Powered by Deep Web Technologies
Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Multiple Crystal Cavities for Unlimited X-ray Energy Resolution and  

NLE Websites -- All DOE Office Websites (Extended Search)

An Intriguing Twist in the Structure of a Cobalt Oxide Catalyst An Intriguing Twist in the Structure of a Cobalt Oxide Catalyst Breaking Records in Neurological Microradiology Exposing Valence-Bond Model Inadequacies Plants' Rapid Response System Revealed Rewriting the Organofluorine Playbook Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Multiple Crystal Cavities for Unlimited X-ray Energy Resolution and Coherence AUGUST 21, 2012 Bookmark and Share Fabry-Perot resonance spectra (right) of a single-cavity resonator, two cascaded resonators, and a monolithic two-cavity resonator, respectively. Note the significant background of T1 as the Bragg reflectivity from a 10-μm diamond plate is only 59%. By comparison, spectra T2 and T3 are very

2

Energy Unlimited Inc | Open Energy Information  

Open Energy Info (EERE)

Energy Unlimited is a privately held company specializing in the development of wind energy and the total management of wind energy projects. References Energy Unlimited...

3

X-ray Transition Energies Search Form  

Science Conference Proceedings (OSTI)

[skip navigation] X-ray Transition Energies Database Main Page Search for X-ray transition energies by element(s), transition ...

4

NIST X-Ray Transition Energies  

Science Conference Proceedings (OSTI)

... with the International System of measurement ... titled "X-ray transition energies: new approach ... and by NIST's Systems Integration for Manufacturing ...

2011-12-09T23:59:59.000Z

5

Inverters Unlimited Inc | Open Energy Information  

Open Energy Info (EERE)

Unlimited Inc Jump to: navigation, search Name Inverters Unlimited Inc Place New York Zip 12205 Sector Solar Product US-based manufacturer of solar inverters. References...

6

Solar Unlimited USA | Open Energy Information  

Open Energy Info (EERE)

Logo: Solar Unlimited USA Name Solar Unlimited USA Address 2353 Park Ave. Place Cedar City, Utah Zip 84721 Sector Solar Product Solar energy systems Year founded 1998 Phone number 435-867-9876 Website http://solarunlimited.net/ Coordinates 37.6944762°, -113.0937928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6944762,"lon":-113.0937928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

Energy Determination of X-Ray Transition Energies Using the ...  

Science Conference Proceedings (OSTI)

... We chose to measure x-ray transition energies from NIST ... This resulted in the production of x-ray emission ... would yield not only an energy scale for ...

2012-10-02T23:59:59.000Z

8

Unlimited Energy GmbH | Open Energy Information  

Open Energy Info (EERE)

Unlimited Energy GmbH Unlimited Energy GmbH Jump to: navigation, search Name Unlimited Energy GmbH Place Berlin, Germany Zip 12435 Sector Solar, Wind energy Product Unlimited Energy is a German-based project developer, specialising in wind and solar projects. Coordinates 52.516074°, 13.376987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":52.516074,"lon":13.376987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

TENDER ENERGY X-RAY ABSORPTION  

NLE Websites -- All DOE Office Websites (Extended Search)

TENDER ENERGY X-RAY ABSORPTION TENDER ENERGY X-RAY ABSORPTION SPECTROSCOPY (TES) Project Team: S. Bare 1,2 , J. Brandes 3 , T. Buonassisi 4 , J. Chen 5,2 , M. Croft 6 , E. DiMasi 7 , A. Frenkel 8,2 , D. Hesterberg 9 , S. Hulbert 7,2 , S. Khalid 7 , S. Myneni 10 , P. Northrup 7,11 , E.T. Rasbury 11 , B. Ravel 12 , R. Reeder 11 , J. Rodriguez 7,2 , D. Sparks 5,13 , V. Stojanoff 7 , G. Waychunas 14 1 UOP LLC, 2 Synchrotron Catalysis Consortium, 3 Skidaway Inst. of Oceanography, 4 MIT Laboratory for Photovoltaics Research, 5 Univ. of Delaware, 6 Rutgers Univ., 7 Brookhaven National Lab, 8 Yeshiva Univ., 9 North Carolina State Univ., 10 Princeton Univ., 11 Stony Brook Univ., 12 NIST, 13 Delaware Environmental Inst., 14 Lawrence Berkeley National Lab TECHNIQUES: High performance and in-situ X-ray absorption spectroscopy and spatially-resolved XAS of

10

Chest x-Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chest x-Rays Chest x-Rays Chest x-Rays Chest X-ray B-Reading The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica. The B-reading is considered a special reading because doctors who are certified by NIOSH to perform B-readings use a specific protocol to read and record the findings as developed by the International Labour Organization (ILO). The ILO's protocol provides rules for systematically examining the x-ray in a step-by-step method and recording certain abnormalities or changes on the chest x-ray that can be attributable to

11

Energy Unlimited Wind Farm II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Energy Unlimited Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Energy Unlimited Developer Energy Unlimited Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Neutron and X-ray Scattering Investigations of Microscopic Energy ...  

Science Conference Proceedings (OSTI)

A Case Study in Future Energy Challenges: Towards In Situ Hard X-ray Microscopy of ... of Crystal Structure and Domain Character in Lead Free Piezoceramics.

13

NIST X-Ray Transition Energies Version History  

Science Conference Proceedings (OSTI)

... Jr., P. Indelicato, L. de Billy, E. Lindroth, and J. Anton, "X-ray transition energies: new approach to a ... [Type of medium] Available: URL [Access date]. ...

2010-10-05T23:59:59.000Z

14

Energy Unlimited Wind Farm I | Open Energy Information  

Open Energy Info (EERE)

I I Facility Energy Unlimited Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Energy Unlimited Energy Purchaser Southern California Edison Co Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

High-energy x-ray production with pyroelectric crystals  

Science Conference Proceedings (OSTI)

The invention of pyroelectric x-ray generator technology has enabled researchers to develop ultraportable, low-power x-ray sources for use in imaging, materials analysis, and other applications. For many applications, the usefulness of an x-ray source is determined by its yield and endpoint energy. In x-ray fluorescence, for example, high-energy sources enable the excitation of the K-shell x-ray peaks for high-Z materials as well as the lower-energy L-shell peaks, allowing more positive sample identification. This report shows how a paired-crystal pyroelectric source can be used to approximately double the endpoint x-ray energy, in addition to doubling the x-ray yield, versus a single-crystal source. As an example of the advantage of a paired-crystal system, we present a spectrum showing the fluorescence of the K shell of thorium using a pyroelectric source, as well as a spectrum showing the fluorescence of the K shell of lead. Also shown is an x-ray spectrum with an endpoint energy of 215 keV.

Geuther, Jeffrey A.; Danon, Yaron [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

2005-05-15T23:59:59.000Z

16

Innovative Solutions Unlimited, LLC (InSolves) | Open Energy Information  

Open Energy Info (EERE)

Solutions Unlimited, LLC (InSolves) Solutions Unlimited, LLC (InSolves) Jump to: navigation, search Name Innovative Solutions Unlimited, LLC (InSolves) Address 1862 Shyville Road Place Piketon, Ohio Zip 45661 Sector Renewable Energy Product Consulting; Engineering/architectural/design; Maintenance and repair;Manufacturing; Retail product sales and distribution;Trainining and education;Other:Access Control / Security: Nuclear Phone number 740-289-3282 Website http://www.insolves.com Coordinates 39.0510662°, -82.9957658° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0510662,"lon":-82.9957658,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

17

Single atom identification by energy dispersive x-ray spectroscopy  

SciTech Connect

Using aberration-corrected scanning transmission electron microscope and energy dispersive x-ray spectroscopy, single, isolated impurity atoms of silicon and platinum in monolayer and multilayer graphene are identified. Simultaneously acquired electron energy loss spectra confirm the elemental identification. Contamination difficulties are overcome by employing near-UHV sample conditions. Signal intensities agree within a factor of two with standardless estimates.

Lovejoy, T. C.; Dellby, N.; Krivanek, O. L. [Nion, 1102 8th St., Kirkland, Washington 98033 (United States); Ramasse, Q. M. [SuperSTEM Laboratory, STFC Daresbury, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); Falke, M.; Kaeppel, A.; Terborg, R. [Bruker Nano GmbH, Schwarzschildstr. 12, 12489 Berlin (Germany); Zan, R. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)

2012-04-09T23:59:59.000Z

18

Refractive optical elements and optical system for high energy x-ray microscopy  

Science Conference Proceedings (OSTI)

In material science, X-ray radiation with photon energies above 25 keV is used because of its penetration into high density materials. Research of the inner structure of novel materials, such as electrodes in high power batteries for engines, require X-ray microscopes operating in the hard X-ray energy range. A flexible X-ray microscope for hard X-rays with photon energies higher than 25 keV will be realized at the synchrotron source ANKA in Karlsruhe, Germany. The device will use refractive X-ray lenses as condenser as well as objective lenses.

Simon, M.; Altapova, V.; Baumbach, T.; Kluge, M.; Last, A.; Marschall, F.; Mohr, J.; Nazmov, V.; Vogt, H. [Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Institute of Technology, Laboratory for Applications of Synchrotron Radiation, Engesser Strasse 15, 76131 Karlsruhe (Germany); Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

2012-05-17T23:59:59.000Z

19

Microstructural Mapping Using High-Energy X-Ray Scattering  

Science Conference Proceedings (OSTI)

Abstract Scope, Advanced characterization methods at the APS permit unique in- situ ... The combination of an undulator source, brilliance preserving optics and focusing .... Ultra-Small-Angle X-Ray ScatteringX-Ray Photon Correlation...

20

Unlimited Release  

E-Print Network (OSTI)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. SAND2012-7341P

unknown authors

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Unlimited Release  

E-Print Network (OSTI)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. SAND2012-7340P

unknown authors

2012-01-01T23:59:59.000Z

22

Joule Unlimited previously Joule Biotechnologies | Open Energy Information  

Open Energy Info (EERE)

Joule Unlimited previously Joule Biotechnologies Joule Unlimited previously Joule Biotechnologies Jump to: navigation, search Name Joule Unlimited (previously Joule Biotechnologies) Place Cambridge, Massachusetts Zip 2142 Product Massachusetts-based industrial biotechnology company developing transformative systems to enable highly efficient, low-cost cell-based biodiesel production. Coordinates 43.003745°, -89.017499° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.003745,"lon":-89.017499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Definition: X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search Dictionary.png X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to obtain specific information about the crystalline material under investigation. X-ray powder diffraction is widely used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances (typically in less than 20 minutes). A pure, finely ground, and homogenized sample is required for determination of the bulk composition. Additional uses include detailed

24

X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Diffraction (XRD): X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to

25

X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Fluorescence (XRF) X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Fluorescence (XRF): X-Ray Fluorescence is a lab-based technique used for bulk chemical analysis of rock, mineral, sediment, and fluid samples. The technique depends on the fundamental principles of x-ray interactions with solid materials, similar

26

Portable X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

Portable X-Ray Diffraction (XRD) Portable X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Portable X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Portable X-Ray Diffraction (XRD): Portable X-Ray Diffraction (XRD) is a field-based technique that can be used for identification of crystalline materials and analysis of unit cell dimensions. Portable XRD analysis is similar to X-ray powder diffraction,

27

In situ X-ray Characterization of Energy Storage Materials |...  

NLE Websites -- All DOE Office Websites (Extended Search)

to accurately characterize the dynamic electrochemical processes at the nanometer and atomic level, we have employed a set of complementary, in situ X-ray characterization...

28

X-ray Tube with Magnetic Electron Steering - Energy ...  

The high average power large area X-ray tube provides ... Solar Photovoltaic; Solar ... Description This invention consists of a cathode and anode ...

29

LM Completes X-Ray Film Digitization Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Completes X-Ray Film Digitization Project Completes X-Ray Film Digitization Project LM Completes X-Ray Film Digitization Project January 7, 2013 - 12:02pm Addthis Nearly 400,000 x-rays of former DOE contractor employees have been digitized to support LM records retention requirements. Nearly 400,000 x-rays of former DOE contractor employees have been digitized to support LM records retention requirements. What does this project do? Goal 2. Preserve, protect, and share records and information The U.S. Department of Energy (DOE) Office of Legacy Management (LM) has successfully completed a project to digitize nearly 400,000 medical x-rays of former DOE contractor employees. The x-rays, from the Rocky Flats and Grand Junction, Colorado; Fernald, Mound, and Ashtabula, Ohio; and Pinellas, Florida; sites, are needed to

30

Measurement Services for Low-to-Medium Energy X-rays  

Science Conference Proceedings (OSTI)

Development of measurement services to calibratewavelength-dispersive detectors and spectrometers for low- to medium-energy x rays (10 to 300 ...

2010-10-05T23:59:59.000Z

31

Definition: Portable X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Portable X-Ray Diffraction (XRD) Jump to: navigation, search Dictionary.png Portable X-Ray Diffraction (XRD) Portable X-Ray Diffraction (XRD) is a field-based technique that can be used for identification of crystalline materials and analysis of unit cell dimensions. Portable XRD analysis is similar to X-ray powder diffraction, which has traditionally been used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances. Portable XRD analysis allows for simpler sample preparation, faster analytical times than traditional methods (less than 2 minutes), and can be performed at the sampling site in the field. A pure, finely ground

32

Unlimited Release  

Office of Scientific and Technical Information (OSTI)

Unlimited Release Unlimited Release Printed November 1987 Proceedings of The Wellbore Sampling Workshop Richard K. Traeger, Barry W. Harding Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 9 4 5 5 0 f o r the United States Department of Energy . under Contract DE-AC04-76DP00789 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

33

TMX-upgrade. X-ray diagnostic: low-energy temperature determination  

Science Conference Proceedings (OSTI)

In order to properly design the x-ray filter set, a reasonable computational model of the plasma emission had to be developed. The radiation continuum computed consisted of two components: bremsstrahlung and recombination radiation. The contribution of line radiation from low Z impurities was estimated to be negligible for x-ray energies above 1 keV.

Jacoby, B.A.

1981-05-01T23:59:59.000Z

34

High Energy X-ray Diffraction Microscopy Microstructure Mapping  

Science Conference Proceedings (OSTI)

P1-04: 3D Microstructural Characterization of Uranium Oxide as a Surrogate Nuclear ... P1-15: Gating System Optimisation Design Study of a Cast Automobile ... P2-27: Characterization of Carbonate Rocks through X-ray Microtomography.

35

Low Dose Radiation Research Program: A Variable-Energy Soft X-Ray  

NLE Websites -- All DOE Office Websites (Extended Search)

A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation -Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kirk Atkinson, Kevin M Prise, Barry D Michael Institutes: Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, HA6 2JR, UK For over a decade, the Gray Cancer Institute (GCI) has been actively engaged in the development and use of micro-irradiation techniques applied to radiobiological research. Our initial investigations made use of a charged-particle microbeam capable of irradiating individual cells with collimated energetic protons or 3He ions. By the end of the 1990's, a second facility had been constructed, which uses diffractive X-ray optics to focus ultrasoft X-rays to a sub-micron spot. The X-ray microprobe was

36

Low Dose Radiation Research Program: A Variable-Energy Soft X-Ray  

NLE Websites -- All DOE Office Websites (Extended Search)

A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kirk Atkinson, Kevin M Prise, Barry D Michael Institutions: Gray Cancer Institute, PO BO Box100, Mount Vernon Hospital, Northwood, HA6 2JR, UK The Gray Cancer Institute (GCI) has pioneered the use of X-ray focussing techniques to develop systems for micro-irradiating individual cells and sub-cellular targets. Our prototype X-ray microprobe was developed alongside our existing charged-particle microbeam to address problems specific to low LET radiations, or where very precise targeting accuracy and dose delivery are required. This facility was optimised for focusing 278 eV CK X-rays; however there are a number of reasons for extending the

37

High-energy x-ray backlighter spectrum measurements using calibrated image plates  

Science Conference Proceedings (OSTI)

The x-ray spectrum between 18 and 88 keV generated by a petawatt laser driven x-ray backlighter target was measured using a 12-channel differential filter pair spectrometer. The spectrometer consists of a series of filter pairs on a Ta mask coupled with an x-ray sensitive image plate. A calibration of Fuji{trademark} MS and SR image plates was conducted using a tungsten anode x-ray source and the resulting calibration applied to the design of the Ross pair spectrometer. Additionally, the fade rate and resolution of the image plate system were measured for quantitative radiographic applications. The conversion efficiency of laser energy into silver K{alpha} x rays from a petawatt laser target was measured using the differential filter pair spectrometer and compared to measurements using a single photon counting charge coupled device.

Maddox, B.R.; Park, H.S.; Remington, B.A.; Izumi, N.; Chen, S.; Chen, C.; Kimminau, G.; Ali, Z.; Haugh, M.J.; Ma, Q. (LLNL); (NWU); (Oxford); (NSTec)

2012-10-10T23:59:59.000Z

38

High-energy x-ray backlighter spectrum measurements using calibrated image plates  

Science Conference Proceedings (OSTI)

The x-ray spectrum between 18 and 88 keV generated by a petawatt laser driven x-ray backlighter target was measured using a 12-channel differential filter pair spectrometer. The spectrometer consists of a series of filter pairs on a Ta mask coupled with an x-ray sensitive image plate. A calibration of Fuji MS and SR image plates was conducted using a tungsten anode x-ray source and the resulting calibration applied to the design of the Ross pair spectrometer. Additionally, the fade rate and resolution of the image plate system were measured for quantitative radiographic applications. The conversion efficiency of laser energy into silver K{alpha} x rays from a petawatt laser target was measured using the differential filter pair spectrometer and compared to measurements using a single photon counting charge coupled device.

Maddox, B. R.; Park, H. S.; Remington, B. A.; Izumi, N.; Chen, S.; Chen, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kimminau, G. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Ali, Z.; Haugh, M. J. [National Security Technologies, LLC, Livermore, California 94550 (United States); Ma, Q. [DND-CAT, Argonne National Laboratory, Argonne, Illinois 60439-4857 (United States)

2011-02-15T23:59:59.000Z

39

High-Energy Synchrotron X-Ray Diffraction for In-Situ Study of ...  

Science Conference Proceedings (OSTI)

At the APS high-energy x-ray beamline 11-ID-C, we have employed 115 keV ... ( Use of the Advanced Photon Source was supported by the U. S. Department of...

40

Low Dose Radiation Research Program: A Variable Energy Soft X-ray  

NLE Websites -- All DOE Office Websites (Extended Search)

Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect Melvyn Folkard Gray Cancer Institute Why This Project The aim of this project is to determine the effects of low radiation doses using a machine that makes it possible to radiate one cell at a time. Our soft X-ray microprobe can irradiate individual cells, or locations within cells with defined doses and with sub-micron precision. We can use low doses approaching that of a single electron track, which is of relevance to environmental level exposures. Much of our work is concentrating on irradiating specified individual cells within cell populations to identify "bystander responses" where non-radiated cells respond to signals from nearby radiated cells. Higher energy x-rays are being generated to extend

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Low Dose Radiation Research Program: A Variable Energy Soft X-ray  

NLE Websites -- All DOE Office Websites (Extended Search)

Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of Variable Energy Soft X-ray Microprobe to Investigate Mechanisms of the Radiation Induced Bystander Effect. Authors: Melvyn Folkard, Borivoj Vojnovic, Giuseppe Schettino, Kevin M Prise and Barry D Michael. Institutions: Gray Cancer Institute. We are currently engaged on two projects in the Low-dose Program: "Low dose studies with focused X-rays in cell and tissue models: mechanisms of bystander and genomic instability responses" (DE-FG07-99ER62877) and "Mechanistic modeling of bystander effects: An integrated theoretical and experimental approach" (DE-FG02-02ER63305). Central to both of these studies is a unique micro irradiation facility that uses ultrasoft X-rays focused to a sub micron beam for individual cell and sub cellular targeting. This facility allows us to selectively irradiate individual

42

Edge-enhanced imaging obtained with very broad energy band x-rays  

SciTech Connect

We demonstrate both theoretically and experimentally that edge-enhancement effects are produced when objects, in contact with the x-ray detector, are imaged by using very broad x-ray spectra. Radiographs of thin Al objects have been obtained with a table-top synchrotron source which generates x-rays in the energy range from a few kilo-electron-volts up to 6 MeV. Edge-enhancement effects arise from the combination of x-ray absorption (kilo-electron-volt part of the spectrum) and secondary particle emission (mega-electron-volt part of the spectrum) within the sample. The exact contribution of absorption and emission profiles in the edge-enhanced images has been calculated via Monte Carlo simulation.

Taibi, A.; Cardarelli, P.; Di Domenico, G.; Marziani, M.; Gambaccini, M. [Department of Physics, University of Ferrara, INFN Section of Ferrara, via Saragat 1, 44100 Ferrara (Italy); Hanashima, T. [Photon Production Laboratory Ltd., 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Yamada, H. [Synchrotron Light Life Science Center, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan)

2010-04-05T23:59:59.000Z

43

Compensational scintillation detector with a flat energy response for flash X-ray measurements  

SciTech Connect

To measure the intensity of flash X-ray sources directly, a novel scintillation detector with a fast time response and flat energy response is developed by combining film scintillators of doped ZnO crystal and fast organic scintillator together. Through compensation design, the dual-scintillator detector (DSD) achieved a flat energy response to X-rays from tens of keV to several MeV, and sub-nanosecond time response by coupling to ultrafast photo-electronic devices. A prototype detector was fabricated according to the theoretical design; it employed ZnO:In and EJ228 with thicknesses of 0.3 mm and 0.1 mm, respectively. The energy response of this detector was tested on monoenergetic X-ray and {gamma}-ray sources. The detector performs very well with a sensitivity fluctuation below 5% for 8 discrete energy points within the 40-250 keV energy region and for other energies of 662 keV and 1.25 MeV as well, showing good accordance with the theoretical design. Additionally, the detector works properly for the application to the flash X-ray radiation field absolute intensity measurement. This DSD may be very useful for the diagnosis of time-resolved dynamic physical processes of flash X-ray sources without knowing the exact energy spectrum.

Chen Liang; Quan Lin; Zhang Zhongbing [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, P.O. Box 69-9, Xi'an, Shaanxi 710024 (China); Ouyang Xiaoping [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, P.O. Box 69-9, Xi'an, Shaanxi 710024 (China); School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206 (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Liu Bin [School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206 (China); Liu Jinliang [Radiation Detection Research Center, Northwest Institute of Nuclear Technology, P.O. Box 69-9, Xi'an, Shaanxi 710024 (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

2013-01-15T23:59:59.000Z

44

Plasma Diagnostic Calibration and Characterizations with High Energy X-rays  

SciTech Connect

National Security Technologies High Energy X-ray (HEX) Facility is unique in the U.S. Department of Energy complex. The HEX provides fluorescent X-rays of 5 keV to 100 keV with fluence of 10^510^6 photons/cm^2/second at the desired line energy. Low energy lines can be filtered, and both filters and fluorescers can be changed rapidly. We present results of calibrating image plates (sensitivity and modulation transfer function), a Bremsstrahlung spectrometer (stacked filters and image plates), and the National Ignition Facilitys Filter- Fluorescer Experiment (FFLEX) high energy X-ray spectrometer. We also show results of a scintillator light yield and alignment study for a neutron imaging system.

Zaheer Ali

2009-06-05T23:59:59.000Z

45

Unlimited Release  

E-Print Network (OSTI)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public release, further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof,

B. L. Larsen; Barbara L. Larsen

2011-01-01T23:59:59.000Z

46

In situ X-ray Characterization of Energy Storage Materials | Stanford  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Characterization of Energy Storage Materials X-ray Characterization of Energy Storage Materials Tuesday, July 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Johanna Nelson, Stanford Postdoctoral Scholar, SSRL MSD Hard X-ray Department A key factor in the global move towards clean, renewable energy is the electrification of the automobile. Current battery technology limits EV (electric vehicles) to a short travel range, slow recharge, and costly price tag. Li-ion batteries promise the high specific capacity required for EVs to travel 300+ miles on a single charge with a number of possible earth abundant anode and cathode materials; however, set backs such as capacity fading hinder the full capability of these rechargeable batteries. In order to accurately characterize the dynamic electrochemical processes at the

47

An energy dispersive x-ray absorption spectroscopy beamline, X6A, at NSLS  

Science Conference Proceedings (OSTI)

An energy dispersive x-ray absorption spectroscopy instrument has been built at the X6A beam port of the x-ray ring at the National Synchrotron Light Source (NSLS). This instrument allows the collection of extended x-ray-absorption fine structure and/or x-ray absorption near-edge structure spectra for many elements on the millisecond time scale. The beamline employs a four-point crystal bender and a rectangular Si 220 crystal to access incident energies between 6.5 and 21 keV. Because the polychromator focuses the synchrotron beam to a narrow 100-[mu]m line, this experimental apparatus is ideal for x-ray absorption spectroscopy experiments in special environments such as at high pressures, for [ital in] [ital situ] experiments, and/or for very small samples. In this manuscript we will describe the instrument design and present data with which to evaluate the instrument. This beamline is available through the NSLS user proposal system.

Lee, P.L.; Beno, M.A.; Jennings, G.; Ramanathan, M.; Knapp, G.S.; Huang, K. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)); Bai, J. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) Department of Physics, Brooklyn College of CUNY, Brooklyn, New York 11210 (United States)); Montano, P.A. (Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States) Department of Physics, University of Illinois, Chicago, Chicago, Illinois 60680 (United States))

1994-01-01T23:59:59.000Z

48

Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method  

SciTech Connect

In this paper, we report a method of precise and fast absolute x-ray energy calibration over a wide energy range using an iterative x-ray diffraction based method. Although accurate x-ray energy calibration is indispensable for x-ray energy-sensitive scattering and diffraction experiments, there is still a lack of effective methods to precisely calibrate energy over a wide range, especially when normal transmission monitoring is not an option and complicated micro-focusing optics are fixed in place. It is found that by using an iterative algorithm the x-ray energy is only tied to the relative offset of sample-to-detector distance, which can be readily varied with high precision of the order of 10{sup -5}-10{sup -6} spatial resolution using gauge blocks. Even starting with arbitrary initial values of 0.1 A, 0.3 A, and 0.4 A, the iteration process converges to a value within 3.5 eV for 31.122 keV x-rays after three iterations. Different common diffraction standards CeO{sub 2}, Au, and Si show an energy deviation of 14 eV. As an application, the proposed method has been applied to determine the energy-sensitive first sharp diffraction peak of network forming GeO{sub 2} glass at high pressure, exhibiting a distinct behavior in the pressure range of 2-4 GPa. Another application presented is pair distribution function measurement using calibrated high-energy x-rays at 82.273 keV. Unlike the traditional x-ray absorption-based calibration method, the proposed approach does not rely on any edges of specific elements, and is applicable to the hard x-ray region where no appropriate absorption edge is available.

Hong Xinguo; Chen Zhiqiang [Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794 (United States); Duffy, Thomas S. [Department of Geosciences, Princeton University, Princeton, New Jersey 08544 (United States)

2012-06-15T23:59:59.000Z

49

X-ray Transtion Energies Database - Theoretical Trans. ...  

Science Conference Proceedings (OSTI)

... are used to generate the theory portion of ... in the calculation minimizes the energy (with relativistic ... must be done with proper nuclear charge models ...

50

Design of a triaxial residual stress measurement system using high energy x-ray diffraction  

Science Conference Proceedings (OSTI)

Previous design studies in developing concepts for residual stress measurement in engineering materials have been extended. A pre-prototype energy dispersive x-ray diffraction (EDXRD) system has been fabricated. A 300 kV radiography source is used in conjunction with an intrinsic germanium detector and a MacII/LabVIEW data acquisition system. Specimens up to 25mm equivalent steel thickness (and one meter gross dimensions) can now be evaluated. The pre-prototype system serves as the hard x-ray, bulk stress measurement component of the previously reported hybrid stress measuring system (which would include a traditional multi-angle surface measurement system using soft x-rays). In addition, a detailed study of residual stress analytical equations has been completed and applied to various metallic and ceramic materials. During the grant period, related studies were completed on stress measurement using synchrotron radiation and on a critical review of the residual stress literature. 6 refs., 3 figs.

Shackelford, J.F.; Brown, B.D.; Park, J.S.

1989-01-01T23:59:59.000Z

51

Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams  

SciTech Connect

The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; /SLAC; Bentsen, G.S.; /Rochester U.

2011-12-13T23:59:59.000Z

52

Filter-fluorescer measurement of low-voltage simulator x-ray energy spectra  

SciTech Connect

X-ray energy spectra of the Maxwell Laboratories MBS and Physics International Pulserad 737 were measured using an eight-channel filter-fluorescer array. The PHOSCAT computer code was used to calculate channel response functions, and the UFO code to unfold spectrum.

Baldwin, G.T.; Craven, R.E.

1986-01-01T23:59:59.000Z

53

THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION  

SciTech Connect

The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the {approx}10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z {approx}< 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element {sup 44}Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 Degree-Sign inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an expected orbit lifetime of 10 yr, we anticipate proposing a guest investigator program, to begin in late 2014.

Harrison, Fiona A.; Cook, W. Rick; Forster, Karl; Grefenstette, Brian W.; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Craig, William W.; Pivovaroff, Michael J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Hailey, Charles J.; Koglin, Jason E.; Mori, Kaya [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Zhang, William W. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Boggs, Steven E. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Stern, Daniel; Kim, Yunjin [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Giommi, Paolo; Perri, Matteo [ASI Science Data Center, c/o ESRIN, via G. Galilei, I-00044 Frascati (Italy); Kitaguchi, Takao, E-mail: fiona@srl.caltech.edu [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monteporzio (Italy); and others

2013-06-20T23:59:59.000Z

54

A High-Speed FPGA-Based Lossless Data Compression Design for the X-ray Spectrometer Solar Energy Spectra  

Science Conference Proceedings (OSTI)

In order to meet the real-time compression requirements effectively for the solar energy spectrum data of the X-ray spectrometer used as a key payload of Chang'E Mission, the design and implementation of the bit wise OR algorithm based on FPGA is presented ... Keywords: data compression, X-ray spectrometer, bitwise OR algorithm, FPGA

RuiMin Ma; HuanYu Wang

2011-09-01T23:59:59.000Z

55

The Application of Monochromatic Energies to Investigate Multiphase Porous Media Systems using Synchrotron X-ray Tomography  

SciTech Connect

X-ray computed tomography (CT) is becoming a useful tool for nondestructive imaging of many geoenvironmental and geotechnical systems. Conventional X-ray CT systems typically utilize a polychromatic X-ray beam. While providing a high throughput of photons, the use of polychromatic energy can make quantifying material concentrations, densities or composition very difficult or impossible without appropriate standards. Synchrotron X-rays have an extremely small angular divergence, thus permitting spatial resolution that is only limited by the optical components of the system. In addition, the ability to tune to a monochromatic X-ray energy allows better phase contrast by reducing beam hardening and allowing for elemental discrimination. In this work we will show how monochromatic energy can be used to provide high-quality images allowing for phase separation several different porous media systems thus improving our ability to quantify a range of processes and phenomena.

Ham, Kyungmin; Willson, Clinton S. (LSU)

2006-01-31T23:59:59.000Z

56

X-ray microscopy of laser fusion targets in four energy bands from 0.7 to 4.0 keV  

SciTech Connect

A grazing x-ray microscope was shown to be able to photograph the x-ray emission from laser-produced plasmas between 0.8 and 4.0 keV with a spatial resolution of approximately 3 microns. The calibration of the x-ray mirror energy response functions and the x-ray film allow absolute measurements of the spatial and spectral distribution of the x-ray emission from laser fusion targets. (MOW)

Boyle, M.J.; Seward, F.D.; Harper, T.L.; Koppel, L.N.; Pettipiece, K.J.; Ahlstrom, H.G.

1975-10-15T23:59:59.000Z

57

X-Ray Energy Responses of Silicon Tomography Detectors Irradiated with Fusion Produced Neutrons  

Science Conference Proceedings (OSTI)

In order to clarify the effects of fusion-produced neutron irradiation on silicon semiconductor x-ray detectors, the x-ray energy responses of both n- and p-type silicon tomography detectors used in the Joint European Torus (JET) tokamak (n-type) and the GAMMA 10 tandem mirror (p-type) are studied using synchrotron radiation at the Photon Factory of the National Laboratory for High Energy Accelerator Research Organization (KEK). The fusion neutronics source (FNS) of Japan Atomic Energy Research Institute (JAERI) is employed as well-calibrated D-T neutron source with fluences from 10{sup 13} to 10{sup 15} neutrons/cm{sup 2} onto these semiconductor detectors. Different fluence dependence is found between these two types of detectors; that is, (i) for the n-type detector, the recovery of the degraded response is found after the neutron exposure beyond around 10{sup 13} neutrons/cm{sup 2} onto the detector. A further finding is followed as a 're-degradation' by a neutron irradiation level over about 10{sup 14} neutrons/cm{sup 2}. On the other hand, (ii) the energy response of the p-type detector shows only a gradual decrease with increasing neutron fluences. These properties are interpreted by our proposed theory on semiconductor x-ray responses in terms of the effects of neutrons on the effective doping concentration and the diffusion length of a semiconductor detector.

Kohagura, J. [Plasma Research Centre, University of Tsukuba (Japan); Cho, T. [Plasma Research Centre, University of Tsukuba (Japan); Hirata, M. [Plasma Research Centre, University of Tsukuba (Japan); Numakura, T. [Plasma Research Centre, University of Tsukuba (Japan); Yokoyama, N. [Plasma Research Centre, University of Tsukuba (Japan); Fukai, T. [Plasma Research Centre, University of Tsukuba (Japan); Tomii, Y. [Plasma Research Centre, University of Tsukuba (Japan); Tokioka, S. [Plasma Research Centre, University of Tsukuba (Japan); Miyake, Y. [Plasma Research Centre, University of Tsukuba (Japan); Kiminami, S. [Plasma Research Centre, University of Tsukuba (Japan); Shimizu, K. [Plasma Research Centre, University of Tsukuba (Japan); Miyoshi, S. [Plasma Research Centre, University of Tsukuba (Japan); Hirano, K. [High Energy Accelerator Research Organization (Japan); Yoshida, M. [Japan Atomic Energy Research Institute (Japan); Yamauchi, M. [Japan Atomic Energy Research Institute (Japan); Kondoh, T. [Japan Atomic Energy Research Institute (Japan); Nishitani, T. [Japan Atomic Energy Research Institute (Japan)

2005-01-15T23:59:59.000Z

58

High-energy X-rays shine light on mystery of Picasso's paints | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

energy X-rays shine light on mystery of Picasso's paints energy X-rays shine light on mystery of Picasso's paints By Tona Kunz * February 6, 2013 Tweet EmailPrint LEMONT, Ill. - The Art Institute of Chicago teamed up with Argonne National Laboratory to help unravel a decades-long debate among art scholars about what kind of paint Picasso used to create his masterpieces. The results published last month in the journal Applied Physics A: Materials Science & Processing add significant weight to the widely held theory that Picasso was one of the first master painters to use common house paint rather than traditional artists' paint. That switch in painting material gave birth to a new style of art marked by canvasses covered in glossy images with marbling, muted edges, and occasional errant paint drips, but devoid of brush marks. Fast-drying enamel house paint enabled

59

High-Energy X-ray Diffraction Study of Internal Stresses in Metal Matrix  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Energy X-ray Diffraction Study of Internal Stresses in Metal Matrix High-Energy X-ray Diffraction Study of Internal Stresses in Metal Matrix Composites Metal matrix composites (MMCs) comprise an intriguing new class of materials coming to prominence in the aerospace, electronics, and automotive industries. Internal stresses play an important role in the behavior and successful application of MMCs and multi-phase alloys. These stresses form during processing and service due to transformation or thermal expansion mismatch, as well as elastic and plastic mismatch during deformation. In order to develop a deeper understanding of the thermo-mechanical behavior of these materials, it is of key interest to examine the development of mean stresses in the phases of the composite as a function of time upon changes of temperature and/or external load.

60

Regularized energy-dependent solar flare hard x-ray spectral index  

E-Print Network (OSTI)

The deduction from solar flare X-ray photon spectroscopic data of the energy dependent model-independent spectral index is considered as an inverse problem. Using the well developed regularization approach we analyze the energy dependency of spectral index for a high resolution energy spectrum provided by Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The regularization technique produces much smoother derivatives while avoiding additional errors typical of finite differences. It is shown that observations imply a spectral index varying significantly with energy, in a way that also varies with time as the flare progresses. The implications of these findings are discussed in the solar flare context.

Eduard P. Kontar; Alexander L. MacKinnon

2005-06-05T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Residual stress measurement with high energy x-rays at the Advanced Photon Source.  

SciTech Connect

Preliminary measurements with high energy x-rays from the SRI CAT 1-ID beam line at the Advanced Photon show great promise for the measurement of stress and strain using diffraction. Comparisons are made with neutron measurements. Measurements of strains in a 2 mm thick 304 stainless steel weld show that excellent strain and spatial resolutions are possible. With 200 {micro}m slits, strain resolutions of 1 x 10{sup {minus}5} were achieved.

Winholtz, R. A.; Haeffner, D. R.; Green, R.E.L.; Varma, R.; Hammond, D.

2000-03-02T23:59:59.000Z

62

'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments  

Science Conference Proceedings (OSTI)

We are developing large pixel count, fast ({>=}100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory.

Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R. [Johns Hopkins University, Department of Physics and Astronomy, Plasma Spectroscopy Group, Bloomberg Center 3400 N. Charles Street, Baltimore, Maryland 21218 (United States); Princeton University Plasma Physics Laboratory, P. O. Box 451, Princeton, New Jersey 08543 (United States)

2004-10-01T23:59:59.000Z

63

Review on Active Galactic Nuclei at hard X-ray energies  

E-Print Network (OSTI)

Hard X-ray surveys are an important tool for the study of active galactic nuclei (AGN): they provide almost an unbiased view of absorption in the extragalactic population, allow the study of spectral features such as reflection and high energy cut-off which would otherwise be unexplored and favour the discovery of some blazars at high redshift. Here, we present the absorption properties of a large sample of INTEGRAL detected AGN, including an update on the fraction of Compton thick objects. For a sub-sample of 87 sources, which represent a complete set of bright AGN, we will discuss the hard X-ray (20-100 keV) spectral properties, also in conjunction with Swift/BAT 58 month data, providing information on BAT/IBIS cross-calibration constant, average spectral shape and spectral complexity. For this complete sample, we will also present broad-band data using soft X-ray observations, in order to explore the complexity of AGN spectra both at low and high energies and to highlight the variety of shapes. Future pros...

Bassani, Loredana; Malizia, A; Panessa, F; Landi, R; Bazzano, A; Ubertini, P; Bird, A J; Stephen, J B

2013-01-01T23:59:59.000Z

64

DIFFUSE HARD X-RAY EMISSION IN STARBURST GALAXIES AS SYNCHROTRON FROM VERY HIGH ENERGY ELECTRONS  

SciTech Connect

The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e {sup {+-}}) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e {sup {+-}} at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e {sup {+-}} created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e {sup {+-}} produced between the interactions between 10 and 100 TeV {gamma}-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R {<=} 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e {sup {+-}}. We compare these models to extant radio and GeV and TeV {gamma}-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to {approx}PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including submillimeter galaxies, in the context of the FIR-X-ray relation, finding that anywhere between 0% and 16% of the total hard X-ray emission is synchrotron for different parameters, and up to 2% in the densest starbursts assuming an E {sup -2.2} injection spectrum and a diffusive escape time of 10 Myr (E/3 GeV){sup -1/2} (h/100 pc). Neutrino observations by IceCube and TeV {gamma}-ray data from HESS, VERITAS, and CTA can further constrain the synchrotron X-ray emission of starbursts. Our models do not constrain the possibility of hard, second components of primary e {sup {+-}} from sources like pulsars in starbursts, which could enhance the synchrotron X-ray emission further.

Lacki, Brian C. [Institute for Advanced Study, Princeton, NJ 08540 (United States)] [Institute for Advanced Study, Princeton, NJ 08540 (United States); Thompson, Todd A. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States)] [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States)

2013-01-01T23:59:59.000Z

65

Tunable X-ray source  

DOE Patents (OSTI)

A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

Boyce, James R. (Williamsburg, VA)

2011-02-08T23:59:59.000Z

66

X-ray Sources by Energy Recovered Linacs and Their Needed R&D  

Science Conference Proceedings (OSTI)

In this paper we review the current state of research on energy recovered linacs as drivers for future X-ray sources. For many types of user experiments, such sources may have substantial advantages compared to the workhorse sources of the present: high energy storage rings. Energy recovered linacs need to be improved beyond present experience in both energy and average current to support this application. To build an energy recovered linac based X-ray user facility presents many interesting challenges. We present summaries on the Research and Development (R&D) topics needed for full development of such a source, including the discussion at the Future Light Sources Workshop held in Gaithersburg, Maryland on September 15- 17, 2009. A #12;rst iteration of an R&D plan is presented that is founded on the notion of building a set of succeedingly larger test accelerators exploring cathode physics, high average current injector physics, and beam recirculation and beam energy recovery at high average current. Our basic conclusion is that a reviewable design of such a source can be developed after an R&D period of #12;ve to ten years.

Benson, Stephen; Douglas, David; Dowell, David; Hernandez-Garcia, Carlos; Kayran, D; Krafft, Geoffrey; Legg, Robert; Moog, E; Obina, T; Rimmer, Robert

2011-05-01T23:59:59.000Z

67

Energy distribution measurement of narrow-band ultrashort x-ray beams via K-edge filters subtraction  

Science Conference Proceedings (OSTI)

The characterization of novel x-ray sources includes the measurement of the photon flux and the energy distribution of the produced beam. The aim of BEATS2 experiment at the SPARC-LAB facility of the INFN National Laboratories of Frascati (Rome, Italy) is to investigate possible medical applications of an x-ray source based on Thomson relativistic back-scattering. This source is expected to produce a pulsed quasi-monochromatic x-ray beam with an instantaneous flux of 10{sup 20} ph/s in pulses 10 ps long and with an average energy of about 20 keV. A direct measurement of energy distribution of this beam is very difficult with traditional detectors because of the extremely high photon flux. In this paper, we present a method for the evaluation of the energy distribution of quasi-monochromatic x-ray beams based on beam filtration with K-edge absorbing foils in the energy range of interest (16-22 keV). The technique was tested measuring the energy distribution of an x-ray beam having a spectrum similar to the expected one (SPARC-LAB Thomson source) by using a tungsten anode x-ray tube properly filtered and powered. The energy distribution obtained has been compared with the one measured with a HPGe detector showing very good agreement.

Cardarelli, Paolo; Di Domenico, Giovanni; Marziani, Michele; Mucollari, Irena; Pupillo, Gaia; Sisini, Francesco; Taibi, Angelo; Gambaccini, Mauro [Dipartimento di Fisica, Universita di Ferrara and INFN - Ferrara, via Saragat 1, I-44122 Ferrara (Italy)

2012-10-01T23:59:59.000Z

68

Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay  

SciTech Connect

Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

Worley, Christopher G [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

69

A Fabry-Perot interferometer for sub-meV x-ray energy resolution  

Science Conference Proceedings (OSTI)

The optical theory of Fabry-Perot interferometers (FPIs) for x rays using dynamically diffracting thin perfect crystals as reflectors is developed. Application to a device using high diffraction orders in silicon crystals of thickness of the order of 100 {mu}m or more shows that energy resolutions of the order of a tenth of a meV are achievable. The effect that various features, such as gap and mirror thickness, lattice mismatches, etc., have on the FPI resonances is studied. {copyright} {ital 1996 American Institute of Physics.}

Caticha, A.; Aliberti, K. [Department of Physics, The University at Albany-SUNY, Albany, NY 12222 (United States)] [Department of Physics, The University at Albany-SUNY, Albany, NY 12222 (United States); Caticha-Ellis, S. [Departamento de Materiais, Faculdade de Engenharia Mecanica, Universidade Estadual de Campinas, Campinas, S.P. 13083-970 (Brazil)] [Departamento de Materiais, Faculdade de Engenharia Mecanica, Universidade Estadual de Campinas, Campinas, S.P. 13083-970 (Brazil)

1996-09-01T23:59:59.000Z

70

Low-energy x-ray emission from magnetic-fusion plasmas  

SciTech Connect

Complex, transient, spatially inhomogeneous tokamak plasmas require careful diagnosis. As the reactor regime is approached, soft x rays become more important as a versatile diagnostic tool and an energy-loss mechanism. Continuum emission provides a measure of electron temperature and light impurity content. Impurity lines serve as a probe for ion and electron temperature, impurity behavior, and radiative cooling. The entire spectrum yields vital information on instabilities and disruptions. The importance of impurities is illustrated by the extensive efforts toward understanding impurity production, effects, and control. Minute heavy impurity concentrations can prevent reactor ignition. Si(Li) - detector arrays give a broad overview of continuum and line x-ray emission (.3 to 50 keV) with moderate energy (200 eV) and time (50 ms) resolution. Bragg crystal and grating spectrometers provide detailed information on impurity lines with moderate to excellent (E/..delta..E = 100 to 23,000) resolving power and 1 to 50 ms time resolution. Imaging detector arrays measure rapid (approx. 10 ..mu..s) fluctuations due to MHD instabilities and probe impurity behavior and radiative cooling. Future tokamaks require more diagnostic channels to avoid spatial scanning, higher throughput for fast, single-shot diagnosis, increased spectral information per sample period via fast scanning or use of multi-element detectors with dispersive elements, and radiation shielding and hardening of detectors.

Hill, K.W.; Bitter, M.; Eames, D.; von Goeler, S.; Goldman, M.; Sauthoff, N.R.; Silver, E.

1982-04-01T23:59:59.000Z

71

High-energy x-ray response of photographic films: models and measurement  

SciTech Connect

A detailed characterization has been established for the new, high-sensitivity double-emulsion Kodak Direct Exposure Film (DEF). The experimental data base consisted of density-versus-exposure measurements that were duplicated at several laboratories for x radiations in the 1000-10,000-eV region. The absortpion and geometric properties of the film were determined, which, along with the density-exposure data, permitted the application of a relatively simple analytical model description for the optical density, D, as a function of the intensity, I (photons/..mu..m/sup 2/), the photon energy, E (eV), and the angle of incidence, 0, of the exposing radiation. A detailed table is presented for the I values corresponding to optical densities in the 0.2--2.0 range and to photon energies, E (eV), in the 1000-10,000-eV region. Experimentally derived conversion relations have been obtained that allow the density values to be expressed as either diffuse of specular. Also presented here is a similar characterization of the complementary, single-emulsion x-ray film, Kodak SB-5 (or 392). For the 1000-10,000-eV region this x-ray film is appreciably less sensitive but has higher resolution.

Henke, B.L.; Uejio, J.Y.; Stone, G.F.; Dittmore, C.H.; Fujiwara, F.G.

1986-11-01T23:59:59.000Z

72

THE NEXT GENERATION ATLAS OF QUASAR SPECTRAL ENERGY DISTRIBUTIONS FROM RADIO TO X-RAYS  

SciTech Connect

We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

Shang Zhaohui; Li Jun; Xie Yanxia [Department of Physics, Tianjin Normal University, Tianjin 300387 (China); Brotherton, Michael S.; Cales, Sabrina L.; Dale, Daniel A.; Runnoe, Jessie C.; Kelly, Benjamin J. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Wills, Beverley J.; Wills, D. [Department of Astronomy, University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712 (United States); Green, Richard F. [Large Binocular Telescope Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Nemmen, Rodrigo S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gallagher, Sarah C. [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Ganguly, Rajib [Department of Computer Science, Engineering, and Physics, University of Michigan-Flint, 213 Murchie Science Building, 303 Kearsley Street, Flint, MI 48502 (United States); Hines, Dean C. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Kriss, Gerard A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Tang, Baitian, E-mail: zshang@gmail.com [Department of Physics, 1245 Webster Hall, Washington State University, Pullman, WA 99164-2814 (United States)

2011-09-01T23:59:59.000Z

73

X-ray Imaging Shows Feather Patterns of First Birds | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-ray Imaging Shows Feather Patterns of First Birds X-ray Imaging Shows Feather Patterns of First Birds X-ray Imaging Shows Feather Patterns of First Birds June 30, 2011 - 2:56pm Addthis A collage of images. Top, optical images of: blue jay feather, squid, and fossil fish with feather. Bottom: x-ray images showing the distribution of copper (red) in the same organisms. | Photo Courtesy of Gregory Stewart, SLAC National Accelerator Laboratory A collage of images. Top, optical images of: blue jay feather, squid, and fossil fish with feather. Bottom: x-ray images showing the distribution of copper (red) in the same organisms. | Photo Courtesy of Gregory Stewart, SLAC National Accelerator Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? Through x-ray fluorescent imaging techniques developed at the

74

Using High Energy X-ray Experiments and Crystal-Based ...  

Science Conference Proceedings (OSTI)

... Magnetic Composite Materials X-Ray Studies of Structural Effects Induced by Pulsed (30 Tesla), High Magnetic Fields at the Advanced Photon Source...

75

RHESSI MICROFLARE STATISTICS. II. X-RAY IMAGING, SPECTROSCOPY, AND ENERGY DISTRIBUTIONS I. G. Hannah, S. Christe,1  

E-Print Network (OSTI)

RHESSI MICROFLARE STATISTICS. II. X-RAY IMAGING, SPECTROSCOPY, AND ENERGY DISTRIBUTIONS I. G distribution of RHESSI flares and compare it to previous thermal energy distributions of transient events. We flares down to nanoflares. The fre- quency distribution of the energy in these events has been studied

California at Berkeley, University of

76

Harmonic Generation at Lower Electron Energies for a Hard X-ray FEL  

SciTech Connect

There are several schemes currently being investigated to pre-bunch the electron beam and step the coherent bunching up to higher harmonics, all which require modulator sections which introduce additional energy modulation. X-ray FELs operate in a regime where the FEL parameter, {rho} is equal to or less than the effective energy spread introduced from the emittance in the electron beam. Because of this large effective energy spread, the energy modulation introduced from harmonic generation schemes would seriously degrade FEL performance. This problem can be mitigated by incorporating the harmonic generation scheme at a lower electron kinetic energy than the energy at the final undulator. This will help because the effective energy spread from emittance is reduced at lower energies, and can be further reduced by making the beam transversely large. Then the beam can be squeezed down slowly enough in the subsequent accelerator sections so that geometric debunching is mitigated. The beam size inside the dispersive chicanes and in the accelerator sections must be carefully optimized to avoid debunching, and each subharmonic modulator section must generate enough energy modulation to overcome the SASE noise without significantly increasing the gain length in the final undulator. Here we show analytical results that demonstrate the feasibility of this harmonic pre-bunching scheme.

Marksteiner, Quinn R. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

77

X-ray lithography source  

SciTech Connect

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

1991-01-01T23:59:59.000Z

78

X-ray lithography source  

DOE Patents (OSTI)

A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.

1991-12-31T23:59:59.000Z

79

CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. I. IN TWO FREQUENCY OR ENERGY RANGES  

SciTech Connect

Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao and Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang and Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

Song Qiwu; Huang Guangli [Purple Mountain Observatory, Nanjing 210008 (China); Nakajima, Hiroshi, E-mail: songqw@pmo.ac.cng, E-mail: lhuang@pmo.ac.cn, E-mail: nakaji15@dia.janis.or.jp [Nobeyama Solar Radio Observatory, Nobeyama, Minamisaku, Nagano 384-1305 (Japan)

2011-06-20T23:59:59.000Z

80

Synchrotron X-ray Measurements  

Science Conference Proceedings (OSTI)

... fine structure (EXAFS) spectroscopy; (3) variable kinetic energy X-ray ... advanced materials is critical to the development and optimization of products ...

2012-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hand-held X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

Hand-held X-Ray Fluorescence (XRF) Hand-held X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Hand-held X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Hand-held X-Ray Fluorescence (XRF): Hand-held X-Ray Fluorescence is a portable analytical technique derived from the instrumentation used in traditional lab-based XRF analysis. The technique is used for bulk chemical analysis of rock, mineral, and sediment

82

Space X-ray Solves Mysteries of Black Holes | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space X-ray Solves Mysteries of Black Holes Space X-ray Solves Mysteries of Black Holes Space X-ray Solves Mysteries of Black Holes March 13, 2013 - 3:57pm Addthis Space X-ray Solves Mysteries of Black Holes Anne M. Stark Senior Public Information Officer, Lawrence Livermore National Laboratory "We know that black holes have a strong link to their host galaxy." Astrophysicist Bill Craig, a member of the LLNL team An international team including Lawrence Livermore National Laboratory scientists has definitively measured the spin rate of a supermassive black hole for the first time. The findings, made by the two X-ray space observatories, NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) and the European Space Agency's XMM-Newton, solve a long-standing debate about similar measurements in

83

The World's First Free-Electron X-ray Laser | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Free-Electron X-ray Laser First Free-Electron X-ray Laser The World's First Free-Electron X-ray Laser August 17, 2010 - 6:19pm Addthis The World's First Free-Electron X-ray Laser John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Yesterday, Secretary Chu participated in the dedication of the world's first free-electron and most powerful X-ray laser, the Linac Coherent Light Source (LCLS). In light of this occasion (pun intended), we posted an in-depth look at the innovative nature of this new instrument and its potential to tackle some of life's biggest mysteries. The Secretary seemed just as geeked about the possibilities of the LCLS, stating that "this is a new instrument that will enable us to see the structure of materials that we could not determine by any other means ... Knowing those

84

The X-ray afterglow flat segment in short GRB 051221A: Energy injection from a millisecond magnetar?  

E-Print Network (OSTI)

The flat segment lasting $\\sim 10^4$ seconds in the X-ray afterglow of GRB051221A represents the first clear case of strong energy injection in the external shock of a short GRB afterglow. In this work, we show that a millisecond pulsar with dipole magnetic field $\\sim 10^{14}$ Gauss could well account for that energy injection. The good quality X-ray flat segment thus suggests that the central engine of this short burst may be a millisecond magnetar.

Yizhong Fan; Dong Xu

2006-05-18T23:59:59.000Z

85

Cosmological constraints on Chaplygin gas dark energy from galaxy clusters X-ray and supernova data  

E-Print Network (OSTI)

The recent observational evidences for the present accelerated stage of the Universe have stimulated renewed interest for alternative cosmologies. In general, such models contain an unknown negative-pressure dark component that explains the supernova results and reconciles the inflationary flatness prediction ($Omega_{rm{T}} = 1$) and the cosmic microwave background measurements with the dynamical estimates of the quantity of matter in the Universe ($Omega_{rm{m}} simeq 0.3 pm 0.1$). In this paper we study some observational consequences of a dark energy candidate, the so-called generalized Chaplygin gas which is characterized by an equation of state $p_{C} = -A/rho_{C}^{alpha}$, where $A$ and $alpha$ are positive constants. We investigate the prospects for constraining the equation of state of this dark energy component by combining Chandra observations of the X-ray luminosity of galaxy clusters, independent measurements of the baryonic matter density, the latest measurements of the Hubble parameter as given...

Cunha, J V; Lima, J A S

2004-01-01T23:59:59.000Z

86

Relationship between pulse width and energy in GRB 060124: from X-ray to gamma-ray bands  

E-Print Network (OSTI)

GRB 060124 is the first event that both prompt and afterglow emission were observed simultaneously by the three \\emph{Swift} instruments. Its main peak also triggered Konus-Wind and HETE-II. Therefore, investigation on both the temporal and spectral properties of the prompt emission can be extended to X-ray bands. We perform a detailed analysis on the two well identified pulses of this burst, and find that the pulses are narrower at higher energies, and both X-rays and gamma-rays follow the same $w - E$ relation for an individual pulse. However, there is no a universal power-law index of the $w - E$ relation among pulses. We find also that the rise-to-decay ratio $r/d$ seems not to evolve with $E$ and the $r/d$ values are well consistent with that observed in typical GRBs. The broadband spectral energy distribution also suggest that the X-rays are consistent with the spectral behavior of the gamma-rays. These results indicates that the X-ray emission tracks the gamma-ray emission and the emissions in the two energy bands are likely to be originated from the same physical mechanism.

Fu-Wen Zhang; Yi-Ping Qin

2008-06-07T23:59:59.000Z

87

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

2002-01-01T23:59:59.000Z

88

High energy resolution inelastic x-ray scattering at the SRI-CAT  

SciTech Connect

This report is a combination of vugraphs and two papers. The vugraphs give information on the beamline at the APS for IXS and the science addressable by IXS. They also cover the 10 milli-eV resolution spectrometer and the 200 milli-eV resolution spectrometer. The first paper covers the performance of the focusing Ge(444) backscattering analyzers for the inelastic x-ray scattering. The second paper discusses inelastic x-ray scattering from TiC and Ti single crystals.

Macrander, A.T.

1996-08-01T23:59:59.000Z

89

Compact x-ray source and panel  

SciTech Connect

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

Sampayon, Stephen E. (Manteca, CA)

2008-02-12T23:59:59.000Z

90

Copper Ridges Nearly Double X-ray Sensor Performance  

Science Conference Proceedings (OSTI)

... Physics Letters,* can measure X-ray energies with an ... X-rays and measure the energy based on ... by NASA and the NIST Office of Microelectronics ...

2011-10-03T23:59:59.000Z

91

Sandia National Laboratories X-ray Tube with Magnetic Electron ...  

... for the U.S. Department of Energys National ... high average power large area X-ray tube provides increased X-ray generation efficiency through ...

92

High Energy X-Ray System Specification for the Device Assembly Facility (DAF) at the NNSS  

SciTech Connect

This specification establishes requirements for an X-Ray System to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS) to support radiography of experimental assemblies for Laboratory (LANL, LLNL, SNL) programs conducting work at the NNSS.

Fry, David A. [Los Alamos National Laboratory

2012-08-10T23:59:59.000Z

93

Radiological Worker Training - Radiological Safety Training for Radiation Producing (X-Ray) Devices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C C December 2008 DOE HANDBOOK Radiological Worker Training Radiological Safety Training for Radiation Producing (X-Ray) Devices U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Radiological Worker Training - Appendix C Radiological Safety Training for Radiation-Producing (X-Ray) Devices DOE-HDBK-1130-2008 Program Management

94

Pulse pileup statistics for energy discriminating photon counting x-ray detectors  

SciTech Connect

Purpose: Energy discriminating photon counting x-ray detectors can be subject to a wide range of flux rates if applied in clinical settings. Even when the incident rate is a small fraction of the detector's maximum periodic rate N{sub 0}, pulse pileup leads to count rate losses and spectral distortion. Although the deterministic effects can be corrected, the detrimental effect of pileup on image noise is not well understood and may limit the performance of photon counting systems. Therefore, the authors devise a method to determine the detector count statistics and imaging performance. Methods: The detector count statistics are derived analytically for an idealized pileup model with delta pulses of a nonparalyzable detector. These statistics are then used to compute the performance (e.g., contrast-to-noise ratio) for both single material and material decomposition contrast detection tasks via the Cramer-Rao lower bound (CRLB) as a function of the detector input count rate. With more realistic unipolar and bipolar pulse pileup models of a nonparalyzable detector, the imaging task performance is determined by Monte Carlo simulations and also approximated by a multinomial method based solely on the mean detected output spectrum. Photon counting performance at different count rates is compared with ideal energy integration, which is unaffected by count rate. Results: The authors found that an ideal photon counting detector with perfect energy resolution outperforms energy integration for our contrast detection tasks, but when the input count rate exceeds 20%N{sub 0}, many of these benefits disappear. The benefit with iodine contrast falls rapidly with increased count rate while water contrast is not as sensitive to count rates. The performance with a delta pulse model is overoptimistic when compared to the more realistic bipolar pulse model. The multinomial approximation predicts imaging performance very close to the prediction from Monte Carlo simulations. The monoenergetic image with maximum contrast-to-noise ratio from dual energy imaging with ideal photon counting is only slightly better than with dual kVp energy integration, and with a bipolar pulse model, energy integration outperforms photon counting for this particular metric because of the count rate losses. However, the material resolving capability of photon counting can be superior to energy integration with dual kVp even in the presence of pileup because of the energy information available to photon counting. Conclusions: A computationally efficient multinomial approximation of the count statistics that is based on the mean output spectrum can accurately predict imaging performance. This enables photon counting system designers to directly relate the effect of pileup to its impact on imaging statistics and how to best take advantage of the benefits of energy discriminating photon counting detectors, such as material separation with spectral imaging.

Wang, Adam S.; Harrison, Daniel; Lobastov, Vladimir; Tkaczyk, J. Eric [Departments of Electrical Engineering and Radiology, Stanford University, Stanford, California 94305 (United States); GE Global Research Center, Niskayuna, New York 12309 (United States)

2011-07-15T23:59:59.000Z

95

Multi-energy x-ray imaging and sensing for diagnostic and control of the burning plasma  

Science Conference Proceedings (OSTI)

New diagnostic and sensor designs are needed for future burning plasma (BP) fusion experiments, having good space and time resolution and capable of prolonged operation in the harsh BP environment. We evaluate the potential of multi-energy x-ray imaging with filtered detector arrays for BP diagnostic and control. Experimental studies show that this simple and robust technique enables measuring with good accuracy, speed, and spatial resolution the T{sub e} profile, impurity content, and MHD activity in a tokamak. Applied to the BP this diagnostic could also serve for non-magnetic sensing of the plasma position, centroid, ELM, and RWM instability. BP compatible x-ray sensors are proposed using 'optical array' or 'bi-cell' detectors.

Stutman, D.; Tritz, K.; Finkenthal, M. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

2012-10-15T23:59:59.000Z

96

The Optical and Ultraviolet Spectral Energy Distributions of Short Period Black Hole X-ray Transients in Outburst  

E-Print Network (OSTI)

We compile optical and UV spectra of a sample of 'typical' short period black hole X-ray transients in outburst. We also survey determinations of interstellar extinction and distance in order to deredden spectra and compare absolute fluxes. Hence we perform a comparative study of the broad-band spectral energy distributions (SED). We find that given such a homogeneous sample of typical sources, the optical SEDs form a relatively uniform set, all exhibiting quasi-power-law spectra with Fnu proportional to nu^alpha, where 0.5source, with irradiative heating dominating over viscous. The UV-hard state is well described by a viscously heated disk, although this requires very high mass flow rates in the case of Nova Muscae. Alternatively, a UV-hard spectrum can be produced if the disk is illuminated by a vertically extended X-ray source such as a central scattering corona or jet. [Abridged

R. I. Hynes

2004-12-20T23:59:59.000Z

97

Calibration of X-ray detectors in the 8 to 115 keV energy range and their application to diagnostics on the National Ignition Facility  

Science Conference Proceedings (OSTI)

The calibration of X-ray diagnostics is of paramount importance to the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). National Security Technologies LLC (NSTec) fills this need by providing a wide variety of calibration and diagnostic development services in support of the ongoing research efforts at NIF. The X-ray source in the High Energy X-ray lab utilizes induced fluorescence in a variety of metal foils to produce a beam of characteristic X rays ranging from 8 to 111 keV. Presented are the methods used for calibrating a High Purity Germanium detector, which has been absolutely calibrated using radioactive check sources, compared against a silicon photodiode calibrated at Physikalisch Technische Bundesanstalt (PTB). Also included is a limited presentation of results from the recent calibration of the upgraded Filter Fluorescer X ray Spectrometer.

J. J. Lee, M. J. Haugh, G. LaCaille, and P. Torres

2012-10-01T23:59:59.000Z

98

NIST: X-Ray Mass Attenuation Coefficients  

Science Conference Proceedings (OSTI)

... NIST reserves the right to charge for these data in the ... ?/? and the mass energy-absorption coefficient ... The tables cover energies of the photon (x-ray ...

2011-12-09T23:59:59.000Z

99

High Energy Resolution Fluorescence Detection X-Ray Absorption Spectroscopy: Detection of Adsorption Sites in Supported Metal Catalysts  

Science Conference Proceedings (OSTI)

High energy resolution fluorescence detection (HERFD) X-ray adsorption spectroscopy (XAS) is demonstrated as a new tool to identify the geometry of metal adsorption sites and the orbitals involved in bonding. The type of CO adsorption site on a nanoparticular Pt-Al2O3 catalyst is determined. The orbitals involved in the Pt - CO bonding are identified using theoretical FEFF8.0 calculations. In situ application of HERFD XAS is applicable to a large number of catalytic systems and will provide fundamental insights in structure - performance relationships.

Tromp, Moniek [University of Southampton, School of Chemistry, Highfield, Southampton, SO17 1BJ (United Kingdom); Bokhoven, Jeroen A. van [Institute for chemical and bioengineering ETH Zurich (Switzerland); Safonova, Olga V.; Glatzel, Pieter [ESRF, Grenoble (France); Groot, Frank M. F. de [Utrecht University, Utrecht (Netherlands); Evans, John [University of Southampton, School of Chemistry, Highfield, Southampton, SO17 1BJ (United Kingdom); Diamond Light Source, Didcot (United Kingdom)

2007-02-02T23:59:59.000Z

100

Highly sensitive x-ray detectors in the low-energy range on n-type 4H-SiC epitaxial layers  

Science Conference Proceedings (OSTI)

Schottky diodes on n-type 4H-SiC epitaxial layers have been fabricated for low-energy x-ray detection. The detectors were highly sensitive to soft x-rays and showed improved response compared to the commercial SiC UV photodiodes. Current-voltage characteristics at 475 K showed low leakage current revealing the possibility of high temperature operation. The high quality of the epi-layer was confirmed by x-ray diffraction and chemical etching. Thermally stimulated current measurements performed at 94-550 K revealed low density of deep levels which may cause charge trapping. No charge trapping on detectors' responsivity in the low x-ray energy was found.

Mandal, Krishna C.; Muzykov, Peter G. [Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208 (United States); Russell Terry, J. [Space Science and Applications Group (ISR-1), Intelligence and Space Research Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

2000-01-01T23:59:59.000Z

102

A High-Energy, Ultrashort-Pulse X-Ray System for the Dynamic Study of Heavy, Dense Materials  

Science Conference Proceedings (OSTI)

Thomson-scattering based x-ray radiation sources, in which a laser beam is scattered off a relativistic electron beam resulting in a high-energy x-ray beam, are currently being developed by several groups around the world to enable studies of dynamic material properties which require temporal resolution on the order of tens of femtoseconds to tens of picoseconds. These sources offer pulses that are shorter than available from synchrotrons, more tunable than available from so-called Ka sources, and more penetrating and more directly probing than ultrafast lasers. Furthermore, Thomson-scattering sources can scale directly up to x-ray energies in the few MeV range, providing peak brightnesses far exceeding any other sources in this regime. This dissertation presents the development effort of one such source at Lawrence Livermore National Laboratory, the Picosecond Laser-Electron InterAction for the Dynamic Evaluation of Structures (PLEIADES) project, designed to target energies from 30 keV to 200 keV, with a peak brightness on the order of 10{sup 18} photons {center_dot} s{sup -1} {center_dot} mm{sup -2} {center_dot} mrad{sup -2} {center_dot} 0.01% bandwidth{sup -1}. A 10 TW Ti:Sapphire based laser system provides the photons for the interaction, and a 100 MeV accelerator with a 1.6 cell S-Band photoinjector at the front end provides the electron beam. The details of both these systems are presented, as is the initial x-ray production and characterization, validating the theory of Thomson scattering. In addition to the systems used to enable PLEIADES, two alternative systems are discussed. An 8.5 GHz X-Band photoinjector, capable of sustaining higher accelerating gradients and producing lower emittance electron beams in a smaller space than the S-Band gun, is presented, and the initial operation and commissioning of this gun is presented. Also, a hybrid chirped-pulse amplification system is presented as an alternative to the standard regenerative amplifier technology in high-power ultrafast laser systems. This system combines an optical-parametric chirped-pulse amplification (OPCPA) system with a titanium:sapphire-based four-pass amplifier to provide the high pre-pulse contrast and ease of assembly of an OPCPA using a commercial pump laser while avoiding the loss of efficiency such a system would normally entail.

Gibson, D J

2004-09-17T23:59:59.000Z

103

X-ray data booklet. Revision  

SciTech Connect

A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

Vaughan, D. (ed.)

1986-04-01T23:59:59.000Z

104

High-Energy X-ray Studies of Real Materials Under Real Conditions and in Real Time  

SciTech Connect

High-energy x-rays from 3rd generation synchrotron sources, including the APS, possess a unique combination of high penetration power and high spatial, reciprocal space, and temporal resolution. These characteristics can be exploited to non-destructively measure phase, texture and strain distributions under extreme environments including thermo-mechanical loading, high-pressure, irradiation and supercritical environments. Over the past several years, the 1-ID beamline has developed a number of programs for these purposes, namely (i) high-energy diffraction microscopy, in which grain and sub-grain volumes are mapped in polycrystalline aggregates, and (ii) combined small-and wide-angle x-ray scattering which permits information over a broad range of length scales to be collected from the same (micron-level) volume. These programs have been increasingly used to test and extend predictive simulations of materials behavior over size scales ranging from nm to mm. Select studies will be presented including nucleation and growth of nanomaterials, void and structural evolution in complex composites under thermo-mechanical and irradiated environments, and microstructural changes in layered systems including thermal-barrier coatings, batteries and fuel cells. Finally, extension of these programs, through the planned APS upgrade, to higher spatio-temporal resolution will be described.

Almer, Jonathan (ANL)

2011-05-11T23:59:59.000Z

105

Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters  

E-Print Network (OSTI)

We present constraints on the mean matter density, Omega_m, dark energy density, Omega_de, and the dark energy equation of state parameter, w, using Chandra measurements of the X-ray gas mass fraction (fgas) in 42 hot (kT>5keV), X-ray luminous, dynamically relaxed galaxy clusters spanning the redshift range 0.05energy has a negligible effect on the measurements, we measure Omega_m=0.28+-0.06 (68% confidence, using standard priors on the Hubble Constant, H_0, and mean baryon density, Omega_bh^2). Analyzing the data for all 42 clusters, employing only weak priors on H_0 and Omega_bh^2, we obtain a similar result on Omega_m and detect the effects of dark energy on the distances to the clusters at ~99.99% confidence, with Omega_de=0.86+-0.21 for a non-flat LCDM model. The detection of dark energy is comparable in significance to recent SNIa studies and represents strong, independent evidence for cosmic acceleration. Systematic scatter remains undetected in the fgas data, despite a weighted mean statistical scatter in the distance measurements of only ~5%. For a flat cosmology with constant w, we measure Omega_m=0.28+-0.06 and w=-1.14+-0.31. Combining the fgas data with independent constraints from CMB and SNIa studies removes the need for priors on Omega_bh^2 and H_0 and leads to tighter constraints: Omega_m=0.253+-0.021 and w=-0.98+-0.07 for the same constant-w model. More general analyses in which we relax the assumption of flatness and/or allow evolution in w remain consistent with the cosmological constant paradigm. Our analysis includes conservative allowances for systematic uncertainties. The small systematic scatter and tight constraints bode well for future dark energy studies using the fgas method. (Abridged)

S. W. Allen; D. A. Rapetti; R. W. Schmidt; H. Ebeling; G. Morris; A. C. Fabian

2007-06-01T23:59:59.000Z

106

GRPANL: a program for fitting complex peak groupings for gamma and x-ray energies and intensities  

SciTech Connect

GRPANL is a general-purpose peak-fitting program that calculates gamma-ray and x-ray energies and intensities from a given spectral region. The program requires that the user supply input information such as the first and last channels of the region, the channels to be used as pre- and post-region background, the system gain and zero-intercept, and a list of approximate energy values at which peaks occur in the region. Because the peak position and peak-shape parameters enter nonlinearly into the peak-fitting algorithm, an iterative least-square procedure is used in the fitting process. The program iterates until either all convergence criteria are met or ten iterations have elapsed. The code described here allows for twenty free parameters and a region as large as 240 data channels. This code runs on an LSI-11 computer with 32K memory and disk-storage capability.

Gunnink, R.; Ruhter, W.D.

1980-01-01T23:59:59.000Z

107

Energy band alignment of InGaZnO{sub 4}/Si heterojunction determined by x-ray photoelectron spectroscopy  

SciTech Connect

X-ray photoelectron spectroscopy was utilized to determine the valence band offset ({Delta}E{sub V}) of the InGaZnO{sub 4} (IGZO)/Si heterojunction. The IGZO films were grown on Si (100) using radio frequency magnetron sputtering. A value of {Delta}E{sub V} = 2.53 eV was obtained by using In 3d{sub 5/2}, Ga 2p{sub 3/2} core energy levels as references. Taking into consideration the experimental band gap of 3.20 eV of the IGZO, this would result in a conduction band offset {Delta}E{sub C} = 0.45 eV in this heterostructure.

Xie Zhangyi; Lu Hongliang; Xu Saisheng; Geng Yang; Sun Qingqing; Ding Shijin; Zhang, David Wei [State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai 200433 (China)

2012-12-17T23:59:59.000Z

108

X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size  

DOE Patents (OSTI)

An X-ray laser (10), and related methodology, are disclosed wherein an X-ray laser target (12) is illuminated with a first pulse of optical laser radiation (14) of relatively long duration having scarcely enough energy to produce a narrow and linear cool plasma of uniform composition (38). A second, relatively short pulse of optical laser radiation (18) is uniformly swept across the length, from end to end, of the plasma (38), at about the speed of light, to consecutively illuminate continuously succeeding portions of the plasma (38) with optical laser radiation having scarcely enough energy to heat, ionize, and invert them into the continuously succeeding portions of an X-ray gain medium. This inventive double pulse technique results in a saving of more than two orders of magnitude in driving optical laser energy, when compared to the conventional single pulse approach.

Rosen, Mordecai D. (Berkeley, CA); Matthews, Dennis L. (El Granada, CA)

1991-01-01T23:59:59.000Z

109

X-Ray Topography  

Science Conference Proceedings (OSTI)

Sep 17, 2009 ... Stress Mapping Analysis by Ray Tracing (SMART): A New Technique ... technique of synchrotron X-ray topography, where a grid made out of...

110

X-ray transmissive debris shield  

DOE Patents (OSTI)

A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

Spielman, Rick B. (Albuquerque, NM)

1994-01-01T23:59:59.000Z

111

X-ray lasers and methods utilizing two component driving illumination provided by optical laser means of relatively low energy and small physical size  

DOE Patents (OSTI)

It is an object of this invention to provide an X-ray laser that is driven by an optical laser or lasers of relatively low energy and small physical size. Another object of this invention is to provide a method of driving an X-ray laser with an optical laser or lasers of relatively low energy and small physical size. Additional objects, advantages and novel features of the invention are set forth in part in the description included in this report. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims. 8 figs.

Rosen, M.D.; Matthews, D.L.

1989-10-18T23:59:59.000Z

112

CANDIDATE X-RAY-EMITTING OB STARS IN THE CARINA NEBULA IDENTIFIED VIA INFRARED SPECTRAL ENERGY DISTRIBUTIONS  

Science Conference Proceedings (OSTI)

We report the results of a new survey of massive, OB stars throughout the Carina Nebula using the X-ray point source catalog provided by the Chandra Carina Complex Project (CCCP) in conjunction with infrared (IR) photometry from the Two Micron All-Sky Survey and the Spitzer Space Telescope Vela-Carina survey. Mid-IR photometry is relatively unaffected by extinction, hence it provides strong constraints on the luminosities of OB stars, assuming that their association with the Carina Nebula, and hence their distance, is confirmed. We fit model stellar atmospheres to the optical (UBV) and IR spectral energy distributions (SEDs) of 182 OB stars with known spectral types and measure the bolometric luminosity and extinction for each star. We find that the extinction law measured toward the OB stars has two components: A{sub V} = 1-1.5 mag produced by foreground dust with a ratio of total-to-selective absorption R{sub V} = 3.1 plus a contribution from local dust with R{sub V} > 4.0 in the Carina molecular clouds that increases as A{sub V} increases. Using X-ray emission as a strong indicator of association with Carina, we identify 94 candidate OB stars with L{sub bol} {approx}> 10{sup 4} L{sub sun} by fitting their IR SEDs. If the candidate OB stars are eventually confirmed by follow-up spectroscopic observations, the number of cataloged OB stars in the Carina Nebula will increase by {approx}50%. Correcting for incompleteness due to OB stars falling below the L{sub bol} cutoff or the CCCP detection limit, these results potentially double the size of the young massive stellar population.

Povich, Matthew S.; Townsley, Leisa K.; Broos, Patrick S.; Getman, Konstantin V. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Gagne, Marc [Department of Geology and Astronomy, West Chester University, West Chester, PA 19383 (United States); Babler, Brian L.; Meade, Marilyn R.; Townsend, Richard H. D. [Department of Astronomy, University of Wisconsin, 475 N. Charter Street, Madison, WI 53706 (United States); Indebetouw, Remy; Majewski, Steven R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Robitaille, Thomas P., E-mail: povich@astro.psu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-05-01T23:59:59.000Z

113

X-ray beamsplitter  

DOE Patents (OSTI)

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

114

The Discovery of Broad P Cygni X-ray Lines from Circinus X-1 with the Chandra High Energy Transmission Grating Spectrometer  

E-Print Network (OSTI)

We present the first grating-resolution X-ray spectra of the X-ray binary Cir X-1, obtained with the High Energy Transmission Grating Spectrometer on Chandra. These reveal a rich set of lines from H-like and/or He-like Ne, Mg, Si, S and Fe detected with a high signal-to-noise ratio. The lines are broad (+/- 2000 km/s) and show P Cygni profiles. The absorption components of the lines extend to low velocity, and they have about the same widths and strengths as the corresponding emission components. The widths of the X-ray P Cygni lines are comparable to that of the broad component of the strong, asymmetric H-alpha line from Cir X-1, suggesting that the two phenomena may be related. We discuss outflow models and propose that the P Cygni profiles may arise in the moderate temperature (5 x 10^6 K) region of the wind from an X-ray heated accretion disk. This basic picture strengthens the idea that the accretion disk in Cir X-1 is viewed in a relatively edge-on manner, and it suggests that Cir X-1 is the X-ray binary analog of a Broad Absorption Line quasar.

W. N. Brandt; N. S. Schulz

2000-07-26T23:59:59.000Z

115

X-ray generator  

DOE Patents (OSTI)

Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

Dawson, John M. (Los Angeles, CA)

1976-01-01T23:59:59.000Z

116

Real time x-ray studies during nanostructure formation on silicon via low energy ion beam irradiation using ultrathin iron films  

SciTech Connect

Real time grazing incidence small angle x-ray scattering and x-ray fluorescence (XRF) are used to elucidate nanodot formation on silicon surfaces during low energy ion beam irradiation of ultrathin iron-coated silicon substrates. Four surface modification stages were identified: (1) surface roughening due to film erosion, (2) surface smoothing and silicon-iron mixing, (3) structure formation, and (4) structure smoothing. The results conclude that 2.5 Multiplication-Sign 10{sup 15} iron atoms in a 50 nm depth triggers surface nanopatterning with a correlated nanodots distance of 25 nm. Moreover, there is a wide window in time where the surface can have correlated nanostructures even after the removal of all the iron atoms from the sample as confirmed by XRF and ex-situ x-ray photoelectron spectroscopy (XPS). In addition, in-situ XPS results indicated silicide formation, which plays a role in the structure formation mechanism.

El-Atwani, Osman [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Suslova, Anastassiya; Gonderman, Sean; Fowler, Justin; El-Atwani, Mohamad [School of Nuclear Engineering, Purdue University, West Lafayette, Indiana, 47907 (United States); DeMasi, Alexander; Ludwig, Karl [Physics Department, Boston University, Boston, Massachusetts 02215 (United States); Paul Allain, Jean [School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Nuclear Engineering, Purdue University, West Lafayette, Indiana, 47907 (United States)

2012-12-24T23:59:59.000Z

117

Gamma Radiation & X-Rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Gamma Radiation and X-Rays 1. Gamma radiation and X-rays are electromagnetic radiation like visible light, radio waves, and ultraviolet light. These electromagnetic radiations...

118

X-ray flashes and X-ray rich gamma ray bursts. Memorie della Societa Astronomica Italiana  

E-Print Network (OSTI)

Abstract. X-ray flashes are detected in the Wide Field Cameras on BeppoSAX in the energy range 2-25 keV as bright X-ray sources lasting of the order of minutes, but remaining undetected in the Gamma Ray Bursts Monitor on BeppoSAX. They have properties very similar to the x-ray counterparts of GRBs and account for some of the Fast X-ray Transient events seen in almost every x-ray satellite. We review their X-ray properties and show that x-ray flashes are in fact very soft, x-ray rich, untriggered gamma ray bursts, in which the peak energy in 2-10 keV x-rays could be up to a factor of 100 larger than the peak energy in the 50-300 keV gamma ray range. The frequency is ? 100 yr ?1. 1 Fast X-ray Transients/High-latitude X-ray Transients Fast X-ray Transients have been observed with many x-ray satellites. In particular they are seen with x-ray instruments that scan the entire sky on a regular basis. Such events are detected in one sky scan and disappeared in the next, typically limiting the duration to be longer than a minute and shorter than a few hours. For this reason they are called Fast Transients. The first transients

John Heise; Jean In t Z; Peter M. Woods

2001-01-01T23:59:59.000Z

119

Modeling energy dependence of the inner-shell x-ray emission produced by femtosecond-pulse laser irradiation of xenon clusters  

Science Conference Proceedings (OSTI)

We employ the Los Alamos suite of atomic physics codes to model the inner-shell x-ray emission spectrum of xenon and compare results with those obtained via high-resolution x-ray spectroscopy of xenon clusters irradiated by 30 fs Ti:Sa laser pulses. We find that the commonly employed configuration average approximation breaks down and significant spin-orbit splitting necessitates a detailed level accounting. Additionally, we reproduce an interesting spectral trend for a series of experimental spectra taken with varying pulse energy for fixed pulse duration. To simulate the experimental measurements at increasing beam energies, we find that spectral modeling requires an increased hot electron fraction, but decreased atomic density and bulk electron temperature. We believe these latter conditions to be a result of partial cluster destruction due to the increased energy in the laser prepulse.

Colgan, James P [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

120

A System for Conducting Sophisticated Mechanical Tests in Situ with High Energy Synchrotron X-Rays Final Technical Report  

SciTech Connect

This is the final technical report for the SBIR Phase I project titled 'A System for Conducting Sophisticated Mechanical Tests in Situ with High Energy Synchrotron X-Rays.' Experiments using diffraction of synchrotron radiation that help scientists understand engineering material failure modes, such as fracture and fatigue, require specialized machinery. This machinery must be able to induce these failure modes in a material specimen while adhering to strict size, weight, and geometric limitations prescribed by diffraction measurement techniques. During this Phase I project, Mechanical Solutions, Inc. (MSI) developed one such machine capable of applying uniaxial mechanical loading to a material specimen in both tension and compression, with zero backlash while transitioning between the two. Engineers currently compensate for a lack of understanding of fracture and fatigue by employing factors of safety in crucial system components. Thus, mechanical and structural parts are several times bigger, thicker, and heavier than they need to be. The scientific discoveries that result from diffraction experiments which utilize sophisticated mechanical loading devices will allow for broad material, weight, fuel, and cost savings in engineering design across all industries, while reducing the number of catastrophic failures in transportation, power generation, infrastructure, and all other engineering systems. With an existing load frame as the starting point, the research focused on two main areas: (1) the design of a specimen alignment and gripping system that enables pure uniaxial tension and compression loading (and no bending, shear, or torsion), and (2) development of a feedback control system that is adaptive and thus can maintain a load set point despite changing specimen material properties (e.g. a decreasing stiffness during yield).

Jeremy Weiss

2012-08-02T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Imaging of High-Energy X-Ray Emission from Cryogenic Thermonuclear Fuel Implosions on the NIF  

SciTech Connect

Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide spectrally resolved time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered targets. Using bremsstrahlung assumptions, the measured absolute x-ray brightness allows for the inference of electron temperature, electron density, hot spot mass, mix mass, and pressure. Current inertial confinement fusion (ICF) experiments conducted on the National Ignition Facility (NIF) seek to indirectly drive a spherical implosion, compressing and igniting a deuterium-tritium fuel. This DT fuel capsule is cryogenically prepared as a solid ice layer surrounded by a low-Z ablator material. Ignition will occur when the hot spot approaches sufficient temperature ({approx}3-4 keV) and {rho}R ({approx}0.3 g/cm{sup 2}) such that alpha deposition can further heat the hot spot and generate a self-sustaining burn wave. During the implosion, the fuel mass becomes hot enough to emit large amounts of x-ray radiation, the spectra and spatial variation of which contains key information that can be used to evaluate the implosion performance. The Ross filter diagnostic employs differential filtering to provide spectrally resolved, time-integrated, absolute x-ray self-emission images of the imploded core of cryogenic layered targets.

Ma, T

2012-05-01T23:59:59.000Z

122

X-ray microtomography  

SciTech Connect

In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

Landis, Eric N., E-mail: landis@maine.edu [Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04469 (United States); Keane, Denis T., E-mail: dtkeane@northwestern.edu [Department of Materials Science and Engineering, Northwestern University (United States); DND-CAT, Advanced Photon Source, Argonne National Laboratory, Bldg. 432/A002, 9700 S. Cass Ave, Argonne, Illinois 60439 (United States)

2010-12-15T23:59:59.000Z

123

High-Resolution X-ray Spectroscopy  

Science Conference Proceedings (OSTI)

... In support of these efforts, we also maintain laboratory x-ray sources from 1 keV to 300 keV, energy and intensity calibration facilities, and a vacuum ...

2013-02-26T23:59:59.000Z

124

Strengthened lithium for x-ray blast windows  

Science Conference Proceedings (OSTI)

Lithium's high x-ray transparency makes it an attractive material for windows intended to protect soft x-ray diagnostics in high energy density experiments. Pure lithium is soft and weak, but lithium mixed with lithium hydride powder becomes harder and stronger, in principle without any additional x-ray absorption. A comparison with the standard material for x-ray windows, beryllium, suggests that lithium or lithium strengthened by lithium hydride may well be an excellent option for such windows.

Pereira, N. R. [Ecopulse Inc., P.O. Box 528, Springfield, Virginia 22150 (United States); Imam, M. A. [Materials Science and Technology Division, Naval Research Laboratory, Washington, DC 20375 (United States)

2008-05-15T23:59:59.000Z

125

Kaonic Atom X?ray Spectra  

Science Conference Proceedings (OSTI)

In kaonic atoms energy displacement and broadening of states result from the strong interaction. The most simple kaonic atoms like kaonic hydrogen and deuterium open the possibility to measure this strong interaction induced shift and width by x?ray spectroscopy. In the SIDDHARTA experiment al LNF (Frascati) the DA?NE electron?positron collider delivers nearly mono?energetic negatively charged kaons from ? meson decay. This unique kaon source is used to form kaonic atoms. New high performance x?ray detectors (silicon drift detectors) arranged in an array allow x?ray spectroscopy with high energy resolution combined with timing capability. High precision x?ray measurements like SIDDHARTA at LNF will open the way to study the low energy regime of the strong force in the antikaon?nucleon interaction. The experiment and its current status is presented in this talk.

J. Marton; on behalf of the SIDDHARTA Collaboration

2009-01-01T23:59:59.000Z

126

Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF  

Science Conference Proceedings (OSTI)

Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

Ma, T.; Izumi, N.; Tommasini, R.; Bradley, D. K.; Bell, P.; Cerjan, C. J.; Dixit, S.; Doeppner, T.; Jones, O.; Landen, O. L.; LePape, S.; Mackinnon, A. J.; Park, H.-S.; Patel, P. K.; Prasad, R. R.; Ralph, J.; Smalyuk, V. A.; Springer, P. T.; Suter, L.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-10-15T23:59:59.000Z

127

X-ray grid-detector apparatus  

DOE Patents (OSTI)

A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

1998-01-27T23:59:59.000Z

128

An active-optic x-ray fluorescence analyzer with high energy resolution, large solid angle coverage, and a large tuning range  

SciTech Connect

A crystal-optic x-ray fluorescence energy analyzer has been designed and tested, which combines the features of electron-volt energy resolution, large solid angle coverage, and tunability over several kilo-electron-volts. The design is based upon the principle of active optics, with ten actuators available to optimally adjust the shape of a silicon crystal used in the Bragg geometry. In most applications the shape is that of a logarithmic spiral for high energy resolution with a spatially nonresolving detector, but a wide range of other shapes is also possible for applications such as imaging or single-shot spectroscopy in a spectral range of the operator's choosing.

Adams, Bernhard W.; Attenkofer, Klaus [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2008-02-15T23:59:59.000Z

129

X-ray Detection with Large Area Avalanche Photodiodes for ...  

Science Conference Proceedings (OSTI)

... The primary photon detector was a 12-element ... The overall energy range for the experiment was ... to directly detect X-rays with energies between 0.3 ...

2013-07-23T23:59:59.000Z

130

X-ray Microscopy and Imaging: 2-BM  

NLE Websites -- All DOE Office Websites (Extended Search)

BM BM Introduction The 2-BM beamline offers measurement capabilities for x-ray microtomography, x-ray topography and x-ray microdiffraction. X-ray microtomography and x-ray diffraction instruments are installed on separate optical tables for independent operation with fast switch over time. Optically-coupled high-resolution CCD system is used for microtomography and topography with up to 1 micron spatial resolution. X-ray microdiffraction setup consists of KB microfocussing mirrors (~3 micron minimum spot), four-circle Huber diffractometer, high-precision translation sample stage, two orthogonally-mounted video cameras for viewing sample, fluorescence detector (Si-drift diode) and diffraction detector (a scintillation detector or a CCD). Three different levels of monochromaticity are available. Conventional monochromatic x-rays from a double-bounced Si (111) crystal monochromator (DCM, D E/E=1E-4), wide band-pass monochromatic x-rays from a double multilayer monochromator (DMM, D E/E=1~4E-2) and pink beam. The available x-ray range is from 5 keV to 30 keV. The lower limit is due to the x-ray windows and the upper limit is due to the critical angle of the x-ray mirror. Two different coatings (Cr and Pt) for the x-ray mirror allow either 20 keV or 30 keV energy cutoff.

131

Fluctuation X-Ray Scattering  

SciTech Connect

The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

2013-01-25T23:59:59.000Z

132

X-ray Security Screening  

Science Conference Proceedings (OSTI)

National and International Standards for X-ray Security Screening Applications. Summary: The primary objective of this ...

2013-03-13T23:59:59.000Z

133

Compton backscattered collimated x-ray source  

SciTech Connect

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

1998-01-01T23:59:59.000Z

134

Compton backscattered collmated X-ray source  

SciTech Connect

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

2000-01-01T23:59:59.000Z

135

Radiological Safety Training for Radiation-Producing (X-RAY) Devices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Change Notice No. 2 Change Notice No. 2 with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR RADIATION-PRODUCING (X-RAY) DEVICES U.S. Department of Energy FSC 6910 Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-HDBK-1109-97 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.energy.gov/NuclearSafety/techstds/ DOE-HDBK-1109-97 iii Note: The page numbers refer to Change Notice 1 of the standard which was issued in February 2002. The changes have been incorporated in the Adobe PDF file posted on the DOE Technical Standards Web Site. Change Notice No. 1. RADIOLOGICAL SAFETY TRAINING FOR RADIATION-

136

Tautomerism in liquid 1,2,3-triazole: a combined Energy-Dispersive X-Ray Diffraction, Molecular Dynamics and FTIR study  

E-Print Network (OSTI)

In this work, we report a multitechnique (energy-dispersive X-Ray diffraction, computational methods and FT-IR spectroscopy) study of the tautomeric equilibrium of 1,2,3-triazole, one of the few small nitrogen-containing eterocycles liquid at room temperature. The T-2H form (C2v symmetry) is found to be strongly favored in gas and solid phases, whereas the neat liquid gives diffraction patterns that can be interpreted satisfactorily with the structure functions calculated from some molecular dynamics results for both T-2H and T-1H tautomers, although the T-2H form gives a slightly better agreement.

Marco Bellagamba; Luigi Bencivenni; Lorenzo Gontrani; Leonardo Guidoni; Claudia Sadun

2013-01-18T23:59:59.000Z

137

Scanning x-ray microscope  

Science Conference Proceedings (OSTI)

A scanning x-ray microscope is described including: an x-ray source capable of emitting a beam of x-rays; a collimator positioned to receive the beam of x-rays and to collimate this beam, a focusing cone means to focus the beam of x-rays, directed by the collimator, onto a focal plane, a specimen mount for supporting a specimen in the focal plane to receive the focused beam of x-rays, and x-ray beam scanning means to relatively move the specimen and the focusing cone means and collimator to scan the focused x-ray beam across the specimen. A detector is disposed adjacent the specimen to detect flourescent photons emitted by the specimen upon exposure to the focused beam of x-rays to provide an electrical output representative of this detection. Means are included for displaying and/or recording the information provided by the output from the detector, as are means for providing information to the recording and/or display means representative of the scan rate and position of the focused x-ray beam relative to the specimen whereby the recording and/or display means can correlate the information received to record and/or display quantitive and distributive information as to the quantity and distribution of elements detected in the specimen. Preferably there is provided an x-ray beam modulation means upstream, relative to the direction of emission of the xray beam, of the focusing cone means.

Wang, C.

1982-02-23T23:59:59.000Z

138

High-Energy Processes in Young Stars: Chandra X-ray Spectroscopy of HDE 283572, RY Tau, and LkCa 21  

E-Print Network (OSTI)

Weak-lined T Tauri stars (WTTS) represent the important stage of stellar evolution between the accretion phase and the zero-age main sequence. At this stage, the star decouples from its accretion disk, and spins up to a higher rotation rate than in the preceding classical T Tauri phase. Consequently, dynamo processes can be expected to become even stronger at this stage. High energy processes can have effects on the remaining circumstellar material, possibly including protoplanets and planetesimals, and these effects may account for certain observable properties of asteroids in the current solar system. Chandra observed for 100 ks the WTTS HDE 283572 which probes the PMS stage of massive A-type stars. We present first results of the analysis of its high-resolution X-ray spectrum obtained with the High-Energy Transmission Grating Spectrometer. A wide range of Fe lines of high ionization states are observed, indicating a continuous emission measure distribution. No significant signal is detected longward of the O \\textsc{viii} Ly$\\alpha$ line because of the high photoelectric absorption. We also report on the preliminary analysis of the zeroth order spectra of RY Tau and LkCa21. In particular, we show evidence of an emission line in RY Tau at 6.4 keV that we identify as fluorescent emission by neutral Fe caused by a strong X-ray flare which illuminated some structure in (or surrounding) the CTTS. A comparison of X-ray spectra of classical T Tau stars, other WTTS, and young main-sequence stars is made.

Marc Audard; Stephen L. Skinner; Kester W. Smith; Manuel Guedel; Roberto Pallavicini

2004-09-13T23:59:59.000Z

139

NIST X-Ray Mass Attenuation Coefficients - Version History  

Science Conference Proceedings (OSTI)

... year, month day with database access date.) Hubbell, JH and Seltzer, SM (2004), Tables of X-Ray Mass Attenuation Coefficients and Mass Energy- ...

2010-10-05T23:59:59.000Z

140

dosimetry of x-rays, gamma rays and electrons  

Science Conference Proceedings (OSTI)

... NIST and BIPM Standards for Air Kerma in Medium-Energy X-rays ... of the codes are available from the Government Printing Office, Washington, DC ...

2013-06-28T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Phase Sensitive X-ray Imager for More Accurate Digital ...  

Livermore Lab Report. News Archive. News ... use of higher energy X-rays which would result in a lower amount of absorbed radiation to the ... testing ...

142

SLAC National Accelerator Laboratory - X-ray Science  

NLE Websites -- All DOE Office Websites (Extended Search)

energy technologies. SLAC's unique X-ray facilities - the Linac Coherent Light Source (LCLS) and the Stanford Synchrotron Radiation Lightsource (SSRL) - attract thousands of...

143

New Directions in X-ray Scattering - SSRL  

NLE Websites -- All DOE Office Websites (Extended Search)

associated with chemically and radioactively contaminated ground-water. Ability to probe weak scattering from single crystals as function of energy (resonance) and x-ray...

144

Grain Boundary Deformation Analyzed Via X-Ray Diffraction ...  

Science Conference Proceedings (OSTI)

Modeling the Influence of the Second Phase Particle Spatial Distribution on Recrystallization of AA 7050 Near-Field High Energy X-ray Diffraction Microscopy...

145

High-Energy Nanoscale-Resolution X-ray Microscopy Based on Refractive Optics on a Long Beamline  

Science Conference Proceedings (OSTI)

The long length and good coherence properties of ID11 at the ESRF have led to the development of x-ray microscopy based on compound refractive lenses (CRLs). For the highest resolution full-field microscopy, the sample is placed {approx}40 m from the source, which can be micro-focused by a transfocator as a condenser. Due to the long length of the beamline and consequent long sample-detector distance, a CRL objective can be placed up to a meter behind the sample and still allow for magnification of 60x on a detector located at 99 m--enough to achieve easily 100-nm resolution with a typical high-resolution detector.

Snigireva, I.; Vaughan, G. B. M.; Snigirev, A. [European Synchrotron Radiation Facility (ESRF), 38043 Grenoble (France)

2011-09-09T23:59:59.000Z

146

The Soft-X-Ray Spectral Shape of X-Ray-Weak Seyferts  

E-Print Network (OSTI)

(I) We observed eight Seyfert~2s and two X--ray--weak Seyfert~1/QSOs with the ROSAT PSPC, and one Seyfert~2 with the ROSAT HRI. These targets were selected from the Extended 12\\um\\ Galaxy Sample. (II) Both Seyfert~1/QSOs vary by factors of 1.5---2. The photon indices steepen in the more luminous state, consistent with the variability being mainly due to the softest X--rays, which are confined to a size of less than a parsec. (III) Both the Seyfert~2s and Seyfert~1/QSOs are best fit with a photon index of $\\Gamma\\sim3$, which is steeper than the canonical value of $\\Gamma\\sim1.7$ measured for X--ray--strong Seyferts by ROSAT and at higher energies. Several physical explanations are suggested for the steeper slopes of X--ray--weak objects. (IV) We observed one Seyfert~2, NGC~5005, with the ROSAT HRI, finding about 13\\% of the soft X--rays to come from an extended component. This and other observations suggest that different components to the soft X--ray spectrum of some, if not all, X--ray--weak Seyferts may come from spatially distinct regions.

Brian Rush; Matthew A. Malkan

1995-07-27T23:59:59.000Z

147

Availability Statements for Unclassified Unlimited STI Products |  

Office of Scientific and Technical Information (OSTI)

Availability Statements for Unclassified Unlimited STI Products Availability Statements for Unclassified Unlimited STI Products Print page Print page Email page Email page DOCUMENT AVAILABILITY Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free via DOE's SciTech Connect (http://www.osti.gov/scitech) Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS): U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd Alexandra, VA 22312 www.ntis.gov Phone: (800) 553-NTIS (6847) or (703) 605-6000 Fax: (703) 605-6900 Email: orders@ntis.gov Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI):

148

X-ray Absorption Spectroscopy  

SciTech Connect

This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

Yano, Junko; Yachandra, Vittal K.

2009-07-09T23:59:59.000Z

149

Photon Sciences | Beamlines | IXS: Inelastic X-ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

IXS: Inelastic X-ray Scattering IXS: Inelastic X-ray Scattering Poster | Fact Sheet | Preliminary Design Report Scientific Scope Many hot topics related to the high frequency dynamics of condensed matter require both a narrower and steeper resolution function and access to a broader dynamic range than what are currently available. This represents a sort of "no man's land" that falls right in the dynamic gap lying between the high frequency spectroscopies, such as inelastic x-ray scattering (IXS), and the low frequency ones. New IXS spectrometers with improved energy and momentum resolutions would be required to fill this gap. To achieve this goal, a new x-ray optics concept for both the monochromatization and energy analysis of x-rays will be implemented at the NSLS-II Inelastic X-ray Scattering beamline. This solution exploits the

150

Low energy cut-offs and hard X-ray spectra in high-z radio-loud quasars: the Suzaku view of RBS315  

E-Print Network (OSTI)

We present the results from the Suzaku observation of the powerful radio-loud quasar RBS315 (z=2.69), for which a previous XMM-Newton observation showed an extremely flat X-ray continuum up to 10 keV (photon index Gamma=1.26) and indications of strong intrinsic absorption (N_H~10^22 cm^{-2} assuming neutral gas). The instrument for hard X-rays HXD/PIN allows us a detection of the source up to 50 keV. The broad-band continuum (0.5-50 keV) can be well modeled with a power-law with slope Gamma=1.5 (definitively softer than the continuum measured by XMM-Newton) above 1 keV with strong deficit of soft photons. The low-energy cut-off can be well fitted either with intrinsic absorption (with column density N_H~10^22 cm^{-2} in the quasar rest frame) or with a break in the continuum, with an extremely hard (Gamma =0.7) power-law below 1 keV. We construct the Spectral Energy Distribution of the source, using also optical-UV measurements obtained through a quasi-simultaneous UVOT/SWIFT observation. The shape of the SED is similar to that of other Flat Spectrum Radio Quasars (FSRQs) with similar power, making this source an excellent candidate for the detection in gamma-rays by GLAST. We model the SED with the synchrotron-Inverse Compton model usually applied to FSRQs, showing that the deficit of soft photons can be naturally interpreted as due to an intrinsic curvature of the spectrum near the low energy end of the IC component rather than to intrinsic absorption, although the latter possibility cannot be ruled out. We propose that in at least a fraction of the radio-loud QSOs at high redshift the cut-off in the soft X-ray band can be explained in a similar way. Further studies are required to distinguish between the two alternatives.

F. Tavecchio; L. Maraschi; G. Ghisellini; J. Kataoka; L. Foschini; R. M. Sambruna; G. Tagliaferri

2007-05-02T23:59:59.000Z

151

APS 7-BM Beamline: X-Ray Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Websites Useful Websites X-Ray Interactions with Matter from CRXO at LBNL. Intuitive interface for x-ray transmission and reflectivity for a wide range of materials. X-Ray Data Booklet from LBNL. Slightly outdated in places, but many useful tables of edge energies, fluorescence lines, and crystal lattice spacings. NIST XCOM Database. Powerful database of photoelectric absorption, elastic scattering, and Compton scattering cross-sections for a wide range of materials. X-Ray Server. Maintained by Sergey Stepanov at GMCA at the APS, this website has several powerful calculators for simulating x-ray reflection and diffraction. Software X-Ray Oriented Programs (XOP). This program, written by scientists at the ESRF and APS, is widely used in the synchrotron research community.

152

Fabrication process for a gradient index x-ray lens  

DOE Patents (OSTI)

A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

1995-01-01T23:59:59.000Z

153

Fabrication process for a gradient index x-ray lens  

DOE Patents (OSTI)

A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

1995-01-17T23:59:59.000Z

154

Massively parallel X-ray scattering simulations  

Science Conference Proceedings (OSTI)

Although present X-ray scattering techniques can provide tremendous information on the nano-structural properties of materials that are valuable in the design and fabrication of energy-relevant nano-devices, a primary challenge remains in the analyses ...

Abhinav Sarje; Xiaoye S. Li; Slim Chourou; Elaine R. Chan; Alexander Hexemer

2012-11-01T23:59:59.000Z

155

Background X-ray Spectrum of Radioactive Samples  

Science Conference Proceedings (OSTI)

An energy-dispersive X-ray spectrometer (EDS) is commonly used with a scanning electron microscope (SEM) to analyze the elemental compositions and microstructures of a variety of samples. For example, the microstructures of nuclear fuels are commonly investigated with this technique. However, the radioactivity of some materials introduces additional X-rays that contribute to the EDS background spectrum. These X-rays are generally not accounted for in spectral analysis software, and can cause misleading results. X-rays from internal conversion [1], Bremsstrahlung [2] radiation associated with alpha ionizations and beta particle interactions [3], and gamma rays from radioactive decay can all elevate the background of radioactive materials.

Shannon Yee; Dawn E. Janney

2008-02-01T23:59:59.000Z

156

Proton induced quasi-monochromatic x-ray beams for soft x-ray spectroscopy studies and selective x-ray fluorescence analysis  

Science Conference Proceedings (OSTI)

We present the analytical features and performance of an x-ray spectroscopy end station of moderate energy resolution operating with proton-induced quasi-monochromatic x-ray beams. The apparatus was designed, installed and operated at the 5.5 MV Tandem VdG Accelerator Laboratory of the Institute of Nuclear Physics, N.C.S.R. 'Demokritos,' Athens. The setup includes a two-level ultrahigh vacuum chamber that hosts in the lower level up to six primary targets in a rotatable holder; there, the irradiation of pure element materials-used as primary targets-with few-MeV high current ({approx}{mu}A) proton beams produces intense quasi-monochromatic x-ray beams of selectable energy. In the chamber's upper level, a six-position rotatable sample holder hosts the targets considered for x-ray spectroscopy studies. The proton-induced x-ray beam, after proper collimation, is guided to the sample position whereas various filters can be also inserted along the beam's path to eliminate the backscattered protons or/and to absorb selectively components of the x-ray beam. The apparatus incorporates an ultrathin window Si(Li) spectrometer (FWHM 136 eV at 5.89 keV) coupled with low-noise electronics capable of efficiently detecting photons down to carbon K{alpha}. Exemplary soft x-ray spectroscopy studies and results of selective x-ray fluorescence analysis are presented.

Sokaras, D. [Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi, 15310 Athens (Greece); Zarkadas, Ch. [PANalytical B.V., 7600 AA Almelo (Netherlands); Fliegauf, R.; Beckhoff, B. [Physikalisch-Technische Bundesanstalt, Abbestrasse 2-12, 10587 Berlin (Germany); Karydas, A. G. [Institute of Nuclear Physics, N.C.S.R. Demokritos, Aghia Paraskevi, 15310 Athens (Greece); Nuclear Spectrometry and Applications Laboratory, IAEA Laboratories, A-2444 Seibersdorf (Austria)

2012-12-15T23:59:59.000Z

157

X-Ray Interactions with Matter  

DOE Data Explorer (OSTI)

The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented. (Taken from the abstract in OSTI Record 6131765) (Specialized Interface)

Henke, B.L.; Gullikson, E.M.; Davis, J.C.

158

Refractive Optics for Hard X-ray Transmission Microscopy  

Science Conference Proceedings (OSTI)

For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E. [Institute for Microstructure Technology, Karlsruhe Institute of Technology Kaiserstrasse 12, 76131 Karlsruhe (Germany); Ahrens, G.; Voigt, A. [Microresist Technology, Koepenikerstrasse 325, 12555 Berlin (Germany)

2011-09-09T23:59:59.000Z

159

X-ray attenuation properties of stainless steel (u)  

SciTech Connect

Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainless steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.

Wang, Lily L [Los Alamos National Laboratory; Berry, Phillip C [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

160

Beyond 3-D X-ray Imaging: Methodology Development and Applications in  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond 3-D X-ray Imaging: Methodology Development and Applications in Beyond 3-D X-ray Imaging: Methodology Development and Applications in Material Science Thursday, September 6, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Yijin Liu Seminar There was a revolutionary development of X-ray imaging over the past few decades. The most substantial advancements in this field are closely related to the availability of the new generation of X-ray sources and the advanced X-ray optics. The advanced X-ray Optics along with novel methodology has made it possible to extract information that is related to different interactions between the X-rays and the specimen at very fine spatial resolution. The energy tunability of the X-rays has made it possible to combine the energy scan with imaging technique. And the brilliance of the X-ray source has made it practical for many sophisticated

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

X-ray Imaging Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging and Spectro-microscopy: Imaging and Spectro-microscopy: the Present and the Future Stanford Synchrotron Radiation Laboratory October 8-9, 2002 Organizers: John Miao & Keith Hodgson A workshop on "X-ray Imaging and Spectro-microscopy: the Present and the Future" was held on October 8-9, 2002. This workshop, organized by John Miao (SSRL) and Keith Hodgson (SSRL) provided a forum to discuss the scientific applications of a variety of imaging and spectro-microscopic techniques, including photoemission electron microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray micro-probe. Twelve invited speakers discussed the important scientific applications of these techniques, and also predicted the future scientific directions with the advance of instrumentation and x-ray sources. The workshop was well attended with over fifty registered attendees.

162

Sharper Focusing of Hard X-rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharper Focusing of Hard X-rays FROM: Physics News Update Number 773 #1, April 12, 2006, by Phil Schewe and Ben Stein Note: This text has been slightly modified from the original. Sharper focusing of hard x-rays has been achieved with a device developed at Argonne National Lab. Because of their high energy, x-rays are hard to focus: they can be reflected from a surface but only at a glancing angle (less than a tenth of a degree); they can be refracted but the index of refraction is very close to 1, so that making efficient lenses becomes a problem; and they can be diffracted, but the relatively thick, variable pitch grating required for focusing is tricky to achieve. The Argonne device is of the diffraction type, and it consists of a stack of alternating layers of metal and silicon, made by depositing progressively thicker layers. When the x-rays fall on such a structure, nearly edge-on, what they see is a grating (called a linear zone plate) consisting of a sort of bar-code pattern.

163

Tokamak x ray diagnostic instrumentation  

SciTech Connect

Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

1987-01-01T23:59:59.000Z

164

X-ray Polarization  

Science Conference Proceedings (OSTI)

... of crystal spectrometers where the energy dispersion is polarization selective. ... by observing forbidden (M1) transitions within the ground term of ...

2010-12-07T23:59:59.000Z

165

Formation of deformation textures in face-centered-cubic materials studied by in-situ high-energy x-ray diffraction and self-consistent model.  

Science Conference Proceedings (OSTI)

The evolution of deformation textures in copper and a brass that are representative of fcc metals with different stacking fault energies (SFEs) during cold rolling is predicted using a self-consistent (SC) model. The material parameters used for describing the micromechanical behavior of each metal are determined from the high-energy X-ray (HEXRD) diffraction data. At small reductions, a reliable prediction of the evolution of the grain orientation distribution that is represented as the continuous increase of the copper and brass components is achieved for both metals when compared with the experimental textures. With increasing deformation, the model could characterize the textures of copper, i.e., the strengthening of the copper component, when dislocation slip is still the dominant mechanism. For a brass at moderate and large reductions, a reliable prediction of its unique feature of texture evolution, i.e., the weakening of the copper component and the strengthening of the brass component, could only be achieved when proper boundary conditions together with some specified slip/twin systems are considered in the continuum micromechanics mainly containing twinning and shear banding. The present investigation suggests that for fcc metals with a low SFE, the mechanism of shear banding is the dominant contribution to the texture development at large deformations.

Jia, N.; Nie, Z. H.; Ren, Y.; Peng, R. L.; Wang, Y. D.; Zhao, X.; X-Ray Science Division; Northeastern Univ.; Linkoping Univ.; Beijing Inst. of Tech.

2010-05-01T23:59:59.000Z

166

A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids  

Science Conference Proceedings (OSTI)

High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here, we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.

Mauro, N.A.; Kelton, K.F. (WU)

2011-10-27T23:59:59.000Z

167

Broadband high resolution X-ray spectral analyzer  

DOE Patents (OSTI)

A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

Silver, Eric H. (Berkeley, CA); Legros, Mark (Berkeley, CA); Madden, Norm W. (Livermore, CA); Goulding, Fred (Lafayette, CA); Landis, Don (Pinole, CA)

1998-01-01T23:59:59.000Z

168

Broadband high resolution X-ray spectral analyzer  

DOE Patents (OSTI)

A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

1998-07-07T23:59:59.000Z

169

Suppressing Thermal Energy Drift In The LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks  

SciTech Connect

This paper addresses thermal drift in sodium thiosulfate liquid resistors and their replacement with linear disk resistors from HVR Advanced Power Components. Sodium thiosulfate resistors in the FXR induction linear accelerator application have a temperature coefficient of {approx}1.8%/C. The FXR Marx banks send an 8kJ pulse through eight 524 cm{sup 3} liquid resistors at a repetition rate of up to 1 every 45 seconds. Every pulse increases the temperature of the solution by {approx}0.4 C which produces a 0.7% change in resistance. The typical cooling rate is {approx}0.4 C per minute which results in {approx}0.1% energy drop per pulse during continuous pulsed operations. A radiographic accelerator is extraordinarily sensitive to energy variations. Changes in beam energy produce movement in beam transport, changes in spot size, and large dose variations. If self-heating were the only problem, we could predict the increase in input voltage required to compensate for the energy loss. However, there are other variables that influence the temperature of the resistors such as focus magnet heating, changes in room temperature, changes in cooling water, where the cell is located, etc. Additionally not all of the resistors have equivalent cooling rates and as many as 32 resistors are driven from a single power source. The FXR accelerator group elected to replace the sodium thiosulfate resistors with HVR Linear Disk Resistors in a stack type configuration. With data limited for these resistors when used in oil and at low resistance values, a full characterization needed to be performed. High currents (up to 15kA), high voltages (up to 400kV), and Fast Rise times (<10ns) made a resistor choice difficult. Other solid resistors have been tried and had problems at the connection points and with the fact that the resistivity changed as they absorbed oil. The selected HVR resistors have the advantage of being manufactured with the oil impregnated in to them so this characteristic is minimized while still offering the desired low temperature coefficient of resistance compared to sodium thiosulfate. The characterization experiments and comparison with the sodium thiosulfate liquid resistors will be fully discussed and the final design described.

Kreitzer, B R; Houck, T L; Luchterhand, O C

2011-07-19T23:59:59.000Z

170

Predicting Fracture Toughness of TRIP 800 using Phase Properties Characterized by In-Situ High Energy X-Ray Diffraction  

Science Conference Proceedings (OSTI)

TRansformation Induced Plasticity (TRIP) steel is a typical representative of 1st generation advanced high strength steel (AHSS) which exhibits a combination of high strength and excellent ductility due to its multiphase microstructure. In this paper, we study the crack propagation behavior and fracture resistance of a TRIP 800 steel using a microstructure-based finite element method with the various phase properties characterized by in-situ high energy Xray diffraction (HEXRD) technique. Uniaxial tensile tests on the notched TRIP 800 sheet specimens were also conducted, and the experimentally measured tensile properties and R-curves (Resistance curves) were used to calibrate the modeling parameters and to validate the overall modeling results. The comparison between the simulated and experimentally measured results suggests that the micromechanics based modeling procedure can well capture the overall complex crack propagation behaviors and the fracture resistance of TRIP steels. The methodology adopted here may be used to estimate the fracture resistance of various multiphase materials.

Soulami, Ayoub; Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Ren, Yang; Wang, Yan-Dong

2010-05-01T23:59:59.000Z

171

X-ray emission from laser-produced plasmas  

SciTech Connect

The intensity and spectral characteristics of x-ray emitted from laser-produced plasmas have been investigated computatinoally and experimentally. a two-dimensional implosi code was used successfully to calculate laser-plasma radiation characteristics and to aid in the design of laser targets for high-yield x-ray production. Other computer codes, in use or under development predict lime strengths and energies for laser-plasma x-ray emission. An experimental effort is aimed at reliable measurements of x-ray yields and spectra. a wide variety of x-ray detection methods have been evaluated, and x-ray yields have been measured from plasmas produced with two dissimilar laser systems. The high energy x-ray spectrum, from about 10 to 140 keV, has been studied using high-gain scintillatino detectors and thick K-edge filters. Various supplementary measurements have provided information concerning characteristics of the target-reflected laser light, the ion energies, and the laser intensity patterns.

Violet, C.E. [ed.

1974-07-01T23:59:59.000Z

172

Radiological Safety Training for Radiation-Producing (X-Ray)...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for General Radiation Safety Installations Using Non-Medical X-Ray and Sealed Gamma-Ray Sources, Energies up to 10 MEV, ANSI Standard N43.3, American National Standards...

173

SLAC National Accelerator Laboratory - X-rays Reveal How Soil...  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Menlo Park, Calif. - Researchers working at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have used powerful X-rays to help decipher how certain...

174

SLAC National Accelerator Laboratory - X-ray Laser Sees Photosynthesis...  

NLE Websites -- All DOE Office Websites (Extended Search)

new window on the way plants generate the oxygen we breathe, researchers used an X-ray laser at the Department of Energy's (DOE) SLAC National Accelerator Laboratory to...

175

SLAC National Accelerator Laboratory - X-rays Capture Electron...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-rays Capture Electron 'Dance' By Glenn Roberts Jr. January 30, 2013 The way electrons move within and between molecules, transferring energy as they go, plays an important role...

176

Calibration of High-Resolution X-Ray Tomography With ...  

Science Conference Proceedings (OSTI)

... The x-ray attenuation of the sample at this energy was close to the ... J. Coal Geol. ... G. Xu, DE Eastman, I. McNulty, SP Frigo, Y. Wang, CC Retsch, IC ...

2001-04-11T23:59:59.000Z

177

HIGH BRILLIANCE X-RAY SCATTERING FOR  

NLE Websites -- All DOE Office Websites (Extended Search)

BRILLIANCE X-RAY SCATTERING FOR BRILLIANCE X-RAY SCATTERING FOR LIFE SCIENCES (LIX) Group Leader: Lin Yang Proposal Team: O. Bilsel 1 , B. Hsiao 2 , H. Huang 3 , T. Irving 4 , A. Menzel 5 , L. Pollack 6 , C. Riekel 7 , J. Rubert 8 , H. Tsuruta 9 , L. Yang 10 1 University of Massachusetts, 2 Stony Brook University, 3 Rice University, 4 IIT, 5SLS, 6 Cornell University, 7 European Synchrotron Radiation Facility, 8 NEU, 9 Stanford Synchrotron Radiation Lightsource, 10 Brookhaven National Laboratory TECHNIQUES AND CAPABILITIES APPLICATIONS ADDITIONAL INFORMATION * Energy range 2-20keV using undulator source. Simultaneous SAXS/WAXS to cover 0.003-3Å -1 at 12keV with 1 micron spot size * Time-resolved solution scattering with resolution of (1) microseconds to milliseconds using continuous-flow mixing (5µm x 10µm spot size) and (2) milliseconds using stopped-

178

THE NuSTAR EXTRAGALACTIC SURVEY: A FIRST SENSITIVE LOOK AT THE HIGH-ENERGY COSMIC X-RAY BACKGROUND POPULATION  

SciTech Connect

We report on the first 10 identifications of sources serendipitously detected by the Nuclear Spectroscopic Telescope Array (NuSTAR) to provide the first sensitive census of the cosmic X-ray background source population at {approx}> 10 keV. We find that these NuSTAR-detected sources are Almost-Equal-To 100 times fainter than those previously detected at {approx}> 10 keV and have a broad range in redshift and luminosity (z = 0.020-2.923 and L{sub 10-40{sub keV}} Almost-Equal-To 4 Multiplication-Sign 10{sup 41}-5 Multiplication-Sign 10{sup 45} erg s{sup -1}); the median redshift and luminosity are z Almost-Equal-To 0.7 and L{sub 10-40{sub keV}} Almost-Equal-To 3 Multiplication-Sign 10{sup 44} erg s{sup -1}, respectively. We characterize these sources on the basis of broad-band Almost-Equal-To 0.5-32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared spectral energy distribution analyses. We find that the dominant source population is quasars with L{sub 10-40{sub keV}} > 10{sup 44} erg s{sup -1}, of which Almost-Equal-To 50% are obscured with N{sub H} {approx}> 10{sup 22} cm{sup -2}. However, none of the 10 NuSTAR sources are Compton thick (N{sub H} {approx}> 10{sup 24} cm{sup -2}) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L{sub 10-40{sub keV}} > 10{sup 44} erg s{sup -1}) selected at {approx}> 10 keV of {approx}< 33% over the redshift range z = 0.5-1.1. We jointly fitted the rest-frame Almost-Equal-To 10-40 keV data for all of the non-beamed sources with L{sub 10-40{sub keV}} > 10{sup 43} erg s{sup -1} to constrain the average strength of reflection; we find R < 1.4 for {Gamma} = 1.8, broadly consistent with that found for local active galactic nuclei (AGNs) observed at {approx}> 10 keV. We also constrain the host-galaxy masses and find a median stellar mass of Almost-Equal-To 10{sup 11} M{sub Sun }, a factor Almost-Equal-To 5 times higher than the median stellar mass of nearby high-energy selected AGNs, which may be at least partially driven by the order of magnitude higher X-ray luminosities of the NuSTAR sources. Within the low source-statistic limitations of our study, our results suggest that the overall properties of the NuSTAR sources are broadly similar to those of nearby high-energy selected AGNs but scaled up in luminosity and mass.

Alexander, D. M.; Del Moro, A.; Lansbury, G. B.; Aird, J. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Stern, D.; Assef, R. J. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Ajello, M.; Boggs, S. E. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Bauer, F. E. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Christensen, F. E.; Craig, W. W. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Civano, F.; Hickox, R. C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Elvis, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Grefenstette, B. W.; Harrison, F. A. [Cahill Center for Astrophysics, 1216 East California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Hailey, C. J. [Columbia Astrophysics Laboratory, 550 W 120th Street, Columbia University, NY 10027 (United States); and others

2013-08-20T23:59:59.000Z

179

Hard X-ray Variability of AGN  

E-Print Network (OSTI)

Aims: Active Galactic Nuclei are known to be variable throughout the electromagnetic spectrum. An energy domain poorly studied in this respect is the hard X-ray range above 20 keV. Methods: The first 9 months of the Swift/BAT all-sky survey are used to study the 14 - 195 keV variability of the 44 brightest AGN. The sources have been selected due to their detection significance of >10 sigma. We tested the variability using a maximum likelihood estimator and by analysing the structure function. Results: Probing different time scales, it appears that the absorbed AGN are more variable than the unabsorbed ones. The same applies for the comparison of Seyfert 2 and Seyfert 1 objects. As expected the blazars show stronger variability. 15% of the non-blazar AGN show variability of >20% compared to the average flux on time scales of 20 days, and 30% show at least 10% flux variation. All the non-blazar AGN which show strong variability are low-luminosity objects with L(14-195 keV) < 1E44 erg/sec. Conclusions: Concerning the variability pattern, there is a tendency of unabsorbed or type 1 galaxies being less variable than the absorbed or type 2 objects at hardest X-rays. A more solid anti-correlation is found between variability and luminosity, which has been previously observed in soft X-rays, in the UV, and in the optical domain.

V. Beckmann; S. D. Barthelmy; T. J. -L. Courvoisier; N. Gehrels; S. Soldi; J. Tueller; G. Wendt

2007-09-14T23:59:59.000Z

180

Resonant Auger Effect at High X-Ray Intensity  

SciTech Connect

The resonant Auger effect of atomic neon exposed to high-intensity x-ray radiation in resonance with the 1s {yields} 3p transition is discussed. High intensity here means that the x-ray peak intensity is sufficient ({approx} 10{sup 18} W/cm{sup 2}) to induce Rabi oscillations between the neon ground state and the 1s{sup -1}3p ({sup 1}P) state within the relaxation lifetime of the inner-shell vacancy. For the numerical analysis presented, an effective two-level model, including a description of the resonant Auger decay process, is employed. Both coherent and chaotic x-ray pulses are treated. The latter are used to simulate radiation from x-ray free-electron lasers based on the principle of self-amplified spontaneous emission. Observing x-ray-driven atomic population dynamics in the time domain is challenging for chaotic pulse ensembles. A more practical option for experiments using x-ray free-electron lasers is to measure the line profiles in the kinetic energy distribution of the resonant Auger electron. This provides information on both atomic population dynamics and x-ray pulse properties.

Rohringer, N; Santra, R

2008-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

SANDlA REPORT Unlimited Release  

Office of Scientific and Technical Information (OSTI)

SANDlA REPORT SANDlA REPORT Unlimited Release Printed October 1995 SAND95-2129 UC-607 '4 d Oleoresin Capsicum Toxicology Evaluation and Hazard Review Melecita M. Archuleta Issued by Sandia National Ldxratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by a n agency of the United States Government. Neither the United States Govern- ment nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, prod- uct, or process disclosed, or represents that its

182

Application of high-energy x-rays and pair-distribution-function analysis to nano-scale structural studies in catalysis.  

SciTech Connect

We investigate the structure of supported Pt catalysts using high-energy X-ray scattering coupled with Pair-Distribution-Function (PDF) analysis. Recently, experimental approaches that enable the collection of PDF data in situ have been developed with time-resolution sufficient to study the structure of Pt nano-particles as they form. The differential PDF approach is utilized which allows the atom-atom correlations involving only Pt to be selectively recovered, enabling structural investigation of the supported particles and the mechanism of their formation. In parallel to the in situ analysis, we have examined samples prepared ex situ. Data collected on the ex situ samples show that the initial deposition of Pt{sup 4+} occurs as the PtCl{sub 6}{sup 2-} species which are retained even when annealed in an oxygen atmosphere. The Pt differential PDFs of the samples reduced in hydrogen at 200 and 500 C indicated nano-crystalline face-centered-cubic (fcc) metallic Pt particles. The ex situ reduced samples also contain a weak correlations at 2.1 {angstrom}, which we assign to Pt-O interactions between the particles and the support surface. The in situ experiments, following the reduction of Pt{sup 4+} from 0 to 227 C, indicate that the initial Pt nano-particles formed are ca. 1 nm in size, and become larger and more crystalline by 200 C. The data suggest a particle growth mechanism where the initial particles that form are small (<1 nm), then agglomerate into ensembles of many small particles and lastly anneal to form larger well-ordered particles. Lastly, we discus potential future developments in operando PDF studies, and identify opportunities for synchronous application of complementary methods.

Chupas, P. J.; Chapman, K. W.; Chen, H.; Grey, C.; X-Ray Science Division; State Univ. of New York

2009-07-30T23:59:59.000Z

183

Direct three-dimensional coherently scattered x-ray microtomography  

Science Conference Proceedings (OSTI)

Purpose: It has been shown that coherently scattered x rays can be used to discriminate and identify specific components in a mixture of low atomic weight materials. The authors demonstrated a new method of doing coherently scattered x-ray tomography with a thin sheet of x ray. Methods: A collimated x-ray fan-beam, a parallel polycapillary collimator, and a phantom consisting of several biocompatible materials of low attenuation-based contrast were used to investigate the feasibility of the method. Because of the particular experimental setup, only the phantom translation perpendicular to the x-ray beam is needed and, thus, there is no need of Radon-type tomographic reconstruction, except for the correction of the attenuation to the primary and scattered x rays, which was performed by using a conventional attenuation-based tomographic image data set. The coherent scatter image contrast changes with momentum transfer among component materials in the specimen were investigated with multiple x-ray sources with narrow bandwidth spectra generated with anode and filter combinations of Cu/Ni (8 keV), Mo/Zr (18 keV), and Ag/Pd (22 keV) and at multiple scatter angles by orienting the detector and polycapillary collimator at different angles to the illuminating x ray. Results: The contrast among different materials changes with the x-ray source energy and the angle at which the image was measured. The coherent scatter profiles obtained from the coherent scatter images are consistent with the published results. Conclusions: This method can be used to directly generate the three-dimensional coherent scatter images of small animal, biopsies, or other small objects with low atomic weight biological or similar synthetic materials with low attenuation contrast. With equipment optimized, submillimeter spatial resolution may be achieved.

Cui Congwu; Jorgensen, Steven M.; Eaker, Diane R.; Ritman, Erik L. [Department of Medical Physics, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street Southwest, Alfred Building 2-409, Rochester, Minnesota 55905 (United States)

2010-12-15T23:59:59.000Z

184

Microgap x-ray detector  

DOE Patents (OSTI)

An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

1994-01-01T23:59:59.000Z

185

Photon Sciences | Beamlines | SRX: Submicron Resolution X-ray Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

SRX: Submicron Resolution X-ray Spectroscopy SRX: Submicron Resolution X-ray Spectroscopy Poster | Fact Sheet | Preliminary Design Report Scientific Scope Scientific communities such as environmental sciences, life sciences, and material sciences have identified the need to develop analytical resources to advance the understanding of complex natural and engineered systems that are heterogeneous on the micron to nanometer scale. These needs for high intensity x-ray nanoprobes resulted in the commitment of the NSLS-II Project to build the Submicron Resolution X-ray (SRX) Spectroscopy beamline showing a unique combination of high spectral resolution over a very broad energy range and very high beam intensity in a sub-micrometer spot. NSLS-II will provide one of the best sources in the world for such an instrument.

186

Spectral analysis of X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

Fridriksson, Joel Karl

2011-01-01T23:59:59.000Z

187

Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas  

SciTech Connect

A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and v? on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

2008-02-27T23:59:59.000Z

188

Cryotomography x-ray microscopy state  

Science Conference Proceedings (OSTI)

An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

Le Gros, Mark (Berkeley, CA); Larabell, Carolyn A. (Berkeley, CA)

2010-10-26T23:59:59.000Z

189

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, R.B.

1996-05-21T23:59:59.000Z

190

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, Rick B. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

191

Stress Management: X-Rays Reveal Si Thin-Film Defects  

Science Conference Proceedings (OSTI)

Stress Management: X-Rays Reveal Si Thin-Film Defects. ... Advanced Photon Source, and supported in part by the Department of Energy. ...

2011-04-26T23:59:59.000Z

192

The Use of Micro-X-ray Fluorescence in a Scanning Electron ...  

Science Conference Proceedings (OSTI)

An X-ray gun with focusing capillary fiber optics interfaced with a scanning electron microscope (SEM) is used for semi-quantitative XRF microanalysis by energy...

193

Advanced Data Analysis Tools for World-Wide X-ray ...  

Science Conference Proceedings (OSTI)

... of ifeffit, a multi-platform, open-source XAS data analysis software ... The energy dependent interaction of the intense synchrotron X-ray beam with ...

2012-10-01T23:59:59.000Z

194

Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source  

SciTech Connect

The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 ?m square pixels, and 15 ?m thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/?E?10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within 1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager.

M. J. Haugh and M. B. Schneider

2008-10-31T23:59:59.000Z

195

Neutron and X-Ray Scattering - Argonne National Laboratories, Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Neutron and X-Ray Scattering Neutron and X-ray Scattering Science Recent advances in neutron and x-ray scattering instrumentation at major DOE facilities such as the Spallation Neutron Source and Advanced Photon Source provide unprecedented insights into complex phenomena in bulk and interfacial materials. The vision of our group is to harness the complementarity of neutrons and x-rays to study how materials respond on a range of length and time scales to phase competition, so that we can learn to control emergent behavior and generate functional properties in energy-related materials. We use neutrons and x-rays to investigate the structure and dynamics of bulk and interfacial materials with properties that are useful for energy applications, such as superconductivity, magnetism and thermoelectricity. Phase competition can generate or enhance such properties, but it is extremely challenging to characterize fluctuations in the competing order, whether in bulk disordered materials, or artificial heterostructures. Our goal is to utilize efficient techniques that we have been developing for measuring nanoscale phase fluctuations, both static and dynamic, to enable the rational design of new materials for energy within MSD.

196

Probing buried layers by photoelectron spectromicroscopy with hard x-ray excitation  

SciTech Connect

We report about a proof-of-principle experiment which explores the perspectives of performing hard x-ray photoemission spectromicroscopy with high lateral resolution. Our results obtained with an energy-filtered photoemission microscope at the PETRA III storage ring facility using hard x-ray excitation up to 6.5 keV photon energy demonstrate that it is possible to obtain selected-area x-ray photoemission spectra from regions less than 500 nm in diameter.

Wiemann, C.; Patt, M.; Cramm, S. [Peter Gruenberg Institute (PGI-6) and JARA-FIT, Research Centre Juelich, D-52425 Juelich (Germany); Escher, M.; Merkel, M. [FOCUS GmbH, D-65510 Huenstetten (Germany); Gloskovskii, A. [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet Mainz, D-55128 Mainz (Germany); Thiess, S.; Drube, W. [DESY Photon Science, Deutsches Elektronen-Synchrotron, D-22603 Hamburg (Germany); Schneider, C. M. [Peter Gruenberg Institute (PGI-6) and JARA-FIT, Research Centre Juelich, D-52425 Juelich (Germany); Fakultaet f. Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

2012-05-28T23:59:59.000Z

197

Lessening X-ray damage is healthy for protein discovery data too | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

The brightness and energy of X-ray beams are critical properties for The brightness and energy of X-ray beams are critical properties for research. The APS Upgrade will make our X-ray beams brighter, meaning more X-rays can be focused onto a smaller, laser-like spot, allowing researchers to gather more data in greater detail in less time. Lessening X-ray damage is healthy for protein discovery data too December 16, 2013 Tweet EmailPrint New recommendations for using X-rays promise to speed investigations aimed at understanding the structure and function of biologically important proteins - information critical to the development of new drugs. Scientists from two U.S. Department of Energy national laboratories, Argonne and Brookhaven, and the University of Washington, Seattle, evaluated options to remedy problems affecting data collection in their new

198

Secretary Chu Dedicates World's Most Powerful X-ray Laser | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dedicates World's Most Powerful X-ray Laser Dedicates World's Most Powerful X-ray Laser Secretary Chu Dedicates World's Most Powerful X-ray Laser August 16, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today dedicated the Linac Coherent Light Source (LCLS), the world's first and most powerful X-ray laser, at the Department of Energy's SLAC National Accelerator Laboratory. The LCLS will play an essential role in addressing the scientific needs of the 21st century by exploring new ways to create better energy sources and enabling advances in a range of scientific fields. The LCLS produces pulses of X-rays more than a billion times brighter than the most powerful existing sources. The ultrafast X-ray pulses are used much like flashes from a high-speed strobe light, enabling scientists to take

199

SANDIA REPORT SAND2007-4352P Unlimited Release  

NLE Websites -- All DOE Office Websites (Extended Search)

352P 352P Unlimited Release Printed September 2007 Calendar Year 2006 Annual Site Environmental Report for Sandia National Laboratories, New Mexico Matthew Sneddon, Susan Koss, Rebecca Sanchez and Charlene Cunningham Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94Al85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

200

Method and apparatus for micromachining using hard X-rays  

DOE Patents (OSTI)

An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures.

Siddons, David Peter (Shoreham, NY); Johnson, Erik D. (Ridge, NY); Guckel, Henry (Madison, WI); Klein, Jonathan L. (Madison, WI)

1997-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Method and apparatus for micromachining using hard X-rays  

DOE Patents (OSTI)

An X-ray source such as a synchrotron which provides a significant spectral content of hard X-rays is used to expose relatively thick photoresist such that the portions of the photoresist at an exit surface receive at least a threshold dose sufficient to render the photoresist susceptible to a developer, while the entrance surface of the photoresist receives an exposure which does not exceed a power limit at which destructive disruption of the photoresist would occur. The X-ray beam is spectrally shaped to substantially eliminate lower energy photons while allowing a substantial flux of higher energy photons to pass through to the photoresist target. Filters and the substrate of the X-ray mask may be used to spectrally shape the X-ray beam. Machining of photoresists such as polymethylmethacrylate to micron tolerances may be obtained to depths of several centimeters, and multiple targets may be exposed simultaneously. The photoresist target may be rotated and/or translated in the beam to form solids of rotation and other complex three-dimensional structures. 21 figs.

Siddons, D.P.; Johnson, E.D.; Guckel, H.; Klein, J.L.

1997-10-21T23:59:59.000Z

202

X-ray Time Lags in TeV Blazars  

E-Print Network (OSTI)

We use Monte Carlo/Fokker-Planck simulations to study the X-ray time lags. Our results show that soft lags will be observed as long as the decay of the flare is dominated by radiative cooling, even when acceleration and cooling timescales are similar. Hard lags can be produced in presence of a competitive achromatic particle energy loss mechanism if the acceleration process operates on a timescale such that particles are slowly moved towards higher energy while the flare evolves. In this type of scenario, the {\\gamma} -ray/X-ray quadratic relation is also reproduced.

Chen, Xuhui; Liang, Edison; Bttcher, Markus

2011-01-01T23:59:59.000Z

203

Cooled window for X-rays or charged particles  

DOE Patents (OSTI)

A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

Logan, C.M.

1996-04-16T23:59:59.000Z

204

Cooled window for X-rays or charged particles  

DOE Patents (OSTI)

A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

Logan, Clinton M. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

205

Spectral unfolds of PITHON Flash X-ray source.  

SciTech Connect

Using a differential absorption spectrometer we obtained experimental spectral information for the PITHON Flash X-ray Machine located in San Leandro, California at L-3 Communications. Spectral information we obtained pertained to the 200 keV to 800 keV endpoint operation of PITHON. We also obtained data on the temporal behavior of high energy and low energy spectral content.

Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Riordan, John C. (L-3 Pulse Sciences)

2007-11-01T23:59:59.000Z

206

An X-ray photometry system I: Chandra ACIS  

E-Print Network (OSTI)

We present a system of X-ray photometry for the Chandra satellite. X-ray photometry can be a powerful tool to obtain flux estimates, hardness ratios, and colors unbiased by assumptions about spectral shape and independent of temporal and spatial changes in instrument characteristics. The system we have developed relies on our knowledge of effective area and the energy-to-channel conversion to construct filters similar to photometric filters in the optical bandpass. We show that the filters are well behaved functions of energy and that this X-ray photometric system is able to reconstruct fluxes to within about 20%, without color corrections, for non-pathological spectra. Even in the worst cases it is better than 50%. Our method also treats errors in a consistent manner, both statistical as well as systematic.

Grimm, H -J; Fabbiano, G; Elvis, M

2008-01-01T23:59:59.000Z

207

X-ray Line Profile Analysis  

Science Conference Proceedings (OSTI)

... Magnetic Composite Materials X-Ray Studies of Structural Effects Induced by Pulsed (30 Tesla), High Magnetic Fields at the Advanced Photon Source...

208

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray...

209

Hard X-Ray Quad Collimator  

Technology Development and Commercialization Division One of the best ways to obtain small?size x?ray beams for structural biology research is to ...

210

Viewing spin structures with soft x-ray microscopy  

SciTech Connect

The spin of the electron and its associated magnetic moment marks the basic unit for magnetic properties of matter. Magnetism, in particular ferromagnetism and antiferromagnetism is described by a collective order of these spins, where the interaction between individual spins reflects a competition between exchange, anisotropy and dipolar energy terms. As a result the energetically favored ground state of a ferromagnetic system is a rather complex spin configuration, the magnetic domain structure. Magnetism is one of the eldest scientific phenomena, yet it is one of the most powerful and versatile utilized physical effects in modern technologies, such as in magnetic storage and sensor devices. To achieve highest storage density, the relevant length scales, such as the bit size in disk drives is now approaching the nanoscale and as such further developments have to deal with nanoscience phenomena. Advanced characterization tools are required to fully understand the underlying physical principles. Magnetic microscopes using polarized soft X-rays offer a close-up view into magnetism with unique features, these include elemental sensitivity due to X-ray magnetic dichroism effects as contrast mechanism, high spatial resolution provided by state-of-the-art X-ray optics and fast time resolution limited by the inherent time structure of current X-ray sources, which will be overcome with the introduction of ultrafast and high brilliant X-ray sources.

Fischer, Peter

2010-06-01T23:59:59.000Z

211

YOHKOH remnants: partially occulted flares in hard X-rays  

E-Print Network (OSTI)

Flares being partially occulted by the solar limb, are the best reservoir of our knowledge about hard X-ray loop-top sources. Recently, the survey of partially occulted flares observed by the RHESSI has been published (Krucker & Lin 2008). The extensive YOHKOH database still awaits such activities. This work is an attempt to fill this gap. Among from 1286 flares in the YOHKOH Hard X-ray Telescope Flare Catalogue, for which the hard X-ray images had been enclosed, we identified 98 events that occurred behind the solar limb. We investigated their hard X-ray spectra and spatial structure. We found that in most cases the hard X-ray spectrum of partially occulted flares consists of two components, non-thermal and thermal, which are co-spatial. The photon energy spectra of the partially occulted flares are systematically steeper than spectra of the non-occulted flares. Such a difference we explain as a consequence of intrinsically dissimilar conditions ruling in coronal parts of flares, in comparison with the f...

Tomczak, M

2009-01-01T23:59:59.000Z

212

A multi-crystal wavelength dispersive x-ray spectrometer  

Science Conference Proceedings (OSTI)

A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.

Alonso-Mori, Roberto; Montanez, Paul; Delor, James; Bergmann, Uwe [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kern, Jan [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States); Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis [SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States)

2012-07-15T23:59:59.000Z

213

X?ray Fluorescence (XRF) Assay Using Laser Compton Scattered (LCS) X?rays  

Science Conference Proceedings (OSTI)

Laser Compton Scattered (LCS) X?rays are produced as a result of the interaction between accelerated electrons and a laser beam. The yield of LCS X?rays is dependent on the laser power

Syed F. Naeem; Khalid Chouffani; Douglas P. Wells

2009-01-01T23:59:59.000Z

214

X-ray spectroscopy of neutron star low-mass X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

Krauss, Miriam Ilana

2007-01-01T23:59:59.000Z

215

X-Ray Multilayer Database from the LBL Center for X-Ray Optics (CXRO)  

DOE Data Explorer (OSTI)

An important activity of the Center for X-ray Optics (CXRO) is research on x-ray mirrors and their use in optical devices to focus and deflect x-ray beams. The two kinds of mirrors most widely used are glancing incidence reflectors and multilayer coatings. The X-Ray Multilayer Database is based on the results of surveys taken at the biennial Physics of X-Ray Multilayer Structures conferences. It contains measured x-ray reflectances reported for various multilayers. The database is provided as a service to the x-ray and multilayer research communities and is intended to reflect the state-of-the-art in multilayer x-ray mirrors. (Specialized Interface)

216

X-ray movies reveal insect flight, muscle motion  

NLE Websites -- All DOE Office Websites (Extended Search)

BioCAT BioCAT X-ray movies reveal insect flight, muscle motion Photo credit: Michael Dickinson Watching flies fly may not seem like high-tech science, but for researchers using the Western Hemisphere's most brilliant X-rays, from the Advanced Photon Source located at the U.S. Department of Energy's Argonne National Laboratory, it not only helps explain how insects fly but also may someday aid in understanding human heart function. The researchers, from the Illinois Institute of Technology (IIT), Caltech and the University of Vermont, merged two distinct technologies, intense X-ray beams and electronic flight simulators, to study how insect muscles can generate such extraordinary levels of power. The results are published in the the January 20,. 2005, issue of the journal Nature.

217

Photon Sciences | Beamlines | XPD: X-ray Powder Diffraction  

NLE Websites -- All DOE Office Websites (Extended Search)

XPD: X-ray Powder Diffraction XPD: X-ray Powder Diffraction Poster | Fact Sheet | Preliminary Design Report Scientific Scope XPD is a tunable facility with the ability to collect diffraction data at high x-ray energies (40keV-80keV), offering rapid acquisition (millisecond) and high angular resolution capabilities on the same instrument. XPD addresses future scientific challenges in, for example, hydrogen storage, CO2 sequestration, advanced structural ceramics, catalysis, and materials processing. Such materials of high technological value often are complex, nanostructured and heterogeneous. The scientific grand challenge is to obtain robust and quantitative (micro)structural information, not only in the ground state at ambient conditions, but also in situ or in operando with varying temperature, pressure, magnetic/electric/stress

218

X-ray and Optical Filaments in M87  

E-Print Network (OSTI)

We compare a very deep X-ray image of M87, at the center of the Virgo Cluster, to high-quality optical images of the low excitation emission-line gas in the same region. There are striking coincidences of detail between the two. We explore the possiblity that this represents a thermal interaction between hot gas at 10^7 K and warm gas at 10^4 K. We find two temperatures are present in the X-ray gas, with the lower more prevelant in the vicinity of the optical filaments. Electron conduction from the hot phase to the cooler one provides a quantitatively acceptable energy source for the optical filaments, and we show additionally that it can do so for the brightest X-ray cluster, Perseus. If operative, conduction in the presence of gas-rich galaxy mergers, may explain the presence of "cool cores" in clusters of galaxies.

William B. Sparks; Megan Donahue; Andres Jordan; Laura Ferrarese; Patrick Cote

2004-02-09T23:59:59.000Z

219

Materials Analysis by Soft x-ray Scanning Transmission X-ray ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Optical and X-ray Imaging Techniques for Material Characterization.

220

Bragg x-ray survey spectrometer for ITER  

Science Conference Proceedings (OSTI)

Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

Varshney, S. K.; Jakhar, S. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Barnsley, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); O'Mullane, M. G. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The First Angstrom X-Ray Free-Electron Laser  

SciTech Connect

The Linac Coherent Light Source produced its first x-ray laser beam on 10 April 2009. Today it is routinely producing x-ray pulses with energy >2 mJ across the operating range from 820-8,200 eV. The facility has begun operating for atomic/molecular/optical science experiments. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented. Early results from the preparations for the start of the second user run is also reported.

Galayda, John; /SLAC

2012-08-24T23:59:59.000Z

222

X-ray Image Bank Open for Business - NERSC Center News, Feb 22, 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Image Bank Open X-ray Image Bank Open for Business X-ray Image Bank Open for Business February 22, 2011 Filipe Maia is building a data bank where scientists from around the world can deposit and share images generated by coherent x-ray light sources. A post-doctoral researcher with the National Energy Research Scientific Computing Center (NERSC), Maia hopes the Coherent X-ray Imaging Data Bank, or CXIDB (http://www.cxidb.org) can help researchers make the most of their valuable data. Scientists use light sources to shoot intense x-ray beams into molecules, such as proteins, in order to understand their shapes and structures. The resulting diffraction patterns are painstakingly reconstructed to deduce an image. "It kind of works like a microscope, but it has no lens," Maia says.

223

Compact X-ray Light Source Workshop Report  

SciTech Connect

This report, produced jointly by EMSL and FCSD, is the result of a workshop held in September 2011 that examined the utility of a compact x-ray light source (CXLS) in addressing many scientific challenges critical to advancing energy science and technology.

Thevuthasan, Suntharampillai; Evans, James E.; Terminello, Louis J.; Koppenaal, David W.; Manke, Kristin L.; Plata, Charity

2012-12-01T23:59:59.000Z

224

CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT  

SciTech Connect

National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID camera types differ significantly in some of their properties that affect the accuracy of X-ray intensity measurements. All cameras discussed here are silicon based. The measurements of quantum efficiency variation with X-ray energy are compared to models for the sensor structure. Cameras that are not back-thinned are compared to those that are.

Haugh, M J; Charest, M R; Ross, P W; Lee, J J; Schneider, M B; Palmer, N E; Teruya, A T

2012-02-16T23:59:59.000Z

225

Fast synchrotron X-ray tomography study of the rod packing structures  

SciTech Connect

We present a fast synchrotron X-ray tomography study of the packing structures of rods under tapping. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a tomography scan within several seconds, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. Due to the high-energy nature of the X-ray beam, special image processing steps including image phase-retrieval has been implemented. Overall, this study suggests the possibility of acquiring statistically significant static packing structures within a reasonable time scale using high-intensity X-ray sources.

Zhang Xiaodan; Xia Chengjie; Sun Haohua; Wang Yujie [Department of Physics, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

2013-06-18T23:59:59.000Z

226

Sure, a textbook can tell you about Bragg's Law and the x-ray absorption energies for any element in the periodic table, but it can't tell you how to plan and carry out an x-ray scattering experiment at one of the 50 or so synchrotron radiation facilitie  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Report SSRL 6 th Annual School on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application SSRL SR-XRS participants. Synchrotron-based X-ray scattering (SR-XRS) techniques offer the ability to probe nano- and atomic-scale structure that dictates the properties of advanced technological and environmental materials. Important materials studied at the Stanford Synchrotron Radiation Lightsource (SSRL) include organic and inorganic thin films and interfaces, nanoparticles, complex oxides, solutions, polymers, minerals and poorly crystalline materials. Good planning and a good working knowledge of beam lines and techniques are required to successfully conduct SR-XRS measurements. This sixth annual School at SSRL on Synchrotron X-ray

227

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

228

The soft x-ray instrument for materials studies at the linac coherent light source x-ray free-electron laser  

Science Conference Proceedings (OSTI)

The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.

Schlotter, W. F.; Turner, J. J.; Rowen, M.; Holmes, M.; Messerschmidt, M.; Moeller, S.; Krzywinski, J.; Lee, S.; Coffee, R.; Hays, G. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Heimann, P. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Soufli, R.; Fernandez-Perea, M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kelez, N. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Beye, M.; Gerken, N.; Sorgenfrei, F.; Wurth, W. [Institute for Experimental Physics and CFEL, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany); and others

2012-04-15T23:59:59.000Z

229

APS Bending Magnet X-rays and  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation of Nd-Fe-B Permanent Magnets with Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Co γ-rays J. Alderman and P.K. Job APS Operations Division Advanced Photon Source J. Puhl Ionizing Radiation Division National Institute of Standards and Technology June 2000 Table of Contents Introduction Radiation-Induced Demagnetization of Permanent Magnets Resources Required γ-ray Irradiation Results and Analysis of γ-ray Irradiation X-ray Irradiation Results and Analysis of X-ray Irradiation Summary and Conclusions Acknowledgements References Tables and Figures Introduction The Advanced Photon Source (APS), as well as other third-generation synchrotron light sources, uses permanent magnets in the insertion devices to produce x-rays for scientific

230

X-ray image intensifier phosphor  

DOE Patents (OSTI)

Y/sub 1-x/Gd/sub x/.PO$sub 4$:Tb$sup 3+$ is an effective phosphor for use in X-ray intensifier screens and in nuclear radiation detection systems.

D' Silva, A.P.; Fassel, V.A.

1975-12-01T23:59:59.000Z

231

World's First Hard X-ray Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS is the world's most powerful X-ray laser. Its highly focused beam, which arrives in staccato bursts a few quadrillionths of a second long, allows researchers to probe complex,...

232

X-Ray Nanoimaging: Instruments and Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

233

X-Ray Scattering Group, Condensed Matter Physics & Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Brookhaven National Laboratory, Upton, NY Beamline X1A2 - Soft x-ray diffraction and nano-imaging Beamline X17 - X-ray powder diffraction Beamline X22C - Resonant x-ray...

234

X-Ray Emission from Compact Sources  

SciTech Connect

This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

Cominsky, L

2004-03-23T23:59:59.000Z

235

A New Measurement of Kaonic Hydrogen X rays  

E-Print Network (OSTI)

The $\\bar{K}N$ system at threshold is a sensitive testing ground for low energy QCD, especially for the explicit chiral symmetry breaking. Therefore, we have measured the $K$-series x rays of kaonic hydrogen atoms at the DA$\\Phi$NE electron-positron collider of Laboratori Nazionali di Frascati, and have determined the most precise values of the strong-interaction energy-level shift and width of the $1s$ atomic state. As x-ray detectors, we used large-area silicon drift detectors having excellent energy and timing resolution, which were developed especially for the SIDDHARTA experiment. The shift and width were determined to be $\\epsilon_{1s} = -283 \\pm 36 \\pm 6 {(syst)}$ eV and $\\Gamma_{1s} = 541 \\pm 89 {(stat)} \\pm 22 {(syst)}$ eV, respectively. The new values will provide vital constraints on the theoretical description of the low-energy $\\bar{K}N$ interaction.

M. Bazzi; G. Beer; L. Bombelli; A. M. Bragadireanu; M. Cargnelli; G. Corradi; C. Curceanu; A. d'Uffizi; C. Fiorini; T. Frizzi; F. Ghio; B. Girolami; C. Guaraldo; R. S. Hayano; M. Iliescu; T. Ishiwatari; M. Iwasaki; P. Kienle; P. Levi Sandri; A. Longoni; V. Lucherini; J. Marton; S. Okada; D. Pietreanu; T. Ponta; A. Rizzo; A. Romero Vidal; A. Scordo; H. Shi; D. L. Sirghi; F. Sirghi; H. Tatsuno; A. Tudorache; V. Tudorache; O. Vazquez Doce; E. Widmann; J. Zmeskal

2011-05-16T23:59:59.000Z

236

Soft x-ray diagnostics for pulsed power machines  

SciTech Connect

A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

1995-08-01T23:59:59.000Z

237

Argonne CNM: X-Ray Microscopy Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

238

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

239

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

240

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

242

Optimal focusing for a linac-based hard x-ray source  

Science Conference Proceedings (OSTI)

In spite of having a small average beam current limit, a linac can have features that make it attractive as an x-ray source: high energy, ultralow emittance and energy spread, and flexible beamline optics. Unlike a storage ring, in which an (undulator) radiation source is necessarily short and positioned at an electron beam waist, in a linac the undulator can be long and the electron beam can be adjusted to have a (virtual) waist far downstream toward the x-ray target. Using a planned CEBAF beamline as an example, this paper shows that a factor of 2000 in beam current can be overcome to produce a monochromatic hard x-ray source comparable with, or even exceeding, the performance of an x-ray line at a third generation storage ring. Optimal electron beam focusing conditions for x-ray flux density and brilliance are derived, and are verified by simulations using the SRW code.

Liu, C.; Krafft, G.; Talman, R.

2011-03-28T23:59:59.000Z

243

An X-ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies  

E-Print Network (OSTI)

Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, & Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubi\\'nski, & Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available from accretion, one can predict the spectral properties of the hard X-ray continuum above $\\sim 50$ keV in type 1 Seyfert galaxies. Forthcoming measurements of the hard X-ray continuum by more sensitive hard X-ray and soft $\\gamma$-ray telescopes, in conjunction with simultaneous optical, UV, and soft X-ray monitoring, will allow the mass accretion rates to be directly constrained for these sources in the context of this model.

James Chiang

2002-02-12T23:59:59.000Z

244

Inelastic X-ray and Nuclear Resonant Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Beamlines Divisions Argonne Home > Advanced Photon Source > Inelastic X-ray and Nuclear Resonant Scattering The Inelastic X-ray and Nuclear Resonant Scattering group...

245

High-Resolution X-ray Imaging of the Colliding Wind Shock in WR147  

E-Print Network (OSTI)

We analyze new high-resolution Chandra X-ray images of the Wolf-Rayet binary system WR147. This system contains a WN8 star with an early-type companion located 0.6'' to its north, and is the only known early-type binary with a separation on the sky large enough for the wind-wind collision between the stars to currently be resolved at X-ray energies. The 5 ksec Chandra HRC-I image provides the first direct evidence for spatially extended X-ray emission in an early-type binary system. The X-ray emission peaks close to the position of the radio bow shock and north of the WN8 star. A deeper X-ray image is needed to accurately determine the degree of spatial extension, to exactly align the X-ray and optical/radio frames, and to determine whether part of the detected X-ray emission arises in the individual stellar winds. Simulated X-ray images of the wind-wind collision have a FWHM consistent with the data, and maximum likelihood fits suggest that a deeper observation may also constrain the inclination and wind momentum ratio of this system. However, as the WR wind dominates the colliding wind X-ray emission it appears unlikely that the mass-loss rate and the terminal velocity of the companion wind can be separately determined from X-ray observations. We also note an inconsistency between numerical and analytical estimates of the X-ray luminosity ratio of the stronger and weaker wind components, and conclude that the analytical results are in error.

J. M. Pittard; I. R. Stevens; P. M. Williams; A. M. T. Pollock; S. L. Skinner; M. F. Corcoran; A. F. J. Moffat

2002-04-12T23:59:59.000Z

246

Transient x-ray diffraction and its application to materials science and x-ray optics  

SciTech Connect

Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R. [and others

1997-12-01T23:59:59.000Z

247

Kinematics of Compton backscattering x-ray source for angiography  

SciTech Connect

Calculations of X-Ray production rates, energy spread, and spectrum of Compton-backscattered photons from a Free Electron Laser on an electron beam in a low energy (136-MeV) compact (8.5-m circumference) storage ring indicate that an X-Ray intensity of 34.6 10{sup 7} X-Ray photons per 0.5-mm {times} 0.5-mm pixel for Coronary Angiography near the 33.169-keV iodine K-absorption edge can be achieved in a 4-msec pulse within a scattering cone of 1-mrad half angle. This intensity, at 10-m from the photon-electron interaction point to the patient is about a factor of 10 larger than presently achieved from a 4.5-T superconducting wiggler source in the NSLS 2.5-GeV storage ring and over an area about 5 times larger. The 2.2-keV energy spread of the Compton-backscattered beam is, however, much larger than the 70-eV spread presently attained form the wiggler source and use of a monochromator. The beam spot at the 10-m interaction point-to-patient distance is 20-mm diameter; larger spots are attainable at larger distances but with a corresponding reduction in X-Ray flux. Such a facility could be an inexpensive clinical alternative to present methods of non-invasive Digital Subtraction Angiography (DSA), small enough to be deployed in an urban medical center, and could have other medical, industrial and aerospace applications. Problems with the Compton backscattering source include laser beam heating of the mirror in the FEL oscillator optical cavity, achieving a large enough X-Ray beam spot at the patient, and obtaining radiation damping of the transverse oscillations and longitudinal emittance dilution of the storage ring electron beam resulting from photon-electron collisions without going to higher electron energy where the X-Ray energy spread becomes excessive for DSA. 38 refs.

Blumberg, L.N.

1992-05-01T23:59:59.000Z

248

X-ray Diffraction Crystal Calibration and Characterization  

SciTech Connect

National Security Technologies X-ray Laboratory is comprised of a multi-anode Manson type source and a Henke type source that incorporates a dual goniometer and XYZ translation stage. The first goniometer is used to isolate a particular spectral band. The Manson operates up to 10 kV and the Henke up to 20 kV. The Henke rotation stages and translation stages are automated. Procedures have been developed to characterize and calibrate various NIF diagnostics and their components. The diagnostics include X-ray cameras, gated imagers, streak cameras, and other X-ray imaging systems. Components that have been analyzed include filters, filter arrays, grazing incidence mirrors, and various crystals, both flat and curved. Recent efforts on the Henke system are aimed at characterizing and calibrating imaging crystals and curved crystals used as the major component of an X-ray spectrometer. The presentation will concentrate on these results. The work has been done at energies ranging from 3 keV to 16 keV. The major goal was to evaluate the performance quality of the crystal for its intended application. For the imaging crystals we measured the laser beam reflection offset from the X-ray beam and the reflectivity curves. For the curved spectrometer crystal, which was a natural crystal, resolving power was critical. It was first necessary to find sources of crystals that had sufficiently narrow reflectivity curves. It was then necessary to determine which crystals retained their resolving power after being thinned and glued to a curved substrate.

Michael J. Haugh; Richard Stewart; Nathan Kugland

2009-06-05T23:59:59.000Z

249

A fine-focusing x-ray source using carbon-nanofiber field emitter  

Science Conference Proceedings (OSTI)

A fine-focusing x-ray source has been constructed employing a field electron emitter prepared by growing carbon-nanofibers (CNFs) on a metal tip. The x-ray source is composed of a CNF field electron emitter, an electrostatic lens, two magnetic lenses, and a W-target for generating x-rays by electron impact. The CNFs provided field electrons with a current density of J{approx}5x10{sup 9} A/m{sup 2}, which was evaluated with the aid of Fowler-Nordheim theory. The electron beam extracted from the CNF emitter was accelerated to the energies of E=10-25 keV, and then focused by the lenses. By recording the x-ray images of test charts, the optimum resolution of the x-ray source was estimated to be approximately D{sub x}=0.5 {mu}m.

Sugimoto, W.; Sugita, S.; Sakai, Y.; Goto, H.; Watanabe, Y.; Ohga, Y.; Kita, S. [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohara, T. [Topcon Corporation, 75-1 Hasunuma-cho, Itabashi-ku, Tokyo 174-8580 (Japan)

2010-08-15T23:59:59.000Z

250

Nuclear transitions induced by synchrotron x-rays.  

DOE Green Energy (OSTI)

We discuss two rare but interesting processes by which synchrotron x-rays with energies up to about 100 keV may be used to induce nuclear transitions. In the NEET (Nuclear Excitation by Electronic Transition) process, an intense x-ray beam is employed to make vacancies, e.g. K-holes, in the atoms of a specific nuclear isotope. When a vacancy is filled by an electronic transition from a higher atomic level, there is some probability that instead of the usual x-ray or Auger emission, the nucleus of the atom itself will be excited. This is then followed by a nuclear decay exhibiting characteristic gamma-rays or other types of radiation, with time delays typical of the nuclear states involved. The probability for NEET increases when the energies of the atomic and the nuclear transitions become close. We address some theoretical aspects of the process and describe experimental efforts to observe it in {sup 189}Os and {sup 197}Au. The second process to be discussed is the possibility of ''triggering'' the decay of a nuclear isomer by irradiation with an x-ray beam. We focus on the case of the 31-year, 2.4-MeV, 16+ isomer of {sup 178}Hf. There has been speculation that if one could isolate gram quantities, say, of this isomer and then have the capability to accelerate its decay in a controlled way, one would have a powerful triggerable source of enormous energy. This could be used to generate explosions, for rapid irradiations, or for more general energy-storage applications, depending on the rate of energy release. We describe attempts to observe this process.

Gemmell, D. S.

2002-06-05T23:59:59.000Z

251

Fiber fed x-ray/gamma ray imaging apparatus  

SciTech Connect

X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

Hailey, Charles J. (San Francisco, CA); Ziock, Klaus-Peter (Livermore, CA)

1992-01-01T23:59:59.000Z

252

Radiographic X-Ray Pulse Jitter  

Science Conference Proceedings (OSTI)

The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

2011-01-15T23:59:59.000Z

253

Development and characterization of a novel compact x-ray source  

E-Print Network (OSTI)

For elemental analysis, x-ray fluorescence spectroscopy (XRF) is a rapid and simple method of analysis, which provides both quantitative and qualitative information. In general, most XRF instruments are not suited for use as portable field instruments. Most commercial XRF spectrometers require cooling units for the anode, large power supplies and, in some cases, liquid nitrogen to cool the x-ray detectors. Alternative x-ray sources using radioactive isotopes have been considered for portable XRF, but safety regulations and public concerns have hampered their usage. An x-ray source has been developed which uses a solid state electron multiplier to enhance the electron gain from a simple filament. The overall gain from the electron multiplier is sufficient to generate x-rays. However, the novel source produces less heating of the anode, eliminating the cooling unit requirement. This feature along with the small size of the electron multiplier, allows for a compact design, which lends itself to portability. An additional feature is that the power consumption of the system is lower than a typical xray tube system. Initial studies have shown that the system behaves similar to a conventional x-ray tube. Increasing anode voltage (electron energy) causes improved yield of the higher energy x-rays. Also, increasing the electron multiplier voltage (electron intensity) increases overall intensity of the x-ray output. Using the new source for XRF studies, the limits of detection were comparable with values reported in the literature. It was necessary, however, to prepare the samples using single elements to reduce matrix affects and lessen effects of overlapping peaks. In general the x-ray source shows potential as a portable x-ray source that may be used in the field.

Woo, Ronald Yut

1996-01-01T23:59:59.000Z

254

ON THE TRUE SHAPE OF X-RAY SPECTRA  

SciTech Connect

A method for obtaining the true shape of x-ray spectra was developed for the particular case of dispersive distortions. The method is of value in the correction of the shape of the spectrum for the distortion introduced by the outside level of the atom and in showing the correct shape of the energy dependence of the density of states n(E)p(E) where p(E) is the probability of the corresponding transition. (J.S.R.)

Blokhin, M.A.

1956-03-01T23:59:59.000Z

255

X-ray Flares in Orion Low Mass Stars  

E-Print Network (OSTI)

Context. X-ray flares are common phenomena in pre-main sequence stars. Their analysis gives insights into the physics at work in young stellar coronae. The Orion Nebula Cluster offers a unique opportunity to study large samples of young low mass stars. This work is part of the Chandra Orion Ultradeep project (COUP), an ~10 day long X-ray observation of the Orion Nebula Cluster (ONC). Aims. Our main goal is to statistically characterize the flare-like variability of 165 low mass (0.1-0.3 M_sun) ONC members in order to test and constrain the physical scenario in which flares explain all the observed emission. Methods. We adopt a maximum likelihood piece-wise representation of the observed X-ray light curves and detect flares by taking into account both the amplitude and time derivative of the count-rate. We then derive the frequency and energy distribution of the flares. Results. The high energy tail of the energy distribution of flares is well described by a power-law with index 2.2. We test the hypothesis that light curves are built entirely by overlapping flares with a single power law energy distribution. We constrain the parameters of this simple model for every single light curve. The analysis of synthetic light curves obtained from the model indicates a good agreement with the observed data. Comparing low mass stars with stars in the mass interval (0.9-1.2M_sun), we establish that, at ~1 Myr, low mass and solar mass stars of similar X-ray luminosity have very similar flare frequencies. Conclusions. Our observational results are consistent with the following model/scenario: the light curves are entirely built by over- lapping flares with a power-law intensity distribution; the intense flares are individually detected, while the weak ones merge and form a pseudo-quiescent level, which we indicate as the characteristic level.

M. Caramazza; E. Flaccomio; G. Micela; F. Reale; S. J. Wolk; E. D. Feigelson

2007-06-11T23:59:59.000Z

256

X-Ray Data from the X-Ray Data Booklet Online  

DOE Data Explorer (OSTI)

The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

257

Frontiers in X-Ray Science  

Science Conference Proceedings (OSTI)

The year 2010 marked the fiftieth anniversary of the optical laser and the first anniversary of the world's first hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS) at SLAC. This exciting, new accelerator-based source of x-rays provides peak brilliances roughly a billion times greater than currently available from synchrotron sources such as the Advanced Photon Source at Argonne, and thus explores a qualitatively different parameter space. This talk will describe the first experiments at the LCLS aimed at understanding the nature of high intensity x-ray interactions, related applications in ultrafast imaging on the atomic scale and sketch nascent plans for the extension of both linac and storage-ring based photon sources.

Linda Young

2011-02-23T23:59:59.000Z

258

Absolute, soft x-ray calorimetry on the Z facility at Sandia National Laboratories  

SciTech Connect

Simple and reliable x-ray fluence measurements, in addition to time-resolved diagnostics, are needed to understand the physics of hot Z-pinch plasmas. A commercially available laser calorimeter has been modified for measuring soft x-ray fluence from the Z facility at Sandia National Laboratories. The x-ray absorber of this calorimeter is an aluminum disk, attached to a two-dimensional thermopile and surrounded by an isoperibol shroud. The time-integral and the maximum of the thermopile voltage signal are both proportional to the x-ray energy deposited. Data are collected for 90 seconds, and the instrument has, thus far, been used in the 1--25 mJ range. A wider dynamic measuring range for x-ray fluence (energy/area) can be achieved by varying the area of the defining aperture. The calorimeter is calibrated by an electrical substitution method. Calibrations are performed before and after each x-ray experiment on the Z facility. The calibration of the time-integral of the thermopile voltage vs. energy deposited (or the peak of thermopile voltage vs. energy deposited) is linear with zero offset at the 95% confidence level. The irreproducibility of the calibration is <2%, and the imprecision in the measurement of the incident x-ray energy (inferred from signal noise and the calibration) is estimated to be {approximately}0.9 mJ (95% confidence level). The inaccuracy is estimated at {+-}10%, due to correctable systematic errors (e.g., baseline shifts). Comparisons have been made of the calorimeter to time-resolved x-ray diagnostics, e.g., bolometers and XRD (x-ray diode) arrays, by integrating the flux measured by these instruments over time.

Fehl, D.L.; Muron, D.J.; Leeper, R.J.; Chandler, G.A.; Deeney, C.; Spielman, R.B.

1998-05-01T23:59:59.000Z

259

Radiobiological studies using gamma and x rays.  

Science Conference Proceedings (OSTI)

There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

2013-02-01T23:59:59.000Z

260

X-ray Science Division: Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Division: Groups Division: Groups Atomic, Molecular and Optical Physics (AMO) Primary Contact: Stephen Southworth Work focuses on understanding how strong optical and x-ray fields interact with matter, with an emphasis on photonic control of electronic, atomic and molecular motion. Chemical and Materials Science (CMS) Primary Contact: Randy Winans Research Disciplines: Chemistry, Materials Science Detectors (DET) Primary Contact: Antonino Miceli GMCA Structural Biology Facility (MX) Primary Contact: Robert Fischetti Research Disciplines: Biology, Life Sciences Imaging (IMG) Primary Contact: Francesco DeCarlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences Inelastic X-ray & Nuclear Resonant Scattering (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

12.141 Electron Microprobe Analysis by Wavelength Dispersive X-ray Spectrometry, January (IAP) 2006  

E-Print Network (OSTI)

Introduction to the theory of x-ray microanalysis through the electron microprobe including ZAF matrix corrections. Techniques to be discussed are wavelength and energy dispersive spectrometry, scanning backscattered ...

Chatterjee, Nilanjan

262

Sub-Picosecond X-Ray Pulses Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

International Workshop on the Interactions of Intense Sub-Picosecond X-Ray International Workshop on the Interactions of Intense Sub-Picosecond X-Ray Pulses with Matter (SLAC, January 23-24, 1997) During the last five years studies have been conducted at the Stanford Linear Accelerator Center (SLAC) and the Deutsches Elektronen-Synchrotron (DESY) in Hamburg concerning the feasibility of driving an Angstrom-wavelength Free-Electron Laser (FEL) with a high energy rf linac. Recent promising advances in linac, rf gun, and insertion device technologies make it seem likely that such a device can be constructed. The output radiation predicted for this type of source will be characterized by full transverse coherence, extreme pulse brevity (~50-100 fs), high peak power (10-100 GW), and very high unfocused peak power density (0.4-4.1013

263

LCLS - The X-ray Laser Has Turned On  

SciTech Connect

On April 10, 2009 the Linac Coherent Light Source (LCLS), the world's first hard x-ray free electron laser, was brought to lasing. Producing an x-ray beam with over a billion times higher peak brightness that then most powerful existing syncrotron sources, it marked the beginning of a new era of science. The LCLS pulses arrive at a rate of 60 - 120 Hz in an energy range from 480 eV to 10 keV, with pulse lengths as short as a few fs to about 300 fs. Since October 2009, users have been performing experiments at the LCLS, and currently three of the six planned instruments are available. Although we stand only at the beginning of LCLS science, there is no doubt about the strong sense of early excitement.

Bergmann, Uwe [Linac Coherent Light Source

2010-11-03T23:59:59.000Z

264

An X-ray Polarimeter for Constellation-X  

E-Print Network (OSTI)

Polarimetry remains a largely unexploited technique in observational X-ray astronomy which could provide insight in the study of the strong gravity and magnetic fields at the core of the Constellation-X observational program. Adding a polarization capability to the Constellation-X instrumentation would be immensely powerful. It would make Constellation the first space observatory to simultaneously measure all astrophysically relevant parameters of source X-ray photons; their position (imaging), energy (spectroscopy), arrival time (timing), and polarization. Astrophysical polarimetry requires sensitive well-calibrated instruments. Many exciting objects are extra-galactic (i.e. faint) and may have small polarization. Recent advances in efficiency and bandpass make it attractive to consider a polarimetry Science Enhancement Package for the Constellation-X mission.

K. Jahoda; K. Black; P. Deines-Jones; J. E. Hill; T. Kallman; T. Strohmayer; J. H. Swank

2007-01-04T23:59:59.000Z

265

Computational Simulations of High Intensity X-Ray Matter Interaction  

SciTech Connect

Free electron lasers have the promise of producing extremely high-intensity short pulses of coherent, monochromatic radiation in the 1-10 keV energy range. For example, the Linac Coherent Light Source at Stanford is being designed to produce an output intensity of 2 x 10{sup 14} W/cm{sup 2} in a 230 fs pulse. These sources will open the door to many novel research studies. However, the intense x-ray pulses may damage the optical components necessary for studying and controlling the output. At the full output intensity, the dose to optical components at normal incidence ranges from 1-10 eV/atom for low-Z materials (Z < 14) at photon energies of 1 keV. It is important to have an understanding of the effects of such high doses in order to specify the composition, placement, and orientation of optical components, such as mirrors and monochromators. Doses of 10 eV/atom are certainly unacceptable since they will lead to ablation of the surface of the optical components. However, it is not precisely known what the damage thresholds are for the materials being considered for optical components for x-ray free electron lasers. In this paper, we present analytic estimates and computational simulations of the effects of high-intensity x-ray pulses on materials. We outline guidelines for the maximum dose to various materials and discuss implications for the design of optical components.

London, R A; Rionta, R; Tatchyn, R; Roessler, S

2001-08-02T23:59:59.000Z

266

Soft x-ray scattering using FEL radiation for probing near-solid density plasmas at few electronvolt temperatures  

DOE Green Energy (OSTI)

We report on soft x-ray scattering experiments on cryogenic hydrogen and simple metal targets. As a source of intense and ultrashort soft x-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 100 {micro}J and durations below 50 fs provide interaction with the target leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft x-ray inelastic scattering from near-solid density hydrogen plasmas at few electronvolt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft x-ray excitation of few electronvolt solid-density plasmas in simple metals could be studied by recording soft x-ray line and continuum emission integrated over emission times from fs to ns.

Toleikis, S; Faustlin, R R; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Tavella, F; Thiele, R; Tiggesbaumker, J; Truong, N X; Uschmann, I; Zastrau, U; Tschentscher, T

2009-03-03T23:59:59.000Z

267

Application of In-Situ High Energy-Resolution Fluorescence Detection and Time-Resolved X-Ray Spectroscopy: Catalytic Activation of Oxygen over Supported Gold Catalysts  

SciTech Connect

Life-time-broadening reduction in high-energy-resolution fluorescence detected XAS produced spectra of unprecedented detail. Au L3 edge spectra of a Au/Al2O3 catalyst under various reaction conditions showed the interaction of oxygen with the gold particles on this catalyst. A reaction path on the gold particle in the oxidation of CO was established.

Bokhoven, Jeroen A. van [Institute for Chemical and Bioengineering, ETH Zurich (Switzerland); Tromp, Moniek [University of Southampton, School of Chemistry, Southampton (United Kingdom); Glatzel, Pieter; Safonova, Olga [European Synchrotron Radiation Facility, Grenoble (France)

2007-02-02T23:59:59.000Z

268

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-01-01T23:59:59.000Z

269

Multiple wavelength x-ray monochromators  

DOE Patents (OSTI)

An apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined second distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

Steinmeyer, P.A.

1991-12-31T23:59:59.000Z

270

X-Ray and Neutron Diffraction  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Advanced X-Ray Scattering Techniques for Multi-Length Scale ... ?-Ti using the 3DXRD station 34-ID-E at the Advanced Photon Source, Argonne National Laboratory. ... Research at APS 34-ID-E, partly funded by BES/DOE.

271

Soft x-ray laser microscope  

Science Conference Proceedings (OSTI)

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

272

Small Angle X-Ray Scattering Detector  

DOE Patents (OSTI)

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

Hessler, Jan P.

2004-06-15T23:59:59.000Z

273

SAND76-0260 Unlimited Release  

NLE Websites -- All DOE Office Websites (Extended Search)

SAND76-0260 SAND76-0260 Unlimited Release Printed July 1976 . POWER SUPPLIES FOR SPACE SYSTEMS QUALITY ASSURANCE BY SANDIA LABORATORIES Robert L. Hannigan Robert R. Harnar Electronic and Electrical Devices Division 951 2 Sandia Laboratories Albuquerque, NM 87115 AB STRAC T This report summarizes the Sandia Laboratories participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used i n space systems over the past 10 years. Basic elements of this QA program a r e briefly de- scribed and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems f o r which Sandia has had the QA responsibility a r e presented, including SNAP 1 9 (Nimbus, Pioneer, Viking), SNAP 27 (Apollo),

274

SANDIA REPORT SAND95-2049 UC-700 Unlimited Release  

Office of Scientific and Technical Information (OSTI)

5-2049 UC-700 5-2049 UC-700 Unlimited Release Printed August 1995 c CHAPARRAL: A Library for Solving Large Enclosure Radiation Heat Transfer Problems Micheal W. Glass Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 for the United S t a t e s Department of Energy under Contract DE-Am-94AL85000 , I , - Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOnCE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Govern- ment nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

275

X-ray Synchrotron Radiation in a Plasma Wiggler  

SciTech Connect

A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

Wang, Shuoquin; /UCLA /SLAC, SSRL

2005-09-27T23:59:59.000Z

276

X-ray Spectral Properties of Gamma-Ray Bursts  

E-Print Network (OSTI)

We summarize the spectral characteristics of a sample of 22 bright gamma-ray bursts detected with the gamma-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2 - 400 keV range, providing a unique opportunity to characterize the largely unexplored X-ray properties of gamma-ray bursts. The photon spectra of the Ginga bursts are well described by a low energy slope, a bend energy, and a high energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40% of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson's r = -0.62) between the low energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. The observed ratio of energy emitted in the X-rays relative to the gamma-rays can be much larger than a few percent and, in fact, is sometimes larger than unity. The average for our sample is 24%.

T. E. Strohmayer; E. E. Fenimore; T. Murakami; A. Yoshida

1997-12-18T23:59:59.000Z

277

X-ray variability and 1mHz oscillations in TT ARI  

E-Print Network (OSTI)

Using the archival ROSAT observation of TT Ari, X-ray energy spectra in different orbital phases and power spectra of the intensity time series are presented. Spectral fits show that the source gets brighter during the observation. The orbital modulation of the X-ray counting rate and bremsstrahlung temperature suggests that soft X-ray emission peaks in the orbital phase interval 0.75-0.90, when an outer disk hot spot is near the line of sight. This correlates with the orbital modulation of C IV($\\lambda$1549) absorption. Timing analysis indicates that while the source gets brighter, the frequency of the 1mHz oscillation is not correlated with X-ray intensity. This implies that in the X-rays from TT Ari, the beat frequency model is not appropriate for explaining the changes in the 1mHz oscillations. \\keywords{Accretion discs - stars: TT Ari - stars: cataclysmic variables - X-ray: binaries - X-rays

A. Bayka; A. Esendemir; U. Kiziloglu; M. A. Alpar; H. Ogelman; N. Ercan; G. Ikis

1995-03-13T23:59:59.000Z

278

Epitaxial BaTiO{sub 3}(100) films on Pt(100): A low-energy electron diffraction, scanning tunneling microscopy, and x-ray photoelectron spectroscopy study  

Science Conference Proceedings (OSTI)

The growth of epitaxial ultrathin BaTiO{sub 3} films on a Pt(100) substrate has been studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and x-ray photoelectron spectroscopy (XPS). The films have been prepared by radio-frequency-assisted magnetron sputter deposition at room temperature and develop a long-range order upon annealing at 900 K in O{sub 2}. By adjusting the Ar and O{sub 2} partial pressures of the sputter gas, the stoichiometry was tuned to match that of a BaTiO{sub 3}(100) single crystal as determined by XPS. STM reveals the growth of continuous BaTiO{sub 3} films with unit cell high islands on top. With LEED already for monolayer thicknesses, the formation of a BaTiO{sub 3}(100)-(1 x 1) structure has been observed. Films of 2-3 unit cell thickness show a brilliant (1 x 1) LEED pattern for which an extended set of LEED I-V data has been acquired. At temperatures above 1050 K the BaTiO{sub 3} thin film starts to decay by formation of vacancy islands. In addition (4 x 4) and (3 x 3) surface reconstructions develop upon prolonged heating.

Foerster, Stefan; Huth, Michael; Schindler, Karl-Michael; Widdra, Wolf [Institute of Physics, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany)

2011-09-14T23:59:59.000Z

279

X Ray Scattering | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

X Ray Scattering X Ray Scattering Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas X Ray Scattering Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research on the fundamental interactions of photons with matter to achieve an understanding of atomic, electronic, and magnetic structures and excitations and their relationships to materials properties. The main emphasis is on x-ray scattering, spectroscopy, and imaging research, primarily at major BES-supported user facilities.

280

ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS  

SciTech Connect

Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

Qiu, Rui

2011-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes  

Science Conference Proceedings (OSTI)

Single-bounce ellipsoidal and paraboloidal glass capillary focusing optics have been fabricated for use as condenser lenses for both synchrotron and tabletop x-ray microscopes in the x-ray energy range of 2.5-18 keV. The condenser numerical apertures (NAs) of these devices are designed to match the NA of x-ray zone plate objectives, which gives them a great advantage over zone plate condensers in laboratory microscopes. The fabricated condensers have slope errors as low as 20 {mu}rad rms. These capillaries provide a uniform hollow-cone illumination with almost full focusing efficiency, which is much higher than what is available with zone plate condensers. Sub-50 nm resolution at 8 keV x-ray energy was achieved by utilizing this high-efficiency condenser in a laboratory microscope based on a rotating anode generator.

Zeng Xianghui; Duewer, Fred; Feser, Michael; Huang, Carson; Lyon, Alan; Tkachuk, Andrei; Yun Wenbing

2008-05-01T23:59:59.000Z

282

Direct x-ray response of self-scanning photodiode arrays  

SciTech Connect

Self-scanning photodiode arrays were tested for their ability to measure the spatial distribution of low-energy x rays in a wavelength-dispersive spectrometer. X-ray spectral sensitivity was measured with a calibrated dc source of nearly-monochromatic characteristic-x rays with photon energies in the range of 1.5 to 8 keV. Photodiode response was found to be linear with x-ray flux. Exposure to large doses of copper radiation did not affect sensitivity. A mathematical model that describes the experimental data is presented. It was found that spatial resolving power was lowered by the dispersal of photogenerated charges. This effect was investigated with collimated beams and is described with a formula that predicts the loss of diode signals. (auth)

Koppel, L.N.

1975-08-13T23:59:59.000Z

283

X-rays from HH 80, HH 81, and the Central Region  

E-Print Network (OSTI)

We report detections of X-rays from HH 80 and HH 81 with the ACIS instrument on the Chandra X-ray Observatory. These are among the most luminous HH sources in the optical and they are now the most luminous known in X-rays. These X-rays arise from the strong shocks that occur when the southern extension of this bipolar outflow slams into the ambient material. There is a one-to-one correspondence between regions of high X-ray emission and high H? emission. The X-ray luminosities of HH 80 and HH 81 are 4.5 and 4.3 x 1031 erg s-1, respectively, assuming the measured low-energy absorption is not in the sources. The measured temperature of the HH plasma is not as large as that expected from the maximum velocities seen in the extended tails of the optical emission lines. Rather it is consistent with the ~106 K temperature of the ?narrow? core of the optical lines. There is no observed emission from HH 80 North, the northern extension of the bipolar flow, based upon a measurement of lower sensitivity. We imaged the central region of the bipolar flow revealing a complex of X-ray sources including one near, but not coincident with the putative power source in the radio and infrared. This source, CXOPTM J181912.4-204733, has no counterparts at other wavelengths and is consistent in luminosity and spectrum with a massive star with AV ~ 90 mag. It may contribute significantly to the power input to the complex. Alternatively, this emission might be extended X-rays from outflows close to the power source. We detect 94 X-ray sources overall in this area of star formation.

Steven H. Pravdo; Yohko Tsuboi; Yoshitomo Maeda

2004-03-10T23:59:59.000Z

284

Rise time measurement for ultrafast X-ray pulses  

Science Conference Proceedings (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

2005-04-05T23:59:59.000Z

285

Rise Time Measurement for Ultrafast X-Ray Pulses  

DOE Patents (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

2005-04-05T23:59:59.000Z

286

A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies  

SciTech Connect

We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

Szlachetko, J. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Nachtegaal, M.; Boni, E. de; Willimann, M.; Safonova, O.; Sa, J.; Smolentsev, G.; Szlachetko, M.; Bergamaschi, A.; Schmitt, B.; David, C.; Luecke, A. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bokhoven, J. A. van [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zuerich (Switzerland); Dousse, J.-Cl.; Hoszowska, J.; Kayser, Y. [Department of Physics, University of Fribourg, 1700 Fribourg (Switzerland); Jagodzinski, P. [University of Technology, Kielce (Poland)

2012-10-15T23:59:59.000Z

287

SAND97-8490 UC-404 Unlimited Release  

Office of Scientific and Technical Information (OSTI)

SAND97-8490 UC-404 SAND97-8490 UC-404 Unlimited Release Printed March 1997 J Mechanical Properties and Energy Absorption Characteristics of a Polyurethane Foam S. H. Goods, C. L. Neuschwanger, C. Henderson, D. M. Skala DISCLAIMER This report was prepared as a n account of work sponsored by a n agenq of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warrantyy express or impIied, or assumes any legal liabili- ty or responsibility for the accuracy, completeness, or usefulness of any information, appa- ratus, product, or process disdased, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necrsariiy constitute or

288

SANDIA REPORT SAND98-0260 UC-705 Unlimited Release  

Office of Scientific and Technical Information (OSTI)

8-0260 UC-705 8-0260 UC-705 Unlimited Release Printed February 1998 An Efficient Method for Calculating RMS von Mises Stress in a Random Vibration Environment Daniel J. Segalman, Clay W. G. Fulcher, Garth M. Reese, R Prepared by Sandia National Labora Sc2900Q18-81) Issued by Sanma National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Govern- ment nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, o r assumes any legal liability or responsibility for the accuracy, completeness, o

289

X-rays Illuminate Ancient Archimedes Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links: Related Links: May 2005 Headlines TIP Article Press Release Walters Art Museum SSRL Home Page SLAC Home Page Stanford Home Page Tuesday, 31 May 2005 X-rays Illuminate Ancient Archimedes Text (contact: Uwe Bergmann, bergmann@slac.stanford.edu) Archimedes Figure Image provided by Will Noel, The Walters Art Museum An early transcription of Archimedes' mathematical theories has been brought to light through the probing of high-intensity x-rays at SSRL's BL6-2. The text contains part of the Method of Mechanical Theorems, one of Archimedes' most important works, which was probably copied out by a scribe in the tenth century. The parchment on which it was written was later scraped down and reused as pages in a twelfth century prayer book, producing a document known as a palimpsest (which comes from the Greek,

290

High resolution x-ray microscope  

Science Conference Proceedings (OSTI)

The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens (CRL) made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, compared to images with a spherical lens and without the multilayer optics. The resolution was measured using a 155-element parabolic CRL and a multilayer condenser with the microspot tube. The experiment demonstrates about 1.1 {mu}m resolution.

Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I. [Adelphi Technology, Inc. 981-B Industrial Road, San Carlos, California 94070 (United States); Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Institute of Applied Physics Problems, Kurchatova 7, Minsk 220064 (Belarus)

2007-04-30T23:59:59.000Z

291

Sample holder for x-ray diffractometry  

DOE Patents (OSTI)

A sample holder for use with x-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

Hesch, V.L.

1991-12-31T23:59:59.000Z

292

Full-field Transmission X-ray Microscopy | Stanford Synchrotron Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

BL6-2c / Transmission X-ray Microscopy BL6-2c / Transmission X-ray Microscopy Home Researchers Publications Science Highlights Department of Energy Office of Science Search form Search Search TXM Search Full-field Transmission X-ray Microscopy Capabilities Full-field TXM is an excellent method to examine nanoscale heterogeneties in many materials, including complex hierarchical systems such as catalysts, fuel cells and battery electrodes, and biological and environmental samples, at 30 nm resolution.The transmission X-ray microscope (TXM) on beam line 6-2c at SSRL is capable of 2D imaging and tomography, as well as spectroscopic imaging for 2D and 3D elemental mapping and chemical mapping over tens of microns (up to mm in 2D). The field of view (FOV) is 30 microns, but mosaic images can be collected to

293

The Road to Ultrahigh-Resolution X-ray Spectrometers | Advanced Photon  

NLE Websites -- All DOE Office Websites (Extended Search)

How Atoms Behave: Characteristics of Microstructural Avalanches How Atoms Behave: Characteristics of Microstructural Avalanches Iodate Refuses to Intimidate Creating the Heart of a Planet in the Heart of a Gem How a Powerful Antibody Neutralizes HIV Taking a Page from Nature to Build Better Nanomaterials Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed The Road to Ultrahigh-Resolution X-ray Spectrometers NOVEMBER 22, 2011 Bookmark and Share Basic phenomena underlying the AD&AT x-ray optics. In x-ray Bragg diffraction from atomic planes composing nonzero angle η to the crystal entrance face, the crystal acts (a) like an optical prism dispersing the photons into a divergent x-ray fan with photons of different energies E

294

Measurement of 238U muonic x-rays with a germanium detector setup  

SciTech Connect

In the field of nuclear non-proliferation muon interactions with materials are of great interest. This paper describes an experiment conducted at the Paul Scherrer Institut (PSI) in Switzerland where a muon beam is stopped in a uranium target. The muons produce characteristic muonic x-rays. Muons will penetrate shielding easily and the produced characteristic x-rays can be used for positive isotope identification. Furthermore, the x-rays for uranium isotopes lie in the energy range of 6-7 MeV, which allows them to have an almost optimal mean free path in heavy shielding such as lead or steel. A measurement was conducted at PSI to prove the feasibility of detecting muonic x-rays from a large sample of depleted uranium (several kilograms) with a germanium detector. In this paper, the experimental setup and analysis of the measurement itself is presented.

Esch, Ernst I [Los Alamos National Laboratory; Jason, Andrew [Los Alamos National Laboratory; Miyadera, Haruo [Los Alamos National Laboratory; Hoteling, Nathan J [Los Alamos National Laboratory; Heffner, Robert H [Los Alamos National Laboratory; Adelmann, Andreas [PAUL SCHERRER INSTITUT; Stocki, Trevor [HEALTH CANADA; Mitchell, Lee [NAVAL RESEARCH LAB

2009-01-01T23:59:59.000Z

295

Evolution of the X-ray Properties of Clusters of Galaxies  

E-Print Network (OSTI)

The amount and nature of the evolution of the X-ray properties of clusters of galaxies provides information on the formation of structure in the universe and on the properties of the universe itself. The cluster luminosity - temperature relation does not evolve strongly, suggesting that the hot X-ray gas had a more complicated thermodynamic history than simply collapsing into the cluster potential well. Cluster X-ray luminosities do evolve. The dependence of this evolution on redshift and luminosity is characterized using two large high redshift samples. Cluster X-ray temperatures also evolve. This evolution constrains the dark matter and dark energy content of the universe as well as other parameters of cosmological interest.

J. Patrick Henry

2002-07-06T23:59:59.000Z

296

Shielding Calculations for the Hard X-Rays Generated by LCLS Mec Laser System  

Science Conference Proceedings (OSTI)

Linac Coherent Light Source (LCLS) Matter in Extreme Conditions (MEC) Instrument is an X-ray instrument that will be able to create and diagnose High Energy Density (HED) matter. The MEC laser system can generate hard X-ray due to the interaction of the laser and the plasma. This paper summarizes results of the shielding calculations performed to evaluate the radiation hazards induced by this hard X-ray source with Monte Carlo code FLUKA. The dose rates and photon spectra due to this X-ray source are calculated at different locations with different shielding. The influence of the electron temperature on the source terms and the shielding effectiveness was also investigated.

Not Available

2011-06-02T23:59:59.000Z

297

SLAC National Accelerator Laboratory - SLAC's X-ray Laser Explores...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Laser Explores Big Data Frontier By Glenn Roberts Jr. June 12, 2013 It's no surprise that the data systems for SLAC's Linac Coherent Light Source X-ray laser have drawn...

298

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

299

SLAC National Accelerator Laboratory - SLAC X-rays Help Discover...  

NLE Websites -- All DOE Office Websites (Extended Search)

which pulses 120 times a second. In the instant before the intense X-rays destroy a nanocrystal, detectors record a flash of X-ray diffraction information. Finally, scientists use...

300

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Light to Control How X Rays Interact with Matter Using Light to Control How X Rays Interact with Matter Print Wednesday, 27 January 2010 00:00 Schemes that use one light...

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electron and X-Ray Microscopy: Structural Characterization of ...  

Science Conference Proceedings (OSTI)

Oct 28, 2009 ... Recent Advances in Structural Characterization of Materials: Electron and X-Ray Microscopy: Structural Characterization of Nanoscale...

302

HARD X-RAY OBSERVATIONS OF A JET AND ACCELERATED ELECTRONS IN THE CORONA  

Science Conference Proceedings (OSTI)

We report the first hard X-ray observation of a solar jet on the limb with flare footpoints occulted, so that faint emission from accelerated electrons in the corona can be studied in detail. In this event on 2003 August 21, RHESSI observed a double coronal hard X-ray source in the pre-impulsive phase at both thermal and nonthermal energies. In the impulsive phase, the first of two hard X-ray bursts consists of a single thermal/nonthermal source coinciding with the lower of the two earlier sources, and the second burst shows an additional nonthermal, elongated source, spatially and temporally coincident with the coronal jet. Analysis of the jet hard X-ray source shows that collisional losses by accelerated electrons can deposit enough energy to generate the jet. The hard X-ray time profile above 20 keV matches that of the accompanying Type III and broadband gyrosynchrotron radio emission, indicating both accelerated electrons escaping outward along the jet path and electrons trapped in the flare loop. The double coronal hard X-ray source, the open field lines indicated by Type III bursts, and the presence of a small post-flare loop are consistent with significant electron acceleration in an interchange reconnection geometry.

Glesener, Lindsay; Lin, R. P.; Krucker, Saem, E-mail: glesener@ssl.berkeley.edu [Space Science Laboratory, UC Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States)

2012-07-20T23:59:59.000Z

303

Phase Contrast Microscopy with Soft and Hard X-rays  

E-Print Network (OSTI)

Calibration ­ Uses up part of dynamic range · Solution: ­ Soft x-rays: Back side Illumination ­ Hard xPhase Contrast Microscopy with Soft and Hard X-rays Using a Segmented Detector Benjamin Hornberger ­ Phase Contrast 101 · A Segmented Detector for Hard X-ray Microprobes ­ Segmented Silicon Chip ­ Charge

Homes, Christopher C.

304

Anomalous X-ray Diffraction Studies for Photovoltaic Applications  

DOE Green Energy (OSTI)

Anomalous X-ray Diffraction (AXRD) has become a useful technique in characterizing bulk and nanomaterials as it provides specific information about the crystal structure of materials. In this project we present the results of AXRD applied to materials for photovoltaic applications: ZnO loaded with Ga and ZnCo{sub 2}O{sub 4} spinel. The X-ray diffraction data collected for various energies were plotted in Origin software. The peaks were fitted using different functions including Pseudo Voigt, Gaussian, and Lorentzian. This fitting provided the integrated intensity data (peaks area values), which when plotted as a function of X-ray energies determined the material structure. For the first analyzed sample, Ga was not incorporated into the ZnO crystal structure. For the ZnCo{sub 2}O{sub 4} spinel Co was found in one or both tetrahedral and octahedral sites. The use of anomalous X-ray diffraction (AXRD) provides element and site specific information for the crystal structure of a material. This technique lets us correlate the structure to the electronic properties of the materials as it allows us to probe precise locations of cations in the spinel structure. What makes it possible is that in AXRD the diffraction pattern is measured at a number of energies near an X-ray absorption edge of an element of interest. The atomic scattering strength of an element varies near its absorption edge and hence the total intensity of the diffraction peak changes by changing the X-ray energy. Thus AXRD provides element specific structural information. This method can be applied to both crystalline and liquid materials. One of the advantages of AXRD in crystallography experiments is its sensitivity to neighboring elements in the periodic tables. This method is also sensitive to specific crystallographic phases and to a specific site in a phase. The main use of AXRD in this study is for transparent conductors (TCs) analysis. TCs are considered to be important materials because of their efficiency and low risk of environmental pollution. These materials are important to solar cells as a result of their remarkable combination of optical and electrical properties, including high electrical conductivity and high optical transparency in the spectrum of visible light. TCs provide a transparent window, which allows sunlight to pass through while also allowing electricity to conduct out of the cell. Spinel materials have the chemical form AB{sub 2}O{sub 4}, and are made of a face-centered cubic (FCC) lattice of oxygen anions and cations in specific interstitial sites. A normal spinel has all A cations on tetrahedral sites and B cations on octahedral sites. In contrast; an inverse spinel has the A and half of the B cations on octahedral sites and the other half of the B cations on tetrahedral sites; a mixed spinel lies between. In the spinel structure, 8 of 64 possible tetrahedral sites and 16 of 32 possible octahedral sites are filled. Normal spinels have particularly high conduction as the linear octahedral chains of B cations likely serve as conduction paths. In this paper we present how the data obtained with AXRD is used to analyze TCs properties as they apply to photovoltaic applications. One of the materials used for this analysis is zinc oxide. It has been loaded with 5% and 10% of Ga, which has an absorption edge of 10367 eV. The peak (100) was measured for the zinc oxide loaded with 10% Ga. In the case of 5% Ga, we measured peaks (100) and (101). With the information provided by the AXRD we can identify if Ga is being incorporated in the ZnO crystal structure. The analysis of 311 plane in the ZnCo{sub 2}O{sub 4} spinel shows if Co is in tetrahedral or octahedral site.

Not Available

2011-06-22T23:59:59.000Z

305

Quantitative Analysis of Mt. St. Helens Ash by X-Ray Diffraction and X-Ray Fluorescence Spectrometry  

Science Conference Proceedings (OSTI)

A quantitative study by x-ray diffraction, optical polarizing microscopy, and x-ray fluorescence spectrometry of fallout and ambient ash from three Mt. St. Helens eruptions has revealed a consistent picture of the mineralogical and elemental ...

Briant L. Davis; L. Ronald Johnson; Dana T. Griffen; William Revell Phillips; Robert K. Stevens; David Maughan

1981-08-01T23:59:59.000Z

306

X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources  

DOE Patents (OSTI)

Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

1999-05-01T23:59:59.000Z

307

Isotope and Temperature Effects in Liquid Water Probed by X-RayAbsorption and Resonant X-Ray Emission Spectroscopy  

DOE Green Energy (OSTI)

High-resolution x-ray absorption and emission spectra ofliquid water exhibit a strong isotope effect. Further, the emissionspectra show a splitting of the 1b1 emission line, a weak temperatureeffect, and a pronounced excitation-energy dependence. They can bedescribed as a superposition of two independent contributions. Bycomparing with gasphase, ice, and NaOH/NaOD, we propose that the twocomponents are governed by the initial state hydrogen bondingconfiguration and ultrafast dissociation on the time scale of the O 1score hole decay.

Fuchs, O.; Zharnikov, M.; Weinhardt, L.; Blum, M.; Weigand, M.; Zubavichus, Y.; Bar, M.; Maier, F.; Denlinger, J.D.; Heske, C.; Grunze,M.; Umbach, E.

2007-03-10T23:59:59.000Z

308

Generation of Coherent X-Ray Radiation through Modulation Compression  

Science Conference Proceedings (OSTI)

In this paper, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulator, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of 1 + h{sub b}R{sub 56}{sup a} in phase space, where h{sub b} is the energy bunch length chirp introduced by the laser chirper, R{sub 56}{sup a} is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than 400 MW, 170 attoseconds pulse, 1 nm coherent X-ray radiation using a 60 A electron beam out of the linac and 200 nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters.

Qiang, Ji; /LBL, Berkeley; Wu, Juhao; /SLAC

2012-06-12T23:59:59.000Z

309

Inverse Compton X-ray signature of AGN feedback  

E-Print Network (OSTI)

Bright AGN frequently show ultra-fast outflows (UFOs) with outflow velocities vout ! 0.1c. These outflows may be the source of AGN feedback on their host galaxies sought by galaxy formation modellers. The exact effect of the outflows on the ambient galaxy gas strongly depends on whether the shocked UFOs cool rapidly or not. This in turn depends on whether the shocked electrons share the same temperature as ions (one temperature regime; 1T) or decouple (2T), as has been recently suggested. Here we calculate the Inverse Compton spectrum emitted by such shocks, finding a broad feature potentially detectable either in mid-to-high energy X-rays (1T case) or only in the soft X-rays (2T). We argue that current observations of AGN do not seem to show evidence for the 1T component, while the limits on the 2T emission are far weaker. This suggests that UFOs are in the energy-driven regime outside the central few pc, and must pump considerable amounts of not only momentum but also energy into the ambient gas. We encoura...

Bourne, Martin A

2013-01-01T23:59:59.000Z

310

SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES  

SciTech Connect

There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ultraviolet radiation is severely inhibited. After H{sub 2}O, CO is often the most abundant component of icy grain mantles in dense interstellar clouds and circumstellar disks. In this work we present irradiation of a pure carbon monoxide ice using a soft X-ray spectrum peaked at 0.3 keV. Analysis of irradiated samples shows formation of CO{sub 2}, C{sub 2}O, C{sub 3}O{sub 2}, C{sub 3}, C{sub 4}O, and CO{sub 3}/C{sub 5}. Comparison of X-rays and ultraviolet irradiation experiments, of the same energy dose, shows that X-rays are more efficient than ultraviolet radiation in producing new species. With the exception of CO{sub 2}, X-ray photolysis induces formation of a larger number of products with higher abundances, e.g., C{sub 3}O{sub 2} column density is about one order of magnitude higher in the X-ray experiment. To our knowledge this is the first report on X-ray photolysis of CO ices. The present results show that X-ray irradiation represents an efficient photo-chemical way to convert simple ices to more complex species.

Ciaravella, A.; Candia, R.; Collura, A. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, 90134 Palermo (Italy); Jimenez-Escobar, A.; Munoz Caro, G. M. [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Cecchi-Pestellini, C. [INAF-Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, I-09012 Capoterra (Italy); Giarrusso, S. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Barbera, M., E-mail: aciaravella@astropa.unipa.it [Dipartimento di Scienze Fisiche and Astronomiche, Universita di Palermo, Sezione di Astronomia, Piazza del Parlamento 1, I-90134 Palermo (Italy)

2012-02-10T23:59:59.000Z

311

Development of a Novel Tunable X-Ray Source for the RPI-LINAC  

Science Conference Proceedings (OSTI)

This document summarizes the results of a three year effort to develop a parametric x-ray (PXR) source. The emphasis of this research was to demonstrate production of high yield monoenergetic x-rays. Production of PXR is accomplished by placing a crystal in a relativistic electron beam. The process was first demonstrated in 1985 in Russia. Numerous papers were written about the characteristics of PXR from both experimental and theoretical perspectives. The advantage of PXR over other monoenergetic x-ray sources is that it is produced at large angle relative to the electron beam and at high intensity. None of the previous work described in the literature capitalized on this effect to study what is required in order to generate an effective monoenergetic x-ray source that can be used for practical applications. The work summarized here describes the process done in order to optimize the PXR production process by selecting an appropriate crystal and the optimal conditions. The research focused on production of 18 keV x-rays which are suitable for mammography however the results are not limited to this application or energy range. We are the first group to demonstrate x-ray imaging using PXR. Such sources can improve current medical imaging modalities. More research is required in order to design a prototype of a compact source.

Y. Danon; R.C. Block

2004-11-30T23:59:59.000Z

312

Calibrating X-ray Imaging Devices for Accurate Intensity Measurement  

SciTech Connect

The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

Haugh, M. J.

2011-07-28T23:59:59.000Z

313

Applications and source development for high-repetition rate x-ray lasers  

Science Conference Proceedings (OSTI)

Many applications in material science, chemistry, and atomic physics require an x-ray source that has a repetition rate of 1 Hz to a few kHz. In these fields, a very wide range of photon energies is of interest. One application is time-resolved surface photoelectron spectroscopy and microscopy where low energy (energies below 100 eV are very good with higher energy capabilities expected in the future. In addition, prospects of table-top size x-ray lasers with kHz repetition rates are presented.

Eder, D.C.; Amendt, P.; Bolton, P.R. [and others

1993-07-30T23:59:59.000Z

314

Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics  

SciTech Connect

Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV. In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.

Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N. [Plasma Physics Department, AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom)

2008-11-15T23:59:59.000Z

315

Apparatus for monitoring x-ray beam alignment  

DOE Patents (OSTI)

A self-contained, hand-held apparatus is provided for monitoring alignment of an x-ray beam in an instrument employing an x-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of x-ray beam intensities from the x-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low x-ray beam intensity. Another portion of the audible range corresponds to high x-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of x-ray fluorescent material, and a filter layer transparent to x-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the x-ray beam is aligned to a complete alignment by adjusting the x-ray beam to produce an audible sound of the maximum frequency.

Steinmeyer, P.A.

1989-09-12T23:59:59.000Z

316

Direct detection of x-rays for protein crystallography  

DOE Patents (OSTI)

An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction o f the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce an image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.

Atac, Muzaffer; McKay, Timothy

1997-12-01T23:59:59.000Z

317

Photon Sciences | Beamlines | HXN: Hard X-ray Nanoprobe  

NLE Websites -- All DOE Office Websites (Extended Search)

HXN: Hard X-ray Nanoprobe HXN: Hard X-ray Nanoprobe Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Hard X-ray Nanoprobe beamline and endstation instruments (HXN) will be designed and constructed to explore new frontiers of hard x-ray microscopy applications with the highest achievable spatial resolution. Currently the available spatial resolution for scientific applications, provided by scanning x-ray microscopes in the hard x-ray regime, is limited to ~50nm, which is still insufficient for probing the nanoscale interfacial structures critical in determining properties and functionalities of material and biological systems. The HXN beamline aims to enable x-ray experiments at spatial resolutions ranging from 10 to 30 nm with an ultimate goal of ~1 nm. Beamline Description

318

Introduction to Neutron and X-Ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Studies of Thin Scattering Studies of Thin Polymer Films Introduction to Neutron and X-Ray Scattering Sunil K. Sinha UCSD/LANL Acknowledgements: Prof. R.Pynn( Indiana U.) Prof. M.Tolan (U. Dortmund) Wilhelm Conrad Röntgen 1845-1923 1895: Discovery of X-Rays 1901 W. C. Röntgen in Physics for the discovery of x-rays. 1914 M. von Laue in Physics for x-ray diffraction from crystals. 1915 W. H. Bragg and W. L. Bragg in Physics for crystal structure determination. 1917 C. G. Barkla in Physics for characteristic radiation of elements. 1924 K. M. G. Siegbahn in Physics for x-ray spectroscopy. 1927 A. H. Compton in Physics for scattering of x-rays by electrons. 1936 P. Debye in Chemistry for diffraction of x-rays and electrons in gases.

319

X-ray chemistry in envelopes around young stellar objects  

E-Print Network (OSTI)

We present chemical models of the envelope of a young stellar object (YSO) exposed to a central X-ray source. The models are applied to the massive star-forming region AFGL 2591 for different X-ray fluxes. The total X-ray ionization rate is dominated by the `secondary' ionization rate of H2 resulting from fast electrons. The carbon, sulphur and nitrogen chemistries are discussed. It is found that He+ and H3+ are enhanced and trigger a peculiar chemistry. Several molecular X-ray tracers are found and compared to tracers of the far ultraviolet (FUV) field. Like ultraviolet radiation fields, X-rays enhance simple hydrides, ions and radicals. In contrast to ultraviolet photons, X-rays can penetrate deep into the envelope and affect the chemistry even at large distances from the source. Whereas the FUV enhanced species cover a region of 200-300 AU, the region enhanced by X-rays is >1000 AU. Best-fit models for AFGL 2591 predict an X-ray luminosity LX > 1e+31 ergs/s with a hard X-ray spectrum TX > 3e+07 K. Furthermore, we find LX/Lbol ~ 1e-6. The chemistry of the bulk of the envelope mass is dominated by cosmic-ray induced reactions rather than by X-ray induced ionization for X-ray luminosities LX < 1e+33 ergs/s. The calculated line intensities of HCO+ and HCS+ show that high-J lines are more affected than lower J lines by the presence of X-rays due to their higher critical densities, and that such differences are detectable even with large aperture single-dish telescopes. Future instruments such as Herschel-HIFI or SOFIA will be able to observe X-ray enhanced hydrides whereas the sensitivity and spatial resolution of ALMA is well-suited to measure the size and geometry of the region affected by X-rays.

P. Staeuber; S. D. Doty; E. F. van Dishoeck; A. O. Benz

2005-06-14T23:59:59.000Z

320

X-Ray Diffraction on NIF  

SciTech Connect

The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics and techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.

Eggert, J H; Wark, J

2012-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CONTRACTOR REPORT SAND96-2555 UC-1243 Unlimited Release  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTRACTOR REPORT SAND96-2555 UC-1243 Unlimited Release A Study of Productionlnjection Data from Slim Holes and Large-Diameter Wells at the Takigami Geothermal Field, Kyushu,...

322

Feasibility of x ray fluorescence for spent fuel safeguards  

Science Conference Proceedings (OSTI)

Quantifying the Pu content in spent nuclear fuel is necessary for many reasons, in particular to verify that diversion or other illicit activities have not occurred. Therefore, safeguarding the world's nuclear fuel is paramount to responsible nuclear regulation and public acceptance, but achieving this goal presents many difficulties from both a technical and economic perspective. The Next Generation Safeguards Initiative (NGSI) of NA-24 is funding a large collaborative effort between multiple laboratories and universities to improve spent nuclear fuel safeguards methods and equipment. This effort involves the current work of modeling several different nondestructive assay (NDA) techniques. Several are being researched, because no single NDA technique, in isolation, has the potential to properly characterize fuel assemblies and offer a robust safeguards measure. The insights gained from this research, will be used to down-select from the original set a few of the most promising techniques that complement each other. The goal is to integrate the selected instruments to create an accurate measurement system for fuel verification that is also robust enough to detect diversions. These instruments will be fabricated and tested under realistic conditions. This work examines one of the NDA techniques; the feasibility of using x ray emission peaks from Pu and U to gather information about their relative quantities in the spent fuel. X Ray Fluorescence (XRF), is unique compared to the investigated techniques in that it is the only one able to give the elemental ratio of Pu to U, allowing the possibility of a Pu gram quantity for the assembly to be calculated. XRF also presents many challenges, mainly its low penetration, since the low energy x rays of interest are effectively shielded by the first few millimeters of a fuel pin. This paper will explore the results of Monte Carlo N-Particle eXtended (MCNPX) transport code calculations of spent fuel x ray peaks. The MCNPX simulations will be benchmarked against measurements taken at Oak Ridge. Analysis of the feasibility of XRFs role in spent nuclear fuel safeguards efforts, particularly in the context of the overall NGSI effort will be discussed.

Freeman, Corey Ross [Los Alamos National Laboratory; Mozin, Vladimir [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Fensin, Michael L [Los Alamos National Laboratory; White, Julia M [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Stafford, Alissa [TAMU; Charlton, William [TAMU

2010-01-01T23:59:59.000Z

323

High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device  

DOE Patents (OSTI)

An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

Atac, Muzaffer (Wheaton, IL); McKay, Timothy A. (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

324

A semiempirical linear model of indirect, flat-panel x-ray detectors  

Science Conference Proceedings (OSTI)

Purpose: It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. Methods: The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV/0.1-mm Sn, 65 kV/0.2-mm Cu, 85 kV/1.5-mm Al, and 95 kV/0.05-mm Ag. Results: The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r{sup 2} of signal mean to kV: 0.91, 0.93, 0.86, and 0.99 for 0.1-mm Sn, 0.2-mm Cu, 1.5-mm Al, and 0.05-mm Ag, respectively; r{sup 2} of signal variance to kV: 0.99 for all four filters). The comparison of the signal and noise (mean, variance, and NPS) between the simulated and measured air scan images suggested that this model was reasonable in predicting accurate signal statistics of air scan images using absolute percent error. Overall, the model was found to be accurate in estimating signal statistics and spatial correlation between the detector elements of the images acquired with indirect, flat-panel x-ray detectors. Conclusions: The semiempirical linear model of the indirect, flat-panel x-ray detectors was described and validated with images of air scans. The model was found to be a useful tool in understanding the signal and noise transfer within indirect, flat-panel x-ray detector systems.

Huang, Shih-Ying; Yang Kai; Abbey, Craig K.; Boone, John M. [Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 0505, Sacramento, California 95817 (United States); Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 92106 (United States); Department of Biomedical Engineering, University of California, Davis, California, One Shields Avenue, Davis, California 95616 (United States) and Department of Radiology, University of California, Davis, Medical Center, 4860 Y Street, Ambulatory Care Center Suite 3100, Sacramento, California 95817 (United States)

2012-04-15T23:59:59.000Z

325

High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .  

Science Conference Proceedings (OSTI)

Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

Sefkow, Adam B.; Bennett, Guy R.

2010-09-01T23:59:59.000Z

326

Simulated X-Ray Absorption Spectroscopy on the Water Dimer  

DOE Green Energy (OSTI)

The ability of an individual H{sub 2}O molecule to form multiple hydrogen bonds with neighboring molecules makes it an ideal substance for the study of hydrogen bonding. X-ray absorption spectroscopy (XAS) can be used to study what intermolecular structures the hydrogen-bonded water molecules form. XAS excites core electrons from the oxygen 1 s atomic orbital to an unoccupied orbital. The resulting absorption spectrum shows the energy levels of the unoccupied orbitals, which in turn is dependent on the intermolecular structure of the H{sub 2}O system. Previous studies using molecular dynamics computer simulations have concluded that the intermolecular structure of liquid water is a distorted tetrahedron. Yet x-ray absorption spectra show discrepancies between liquid water and ice Ih, which is already known to have a rigid tetrahedral structure. The research group, which is based in the University of Sweden in Stockholm and the Stanford Synchrotron Radiation Laboratory at the Stanford Linear Accelerator Center, has studied the possible presence of broken hydrogen bonds in the liquid water intermolecular structure to explain these deviations. Computer simulations are used to construct theoretical absorption spectra for models of liquid water including broken hydrogen bonds. Creating such models requires controlling variables. The simplest method of isolating individual variables, such as hydrogen bond length and angles, is to study the water dimer. Here, the water dimer is used to study how the absorption spectra change with the way the water molecules are positioned and oriented relative to each other.

Wung, A

2004-02-05T23:59:59.000Z

327

Gray scale x-ray mask  

DOE Patents (OSTI)

The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

Morales, Alfredo M. (Livermore, CA); Gonzales, Marcela (Seattle, WA)

2006-03-07T23:59:59.000Z

328

THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS  

Science Conference Proceedings (OSTI)

We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate of {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication-Sign 10{sup 3} yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe. The high-energy emission arising in such wind shocks may contribute to the high excitation states of certain archetypical 'hot bubble' nebulae (e.g., NGC 2392, 3242, 6826, and 7009).

Kastner, J. H.; Montez, R. Jr.; Rapson, V. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois, Champagne-Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofisica de Astronomia, Glorieta de la Astronomia s/n, Granada 18008 (Spain); Lopez, J. A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Behar, E. [Department of Physics, Technion (Israel); Bujarrabal, V. [Observatorio Astronomico Nacional, Apartado 112, E-28803, Alcala de Henares (Spain); Corradi, R. L. M. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nordhaus, J. [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Sandin, C., E-mail: jhk@cis.rit.edu, E-mail: soker@physics.technion.ac.il, E-mail: eva.villaver@uam.es [Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); and others

2012-08-15T23:59:59.000Z

329

X-ray Scattering Reveals Unusual Growth of Lead on Silicon  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Scattering Reveals Unusual Growth of Lead on Silicon X-ray Scattering Reveals Unusual Growth of Lead on Silicon Most thin films grow on substrates in only three ways: layer by layer, formation of atomic islands, or layers followed by islands. The particular growth mode that a given material will follow crucially depends on the relative magnitudes of the surface energy of the film versus the interfacial energy of the film on the substrate. Recently, a team of researchers from the University of Illinois, Academica Sinica in Taiwan, Georgia Tech, and the City University of Hong Kong has discovered a remarkable anomaly. By means of real-time x-ray scattering measurements, the researchers found that lead films grown on silicon adopt a completely novel pattern of growth. X-ray diffraction images taken with a CCD camera during growth of Pb films on Si(111). The interference fringes yield information about island height and layer thickness. Fig. 1. X-ray diffraction images taken with a CCD camera during growth of Pb films on Si(111). The interference fringes yield information about island height and layer thickness.

330

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

331

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

332

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

333

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

334

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

335

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

336

Density gradient free electron collisionally excited x-ray laser  

DOE Patents (OSTI)

An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

Campbell, E.M.; Rosen, M.D.

1984-11-29T23:59:59.000Z

337

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

338

Multilayers for next generation x-ray sources  

Science Conference Proceedings (OSTI)

Multilayers are artificially layered structures that can be used to create optics and optical elements for a broad range of x-ray wavelengths, or can be optimized for other applications. The development of next generation x-ray sources (synchrotrons and x-ray free electron lasers) requires advances in x-ray optics. Newly developed multilayer-based mirrors and optical elements enabled efficient band-pass filtering, focusing and time resolved measurements in recent FLASH (Free Electron LASer in Hamburg) experiments. These experiments are providing invaluable feedback on the response of the multilayer structures to high intensity, short pulsed x-ray sources. This information is crucial to design optics for future x-ray free electron lasers and to benchmark computer codes that simulate damage processes.

Bajt, S; Chapman, H N; Spiller, E; Hau-Riege, S; Alameda, J; Nelson, A J; Walton, C C; Kjornrattanawanich, B; Aquila, A; Dollar, F; Gullikson, E; Tarrio, C

2007-05-04T23:59:59.000Z

339

Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays  

SciTech Connect

We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

2010-10-29T23:59:59.000Z

340

THE HARD X-RAY SPECTRUM OF NGC 1365: SCATTERED LIGHT, NOT BLACK HOLE SPIN  

SciTech Connect

Active galactic nuclei (AGNs) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (1) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (2) neglect of the effect of Compton scattering on transmitted spectra, and (3) inadequate modeling of the spectrum of scattered X-rays. The scattered spectrum is geometry-dependent and, for high global covering factors, may dominate above 10 keV. We further show that, in models of circumnuclear gas, the suppression of the observed hard X-ray flux by reprocessing may be no larger than required by the ''light bending'' model invoked for inner disk reflection, and the expected emission line strengths lie within the observed range. We conclude that the time-invariant ''red wing'' in AGN X-ray spectra is probably caused by continuum transmitted through and scattered from circumnuclear gas, not by highly redshifted line emission, and that measurement of black hole spin is not possible.

Miller, L. [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Turner, T. J. [Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250 (United States)

2013-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Beamline and exposure station for deep x-ray lithography at the Advanced Photon Source  

Science Conference Proceedings (OSTI)

APS is a third-generation synchrotron radiation source. With an x-ray energy of 19.5 keV and highly collimated beam ( 1 mm) using deep x-ray lithography (DXRL). The 2-BM beamline was constructed and will be used for DXRL at APS. Selection of appropriate x-ray energy range is done through a variable-angle mirror and various filters in the beamline. At the exposure station, the beam size will be 100(H) x 5(V) mm{sup 2}. Uniform exposure will be achieved by a high-speed (100 mm/sec) vertical scanner, which allows precise angular ({approximately}0.1 mrad) and positional (conicals and other profiles. For 1-mm-thick PMMA, a 100 x 25 mm{sup 2} area can be fully exposed in about 1/2 hr, while even 10-mm-thick PMMA will require only 2-3 hours.

Lai, B.; Mancini, D.C.; Yun, W.; Gluskin, E.

1996-12-31T23:59:59.000Z

342

Development of mirror manipulator for hard-x-ray nanofocusing at sub-50-nm level  

Science Conference Proceedings (OSTI)

X-ray focusing using Kirkpatrick-Baez (KB) mirrors is promising owing to their capability of highly efficient and energy-tunable focusing. We report the development of a mirror manipulator which enables KB mirror alignment with a high degree of accuracy. Mirror alignment tolerances were estimated using two types of simulators. On the basis of the simulation results, the mirror manipulator was developed to achieve an optimum KB mirror setup. As a result of focusing tests at BL29XUL of SPring-8, the beam size of 48x36 nm{sup 2} (VxH) was achieved in the full width at half maximum at an x-ray energy of 15 keV. Spatial resolution tests showed that a scanning x-ray microscope equipped with the KB focusing system could resolve line-and-space patterns of 80 nm linewidth in a high visibility of 60%.

Matsuyama, S.; Mimura, H.; Yumoto, H.; Hara, H.; Yamamura, K.; Sano, Y.; Endo, K.; Mori, Y.; Yabashi, M.; Nishino, Y.; Tamasaku, K.; Ishikawa, T.; Yamauchi, K. [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Research Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); SPring-8/Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Mikazuki, Hyogo 679-5148 (Japan); SPring-8/RIKEN, 1-1-1 Kouto, Mikazuki, Hyogo 679-5148 (Japan); Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

2006-09-15T23:59:59.000Z

343

A kpc-scale X-ray jet in the BL Lac source S5 2007+777  

E-Print Network (OSTI)

X-ray jets in AGN are commonly observed in FRII and FRI radio-galaxies, but rarely in BL Lacs, most probably due to their orientation close to the line of sight and the ensuing foreshortening effects. Only three BL Lacs are known so far to contain a kpc-scale X-ray jet. In this paper, we present the evidence for the existence of a fourth extended X-ray jet in the classical radio-selected source S5 2007+777, which for its hybrid FRI/II radio morphology has been classified as a HYMOR (HYbrid MOrphology Radio source). Our Chandra ACIS-S observations of this source revealed an X-ray counterpart to the 19"-long radio jet. Interestingly, the X-ray properties of the kpc-scale jet in S5 2007+777 are very similar to those observed in FRII jets. First, the X-ray morphology closely mirrors the radio one, with the X-rays being concentrated in the discrete radio knots. Second, the X-ray continuum of the jet/brightest knot is described by a very hard power law, with photon index Gamma_x~1, although the uncertainties are large. Third, the optical upper limit from archival HST data implies a concave radio-to-X-ray SED. If the X-ray emission is attributed to IC/CMB with equipartition, strong beaming (delta=13) is required, implying a very large scale (Mpc) jet. The beaming requirement can be somewhat relaxed assuming a magnetic field lower than equipartition. Alternatively, synchrotron emission from a second population of very high-energy electrons is viable. Comparison to other HYMOR jets detected with Chandra is discussed, as well as general implications for the origin of the FRI/II division.

Rita M. Sambruna; Davide Donato; C. C. Cheung; F. Tavecchio; L. Maraschi

2008-05-07T23:59:59.000Z

344

Ultra-short wavelength x-ray system  

DOE Patents (OSTI)

A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

Umstadter, Donald (Ann Arbor, MI); He, Fei (Ann Arbor, MI); Lau, Yue-Ying (Potomac, MD)

2008-01-22T23:59:59.000Z

345

A new Scanning Transmission X-ray Microscope at the ALS for operation up to 2500eV  

E-Print Network (OSTI)

X-ray Microscope at the ALS for operation up to 2500eV DavidLight Source [2]. In the new ALS facility the energy rangein the two existing STXMs at ALS and a flexible platform for

Kilcoyne, David

2010-01-01T23:59:59.000Z

346

4D Functional Materials Science with X-ray Microscopy  

Science Conference Proceedings (OSTI)

Ultrafast Electron Diffraction Studies of Lattice Dynamics in Thin Bismuth Films Understanding Fatigue and Corrosion-Fatigue Behavior by In Situ 3D X-ray...

347

Optical and X-ray Imaging Techniques for Material Characterization ...  

Science Conference Proceedings (OSTI)

Ultrafast X-ray and 2-dimensional UV Spectroscopy of TiO2 Nanoparticles: Majed Chergui1; 1Ecole Polytechnique Fdrale de Lausanne Mesoporous titanium...

348

X-Ray and Neutron Diffraction - Programmaster.org  

Science Conference Proceedings (OSTI)

Oct 20, 2010 ... Strain Determination in Nanoscale Microelectronic Materials Using X-Ray Diffraction: Conal Murray1; 1IBM T.J. Watson Research Center

349

High Temperature X-ray Diffraction Characterization of Thermal ...  

Science Conference Proceedings (OSTI)

Application of Conical Beam X-Ray Tomography to Multi-Phase Materials ... Digital Construction and Characterization of Reticulated Porous Microstructures...

350

APS X-ray Optics Fabrication and Characterization Facility  

SciTech Connect

The APS is in the process of assembling an X-ray Optics Fabrication and characterization Facility. This report will describe its current (as of February 1993) design.

Davey, S.

1993-02-01T23:59:59.000Z

351

X-ray compass for determining device orientation  

DOE Patents (OSTI)

An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

1999-06-15T23:59:59.000Z

352

Synchrotron X-ray Studies of Supercritical Carbon Dioxide/ Reservoir...  

Open Energy Info (EERE)

Edit with form History Facebook icon Twitter icon Synchrotron X-ray Studies of Supercritical Carbon Dioxide Reservoir Rock Interfaces Geothermal Lab Call Project Jump to:...

353

X-Ray Scattering Group, Condensed Matter Physics & Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings of the 12th International Clay Conference, Bahia Blanca, Argentina, July 22-28, 2001. Gibbs, D. X-ray magnetic scattering. Synchrotron Radiation News...

354

Neutron and X-Ray Studies of Advanced Materials IV  

Science Conference Proceedings (OSTI)

We propose to organize a seven-session Symposium on Neutron and X-Ray ... the advent of new powerful neutron sources such as the Spallation Neutron...

355

Available Technologies: High Temperature Strain Cell for X-ray ...  

High Temperature Strain Cell for X-ray ... Six hexapole infrared lamps focus inside the sample chamber onto a ceramic material sample with a spherical ...

356

X-ray compass for determining device orientation  

DOE Patents (OSTI)

An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Fitch, Joseph P. (Livermore, CA); Everett, Matthew J. (Pleasanton, CA); Colston, Billy W. (Livermore, CA); Stone, Gary F. (Livermore, CA)

1999-01-01T23:59:59.000Z

357

Inelastic X-ray Scattering Reveals Microscopic Transport Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

Inelastic X-ray Scattering Reveals Microscopic Transport Properties of Molten Aluminum Oxide The transport properties of high-temperature oxide melts are of considerable interest...

358

SLAC National Accelerator Laboratory - X-ray Laser Pulses in...  

NLE Websites -- All DOE Office Websites (Extended Search)

SLAC researchers have demonstrated for the first time how to produce pairs of X-ray laser pulses in slightly different wavelengths, or colors, with finely adjustable intervals...

359

Optical and X-ray Imaging Techniques for Material Characterization  

Science Conference Proceedings (OSTI)

Hyperspectral CARS Microscopy in the Fingerprint Region In Situ X-ray ... Opportunities for Multimodal CARS Microscopy in Materials Science Photoemission...

360

Particle Accelerator & X-Ray Optics | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Hard X-Ray Quad Collimator Facilitates Microcrystallography Experiments Isotopic Abundance in Atom Trap Trace Analysis Nanomaterials Analysis using a Scanning Electron Microscope...

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

X RAY TU E WITH MAGNETI ELE TRON STEERING  

Sandia National Laboratories has created an improved efficiency compact X-ray source to address a wide range ... escape the anode and cause electron h ...

362

Temporal multiplexing radiography for dynamic x-ray imaging  

Science Conference Proceedings (OSTI)

All current x-ray imaging devices acquire images sequentially, one at a time. Using a spatially distributed multibeam x-ray source we recently demonstrated the feasibility for multiplexing x-ray imaging, which can significantly increase the data collection speed. Here we present a general methodology for dynamic x-ray imaging of an object in cyclic motion with temporal multiplexing. Compared to the conventional sequential imaging technique, where 2N-1 phase images are required and N exposures are needed for a single phase image, a temporal multiplexing of dimension 2N-1 can reduce the imaging time by a factor of N while maintaining the temporal resolution.

Cao Guohua [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Zhang Jian [Department of Radiation Oncology and Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Zhou, Otto; Lu Jianping [Department of Physics and Astronomy and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina, 27599 (United States)

2009-09-15T23:59:59.000Z

363

Bibliography of NRL Works on X-Ray Fluorescence Authored ...  

Science Conference Proceedings (OSTI)

... LS Birks, and EJ Brooks, "Grain-Boundary Diffusion of Zinc in Copper ... 111 J. Gilfrich, "X-Ray Diffraction Studies on the Titanium-Nickel System," in ...

2012-10-05T23:59:59.000Z

364

For Prospective Users: Learn about x-ray research  

NLE Websites -- All DOE Office Websites (Extended Search)

research in the fields of materials science; biological science; physics; chemistry; environmental, geophysical, and planetary science; and innovative x-ray instrumentation....

365

Staff at sector 30, inelastic x-ray scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Status and Schedule Safety and Training Divisions APS Engineering Support Division AES Groups Accelerator Systems Division ASD Groups X-ray Science Division XSD Groups...

366

Improved Treatment of X-ray Resistant & Inoperable Cancers ...  

If the electron beam can be transported to the internal cancer without exposure to tissue, ... This figure shows a comparison of X-ray radiation ...

367

Spatially-Resolved X-Ray Microdiffraction Studies Inside Individual ...  

Science Conference Proceedings (OSTI)

This talk will describe recent advances including increased scanning speed, and will describe the use of this x-ray microscope to study mesoscale structural...

368

Development of Coherent X-Ray Diffraction Microscopy and Its ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Neutron and X-Ray Studies of Advanced Materials III. Presentation Title, 2010...

369

Applications of High Resolution X-ray Computed Tomography in ...  

Science Conference Proceedings (OSTI)

... data, including concentration profiles from x-ray absorption measurements during ... Dynamic Evolution of Liquid-liquid Phase Separation While Cooling in a

370

Determining the Uncertainty of X-Ray Absorption ...  

Science Conference Proceedings (OSTI)

... The apparatus uses a tungsten filament and a tungsten target to generate x rays and the detector contains a CZT crystal. ...

2005-01-28T23:59:59.000Z

371

Spectrometry of X-Ray Beams Used for Calibrations  

Science Conference Proceedings (OSTI)

... and used to calibrate a wavelength-dispersive crystal x-ray spectrograph used by Lawrence Livermore National Laboratory (LLNL) to diagnose ...

2012-06-26T23:59:59.000Z

372

IA REP0 SAND85-2809 Unlimited Release UC-92A  

Office of Scientific and Technical Information (OSTI)

IA REP0 SAND85-2809 Unlimited Release UC-92A IA REP0 SAND85-2809 Unlimited Release UC-92A Printed July 1986 High Energy Gas Fracture Experiments in Fluid-Filled Boreholes-Potential Geothermal Application J. F. Cuderman, T. Y. Chu, J. Jung, R. D. Jacobson Prepared by Sandia National Laboratories Albuquerque, New Mexico 87 185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

373

Analysis of the X-ray Emission of Nine Swift Afterglows  

E-Print Network (OSTI)

The X-ray light-curves of 9 Swift XRT afterglows (050126, 050128, 050219A, 050315, 050318, 050319, 050401, 050408, 050505) display a complex behaviour: a steep t^{-3.0 \\pm 0.3} decay until ~400 s, followed by a significantly slower t^{-0.65+/-0.20} fall-off, which at 0.2--2 d after the burst evolves into a t^{-1.7+/-0.5} decay. We consider three possible models for the geometry of relativistic blast-waves (spherical outflows, non-spreading jets, and spreading jets), two possible dynamical regimes for the forward shock (adiabatic and fully radiative), and we take into account a possible angular structure of the outflow and delayed energy injection in the blast-wave, to identify the models which reconcile the X-ray light-curve decay with the slope of the X-ray continuum for each of the above three afterglow phases. By piecing together the various models for each phase in a way that makes physical sense, we identify possible models for the entire X-ray afterglow. The major conclusion of this work is that a long-lived episode of energy injection in the blast-wave, during which the shock energy increases at t^{1.0+/-0.5}, is required for five afterglows and could be at work in the other four as well. Optical observations in conjunction with the X-ray can distinguish among these various models. Our simple tests allow the determination of the location of the cooling frequency relative to the X-ray domain and, thus, of the index of the electron power-law distribution with energy in the blast-wave. The resulting indices are clearly inconsistent with an universal value.

A. Panaitescu; P. Meszaros; N. Gehrels; D. Burrows; J. Nousek

2005-08-15T23:59:59.000Z

374

Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring  

DOE Patents (OSTI)

A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

Yu, David U. L. (1912 MacArthur St., Rancho Palos Verdes, CA 90732)

1990-01-01T23:59:59.000Z

375

Angular Correlations of the X-Ray Background and Clustering of Extragalactic X-Ray Sources  

E-Print Network (OSTI)

The information content of the autocorrelation function (ACF) of intensity fluctuations of the X-ray background (XRB) is analyzed. The tight upper limits set by ROSAT deep survey data on the ACF at arcmin scales imply strong constraints on clustering properties of X-ray sources at cosmological distances and on their contribution to the soft XRB. If quasars have a clustering radius r_0=12-20 Mpc (H_0=50), and their two point correlation function, is constant in comoving coordinates as indicated by optical data, they cannot make up more 40-50% of the soft XRB (the maximum contribution may reach 80% in the case of stable clustering, epsilon=0). Active Star-forming (ASF) galaxies clustered like normal galaxies, with r_0=10-12 Mpc can yield up to 20% or up to 40% of the soft XRB for epsilon=-1.2 or epsilon=0, respectively. The ACF on degree scales essentially reflects the clustering properties of local sources and is proportional to their volume emissivity. The upper limits on scales of a few degrees imply that hard X-ray selected AGNs have r_06 deg, if real, may be due to AGNs with r_0=20 Mpc; the contribution from clusters of galaxies with r_0~50 Mpc is a factor 2 lower.

L. Danese; L. Toffolatti; A. Franceschini; J. M. Martin-Mirones; G. De Zotti

1993-02-24T23:59:59.000Z

376

X-ray Methods in High-Intensity Discharges and Metal-Halide Lamps: X-ray Induced Fluorescence  

SciTech Connect

We describe the use of x-ray induced fluorescence to study metal-halide high-intensity discharge lamps and to measure equilibrium vapor pressures of metal-halide salts. The physical principles of metal-halide lamps, relevant aspects of x-ray-atom interactions, the experimental method using synchrotron radiation, and x-ray induced fluorescence measurements relevant to metal-halide lamps are covered.

Curry, John J.; Lapatovich, Walter P.; Henins, Albert (NIST)

2011-12-09T23:59:59.000Z

377

X-RAY PHOTOIONIZED BUBBLE IN THE WIND OF VELA X-1 PULSAR SUPERGIANT COMPANION  

SciTech Connect

Vela X-1 is the archetype of high-mass X-ray binaries (HMXBs), composed of a neutron star and a massive B supergiant. The supergiant is a source of a strong radiatively driven stellar wind. The neutron star sweeps up this wind and creates a huge amount of X-rays as a result of energy release during the process of wind accretion. Here, we provide detailed NLTE models of the Vela X-1 envelope. We study how the X-rays photoionize the wind and destroy the ions responsible for the wind acceleration. The resulting decrease of the radiative force explains the observed reduction of the wind terminal velocity in a direction to the neutron star. The X-rays create a distinct photoionized region around the neutron star filled with a stagnating flow. The existence of such photoionized bubbles is a general property of HMXBs. We unveil a new principle governing these complex objects, according to which there is an upper limit to the X-ray luminosity the compact star can have without suspending the wind due to inefficient line driving.

Krticka, Jiri; Skalicky, Jan [Ustav teoreticke fyziky a astrofyziky, Masarykova univerzita, Kotlarska 2, CZ-611 37 Brno (Czech Republic); Kubat, Jiri [Astromomicky ustav Akademie ved Ceske republiky, Fricova 298, CZ-251 65 Ondrejov (Czech Republic)

2012-10-01T23:59:59.000Z

378

The spatial distributions of cooling gas and intrinsic X-ray absorbing material in cooling flows  

E-Print Network (OSTI)

We present the results from a study of the spatial distributions of cooling gas and intrinsic X-ray absorbing material in a sample of nearby, X-ray bright cooling flow clusters observed with the Position Sensitive Proportional Counter (PSPC) on ROSAT. Our method of analysis employs X-ray colour profiles, formed from ratios of the surface brightness profiles of the clusters in selected energy bands, and an adapted version of the deprojection code of Fabian et al. (1981). We show that all of the cooling flow clusters in our sample exhibit significant central concentrations of cooling gas. At larger radii the clusters appear approximately isothermal. In detail, the spatial distributions and emissivity of the cooling material are shown to be in excellent agreement with the predictions from the deprojection code, and can be used to constrain the ages of the cooling flows. The X-ray colour profiles also indicate substantial levels of intrinsic X-ray absorption in the clusters. The intrinsic absorption increases with decreasing radius, and is confined to the regions occupied by the cooling flows. We explore a range of likely spatial distributions for the absorbing gas and discuss the complexities

unknown authors

2008-01-01T23:59:59.000Z

379

The puzzle of the soft X-ray excess in AGN: absorption or reflection?  

E-Print Network (OSTI)

The 2-10 keV continuum of AGN is generally well represented by a single power law. However, at smaller energies the continuum displays an excess with respect to the extrapolation of this power law, called the ''soft X-ray excess''. Until now this soft X-ray excess was attributed, either to reflection of the hard X-ray source by the accretion disk, or to the presence of an additional comptonizing medium, giving a steep spectrum. An alternative solution proposed by Gierlinski and Done (2004) is that a single power law well represents both the soft and the hard X-ray emission and the impression of the soft X-ray excess is due to absorption of a primary power law by a relativistic wind. We examine the advantages and drawbacks of reflection versus absorption models, and we conclude that the observed spectra can be well modeled, either by absorption (for a strong excess), or by reflection (for a weak excess). However the physical conditions required by the absorption models do not seem very realistic: we would prefer an ''hybrid model''.

L. Chevallier; S. Collin; A. -M. Dumont; B. Czerny; M. Mouchet; A. C. Goncalves; R. W. Goosmann

2006-01-19T23:59:59.000Z

380

Operation of a Single-Photon-Counting X-Ray Charge-Coupled Device Camera Spectrometer in a Petawatt Environment  

Science Conference Proceedings (OSTI)

The use of a single-photon-counting x-ray CCD (charge-coupled device) camera as an x-ray spectrometer is a well-established technique in ultrashort-pulse laser experiments. In single-photon-counting mode, the pixel value of each readout pixel is proportional to the energy deposited from the incident x-ray photon. For photons below 100 keV, a significant fraction of the events deposits all the energy in a single pixel. A histogram of the pixel readout values gives a good approximation of the x-ray spectrum. This technique requires almost no alignment, but it is very sensitive to signal-to-background issues, especially in a high-energy petawatt environment.

Stoeckl, C.; Theobald, W.; Sangster, T.C.; Key, M.H.; Patel, P.; Zhang, B.B.; Clarke, R.; Karsch, S.; Norreys, P.

2004-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals  

SciTech Connect

We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub X}{approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

Stoupin, Stanislav; Shvyd'ko, Yuri; Shu Deming; Khachatryan, Ruben; Xiao, Xianghui; DeCarlo, Francesco; Goetze, Kurt; Roberts, Timothy; Roehrig, Christian; Deriy, Alexey [Advanced Photon Source, Argonne National Laboratory, Illinois 60439 (United States)

2012-02-15T23:59:59.000Z

382

Hard x-ray monochromator with milli-electron volt bandwidth for high-resolution diffraction studies of diamond crystals.  

Science Conference Proceedings (OSTI)

We report on design and performance of a high-resolution x-ray monochromator with a spectral bandwidth of {Delta}E{sub x} {approx_equal} 1.5 meV, which operates at x-ray energies in the vicinity of the backscattering (Bragg) energy E{sub H} = 13.903 keV of the (008) reflection in diamond. The monochromator is utilized for high-energy-resolution diffraction characterization of diamond crystals as elements of advanced x-ray crystal optics for synchrotrons and x-ray free-electron lasers. The monochromator and the related controls are made portable such that they can be installed and operated at any appropriate synchrotron beamline equipped with a pre-monochromator.

Stoupin, S.; Shvydko, Y.; Shu, D.; Khachatryan, R.; Xiao, X. (X-Ray Science Division)

2012-01-01T23:59:59.000Z

383

Bruker Workshop on Single Crystal X-Ray Diffraction  

NLE Websites -- All DOE Office Websites (Extended Search)

Diagnosis and Treatment of Problem Structures: Diagnosis and Treatment of Problem Structures: A Bruker Workshop on Single Crystal X-Ray Diffraction May 30, 2008 Chemistry Department University of Tennessee Knoxville, TN This meeting focuses on the scientific resources of four ORNL user facilities funded by the DOE Office of Basic Energy Sciences. Who Should Attend Synopsis Goals Scheduled Agenda Workshop Materials Confirmed Speakers Important Dates Registration - now open Location - Directions and Map Sponsors Organizing and Local Committee Contacts Relevant Literature, References, Websites Local Information Bruker - UT Workshop Who Should Attend? The Workshop is directed to the newcomer as well as the experienced user of a Bruker Apex / Apex-II system and SHELX software. It will concentrate on hard to solve and/or refine problem structures. We envision it to be

384

Soft x-ray undulator for the Siam Photon Source  

SciTech Connect

An undulator for production of intense soft x-rays has been designed for the Siam Photon Source. The construction of the undulator has been completed. It is now being characterized and prepared for installation. The device, named U60, is a pure permanent magnet planar undulator, consisting of 41 magnetic periods, with 60 mm period length. Utilization of the undulator radiation in the photon energy range of 30 - 900 eV is expected. The design studies of the magnetic structure, including investigation of perturbations arising from the magnetic field of the device, their effects on the SPS storage ring and compensation schemes are described. A magnetic measurement system has been constructed for magnetic characterization of the device. Partial results of magnetic measurements are presented.

Rugmai, S. [National Synchrotron Research Center, P.O. Box 93, Nakhon Ratchasima, 30000 (Thailand); School of Physics, Suranaree University of Technology, 111 University Avenue, Muang Distrct, Nakhon Ratchasima, 30000 (Thailand); Dasri, T. [School of Physics, Suranaree University of Technology, 111 University Avenue, Muang Distrct, Nakhon Ratchasima, 30000 (Thailand); Prawanta, S.; Siriwattanapaitoon, S.; Kwankasem, A.; Sooksrimuang, V.; Chachai, W.; Suradet, N.; Juthong, N.; Tancharakorn, S. [National Synchrotron Research Center, P.O. Box 93, Nakhon Ratchasima, 30000 (Thailand)

2007-01-19T23:59:59.000Z

385

SOFT INELASTIC X-RAY SCATTERING (SIX) Group Leader: Ignace Jarrige  

NLE Websites -- All DOE Office Websites (Extended Search)

INELASTIC X-RAY SCATTERING (SIX) INELASTIC X-RAY SCATTERING (SIX) Group Leader: Ignace Jarrige 1 Proposal Team: D. Arena 1 , A. Baron 2 , Y. Cai 1 , Y.-D. Chuang 3 , F. de Groot 4 , J. Guo 3 , J.P. Hill 1 , S. Hulbert 1 , C. McGuinness 5 , R. Reininger 9 , J.E. Rubenson 6 , C. Sanchez-Hanke 1 , T. Schmitt 7 , K. Smith 8 1 Brookhaven National Laboratory, 2 SPring-8, 3 Lawrence Berkeley Laboratory, 4 Utrecht University, 5 Trinity College Dublin, 6 Uppsala University, 7 Paul Scherrer Institute, 8 Boston University, 9 Argonne National Laboratory TECHNIQUE AND CAPABILITIES APPLICATIONS ADDITIONAL INFORMATION * Resonant inelastic x-ray scattering (RIXS) at unprecedented resolution (10 meV @ 1000 eV) to revolutionize study of low energy excitations in many important materials. * Continuously tunable momentum transfer (q) to study the

386

A New Multilayer-Based Grating for Hard X-ray Grating Interferometry |  

NLE Websites -- All DOE Office Websites (Extended Search)

The Most Detailed Picture Yet of a Key AIDS Protein The Most Detailed Picture Yet of a Key AIDS Protein Superconductivity with Stripes How HIV Infects Cells Simulating Deep Earthquakes in the Laboratory A "Sponge" Path to Better Catalysts and Energy Materials Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed A New Multilayer-Based Grating for Hard X-ray Grating Interferometry November 20, 2013 Bookmark and Share An image of the phase shift in the mouse kidney from a Bonse-Hart interferometer built utilizing the new micro-multilayer grating provides a projection view of the blood vessels. A new kind of x-ray multilayer grating that could open a pathway for high-sensitivity, hard x-ray phase contrast full-field imaging of large

387

Non-Invasive Early Detection and Molecular Analysis of Low X-ray Dose  

NLE Websites -- All DOE Office Websites (Extended Search)

Invasive Early Detection & Molecular Analysis of Low X-ray Dose Effects Invasive Early Detection & Molecular Analysis of Low X-ray Dose Effects in the Lens Lee Goldstein Boston University School of Medicine Abstract Purpose: The lens is a highly-ordered tissue with unique optical properties and exquisite radiosensitivity. The focus of this project is to evaluate radiation cataract dose response and mechanisms associated with low-linear energy transfer (LET) X-rays. We aim to investigate the natural history of Rayleigh light scattering changes in pre-cataractous lenses of mice exposed to radiations using a fully-validated, performance-tested quasi-elastic light scattering (QLS) instrument developed by Dr. Goldstein and colleagues at Boston University. This innovative laser-based technology quantitatively assays pre-cataractous molecular pathology in the lenses of living mice

388

Interferometric hard x-ray phase contrast imaging at 204 nm grating period  

SciTech Connect

We report on hard x-ray phase contrast imaging experiments using a grating interferometer of approximately 1/10th the grating period achieved in previous studies. We designed the gratings as a staircase array of multilayer stacks which are fabricated in a single thin film deposition process. We performed the experiments at 19 keV x-ray energy and 0.8 {mu}m pixel resolution. The small grating period resulted in clear separation of different diffraction orders and multiple images on the detector. A slitted beam was used to remove overlap of the images from the different diffraction orders. The phase contrast images showed detailed features as small as 10 {mu}m, and demonstrated the feasibility of high resolution x-ray phase contrast imaging with nanometer scale gratings.

Wen Han; Gomella, Andrew A.; Miao, Houxun; Lynch, Susanna K. [Imaging Physic Laboratory, Biophysics and Biochemistry Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 (United States); Wolfe, Douglas E. [Applied Research Laboratory, Penn State University, State College, Pennsylvania 16804 (United States); Xiao Xianghui; Liu Chian [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Morgan, Nicole [National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892 (United States)

2013-01-15T23:59:59.000Z

389

A bright point source of ultrashort hard x-rays from laser bioplasmas  

E-Print Network (OSTI)

Micro and nano structures scatter light and amplify local electric fields very effectively. Energy incident as intense ultrashort laser pulses can be converted to x-rays and hot electrons more efficiently with a substrate that suitably modifies the local fields. Here we demonstrate that coating a plain glass surface with a few micron thick layer of an ubiquitous microbe, {\\it Escherichia coli}, catapults the brightness of hard x-ray bremsstrahlung emission (up to 300 keV) by more than two orders of magnitude at an incident laser intensity of 10$^{16}$ W cm$^{-2}$. This increased yield is attributed to the local enhancement of electric fields around individual {\\it E. coli} cells and is reproduced by detailed particle-in-cell (PIC) simulations. This combination of laser plasmas and biological targets can lead to turnkey, multi-kilohertz and environmentally safe sources of hard x-rays.

Krishnamurthy, M; Lad, Amit D; Ahmad, Saima; Narayanan, V; Rajeev, R; Kundu, M; Kumar, G Ravindra; Ray, Krishanu

2010-01-01T23:59:59.000Z

390

In Situ X-Ray Probing Reveals Fingerprints of Surface Platinum Oxide  

DOE Green Energy (OSTI)

In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

Friebel, Daniel

2011-08-24T23:59:59.000Z

391

Lag-luminosity relation in gamma-ray burst X-ray flares  

Science Conference Proceedings (OSTI)

In strict analogy to prompt pulses, X-ray flares observed by Swift-XRT in long Gamma-Ray Bursts define a lag-luminosity relation: L{sub p,iso}{sup 0.3-10} k{sup eV} {infinity}t{sub lag}{sup -0.95{+-}0.23}. The lag-luminosity is proven to be a fundamental law extending {approx}5 decades in time and {approx}5 in energy. This is direct evidence that GRB X-ray flares and prompt gamma-ray pulses are produced by the same mechanism.

Margutti, R.

2010-10-15T23:59:59.000Z

392

The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars  

E-Print Network (OSTI)

Two classes of X-ray pulsars, the Anomalous X-ray Pulsars and the Soft Gamma-ray Repeaters, have been recognized in the last decade as the most promising candidates for being magnetars: isolated neutron stars powered by magnetic energy. I review the observational properties of these objects, focussing on the most recent results, and their interpretation in the magnetar model. Alternative explanations, in particular those based on accretion from residual disks, are also considered. The possible relations between these sources and other classes of neutron stars and astrophysical objects are also discussed.

Mereghetti, Sandro

2008-01-01T23:59:59.000Z

393

The strongest cosmic magnets: Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars  

E-Print Network (OSTI)

Two classes of X-ray pulsars, the Anomalous X-ray Pulsars and the Soft Gamma-ray Repeaters, have been recognized in the last decade as the most promising candidates for being magnetars: isolated neutron stars powered by magnetic energy. I review the observational properties of these objects, focussing on the most recent results, and their interpretation in the magnetar model. Alternative explanations, in particular those based on accretion from residual disks, are also considered. The possible relations between these sources and other classes of neutron stars and astrophysical objects are also discussed.

Sandro Mereghetti

2008-04-01T23:59:59.000Z

394

X-ray spectral states of microquasars  

E-Print Network (OSTI)

We discuss the origin of the dramatically different X-ray spectral shapes observed in the Low Hard State (LHS: dominated by thermal comptonisation) and the High Soft State (HSS: dominated by the accretion disc thermal emission and non-thermal comptonisation in the corona). We present numerical simulations using a new code accounting for the so-called synchrotron boiler effect. These numerical simulations when compared to the data allow us to constrain the magnetic field and temperature of the hot protons in the corona. For the hard state of Cygnus X-1 we find a magnetic field below equipartition with radiation, suggesting that the corona is not powered through magnetic field dissipation (as assumed in most accretion disc corona models). On the other hand, our results also point toward proton temperatures that are substantially lower than typical temperatures of the ADAF models. Finally, we show that in both spectral states Comptonising plasma could be powered essentially through power-law acceleration of non-thermal electrons, which are then partly thermalised by the synchrotron and Coulomb boiler. This suggests that, contrary to current beliefs, the corona of the HSS and that of the LHS could be of very similar nature. The differences between the LHS and HSS coronal spectra would then be predominantly caused by the strong disc soft cooling emission which is present in the HSS and absent in the LHS.

Julien Malzac; Renaud Belmont

2008-10-25T23:59:59.000Z

395

GEOPHYSICAL RESEARCH LETTERS, VOL. 26, NO. 9, PAGES 1255-1258, MAY 1, 1999 Measurements of the solar soft x-ray irradiance  

E-Print Network (OSTI)

. Introduction Solar soft x-ray ( energy is deposited into the lower thermosphere at altitudes between values of bandpass integrated energy flux are reported. For the present analysis, the SC#21REFW solar of the solar soft x-ray irradiance from the Student Nitric Oxide Explorer Scott M. Bailey Center

Bailey, Scott

396

Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses  

Science Conference Proceedings (OSTI)

Results of an experimental study of multi-MeV bremsstrahlung x-ray sources created by picosecond laser pulses are presented. The x-ray source is created by focusing the short pulse in an expanding plasma obtained by heating a solid target with a time-delayed nanosecond laser beam. The high-energy part of the x-ray spectrum and emission lobe are inferred from photonuclear activation techniques. The x-ray dose is measured with silicon diodes. Two-dimensional images of the source are reconstructed from a penumbral imaging technique. These results indicate the creation of a relatively small source, below 200 {mu}m diameter, delivering doses up to 12 mrad in air at 1 m with x-ray temperature up to 2.8 MeV. The diagnostics used give access to a whole set of coherent experimental results on the x-ray source properties which are compared to extensive numerical simulations. X-ray intensity and temperature are found to increase with the size of the preplasma.

Courtois, C.; Compant La Fontaine, A.; Landoas, O.; Lidove, G.; Meot, V.; Morel, P.; Nuter, R.; Lefebvre, E. [CEA, DAM, DIF, F-91297 Arpajon (France); Boscheron, A.; Grenier, J. [CEA, DAM, CESTA, F-33114 Le Barp (France); Aleonard, M. M.; Gerbaux, M.; Gobet, F.; Hannachi, F.; Malka, G.; Scheurer, J. N.; Tarisien, M. [Universite de Bordeaux, Centre d'Etudes Nucleaires Bordeaux Gradignan, UMR 5797 CNRS/IN2P3, Gradignan F-33175 (France)

2009-01-15T23:59:59.000Z

397

Hard X-ray Phase Contrast -Techniques and Applications -  

E-Print Network (OSTI)

Hard X-ray Phase Contrast Microscopy - Techniques and Applications - A Dissertation Presented of the Graduate School ii #12;Abstract of the Dissertation Hard X-ray Phase Contrast Microscopy - Techniques . . . . . . . . . . . . . . . . . . 58 3.2.4 Reconstruction Example for Integration Method . . . . 59 3.2.5 The Imaginary Part

398

ESRF HIGHLIGHTS 2005 X-RAY ABSORPTION AND MAGNETIC SCATTERING  

E-Print Network (OSTI)

96 ESRF HIGHLIGHTS 2005 X-RAY ABSORPTION AND MAGNETIC SCATTERING References [1] C. Antoniak, J to original phenomena. These effects are observed in charge-density wave (CDW) materials. Upon cooling of the screw like dislocation shown in Figure 121b. #12;97 HIGHLIGHTS 2005 ESRF X-RAY ABSORPTION AND MAGNETIC

Paris-Sud 11, Université de

399

Total x-ray power measurements in the Sandia LIGA program.  

SciTech Connect

Total X-ray power measurements using aluminum block calorimetry and other techniques were made at LIGA X-ray scanner synchrotron beamlines located at both the Advanced Light Source (ALS) and the Advanced Photon Source (APS). This block calorimetry work was initially performed on the LIGA beamline 3.3.1 of the ALS to provide experimental checks of predictions of the LEX-D (LIGA Exposure- Development) code for LIGA X-ray exposures, version 7.56, the version of the code in use at the time calorimetry was done. These experiments showed that it was necessary to use bend magnet field strengths and electron storage ring energies different from the default values originally in the code in order to obtain good agreement between experiment and theory. The results indicated that agreement between LEX-D predictions and experiment could be as good as 5% only if (1) more accurate values of the ring energies, (2) local values of the magnet field at the beamline source point, and (3) the NIST database for X-ray/materials interactions were used as code inputs. These local magnetic field value and accurate ring energies, together with NIST database, are now defaults in the newest release of LEX-D, version 7.61. Three dimensional simulations of the temperature distributions in the aluminum calorimeter block for a typical ALS power measurement were made with the ABAQUS code and found to be in good agreement with the experimental temperature data. As an application of the block calorimetry technique, the X-ray power exiting the mirror in place at a LIGA scanner located at the APS beamline 10 BM was measured with a calorimeter similar to the one used at the ALS. The overall results at the APS demonstrated the utility of calorimetry in helping to characterize the total X-ray power in LIGA beamlines. In addition to the block calorimetry work at the ALS and APS, a preliminary comparison of the use of heat flux sensors, photodiodes and modified beam calorimeters as total X-ray power monitors was made at the ALS, beamline 3.3.1. This work showed that a modification of a commercially available, heat flux sensor could result in a simple, direct reading beam power meter that could be a useful for monitoring total X-ray power in Sandia's LIGA exposure stations at the ALS, APS and Stanford Synchrotron Radiation Laboratory (SSRL).

Malinowski, Michael E. (Sandia National Laboratories, Livermore, CA); Ting, Aili (Sandia National Laboratories, Livermore, CA)

2005-08-01T23:59:59.000Z

400

Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Techniques Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar: Structures at atomic scales are traditionally determined through X-ray crystallography that amplifies scattering intensities by introducing spatial periodicity. For amorphous materials and many macromolecules, such as viruses, proteins and biofilms, it is hard to determine structures due to their incapability to crystallize or change of configuration during crystallization. In this talk, I will present the application of X-ray reflectivity and a newly developed fluctuation X-ray scattering technique to study the structures of lipid membranes and randomly oriented nanoparticles. Three different types of domain registrations occurring with

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Refinement Friday, September 28, 2012 - 10:00am SLAC, Bldg. 137, Room 322 SSRL Presents Kevin Stone X-ray absorption spectroscopy has become an important tool in understanding the electronic structure of materials. Resonant absorption edges in the soft x-ray regime are especially interesting as they allow the study of the lighter elements, such as in organic or organo-metallic substances, as well as important L-edges of the 3d transition metals important in magnetic and oxide systems. Measurements of soft x-ray absorption spectra are inherently surface sensitive, and are plagued by issues such as extinction (in electron yield measurements) or self absorption (in fluorescence yield

402

X-Ray Observations of Gamma-Ray Burst Afterglows  

E-Print Network (OSTI)

The discovery by the BeppoSAX satellite of X-ray afterglow emission from the gamma-ray burst which occurred on 28 February 1997 produced a revolution in our knowledge of the gamma-ray burst phenomenon. Along with the discovery of X-ray afterglows, the optical afterglows of gamma-ray bursts were discovered and the distance issue was settled, at least for long $\\gamma$-ray bursts. The 30 year mystery of the gamma-ray burst phenomenon is now on the way to solution. Here I rewiew the observational status of the X-ray afterglow emission, its mean properties (detection rate, continuum spectra, line features, and light curves), and the X-ray constraints on theoretical models of gamma-ray bursters and their progenitors. I also discuss the early onset afterglow emission, the remaining questions, and the role of future X-ray afterglow observations.

Filippo Frontera

2004-06-25T23:59:59.000Z

403

Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism  

NLE Websites -- All DOE Office Websites (Extended Search)

Unexpected Angular Dependence of Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Wednesday, 29 August 2007 00:00 Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and x-ray polarization, but their orientation relative to the crystallographic axes must be taken into account for accurate interpretation of XMLD data. Magnetism and X Rays

404

Thin-film thickness measurement using x-ray peak ratioing in the scanning electron microscope  

Science Conference Proceedings (OSTI)

The procedure used to measure laser target film thickness using a scanning electron microscope is summarized. This method is generally applicable to any coating on any substrate as long as the electron energy is sufficient to penetrate the coating and the substrate produces an x-ray signal which can pass back through the coating and be detected. (MOW)

Elliott, N.E.; Anderson, W.E.; Archuleta, T.A.; Stupin, D.M.

1981-01-01T23:59:59.000Z

405

Alcator C-Mod soft X-ray pulse height analysis system  

E-Print Network (OSTI)

A pulse height analysis (PHA) system has been installed on the Alcator C-Mod magnetic confinement fusion experiment. The PHA utilizes a Si(Li) detector to measure soft X-rays in the 1-30 keV range with an energy resolution ...

Gamboa, Eliseo (Eliseo J.)

2007-01-01T23:59:59.000Z

406

OPTICAL COUNTERPARTS OF THE NEAREST ULTRALUMINOUS X-RAY SOURCES  

SciTech Connect

We present a photometric survey of the optical counterparts of ultraluminous X-ray sources (ULXs) observed with the Hubble Space Telescope (HST) in nearby ({approx}<5 Mpc) galaxies. Of the 33 ULXs with HST and Chandra data, 9 have no visible counterpart, placing limits on their M{sub V} of {approx} -4 to -9, enabling us to rule out O-type companions in 4 cases. The refined positions of two ULXs place them in the nucleus of their host galaxy. They are removed from our sample. Of the 22 remaining ULXs, 13 have one possible optical counterpart, while multiple are visible within the error regions of other ULXs. By calculating the number of chance coincidences, we estimate that 13 {+-} 5 are the true counterparts. We attempt to constrain the nature of the companions by fitting the spectral energy distribution and M{sub V} to obtain candidate spectral types. We can rule out O-type companions in 20 cases, while we find that one ULX (NGC 253 ULX2) excludes all OB-type companions. Fitting with X-ray irradiated models provides constraints on the donor star mass and radius. For seven ULXs, we are able to impose inclination-dependent upper and/or lower limits on the black holes' mass, if the extinction to the assumed companion star is not larger than the Galactic column. These are NGC 55 ULX1, NGC 253 ULX1, NGC 253 ULX2, NGC 253 XMM6, Ho IX X-1, IC342 X-1, and NGC 5204 X-1. This suggests that 10 ULXs do not have O companions, while none of the 18 fitted rule out B-type companions.

Gladstone, Jeanette C.; Heinke, Craig O.; Cartwright, Taylor F. [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada)] [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Copperwheat, Chris [Department of Physics, Liverpool John Moores University, Wirral CH41 1LD (United Kingdom)] [Department of Physics, Liverpool John Moores University, Wirral CH41 1LD (United Kingdom); Roberts, Timothy P. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom)] [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7VL (United Kingdom)] [Department of Physics, University of Warwick, Coventry CV4 7VL (United Kingdom); Goad, Mike R., E-mail: j.c.gladstone@ualberta.ca [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7AL (United Kingdom)

2013-06-01T23:59:59.000Z

407

Development of a portable x-ray computed tomographic imaging system for drill-site investigation of recovered core  

SciTech Connect

A portable x-ray computed tomography (CT) system was constructed for imaging core at drill sites. Performing drill-site-based x-ray scanning and CT analysis permits rapid evaluation of core properties (such as density, lithologic structure, and macroporosity distribution) and allows for real-time decision making for additional core-handling procedures. Because of the speed with which scanning is performed, systematic imaging and electronic cataloging of all retrieved core is feasible. Innovations (such as a novel clamshell shielding arrangement integrated with system interlocks) permit safe operation of the x-ray system in a busy core handling area. The minimization of the volume encapsulated with shielding reduces the overall system weight and facilitates instrument portability. The x-ray system as originally fabricated had a 110 kV x-ray source with a fixed 300-micron focal spot size. A 15 cm image intensifier with a cesium iodide phosphor input screen was coupled to a CCD for image capture. The CT system has since been modified with a 130 kV micro-focal x-ray source. With the x-ray system's variable focal spot size, high-resolution studies (10-micron resolution) can be performed on core plugs and coarser (100-micron resolution) images can be acquired of whole drill cores. The development of an aluminum compensator has significantly improved the dynamic range and accuracy of the system. An x-ray filter has also been incorporated, permitting rapid acquisition of multi-energy scans for more quantitative analysis of sample mineralogy. The x-ray CT system has operated reliably under extreme field conditions, which have varied from shipboard to arctic.

Freifeld, Barry M.; Kneafsey, Timothy J.; Tomutsa, Liviu; Pruess, Jacob

2003-05-01T23:59:59.000Z

408

2011 X-Ray Science Gordon Research Conference (August 7-12, 2011, Colby, College. Waterville, ME)  

SciTech Connect

The 2011 Gordon Research Conference on X-ray Science will feature forefront x-ray-based science enabled by the rapid improvements in synchrotron and x-ray laser sources. Across the world, x-ray sources are playing an increasingly important role in physics, materials, chemistry, and biology, expanding into ever broadening areas of science and engineering. With the first hard x-ray free electron laser source beginning operation and with other advanced x-ray sources operational and planned, it is a very exciting and pivotal time for exchange ideas about the future of x-ray science and applications. The Conference will provide the forum for this interaction. An international cast of speakers will illuminate sessions on ultrafast science, coherence, imaging, in situ studies, extreme conditions, new developments in optics, sources, and detectors, inelastic scattering, nanoscience, life science, and energy sciences. The Conference will bring together investigators at the forefront of these areas, and will provide a venue for young scientists entering a career in x-ray research to present their research in poster format, hold discussions in a friendly setting, and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with ample time for discussion as well as opportunities for informal gatherings in the afternoons and evenings, will provide an avenue for scientists from different disciplines to exchange ideas about forefront x-ray techniques and will promote cross-fertilization between the various research areas represented.

Gregory Stephenson

2011-08-12T23:59:59.000Z

409

Approved for public release; distribution is unlimited.  

E-Print Network (OSTI)

a complete molecular level understanding of the chemistry and physics of living systems and astounding approaches to energy sufficiency are considered along with the potential of biological systems for providing increasingly toward the goal of understanding complete molecular networks in living systems. Understanding

410

A near-infrared/optical/X-ray survey in the centre of sigma Orionis  

E-Print Network (OSTI)

Because of the intense brightness of the OB-type multiple star system sigma Ori, the low-mass stellar and substellar populations close to the centre of the very young sigma Orionis cluster is poorly know. I present an IJHKs survey in the cluster centre, able to detect from the massive early-type stars down to cluster members below the deuterium burning mass limit. The near-infrared and optical data have been complemented with X-ray imaging. Ten objects have been found for the first time to display high-energy emission. Previously known stars with clear spectroscopic youth indicators and/or X-ray emission define a clear sequence in the I vs. I-Ks diagram. I have found six new candidate cluster members that follow this sequence. One of them, in the magnitude interval of the brown dwarfs in the cluster, displays X-ray emission and a very red J-Ks colour, indicative of a disc. Other three low-mass stars have excesses in the Ks band as well. The frequency of X-ray emitters in the area is 80+/-20 %. The spatial density of stars is very high, of up to 1.6+/-0.1 arcmin-2. There is no indication of lower abundance of substellar objects in the cluster centre. Finally, I also report two cluster stars with X-ray emission located at only 8000-11000 AU to sigma Ori AB, two sources with peculiar colours and an object with X-ray emission and near-infrared magnitudes similar to those of previously-known substellar objects in the cluster.

Jos A. Caballero

2007-05-07T23:59:59.000Z

411

Phase I, study of a miniature X-ray source for interstitial radiotherapy of brain metastases  

SciTech Connect

Despite a variety of stereotactic techniques used to increase intracranical local control, dose escalation strategies remain controversial, with respect to therapeutric gain, convenience, and cost effectiveness, in the setting of brain metastases. In this report, we summarize our experience with the safety and efficacy of a new miniature X-ray device for interstitial radiosurgical treatment of intracranial metastatic neoplasms. Although the role of surgical resection of solitary metastases is established, aggressive treatment with proton, gamma knife, and linac radiation therapy for these lesions is under investigation. The new miniature X-ray device offers a very localized, convenient, time and cost efficient means of delivering radiotherapy to these lesions, with lower normal tissue exposure than gamma knife or proton beam techniques. Retreatment of previously irradiated areas are also now under investigation as part of a Phase II trial. The photon radiosurgery system is a miniature battery operated 40 kV x-ray device designed by the Photoelectron Corporation for use in the interstitial treatment of small tumors ({ge}3 cm in diameter) in humans. This 10 cm long, low current, high voltage X-ray generator is easily mounted in a stereotactic frame and produces low energy (10-20 KeV) x-rays to be emitted from the 10 cm long, 3.2 mm diameter probe, after stereotactic insertion into the tumor. Two scintillation detectors positioned on the stereotactic frame near the patient`s scalp monitor radiation. The spherical X-ray beam behaves essentially as a point source, with dose rate nominally 150 cGy/min. at a distance of 10mm, for a beam current of 40 {mu}A and a voltage of 40 kv.

Douglas, R.M.; Beatty, J.; Biggs, P. [Massachusetts General Hospital, Boston, MA (United States)] [and others] [Massachusetts General Hospital, Boston, MA (United States); and others

1995-12-31T23:59:59.000Z

412

Discovery of Two Types of X-ray Dips in Cyg X-1  

E-Print Network (OSTI)

We observed Cyg X-1 with {\\em RXTE} contiguously over its 5.6-day binary orbit. The source was found to be in the hard state throughout the observation. Many intensity dips were detected in the X-ray light curves. We found that the dips fell into two distinct categories based on their spectral properties. One type exhibits strong energy-dependent attenuation of X-ray emission at low energies during a dip, which is characteristic of photoelectric absorption, but the other type shows nearly energy-independent attenuation. While the first type of dips are likely caused by density enhancement in an inhomogeneous wind of the companion star, as previous studies have indicated, the second type might be due to partial obscuration of an extended X-ray emitting region by optically thick ``clumps'' in the accretion flow. It is also possible that the latter are caused by a momentary decrease in the X-ray luminosity of the source, due, for instance, to a decrease in the mass accretion rate, or by Thomson scattering in highly ionized ``clumps''. We discuss the implications of these scenarios.

Y. X. Feng; Wei Cui

2001-12-06T23:59:59.000Z

413

Approved for public release; distribution is unlimited. NAVAL POSTGRADUATE SCHOOL  

E-Print Network (OSTI)

1995 Thesis Advisor: Michael J. Zyda Thesis Co-Advisor: John S. Falby #12;Public reporting burden-18 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATEApproved for public release; distribution is unlimited. THESIS NAVAL POSTGRADUATE SCHOOL Monterey

Zyda, Michael

414

Distribution Statement A: Approved for public release; distribution is unlimited.  

E-Print Network (OSTI)

: Approved for public release; distribution is unlimited. AHPCRC, The Army High Performance Computing for the warfighter. High performance computing (HPC) provides significant advantages in designing and characterizing theories and best practices of simulation-based engineering sciences and high performance computing

Prinz, Friedrich B.

415

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

416

Femtosecond Time-Delay X-ray Holography  

NLE Websites -- All DOE Office Websites (Extended Search)

Time-Delay X-ray Holography Time-Delay X-ray Holography X-ray free-electron lasers (XFELs) will produce photon pulses with a unique and desirable combination of properties. Their short X-ray wavelengths allow penetration into materials and the ability to probe structure at and below the nanometer scale. Their ultra-short duration gives information about this structure at the fundamental time-scales of atoms and molecules. The extreme intensity of the pulses will allow this information to be acquired in a single shot, so that these studies can be carried out on non-repeatable processes or on weakly-scattering objects that will be modified by the pulse. A fourth property of XFEL pulses is their high transverse coherence, which brings the promise of decades of innovation in visible optics to the X-ray regime, such as holography, interferometry, and laser-based imaging. Making an effective use of XFEL pulses, however, will benefit from innovations that are new to both X-ray science and coherent optics. One such innovation is the new method of time-delay X-ray holography [i], recently demonstrated at the FLASH FEL at DESY in Hamburg, to measure the evolution of objects irradiated by intense pulses.

417

Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems  

Science Conference Proceedings (OSTI)

The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction. (LEW)

Howells, M.R.

1986-04-01T23:59:59.000Z

418

X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution  

Science Conference Proceedings (OSTI)

We measured the relative arrival time between an optical pulse and a soft x-ray pulse from a free-electron laser. This femtosecond cross-correlation measurement was achieved by observing the change in optical reflectivity induced through the absorption of a fraction of the x-ray pulse. The main x-ray pulse energy remained available for an independent pump-probe experiment where the sample may be opaque to soft x-rays. The method was employed to correct the two-pulse delay data from a canonical pump-probe experiment and demonstrate 130 {+-} 20 fs (FWHM) temporal resolution. We further analyze possible timing jitter sources and point to future improvements.

Beye, M. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany); Krupin, O. [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); European XFEL GmbH, 22607 Hamburg (Germany); Hays, G.; Jong, S. de; Lee, S.; Coffee, R.; Holmes, M. R.; Fry, A. R.; White, W. E.; Bostedt, C.; Schlotter, W. F. [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Reid, A. H. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Radboud University Nijmegen, Institute for Molecules and Materials, 6525 AJ Nijmegen (Netherlands); Rupp, D. [Technische Universitaet Berlin, 10623 Berlin (Germany); LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Lee, W.-S.; Scherz, A. O. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Chuang, Y.-D. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Cryan, J. P.; Glownia, J. M. [PULSE, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Foehlisch, A. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, 12489 Berlin (Germany); Durr, H. A. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

2012-03-19T23:59:59.000Z

419

Comparison of SOFC Cathode Microstructure Quantified using X-ray Nanotomography and Focused Ioni Beam-scanning Electron Microscopy  

Science Conference Proceedings (OSTI)

X-ray nanotomography and focused ion beam scanning electron microscopy (FIB-SEM) have been applied to investigate the complex 3D microstructure of solid oxide fuel cell (SOFC) electrodes at spatial resolutions of 45 nm and below. The application of near edge differential absorption for x-ray nanotomography and energy selected backscatter detection for FIB-SEM enable elemental mapping within the microstructure. Using these methods, non-destructive 3D x-ray imaging and FIB-SEM serial sectioning have been applied to compare three-dimensional elemental mapping of the LSM, YSZ, and pore phases in the SOFC cathode microstructure. The microstructural characterization of an SOFC cathode is reported based on these measurements. The results presented demonstrate the viability of x-ray nanotomography as a quantitative characterization technique and provide key insights into the SOFC cathode microstructure.

G Nelson; W Harris; J Lombardo; J Izzo Jr.; W Chiu; P Tanasini; M Cantoni; J Van herle; C Comninellis; et al.

2011-12-31T23:59:59.000Z

420

GRB 070724B: the first Gamma Ray Burst localized by SuperAGILE and its Swift X-ray Afterglow  

E-Print Network (OSTI)

GRB 070724B is the first Gamma Ray Burst localized by SuperAGILE, the hard X-ray monitor aboard the AGILE satellite. The coordinates of the event were published $\\sim 19$ hours after the trigger. The Swift X-Ray Telescope pointed at the SuperAGILE location and detected the X-ray afterglow inside the SuperAGILE error circle. The AGILE gamma-ray Tracker and Minicalorimeter did not detect any significant gamma ray emission associated with GRB 070724B in the MeV and GeV range, neither prompt nor delayed. Searches of the optical afterglow were performed by the Swift UVOT and the Palomar automated 60-inch telescopes without any significant detection. Similarly the Very Large Array did not detect a radio afterglow. This is the first GRB event with a firm upper limit in the 100 MeV -- 30 GeV energy range, associated with an X-ray afterglow.

E. Del Monte; M. Feroci; L. Pacciani; Y. Evangelista; I. Donnarumma; P. Soffitta; E. Costa; I. Lapshov; F. Lazzarotto; M. Rapisarda; A. Argan; G. Barbiellini; M. Basset; A. Bulgarelli; P. Caraveo; A. Chen; G. Di Cocco; L. Foggetta; F. Fuschino; M. Galli; F. Gianotti; A. Giuliani; C. Labanti; P. Lipari; F. Longo; M. Marisaldi; F. Mauri; S. Mereghetti; A. Morselli; A. Pellizzoni; F. Perotti; P. Picozza; M. Prest; G. Pucella; M. Tavani; M. Trifoglio; A. Trois; E. Vallazza; S. Vercellone; V. Vittorini; A. Zambra; P. Romano; D. N. Burrows; G. Chincarini; N. Gehrels; V. La Parola; P. T. O'Brien; J. P. Osborne; B. Preger; C. Pittori; L. A. Antonelli; F. Verrecchia; P. Giommi; L. Salotti

2007-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "unlimited x-ray energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Diagnostics of underwater electrical wire explosion through a time- and space-resolved hard x-ray source  

SciTech Connect

A time- and space-resolved hard x-ray source was developed as a diagnostic tool for imaging underwater exploding wires. A {approx}4 ns width pulse of hard x-rays with energies of up to 100 keV was obtained from the discharge in a vacuum diode consisting of point-shaped tungsten electrodes. To improve contrast and image quality, an external pulsed magnetic field produced by Helmholtz coils was used. High resolution x-ray images of an underwater exploding wire were obtained using a sensitive x-ray CCD detector, and were compared to optical fast framing images. Future developments and application of this diagnostic technique are discussed.

Sheftman, D.; Shafer, D.; Efimov, S.; Gruzinsky, K.; Gleizer, S.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

2012-10-15T23:59:59.000Z

422

X-ray afterglows from gamma-ray bursts  

E-Print Network (OSTI)

We consider possible interpretations of the recently detected X- ray afterglow from the gamma-ray burst source GRB 970228. Cosmological and Galactic models of gamma-ray bursts predict different flux and spectral evolution of X-ray afterglows. We show that models based on adiabatic expansion of relativistic forward shocks require very efficient particle energization or post-burst re-acceleration during the expansion. Cooling neutron star models predict a very distinctive spectral and flux evolution that can be tested in current X-ray data.

M. Tavani

1997-03-24T23:59:59.000Z

423

Ten years of Vela x-ray observations  

SciTech Connect

The Vela spacecraft, particularly Vela 5B, produced all-sky X-ray data of unprecedented length and completeness. The data led to the discovery of X-ray bursts and numerous transient outbursts. Recent re-analysis has put the data in the form of 10-day skymaps covering a 7-year period, which have led to the discovery or confirmation of a number of long-term periodicities, and have made possible a time-lapse movie of the X-ray sky.

Terrell, J.; Priedhorsky, W.C.

1983-01-01T23:59:59.000Z

424

Sixth International Conference on X-ray Microscopy  

SciTech Connect

More than 180 participants from around the world crowded the Clark Kerr Campus of the University of California, Berkeley, from August 1-6, 1999 for the Sixth International Conference on X-Ray Microscopy (XRM99). Held every three years since 1983, the XRM conferences have become the primary international forum for the presentation and discussion of advances in high-spatial-resolution x-ray imaging and applications (including the use of x-ray spectroscopic and analytical techniques) in biological and medical sciences, environmental and soil sciences, and materials and surface sciences.

Robinson, Arthur L.

1999-08-23T23:59:59.000Z

425

EVOLUTION OF X-RAY AND FAR-ULTRAVIOLET DISK-DISPERSING RADIATION FIELDS  

Science Conference Proceedings (OSTI)

We present new X-ray and far-ultraviolet (FUV) observations of T Tauri stars covering the age range 1-10 Myr. Our goals are to observationally constrain the intensity of radiation fields responsible for evaporating gas from the circumstellar disk and to assess the feasibility of current photoevaporation models, focusing on X-ray and UV radiation. We greatly increase the number of 7-10 Myr old T Tauri stars observed in X-rays by including observations of the well-populated 25 Ori aggregate in the Orion OB1a subassociation. With these new 7-10 Myr objects, we confirm that X-ray emission remains constant from 1 to 10 Myr. We also show, for the first time, observational evidence for the evolution of FUV radiation fields with a sample of 56 accreting and non-accreting young stars spanning 1 Myr to 1 Gyr. We find that the FUV emission decreases on timescales consistent with the decline of accretion in classical T Tauri stars until reaching the chromospheric level in weak T Tauri stars and debris disks. Overall, we find that the observed strength of high-energy radiation is consistent with that required by photoevaporation models to dissipate the disks in timescales of approximately 10 Myr. Finally, we find that the high-energy fields that affect gas evolution are not similarly affecting dust evolution; in particular, we find that disks with inner clearings, transitional disks, have similar levels of FUV emission as full disks.

Ingleby, Laura; Calvet, Nuria; Miller, Jon; Bergin, Edwin; Hartmann, Lee [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Hernandez, Jesus; Briceno, Cesar [Centro de Investigaciones de Astronomia (CIDA), Merida, 5101-A (Venezuela, Bolivarian Republic of); Espaillat, Catherine, E-mail: lingleby@umich.edu, E-mail: ncalvet@umich.edu, E-mail: jonmm@umich.edu, E-mail: ebergin@umich.edu, E-mail: lhartm@umich.edu, E-mail: jesush@cida.ve, E-mail: briceno@cida.ve, E-mail: cespaillat@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States)

2011-04-15T23:59:59.000Z

426

An X-ray Reprocessing Model of Disk Thermal Emission in Type 1 Seyfert Galaxies  

E-Print Network (OSTI)

Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, & Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubi\\'nski, & Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Furthermore, by positing a disk mass accretion rate which satisfies a condition for global energy balance between the thermal Comptonization luminosity and the power available fr...

Chiang, J

2002-01-01T23:59:59.000Z

427

COSMIC-RAY AND X-RAY HEATING OF INTERSTELLAR CLOUDS AND PROTOPLANETARY DISKS  

SciTech Connect

Cosmic-ray and X-ray heating are derived from the electron energy-loss calculations of Dalgarno, Yan, and Liu for hydrogen-helium gas mixtures. These authors treated the heating from elastic scattering and collisional de-excitation of rotationally excited hydrogen molecules. Here we consider the heating that can arise from all ionization and excitation processes, with particular emphasis on the reactions of cosmic-ray and X-ray generated ions with the heavy neutral species, which we refer to as chemical heating. In molecular regions, chemical heating dominates and can account for 50% of the energy expended in the creation of an ion pair. The heating per ion pair ranges in the limit of negligible electron fraction from {approx}4.3 eV for diffuse atomic gas to {approx}13 eV for the moderately dense regions of molecular clouds and to {approx}18 eV for the very dense regions of protoplanetary disks. An important general conclusion of this study is that cosmic-ray and X-ray heating depends on the physical properties of the medium, i.e., on the molecular and electron fractions, the total density of hydrogen nuclei, and, to a lesser extent, on the temperature. It is also noted that chemical heating, the dominant process for cosmic-ray and X-ray heating, plays a role in UV irradiated molecular gas.

Glassgold, Alfred E. [Astronomy Department, University of California, Berkeley, CA 94720-3411 (United States); Galli, Daniele [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 (Italy); Padovani, Marco, E-mail: aglassgold@berkeley.edu, E-mail: galli@arcetri.astro.it, E-mail: marco.padovani@lra.ens.fr [Laboratoire de Radioastronomie Millimetrique, UMR 8112 du CNRS, Ecole Normale Superieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France)

2012-09-10T23:59:59.000Z

428

Investigation of GEM-Micromegas Detector on X-ray Beam of Synchrotron Radiation  

E-Print Network (OSTI)

To solve the discharge of the standard Bulk Micromegas and GEM detector, the GEM-Micromegas detector was developed in Institute of High Energy Physics. Taking into account the advantages of the two detectors, one GEM foil was set as a preamplifier on the mesh of Micromegas in the structure and the GEM preamplification decreased the working voltage of Micromegas to reduce the effect of the discharge significantly. In the paper, the performance of detector in X-ray beam was studied at 1W2B laboratory of Beijing Synchrotron Radiation Facility. Finally, the result of the energy resolution under various X-ray energies was given in different working gases. It indicated that the GEM-Micromegas detector had the energy response capability in all the energy range and it could work better than the standard Bulk-Micromegas.

YuLian Zhang; HuiRong Qi; BiTao Hu; ShengNan Fan; Bo Wang; Mei Liu; Jian Zhang; RongGuang Liu; GuangCai Chang; Peng Liu; Qun Ouyang; YuanBo Chen; FuTing Yi

2013-05-10T23:59:59.000Z

429

Chandra X-ray Observatory Detection of Extended X-ray Emission from the Planetary Nebula BD+303639  

E-Print Network (OSTI)

We report the detection of well resolved, extended X-ray emission from the young planetary nebula BD+303639 using the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. The X-ray emission from BD+303639 appears to lie within, but is concentrated to one side of, the interior of the shell of ionized gas seen in high-resolution optical and IR images. The relatively low X-ray temperature (Tx ~ 3x10^6 K) and asymmetric morphology of the X-ray emission suggests that conduction fronts are present and/or mixing of shock-heated and photoionized gas has occurred and, furthermore, hints at the presence of magnetic fields. The ACIS spectrum suggests that the X-ray emitting region is enriched in the products of helium burning. Our detection of extended X-ray emission from BD+303639 demonstrates the power and utility of Chandra imaging as applied to the study of planetary nebulae.

Kstner, J H; Vrtilek, S D; Dgani, R; Kastner, Joel H.; Soker, Noam; Vrtilek, Saeqa; Dgani, Ruth

2000-01-01T23:59:59.000Z

430

Chandra X-ray Observatory Detection of Extended X-ray Emission from the Planetary Nebula BD+303639  

E-Print Network (OSTI)

We report the detection of well resolved, extended X-ray emission from the young planetary nebula BD+303639 using the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. The X-ray emission from BD+303639 appears to lie within, but is concentrated to one side of, the interior of the shell of ionized gas seen in high-resolution optical and IR images. The relatively low X-ray temperature (Tx ~ 3x10^6 K) and asymmetric morphology of the X-ray emission suggests that conduction fronts are present and/or mixing of shock-heated and photoionized gas has occurred and, furthermore, hints at the presence of magnetic fields. The ACIS spectrum suggests that the X-ray emitting region is enriched in the products of helium burning. Our detection of extended X-ray emission from BD+303639 demonstrates the power and utility of Chandra imaging as applied to the study of planetary nebulae.

Joel H. Kastner; Noam Soker; Saeqa Vrtilek; Ruth Dgani

2000-10-09T23:59:59.000Z

431

High-brightness beamline for X-ray spectroscopy at the Advanced Light Source  

SciTech Connect

Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard-x-ray beamline, and its brightness will be an order-of-magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new ''Cowan type'' double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS.

Perera, R.C.C.; Jones, G. [Lawrence Berkeley Lab., CA (US); Lindle, D.W. [Univ. of Nevada, Las Vegas, NV (US). Dept. of Chemistry

1994-08-01T23:59:59.000Z

432

Renewed activity from the X-ray transient SAXJ 1810.8-2609 with INTEGRAL  

E-Print Network (OSTI)

We report on the results of INTEGRAL observations of the neutron star low mass X-ray binary SAX J1810.8-2609 during its latest active phase in August 2007. The current outburst is the first one since 1998 and the derived luminosity is 1.1-2.6x10^36 erg s-1 in the 20-100 keV energy range. This low outburst luminosity and the long-term time-average accretion rate of ~5x10^-12Msolar/yr suggest that SAXJ 1810.8-2609 is a faint soft X-ray transient. During the flux increase, spectra are consistent with a thermal Comptonization model with a temperature plasma of ~23-30 keV and an optical depth of ~1.2-1.5, independent from luminosity of the system. This is a typical low hard spectral state for which the X-ray emission is attributed to the upscattering of soft seed photons by a hot, optically thin electron plasma. During the decay, spectra have a different shape, the high energy tail being compatible with a single power law. This confirm similar behavior observed by BeppoSAX during the previous outburst, with absence of visible cutoff in the hard X-ray spectrum. INTEGRAL/JEM-X instrument observed four X-ray bursts in Fall 2007. The first one has the highest peak flux (~3.5Crab in 3--25 keV) giving an upper limit to the distance of the source of about 5.7 kpc, for a LEdd~3.8x10^38 erg s^-1. The observed recurrence time of ~1.2 days and the ratio of the total energy emitted in the persistent flux to that emitted in the bursts (~73) allow us to conclude that the burst fuel was composed by mixed hydrogen and helium with X>0.4.

M. Fiocchi; L. Natalucci; J. Chenevez; A. Bazzano; A. Tarana; P. Ubertini; S. Brandt; V. Beckmann; M. Federici; R. Galis; R. Hudec

2008-11-07T23:59:59.000Z

433

Computation of X-Ray Absorption  

Science Conference Proceedings (OSTI)

... of the absorption at other energies, assuming they ... and at DoE's National Energy Research Scientific ... With the improved efficiency of FeffMPI now in ...

2011-01-21T23:59:59.000Z

434

Active pixel sensors for X-ray astronomy  

E-Print Network (OSTI)

An active pixel sensor array, APS-1, has been fabricated for the purpose of scientific x-ray detection. This thesis presents the results of testing the device. Alternate design architectures are explored. Recommendations ...

Cohen, Matthew (Matthew L.)

2005-01-01T23:59:59.000Z

435

SLAC National Accelerator Laboratory - Fifth X-ray Instrument...  

NLE Websites -- All DOE Office Websites (Extended Search)

and more.) The technique has been used for years to probe materials with visible-light lasers, and more recently with X-ray light from synchrotrons. But the LCLS is the first...

436

SLAC National Accelerator Laboratory - X-ray Vision Exposes Aerosol...  

NLE Websites -- All DOE Office Websites (Extended Search)

up exciting possibilities in the study of aerosol dynamics using highly focused X-ray lasers, such as SLAC's Linac Coherent Light Source (LCLS). "Our study shows that LCLS can...

437