologies that will improve today's vehicles is essential. Because 11.5 percent of fuel energy is consumed by engine friction, decreasing this friction through lubricants can lead to substantial improvements in the fuel economy of current vehicles, without needing to wait for the fleet to turn over. In fact, a 1 percent fuel savings in the existing vehicle fleet possible through lubricants could save 97 thousand barrels of oil a day or $3.5 billion a year. Because of these benefits, the Vehicle Technologies Office supports research on lubricants that can improve the efficiency of internal combustion engine vehicles, complementing our work on advanced combustion engine technology.

317

Advanced Technology Vehicle Testing  

DOE Green Energy (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

318

Prospects for electric vehicles  

Science Conference Proceedings (OSTI)

This paper discusses the current state-of- the-art of electric vehicles (EVs) with examples of recently developed prototype vehicles - Electric G-Van, Chrysler TEVan, Eaton DSEP and Ford/GE ETX-II. The acceleration, top speed and range of these electric vehicles are delineated to demonstrate their performance capabilities, which are comparable with conventional internal combustion engine (ICE) vehicles. The prospects for the commercialization of the Electric G-van and the TEVan and the improvements expected from the AC drive systems of the DSEP and ETX-II vehicles are discussed. The impacts of progress being made in the development of a fuel cell/battery hybrid bus and advanced EVs on the competitiveness of EVs with ICE vehicles and their potential for reduction of air pollution and utility load management are postulated.

Patil, P.G. (Research and Development, Electric and Hybrid Propulsion Div., U.S. Dept. of Energy, Washington, DC (US))

1990-12-01T23:59:59.000Z

319

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

overweight vehicle data collection overweight vehicle data collection scale The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination

320

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Mobile Autonomous Vehicle Obstacle Detection and ...  

Science Conference Proceedings (OSTI)

... vehicles from different manufacturers and to ... for Automated Guided Vehicle Safety Standards ... Control of Manufacturing Vehicles Research Towards ...

2013-01-11T23:59:59.000Z

322

Hybrid Vehicle Technology - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Modeling * Testing Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Hybrid Vehicle Technology revolutionize transportation Argonne's Research Argonne researchers are developing and testing various hybrid electric vehicles (HEVs) and their components to identify the technologies, configurations, and engine control strategies that provide the best combination of high fuel economy and low emissions. Vehicle Validation Argonne also serves as the lead laboratory for hardware-in-the-loop (HIL) and technology validation for the U.S. Department of Energy (DOE). HIL is a

323

Vehicle Technologies Office: Ultracapacitors  

NLE Websites -- All DOE Office Websites (Extended Search)

converter, which would increase the cost of the vehicle. The use of ultracapacitors for regenerative braking can greatly improve fuel efficiency under stop-and-go urban driving...

324

MOTOR VEHICLE MANUFACTURING TECHNOLOGY  

Science Conference Proceedings (OSTI)

... about half of the value added in light vehicles ... Selected Program White Papers. ... This white paper defines a program which supports the development ...

2011-10-19T23:59:59.000Z

325

VEHICLE TECHNOLOGIES PROGRAM - Energy  

75 vehicle technologies program ed wall, program manager ed.wall@ee.doe.gov (202) 586-8055 venture capital technology showcase aug 21 and 22, 2007

326

Electric Vehicle Public Charging -  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Public Charging - Time vs. Energy March, 2013 A critical factor for successful PEV adoption is the deployment and use of charging infrastructure in non-...

327

Electric Vehicle Fleet  

NLE Websites -- All DOE Office Websites (Extended Search)

A98 0577 Electric Vehicle Fleet Operations in the United States Jim Francfort Presented to: 31st International Symposium on Automotive Technology and Automation Dusseldorf, Germany...

328

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Trends in Household Vehicle Stock The 1991 RTECS counted more than 150 million vehicles in use by U.S. households. This chapter examines recent trends in the vehicle stock, as measured by the RTECS and other reputable vehicle surveys. It also provides some details on the type and model year of the household vehicle stock, and identifies regional differences in vehicle stock. Because vehicles are continuously being bought and sold, this chapter also reports findings relating to turnover of the vehicle stock in 1991. Finally, it examines the average vehicle stock in 1991 (which takes into account the acquisition and disposal of household vehicles over the course of the year) and identifies variations in the average number of household vehicles based on differences in household characteristics. Number of Household Vehicles Over the past 8 years, the stock of household vehicles has

329

Electric-Drive Vehicle Basics (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

330

Vehicle Technologies Program Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program Awards Vehicle Technologies Program Awards vtpnum.zip More Documents & Publications Advanced Vehicle Technologies Awards Table Advanced Vehicle...

331

Vehicle Technologies Program (EERE) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) information about the Vehicle Technologies Program (EERE) Vehicle Technologies Program (EERE) More Documents...

332

American Electric Vehicles Inc | Open Energy Information  

Open Energy Info (EERE)

Vehicles Inc Jump to: navigation, search Name American Electric Vehicles Inc Place Palmer Lake, Colorado Zip 80133 Sector Vehicles Product American Electric Vehicles (AEV) builds...

333

Advanced Vehicle Technologies Awards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Vehicle Technologies Awards Advanced Vehicle Technologies Awards Microsoft Word - VTP 175 Advanced Vehicle Tech project descriptions draft v5 8-2-11 AdvancedVehiclesTechn...

334

Household Vehicles Energy Consumption 1994 - PDF Tables  

U.S. Energy Information Administration (EIA)

Table 1 U.S. Number of Vehicles, Vehicle Miles, Motor Fuel Consumption and Expenditures, 1994 Table 2 U.S. per Household Vehicle Miles Traveled, Vehicle Fuel ...

335

Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

4: January 26, 4: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions to someone by E-mail Share Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Facebook Tweet about Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Twitter Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Google Bookmark Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Delicious Rank Vehicle Technologies Office: Fact #304: January 26, 2004 Hybrid Vehicle Purchases Earn Federal Tax Deductions on Digg Find More places to share Vehicle Technologies Office: Fact #304:

336

Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

6: December 2, 6: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Google Bookmark Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Delicious Rank Vehicle Technologies Office: Fact #806: December 2, 2013 Light Vehicle Market Shares, Model Years 1975-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #806:

337

Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

8: April 12, 8: April 12, 2010 Vehicles per Household and Other Demographic Statistics to someone by E-mail Share Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Facebook Tweet about Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Twitter Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Google Bookmark Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Delicious Rank Vehicle Technologies Office: Fact #618: April 12, 2010 Vehicles per Household and Other Demographic Statistics on Digg Find More places to share Vehicle Technologies Office: Fact #618:

338

Advanced Vehicle Testing Activity: Full-Size Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Full-Size Electric Vehicle Fleet and Reliability Test Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Full-Size Electric Vehicle Fleet and Reliability Test...

339

Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Plug-In Hybrid Electric Vehicle R&D Plan to someone by E-mail Share Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle R&D Plan on Facebook Tweet about...

340

Vehicle Technologies Office: Fact #322: May 31, 2004 Hybrid Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

2: May 31, 2004 Hybrid Vehicle Registrations to someone by E-mail Share Vehicle Technologies Office: Fact 322: May 31, 2004 Hybrid Vehicle Registrations on Facebook Tweet about...

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C67BS004466 Electric Machine 1 : 10 kW (peak), permanent magnet...

342

VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE AND BATTERY DESCRIPTIONS AND SPECIFICATIONS Vehicle Details Base Vehicle: 2011 Honda CR-Z VIN: JHMZF1C64BS002982 Electric Machine 1 : 10 kW (peak), permanent magnet...

343

Vehicle Technologies Office: Fact #475: June 25, 2007 Light Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

5: June 25, 2007 Light Vehicle Weight on the Rise to someone by E-mail Share Vehicle Technologies Office: Fact 475: June 25, 2007 Light Vehicle Weight on the Rise on Facebook...

344

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,

Heffner, Reid R.; Kurani, Ken; Turrentine, Tom

2005-01-01T23:59:59.000Z

345

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

6, 2005 Abstract Hybrid electric vehicles (HEVs) have image,Image in Gasoline-Hybrid Electric Vehicles Reid R. HeffnerImage in Gasoline-Hybrid Electric Vehicles Reid R. Heffner,

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

346

Vehicle Technologies Office: Plug-in Electric Vehicle Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Research and Development to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Research and Development on Facebook Tweet about...

347

Design of a small fast steering mirror for airborne and aerospace applications  

E-Print Network (OSTI)

This thesis presents the analysis and design of a small advanced fast steering mirror (sAFSM) for airborne and aerospace platforms. The sAFSM provides feedback-controlled articulation of two rotational axes for precision ...

Boulet, Michael Thomas

2008-01-01T23:59:59.000Z

348

An examination of Boeing's supply chain management practices within the context of the global aerospace industry  

E-Print Network (OSTI)

This thesis examines the supply chain management practices of the Boeing Commercial Airplane Company within the context of the global aerospace industry. The methodology used for this study includes a study of emerging ...

Çizmeci, DaÄŸ lar

2005-01-01T23:59:59.000Z

349

An approach to analyze tradeoffs for aerospace system design and operation  

E-Print Network (OSTI)

There are important tradeoffs that need to be considered for the design and operation of aerospace systems. In addition to tradeoffs, there may also be multiple stakeholders of interest to the system and each may have ...

O'Neill, Michael Gregory

2013-01-01T23:59:59.000Z

350

An Approach to Analyze Tradeoffs for Aerospace System Design and Operation  

E-Print Network (OSTI)

There are important tradeoffs that need to be considered for the design and operation of aerospace systems. In addition to tradeoffs, there may also be multiple stakeholders of interest to the system and each may have ...

O'Neill, Gregory

2012-11-01T23:59:59.000Z

351

Architecting robustness and timeliness in a new generation of aerospace systems  

Science Conference Proceedings (OSTI)

Aerospace systems have strict dependability and real-time requirements, as well as a need for flexible resource reallocation and reduced size, weight and power consumption. To cope with these issues, while still maintaining safety and fault containment ...

José Rufino; João Craveiro; Paulo Verissimo

2010-01-01T23:59:59.000Z

352

An object-oriented framework for distributed computational simulation of aerospace propulsion systems  

Science Conference Proceedings (OSTI)

Designing and developing new aerospace propulsion systems is time-consuming and expensive. Computational simulation is a promising means for alleviating this cost, but requires a flexible software simulation system capable of integrating advanced multidisciplinary ...

John A. Reed; Abdollah A. Afjeh

1998-04-01T23:59:59.000Z

353

Hybrid Electric Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel and gasoline fueling. HEV technologies also have potential to be combined with alternative fuels and fuel cells to provide additional benefits. Future offerings might also include plug-in hybrid electric vehicles.

354

Powertrain & Vehicle Research Centre  

E-Print Network (OSTI)

the engine, transmission and aftertreatment systems. Optimising such a system for ultra low fuel consumption emulating hardware in the test cell environment Engine testing becomes a combination of real world and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine Vehicle

Burton, Geoffrey R.

355

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

356

Advanced Vehicle Testing Activity - Hybrid Electric Vehicle and...  

NLE Websites -- All DOE Office Websites (Extended Search)

max speed, braking, & handling DOE - Advanced Vehicle Testing Activity Hybrid Electric Vehicle Testing * Fleet and accelerated reliability testing - 6 Honda Insights...

357

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network (OSTI)

are substantially higher, particularly for the Toyota Prius.In 2004, Toyota updated the Prius, introducing a larger,vehicles, including the Toyota Prius. Vehicle 2004 Sales (11

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

358

NREL: Vehicles and Fuels Research - 2013 Vehicle Buyer's Guide...  

NLE Websites -- All DOE Office Websites (Extended Search)

options, including hybrids, flex-fuel vehicles, and vehicles that run on natural gas, propane, electricity, or biodiesel. In addition to a comprehensive list of this year's...

359

Advanced Vehicle Testing Activity - Full Size Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Size Electric Vehicles What's New Baseline Performance Testing for 2011 Nissan Leaf Battery Testing for 2011 Nissan Leaf - When New The Advanced Vehicle Testing Activity...

360

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems A hybrid vehicle uses two or more forms of energy to propel the vehicle. Many hybrid electric vehicles (HEV) sold today are referred to as "hybrids" because it...

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 of 6 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2013 Chevrolet Volt VIN: 1G1RA6E40DU103929 Propulsion System: Multi-Mode PHEV (EV, Series,...

362

VEHICLE DETAILS AND BATTERY SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

Page 1 VEHICLE DETAILS AND BATTERY SPECIFICATIONS 1 Vehicle Details Base Vehicle: 2011 Chevrolet Volt VIN: 1G1RD6E48BU100815 Propulsion System: Multi-Mode PHEV (EV, Series, and...

363

Propane Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Propane Vehicles August 20, 2013 - 9:16am Addthis There are more than 270,000 on-road propane vehicles in the United States and more than 10 million worldwide. Many are...

364

CMVRTC: Overweight Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy and overweight vehicle brake testing for combination five-axle Heavy and overweight vehicle brake testing for combination five-axle tractor-flatbed scale The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a

365

Which Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

Which Vehicles Are Tested Which Vehicles Are Tested Popular Vehicles Exempt from Federal Fuel Economy Standards Prior to 2011 Pickups SUVs Vans Manufacturer Model Chevrolet Avalanche 2500 Series ¾ Ton Silverado 2500/3500 Series Dodge RAM 2500/3500 Series Ford F-250/350 Series GMC Sierra 2500/3500 Series Manufacturer Model Chevrolet Suburban ¾ Ton* Ford Excursion§ GMC Yukon XL ¾ Ton* Hummer H1§ and H2§ Manufacturer Model Chevrolet Express 2500 Passenger* Express 3500 Cargo Ford E Series Passenger (w/ 6.8L Triton or 6.0L Diesel Engine)* E Series Cargo (w/ 6.8L Triton or 6.0L Diesel Engine) GMC Savanna 2500/3500 Passenger* Savanna 3500 Cargo Note: These vehicles are given as examples. This is not a comprehensive list. * No longer exempt as of 2011 § No longer made Manufacturers do not test every new vehicle offered for sale. They are only

366

Vehicle body cover  

SciTech Connect

This patent describes a vehicle body covered with a vehicle body cover which comprises: a front cover part, a rear cover part, a pair of side cover parts, and a roof cover part: the front cover part having portions adapted to cover only a hood, an area around a windshield and tops of front fenders of a vehicle body. The portion covering the hood is separated from the portions covering the tops of the fenders by cuts in the front cover part, the front cover part having an un-cut portion corresponding to a position at which the hood is hinged to the car body. The front cover part has a cut-out at a position corresponding to the windshield of the vehicle body and the front cover part has at least one cut-out at a position corresponding to where a rear view mirror is attached to the vehicle body; and the rear cover part having portions adapted to cover an area around a rear window, a trunk lid and a rear end of the vehicle body, the portion covering the trunk lid separated from the rest of the rear cover part by cuts corresponding to three sides of the trunk lid and an un-cut portion corresponding to a position at which the trunk lid is hinged to the vehicle body. The rear cover part has a hole at position corresponding to a trunk lid lock, a cut-out portion at a position corresponding to the rear window of the vehicle body, a cut-out at a position corresponding to a license plate of the vehicle body and cut-outs at positions corresponding to rear taillights of the vehicle body.

Hirose, T.

1987-01-13T23:59:59.000Z

367

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

368

Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

1: November 29, 1: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 to someone by E-mail Share Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Facebook Tweet about Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Twitter Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Google Bookmark Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Delicious Rank Vehicle Technologies Office: Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 on Digg

369

Vehicle Technologies Office: Battery Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Systems to someone by E-mail Share Vehicle Technologies Office: Battery Systems on Facebook Tweet about Vehicle Technologies Office: Battery Systems on Twitter Bookmark...

370

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

371

Energy Basics: Hybrid Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a hybrid electric vehicle. Hybrid electric vehicles (HEVs) combine the benefits of high fuel economy and low emissions with the power, range, and convenience of conventional diesel...

372

Electric Vehicle Field Operations Program  

NLE Websites -- All DOE Office Websites (Extended Search)

vehicle performance information. The final product is a report describing energy use, miles driven, maintenance requirements, and overall vehicle performance. Fleet Testing....

373

EERE: Vehicle Technologies Office - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Site Map Printable Version Share this resource Send a link to EERE: Vehicle Technologies Office - Webmaster to someone by E-mail Share EERE: Vehicle Technologies Office -...

374

Vehicle Technologies Office: National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratories to someone by E-mail Share Vehicle Technologies Office: National Laboratories on Facebook Tweet about Vehicle Technologies Office: National Laboratories on...

375

Vehicle Technologies Office: Workforce Development  

NLE Websites -- All DOE Office Websites (Extended Search)

electric vehicle supply equipment (EVSE, also known as electric vehicle chargers). EVSE Residential Charging Installation introductory videos: Clean Cities provides a video...

376

Technology Analysis - Heavy Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

the GPRA benefits estimates for EERE's Vehicle Technologies Program's heavy vehicle technology research activities. Argonne researchers develop the benefits analysis using four...

377

Motor Vehicle Parts Compliance Requirements  

Science Conference Proceedings (OSTI)

... The OVSC compliance testing program is a strong incentive for manufacturers of motor vehicles and items of motor vehicle equipment to ...

2012-09-24T23:59:59.000Z

378

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in...

379

Electric vehicles | Open Energy Information  

Open Energy Info (EERE)

Electric vehicles Jump to: navigation, search TODO: add content Electric vehicles first came into existence in the mid-19th century, when electricity was among the preferred...

380

Aerospace nuclear safety: An introduction and historical overview  

SciTech Connect

This paper provides an introduction and overview on the topical area of aerospace nuclear safety. Emphasis is on the history of the use of nuclear power sources in space, operational experience with these nuclear sources, a review of previous accidents associated with both U.S. and Russian launches, and the safety issues associated with the entire life cycle of space reactors. There are several potential missions to include near earth orbit, orbit-raising, lunar bases, and propulsion to such solar system locations as Mars, which are suitable for the use of space reactors. The process by which approval is obtained to launch these nuclear materials to space is also presented as well as the role of nuclear safety policy and requirements in a space program using nuclear power sources. Important differences in safety concerns for the Radioisotope Thermoelectric Generators (RTGs) now used, and space reactors are presented. The role and purpose of independent safety evaluation and assessment in ensuring safe launch and operation is also discussed. In summary, this paper provides the requisite framework in this topical area for the remaining papers of this session.

Lee, J.H.; Buden, D.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

VEHICLE ACCESS PORTALS  

NLE Websites -- All DOE Office Websites (Extended Search)

East Jemez Road (Map 1) East Jemez Road (Map 1) VEHICLE ACCESS PORTALS Traffic Lane 1: Closed except for emergencies and maintenance operations. Traffic Lanes 2-7: Drivers required to stop and present LANL badges or other form of valid identification to Protective Force officers. Drivers may proceed upon direction of the officers. Note: Commercial delivery vehicle drivers must also pres- ent their inspection passes from Post 10. More Information: spp-questions@lanl.gov Non-work Hours Vehicles entering LANL at the East Jemez VAPs during non-work hours (between 7

382

Vehicle Technologies Office: Ambassadors  

NLE Websites -- All DOE Office Websites (Extended Search)

Ambassadors Ambassadors Workplace Charging Challenge Clean Cities Coalitions Clean Cities logo. Clean Cities National: A network of nearly 100 Clean Cities coalitions, supported by the Vehicle Technologies Office, brings together public and private stakeholders to deploy plug-in electric vehicles, alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and other petroleum reduction strategies. Clean Cities coordinators are knowledgeable about local incentives and policies for workplace charging as well as other aspects of plug-in electric vehicle community readiness. Workplace Charging Challenge Ambassadors The Workplace Charging Challenge enlists stakeholder organizations as Ambassadors to promote and support workplace charging. The directory below highlights Workplace Charging Challenge Ambassadors across the country.

383

Blast resistant vehicle seat  

DOE Patents (OSTI)

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

384

Laser Fine-Adjustment Thruster For Space Vehicles  

SciTech Connect

To the present time, a few laser propulsion engine devices have been developed by using dominant mechanisms of laser propulsion. Generally these mechanisms are laser ablation, laser breakdown of gases, and laser detonation waves that are induced due to extraction of the internal energy of polymer propellants. In the paper, we consider the Aero-Space Laser Propulsion Engine (ASLPE) developed earlier, in which all of these mechanisms are realized via interaction of laser radiation with polymers both in continuous wave (CW) and in repetitively pulsed modes of laser operation. The ASLPE is considered to be exploited as a unit of a laser propulsion device being arranged onboard space vehicles moving around the Earth or in interplanetary missions and intended to correct the vehicles orbits. To produce a thrust, a power of the solar pumped lasers designed to the present time is considered in the paper. The problem of increasing the efficiency of the laser propulsion device is analyzed as applied to space missions of vehicles by optimizing the laser propulsion propellant composition.

Rezunkov, Yu. A.; Egorov, M. S.; Repina, E. V.; Safronov, A. L. [Research Institute for Complex Testing of Optic-Electronic Devices, Sosnovy Bor, Leningrad region, Russian Federation, 188540 (Russian Federation); Rebrov, S. G. [Keldyish Research Center, Moscow (Russian Federation)

2010-05-06T23:59:59.000Z

385

Search for Model Year 2013 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

386

Search for Model Year 2012 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

387

Search for Model Year 2011 Vehicles by Fuel or Vehicle Type  

NLE Websites -- All DOE Office Websites (Extended Search)

Class... Compressed Natural Gas Vehicles Diesel Vehicles Electric Vehicles Flex-Fuel (E85) Vehicles Hybrid Vehicles Plug-in Hybrid Vehicles Search by Make Search by Model Search...

388

Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2009 DOE Hydrogen Program and

389

Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2010 DOE Hydrogen Program and

390

Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1 DOE Hydrogen 1 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2011 DOE Hydrogen Program and

391

Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per  

NLE Websites -- All DOE Office Websites (Extended Search)

3: September 9, 3: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries to someone by E-mail Share Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Facebook Tweet about Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Twitter Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Google Bookmark Vehicle Technologies Office: Fact #233: September 9, 2002 Vehicles per Thousand People: United States Compared with Other Countries on Delicious Rank Vehicle Technologies Office: Fact #233: September 9, 2002

392

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

393

Efficiency of Unmanned Aircraft Systems (UAS) Relative to Manned Aircraft for Surveying Bowhead Whale Distribution and Density in the Arctic  

E-Print Network (OSTI)

, interest in the use of Unmanned Aircraft Systems (UAS) as an aerial survey platform for studying BCB manned aircraft surveys as part of the Bowhead Whale Aerial Survey Project (BWASP) (Monnett and Treacy through funding from MMS (Fig. 1). BWASP and COMIDA aerial surveys followed a linetransect protocol

394

vehicle | OpenEI  

Open Energy Info (EERE)

vehicle vehicle Dataset Summary Description Supplemental Tables 48-56 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration light-duty sales TEF Transportation Energy Futures vehicle Data text/csv icon Light-Duty_Vehicle_Sales_by_Technology_Type.csv (csv, 1.1 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

395

Vehicle Technologies Office: Benchmarking  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking Benchmarking Research funded by the Vehicle Technologies Office produces a great deal of valuable data, but it is important to compare those research results with similar work done elsewhere in the world. Through laboratory testing, researchers can compare vehicles and components to validate models, support technical target-setting, and provide data to help guide technology development tasks. Benchmarking activities fall into two primary areas: Vehicle and component testing, in which researchers test and analyze emerging technologies obtained from sources throughout the world. The results are used to continually assess program efforts. Model validation, in which researchers use test data to validate the accuracy of vehicle and component computer models including: overall measures such as fuel economy, state-of-charge energy storage across the driving cycle, and transient component behavior, such as fuel rate and torque.

396

Vehicle Technologies Office: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

in light-duty vehicles (including passe Details Bookmark & Share View Related Clean Cities Now Vol. 17, No. 2 The Fall 2013 issue of the biannual newsletter for the U.S....

397

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

398

How Vehicles Are Tested  

NLE Websites -- All DOE Office Websites (Extended Search)

simulates cycling. The energy required to move the rollers can be adjusted to account for wind resistance and the vehicle's weight. Photo: Driver running car through test cycle on...

399

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

355,058 Average Ambient Temperature (deg F) 46.0 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 416...

400

Chevrolet Volt Vehicle Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

2,405,406 Average Ambient Temperature (deg F) 61.4 Electric Vehicle mode operation (EV) Gasoline fuel economy (mpg) No Fuel Used AC electrical energy consumption (AC Whmi) 355...

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Basics: Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of an electric bus driving up a hill. Electricity can be used as a transportation fuel to power battery electric vehicles (EVs). EVs store electricity in an energy storage...

402

Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Natural gas vehicles (NGVs) are either fueled exclusively with compressed natural gas or liquefied natural gas (dedicated NGVs) or are capable of natural gas and gasoline fueling (bi-fuel NGVs).

403

Materials - Vehicle Recycling  

NLE Websites -- All DOE Office Websites (Extended Search)

end-of-life vehicles are shredded, along with other metal bearing items such as home appliances, process equipment and demolition debris, and their metals content is recovered for...

404

Light Duty Vehicle Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

in 2030 0 5 10 15 20 25 30 Million BarrelsDay IMPORTS DOMESTIC OIL SUPPLY OIL DEMAND ELECTRICITY RES. & COM. INDUSTRY MISC. TRANSPORT AIR TRUCKS LIGHT DUTY VEHICLES ETHANOL...

405

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

local gasoline taxes ($/gal) This is equal to total motorgasoline tax in cents/mi) Vehicle efficiency parameters: input data 0.89 0.89 Once-through efficiency of electric motor,

Delucchi, Mark

1992-01-01T23:59:59.000Z

406

Household Vehicles Energy Consumption  

Reports and Publications (EIA)

This report provides newly available national and regional data and analyzes the nation's energy use by light-duty vehicles. This release represents the analytical component of the report, with a data component having been released in early 2005.

Mark Schipper

2005-11-30T23:59:59.000Z

407

Electric Vehicle Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure JOHN DAVIS: Nearly everyone who owns a plug-in electric vehicle has some capacity to replenish the battery at home, either with a dedicated 220-volt charger, or by...

408

Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University  

DOE Green Energy (OSTI)

This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

Nigle N. Clark

2006-12-31T23:59:59.000Z

409

Vehicle Management Driver Safety Program  

E-Print Network (OSTI)

in the city of La Rochelle [1], using fully automated electric and communicating road vehicles, better known campus was implemented using fully automated electric and communicating vehicles. The vehicles behavior. Safety Autonomous vehicles may need to stop in a progressive way in the case of obstacles in the way

Machel, Hans

410

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

411

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

412

Vehicle Technologies Office: Electrical Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

413

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network (OSTI)

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

414

MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES  

NLE Websites -- All DOE Office Websites (Extended Search)

COMPRESSED NATURAL GAS VEHICLES ... 5 LIQUEFIED PETROLEUM GAS (PROPANE) VEHICLES ...... 5 DIESEL VEHICLES ......

415

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

416

Advanced Vehicle Testing Activity: Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview to Overview to someone by E-mail Share Advanced Vehicle Testing Activity: Overview on Facebook Tweet about Advanced Vehicle Testing Activity: Overview on Twitter Bookmark Advanced Vehicle Testing Activity: Overview on Google Bookmark Advanced Vehicle Testing Activity: Overview on Delicious Rank Advanced Vehicle Testing Activity: Overview on Digg Find More places to share Advanced Vehicle Testing Activity: Overview on AddThis.com... Home Overview Light-Duty Vehicles Medium- and Heavy-Duty Vehicles Publications Overview The marketplace for advanced transportation technologies and the focus, direction, and funding of transportation programs are continually changing. The Advanced Vehicle Testing Activity's "2005 Overview of Advanced Technology Transportation" (PDF 736 KB) gives the latest information about

417

Vehicle Technologies Office: 2013 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Archive to someone 3 Archive to someone by E-mail Share Vehicle Technologies Office: 2013 Archive on Facebook Tweet about Vehicle Technologies Office: 2013 Archive on Twitter Bookmark Vehicle Technologies Office: 2013 Archive on Google Bookmark Vehicle Technologies Office: 2013 Archive on Delicious Rank Vehicle Technologies Office: 2013 Archive on Digg Find More places to share Vehicle Technologies Office: 2013 Archive on AddThis.com... 2013 Archive #810 Leasing on the Rise December 30, 2013 #809 What Do We Pay for in a Gallon of Gasoline? December 23, 2013 #808 Declining Use of Six- and Eight-Cylinder Engines December 16, 2013 #807 Light Vehicle Weights Leveling Off December 9, 2013 #806 Light Vehicle Market Shares, Model Years 1975-2012 December 2, 2013 #805 Vehicle Technology Penetration November 25, 2013

418

Vehicle Technologies Office: 2009 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Archive to someone 9 Archive to someone by E-mail Share Vehicle Technologies Office: 2009 Archive on Facebook Tweet about Vehicle Technologies Office: 2009 Archive on Twitter Bookmark Vehicle Technologies Office: 2009 Archive on Google Bookmark Vehicle Technologies Office: 2009 Archive on Delicious Rank Vehicle Technologies Office: 2009 Archive on Digg Find More places to share Vehicle Technologies Office: 2009 Archive on AddThis.com... 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009

419

Modular photonic power and VCSEL-based data links for aerospace and military applications  

DOE Green Energy (OSTI)

If photonic data and power transfer links are constructed in a modular fashion, they can be easily adapted into various forms to meet a wide range of needs for aerospace and military applications. The performance specifications associated with these needs can vary widely according to application. Alignment tolerance needs also tend to vary greatly, as can requirements on power consumption. An example of a modular photonic data and/or power transfer link that can be applied to military and aerospace needs is presented. In this approach, a link is designed for low (<10 kb/s) data rates, ultra-low electrical power consumption, large alignment tolerance, and power transfer to provide complete electrical shielding in a remote module that might be found in a military or aerospace application.

Carson, R.F.

1997-02-01T23:59:59.000Z

420

Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicles Vehicles Vehicles In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today. In the first half of 2013, Americans doubled the number of PEVs they purchased compared to the same period in 2012, and this summer, PEV sales reached a new record high. More than 11,000 PEVs were sold in August 2013 -- that's a 29 percent improvement in sales over the previous monthly record. Learn now about the clean technology revolution that is here today.

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Vehicle Technologies Office: Active Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Solicitations to Active Solicitations to someone by E-mail Share Vehicle Technologies Office: Active Solicitations on Facebook Tweet about Vehicle Technologies Office: Active Solicitations on Twitter Bookmark Vehicle Technologies Office: Active Solicitations on Google Bookmark Vehicle Technologies Office: Active Solicitations on Delicious Rank Vehicle Technologies Office: Active Solicitations on Digg Find More places to share Vehicle Technologies Office: Active Solicitations on AddThis.com... Active Solicitations To explore current financial opportunity solicitations, click on the opportunity titles in the table below. To sort the list, click on the arrows in the column headings. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Research and Development for Hydrogen Storage

422

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

century. Hybrid electric vehicles (HEVs) reduce emissionsas plug-in HEVs and full electric vehicles to market. In theon their design, hybrid electric vehicles employ electric

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

423

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Other Internal Combustion Engine Vehicles on Facebook Tweet about Advanced...

424

Advanced Vehicle Testing Activity: Hydrogen Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

to someone by E-mail Share Advanced Vehicle Testing Activity: Hydrogen Internal Combustion Engine Vehicle Basics on Facebook Tweet about Advanced Vehicle Testing Activity:...

425

Advanced Vehicle Testing Activity: Other Internal Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Internal Combustion Engine Vehicles The Advanced Vehicle Testing Activity (AVTA) is tasked by the U.S. Department of Energy's (DOE) Vehicle Technology Office (VTO) to conduct...

426

The Evolution of Sustainable Personal Vehicles  

E-Print Network (OSTI)

Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

Jungers, Bryan D

2009-01-01T23:59:59.000Z

427

Miles Electric Vehicles | Open Energy Information  

Open Energy Info (EERE)

Miles Electric Vehicles Jump to: navigation, search Name Miles Electric Vehicles Place Santa Monica, California Zip 90405 Sector Vehicles Product California-based developer of...

428

Solar Electrical Vehicles | Open Energy Information  

Open Energy Info (EERE)

California Zip 91361 Sector Solar, Vehicles Product US-based manufacturer of solar battery chargers for hybrid vehicles. References Solar Electrical Vehicles1 LinkedIn...

429

Commercial Motor Vehicle Brake-Related Research  

E-Print Network (OSTI)

Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

430

Middleware for Cooperative Vehicle-Infrastructure Systems  

E-Print Network (OSTI)

Cooperative vehicle-infrastructure systems." COM Safety:of Transportation. Vehicle-Infrastructure Integration (VII).for Cooperative Vehicle-Infrastructure Systems Christian

Manasseh, Christian; Sengupta, Raja

2008-01-01T23:59:59.000Z

431

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

in the last century. Hybrid electric vehicles (HEVs) reduceon their design, hybrid electric vehicles employ electricof this paper, hybrid electric vehicles are a broad set of

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

432

US Ethanol Vehicle Coalition | Open Energy Information  

Open Energy Info (EERE)

Vehicle Coalition Jump to: navigation, search Name US Ethanol Vehicle Coalition Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is the...

433

Social Implications of Vehicle Choice and Use  

E-Print Network (OSTI)

Prices by Vehicle Type and Manufacturer Fuel Efficient andto understand how vehicle manufacturers and dealers sharePrices by Vehicle Type and Manufacturer Section 3.4. Section

Langer, Ashley Anne

2010-01-01T23:59:59.000Z

434

What's a hydrogen blended fueled vehicle?  

NLE Websites -- All DOE Office Websites (Extended Search)

available for testing. However, development of fuel cell vehicles continues in earnest by vehicle manufacturers and other groups such as DOE's FreedomCar & Vehicle Technologies...

435

Quantifying the benefits of hybrid vehicles  

E-Print Network (OSTI)

the first green vehicle, manufacturers created the first “market for safety in vehicles, manufacturers were initiallymanufacturers are convinced that car buyers are interested in green vehicles and

Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

2006-01-01T23:59:59.000Z

436

Front Vehicle Setup Information Downloadable Dynamometer Database...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevrolet Volt- 20F Test cell location Front Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle architecture EREV Vehicle dynamometer...

437

California's Zero-Emission Vehicle Mandate  

E-Print Network (OSTI)

in a Shared Electric Vehicle Program. In Transporta- tionadvanced technologies and electric vehicles i n Japan. Earlysur­ vey. Nearly 50 electric vehicles were used, including

Shaheen, Susan

2004-01-01T23:59:59.000Z

438

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

2001-01-01T23:59:59.000Z

439

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

Developmentfor Neighborhood Electric Vehicles. Institute ofPaul. "Small and Electric: Vehicles With a Future." ResearchElectric Company. Electric Vehicle Program: Exhibit III

Lipman, Timothy E.; Kuranu, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

440

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Preferences for Electric Vehicles. Electric Power ResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"Neighborhood Electric Vehicle Workshop Proceedings While

Lipman, Timothy

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Preferences for Electric Vehicles. Electric PowerResearchWilliam L. Garrison, "Electric Vehicle Potential in Hawaii,"Ro Warf Pacific Electric Vehicles Research and Development

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

442

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

to protect the electric vehicle industry and limit liabilityElectric Vehicle Workshop brought together leaders from industry,duty electric vehicles. To provide flexibility to industry

Lipman, Timothy

1994-01-01T23:59:59.000Z

443

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Safety...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas |...

444

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

gasoline vehicles, hybrid electric vehicles, aircraft, high-Gasoline Vehicle (CGV), Hybrid Electric Vehicle (HEV),Plug-in Hybrid Electric Vehicle (PHEV), and Battery Electric

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

445

Hybrid electric vehicles TOPTEC  

SciTech Connect

This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

1994-06-21T23:59:59.000Z

446

Vehicle brake testing system  

SciTech Connect

This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

2002-11-19T23:59:59.000Z

447

BEEST: Electric Vehicle Batteries  

SciTech Connect

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

448

NREL: Vehicles and Fuels Research - Electric Vehicle Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Grid Integration Project Electric Vehicle Grid Integration Project Plug-in electric vehicle charging at NREL. PEV charging in the VTIF. Photo by Dennis Schroeder, NREL/PIX 19758 The Electric Vehicle Grid Integration Project supports the development and implementation of electrified transportation systems, particularly those that integrate renewable-based vehicle charging systems. Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles (PHEVs)-provide a new opportunity to reduce oil consumption by drawing on power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure must provide access to clean electricity generated from renewable sources, satisfy driver expectations, and ensure safety. Value creation from systems

449

Electric Vehicles, Hybrid Vehicles, and the California Zero Emission...  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles, Hybrid Vehicles, and the California Zero Emission Mandate Speaker(s): Ron Chestnut Date: October 26, 2000 - 12:00pm Location: Bldg. 90 The California Air...

450

Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight  

NLE Websites -- All DOE Office Websites (Extended Search)

1: May 3, 2010 1: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight to someone by E-mail Share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Facebook Tweet about Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Twitter Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Google Bookmark Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Delicious Rank Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on Digg Find More places to share Vehicle Technologies Office: Fact #621: May 3, 2010 Gross Vehicle Weight vs. Empty Vehicle Weight on AddThis.com...

451

Energy Basics: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Flexible Fuel Vehicles Photo of a gray van with 'E85 Ethanol' written on the side. Flexible fuel vehicles (FFVs) are capable of operating on gasoline, E85 (85%...

452

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cell Vehicles Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by...

453

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

the motor. In addition, hybrid vehicles will require ACDC converters to interconnect the high-voltage bus and the low-voltage bus for vehicle auxiliary loads. Technical issues to...

454

Household vehicles energy consumption 1991  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted during 1991 and early 1992. The 1991 RTECS represents 94.6 million households, of which 84.6 million own or have access to 151.2 million household motor vehicles in the 50 States and the District of Columbia.

Not Available

1993-12-09T23:59:59.000Z

455

Vehicle Technologies Office: 2010 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Archive to someone 0 Archive to someone by E-mail Share Vehicle Technologies Office: 2010 Archive on Facebook Tweet about Vehicle Technologies Office: 2010 Archive on Twitter Bookmark Vehicle Technologies Office: 2010 Archive on Google Bookmark Vehicle Technologies Office: 2010 Archive on Delicious Rank Vehicle Technologies Office: 2010 Archive on Digg Find More places to share Vehicle Technologies Office: 2010 Archive on AddThis.com... 2010 Archive #655 New Freight Analysis Tool December 27, 2010 #654 New Light Vehicle Leasing is Big in 2010 December 20, 2010 #653 Import Cars and Trucks Gaining Ground December 13, 2010 #652 U.S. Crude Oil Production Rises December 6, 2010 #651 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011 November 29, 2010 #650 Diesel Fuel Prices hit a Two-Year High November 22, 2010

456

Vehicle Technologies Office: 2006 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Archive to someone 6 Archive to someone by E-mail Share Vehicle Technologies Office: 2006 Archive on Facebook Tweet about Vehicle Technologies Office: 2006 Archive on Twitter Bookmark Vehicle Technologies Office: 2006 Archive on Google Bookmark Vehicle Technologies Office: 2006 Archive on Delicious Rank Vehicle Technologies Office: 2006 Archive on Digg Find More places to share Vehicle Technologies Office: 2006 Archive on AddThis.com... 2006 Archive #449 Biodiesel to Conventional Diesel: An Emissions Comparison December 25, 2006 #448 Fuel Purchasing Habits December 18, 2006 #447 World Ethanol Production December 11, 2006 #446 More Likely to Buy a Hybrid or Other More Fuel Efficient Vehicle? December 4, 2006 #445 U.S. Population Growth and Light Vehicle Sales November 27, 2006

457

Vehicle Technologies Office: 2011 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Archive to someone 1 Archive to someone by E-mail Share Vehicle Technologies Office: 2011 Archive on Facebook Tweet about Vehicle Technologies Office: 2011 Archive on Twitter Bookmark Vehicle Technologies Office: 2011 Archive on Google Bookmark Vehicle Technologies Office: 2011 Archive on Delicious Rank Vehicle Technologies Office: 2011 Archive on Digg Find More places to share Vehicle Technologies Office: 2011 Archive on AddThis.com... 2011 Archive #707 Illustration of Truck Classes December 26, 2011 #706 Vocational Vehicle Fuel Consumption Standards December 19, 2011 #705 Fuel Consumption Standards for Combination Tractors December 12, 2011 #704 Fuel Consumption Standards for New Heavy Pickups and Vans December 5, 2011 #703 Hybrid Vehicles Lose Market Share in 2010 November 28, 2011

458

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

Aggregate Aggregate Ratio: See Mean and Ratio Estimate. AMPD: Average miles driven per day. See Appendix B, "Estimation Methodologies." Annual Vehicle Miles Traveled: See Vehicle Miles Traveled. Automobile: Includes standard passenger car, 2-seater car and station wagons; excludes passenger vans, cargo vans, motor homes, pickup trucks, and jeeps or similar vehicles. See Vehicle. Average Household Energy Expenditures: A ratio estimate defined as the total household energy expenditures for all RTECS households divided by the total number of households. See Ratio Estimate, and Combined Household Energy Expenditures. Average Number of Vehicles per Household: The average number of vehicles used by a household for personal transportation during 1991. For this report, the average number of vehicles per household is computed as the ratio of the total number of vehicles to the

459

Heavy Vehicle Systems  

Science Conference Proceedings (OSTI)

Heavy Vehicle (HV) systems are a necessary component of achieving OHVT goals. Elements are in place for a far-ranging program: short, intermediate, and long-term. Solicitation will bring industrial input and support. Future funding trend is positive, outlook for HV systems is good.

Sid Diamond; Richard Wares; Jules Routbort

2000-04-11T23:59:59.000Z

460

Vehicle fuel system  

DOE Patents (OSTI)

A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

Risse, John T. (Albuquerque, NM); Taggart, James C. (Albuquerque, NM)

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

VEHICLE TECHNOLOGIES PROGRAM Electric Vehicle Preparedness  

NLE Websites -- All DOE Office Websites (Extended Search)

2: Identification 2: Identification of Joint Base Lewis McChord Vehicles for Installation of Data Loggers June 2013 Prepared for: Joint Base Lewis McChord Prepared by: Idaho National Laboratory and ECOtality North America DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,

462

Advancing Next-Generation Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- the U.S. Department of Energy's (DOE's) lead laboratory for researching advanced vehicle technologies, including hy- brid, plug-in hybrid, battery electric, and alternative fuel vehicles, Argonne provides transportation research critical to advancing the development of next-generation vehicles. Central to this effort is the Lab's Advanced Powertrain Research Facility (APRF), an integrated four-wheel drive chassis dynamometer and component test facility.

463

Electric Vehicle Fueling and Submetering  

Science Conference Proceedings (OSTI)

US National Work Group on Measuring Systems for Electric Vehicle Fueling and Submetering. The US National Work Group ...

2013-08-07T23:59:59.000Z

464

Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)  

E-Print Network (OSTI)

Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

465

Commercial Motor Vehicle Brake Assessment Tools  

E-Print Network (OSTI)

Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor #12;Overview · Commercial Motor Vehicle (CMV) Air Brake System · North American Standard Level-1

466

TIMEOPTIMAL CONTROL FOR UNDERWATER VEHICLES  

E-Print Network (OSTI)

TIME­OPTIMAL CONTROL FOR UNDERWATER VEHICLES M. Chyba #,1 N.E. Leonard #,1 E.D. Sontag ##,2 problems for a special class of controlled mechanical systems, underwater vehicles. Lie algebras associated­optimal trajectories. We apply the general theory to a model of an underwater vehicle and illustrate our results

Sontag, Eduardo

467

Solar Power Forecasting at UC San Diego Jan Kleissl, Dept of Mechanical & Aerospace Engineering, UCSD  

E-Print Network (OSTI)

Solar Power Forecasting at UC San Diego Jan Kleissl, Dept of Mechanical & Aerospace Engineering and discharging of fast storage devices with relatively low power (e.g. batteries or supercapacitors) could the economics of solar power. However, accurate short term forecasting of cloudiness is required for efficient

Fainman, Yeshaiahu

468

CU-CAS-97-09 CENTER FOR AEROSPACE STRUCTURES THE CONSTRUCTION OF FREE-FREE  

E-Print Network (OSTI)

CU-CAS-97-09 CENTER FOR AEROSPACE STRUCTURES THE CONSTRUCTION OF FREE-FREE FLEXIBILITY MATRICES OF ENGINEERING UNIVERSITY OF COLORADO CAMPUS BOX 429 BOULDER, COLORADO 80309 #12;The Construction of Free-Free­418, of that journal) #12;The Construction of Free-Free Flexibility Matrices as Generalized Stiffness Inverses C. A

Felippa, Carlos A.

469

Table Commercial Industrial Vehicle Fuel Electric Power  

U.S. Energy Information Administration (EIA)

State Residential Commercial Industrial Vehicle Fuel Electric Power ... Form EIA?886, “Annual Survey of Alternative Fueled Vehicles”; ...

470

Uncertainty quantification in ground vehicle dynamics through  

E-Print Network (OSTI)

vehicles (Honda Insight, Ford P2000) and up to 5% for full hybrid vehicles (Toyota Prius) Modeled using

Negrut, Dan

471

Vehicle Technologies Office: Workplace Charging Challenge Partner...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share Vehicle Technologies Office: Workplace Charging Challenge Partner: Southern California Edison on Facebook Tweet about Vehicle Technologies Office: Workplace Charging...

472

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR...

473

Clean Cities: Electric Vehicle Infrastructure Training Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Infrastructure Training Program The Electric Vehicle Infrastructure Training Program (EVITP) provides training and certification for people installing electric...

474

Clean Cities: Advanced Vehicle Technology Competitions  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas...

475

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

to developthe electric and natural gas vehicle industries inelectric vehicles. Suchspaces wouldbe equippedwith recharging stations as soon as an industry

Lipman, Timothy E.; Kuranu, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

476

Incentive Policies for Neighborhood Electric Vehicles  

E-Print Network (OSTI)

to developthe electric and natural gas vehicle industries inelectric vehicles. Suchspaces wouldbe equippedwith recharging stations as soon as an industry

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

2001-01-01T23:59:59.000Z

477

Proceedings of the Neighborhood Electric Vehicle Workshop  

E-Print Network (OSTI)

Electric Vehicle Workshopbrought together leaders from industry,to electric vehicles. To provide flexibility to industry in

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z

478

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

479

Autonomous Robotic Vehicle Road Following  

Science Conference Proceedings (OSTI)

A description is given of the system architecture of an autonomous vehicle and its real-time adaptive vision system for road-following. The vehicle is a 10-ton armored personnel carrier modified for robotic control. A color transformation that best discriminates ... Keywords: adaptive systems, adaptive vision system, armored personnel carrier, autonomous vehicle, color transformation, computer vision, computerised navigation, computerised pattern recognition, image coordinate system, image segmentation, maximum-likelihood pixel classification, military systems, real-time, road region boundary, road vehicles, road-following, robotic vehicle, robots

D. Kuan; G. Phipps; A.-C. Hsueh

1988-09-01T23:59:59.000Z

480

Household vehicles energy consumption 1994  

SciTech Connect

Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use some 6,000 vehicles provided information to describe vehicle stock, vehicle-miles traveled, energy end-use consumption, and energy expenditures for personal vehicles. The survey results represent the characteristics of the 84.9 million households that used or had access to vehicles in 1994 nationwide. (An additional 12 million households neither owned or had access to vehicles during the survey year.) To be included in then RTECS survey, vehicles must be either owned or used by household members on a regular basis for personal transportation, or owned by a company rather than a household, but kept at home, regularly available for the use of household members. Most vehicles included in the RTECS are classified as {open_quotes}light-duty vehicles{close_quotes} (weighing less than 8,500 pounds). However, the RTECS also includes a very small number of {open_quotes}other{close_quotes} vehicles, such as motor homes and larger trucks that are available for personal use.

NONE

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "unmanned aerospace vehicle" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Vehicles News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 14, 2010 July 14, 2010 Department of Energy Releases New Report on Economic Impact of Recovery Act Advanced Vehicle Investments Report Finds Recovery Act Advanced Vehicle Projects Are Creating Jobs, Spurring Private Capital Investment and Cutting Electric Vehicle Cost May 26, 2010 Deputy Secretary Poneman Attends Ground Breaking at Tennessee Advanced Vehicle Battery Plant Smyrna Electric Vehicle Project Expected to provide up to 1,500 Jobs in Tennessee March 31, 2010 GSA Doubles the Federal Hybrid Fleet, DOE Takes the Lead in Updating to Hybrids Agencies Move to Increase Energy Security and Fuel Efficiency January 11, 2010 Secretary Chu Announces $187 Million to Improve Vehicle Efficiency for Heavy-Duty Trucks and Passenger Vehicles October 15, 2009 2010 Annual Fuel Economy Guide Now Available

482

Vehicle Technologies Office: 2007 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Archive to someone 7 Archive to someone by E-mail Share Vehicle Technologies Office: 2007 Archive on Facebook Tweet about Vehicle Technologies Office: 2007 Archive on Twitter Bookmark Vehicle Technologies Office: 2007 Archive on Google Bookmark Vehicle Technologies Office: 2007 Archive on Delicious Rank Vehicle Technologies Office: 2007 Archive on Digg Find More places to share Vehicle Technologies Office: 2007 Archive on AddThis.com... 2007 Archive #499 Alternative Fuel Models: Gains and Losses December 10, 2007 #498 New Light Vehicle Fuel Economy December 3, 2007 #497 Fuel Drops to Third Place in the Trucking Industry Top Ten Concerns November 26, 2007 #496 Diesel Prices in the U.S. and Selected Countries: Cost and Taxes November 19, 2007 #495 Oil Price and Economic Growth, 1971-2006 November 12, 2007

483

Vehicle Technologies Office: 2012 Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Archive to someone 2 Archive to someone by E-mail Share Vehicle Technologies Office: 2012 Archive on Facebook Tweet about Vehicle Technologies Office: 2012 Archive on Twitter Bookmark Vehicle Technologies Office: 2012 Archive on Google Bookmark Vehicle Technologies Office: 2012 Archive on Delicious Rank Vehicle Technologies Office: 2012 Archive on Digg Find More places to share Vehicle Technologies Office: 2012 Archive on AddThis.com... 2012 Archive #760 Commuting to Work, 1960-2010 December 31, 2012 #759 Rural vs. Urban Driving Differences December 24, 2012 #758 U.S. Production of Crude Oil by State, 2011 December 17, 2012 #757 The U.S. Manufactures More Light Trucks than Cars December 10, 2012 #756 Midwest Produces Two-Thirds of All Light Vehicles December 3, 2012

484

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

1. 1. Introduction The purpose of this report is to provide information on the use of energy in residential vehicles in the 50 States and the District of Columbia. Included are data about: the number and type of vehicles in the residential sector, the characteristics of those vehicles, the total annual Vehicle Miles Traveled (VMT), the per household and per vehicle VMT, the vehicle fuel consumption and expenditures, and vehicle fuel efficiencies. The Energy Information Administration (EIA) is mandated by Congress to collect, analyze, and disseminate impartial, comprehensive data about energy--how much is produced, who uses it, and the purposes for which it is used. To comply with this mandate, EIA collects energy data from a variety of sources covering a range of topics 1 . Background The data for this report are based on the household telephone interviews from the 1991 RTECS, conducted

485

Household Vehicles Energy Consumption 1991  

U.S. Energy Information Administration (EIA) Indexed Site

. . Vehicle Fuel Efficiency and Consumption Fuel consumption is estimated from RTECS data on the vehicle stock (Chapter 2) and miles traveled (Chapter 3), in combination with vehicle fuel efficiency ratings, adjusted to account for individual driving circumstances. The first two sections of this chapter present estimates of household vehicle fuel efficiency and household fuel consumption calculated from these fuel efficiency estimates. These sections also discuss variations in fuel efficiency and consumption based on differences in household and vehicle characteristics. The third section presents EIA estimates of the potential savings from replacing the oldest (and least fuel-efficient) household vehicles with new (and more fuel-efficient) vehicles. The final section of this chapter focuses on households receiving (or eligible to receive) supplemental income under

486

Vehicle Technologies Office: Educational Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Educational Activities to someone by E-mail Share Vehicle Technologies Office: Educational Activities on Facebook Tweet about Vehicle Technologies Office: Educational Activities on Twitter Bookmark Vehicle Technologies Office: Educational Activities on Google Bookmark Vehicle Technologies Office: Educational Activities on Delicious Rank Vehicle Technologies Office: Educational Activities on Digg Find More places to share Vehicle Technologies Office: Educational Activities on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Graduate Automotive Technology Education (GATE) Educational Activities EcoCAR 2: Plugging In to the Future EcoCAR 2: Plugging In to the Future is the successor to EcoCAR: The NeXt

487

Blog Feed: Vehicles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

feed-vehicles 1000 Independence Ave. SW Washington feed-vehicles 1000 Independence Ave. SW Washington DC 20585 202-586-5000 en Our Best Energy Videos of 2013 http://energy.gov/articles/our-best-energy-videos-2013 Our Best Energy Videos of 2013

488

Rapid road repair vehicle  

DOE Patents (OSTI)

Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

Mara, L.M.

1998-05-05T23:59:59.000Z

489

Hydrogen vehicle fueling station  

DOE Green Energy (OSTI)

The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

1995-09-01T23:59:59.000Z

490

Vehicle Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

December 18, 2013 December 18, 2013 USDA Offers $118 Million for Renewable Energy, Smart Grid Projects The U.S. Department of Agriculture (USDA) announced $73 million in funding for renewable energy projects and $45 million for smart grid technology as part of more than $1.8 billion in funding for electric utility infrastructure projects in 25 states and one territory. More December 18, 2013 2012 Fuel Economy of New Vehicles Sets Record High: EPA The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon. More December 18, 2013 Energy Department Releases Grid Energy Storage Report The Energy Department released its Grid Energy Storage report to the members of the U.S. Senate Energy and Natural Resources Committee, identifying the benefits and challenges of grid energy storage that must be addressed to enable broader use. More

491

Vehicle Technologies Office: Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Batteries battery/cell diagram Battery/Cell Diagram Batteries are important to our everyday lives and show up in various consumer electronics and appliances, from MP3 players to laptops to our vehicles. Batteries play an important role in our vehicles and are gradually becoming more and more important as they assume energy storage responsibilities from fuel in vehicle propulsion systems. A battery is a device that stores chemical energy in its active materials and converts it, on demand, into electrical energy by means of an electrochemical reaction. An electrochemical reaction is a chemical reaction involving the transfer of electrons, and it is that reaction which creates electricity. There are three main parts of a battery: the anode, cathode, and electrolyte. The anode is the "fuel" electrode which gives up electrons to the external circuit to create the flow of electrons or electricity. The cathode is the oxidizing electrode which accepts electrons in the external circuit. Finally, the electrolyte carries the electric current, as ions, inside the cell, between the anode and cathode.

492

Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of  

NLE Websites -- All DOE Office Websites (Extended Search)

7: July 29, 2002 7: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type to someone by E-mail Share Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Facebook Tweet about Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Twitter Bookmark Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Google Bookmark Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Delicious Rank Vehicle Technologies Office: Fact #227: July 29, 2002 Vehicle Miles of Travel (VMT) and Age by Vehicle Type on Digg Find More places to share Vehicle Technologies Office: Fact #227:

493

Using Unmanned Helicopters to Assess Vegetation Cover in Sagebrush Steppe Ecosystems  

SciTech Connect

Evaluating vegetation cover is an important factor in understanding the sustainability of many ecosystems. Methods that have sufficient accuracy and improved cost efficiency could dramatically alter how biotic resources are monitored on both public and private lands. This will be of interest to land managers because there are rarely enough resource specialists or funds available for comprehensive ground evaluations. In this project, unmanned helicopters were used to collect still-frame imagery to assess vegetation cover during May, June, and July in 2005. The images were used to estimate percent cover for six vegetative cover classes (shrub, dead shrub, grass, forbs, litter, and bare ground). The field plots were located on the INL site west of Idaho Falls, Idaho. Ocular assessments of digital imagery were performed using a software program called SamplePoint, and the results were compared against field measurements collected using a point-frame method to assess accuracy. The helicopter imagery evaluation showed a high degree of agreement with field cover class values for litter, bare ground, and grass, and reasonable agreement for dead shrubs. Shrub cover was often overestimated and forbs were generally underestimated. The helicopter method took 45% less time than the field method to set plots and collect and analyze data. This study demonstrates that UAV technology provides a viable method for monitoring vegetative cover on rangelands in less time and with lower costs. Tradeoffs between cost and accuracy are critical management decisions that are important when managing vegetative conditions across vast sagebrush ecosystems throughout the Intermountain West.

Robert P. Breckenridge; Maxine Dakins; Stephen Bunting; Jerry Harbour; Randy Lee

2012-07-01T23:59:59.000Z

494

Modelling of a captive unmanned aerial system teledetecting oil pollution on sea surface  

E-Print Network (OSTI)

Recent major oil-spills were tracked using observations with sufficient altitudes over the sea surface, to detect oil slick locations. For oil-spill responders, we propose a captive Unmanned Aerial System, UAS acting like a periscope over a ship or supply vessel. The system is composed of an umbilical deployed from ship deck, and there are few studies that have examined elasticity within cable dynamic during take-off or landing (TOL) and normal flight phases. Therefore, the safest approach for the control-commands of the system is through umbilical dynamic modelling. We give a time-dependant finite-element formulation, using improved elastic non-linear cable elements. Two kinds of boundary condition, natural or essential, are discussed for roll-in or roll-out of the umbilical. A numerical convergence and a validation with an exact solution are provided, using two examples for the flight parameters. Finally, sensitivity of the model potentially extends its capacity for the system equilibrium prediction, under ...

Muttin, Frédéric

2013-01-01T23:59:59.000Z

495

List of Vehicles Incentives | Open Energy Information  

Open Energy Info (EERE)

The following contains the list of 34 Vehicles Incentives. The following contains the list of 34 Vehicles Incentives. CSV (rows 1 - 34) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle Rebate (Colorado) State Rebate Program Colorado Schools Local Government State Government Renewable Fuel Vehicles No Alternative Fuel Vehicle Tax Credit (West Virginia) Personal Tax Credit West Virginia Residential Renewable Fuel Vehicles No

496

Clean Cities: Electric Vehicle Infrastructure Training Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicle Infrastructure Electric Vehicle Infrastructure Training Program to someone by E-mail Share Clean Cities: Electric Vehicle Infrastructure Training Program on Facebook Tweet about Clean Cities: Electric Vehicle Infrastructure Training Program on Twitter Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Google Bookmark Clean Cities: Electric Vehicle Infrastructure Training Program on Delicious Rank Clean Cities: Electric Vehicle Infrastructure Training Program on Digg Find More places to share Clean Cities: Electric Vehicle Infrastructure Training Program on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions

497

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

498

Alternative Fuels Data Center: Vehicle Registration Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Registration Vehicle Registration Requirement to someone by E-mail Share Alternative Fuels Data Center: Vehicle Registration Requirement on Facebook Tweet about Alternative Fuels Data Center: Vehicle Registration Requirement on Twitter Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Google Bookmark Alternative Fuels Data Center: Vehicle Registration Requirement on Delicious Rank Alternative Fuels Data Center: Vehicle Registration Requirement on Digg Find More places to share Alternative Fuels Data Center: Vehicle Registration Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Registration Requirement Motor vehicle registration applicants must provide proof of compliance with

499

Advanced Vehicle Testing and Evaluation  

SciTech Connect

The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

Garetson, Thomas

2013-03-31T23:59:59.000Z

500

Regulatory Impediments to Neighborhood Electric Vehicles: Safety Standards and Zero-Emission Vehicle Rules  

E-Print Network (OSTI)

to Neighborhood Electric Vehicles: Safety Standardsand Zero-to Neighborhood Electric Vehicles: Safety Standards andto Neighborhood Electric Vehicles: Safety Standards and

Lipman, Timothy E.; Kurani, Kenneth S.; Sperling, Daniel

1994-01-01T23:59:59.000Z