National Library of Energy BETA

Sample records for unmanned aerospace vehicle-suitable

  1. Unmanned Aerospace Vehicle Workshop

    SciTech Connect (OSTI)

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  2. The ARM Unmanned Aerospace Vehicle Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ARM Unmanned Aerospace Vehicle Program The ARM Program's focus is on climate research, specifi- cally research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisti- cated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in our atmosphere. The lowest layer of our atmosphere, known as the "troposphere," is where our weather events take place. The troposphere contains virtually all

  3. Working Group Reports Unmanned Aerospace Vehicle Workshop J. Vitko, Jr.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Reports Unmanned Aerospace Vehicle Workshop J. Vitko, Jr. Sandia National Laboratories Livermore, California The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments are summarized below. UDF Experiments 1. Clear sky, daylight Scientific questions: Do models and observations agree? Under

  4. ARM - Field Campaign - Unmanned Aerospace Vehicle (UAV) IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsUnmanned Aerospace Vehicle (UAV) IOP Campaign Links ARM UAV Program Science Plan ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Unmanned Aerospace Vehicle (UAV) IOP 1996.09.01 - 1996.09.30 Lead Scientist : John Vitko For data sets, see below. Abstract Fall 1996 Flight Series Campaign Data Sets IOP Participant Data Source Description Final Data Tooman UAV-Altus Order Data Tooman Tw

  5. Session Papers Atmospheric Radiation Measurement Program- Unmanned Aerospace Vehicle: The Follow-On Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Session Papers Atmospheric Radiation Measurement Program- Unmanned Aerospace Vehicle: The Follow-On Phase J. Vitko, Jr. ARM-UAV Technical Director Sandia National Laboratories Livermore, California A companion paper ("Unmanned Aerospace Vehicle Workshop," this volume) discusses the initial unmanned aerospace vehicle (UAV) demonstration flights (UDF). These flights are designed to provide an early demonstration of the scientific utility of UAVs by using an existing UAV and instruments

  6. UAVs in climate research: The ARM Unmanned Aerospace Vehicle Program

    SciTech Connect (OSTI)

    Bolton, W.R.

    1994-05-01

    In the last year, a Department of Energy/Strategic Environmental Research and Development Program project known as ``ARM-UAV`` has made important progress in developing and demonstrating the utility of unmanned aerospace vehicles as platforms for scientific measurements. Recent accomplishments include a series of flights using an atmospheric research payload carried by a General Atomics Gnat UAV at Edwards AFB, California, and over ground instruments located in north-central Oklahoma. The reminder of this discussion will provide background on the program and describe the recent flights.

  7. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    SciTech Connect (OSTI)

    Bolton, W.R.

    1996-11-01

    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, using two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.

  8. Atmospheric Radiation Measurement Program - unmanned aerospace vehicle: The follow-on phase

    SciTech Connect (OSTI)

    Vitko, J. Jr.

    1995-04-01

    Unmanned Aerospace Vehicle (UAV) demonstration flights (UDF) are designed to provide an early demonstration of the scientific utility of UAVs by using an existing UAV and instruments to measure broadband radiative flux profiles under clear sky conditions. UDF is but the first of three phases of ARM-UAV. The second phase significantly extends both the UAV measurement techniques and the available instrumentation to allow both multi-UAV measurements in cloudy skies and extended duration measurements in the tropopause. These activities build naturally to the third and final phase, that of full operational capability, i.e., UAVs capable of autonomous operations at 20-km altitudes for multiple days with a full suite of instrumentation for measuring radiative flux, cloud properties, and water vapor profiles.

  9. ARM TR-008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 24 4.3 Unmanned Aerospace Vehicle-Suitable Cloud Radar ...sbirsttrcycle24phase1040.htm 4.3 Unmanned Aerospace Vehicle-Suitable Cloud Radar ...

  10. ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation Measurement Unmanned ... This paper and the one that follows describe the start-up of the ARM-Unmanned Aerospace ...

  11. Nevada Science of Aerospace

    SciTech Connect (OSTI)

    Jason Marcks

    2004-07-01

    Funding was used to operate the educational program entitled the Nevada Science of Aerospace Project.

  12. The ARM unpiloted aerospace vehicle (UAV) program

    SciTech Connect (OSTI)

    Sowle, D.

    1995-09-01

    Unmanned aerospace vehicles (UAVs) are an important complement to the DOE`s Atmospheric Radiation Measurement (ARM) Program. ARM is primarily a ground-based program designed to extensively quantify the radiometric and meteorological properties of an atmospheric column. There is a need for airborne measurements of radiative profiles, especially flux at the tropopause, cloud properties, and upper troposphere water vapor. There is also a need for multi-day measurements at the tropopause; for example, in the tropics, at 20 km for over 24 hours. UAVs offer the greatest potential for long endurance at high altitudes and may be less expensive than piloted flights. 2 figs.

  13. THE AEROSPACE CORPORATION \\

    Office of Legacy Management (LM)

    I, .* THE AEROSPACE CORPORATION Suite 4000, 955 L'Enfant Plaza, S. W., Washington, D.C. 20024, Telephone: (202) 488.6000 7117-01.87.sej.16 28 July 1987 Mr. Andrew Wallo, III,...

  14. THE AEROSPACE CORPORATION '

    Office of Legacy Management (LM)

    q 3 THE AEROSPACE CORPORATION ' Suite 4000, 955 L' Enant Plaza, S. W., Warhington, D.C. 20024, Telephone: (202) 488-6000 7117-01.87.sej.16 28 July 1987 . Mr. Andrew Wallo, III,...

  15. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    . . s ,-- :; 2 5 Y THE AEROSPACE CORPORATION . Suite 4000, 955 L' EnJant Flax. S. Iv., Wah' gt cn on, D.C. 20024-2174, Telephone: (202) 488-6000 7117-03.87.cdy.27 27 May 1987 Mr. Andrew Wallo, III, NE:23 Division of Facility,& Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: STATUS OF ACTIONS - FUSRAP SITE LIST Aerospace recently completed a comprehensive review of sites listed fin the FUSRAP Site Investigation and Remedial Action Summary

  16. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    P;.-. 3 53-y ,' THE AEROSPACE CORPORATION Suite 4000, 955 L' Enfonr Plaza, S. W., Wa.shington, D.C. 20024-2174, Telephone: (202) 488-6000 7117-03.87.cdy.27 27 May 1987 Mr. Andrew Wallo, III, NE:23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: STATUS OF ACTIONS - F&RAP SITE LIST Aerospace recently completed a comprehensive review of sites listed in.the FUSRAP Site Investigation and Remedial Action Summary Report,

  17. THE AEROSPACE CORPORATION '

    Office of Legacy Management (LM)

    q 3 THE AEROSPACE CORPORATION ' \ Suite 4000, 955 L' En/ant Plaza, S. W., Warhington, D.C. 20024, Telephone: (202) 488-6000 7117-01.87.sej.16 28 July 1987 . Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: FINAL ELIMINATION REPORTS AND SITE SUMMARIES Aerospace has completed its review and is forwarding the final elimination reports and site summaries for the following sites: l University of

  18. Career Map: Aerospace Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aerospace Engineer Career Map: Aerospace Engineer An aerospace engineer stands in front of a drivetrain testing machine. Aerospace Engineer Position Title Aerospace Engineer Alternate Title(s) Aeronautical Engineer Education & Training Level Advanced, Bachelor's required, prefer graduate degree Education & Training Level Description Aerospace engineers must have a bachelor's degree in aerospace engineering or another field of engineering or science related to aerospace systems. Brief job

  19. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    THE AEROSPACE CORPORATION 20030 Century Blvd., Germanlown, Maryland 20767, Telephone: (301) 428-2700 7848-02.80.eav.34 16 September 1980 m777 Dr. William E. Mott Acting Director Environmental & Safety Engineering Division U. S. Department of Energy Germantown, Maryland 20767 Dear Dr. Mott: - UNIVERSITY OF CHICAGO BUILDINGS USED BY THE MANHATTAN ENGINEER DISTRICT During a recent investigation of the official Manhattan Engineer District history, I came across some additional information that

  20. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    .55 LyEnfant Plaro. S.W., Washingzon, D.C. 20024.2174, Telephone: (202) 488-6000 7117-03.87.cdy.27 27 May 1987 Mr. 'Andrew Wallo, III, NE:23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland: 20545 Dear Mr. Wallo: I STATUS OF ACTIONS - FUSRAP SITE LIST Aerospace recently completed .a comprehensive review of sites listed in the FUSRAP Site Investigation and Remedial Action Summary Report, dated Uecember 31, 1986. The primary objectives of this

  1. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    1 . ' . THE AEROSPACE CORPORATION SUMAC 79oOs955 L' En/Mt Ph. S. W., Wahingron. D.C. 200242174, T&jhone (20.?) 48&&700 7117-03.87.cdy.43 23 September 1987 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordance with your suggestion during our meeting on 22

  2. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    53 L' Enfant Plwn. S. W.. W w tn h. go on. D.C. 20024-2174. Telephone: (202) 488.6000 7117-03.87.cdy.27 27 May 1987 Mr. 'Andrew Wallo, III, NE:23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: STATUS OF ACTIOiVS - FUSRAP SITE LIST Aerospace recently completed a comprehensive review of sites listed in the FUSRAP Site Investigation and Remedial Action Summary Report, dated Uecerober 31, 1986. The primary objectives of

  3. German Aerospace Center (DLR) | Open Energy Information

    Open Energy Info (EERE)

    German Aerospace Center (DLR) Name: German Aerospace Center (DLR) Place: Cologne, Germany Number of Employees: 5001-10,000 Website: www.dlr.deendesktopdefault.a Coordinates:...

  4. German Aerospace Center DLR | Open Energy Information

    Open Energy Info (EERE)

    Aerospace Center DLR Jump to: navigation, search Name: German Aerospace Center (DLR) Place: Stuttgart, Germany Zip: 70569 Product: Stuttgart-based, agency that manages the...

  5. An optical water vapor sensor for unmanned aerial vehicles (Technical...

    Office of Scientific and Technical Information (OSTI)

    An optical water vapor sensor for unmanned aerial vehicles Citation Details In-Document Search Title: An optical water vapor sensor for unmanned aerial vehicles The water vapor ...

  6. Sandia Energy - Unmanned Aircraft Test Flights Completed at Oliktok...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unmanned Aircraft Test Flights Completed at Oliktok Point Home Climate News News & Events Monitoring Sensing Sensing & Monitoring Unmanned Aircraft Test Flights Completed at...

  7. Micro-unmanned aerodynamic vehicle

    DOE Patents [OSTI]

    Reuel, Nigel; Lionberger, Troy A.; Galambos, Paul C.; Okandan, Murat; Baker, Michael S.

    2008-03-11

    A MEMS-based micro-unmanned vehicle includes at least a pair of wings having leading wing beams and trailing wing beams, at least two actuators, a leading actuator beam coupled to the leading wing beams, a trailing actuator beam coupled to the trailing wing beams, a vehicle body having a plurality of fulcrums pivotally securing the leading wing beams, the trailing wing beams, the leading actuator beam and the trailing actuator beam and having at least one anisotropically etched recess to accommodate a lever-fulcrum motion of the coupled beams, and a power source.

  8. Unmanned systems win unexpected support

    SciTech Connect (OSTI)

    Schneiderman, R.

    1991-09-01

    A review of unmanned aerial vehicles (UAVs) is presented in which emphasis is given to recent mission accomplishments and current directions of research. Existing and new military UAV programs are listed with reference to funding, the type of vehicle, and level of development. Several trends are established including the reliance of UVAs on global positioning satellites and advanced electronics and the growth of the UVA industry. UVAs that are in advanced stages of development or have been deployed include short-range UAV such as the Pioneer, the Pointer, the Sky Owl, and the Hunter. Key UAV systems are described such as the Advanced Tactical Airborne Reconnaissance System, the Maritime Vertical Takeoff and Landing, and other VTOL systems. Very small UVAs and Exdrones are also discussed, and a weather reconnaissance system and surveillance systems are mentioned.

  9. Sandia National Laboratories: Careers: Aerospace Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerospace Engineering Aerospace imagery Sandia's aerospace engineers have provided critical data for the design and analysis of flight vehicles since the 1950s. Aerospace engineers at Sandia support atmospheric and space flight vehicles across the speed regimes, from subsonic to hypersonic, through their collaborative work on multidisciplinary teams. Our aerodynamics and astronautics specialists integrate the results from experiments, analysis, and simulation to solve complex problems of

  10. May 12, 2011, Visiting Speakers Program Events - Aerospace Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Aerospace Electronics" http:www.dsp.dla.milappuilcontentdocumentsndiaarticle.pdf Unpublished work (2011) Aerospace Industries Association of America, Inc. ...

  11. Efforts toward achieving an unmanned, high-altitude LTA platform

    SciTech Connect (OSTI)

    Onda, Masahiko; Ford, M.L.

    1996-10-01

    The modern demands for an unmanned aerospace platform, capable of long-duration stationkeeping at high-altitudes, are well-known. Satellites, balloons, and aircraft have traditionally served in the role of platform, facilitating tasks ranging from telecommunications to deep-space astronomy. However, limitations on the performance and flexibility of these systems, as well as the intrinsically high-cost of satellite construction, operation, and repair, warrants development of a supplemental technology for the platform. Much has been written in the literature on the possible advantages of a lighter-than-air (LTA) platform, if such an LTA could be constructed. Potential applications include remote sensing, environmental monitoring, mobile communications, space and polar observations, cargo delivery, military reconnaissance, and others. At present, conventional LTA`s are not capable of serving in the manner specified. Within this context, a research program known as HALROP (High Altitude Long Range Observational Platform) is currently underway. The goal is to create a stratospheric platform, possibly in the form of a next generation LTA vehicle. The authors present a qualitative review of their efforts, focusing on milestones in the HALROP Program. 12 refs., 6 figs., 2 tabs.

  12. Transparent communications permit unmanned operations

    SciTech Connect (OSTI)

    1995-07-01

    Not-normally-manned platforms are not a new development. However, their use in harsher environments has until recently, been limited. Development of reliable communications networks capable of handling the large amounts of data required for process control in real time with distributed control systems (DCSs) has been a key factor in making the concept viable for harsher, more remote environments. The article below examines the transparent communications network and DCS installed on Pickerill field, offshore UK, by Fisher-Rosemount Systems and its operational parameters. Pickerill field, some 50 mi off the Lincolnshire coast, comprises two small unmanned platforms producing gas under remote control from Arco`s operations base at Great Yarmouth about 60 mi south. Reliable communication is required both with the two platforms offshore and with Conoco`s gas processing operators at Theddlethorpe. Fundamental to project success was the ability of the process control system to provide entirely secure and transparent communication with equipment offshore and thus enable operators at Great Yarmouth to interact with the process as if it were local to their control center.

  13. Geophex Airborne Unmanned Survey System

    SciTech Connect (OSTI)

    Won, I.L.; Keiswetter, D.

    1995-12-31

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results.

  14. Webinar May 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles Webinar May 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles May 19, 2016 - 6:36pm Addthis The Energy Department's ...

  15. An unmanned watching system using video cameras

    SciTech Connect (OSTI)

    Kaneda, K.; Nakamae, E. ); Takahashi, E. ); Yazawa, K. )

    1990-04-01

    Techniques for detecting intruders at a remote location, such as a power plant or substation, or in an unmanned building at night, are significant in the field of unmanned watching systems. This article describes an unmanned watching system to detect trespassers in real time, applicable both indoors and outdoors, based on image processing. The main part of the proposed system consists of a video camera, an image processor and a microprocessor. Images are input from the video camera to the image processor every 1/60 second, and objects which enter the image are detected by measuring changes of intensity level in selected sensor areas. This article discusses the system configuration and the detection method. Experimental results under a range of environmental conditions are given.

  16. Shanghai Aerospace Industrial General Corporation aka Shanghai...

    Open Energy Info (EERE)

    Industrial General Corporation aka Shanghai Academy of Spaceflight Technology Jump to: navigation, search Name: Shanghai Aerospace Industrial General Corporation (aka Shanghai...

  17. Safety aspects related to unmanned platforms

    SciTech Connect (OSTI)

    Berge, G.

    1996-12-31

    This article discusses some safety aspects related to unmanned platforms. The discussion is based on a specific project, but the aspects are of general character and should be of interest for similar situations. Based on frame conditions for the project, an event analysis is performed. Results from the event analysis are used to define scenarios that in turn is the basis for specification of necessary emergency preparedness means and some operational conditions. It turned out that for this particular platform there are four different kinds of operational phases which require different levels of emergency preparedness means. The phases are: Unmanned phase, maintenance phase; drilling phase; well work-over phase. Differentiating the effort of safety systems among these four phases, gave rise to reduced cost--still satisfying the acceptance criteria defined.

  18. Ultralight photovoltaic modules for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Nowlan, M.J.; Maglitta, J.C.; Darkazalli, G.; Lamp, T.

    1997-12-31

    New lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Modified low-cost terrestrial solar cell and module technologies are being applied to minimize vehicle cost. New processes were developed for assembling thin solar cells, encapsulant films, and cover films. An innovative by-pass diode mounting approach that uses a solar cell as a heat spreader was devised and tested. Materials and processes will be evaluated through accelerated environmental testing.

  19. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned

    Office of Scientific and Technical Information (OSTI)

    Systems (ERASMUS) Science Plan (Program Document) | SciTech Connect Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan Citation Details In-Document Search Title: Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan The use of unmanned aerial systems (UAS) is becoming increasingly popular for a variety of applications. One way in which these systems can provide revolutionary scientific

  20. Using Multiple Unmanned Systems for a Site Security Task

    SciTech Connect (OSTI)

    Matthew O. Anderson; Curtis W. Nielsen; Mark D. McKay; Derek C. Wadsworth; Ryan C. Hruska; John A. Koudelka

    2009-04-01

    Unmanned systems are often used to augment the ability of humans to perform challenging tasks. While the value of individual unmanned vehicles have been proven for a variety of tasks, it is less understood how multiple unmanned systems should be used together to accomplish larger missions such as site security. The purpose of this paper is to discuss efforts by researchers at the Idaho National Laboratory (INL) to explore the utility and practicality of operating multiple unmanned systems for a site security mission. This paper reviews the technology developed for a multi-agent mission and summarizes the lessons-learned from a technology demonstration.

  1. Modcopter: Prompt, Precise Aerial Sample Collection Using Unmanned...

    Office of Scientific and Technical Information (OSTI)

    Title: Modcopter: Prompt, Precise Aerial Sample Collection Using Unmanned Systems Authors: Curtis, Aaron 1 ; Elliott, James 2 ; Ronquest, Michael 3 ; Mascarenas, David D. 3 ...

  2. Webinar May 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy May 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles Webinar May 26: Hydrogen Fuel Cells for Small Unmanned Airvehicles May 19, 2016 - 6:36pm Addthis The Energy Department's Fuel Cell Technologies Office (FCTO), in collaboration with the Naval Research Laboratory (NRL), will present a unique, live webinar titled "Hydrogen Fuel Cells for Small Unmanned Airvehicles" on Thursday, May 26, from 1:00 to 2:00 p.m. Eastern Daylight Time (EDT). NRL has contributed

  3. Unmanned boiler operation a reality in Europe

    SciTech Connect (OSTI)

    Ilg, E.

    1996-08-01

    With the rise in liquid level technology in Europe comes new standards for boiler operation. SMART technology for level probes and auxiliary equipment, means many European countries allow a boiler to operate completely unmanned (without operators) for up to 72 hours at a time. It is not just a level control system, but a total boiler control scheme. This incorporates level control, continuous TDS monitoring with blowdown, automatic timed bottom blowdown, feed water control, contamination detection systems for monitoring of incoming feed water, monitoring of exhaust stack temperatures, over pressure alarms and timed automatic blowdown of level pots. One of the main reasons for the development of the SMART equipment and the new boiler codes was to increase reliability of boiler operation. Surveys in Germany and England showed that almost 90 percent of boiler failures was due to operator error, this has almost been eliminated through the use of new equipment based on the new codes.

  4. Sandia Energy - Sierra Unmanned Aerial Vehicle to Begin Flights...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unmanned aerial system (UAS) operated by the NASA Ames Research Center in northern California (learn more), began flights over the Arctic sea ice as part of the MIZOPEX (Marginal...

  5. Hydrogen Fuel Cells for Small Unmanned Air Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells for Small Unmanned Air Vehicles U.S. Department of Energy Fuel Cell Technologies Office May 26 th , 2016 Presenter: Karen Swider-Lyons : US Naval Research Laboratory DOE ...

  6. Hydrogen Fuel Cells for Small Unmanned Air Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells for Small Unmanned Air Vehicles U.S. Department of Energy Fuel Cell Technologies Office May 26 th , 2016 Presenter: Karen Swider-Lyons : US Naval Research Laboratory DOE Host: Pete Devlin : Market Transformation Manager, FCTO 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 U.S. Naval Research Laboratory Hydrogen Fuel Cells for Small Unmanned Air Vehicles Karen Swider-Lyons US Naval Research Laboratory Code

  7. An Update on Unmanned Platforms at Oliktok Point

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Update on Unmanned Platforms at Oliktok Point For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight In the Arctic, unmanned aircraft systems (UAS) and tethered balloon systems (TBS) can make crucial atmospheric measurements to provide a unique perspective on an environment particularly vulnerable to climate change. To enable research on processes important to climate change in the Arctic-those involving aerosol particles,

  8. Environmental effects on composite airframes: A study conducted for the ARM UAV Program (Atmospheric Radiation Measurement Unmanned Aerospace Vehicle)

    SciTech Connect (OSTI)

    Noguchi, R.A.

    1994-06-01

    Composite materials are affected by environments differently than conventional airframe structural materials are. This study identifies the environmental conditions which the composite-airframe ARM UAV may encounter, and discusses the potential degradation processes composite materials may undergo when subjected to those environments. This information is intended to be useful in a follow-on program to develop equipment and procedures to prevent, detect, or otherwise mitigate significant degradation with the ultimate goal of preventing catastrophic aircraft failure.

  9. Solar-powered unmanned aerial vehicles

    SciTech Connect (OSTI)

    Reinhardt, K.C.; Lamp, T.R.; Geis, J.W.; Colozza, A.J.

    1996-12-31

    An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time of year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.

  10. Mr. Andy Wall0 The Aerospace Corporation

    Office of Legacy Management (LM)

    'k.f' :, , j '"; ,,' DEC 5 1984 Mr. Andy Wall0 The Aerospace Corporation suite 4000 955 L'Enfant Plaza, S.W. Washington, D.C. 20024 Dear Mr. Wallo: The Divisfon of Remedial Action Projects staff has reviewed the authority review documents for Gardinler, Inc., Tampa, Florida; Conserv (formerly Virginia-Carolina Chemical Co.), Nichols, Florida; and Blockson Chemical co., Joliet, Illinois. Based on the content therein and in consultation with Mr. Steve Miller, Office of General Counsel

  11. Hydrogen Fuel Cells for Small Unmanned Air Vehicles Webinar | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Cells for Small Unmanned Air Vehicles Webinar Hydrogen Fuel Cells for Small Unmanned Air Vehicles Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Fuel Cells for Small Unmanned Air Vehicles" held on May 26, 2016. Hydrogen Fuel Cells for Small Unmanned Air Vehicles Webinar Slides (5.47 MB) More Documents & Publications Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode

  12. THE AEROSPACE CORPORA-iION

    Office of Legacy Management (LM)

    CORPORA-iION Suite 4000. 955 L' EnJant Plnro. S. W.. Washingion. D.C. 20024-2174. Telephone: (2d2) 488-6000 7117~03.87.cdy.27 27 May 1987 Mr. Andrew Wallo, III, NE:23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: STATUS OF ACTIONS - FUSRAP SITE LIST Aerospace recently completed a comprehensive review of sites listed in the FUSRAP Site Investigation and Remeaial Action Summary Report, dated December 31, 1986. The

  13. Adaptive path planning algorithm for cooperating unmanned air vehicles

    SciTech Connect (OSTI)

    Cunningham, C T; Roberts, R S

    2001-02-08

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  14. Webinar: Hydrogen Fuel Cells for Small Unmanned Airvehicles

    Broader source: Energy.gov [DOE]

    The Energy Department's Fuel Cell Technologies Office, in collaboration with the Naval Research Laboratory, will present a unique, live webinar titled "Hydrogen Fuel Cells for Small Unmanned Airvehicles" on Thursday, May 26, from 1:00 to 2:00 p.m. Eastern Daylight Time (EDT).

  15. An Adaptive Path Planning Algorithm for Cooperating Unmanned Air Vehicles

    SciTech Connect (OSTI)

    Cunningham, C.T.; Roberts, R.S.

    2000-09-12

    An adaptive path planning algorithm is presented for cooperating Unmanned Air Vehicles (UAVs) that are used to deploy and operate land-based sensor networks. The algorithm employs a global cost function to generate paths for the UAVs, and adapts the paths to exceptions that might occur. Examples are provided of the paths and adaptation.

  16. Evaluation of Routine Atmospheric Sounding Measurements Using Unmanned Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Routine Atmospheric Sounding Measurements Using Unmanned Systems but also to understand the different processes involved in a cloud's life cycle by providing measurements complimentary to those concurrently obtained by instruments stationed at the third ARM Mobile Facility (AMF3) at Oliktok Point. ERASMUS will supply data to address the following science questions: * How does temperature and humidity evolve during transitions between clear and cloudy skies? * How do aerosol properties vary with

  17. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    SciTech Connect (OSTI)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  18. Space nuclear reactor shields for manned and unmanned applications

    SciTech Connect (OSTI)

    McKissock, B.I.; Bloomfield, H.S.

    1994-09-01

    Missions which use nuclear reactor power systems require radiation shielding of payload and/or crew areas to predetermined dose rates. Since shielding can become a significant fraction of the total mass of the system, it is of interest to show the effect of various parameters on shield thickness and mass for manned and unmanned applications. Algorithms were developed to give the thicknesses needed if reactor thermal power, separation distances, and dose rates are given as input. The thickness algorithms were combined with models for four different shield geometries to allow tradeoff studies of shield volume and mass for a variety of manned and unmanned missions. Shield design tradeoffs presented in this study include the effects of: Higher allowable dose rates; radiation hardened electronics; shorter crew exposure times; shield geometry; distance of the payload and/or crew from the reactor; and changes in the size of the shielded area. Specific NASA missions that were considered in this study include unmanned outer planetary exploration, manned advanced/evolutionary space station, and advanced manned lunar base.

  19. Linear-array systems for aerospace NDE

    SciTech Connect (OSTI)

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-12-02

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m{sup 2} composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations.

  20. Synthesis of the unmanned aerial vehicle remote control augmentation system

    SciTech Connect (OSTI)

    Tomczyk, Andrzej

    2014-12-10

    Medium size Unmanned Aerial Vehicle (UAV) usually flies as an autonomous aircraft including automatic take-off and landing phases. However in the case of the on-board control system failure, the remote steering is using as an emergency procedure. In this reason, remote manual control of unmanned aerial vehicle is used more often during take-of and landing phases. Depends on UAV take-off mass and speed (total energy) the potential crash can be very danger for airplane and environment. So, handling qualities of UAV is important from pilot-operator point of view. In many cases the dynamic properties of remote controlling UAV are not suitable for obtaining the desired properties of the handling qualities. In this case the control augmentation system (CAS) should be applied. Because the potential failure of the on-board control system, the better solution is that the CAS algorithms are placed on the ground station computers. The method of UAV handling qualities shaping in the case of basic control system failure is presented in this paper. The main idea of this method is that UAV reaction on the operator steering signals should be similar - almost the same - as reaction of the 'ideal' remote control aircraft. The model following method was used for controller parameters calculations. The numerical example concerns the medium size MP-02A UAV applied as an aerial observer system.

  1. Unmanned and Unattended Response Capability for Homeland Defense

    SciTech Connect (OSTI)

    BENNETT, PHIL C.

    2002-11-01

    An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologies supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.

  2. TPV power source development for an unmanned undersea vehicle

    SciTech Connect (OSTI)

    Holmquist, G.A. )

    1995-01-05

    The thermophotovoltaic (TPV) generation of electrical power promises efficiencies that are exploitable for military and commercial applications. TPV offers a combination of unique characteristics as a power source for military Unmanned Undersea Vehicles. In civilian applications TPV technology offers the potential for lightweight, rugged, and reliable power systems that can be environmentally benign. These systems can use a variety of fuels and can be scaled up in size. TPV is truly a dual use technology in which the United States appears to have a technical lead. The focus of the current Quantum program is the maturation of the technology and the demonstration of a 10 kilowatt generator. Preliminary results of this project are presented.

  3. ARM-00-006 Site Scientific Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... NOTATION (Cont.) TWP Tropical Western Pacific UAV Unmanned Aerospace Vehicle (Program) ... Experiment II) follow-on activity of the UAV (Unmanned Aerospace Vehicle) Program ...

  4. Unmanned air vehicle (UAV) ultra-persitence research

    SciTech Connect (OSTI)

    Dron, S. B.

    2012-03-01

    Sandia National Laboratories and Northrop Grumman Corporation Integrated Systems, Unmanned Systems (NGIS UMS) collaborated to further ultra-persistence technologies for unmanned air vehicles (UAVs). The greatest shortfalls in UAV capabilities have been repeatedly identified as (1) insufficient flight persistence or 'hang time,' (2) marginal electrical power for running higher power avionics and payload systems, and (3) inadequate communications bandwidth and reach. NGIS UMS requested support from Sandia to develop an ultra-persistent propulsion and power system (UP3S) for potential incorporation into next generation UAV systems. The team members tried to determine which energy storage and power generation concepts could most effectively push UAV propulsion and electrical power capabilities to increase UAV sortie duration from days to months while increasing available electrical power at least two-fold. Primary research and development areas that were pursued included these goals: perform general system engineering and integration analyses; develop initial thermal and electrical power estimates; provide mass, volume, dimensional, and balance estimates; conduct preliminary safety assessments; assess logistics support requirements; perform, preliminary assessments of any security and safeguards; evaluate options for removal, replacement, and disposition of materials; generally advance the potential of the UP3S concept. The effort contrasted and compared eight heat sources technologies, three power conversion, two dual cycle propulsion system configurations, and a single electrical power generation scheme. Overall performance, specific power parameters, technical complexities, security, safety, and other operational features were successfully investigated. Large and medium sized UAV systems were envisioned and operational flight profiles were developed for each concept. Heat source creation and support challenges for domestic and expeditionary operations were

  5. Final Report: Global Change Research with Unmanned Aerospace Vehicles UAV Applications for Studying the Radiation and Optical Properties of Upper Tropospheric Clouds, February 1, 1995 - March 31, 1998

    SciTech Connect (OSTI)

    Stephens, Graeme L.

    1998-01-31

    This paper describes the design and characteristics of a scanning spectral polarimeter which is capable of measuring spectral radiances and fluxes in the range between 0.4 rm to 4.0 pm. The instrument characteristics are described and a discussion of the procedures to calibrate the unpolarized radiances and fluxes are prescribed along the detailed error analyses of this calibration.

  6. Unmanned airships for near earth remote sensing missions

    SciTech Connect (OSTI)

    Hochstetler, R.D.

    1996-10-01

    In recent years the study of Earth processes has increased significantly. Conventional aircraft have been employed to a large extent in gathering much of this information. However, with this expansion of research has come the need to investigate and measure phenomena that occur beyond the performance capabilities of conventional aircraft. Where long dwell times or observations at very low attitudes are required there are few platforms that can operate safely, efficiently, and cost-effectively. One type of aircraft that meets all three parameters is the unmanned, autonomously operated airship. The UAV airship is smaller than manned airships but has similar performance characteristics. It`s low speed stability permits high resolution observations and provides a low vibration environment for motion sensitive instruments. Maximum airspeed is usually 30mph to 35mph and endurance can be as high as 36 hours. With scientific payload capacities of 100 kilos and more, the UAV airship offers a unique opportunity for carrying significant instrument loads for protracted periods at the air/surface interface. The US Army has operated UAV airships for several years conducting border surveillance and monitoring, environmental surveys, and detection and mapping of unexploded ordinance. The technical details of UAV airships, their performance, and the potential of such platforms for more advanced research roles will be presented. 3 refs., 5 figs.

  7. Lightweight photovoltaic module development for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Nowlan, M.J.; Maglitta, J.C.; Lamp, T.R.

    1998-07-01

    Lightweight photovoltaic modules are being developed for powering high altitude unmanned aerial vehicles (UAVs). Terrestrial crystalline silicon solar cell and module technologies are being applied to minimize module cost, with modifications to improve module specific power (W/kg) and power density (W/m{sup 2}). New module processes are being developed for assembling standard thickness (320 mm) and thin (125 mm) solar cells, thin (50 to 100 mm) encapsulant films, and thin (25 mm) cover films. In comparison, typical terrestrial modules use 300 to 400 mm thick solar cells, 460 mm thick encapsulants, and 3.2 mm thick glass covers. The use of thin, lightweight materials allows the fabrication of modules with specific powers ranging from 120 to 200 W/kg, depending on cell thickness and efficiency, compared to 15 W/kg or less for conventional terrestrial modules. High efficiency designs based on ultra-thin (5 mm) GaAs cells have also been developed, with the potential for achieving substantially higher specific powers. Initial design, development, and module assembly work is completed. Prototype modules were fabricated in sizes up to 45 cm x 99 cm. Module materials and processes are being evaluated through accelerated environmental testing, including thermal cycling, humidity-freeze cycling, mechanical cycling, and exposure to UV and visible light.

  8. Evaluation of Bare Ground on Rangelands using Unmanned Aerial Vehicles

    SciTech Connect (OSTI)

    Robert P. Breckenridge; Maxine Dakins

    2011-01-01

    Attention is currently being given to methods that assess the ecological condition of rangelands throughout the United States. There are a number of different indicators that assess ecological condition of rangelands. Bare Ground is being considered by a number of agencies and resource specialists as a lead indicator that can be evaluated over a broad area. Traditional methods of measuring bare ground rely on field technicians collecting data along a line transect or from a plot. Unmanned aerial vehicles (UAVs) provide an alternative to collecting field data, can monitor a large area in a relative short period of time, and in many cases can enhance safety and time required to collect data. In this study, both fixed wing and helicopter UAVs were used to measure bare ground in a sagebrush steppe ecosystem. The data were collected with digital imagery and read using the image analysis software SamplePoint. The approach was tested over seven different plots and compared against traditional field methods to evaluate accuracy for assessing bare ground. The field plots were located on the Idaho National Laboratory (INL) site west of Idaho Falls, Idaho in locations where there is very little disturbance by humans and the area is grazed only by wildlife. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  9. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    SciTech Connect (OSTI)

    Geis, J.; Arnold, J.H.

    1994-09-01

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States` Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV`s whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, the authors have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible they modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  10. Recent developments in graphite. [Use in HTGR and aerospace

    SciTech Connect (OSTI)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications.

  11. I I THE AEROSPACE CORPORATION I I,W. I

    Office of Legacy Management (LM)

    s I I THE AEROSPACE CORPORATION I I,W. I .%tc 7900,955 L%nfam Plaza. S. W., Wahingron. D.C. 20024-2174, T~kpdnc: (202) 488-6@~ 7117~03.87.cdy.43 23 September 1987 CR CA*03 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Deconnnissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND "NIVERSITIiS M/&b-s pl p.o- The attached elimination recommendation was prepared in accordance ML.05 with your

  12. Active sensors for health monitoring of aging aerospace structures

    SciTech Connect (OSTI)

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  13. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    SciTech Connect (OSTI)

    de Boer, G; Bland, G; Elston, J; Lawrence, D; Maslanik, J; Palo, S; Tschudi, M

    2015-12-01

    The use of unmanned aerial systems (UAS) is becoming increasingly popular for a variety of applications. One way in which these systems can provide revolutionary scientific information is through routine measurement of atmospheric conditions, particularly properties related to clouds, aerosols, and radiation. Improved understanding of these topics at high latitudes, in particular, has become very relevant because of observed decreases in ice and snow in polar regions.

  14. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan G de Boer B Argrow G Bland J Elston D Lawrence J Maslanik S Palo M Tschudi December 2015 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of

  15. Compliance with the Aerospace MACT Standard at Lockheed Martin

    SciTech Connect (OSTI)

    Kurucz, K.L.; Vicars, S.; Fetter, S.; Mueller, T.

    1997-12-31

    Actions taken and planned at four Lockheed Martin Corporation (LMC) facilities to comply with the Aerospace MACT Standard are reviewed. Many LMC sites have taken proactive steps to reduce emissions and implement low VOC coating technology. Significant administrative, facility, and material challenges remain to achieve compliance with the upcoming NESHAP and Control Technology Guideline (CTG) standards. The facilities discussed herein set up programs to develop and implement compliance strategies. These facilities manufacture military aircraft, missiles, satellites, rockets, and electronic guidance and communications systems. Some of the facilities are gearing up for new production lines subject to new source MACT standards. At this time the facilities are reviewing compliance status of all primers, topcoats, maskants and solvents subject to the standard. Facility personnel are searching for the most efficient methods of satisfying the recordkeeping, reporting and monitoring, sections of the standards while simultaneously preparing or reviewing their Title V permit applications. Facility decisions on paint booths are the next highest priority. Existing dry filter paint booths will be subject to the filtration standard for existing paint booths which requires the use of two-stage filters. Planned paint booths for the F-22 program, and other new booths must comply with the standard for new and rebuilt booths which requires three stage or HEPA filters. Facilities looking to replace existing water wash paint booths, and those required to retrofit the air handling equipment to accommodate the two-stage filters, are reviewing issues surrounding the rebuilt source definition.

  16. Titanium cholla : lightweight, high-strength structures for aerospace applications.

    SciTech Connect (OSTI)

    Atwood, Clinton J.; Voth, Thomas Eugene; Taggart, David G.; Gill, David Dennis; Robbins, Joshua H.; Dewhurst, Peter

    2007-10-01

    Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

  17. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--September 1996

    SciTech Connect (OSTI)

    1998-12-31

    This document is a Final Technical Report that describes the results of the Geophex Airborne Unmanned Survey System (GAUSS) research project. The objectives were to construct a geophysical data acquisition system that uses a remotely operated unmanned aerial vehicle (UAV) and to evaluate its effectiveness for characterization of hazardous environmental sites. The GAUSS is a data acquisition system that mitigates the potential risk to personnel during geophysical characterization of hazardous or radioactive sites. The fundamental basis of the GAUSS is as follows: (1) an unmanned survey vehicle carries geophysical sensors into a hazardous location, (2) the pilot remains outside the hazardous site and operates the vehicle using radio control, (3) geophysical measurements and their spatial locations are processed by an automated data-acquisition system which displays data on an off-site monitor in real-time, and (4) the pilot uses the display to direct the survey vehicle for complete site coverage. The objective of our Phase I research was to develop a data acquisition and processing (DAP) subsystem and geophysical sensors suitable for UAV deployment. We integrated these two subsystems to produce an automated, hand-held geophysical surveying system. The objective of the Phase II effort was to modify the subsystems and integrate them into an airborne prototype. The completed GAUSS DAP system consists of a UAV platform, a laser tracking and ranging subsystem, a telemetry subsystem, light-weight geophysical sensors, a base-station computer (BC), and custom-written survey control software (SCS). We have utilized off-the-shelf commercial products, where possible, to reduce cost and design time.

  18. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle

    SciTech Connect (OSTI)

    Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; Glenn, Nancy F.

    2012-09-17

    During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis. The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).

  19. Unmanned deepwater-line repair system passes full-scale trials

    SciTech Connect (OSTI)

    Venzi, S.; Vienna, A. )

    1993-09-06

    The first ever full-scale tests of an unmanned, deepwater-pipeline repair system were successfully conducted last year off the coast of Italy. The Italian gas-transmission company SNAM tested a submersible automatic system (SAS) sealine repair system at a depth of 600 m. The modular SAS allows sealines to be repaired by installation of the Nuovo Pignone mechanical connector. The system's trials simulated complete repair intervention on the 20-in. Trans mediterranean pipeline and provided unprecedented experience to SNAM and to the other involved in this project. The paper discusses the origin of the idea for the SAS, the design of the system, construction and testing, the first sea trials, final deep sea trials, and future developments.

  20. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Scheiman, D.A.; Brinker, D.J.; Bents, D.J.; Colozza, A.J.

    1995-03-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  1. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    SciTech Connect (OSTI)

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-12-10

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  2. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Scheiman, D.A.; Colozza, A.J.; Brinker, D.J.; Bents, D.J.

    1994-12-31

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  3. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    SciTech Connect (OSTI)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-10

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  4. UNMANNED AERIAL VEHICLE (UAV) HYPERSPECTRAL REMOTE SENSING FOR DRYLAND VEGETATION MONITORING

    SciTech Connect (OSTI)

    Nancy F. Glenn; Jessica J. Mitchell; Matthew O. Anderson; Ryan C. Hruska

    2012-06-01

    UAV-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Idaho State University, Boise Center Aerospace Lab, were recently tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. Overall, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. Future mapping efforts that leverage ground reference data, ultra-high spatial resolution photos and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass (Poa secunda), from invasives such as burr buttercup (Ranunculus testiculatus) and cheatgrass (Bromus tectorum).

  5. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hruska, Ryan; Mitchell, Jessica; Anderson, Matthew; Glenn, Nancy F.

    2012-09-17

    During the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis.more » The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).« less

  6. Using Unmanned Helicopters to Assess Vegetation Cover in Sagebrush Steppe Ecosystems

    SciTech Connect (OSTI)

    Robert P. Breckenridge; Maxine Dakins; Stephen Bunting; Jerry Harbour; Randy Lee

    2012-07-01

    Evaluating vegetation cover is an important factor in understanding the sustainability of many ecosystems. Methods that have sufficient accuracy and improved cost efficiency could dramatically alter how biotic resources are monitored on both public and private lands. This will be of interest to land managers because there are rarely enough resource specialists or funds available for comprehensive ground evaluations. In this project, unmanned helicopters were used to collect still-frame imagery to assess vegetation cover during May, June, and July in 2005. The images were used to estimate percent cover for six vegetative cover classes (shrub, dead shrub, grass, forbs, litter, and bare ground). The field plots were located on the INL site west of Idaho Falls, Idaho. Ocular assessments of digital imagery were performed using a software program called SamplePoint, and the results were compared against field measurements collected using a point-frame method to assess accuracy. The helicopter imagery evaluation showed a high degree of agreement with field cover class values for litter, bare ground, and grass, and reasonable agreement for dead shrubs. Shrub cover was often overestimated and forbs were generally underestimated. The helicopter method took 45% less time than the field method to set plots and collect and analyze data. This study demonstrates that UAV technology provides a viable method for monitoring vegetative cover on rangelands in less time and with lower costs. Tradeoffs between cost and accuracy are critical management decisions that are important when managing vegetative conditions across vast sagebrush ecosystems throughout the Intermountain West.

  7. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    SciTech Connect (OSTI)

    Adam, Patrick; Leachman, Jacob

    2014-01-29

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  8. Concept and realization of unmanned aerial system with different modes of operation

    SciTech Connect (OSTI)

    Czyba, Roman; Szafrański, Grzegorz; Janusz, Wojciech; Niezabitowski, Michał; Czornik, Adam; Błachuta, Marian

    2014-12-10

    In this paper we describe the development process of unmanned aerial system, its mechanical components, electronics and software solutions. During the stage of design, we have formulated some necessary requirements for the multirotor vehicle and ground control station in order to build an optimal system which can be used for the reconnaissance missions. Platform is controlled by use of the ground control station (GCS) and has possibility of accomplishing video based observation tasks. In order to fulfill this requirement the on-board payload consists of mechanically stabilized camera augmented with machine vision algorithms to enable object tracking tasks. Novelty of the system are four modes of flight, which give full functionality of the developed UAV system. Designed ground control station is consisted not only of the application itself, but also a built-in dedicated components located inside the chassis, which together creates an advanced UAV system supporting the control and management of the flight. Mechanical part of quadrotor is designed to ensure its robustness while meeting objectives of minimizing weight of the platform. Finally the designed electronics allows for implementation of control and estimation algorithms without the needs for their excessive computational optimization.

  9. Design of Small Impact-Resistant RTGs for Global Network of Unmanned Mars Landers

    SciTech Connect (OSTI)

    Schock, Alfred

    1991-06-26

    Ongoing studies by the National Aeronautics and Space Administration (NASA) for the robotic exploration of Mars contemplate a network of at least twenty small and relatively inexpensive landers distributed over both low and high latitudes of the Martian globe. They are intended to explore the structural, mineralogical, and chemical characteristics of the Martian soil, search for possible subsurface trapped ice, and collect long-term seismological and meteorological data over a period of ten years. They can also serve as precursors for later unmanned and manned Mars missions.; The collected data will be transmitted periodically, either directly to Earth or indirectly via an orbiting relay. The choice of transmission will determine the required power, which is currently expected to be between 2 and 12 watts(e) per lander. This could be supplied either by solar arrays or by Radioisotope Thermoelectric Generators (RTGs). Solar-powered landers could only be used for low Martian latitudes, but RTG-powered landers can be used for both low and high latitudes. Moreover, RTGs are less affected by Martian sandstorms and can be modified to resist high-G-load impacts. High impact resistance is a critical goal. It is desired by the mission designers, to minimize the mass and complexity of the system needed to decelerate the landers to a survivable impact velocity.; To support the NASA system studies, the U.S. Department of Energy's Office of Special Applications (DOE/OSA) asked Fairchild to perform RTG design studies for this mission. The key problem in designing these RTGs is how to enable the generators to tolerate substantially higher G-loads than those encountered on previous RTG missions.; The Fairchild studies resulted in designs of compact RTGs based on flight-proven and safety-qualified heat source components, with a number of novel features designed to provide the desired high impact tolerance. The present paper describes those designs and their rationale, and a

  10. Comparison of Unmanned Aerial Vehicle Platforms for Assessing Vegetation Cover in Sagebrush Steppe Ecosystems

    SciTech Connect (OSTI)

    Robert P. Breckenridge; Maxine Dakins; Stephen Bunting; Jerry Harbour; Sera White

    2011-09-01

    In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems and assessment of rangeland health. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species (including sage grouse and pygmy rabbit). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluations. In this project, two UAV platforms, fixed wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate percent cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and (2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Engineering (INL) site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percent cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  11. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    SciTech Connect (OSTI)

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  12. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    SciTech Connect (OSTI)

    Farrar, Charles R; Gobbato, Maurizio; Conte, Joel; Kosmatke, John; Oliver, Joseph A

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current state of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.

  13. Geophex Airborne Unmanned Survey System (GAUSS). Topical report, October 1993--March 1995

    SciTech Connect (OSTI)

    1995-03-01

    The objectives of the project are to construct a geophysical sensor system based on a remotely operated model helicopter (ROH) and to evaluate the efficacy of the system for characterization of hazardous environmental sites. Geophex Airborne Unmanned Survey System (GAUSS) is a geophysical survey system that uses a ROH as the survey vehicle. We have selected the ROH because of its advantages over fixed wing and ground based vehicles. Lower air speed and superior maneuverability of the ROH make it better suited for geophysical surveys than a fixed wing model aircraft. The ROH can fly close to the ground, allowing detection of weak or subtle anomalies. Unlike ground based vehicles, the ROH can traverse difficult terrain while providing a stable sensor platform. ROH does not touch the ground during the course of a survey and is capable of functioning over water and surf zones. The ROH has been successfully used in the motion picture industry and by geology companies for payload bearing applications. The only constraint to use of the airborne system is that the ROH must remain visible to the pilot. Obstructed areas within a site can be characterized by relocating the base station to alternate positions. GAUSS consists of a ROH with radio controller, a data acquisition and processing (DAP) system, and lightweight digital sensor systems. The objective of our Phase I research was to develop a DAP and sensors suitable for ROH operation. We have constructed these subsystems and integrated them to produce an automated, hand-held geophysical surveying system, referred to as the ``pre-prototype``. We have performed test surveys with the pre-prototype to determine the functionality of the and DAP and sensor subsystems and their suitability for airborne application. The objective of the Phase II effort will be to modify the existing subsystems and integrate them into an airborne prototype. Efficacy of the prototype for geophysical survey of hazardous sites will then be determined.

  14. Monitoring of bolted joints using piezoelectric active-sensing for aerospace applications

    SciTech Connect (OSTI)

    Park, Gyuhae; Farrar, Charles R; Park, Chan - Yik; Jun, Seung - Moon

    2010-01-01

    This paper is a report of an initial investigation into tracking and monitoring the integrity of bolted joints using piezoelectric active-sensors. The target application of this study is a fitting lug assembly of unmanned aerial vehicles (UAVs), where a composite wing is mounted to a UAV fuselage. The SHM methods deployed in this study are impedance-based SHM techniques, time-series analysis, and high-frequency response functions measured by piezoelectric active-sensors. Different types of simulated damage are introduced into the structure, and the capability of each technique is examined and compared. Additional considerations encountered in this initial investigation are made to guide further thorough research required for the successful field deployment of this technology.

  15. THE AEROSPACE

    Office of Legacy Management (LM)

    Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. ... to expedite the formal documentation of elimination decisions and closeout of site files. ...

  16. THE AEROSPACE

    Office of Legacy Management (LM)

    Decommissioning Projects U.S. Department of Energy Germantown, Maryland? 20545 Dear Mr. ... to expedite the formal documentation off elimination decisions and closeout of site files. ...

  17. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    SciTech Connect (OSTI)

    Robert Paul Breckenridge

    2007-05-01

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be

  18. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    SciTech Connect (OSTI)

    Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut

    2014-12-10

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  19. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    SciTech Connect (OSTI)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.

  20. ARMIUnmanned Air VehicielSatellites W. R. Bolton Sandia National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. R. Bolton Sandia National Laboratories Livermore, CA 94550 Introduction The Atmospheric Radiation MeasurementUnmanned Aerospace Vehicle (ARMUAV) Program has as a major mission ...

  1. ARM - Publications: Science Team Meeting Documents: Abstracts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Freer, M. and McFarquhar, G. Algorithms for Processing Cloud Microphysical Data Acquired by Atmospheric Radiation Measurement Program Unmanned Aerospace Vehicle Applications to ...

  2. ARM - Field Campaign - ARM Enhanced Shortwave Experiment (ARESE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The ARM Program sponsored the ground-based measurements, ARM-UAV (Unmanned Aerospace ... ARM SGP Site Manager Tim Tooman, UAV Coordinator DSIT Contacts ARM Data and ...

  3. Working Group Reports Summary of Single-Column Model Intensive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Cloud Sensing IOP and several collaborative campaigns such as ARM unmanned aerospace vehicle (UAV) and verification of the origins of rotation in tornadoes experiment (VORTEX). ...

  4. ARM-99-005 Science and Experiment Plan Spring 1999 Flight Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM - UAV Atmospheric Radiation Measurement - Unmanned Aerospace Vehicle Science and Experiment Plan Spring 1999 Flight Series Robert Ellingson and Tim Tooman, eds. Version 1.2 - ...

  5. ARM Aerial Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Campaigns AAF Campaigns 2007 - UAV Campaigns 1993 - 2006, 2015 Other Aircraft ... Program, which was the successor to the ARM Unmanned Aerospace Vehicle (UAV) Program

  6. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In addition to the ARM Program and BOM, other key participants in the experiment include the ARM Unmanned Aerospace Vehicle (ARM-UAV) Program, the Australian Commonwealth ...

  7. Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument

    SciTech Connect (OSTI)

    1998-12-01

    Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-amp mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.

  8. Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation

    SciTech Connect (OSTI)

    Robert P. Breckenridge

    2006-04-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  9. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    SciTech Connect (OSTI)

    Knecht, Sean D.; Mead, Franklin B.; Miley, George H.; Froning, David

    2006-01-20

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.

  10. Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial

  11. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    SciTech Connect (OSTI)

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs require wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.

  12. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... Gf cl:c' ;F:;: ty.3 rccidj.:itl c::. ----nsAio?, loft irl ti9 lT' .ill f%ftCZ' +5:' lOrk3 :Z: baDI: Z' ,323 5% FlpL::' k 0 LGilTJ-G- i' ,x 1 -.Dns?j-;i? ' A .. t' :iC.? ...

  13. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... (Canoga Park) University of California Burris Park Field Station Dow Chemical ... SITE NAME LOCATION REMARKS California Inst. of Technology Pasadena, CA University of ...

  14. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... (,Canoga Park) University of California Burris Park Field Station Dow Chemical ... files. *I SITE NAME LOCATION REMARKS California Inst. of Technology Pasadena, CA ...

  15. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... The reported K;;;;se of importing the ore was to prevent its falling into enemy . --- - In August 1942, Eldorado Gold Mines, Ltd., in Ontario attempted to import from the USA ...

  16. THE AEROSPACE CORPORATION 1

    Office of Legacy Management (LM)

    ... Bp,the tf.m hdlilph sot to the docrrwsp the hycim&n . . h;Id liuret ."" fZs??aa end the fim ma on. -' t z . . bt lcmt two Pcmdte ixtiiahera, tm2 gallcln m iter pwq, anif . a. cm ...

  17. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    .%ilc 7900, 955 L*Enfam Plora. S. W.. Washingron. D.C. 20024.2174~ Tekphonr: (202) 488s 7117-03.87.cdy.43 23 September 1987 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Genantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordance' /I- PlL.oE with your suggestion during our meeting on 22 September. The recommendation flo.O-oz

  18. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    CORPORATION Suite 7900, 955 L'Enfan Plaza, S.W., Washington, D.C. 20024-2174, Telephone: (202) 488-6000 7117-03.87.cdy.43 23 September 1987 cA Mr. Andrew Wallo, III, NE-23 C 0o Division of Facility & Site FL 'o-o Decommissioning Projects U.S. Department of Energy j /.o° Germantown, Maryland 20545 A/»O 2 - Dear Mr. Wallo: A0 .5 ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES A ,-O° -1 9.O?- The attached elimination recommendation was prepared in accordance 1L.°~ with your

  19. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    Lie i9w, 9.55 L%n/anl Ph. S. W., Washington. D.C. 20024-2174, Tekphonc (202) 488-6000 7117-03.87.cdy.43 23 September 1987 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordance with your suggestion during our meeting on 22 September. The recommendation includes 26 colleges and

  20. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    363, 955 L' Enfant Plaza. S. W.. Washiq on. DC. 2002~2174. Telephone: (202)' 4&&6OOU 7117-03.87.cdy.43 23 September 1987 CA CAlOL) Mr. Andrew Wallo, III, NE-23 Division of Facility E Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: In/ . O-01 r~A.os ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES : M/f).0-oS k1 El.o3- The attached elimination reconuaendation was prepared in accordance' - with your suggestion during our meeting on

  1. THE AEROSPACE CORPORATION /

    Office of Legacy Management (LM)

    / @ St& i900.955 L' E+t Pk. S. W., Washingron. D.C. 20024-2174. Tdephonr: (202) 4884400 7117-03.87.cdy.43 23 September 1987 CA CA,OLf Mr. Andrew'Wallo. III, NE-23 Division of Facility & Site c r-05 Deconnnissioning Projects f-L .0-d U.S. Department of Energy lr\/.QL Germantown, Maryland ,20,54B ., iAl*Oz I., a,:,. :.. ,.. i. ,i < Dear Mr. Wallo: 1hJ *o-o1 flA.QS ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES MA.o-05 rl D.OF The attached elimination recommendation was prepared

  2. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... and health of workers in the contractors' plants, and making specific recommendations for ... design and construction of the Clinton and Hanford plants and for operating the latter. ...

  3. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    The period of time the processing was performed is not known. The site also conducted developed research for the VCA processing plants at Naturita and Mexican Hat. The work was ...

  4. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    4000, 955 L' Enfant Plaza, S. W., Washington, D. C. 20024, Telephone: (202) 488-6000 7117-01.85.brf.52 20 November 1985 Mr. Arthur Whitman, NE-23 Division of Facility & Site...

  5. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. ... O n the enclosed d i a g r a m skoving the p l a n t la-wilt . & i cr.& t2 , th e letters ...

  6. THE AEROSPACE CORPORATION ,'

    Office of Legacy Management (LM)

    ... lands reputedly owned by the United States Air Force; and on the west by certain lands now ... Buffalo, N. Y. CHEI-TROL POLLUTION SERVICES, INC. (Reputed Tenant) 1 Niagara Square ...

  7. Geophex Airborne Unmanned Survey System

    SciTech Connect (OSTI)

    Won, I.J.; Keiswetter, D.

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  8. ARM - Publications: Science Team Meeting Documents: ARM-UAV Instrument...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McCoy, Robert Sandia National Laboratories Tooman, Tim Sandia National Laboratories The ARM-Unmanned Aerospace Vehicle (ARM-UAV) program is an airborne complement to the primarily ...

  9. ARM - Campaign Instrument - otter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring 1996 UAV IOP Download Data Southern Great Plains, 1996.04.01 - 1996.04.30 Unmanned Aerospace Vehicle (UAV) IOP Download Data Southern Great Plains, 1996.09.01 - ...

  10. ARM - Campaign Instrument - uav-altus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fall 1997 Water Vapor IOP Download Data Southern Great Plains, 1997.09.15 - 1997.10.05 Unmanned Aerospace Vehicle (UAV) IOP Download Data Southern Great Plains, 1996.09.01 ...

  11. ARM - Publications: Science Team Meeting Documents: Data Products...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tooman, Tim Sandia National Laboratories McCoy, Robert Sandia National Laboratories The ARM-Unmanned Aerospace Vehicle (ARM-UAV) program is an airborne complement to the primarily ...

  12. ARM - 2004 ARM Science Team Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Lunch Afternoon Breakout Sessions 2:00 p.m.-3:45 p.m. Anthony Davis: Photon Path Length Greg McFarquhar: Unmanned Aerospace Vehicle (UAV) Jim Mather Peter May: International ...

  13. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Flux Working Group, mission scientist for the ARM Unmanned Aerospace Vehicle (UAV) Program from 1994-2003, chair of the ARM Science Team Executive Committee from 1995 to ...

  14. ARM Site Atmospheric State Best Estimates for AIRS Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of the ARM unmanned aerospace vehicle (UAV) campaign, and a clear-sky case over the ... on November 16, 2002, as part of the ARM UAV campaign (top panel), and a Gulf of Mexico ...

  15. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algorithms for Processing Cloud Microphysical Data Acquired by Atmospheric Radiation Measurement Program Unmanned Aerospace Vehicle Applications to TWP-ICE M. Freer and G. McFarquhar University of Illinois Urbana, Illinois G. Kok Droplet Measurement Technologies Boulder, Colorado B. McCoy and T. Tooman Sandia National Laboratories Livermore, California Introduction The Atmospheric Radiation Measurement (ARM) Program's Unmanned Aerospace Vehicle program currently maintains and operates a complete

  16. Exascale Opportunities for Aerospace Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical fidelity - Panel methods (incompressible, inviscid) : 1960s - Linearized compressible flow methods : 1970s - Non-linear potential flow methods: 1980s - Reynolds averaged...

  17. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    SciTech Connect (OSTI)

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-03-18

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring.

  18. Unmanned Air Vehicle -Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2013-04-17

    This package contains modules that model the mobility of systems such as helicopters and fixed wing flying in the air. This package currently models first order physics - basically a velocity integrator. UAV mobility uses an internal clock to maintain stable, high-fidelity simulations over large time steps This package depends on interface that reside in the Mobility package.

  19. Intelligent Unmanned Monitoring of Remediated Sites

    SciTech Connect (OSTI)

    Emile Fiesler, Ph.D.

    2001-06-01

    During this Phase I project, IOS demonstrated the feasibility of combining digital signal processing and neural network analysis to analyze spectral signals from pure samples of several typical contaminants. We fabricated and tested a prototype system by automatically analyzing Raman spectral data taken in the Vadose zone at the 321 M site in the M area of DOE's Savannah River Site in South Carolina. This test demonstration proved the ability of IOS's technology to detect the target contaminants, tetrachloroethylene (PCE) and trichloroethylene (TCE), in isolation, and to detect the spectra of these contaminants in real-world noisy samples taken from a mixture of materials obtained from this typical remediation target site.

  20. Modal analysis of PATHFINDER unmanned air vehicle

    SciTech Connect (OSTI)

    Woehrle, T.G.; Costerus, B.W.; Lee, C.L.

    1994-10-19

    An experimental modal analysis was performed on PATHFINDER, a 450-lb, 100-ft wing span, flying-wing-design aircraft powered by solar/electric motors. The aircraft was softly suspended and then excited using random input from a long-stroke shaker. Modal data was taken from 92 measurement locations on the aircraft using newly designed, lightweight, tri-axial accelerometers. A conventional PC-based data acquisition system provided data handling. Modal parameters were calculated, and animated mode shapes were produced using SMS STARStruct{trademark} Modal Analysis System software. The modal parameters will be used for validation of finite element models, optimum placement of onboard accelerometers during flight testing, and vibration isolation design of sensor platforms.

  1. Unmanned Aerial Systems (UAS) Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    De Boer, Gijs

    2016-01-05

    Data were collected to improve understanding of the Arctic troposphere, and to provide researchers with a focused case-study period for future observational and modeling studies pertaining to Arctic atmospheric processes.

  2. Hr. Andrew Wallo The Aerospace Corporation

    Office of Legacy Management (LM)

    No additional cments are included; therefore, a careful editoria review of these documents should be made when the documents are finalized. t 1. Watertown Arsenal, Watertown, HA ...

  3. Mr. Andrew Wallo The Aerospace Corporation

    Office of Legacy Management (LM)

    please prepare the appropriate draft letters of notification to the EPA and State. 2. ... N-11 Division of Facility and Site Decommissioning Projects Office of Nuclear Energy . ...

  4. Mr. Andrew Wallo The Aerospace'Corporaticn

    Office of Legacy Management (LM)

    please prepare the appropriate draft letters of notification to the EPA and State. 2. ... Whitman Division of Facility and Site Decommissioning Projects Office of Nuclear Energy

  5. CX-100076: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    NWTC Strategic Aerospace Unmanned Aerial System Wind Turbine Inspection Demonstration NREL Tracking No 14-021 CX(s) Applied: A9, A11, B3.2, B3.6National Renewable Energy Laboratory Date: 09/30/2014 Location(s): Colorado Office(s): Golden Field Office

  6. ARM - 2005 ARM Science Team Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mixed-Phase Arctic Cloud Experiment (M-PACE) 3:15 p.m.-5:00 p.m. Broadband Heating Rate Profile (BBHRP) 3:15 p.m.-5:00 p.m. Unmanned Aerospace Vehicle (UAV) Program 1:00 p.m.-5:00 ...

  7. MODCOPTER: Prompt, Precise Aerial Sample Collection Using Unmanned...

    Office of Scientific and Technical Information (OSTI)

    Los Alamos National Laboratory New Mexico Tech North Carolina State Publication Date: 2013-05-07 OSTI Identifier: 1078376 Report Number(s): LA-UR-13-23300 DOE Contract Number: ...

  8. Polar Research with Unmanned Aircraft and Tethered Balloons ...

    Office of Scientific and Technical Information (OSTI)

    change, with nearly double the rate of surface warming observed elsewhere on the planet. ... are not well understood, nor are the impacts to the global carbon cycle well quantified. ...

  9. Unmanned Aerial Systems (UAS) Evaluation of Routine Atmospheric...

    Office of Scientific and Technical Information (OSTI)

    Subject: 54 Environmental Sciences UAS, ERASMUS, Oliktok, DataHawk2, temperature, pressure, relative humidity, wind speeds Dataset File size NAView Dataset View Dataset DOI: ...

  10. Polar Research with Unmanned Aircraft and Tethered Balloons

    SciTech Connect (OSTI)

    Ivey, M; Petty, R; Desilets, D; Verlinde, J; Ellingson, R

    2014-01-24

    The Arctic is experiencing rapid climate change, with nearly double the rate of surface warming observed elsewhere on the planet. While various positive feedback mechanisms have been suggested, the reasons for Arctic amplification are not well understood, nor are the impacts to the global carbon cycle well quantified. Additionally, there are uncertainties associated with the complex interactions between Earth’s surface and the atmosphere. Elucidating the causes and consequences of Arctic warming is one of the many goals of the Climate and Environmental Sciences Division (CESD) of the U.S. Department of Energy’s (DOE) Biological and Environmental Research (BER) program, and is part of the larger CESD initiative to develop a robust predictive understanding of Earth’s climate system.

  11. UWV (Unmanned Water Vehicle) - Umbra Package v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2012-09-13

    This package contains modules that model the mobility of systems moving in the water. This package currently models first order physics -basically a velocity integrator. This package depends on interface classes (typically base classes) that reside in the Mobility package.

  12. MODCOPTER: Prompt, Precise Aerial Sample Collection Using Unmanned...

    Office of Scientific and Technical Information (OSTI)

    A paper copy of this document is also available for sale to the public from the National Technical Information Service, Springfield, VA at www.ntis.gov. Authors: Mascarenas, David ...

  13. Modcopter: Prompt, Precise Aerial Sample Collection Using Unmanned...

    Office of Scientific and Technical Information (OSTI)

    A paper copy of this document is also available for sale to the public from the National Technical Information Service, Springfield, VA at www.ntis.gov. Authors: Curtis, Aaron 1 ...

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the Consistency Between the Various Radiometric Measurements of ARESE II Oreopoulos, L. (a), Cahalan, R. F. (b), and Marshak, A. (a), UMBC-JCET (a), NASA-GSFC (b) Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting The Unmanned Aerospace Vehicle (UAV) Program conducted an ARM Enhanced Shortwave Experiment (ARESE) II Intensive Operational Period (IOP) at the Southern Great Plains site from February 21 through April 15, 2000. The purpose of ARESE II was to address unresolved

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 30, 2004 [Facility News] New Instrumentation on Proteus Aircraft Tested Bookmark and Share This fall, the ARM-Unmanned Aerospace Vehicle Program-specifically, the Proteus aircraft-is participating in the Mixed-Phase Arctic Cloud Experiment (M-PACE) in Alaska. However, several of the aircraft's onboard instruments have been modified since its last deployment in November 2002. To verify instrument operation and calibration prior deployment as part of M-PACE, in late September 2004, ARM

  16. Section 103

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Surface Albedo at the Southern Great Plains Cloud and Radiation Testbed Site as Retrieved from Advanced Very-High Resolution Radiometer Satellite Data and Observed by Unmanned Aerospace Vehicle Flights J. Qiu and W. Gao Environmental Research Division, Argonne National Laboratory Argonne, Illinois Introduction Substantial variations in surface albedo across a large area may cause difficulty in estimating regional net solar radiation and atmospheric absorption of shortwave radiation if only a

  17. Section 37

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud and Radiation Testbed Area-Representative Values of Surface Heat and Upwelling Radiation Fluxes Derived from Measurements by Ground Networks, Unmanned Aerospace Vehicles, and Polar Orbiting Satellites W. Gao, J. Qiu and R. L. Coulter Environmental Research Division Argonne National Laboratory Argonne, Illinois Introduction Estimating surface radiation and heat flux values representa- tive of an area of several hundred kilometers (comparable to the size of grid cells used in general

  18. A new radiometer for earth radiation budget studies

    SciTech Connect (OSTI)

    Weber, P.G.

    1992-05-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for radiation balance studies. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on (small) satellites, aircraft, or Unmanned Aerospace Vehicles (UAVs). Some considerations for the implementation of this radiometer on a small satellite are given. 17 refs.

  19. A new radiometer for earth radiation budget studies

    SciTech Connect (OSTI)

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for radiation balance studies. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on (small) satellites, aircraft, or Unmanned Aerospace Vehicles (UAVs). Some considerations for the implementation of this radiometer on a small satellite are given. 17 refs.

  20. Operation Periods: Single Column Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled- down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve

  1. vitko-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM-UAV: The Next Phase J. Vitko, Jr. and T. P. Tooman Sandia National Laboratories Livermore, California R. G. Ellingson University of Maryland College Park, Maryland Introduction The Atmospheric Radiation Measurement-Unmanned Aerospace Vehicle (ARM-UAV) Program was initiated in 1993 to develop a capability to provide radiation and cloud measurements at the top of the troposphere, thereby capping the top of the grid cell above ARM sites. To date, ARM-UAV has developed the necessary payloads and

  2. DOE OIG Rpt 4-07.qxd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from back to front) View of Ames Laboratory's thin film deposition method. Argonne scientist using the Intermediate Voltage Electron Microscope. Microalgae, organisms from which a diesel-like fuel can be derived. Proteus, the aircraft used by Sandia's Atomospheric Radiation Measurement Unmanned Aerospace Vehicle Program. Verticle Axis Wind Turbine test bed located at Bushland, Texas. Interior of the National Ignition Facility Chamber. Department of Energy Washington, DC 2 0 5 8 5 A p r i l 2 7 ,

  3. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    SciTech Connect (OSTI)

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-22

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 deg. C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  4. German Aerospace Center (DLR)Feed | Open Energy Information

    Open Energy Info (EERE)

    (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition...

  5. I I THE AEROSPACE CORPORATION I I,W. I

    Office of Legacy Management (LM)

    ... Several colleges and universities, including ithe University of California, the University ... NAME California Inst. of Technology University of California Yale Heavy Ion Linear ...

  6. Review: laser ignition for aerospace propulsion (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 5; Journal Issue: 1; Journal ID: ISSN 2212-540X Publisher: Elsevier Sponsoring Org: USDOE Country of Publication: Country unknown...

  7. Composite multilayer insulations for thermal protection of aerospace vehicles

    SciTech Connect (OSTI)

    Kourtides, D.A.; Pitts, W.C.

    1989-02-01

    Composite flexible multilayer insulation systems (MLI), consisting of alternating layers of metal foil and scrim cloth or insulation quilted together using ceramic thread, were evaluated for thermal performance and compared with a silica fibrous (baseline) insulation system. The systems studied included: (1) alternating layers of aluminoborosilicate (ABS) scrim cloth and stainless steel foil, with silica, ABS, or alumina insulation; (2) alternating layers of scrim cloth and aluminum foil, with silica or ABS insulation; (3) alternating layers of alumininum foil and silica or ABS insulation; and (4) alternating layers of aluminum-coated polyimide placed on the bottom of the silica insulation. The MLIs containing aluminum were the most efficient, measuring as little as half the backface temperature increase of the baseline system.

  8. Stirling engines. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning fuel consumption, engine design and testing, computerized simulation, and lubrication systems relative to the Stirling cycle engine. Solar energy conversion research, thermodynamic efficiency, economics, and utilization for power generation and automobile engines are included. Materials used in Stirling engines are briefly evaluated. (Contains 250 citations and includes a subject term index and title list.)

  9. THE AEROSPACE CORPORATION Suite X00, 955 L'

    Office of Legacy Management (LM)

    X00, 955 L' Enfam Plaza, S. W., Washing on. D.C. 20024.2174~ Tekphonr: (202) 48&6000 7117-03.87.cdy.43 23 September 1987 CR CA.& Mr. Andrew Wallo, III, NE-23 Division bf Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND UNIVERSITIES The attached elimination recommendation was prepared in accordance' - ltE.o= with your suggestion during ourmeeting on 22 September. The recommendation

  10. Stirling engines. (Latest citations from the Aerospace database...

    Office of Scientific and Technical Information (OSTI)

    Solar energy conversion research, thermodynamic efficiency, economics, and utilization for power generation and automobile engines are included. Materials used in Stirling engines ...

  11. Beijing Jinfeng Aerospace S T Developments Company | Open Energy...

    Open Energy Info (EERE)

    Company Place: Beijing, Beijing Municipality, China Zip: 100000 Sector: Hydro, Hydrogen Product: Producer of hydrogen storing metals and one of 13 manufacturers which have a...

  12. Case Study: Additive Manufacturing of Aerospace Brackets (Journal...

    Office of Scientific and Technical Information (OSTI)

    ORNL Lockheed Martin, Aeronautics Company Publication Date: 2013-01-01 OSTI Identifier: 1069333 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource ...

  13. Materials for defense/aerospace applications (NON-SV)

    SciTech Connect (OSTI)

    Ellis, A. R.

    2012-03-01

    Through this effort, Sandia and Lockheed Martin Aeronautics Company (LM Aero) sought to assess the feasibility of (1) applying special materials to a defense application; (2) developing a piezoelectric-based micro thermophotovoltaic (TPV) cell; and (3) building and delivering a prototype laboratory emission measurement system. This project supported the Stockpile Research & Development Program by contributing to the development of radio frequency (RF) MEMS- and optical MEMS-based components - such as switches, phase shifters, oscillators, and filters - with improved performance and reduced weight and size. Investigation of failure mechanisms and solutions helped to ensure that MEMS-based technology will meet performance requirements and long term reliability goals in the specified environments dictated by Lockheed Martin's commercial and defense applications. The objectives of this project were to (1) fabricate and test materials for military applications; (2) perform a feasibility study of a piezoelectric-based micro TPV cell; and (3) build and deliver a prototype laboratory emission measurement system. Sandia fabricated and tested properties of materials, studied options for manufacturing scale-up, and delivered a prototype IR Emissometer. LM Aero provided material requirements and designs. Both participated in the investigation of attachment methods and environmental effects on material performance, a feasibility study of piezoelectric TPV cells, an investigation and development of new approaches to implement the required material functionality, and analysis and validation of material performance physics, numerical models, and experimental metrology.

  14. Atmospheric Radiation Measurement Program facilities newsletter, January 2000

    SciTech Connect (OSTI)

    Sisterson, D.L.

    2000-02-16

    The subject of this newsletter is the ARM unmanned aerospace vehicle program. The ARM Program's focus is on climate research, specifically research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisticated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in the atmosphere. The Department of Energy and the Department of Defense joined together to use a high-tech, high-altitude, long-endurance class of unmanned aircraft known as the unmanned aerospace vehicle (UAV). A UAV is a small, lightweight airplane that is controlled remotely from the ground. A pilot sits in a ground-based cockpit and flies the aircraft as if he were actually on board. The UAV can also fly completely on its own through the use of preprogrammed computer flight routines. The ARM UAV is fitted with payload instruments developed to make highly accurate measurements of atmospheric flux, radiance, and clouds. Using a UAV is beneficial to climate research in many ways. The UAV puts the instrumentation within the environment being studied and gives scientists direct measurements, in contrast to indirect measurements from satellites orbiting high above Earth. The data collected by UAVs can be used to verify and calibrate measurements and calculated values from satellites, therefore making satellite data more useful and valuable to researchers.

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initial Measurements from the Compact Millimeter-Wave Radar Roman-Nieves, J.(a), Sekelsky, S.M.(a), Tooman, T.T.(b), and Bolton, W.B.(b), University of Massachusetts at Amherst (a), Sandia National Laboratories (b) Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The University of Massachusetts at Amherst has developed a solid state compact 95 GHz millimeter-wave radar (CMR) for the ARM Unmanned Aerospace Vehicle (UAV) program. CMR has recently flown in ARM-UAV sponsored

  16. Sandia Multispectral Airborne Lidar for UAV Deployment

    SciTech Connect (OSTI)

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  17. Precision Pointing System Development

    SciTech Connect (OSTI)

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  18. Sandia National Laboratories: Pathfinder Airborne ISR Systems: Areas of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expertise: Platforms Platforms Sky Spirit Mini Unmanned Aerial Vehicle (UAV) Sky Spirit Mini Unmanned Aerial Vehicle (UAV) TigerShark Unmanned Aerial Vehicle (UAV) TigerShark Unmanned Aerial Vehicle (UAV) IGNAT Unmanned Aerial Vehicle (UAV) IGNAT Unmanned Aerial Vehicle (UAV) MQ-8 Fire Scout Unmanned Aerial Vehicle (UAV) MQ-8 Fire Scout Unmanned Aerial Vehicle (UAV) Predator B/MQ-9 Reaper Unmanned Aerial Vehicle (UAV) Predator B/MQ-9 Reaper Unmanned Aerial Vehicle (UAV) RQ-4 Global Hawk

  19. Small space reactor power systems for unmanned solar system exploration missions

    SciTech Connect (OSTI)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model.

  20. A Time-Slotted On-Demand Routing Protocol for Mobile Ad Hoc Unmanned Vehicle Systems

    SciTech Connect (OSTI)

    Hope Forsmann; Robert Hiromoto; John Svoboda

    2007-04-01

    The popularity of UAVs has increased dramatically because of their successful deployment in military operations, their ability to preserve human life, and the continual improvements in wireless communication that serves to increase their capabilities. We believe the usefulness of UAVs would be dramatically increased if formation flight were added to the list of capabilities. Currently, sustained formation flight with a cluster of UAVs has only been achieved with two nodes by the Multi-UAV Testbed at the Massachusetts Institute of Technology. (Park, 2004) Formation flight is a complex operation requiring the ability to adjust the flight patterns on the fly and correct for wind gusts, terrain, and differences in node equipment. All of which increases the amount of inner node communication. Since one of the problems with MANET communication is network congestion, we believe a first step towards formation flight can be made through improved inner node communication. We have investigated current communication routing protocols and developed an altered hybrid routing protocol in order to provide communication with less network congestion.

  1. Design of Small Impact-Resistant RTGs for Global Network of Unmanned Mars Landers

    SciTech Connect (OSTI)

    Schock, Alfred

    1991-10-01

    Presented at the 42nd Congress of the IAF, October 5-11, 1991 in Montreal, Canada. This paper presents the results of Fairchild's work in support of DOE to perform RTG design studies for this mission. The key problem in designing these RTGs is how to enable the generators to tolerate substantially higher g-loads than those encountered on previous RTG missions. The Fairchild studies resulted in designs of compact RTGs based on flight-proven and safety-qualified heat source components, with a number of novel features designed to provide the desired high impact tolerance. The present paper describes those designs and their rationale, and a preliminary, quasi-static impact analysis that yielded very encouraging results. They indicate that these RTGs have sufficient impact resistance to enable survival of landers without retrorockets. This would result in significant cost savings. There are four copies in the file. Two copies of a presentation with the same title by Al Schock dated June 26/27, 1991 is attached. There are two copies of a Fairchild document, undated included. There is also two copies dated 6/26/1991 with the report number FSC-ESD-217-91-495 and one copy of a ducument, dated 7/11/191 with the report number FSC-ESD-217-91-495A. There are four copies with the same title in the file, but undated. These copies have a different Abstract and are similar, but not the exact version as the other copies.

  2. Unmanned operation of the coke guides at Hoogovens IJmuiden Coke Plant 1

    SciTech Connect (OSTI)

    Vos, D.; Mannes, N.; Poppema, B.

    1995-12-01

    Due to the bad condition of batteries and many ovens under repair, Hoogovens was forced to partially repair and rebuild the Coke plant No. 1. The production of coke at Coke plant No. 1 is realized in 3 production blocks subdivided in 6 batteries. Besides a renovated installation, all coke oven machines were renewed. A total of five identical machine sets are available. Each consists of a pusher machine, larry car, coke guide and quench car with diesel locomotive. A complete automated control system was implemented. The main objectives were a highly regular coking and pushing process, automated traveling and positioning and a centrally coordinated interlocking of machine functions. On each operational machine however an operator performed the supervisory control of the automated machine functions. After years of good experience with the automated system, economical reasons urged further personnel reduction from 1994 on. Totally 375 people were involved, including the maintenance department. To reduce the occupation at coke plant No. 1, the coke guide was the first machine to be fully automated because of the isolated and uncomfortable working place.

  3. Multi Spectral Pushbroom Imaging Radiometer (MPIR) for remote sensing cloud studies

    SciTech Connect (OSTI)

    Phipps, G.S.; Grotbeck, C.L.

    1995-10-01

    A Multi Spectral Pushbroom Imaging Radiometer (MPIR) has been developed as are relatively inexpensive ({approximately}$IM/copy), well-calibrated,imaging radiometer for aircraft studies of cloud properties. The instrument is designed to fly on an Unmanned Aerospace Vehicle (UAV) platform at altitudes from the surface up to 20 km. MPIR is being developed to support the Unmanned Aerospace Vehicle portion of the Department of Energy`s Atmospheric Radiation Measurements program (ARM/UAV). Radiation-cloud interactions are the dominant uncertainty in the current General Circulation Models used for atmospheric climate studies. Reduction of this uncertainty is a top scientific priority of the US Global Change Research Program and the ARM program. While the DOE`s ARM program measures a num-ber of parameters from the ground-based Clouds and Radiation Testbed sites, it was recognized from the outset that other key parameters are best measured by sustained airborne data taking. These measurements are critical in our understanding of global change issues as well as for improved atmospheric and near space weather forecasting applications.

  4. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Rapid Integrated Structural Health Assessment Using Unmanned Delivery Platform Real-time ... Unmanned Aerial Vehicle Damage Prognosis and Reliability Unmanned Stockpile Surveillance ...

  5. THE A.EROSPACE CORPORATION Suite 4000, 955 L'Enfk Plaza, S. W...

    Office of Legacy Management (LM)

    ... , , (e) Ensuring that ,the bid proposal review board documents its reasons for not sel&lng low blds submitted by small and small disadvantaged busfness concerns. (f) Ensuilng the ...

  6. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  7. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    1995-01-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  8. Hydrogen storage as a hydride. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    1995-01-01

    The bibliography contains citations concerning the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron-titanium, lanthanum-nickel, magnesium-copper, and magnesium-nickel among others. (Contains a minimum of 220 citations and includes a subject term index and title list.)

  9. Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere

    SciTech Connect (OSTI)

    Tooman, T.P.

    1997-01-01

    This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

  10. Southline Transmission Line Project - Volume 3 Chapter 3

    Office of Environmental Management (EM)

    ... This airspace may be used by manned or unmanned vehicles. Since most of the construction ... Substations would be unmanned and controlled remotely. Routine substation operations would ...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... The Coast Guard was interested in exploring how unmanned aircraft systems (UAS) can be ... and exploited unique capabilities of multiple classes of unmanned aerial systems (UASs). ...

  12. DOE Awards $10 Million to Small Businesses for Fossil Energy...

    Office of Environmental Management (EM)

    ... airborne laser scanner for routine mapping of terrain from unmanned aircraft. The compact sensor payload for unmanned aircraft this program will develop represents an economical ...

  13. FY 2011 LDRD Report to Congress

    Office of Environmental Management (EM)

    ... and Environmental Applications using Unmanned Aerial Vehicles 286,633 I09-021 ... Nonholonomic, High- Speed, Autonomous Unmanned Ground Vehicles 174,762 ...

  14. Enterprise Assessments Assessment of the Nevada National Security...

    Office of Environmental Management (EM)

    ... SFO Senior Federal Official UAV Unmanned Aerial Vehicle UPS Uninterruptible Power ... help from the U.S. Air Force for an unmanned aerial vehicle (UAV); however, the ...

  15. ORAU Team

    Broader source: Energy.gov (indexed) [DOE]

    ... Facility Manned Unmanned Safety Systems MPB Manned Casting: Cooling chambers, microwave ... Inert pipingtank systems throughout facility. MEB Unmanned None PSB Manned None PSF ...

  16. DOE Announces Webinars on Tribal Business Structures for Financing...

    Energy Savers [EERE]

    Small Unmanned Airvehicles Webinar Sponsor: Fuel Cells Technologies Office The Energy Department will present a live a webinar titled "Hydrogen Fuel Cells for Small Unmanned ...

  17. FY 2005 LDRD Report to Congress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Rapid Prototype for Geospatial Data Acquisition from Unmanned Aerial Vehicle Platforms ... Development of Modular Direct Referencing Sensor System for Unmanned Autonomous Vehicles ...

  18. SoS-ASI 2016 Flyer_rev01

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Remote Physical Sample Collection Using Unmanned Aviation Systems (UAS) Novel methods for detecting small Unmanned Aviation Systems (UAS) Characterizing the power grid ...

  19. DOE Electricity Advisory Committee

    Broader source: Energy.gov (indexed) [DOE]

    ... Investment in Robotics and Unmanned Aerial Vehicles can reduce inspection cost and ... environments." 9 Likewise, the use of unmanned aerial vehicles (UAVs), either fixed ...

  20. September 15, 2008, Visiting Speakers Program - Strategic and...

    Broader source: Energy.gov (indexed) [DOE]

    ... ladder to employ advanced explosives and unmanned aerial vehicles. "Terrorist use of ... advanced and lethal ballistic and cruise missiles and unmanned aerial vehicles (UAVs). ...

  1. ARM - Campaign Backgrounders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of Routine Atmospheric Sounding Measurements Using Unmanned Systems PDF | 1.4MB ... Evaluation of Routine Atmospheric Sounding Measurements Using Unmanned Systems PDF | 1.4MB ...

  2. E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... on the Future Battlefeld: One-to-Many Unmanned System Control 315 Multi-Mission ... imager (MTI) and synthetic aperture radar (SAR) aboard unmanned aerial vehicles (UAVs). ...

  3. DOE/ID-Number

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... TSF Technical Services Facility UAV Unmanned Aerial Vehicles U. S. United States iii ... Locations must be able to accommodate aircraft (both manned and unmanned) for aerial ...

  4. Energy Department Invests $28 Million to Advance Cleaner Fossil...

    Broader source: Energy.gov (indexed) [DOE]

    ... Solid Oxide Fuel Cell Technology An unmanned undersea vehicle (UUV) being deployed ... Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned ...

  5. FY 2010 LDRD Report to Congress

    Office of Environmental Management (EM)

    ... and Environmental Applications using Unmanned Aerial Vehicles 295,920 ST136 Idaho ... for Nonholonomic, High-Speed, Autonomous Unmanned Ground Vehicles 109,983 ...

  6. Evaluation of Routine Atmospheric Sounding Measurements using...

    Office of Scientific and Technical Information (OSTI)

    using Unmanned Systems (ERASMUS) Science Plan Citation Details In-Document Search Title: Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems ...

  7. Flow rate--pressure drop relation for deformable shallow microfluidic

    Office of Scientific and Technical Information (OSTI)

    Normale Superieure de Cachan Ecole Normale Superieure de Cachan; Stone, Howard A Mechanical & Aerospace Engineering, Princeton University Mechanical & Aerospace Engineering,...

  8. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    Normale Superieure de Cachan Ecole Normale Superieure de Cachan; Stone, Howard A Mechanical & Aerospace Engineering, Princeton University Mechanical & Aerospace Engineering,...

  9. War without men. Robots on the future battlefield

    SciTech Connect (OSTI)

    Shaker, S.M.; Wise, A.R.

    1987-01-01

    The first book on unmanned military vehicles, the weapons of the next war: remotely piloted airborne vehicles, unmanned naval vessels and submersibles, unmanned spacecraft, and robotic ground vehicles. Contents (partial): Foreword; Introduction to the robot warrior; The evolution of military robotic systems; Current operational use and development of unmanned robotic ground vehicles; Current operational use and development of RPVs; Current operational use and development of unmanned naval vessels; Space-based robotics; Impact, applications, and the future of military robots; Index.

  10. University of Maryland | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland University of Maryland Team roster: Andrew Dallas, Aerospace Engineering; Mario Mondal, Aerospace Engineering; Atif Salahudeen, Aerospace Engineering; Matt Shumate, Aerospace Engineering; Emily Love, Mechanical Engineering; Austin Jacobson, Mechanical Engineering; Natalie Tham, Aerospace Engineering; Angelina Bingei, Finance and Marketing; Shriya Gupta, Finance and Information Systems; Jessica Ting, Marketing and Information Systems; Njeri Warrington, Marketing and Supply Chain

  11. Design of a differential radiometer for atmospheric radiative flux measurements

    SciTech Connect (OSTI)

    LaDelfe, P.C.; Weber, P.G.; Rodriguez, C.W.

    1994-11-01

    The Hemispherical Optimized NEt Radiometer (HONER) is an instrument under development at the Los Alamos National Laboratory for deployment on an unmanned aerospace vehicle as part of the Atmospheric Radiation Measurements (ARM/UAV) program. HONER is a differential radiometer which will measure the difference between the total upwelling and downwelling fluxes and is intended to provide a means of measuring the atmospheric radiative flux divergence. Unlike existing instruments which measure the upwelling and downwelling fluxes separately, HONER will achieve an optical difference by chopping the two fluxes alternately onto a common pyroelectric detector. HONER will provide data resolved into two spectral bands; one covering the solar dominated region from less than 0.4 micrometer to approximately 4.5 micrometers and the other covering the region from approximately 4.5 micrometers to greater than 50 micrometers, dominated by thermal radiation. The means of separating the spectral regions guarantees seamless summation to calculate the total flux. The fields-of-view are near-hemispherical, upward and downward. The instrument can be converted, in flight, from the differential mode to absolute mode, measuring the upwelling and downwelling fluxes separately and simultaneously. The instrument also features continuous calibration from on-board sources. We will describe the design and operation of the sensor head and the on-board reference sources as well as the means of deployment.

  12. Environmental monitoring: civilian applications of remote sensing

    SciTech Connect (OSTI)

    Bolton, W.; Lapp, M.; Vitko, J. Jr.; Phipps, G.

    1996-11-01

    This report documents the results of a Laboratory Directed Research and Development (LDRD) program to explore how best to utilize Sandia`s defense-related sensing expertise to meet the Department of Energy`s (DOE) ever-growing needs for environmental monitoring. In particular, we focused on two pressing DOE environmental needs: (1) reducing the uncertainties in global warming predictions, and (2) characterizing atmospheric effluents from a variety of sources. During the course of the study we formulated a concept for using unmanned aerospace vehicles (UAVs) for making key 0798 climate measurements; designed a highly accurate, compact, cloud radiometer to be flown on those UAVs; and established the feasibility of differential absorption Lidar (DIAL) to measure atmospheric effluents from waste sites, manufacturing processes, and potential treaty violations. These concepts have had major impact since first being formulated in this ,study. The DOE has adopted, and DoD`s Strategic Environmental Research Program has funded, much of the UAV work. And the ultraviolet DIAL techniques have already fed into a major DOE non- proliferation program.

  13. A reactionless, bearingless linear shutter mechanism for the multispectral pushbroom imaging radiometer

    SciTech Connect (OSTI)

    Krumel, L.J.

    1996-12-31

    The Atmospheric Radiation Measurement Program is a multi-laboratory, interagency program as part of DOE`s principal entry into the US Global Change Research Program. Two issues addressed are the radiation budget and its spectral dependence, and radiative and other properties of clouds. Measures of solar flux divergence and energy exchanges between clouds, the earth, its oceans, and the atmosphere through various altitudes are sought. Additionally, the program seeks to provide measurements to calibrate satellite radiance products and validate their associated flux retrieval algorithms. Unmanned Aerospace Vehicles fly long, extended missions. MPIR is one of the primary instruments on the ARM-UAV campaigns. A shutter mechanism has been developed and flown as part of an airborne imaging radiometer having application to spacecraft or other applications requiring low vibration, high reliability, and long life. The device could be employed in other cases where a reciprocating platform is needed. Typical shutters and choppers utilize a spinning disc, or in very small instruments, a vibrating vane to continually interrupt incident light or radiation that enters the system. A spinning disk requires some sort of bearings that usually have limited life, and at a minimum introduce issues of reliability. Friction, lubrication and contamination always remain critical areas of concern, as well as the need for power to operate. Dual vibrating vanes may be dynamically well balanced as a set and are frictionless. However, these are limited by size in a practical sense. In addition, multiples of these devices are difficult to synchronize.

  14. The Future of Information Storage. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: IEEE Aerospace Conference held March 2-9, 2013 in Big Sky, MT.; Related Information: Proposed for presentation at the IEEE Aerospace Conference held ...

  15. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    aerospace OR nasa OR "european space agency" OR "spacecraft" Creator Author: Name Name ... Search for: All records Bibliographic Data contains: aerospace OR nasa OR "european space ...

  16. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    Ecole Normale Superieure de Cachan Ecole Normale Superieure de Cachan Stone Howard A Mechanical Aerospace Engineering Princeton University Mechanical Aerospace Engineering...

  17. EERE Success Story-The Navy Saves Energy in its Buildings With...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Related Articles An unmanned undersea vehicle (UUV) being deployed during a U.S. ... Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned ...

  18. LDRDToC5.5.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... on the Future Battlefeld: One- to-Many Unmanned System Control 309 Multi-Mission ... the sensor in an airborne pod on a MQ-9 Reaper unmanned aerial vehicle (UAV) was created. ...

  19. Well Monitoring Systems for EGS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Our system can stay in the well and operate unmanned for days or years. This reduces cost ... - Once in place, the system can run unmanned (no logging truck) 3 | US DOE ...

  20. National Nuclear Security Administration/Nevada Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pistondc@nv.doe.gov TWO UNMANNED AERIAL SYSTEMS PURCHASED FOR USE AT THE NEVADA NATIONAL SECURITY SITE LAS VEGAS, Nev. - Two state-of-the-art unmanned aerial systems (UAS) have ...

  1. Draft Programmatic Environmental Impact Statement for the Non...

    Broader source: Energy.gov (indexed) [DOE]

    ... Cell on Wheels, Cell on Light Truck, Unmanned Aerial Vehicle) would likely result in ... The DACA option would add the presence of new manned and unmanned air traffic andor ...

  2. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The primary objective of this research effort is to develop and prototype a novel unmanned ground vehicle (UGV), as illustrated in the figure, that could be used for unmanned ...

  3. sc0013735-psi | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Terrain from Unmanned Aircraft Systems (UASs) Last Reviewed 632016 DE-SC0013735 Goal This project will develop a conceptual design for an unmanned aerial system-based ...

  4. Draft Programmatic Environmental Impact Statement for the Non...

    Broader source: Energy.gov (indexed) [DOE]

    ... Cell on Wheels, Cell on Light Truck, and Unmanned Aviation Vehicles) would likely result ... The DACA option would add the presence of new manned and unmanned air traffic andor ...

  5. A N N U A L R E P O R

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Smart Battery Manager, a group of five small businesses working in the unmanned vehicles ... According to Markets and Markets, the global market for unmanned vehicles was worth 2.29 ...

  6. Fact Sheet U.S. Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In addition to the standard ARM ground-based instruments, ARM plans to equip unmanned ... ARM Aerial Facility This portable, medium-range, fixed-wing Unmanned Aerial System, called ...

  7. Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Unmanned Undersea Vehicles | Department of Energy Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles January 31, 2013 - 12:00pm Addthis An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of

  8. Categorical Exclusion Determinations | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Categorical Exclusion Determinations 8252016, Tribal Colleges and Universities Advanced Manufacturing Initiative 6212016, Outdoor Unmanned Aerial Systems (UAS) Flights and ...

  9. Measurement of Real-World Emissions from Heavy-Duty Diesel Vehicles: The State-of-the-Art

    Broader source: Energy.gov [DOE]

    2003 DEER Conference Presentation: West Virginia University - Dept. of Mechanical and Aerospace Engineering

  10. SIMWyPES Cleaning Cloths - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    automotive) Maintenance, repair and operations (aerospace) Manufacturing (microelectronicsberyllium, pharmaceuticalsdry powders) Clean room cleanup Surface preparation...

  11. Atmospheric Radiation Measurement Program facilities newsletter, November 2002.

    SciTech Connect (OSTI)

    Holdridge, D. J.

    2002-12-03

    Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle--In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled-down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve submodels of clouds, solar radiation transfer, and atmosphere-surface interactions, then implement the results in large-scale global models. With measured values for a starting point, the SCM predicts atmospheric variables during prescribed time periods. A computer calculates values for such quantities as the amount of solar radiation reaching the surface and predicts how clouds will evolve and interact with incoming light from the sun. Researchers compare the SCM's predictions with actual measurements made during the IOP, then adjust the submodels to make predictions more reliable. A second IOP conducted concurrently with the SCM IOP involves high-altitude, long-duration aircraft flights. The original plan was to use an unmanned aerospace vehicle (UAV), but the National Aeronautics and Space Administration (NASA) aircraft Proteus will be substituted because all UAVs have been deployed elsewhere. The UAV is a small, instrument-equipped, remote-control plane that is operated from the ground by a computer. The Proteus is a manned aircraft, originally designed to carry telecommunications relay equipment, that can be reconfigured for uses such as reconnaissance and surveillance, commercial imaging, launching of small space satellites, and atmospheric research. The plane is designed for two on-board pilots in a pressurized cabin, flying to altitudes up to 65,000 feet for as long as 18 hours. The Proteus has a variable wingspan of 77-92 feet and is 56 feet long. The plane can carry

  12. High Spectral Resolution Infrared and Raman Lidar Observations for the ARM Program: Clear and Cloudy Sky Applications

    SciTech Connect (OSTI)

    Revercomb, Henry; Tobin, David; Knuteson, Robert; Borg, Lori; Moy, Leslie

    2009-06-17

    This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play a central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004.

  13. ARM - Field Campaign - Evaluation of Routine Atmospheric Sounding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements using Unmanned Systems (ERASMUS) govCampaignsEvaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Campaign Links Science Plan ERASMUS Backgrounder News & Press Images Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) 2015.08.02 - 2016.10.31 Lead Scientist : Gijs de Boer For data sets, see

  14. National Nuclear Security Administration/Nevada Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Media Contact: For Immediate Release: Dante Pistone, 702/295-6021 May 18, 2016 pistondc@nv.doe.gov TWO UNMANNED AERIAL SYSTEMS PURCHASED FOR USE AT THE NEVADA NATIONAL SECURITY SITE LAS VEGAS, Nev. - Two state-of-the-art unmanned aerial systems (UAS) have been purchased as part of a research and development program at the Nevada National Security Site (NNSS). According to NNSS officials, the research and development is designed to expand the development of sensor technology for unmanned

  15. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Change Is in the Air" as Scientists Evaluate Data Collection with Unmanned Aircraft Bookmark and Share Data gathered during ERASMUS are already available to compare with conventional data The larger Pilatus unmanned aerial system carries a larger instrument payload than the DataHawks and measures temperature, humidity, pressure, winds, aerosols, and radiation. The larger Pilatus unmanned aerial system carries a larger instrument payload than the DataHawks and measures temperature,

  16. sc0013735-psi | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    735-psi High Performance Airborne Laser Scanner for Routine Mapping of Terrain from Unmanned Aircraft Systems (UASs) Last Reviewed 6/3/2016 DE-SC0013735 Goal This project will develop a conceptual design for an unmanned aerial system-based laser scanner for aerial mapping that preserves the performance of larger systems flown on manned aircraft, but is small enough to be deployed on midsize unmanned aerial systems. This will enable more economical digital terrain mapping than manned systems. The

  17. Bio-based Deicing/Anti-Icing Fluids - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Bio-based DeicingAnti-Icing Fluids Battelle Memorial ... and typically bio-based deicinganti-icing fluids for aerospace and non-aerospace ...

  18. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Have feedback or suggestions for a way to improve these ... and only minimal quality control measures have been applied. ... View Dataset October 2015 Unmanned Aerial Systems (UAS) ...

  19. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The ... on the following three elements a) An assessment on the applicability of autonomous ...

  20. Development of autonomous magnetometer rotorcraft for wide area...

    Office of Scientific and Technical Information (OSTI)

    An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The ... on the following three elements a) An assessment on the applicability of autonomous ...

  1. Feasibility Study for an Autonomous UAV -Magnetometer System...

    Office of Scientific and Technical Information (OSTI)

    which medium altitude fixed wing optical imaging is used for an initial site assessment. ... An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The ...

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... which medium altitude fixed wing optical imaging is used for an initial site assessment. ... An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The ...

  3. STEPS TO ESTABLISH A REAL-TIME TRANSMISSION MONITORING SYSTEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Remote sites connected to the SCADA system are especially vulnerable because they are often unmanned. SCADA network owners could take steps to ensure that any communication links ...

  4. EM's Minority Serving Institutions Partnership Program Issues...

    Broader source: Energy.gov (indexed) [DOE]

    ... of Nevada, Las Vegas; and Development of Plug-and-Play Interchangeable Components for Unmanned Aerial System with Mobile Manipulation Capability: University of Nevada, Las Vegas. ...

  5. spread_comp_02 TOC

    Broader source: Energy.gov (indexed) [DOE]

    ... Any location that has a connection to the SCADA network is a target, especially unmanned or unguarded remote sites. Conduct a physical security survey and inventory access points ...

  6. Workplace Charging Challenge Partner: AeroVironment, Inc. | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AeroVironment, a developer and innovator of unmanned aircraft systems, EV charging solutions, and innovative technology systems, leads by example with workplace charging ...

  7. Inventory of Safety-Related Codes and Standards for Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The BESS is designed to be an unmanned facility that will perform specific control algorithms as directed remotely via energygeneration management systems. Fire alarms are ...

  8. Microsoft Word - SEAB Lab Task Force Interim Report Final.docx

    Office of Environmental Management (EM)

    ... These investments, over many years, led to higher-resolution static images from a miniaturized package (miniSAR) deployed on unmanned aerial vehicles, advanced imaging of moving ...

  9. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Kimberly Nuhfer, Project Manager National Energy Technology Laboratory Kimberly.Nuhfer@netl.doe.gov The proposed Tehachapi Wind Energy Resource Area BESS facility. The unmanned ...

  10. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For instance, the following parts have already been manufactured additively: 179 Structure parts for unmanned aircraft by SAAB Avitronics 15, 16; 180 Special tools for ...