National Library of Energy BETA

Sample records for university waste-to-energy incinerator

  1. EA-0952: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for incinerating combustible, non-recyclable office wastes from Louisiana State University (LSU) administrative/academic areas and...

  2. Waste to Energy

    Energy Savers [EERE]

    to Energy BIA Providers Conference Anchorage, Alaska December 1, 2015 What is waste-to-energy (W2E)? * Types of waste ... * Kinds of energy ... * Key attributes ... * Key considerations ... ANC landfill gas-to-energy project * 5.6 MWe * ARL to JBER * Online Aug 2012 * Run by Doyon Utilities Alaska Department of Environmental Conservation Solid Waste Program The Good... The Bad... & The Ugly Rural landfills Small Septage Lagoon Large Lined Lagoon Large Honeybucket Lagoon Honeybuckets at

  3. Waste-to-Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste-to-Energy Waste-to-Energy Roadmapping Workshop Waste-to-Energy Presentation by Jonathan Male, Director of the Bioenergy Technologies Office, Department of Energy PDF icon male_waste_to_energy_2014.pdf More Documents & Publications Challenges and Opportunities for Wet-Waste Feedstocks - Resource Assessment "Wet" Waste-to-Energy in the Bioenergy Technologies Office Waste-to-Energy Workshop Summary Report

  4. Kent County Waste to Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy...

  5. Waste to Energy Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matt Nielsen talks about waste-to-energy technology at the 2012 Invention Convention's Capital District awards ceremony. You Might Also Like 2-2-7-v GE Scientists Unveil Greener,...

  6. Waste-to-Energy Workshop Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Waste-to-Energy Workshop Agenda Waste-to-Energy Workshop Agenda, November 5-6, 2014, Arlington, Virginia. PDF icon wastetoenergyworkshopagenda.pdf More Documents & ...

  7. Waste-to-Energy Research and Technology Council (WTERT) | Open...

    Open Energy Info (EERE)

    Waste-to-Energy Research and Technology Council (WTERT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wast-to-Energy Research and Technology Council (WTERT) Agency...

  8. Waste-to-Energy Research and Technology Council (WTERT) | Open...

    Open Energy Info (EERE)

    Waste-to-Energy Research and Technology Council (WTERT) (Redirected from Wast-to-Energy Research and Technology Council (WTERT)) Jump to: navigation, search Tool Summary LAUNCH...

  9. Global Waste to Energy Conversion Company GWECC | Open Energy...

    Open Energy Info (EERE)

    Waste to Energy Conversion Company GWECC Jump to: navigation, search Name: Global Waste to Energy Conversion Company (GWECC) Place: Washington, DC Product: GWECC is a global...

  10. Municipal solid waste combustion: Waste-to-energy technologies, regulations, and modern facilities in USEPA Region V

    SciTech Connect (OSTI)

    Sullivan, P.M.; Hallenbeck, W.H.; Brenniman, G.R.

    1993-08-01

    Table of Contents: Incinerator operations (Waste preprocessing, combustion, emissions characterization and emission control, process monitoring, heat recovery, and residual ash management); Waste-to-energy regulations (Permitting requirements and operating regulations on both state and Federal levels); Case studies of EPA Region V waste-to-energy facilities (Polk County, Minnesota; Jackson County, Michigan; La Crosse, Wisconsin; Kent County, Michigan; Elk River, Minnesota; Indianapolis, Indiana); Evaluation; and Conclusions.

  11. Air pollution control technology for municipal solid waste-to-energy conversion facilities: capabilities and research needs

    SciTech Connect (OSTI)

    Lynch, J F; Young, J C

    1980-09-01

    Three major categories of waste-to-energy conversion processes in full-scale operation or advanced demonstration stages in the US are co-combustion, mass incineration, and pyrolysis. These methods are described and some information on US conversion facilities is tabulated. Conclusions and recommendations dealing with the operation, performance, and research needs for these facilities are given. Section II identifies research needs concerning air pollution aspects of the waste-to-energy processes and reviews significant operating and research findings for the co-combustion, mass incinceration, and pyrolysis waste-to-energy systems.

  12. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun city

    SciTech Connect (OSTI)

    Hefa Cheng; Yanguo Zhang; Aihong Meng; Qinghai Li

    2007-11-01

    With rapid economic growth and massive urbanization in China, many cities face the problem of municipal solid waste (MSW) disposal. With the lack of space for new landfills, waste-to-energy incineration is playing an increasingly important role in waste management. Incineration of MSW from Chinese cities presents some unique challenges because of its low calorific value (3000-6700 kJ/kg) and high water content (about 50%). This study reports a novel waste-to-energy incineration technology based on co-firing of MSW with coal in a grate-circulating fluidized bed (CFB) incinerator, which was implemented in the Changchun MSW power plant. In 2006, two 260 ton/day incinerators incinerated 137,325 tons, or approximately one/sixth of the MSW generated in Changchun, saving more than 0.2 million m{sup 3} landfill space. A total of 46.2 million kWh electricity was generated (38,473 tons lignite was also burned as supplementary fuel), with an overall fuel-to-electricity efficiency of 14.6%. Emission of air pollutants including particulate matters, acidic gases, heavy metals, and dioxins was low and met the emission standards for incinerators. As compared to imported incineration systems, this new technology has much lower capital and operating costs and is expected to play a role in meeting China's demands for MSW disposal and alternative energy. 34 refs., 1 fig., 4 tabs.

  13. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Environmental Management (EM)

    Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. ...

  14. Waste-to-Energy Workshop Summary Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Report Waste-to-Energy Workshop Summary Report This report is based on the proceedings of the U.S. Department of Energy's Bioenergy Technologies Office's Waste-to-Energy Workshop, held on November 5, 2014, in Arlington, Virginia. PDF icon beto_wte_workshop_report.pdf More Documents & Publications "Wet" Waste-to-Energy in the Bioenergy Technologies Office Challenges and Opportunities for Wet-Waste Feedstocks - Resource Assessment Waste-to-Energy

  15. Waste to Energy Power Production at DOE and DOD Sites

    Broader source: Energy.gov [DOE]

    Presentation by Joe Price, Ameresco, DOE-DOD Waste to Energy using Fuel Cells Workshop held Jan. 13, 2011

  16. Waste-to-energy compendium. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    A survey is made of 35 waste-to-energy recovery projects throughout the US. Included are nine refuse-derived fuel (RDF) production facilities, six RDF user facilities, two combined RDF production-user facilities, and 18 mass burning facilities with energy recovery. Only those facilities that are fully operational or those in advanced stages of startup and shakedown are surveyed. Information is provided on processing capacities, operation and maintenance problems, equipment specifications, capital and operating costs, and the current status of each facility. In addition, process flow schematics are provided for each of the nine RDF production plants and both RDF production-user plants. Unless otherwise indicated, the data in this report have been updated to October or November, 1980.

  17. 6. annual waste-to-energy conference. Proceedings

    SciTech Connect (OSTI)

    1998-12-31

    This conference proceedings offers professionals a single resource from which to learn the latest developments in the field of waste-to-energy. The Sixth Annual North American Waste-To-Energy Conference (NAWTEC VI) joined together previously separate waste-to-energy conferences including the International Conference of Municipal Waste Combustion, the US Conference on Waste-To-Energy, SWANA`s Waste-to-Energy Symposium, the ASME SWPD Biennial Meeting and Exhibit, and the A and WMA/EPA Solid Waste Management, Thermal Treatment, and Waste-to-Energy Technology Conference. NAWTEC VI provided information on all facets of solid waste combustion including pollution control and environmental impacts of municipal solid waste combustion systems, residue disposal, energy generation, social and technical issues, and regulatory directions. The proceedings is valuable to those concerned with planning, permitting, design, construction, operation, and evaluation of waste-to-energy and research and development.

  18. Waste-to-Energy Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste-to-Energy Workshop Waste-to-Energy Workshop The Bioenergy Technologies Office (BETO) at the Department of Energy aims to identify and address key technical barriers to the commercial deployment of liquid transportation fuels from waste feedstocks. As part of this effort, BETO held a Waste-to-Energy Workshop on November 5, 2014. The participants discussed anaerobic digestion, hydrothermal liquefaction, and other processes that make productive use of wastewater residuals, biosolids,

  19. Waste-to-Energy Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As a part of this effort, BETO is organizing a Waste-to-Energy workshop. Workshop participants will join facilitated breakout sessions to discuss anaerobic digestion, hydrothermal ...

  20. Waste-to-Energy and Fuel Cell Technologies Overview

    Broader source: Energy.gov [DOE]

    Presentation by Robert Remick, NREL, at the DOE-DOD Waste-to-Energy Using Fuel Cells Workshop held Jan. 13, 2011

  1. Waste to Energy Developers WTED | Open Energy Information

    Open Energy Info (EERE)

    Developers WTED Jump to: navigation, search Name: Waste-to-Energy Developers (WTED) Place: California Sector: Services Product: WTED is an engineering company that provides...

  2. Energy Recovery Council (ERC) Wast to Energy (WTE) | Open Energy...

    Open Energy Info (EERE)

    Organization: Energy Recovery Council (ERC) Sector: Energy Focus Area: Biomass, - Waste to Energy Phase: Create a Vision Resource Type: Dataset, Publications, Guidemanual...

  3. Waste-to-energy plants face costly emissions-control upgrades

    SciTech Connect (OSTI)

    McIlvaine, R.W.

    1995-06-01

    One treatment method of municipal solid waste, incineration, has fallen in and out of public favor. In the 1970s, emerging consciousness of the threat to groundwater posed by leaking landfills made incineration an attractive option. Prompted by disrupted energy supplies and steeply rising prices, more than 100 municipalities began to generate electricity from the heat produced by burning trash. In the 1990s, the pendulum of public enthusiasm has swung away from incineration. Energy prices have declined dramatically, and safety and siting concerns complicate new projects. A recent Supreme Court decision ruled that municipal incinerator ash must be tested as hazardous waste and disposed accordingly if levels of such pollutants as cadmium and lead exceed Resource Conservation and Recovery Act limits. So-called flow control regulations, which allowed municipalities to apportion garbage disposal to ensure steady supplies to incinerators, also have been struck down. EPA is tackling the issue of air emissions from waste-to-energy and non-energy-producing municipal waste combustors. Emissions guidelines for MWCs and new-source performance standards for new units, proposed Sept. 20 under Sec. 129 of the Clean Air Act Amendments of 1990, are the culmination of a stalled and litigated initiative dating back to the CAA Amendments of 1977.

  4. They`re up! They`re down! They`re waste-to-energy plants

    SciTech Connect (OSTI)

    Varrasi, J.

    1996-03-01

    Burning garbage - either just to get rid of it, or to recover its latent energy as heat or electricity - has never been a sweet-sounding or -smelling idea. Long before the first boiler and turbine/generator were integrated with a trash incinerator - turning it into a waste-to-energy (WTE) plant - public concern about the air pollution produced by burning municipal solid waste (MSW) began placing an upper bound on the growth of the WTE industry, as it continues to do today. This paper describes some statistics, benefits and problems related to WTE plants.

  5. Waste-to-Energy: Waste Management and Energy Production Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Waste-to-Energy: Waste Management and Energy Production Opportunities Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. Department of Energy Washington, D.C. The tenth in a series of planned U.S. Department of Energy (DOE) Office of Indian Energy-sponsored strategic energy development forums, this Tribal Leader Forum focused on waste-to-energy technology and project opportunities for Indian Tribes. The forum

  6. Element partitioning in combustion- and gasification-based waste-to-energy units

    SciTech Connect (OSTI)

    Arena, Umberto; Di Gregorio, Fabrizio

    2013-05-15

    Highlights: ? Element partitioning of waste-to-energy units by means of a substance flow analysis. ? A comparison between moving grate combustors and high temperature gasifiers. ? Classification of key elements according to their behavior during WtE processes. ? Slags and metals from waste gasifiers are completely and immediately recyclable. ? Potential reduction of amounts of solid residue to be sent to landfill disposal. - Abstract: A critical comparison between combustion- and gasification-based waste-to-energy systems needs a deep knowledge of the mass flows of materials and elements inside and throughout the units. The study collected and processed data from several moving grate conventional incinerators and high-temperature shaft gasifiers with direct melting, which are in operation worldwide. A material and substance flow analysis was then developed to systematically assess the flows and stocks of materials and elements within each waste-to-energy unit, by connecting the sources, pathways, and intermediate and final sinks of each species. The patterns of key elements, such as carbon, chloride and heavy metals, in the different solid and gaseous output streams of the two compared processes have been then defined. The combination of partitioning coefficients with the mass balances on atomic species and results of mineralogical characterization from recent literatures was used to estimate a composition of bottom ashes and slags from the two types of waste-to-energy technologies. The results also allow to quantify some of the performance parameters of the units and, in particular, the potential reduction of the amount of solid residues to be sent to final disposal.

  7. Waste-to-energy: Benefits beyond waste disposal

    SciTech Connect (OSTI)

    Charles, M.A.; Kiser, J.V.L. )

    1995-01-01

    More than 125 waste-to-energy plants operate in North America, providing dependable waste disposal for thousands of communities. But the benefits of waste-to-energy plants go beyond getting rid of the garbage. Here's a look at some of the economic, environmental, and societal benefits that waste-to-energy projects have brought to their communities. The reasons vary considerably as to why communities have selected waste-to-energy as a part of their waste management systems. Common on the lists in many communities are a variety of benefits beyond dependable waste disposal. A look at experiences in four communities reveals environmental, economic, energy, and societal benefits that the projects provide to the communities they serve.

  8. Waste-to-Energy: Waste Management and Energy Production Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste-to-Energy: Waste Management and Energy Production Opportunities July 24, 2014 9:00AM to 3:30PM EDT U.S. Department of Energy Washington, D.C. The tenth in a series of planned ...

  9. Waste-to-Energy Projects at Army Installations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Franklin H. Holcomb, U.S. Army ERDC-CERL, at the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011

  10. Waste-to-Energy Workshop Summary June 2015

    SciTech Connect (OSTI)

    none,

    2015-06-01

    A report based on the proceedings of the Waste-to-Energy Workshop held by the U.S. Department of Energy's Bioenergy Technologies Office on November 5, 2014 in Arlington, VA.

  11. Waste-to-Energy using Fuel Cells Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office and the U.S. Department of Defense (DOD) held a workshop on January 13, 2011, in Washington, DC, to discuss waste-to-energy and...

  12. NREL: Technology Deployment - Biopower and Waste-to-Energy Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biopower and Waste-to-Energy Solutions Photo of a group of people in hard hats looking at biomass feedstock. NREL's biopower and waste-to-energy (WTE) expertise helps federal agencies, industry, communities, and military installations on projects that identify and implement biopower and WTE technologies and strategies that best meet their needs. NREL's biopower and WTE capabilities are among the ways that the laboratory advances implementation of market-ready technologies. Expertise and

  13. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes | Department of Energy Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes Air Products and

  14. Organizations and associations serving the Waste-To-energy industry

    SciTech Connect (OSTI)

    Not Available

    1998-12-01

    Professional organizations can provide leadership in disseminating information and answering questions about, and in providing support for, the industry. Eleven such organizations and association that directly, or in part, promote or provide technical assistance in the waste-to-energy field are listed and described briefly. Some actively lobby on waste-to-energy issues. Some provide useful publications and newsletters for those interested in keeping up with changes in the field.

  15. MacArthur Waste to Energy Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    MacArthur Waste to Energy Facility Biomass Facility Jump to: navigation, search Name MacArthur Waste to Energy Facility Biomass Facility Facility MacArthur Waste to Energy Facility...

  16. Waste-to-Energy Evaluation: U.S. Virgin Islands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry Davis, Scott Haase, and Adam Warren Technical Report NREL/TP-7A20-52308 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Waste-to-Energy Evaluation: U.S. Virgin Islands Jerry

  17. Experience with FLS-GSA dry scrubbing technology for waste-to-energy applications

    SciTech Connect (OSTI)

    Olsen, P.B.; Stuard, C.; Hsu, F.E.

    1998-07-01

    The paper describes the gas suspension absorber (GSA) dry scrubbing technology developed by FLS miljo a/s, Denmark. The GSA is a new generation of semi-dry technology utilizing a circulating fast fluidized bed as absorber for acid gases (SO{sub 2}, HCI, HF) dioxins and heavy metals. The authors give a detailed description of the GSA which differs from conventional spray-dryer absorber systems in that it provides an extreme high dust concentration in the absorber. The high specific surface area of the dust combined with the quenching action of the atomized lime slurry provides excellent conditions for heat and mass transfer as well as secondary nucleation sites for the condensation/adsorption of dioxins and heavy metals. Attention is focused on the GSA as a retrofit technology for waste-to-energy plants. As retrofit the GSA is advantageous due to the compact design, small footprint and the ability to use the existing electrostatic precipitator (ESP) for particulate control. The grain loading leaving the GSA system and entering the ESP, is controlled by the efficiency of the GSA cyclone, and for this reasons the grain loading entering the ESP is less than or equal to the grain loading leaving the incinerator. The retrofit with a GSA system will furthermore reduce the actual flue gas volume to the ESP, which means an increased specific collection area. In addition the increased moisture content in the flue gas improves the collection efficiency. The authors compare this retrofit option to conventional spray-dryer absorption technology. They describe the operating experience with the GSA technology for waste-to-energy plants. Operating experience and performance test results for acid gases, dioxins and heavy metals, especially mercury, from several European waste-to-energy are reported.

  18. Pretreatment options for waste-to-energy facilities

    SciTech Connect (OSTI)

    Diaz, L.F.; Savage, G.M.

    1996-12-31

    This paper describes various options available for processing MSW before the material is introduced to waste-to-energy facilities. Specifically, the paper reviews the type of equipment currently available for the recovery of resources from the waste stream. In addition, the paper discusses other matters which in many cases are ignored but are extremely important for the design of the processes. Some of these matters include the use of reliable waste characterization data during conceptual design and definition of the properties and specifications of the recovered materials and/or energy forms (e.g., RDF). Finally, the paper discusses other factors that have a critical impact on the facility such as potential environmental consequences of pretreatment of the waste prior to its combustion in waste-to-energy facilities.

  19. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    SciTech Connect (OSTI)

    Muenster, M.; Meibom, P.

    2010-12-15

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  20. State legislation can help waste-to-energy projects

    SciTech Connect (OSTI)

    Pestle, J.W. ); Butler, R.

    1989-04-01

    State legislation can significantly encourage the development of waste-to-energy projects. The authors briefly examine two of the principal areas where legislative activity can help or hinder municipalities with the development of WTE projects: antitrust exemptions for flow control ordinances, and assistance in protecting favorable rates in power sales contracts. State legislation dealing with other relevant matters-such as recycling and resource recovery, competitive bidding, municipal financing, and the like-are not covered here. These related, but more general, matters have less direct effect on the economic feasibility of WTE projects.

  1. Waste-to-Energy Cogeneration Project, Centennial Park

    SciTech Connect (OSTI)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  2. Waste-to-Energy using Fuel Cells Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Fuel Cells Workshop Waste-to-Energy using Fuel Cells Workshop Agenda for the DOE-DOD Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011 PDF icon ...

  3. DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop Presentation by Sunita Satyapal, ...

  4. Report of the DOD-DOE Workshop on Converting Waste to Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells: Workshop Summary and Action Plan Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells: ...

  5. Waste-to-energy: Decision making and the decisions made

    SciTech Connect (OSTI)

    Schexnayder, S.M. ); Wolfe, A.K. )

    1993-01-01

    During the early 1980s, it was projected that waste-to-energy (WTE) facilities would manage as much as half of all municipal solid waste by the turn of the century. However, during the latter part of the 1980s, the cancellation rate for WTE facilities grew to the point that the portion of the waste stream WTE will handle in the long-term future is less certain. This study, conducted as part of a larger study, identifies factors that influence municipalities, decisions regarding WTE. This study takes a broad perspective about decision-making within communities, emphasizing the context within which decisions were made and the decision-making process. It does not seek to judge the correctness of the decisions.

  6. Waste-to-energy: Decision making and the decisions made

    SciTech Connect (OSTI)

    Schexnayder, S.M.; Wolfe, A.K.

    1993-05-01

    During the early 1980s, it was projected that waste-to-energy (WTE) facilities would manage as much as half of all municipal solid waste by the turn of the century. However, during the latter part of the 1980s, the cancellation rate for WTE facilities grew to the point that the portion of the waste stream WTE will handle in the long-term future is less certain. This study, conducted as part of a larger study, identifies factors that influence municipalities, decisions regarding WTE. This study takes a broad perspective about decision-making within communities, emphasizing the context within which decisions were made and the decision-making process. It does not seek to judge the correctness of the decisions.

  7. Waste-to-Energy Evaluation: U.S. Virgin Islands

    SciTech Connect (OSTI)

    Davis, J.; Hasse, S.; Warren, A.

    2011-08-01

    This NREL technical report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. In particular, it considers life-cycle impacts of WTE as compared to landfill disposal and various forms of electrical generation, as well as WTE impacts on source reduction or recycling programs. In addition, it evaluates the economics and potential environmental impact of WTE in the U.S. Virgin Islands (USVI) based on existing USVI waste stream characterization data, recycling challenges unique to the USVI, and the results of cost and environmental modeling of four municipal solid waste (MSW) management options, including landfill, refuse-derived fuel (RDF) production, recycling, and gassification plus RDF.

  8. Waste-to-Energy Evaluation: U.S. Virgin Islands | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste-to-Energy Evaluation: U.S. Virgin Islands Waste-to-Energy Evaluation: U.S. Virgin Islands This report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. PDF icon waste-to-energy_eval_usvi_nrel_52308_final.pdf More Documents & Publications U.S. Virgin Islands Energy Road Map: Analysis Waste-to-Energy Evaluation: U.S. Virgin Islands U.S. Virgin Islands

  9. Waste-to-Energy Technologies and Project Development | Department of Energy

    Energy Savers [EERE]

    Waste-to-Energy Evaluation: U.S. Virgin Islands Waste-to-Energy Evaluation: U.S. Virgin Islands This report evaluates the environmental impact and fundamental economics of waste-to-energy (WTE) technology based on available data from commercially operating WTE facilities in the United States. PDF icon waste-to-energy_eval_usvi_nrel_52308_final.pdf More Documents & Publications U.S. Virgin Islands Energy Road Map: Analysis Waste-to-Energy Evaluation: U.S. Virgin Islands U.S. Virgin Islands

  10. Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives

    SciTech Connect (OSTI)

    Perkoulidis, G.; Papageorgiou, A.; Karagiannidis, A.; Kalogirou, S.

    2010-07-15

    The main aim of this study is the integrated assessment of a proposed Waste-to-Energy facility that could contribute in the Municipal Solid Waste Management system of the Region of Central Greece. In the context of this paper alternative transfer schemes for supplying the candidate facility were assessed considering local conditions and economical criteria. A mixed-integer linear programming model was applied for the determination of optimum locations of Transfer Stations for an efficient supplying chain between the waste producers and the Waste-to-Energy facility. Moreover different Regional Waste Management Scenarios were assessed against multiple criteria, via the Multi Criteria Decision Making method ELECTRE III. The chosen criteria were total cost, Biodegradable Municipal Waste diversion from landfill, energy recovery and Greenhouse Gas emissions and the analysis demonstrated that a Waste Management Scenario based on a Waste-to-Energy plant with an adjacent landfill for disposal of the residues would be the best performing option for the Region, depending however on the priorities of the decision makers. In addition the study demonstrated that efficient planning is necessary and the case of three sanitary landfills operating in parallel with the WtE plant in the study area should be avoided. Moreover alternative cases of energy recovery of the candidate Waste-to-Energy facility were evaluated against the requirements of the new European Commission Directive on waste in order for the facility to be recognized as recovery operation. The latter issue is of high significance and the decision makers in European Union countries should take it into account from now on, in order to plan and implement facilities that recover energy efficiently. Finally a sensitivity check was performed in order to evaluate the effects of increased recycling rate, on the calorific value of treated Municipal Solid Waste and the gate fee of the candidate plant and found that increased recycling efforts would not diminish the potential for incineration with energy recovery from waste and neither would have adverse impacts on the gate fee of the Waste-to-Energy plant. In general, the study highlighted the need for efficient planning in solid waste management, by taking into account multiple criteria and parameters and utilizing relevant tools and methodologies into this context.

  11. Electrical efficiency in modern waste to energy plants -- The advanced solutions adopted in a new Italian plant (Milan)

    SciTech Connect (OSTI)

    Lucchini, F.M.; Pezzella, B.

    1998-07-01

    The paper has the goal to give a general overview of the current approach for the design of modern Waste to Energy (WtE) plants. The thermal treatment of solid waste is an environmentally sound method to get rid of the garbage produced by everyone and to recover energy simultaneously. A typical waste to energy plant is divided in four segments: incineration/boiler, air pollution control, residues treatment and power generation. Still in the 80's a WtE plant was simply consisting of a these four segments without any particular effort in putting them together into a coordinated plant; therefore the results were very poor in term of overall plant performances even if the single segments were properly designed. This paper shows how this approach is changing and how the synergism between the segments allows to reach interesting performances in term of electric efficiency, always keeping in mind that power must be considered a by-product of the incinerator. Therefore all these efforts have to be done without affecting the burning capacity of the station. The new Milan WtE plant is taken as example throughout the paper. The first section of the paper tries to consider the Municipal Solid Waste as standard fuel; then focal point becomes the electrical efficiency of the plant. In the fourth section the flue gas cleaning system is approached, pointing out the gas quality at stack. Then in the fifth and sixth paragraphs all most important and innovative technical solutions of the Milan plant are shown with some details on water/steam cycle, giving also some availability results. Chapter seven shows some interesting key-figures, related to the combustion of 1,000 kg of MSW at 11 MJ/kg, with also some economical evaluations in term of investment cost per ton of waste per day.

  12. Microsoft PowerPoint - Tribal Leader Forum Waste to Energy Introduction

    Energy Savers [EERE]

    Leader Forum: Waste-to-Energy Introduction July 24, 2014 Randy Hunsberger Waste-to-energy Introduction Feedstocks Recycling Conversion Products and Pathways Major Equipment WTE Economics and Opportunities Presentation Outline National Renewable Energy Laboratory Innovation for Our Energy Future Waste-to-Energy Introduction The issues, for much of the world: * Waste disposal is a major expense * High energy prices * Limited landfill space The opportunity * Waste as an alternative fuel source

  13. Case Study - The Challenge: Improving the Performance of a Waste-To-Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility | Department of Energy the Performance of a Waste-To-Energy Facility Case Study - The Challenge: Improving the Performance of a Waste-To-Energy Facility This case study examines how the City of Long Beach, California, was able to improve the operational efficiency of its Southeast Resource Recovery Facility (SERRF), a recycling and solid waste-to-energy plant. To replace inlet damper control and reduce energy consumption, variable frequency drives (VFDs) were installed on the

  14. DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop | Department of Energy Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Waste-to-Energy Using Fuel Cells Workshop Presentation by Sunita Satyapal, DOE Fuel Cell Technologies Program, at the Waste-to-Energy Using Fuel Cells Workshop help January 13, 2011. PDF icon DOE Hydrogen and Fuel Cell Overview More Documents & Publications Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview DOE Fuel Cell

  15. A National First in Community Waste to Energy in our Nation's Capital |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A National First in Community Waste to Energy in our Nation's Capital A National First in Community Waste to Energy in our Nation's Capital October 9, 2015 - 2:37pm Addthis A National First in Community Waste to Energy in our Nation's Capital Dr. Kathleen Hogan Dr. Kathleen Hogan Deputy Assistant Secretary for Energy Efficiency Earlier this week, I attended and spoke at the unveiling of DC Water's Blue Plains $470 million waste-to-energy plant. This new facility, which

  16. Waste-to-Energy using Fuel Cells Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar Waste-to-Energy using Fuel Cells Webinar The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office and the U.S. Department of Defense (DOD) held a webinar on July 13, 2011, in Washington, DC, to discuss waste-to-energy for fuel cell applications. Presentations DOD-DOE MOU WTE Using Fuel Cells Briefing, Pete Devlin, Market Transformation and Intergovernmental Coordination Manager, Fuel Cell Technologies Office Net Zero Pilot - Training, Stephen Cosper, Environmental Engineer,

  17. Waste-to-energy: A review of the status and benefits in USA

    SciTech Connect (OSTI)

    Psomopoulos, C.S. Bourka, A.; Themelis, N.J.

    2009-05-15

    The USA has significant experience in the field of municipal solid waste management. The hierarchy of methodologies for dealing with municipal solid wastes consists of recycling and composting, combustion with energy recovery (commonly called waste-to-energy) and landfilling. This paper focuses on waste-to-energy and especially its current status and benefits, with regard to GHG, dioxin and mercury emissions, energy production and land saving, on the basis of experience of operating facilities in USA.

  18. Incineration and incinerator ash processing

    SciTech Connect (OSTI)

    Blum, T.W.

    1991-01-01

    Parallel small-scale studies on the dissolution and anion exchange recovery of plutonium from Rocky Flats Plant incinerator ash were conducted at the Los Alamos National Laboratory and at the Rocky Flats Plant. Results from these two studies are discussed in context with incinerator design considerations that might help to mitigate ash processing related problems. 11 refs., 1 fig., 1 tab.

  19. Waste to energy facilities. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 250 citations and includes a subject term index and title list.)

  20. Waste to energy facilities. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-01-01

    The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 250 citations and includes a subject term index and title list.)

  1. Waste to energy facilities. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 250 citations and includes a subject term index and title list.)

  2. Record new waste-to-energy capacity built in 1990 joins 128 existing plants

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The Institute of Resource Recovery reports that waste-to-energy plants will operate at a record setting rate in 1991, handling 14% of the 185 million tons of trash expected to be generated. In addition, 47 plants with a capacity of 57,596 tons per day are in the advanced planning stages. Movement into construction will depend on factors such as financing and securing environmental permits. Some states are working towards integrated facilities that will combine waste reduction, recycling, combustion, and landfilling. Nevertheless, waste-to-energy will be a critical part of workable plans for the following reasons: it reduces the volume of trash up to 90%; it recovers steam and electricity from the combustion process, thus reducing the need for imported energy; present plants have some of the cleanest facilities in the country due to strict air emissions requirements.

  3. Waste-to-Energy (Municipal Solid Waste) - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Waste-to-Energy (MSW) Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse

  4. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov Waste-to-Energy Hawaii and Guam Energy Improvement Technology Demonstration Project J. Davis, R. Gelman, G. Tomberlin, and R. Bain National Renewable Energy Laboratory Technical Report NREL/TP-7A40-60868 March 2014 Produced under direction of Naval Facilities Engineering Command (NAVFAC) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement 11-01829 and

  5. Waste to energy facilities. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1997-02-01

    The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Waste to energy facilities. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-04-01

    The bibliography contains citations concerning technical, economic, and environmental evaluations of facilities that convert waste to energy. Solid waste and municipal waste conversion facilities are highlighted. Feasibility studies, technical design, emissions studies, and markets for the resulting energy are discussed. Heat and electrical generation facilities are emphasized. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Universal Entech LLC | Open Energy Information

    Open Energy Info (EERE)

    Entech LLC Jump to: navigation, search Name: Universal Entech, LLC Place: Phoenix, Arizona Zip: 85041 Product: Project developer focused on waste-to-energy References: Universal...

  8. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    SciTech Connect (OSTI)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.; Harris, T.; Raibley, T.; Ursillo, P.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  9. Hot waste-to-energy flue gas treatment using an integrated fluidised bed reactor

    SciTech Connect (OSTI)

    Bianchini, A.; Pellegrini, M.; Saccani, C.

    2009-04-15

    This paper describes an innovative process to increase superheated steam temperatures in waste-to-energy (WTE) plants. This solution is mainly characterised by a fluidised bed reactor in which hot flue gas is treated both chemically and mechanically. This approach, together with gas recirculation, increases the energy conversion efficiency, and raises the superheated steam temperature without decreasing the useful life of the superheater. This paper presents new experimental data obtained from the test facility installed at the Hera S.p.A. WTE plant in Forli, Italy; discusses changes that can be implemented to increase the duration of experimental testing; offers suggestions for the design of an industrial solution.

  10. Waste-to-Energy: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Davis, J.; Gelman, R.; Tomberlin, G.; Bain, R.

    2014-03-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Navy have worked together to demonstrate new or leading-edge commercial energy technologies whose deployment will support the U.S. Department of Defense (DOD) in meeting its energy efficiency and renewable energy goals while enhancing installation energy security. This is consistent with the 2010 Quadrennial Defense Review report1 that encourages the use of 'military installations as a test bed to demonstrate and create a market for innovative energy efficiency and renewable energy technologies coming out of the private sector and DOD and Department of Energy laboratories,' as well as the July 2010 memorandum of understanding between DOD and the U.S. Department of Energy (DOE) that documents the intent to 'maximize DOD access to DOE technical expertise and assistance through cooperation in the deployment and pilot testing of emerging energy technologies.' As part of this joint initiative, a promising waste-to-energy (WTE) technology was selected for demonstration at the Hickam Commissary aboard the Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii. The WTE technology chosen is called high-energy densification waste-to-energy conversion (HEDWEC). HEDWEC technology is the result of significant U.S. Army investment in the development of WTE technology for forward operating bases.

  11. A collaborative success story -- The rebirth of an aging waste-to-energy plant

    SciTech Connect (OSTI)

    Shultz, D.S.

    1996-12-31

    In 1993 American Ref-Fuel purchased an early generation waste-to-energy plant burdened with technical and environmental obsolescence and facing eminent closure. Through the successful collaboration of public regulatory agencies, private industry, local government and organized labor, the facility will be retrofitted and repowered to meet new source performance emission standards and re-established as an integral component in the Niagara Frontier`s solid waste disposal scheme. The environmental revitalization of this Niagara Falls, New York plant will require a capital expenditure of $150 million and construction work is scheduled to be completed by mid 1996. This case study is an example of how aging environmental infrastructure, through careful planning and collaboration between the public and private sector, can be retrofitted for the next century while maintaining employing and contributing over $193 million to the local economy.

  12. Combine waste-to-energy, recycling with fluid-bed boiler

    SciTech Connect (OSTI)

    Murphy, M.L.

    1995-09-01

    An effective long-term solid-waste management program will soon be a reality for Bladen, Cumberland, and Hoke counties, North Carolina. The key element of the program is a 600-ton/day waste-to-energy (WTE) facility, scheduled to begin commercial operation later this year. The BCH Energy project, which gets its name from the initials of the three counties it serves, will become the first fluidized-bed boiler in the US designed to be fueled solely by refuse-derived fuel (RDF). As such, it provides an innovative and efficient approach to solid-waste management in several ways: (1) maximimizes community participation in a recovery and recycling effort; (2) maximizes additional waste handling and hauling efforts; (3) significantly reducing waste flow into landfill; (4) eliminating use of fossil fuel for a nearby chemical plant`s energy load; and (5) substantially improves air quality through use of the latest combustoin and emissions control technology.

  13. Energy implications of mechanical and mechanicalbiological treatment compared to direct waste-to-energy

    SciTech Connect (OSTI)

    Cimpan, Ciprian Wenzel, Henrik

    2013-07-15

    Highlights: Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} Savings magnitude is foremost determined by chosen primary energy and materials production. Energy consumption and process losses can be upset by increased technology efficiency. Material recovery accounts for significant shares of primary energy savings. Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanicalbiological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 39.5%, 118% and 18% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.

  14. Waste-to-energy: Decision-making and the decisions made

    SciTech Connect (OSTI)

    Schexnayder, S.M. ); Wolfe, A.K. )

    1993-01-01

    During the early 1980's, the number of municipalities considering waste-to-energy (WTE) facilities as a solid waste management option led to projections that WTE would be used to manage as much as half of all municipal solid waste by the turn of the century. However, during the latter part of the 1980's, the cancellation rate for WTE facilities grew to the point that its long-term future is questionable. This research sought to identify and examine the range of factors that influence municipalities' decisions concerning WTE. As part of a larger study, case studies of four communities that recently faced decisions about WTE facilities were undertaken. At two of the sites WTE projects formally were approved, while at the other two sites planned WTE facilities were canceled. The study distinguished between the decision-making process and the decision outcomes while recognizing that all aspects of the process clearly are linked to outcome. Case study findings indicate that like processes need not lead to like outcomes. Further, decisions do not fall neatly into simple acceptance'' or rejection'' categories.

  15. Combine waste-to-energy, recycling with fluid-bed boiler

    SciTech Connect (OSTI)

    Murphy, M.L.

    1995-04-01

    This article describes a plant that will be the first to incorporate a fluidized-bed boiler to burn refuse-derived fuel exclusively. An effective long-term solid-waste management program will soon be a reality for Bladen, Cumberland, and Hoke counties, North Carolina. The key element of the program is a 600-ton/day waste-to-energy (WTE) facility, scheduled to begin commercial operation later this year. The BCH Energy project, which gets its name from the initials of the three counties it serves, will become the first fluidized-bed boiler in the US designed to be fueled solely by refuse-derived fuel (RDF). As such, it provides an innovative and efficient approach to solid-waste management in several ways: (1) Maximizes community participation in a recovery and recycling effort. (2) Maximizes additional waste handling and hauling efforts. (3) Significantly reducing waste flow into landfill. (4) Eliminating use of fossil fuel for a nearby chemical plant`s energy load. (5) Substantially improves air quality through use of the latest combustion and emissions control technology.

  16. A comparative assessment of waste incinerators in the UK

    SciTech Connect (OSTI)

    Nixon, J.D.; Wright, D.G.; Dey, P.K.; Ghosh, S.K.; Davies, P.A.

    2013-11-15

    Highlights: We evaluate operational municipal solid waste incinerators in the UK. The supply chain of four case study plants are examined and compared in detail. Technical, financial and operational data has been gathered for the four plants. We suggest the best business practices for waste incinerators. Appropriate strategy choices are the major difficulties for waste to energy plants. - Abstract: The uptake in Europe of Energy from Waste (EfW) incinerator plants has increased rapidly in recent years. In the UK, 25 municipal waste incinerators with energy recovery are now in operation; however, their waste supply chains and business practices vary significantly. With over a hundred more plant developments being considered it is important to establish best business practices for ensuring efficient environmental and operational performance. By reviewing the 25 plants we identify four suitable case study plants to compare technologies (moving grate, fluidised bed and rotary kiln), plant economics and operations. Using data collected from annual reports and through interviews and site visits we provide recommendations for improving the supply chain for waste incinerators and highlight the current issues and challenges faced by the industry. We find that plants using moving grate have a high availability of 8792%. However, compared to the fluidised bed and rotary kiln, quantities of bottom ash and emissions of hydrogen chloride and carbon monoxide are high. The uptake of integrated recycling practices, combined heat and power, and post incineration non-ferrous metal collections needs to be increased among EfW incinerators in the UK. We conclude that one of the major difficulties encountered by waste facilities is the appropriate selection of technology, capacity, site, waste suppliers and heat consumers. This study will be of particular value to EfW plant developers, government authorities and researchers working within the sector of waste management.

  17. Field Test of High Temperature Corrosion Sensors in a Waste to Energy Plant

    SciTech Connect (OSTI)

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Williamson, K.M.

    2008-03-16

    A field trial of electrochemical corrosion rate sensors was conducted over a five month period to monitor fireside corrosion in a waste to energy (WTE) plant. The unique 3-electrode air-cooled corrosion sensors, each including a thermocouple to monitor sensor temperature, were installed in four different ports at approximately the same level of the WTE boiler. A total of twelve sensors were tested, six with electrodes using the carbon steel boiler tube material, and six using the nickel-chromium weld overlay alloy for the electrodes. Corrosion rates and temperatures of the sensors were monitored continuously through the trial. Measurements of sensor thickness loss were used to calibrate the electrochemical corrosion rates. Air cooling of the sensors was found to be necessary in order to bring the sensors to the temperature of the boiler tubes, to better match the corrosion rate of the tubes, and to increase survivability of the sensors and thermocouples. Varying the temperature of the sensors simulated corrosion rates of boiler tubes with steam temperatures above and below that in the actual WTE plant. Temperatures of two of the sensors were successfully held at various controlled temperatures close to the steam temperature for a three hour test period. Corrosion rates of the two materials tested were similar although of different magnitude. An expression relating the corrosion rate of the boiler tube material to the corrosion rate of weld overlay was determined for a 7 day period in the middle of the field trial. Results from the field trial suggest that corrosion rate sensors controlled to the outer waterwall temperature can successfully monitor fireside corrosion in WTE plants and be used as a process control variable by plant operators.

  18. Impact of Flow Control and Tax Reform on Ownership and Growth in the U.S. Waste-to-Energy Industry

    Reports and Publications (EIA)

    1994-01-01

    This article analyzes two key issues that could be influencing growth and ownership (both public and private) in the waste to energy (WTE) industry.

  19. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    SciTech Connect (OSTI)

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  20. Municipal waste to energy: an annotated bibliography of US Department of Energy contractor reports

    SciTech Connect (OSTI)

    Not Available

    1985-06-01

    The United States generates more than 450,000 tons per day of municipal solid waste (MSW). Disposal of municipal waste is a rapidly growing problem for many areas of the country, where traditional methods (e.g., landfilling and uncontrolled incineration) are becoming too expensive or environmentally unacceptable. At the same time, price increases and supply disruptions, such as the 1973 oil embargo, have caused uncertainty about the future availability and cost of petroleum-derived energy. This uncertainty has in turn led to increased efforts to find alternative energy sources. If new technologies being developed for utilization of municipal solid waste can recover useful energy and/or materials, they can potentially stabilize or reduce the cost of community services and promote local development, as well as serve the interests of health, environmental protection, economic well being, and waste disposal. This annotated bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy (DOE). Reports listed are limited to those that focus on energy from municipal waste technologies and energy conservation in wastewater treatment.

  1. Summary of DOE Incineration Capabilities

    SciTech Connect (OSTI)

    Knecht, M.

    1998-07-01

    This document summarizes and compares operating capacities, waste acceptance criteria, and permits pertaining to the U.S. Department of Energy's three mixed waste incinerators. The information will assist Department evaluation of the incinerators.

  2. Electrochemical membrane incinerator

    DOE Patents [OSTI]

    Johnson, Dennis C. (Ames, IA); Houk, Linda L. (Ames, IA); Feng, Jianren (Ames, IA)

    2001-03-20

    Electrochemical incineration of p-benzoquinone was evaluated as a model for the mineralization of carbon in toxic aromatic compounds. A Ti or Pt anode was coated with a film of the oxides of Ti, Ru, Sn and Sb. This quaternary metal oxide film was stable; elemental analysis of the electrolyzed solution indicated the concentration of these metal ions to be 3 .mu.g/L or less. The anode showed good reactivity for the electrochemical incineration of benzoquinone. The use of a dissolved salt matrix as the so-called "supporting electrolyte" was eliminated in favor of a solid-state electrolyte sandwiched between the anode and cathode.

  3. Waste-to-Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Cross Cutting Program Portfolio Management * Planning * Systems-Level Analysis * Performance Validation and Assessment * ... Technologies Office Key Challenge for Innovation ...

  4. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    SciTech Connect (OSTI)

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C.

    2013-11-15

    Highlights: WtE plants are to be optimized beyond current acceptance levels. Emission and consumption data before and after 5 technical improvements are discussed. Plant performance can be increased without introduction of new techniques or re-design. Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation before and after optimisation as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.

  5. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances

    SciTech Connect (OSTI)

    Merrild, Hanna; Larsen, Anna W.; Christensen, Thomas H.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We model the environmental impact of recycling and incineration of household waste. Black-Right-Pointing-Pointer Recycling of paper, glass, steel and aluminium is better than incineration. Black-Right-Pointing-Pointer Recycling and incineration of cardboard and plastic can be equally good alternatives. Black-Right-Pointing-Pointer Recyclables can be transported long distances and still have environmental benefits. Black-Right-Pointing-Pointer Paper has a higher environmental benefit than recyclables found in smaller amounts. - Abstract: Recycling of materials from municipal solid waste is commonly considered to be superior to any other waste treatment alternative. For the material fractions with a significant energy content this might not be the case if the treatment alternative is a waste-to-energy plant with high energy recovery rates. The environmental impacts from recycling and from incineration of six material fractions in household waste have been compared through life cycle assessment assuming high-performance technologies for material recycling as well as for waste incineration. The results showed that there are environmental benefits when recycling paper, glass, steel and aluminium instead of incinerating it. For cardboard and plastic the results were more unclear, depending on the level of energy recovery at the incineration plant, the system boundaries chosen and which impact category was in focus. Further, the environmental impact potentials from collection, pre-treatment and transport was compared to the environmental benefit from recycling and this showed that with the right means of transport, recyclables can in most cases be transported long distances. However, the results also showed that recycling of some of the material fractions can only contribute marginally in improving the overall waste management system taking into consideration their limited content in average Danish household waste.

  6. Pyrolytic incineration system

    SciTech Connect (OSTI)

    DiFonzo, M.A.

    1989-01-31

    An incineration system is described comprising: a pyrolysis chamber for gasifying materials, the chamber comprising a generally cylindrical wall, a circular front head and a circular rear head, the interior of the chamber being lined with refractory material; a flat hearth comprising a plurality of plates made of nonporous material, opposing sides of the plates being support edges, one of the edges on each plate being designed to sit on one of the support groves and the opposing edge of each plate being designed to sit on the support ridge; a system for cooling the cylindrical wall and the rear head of the pyrolysis chamber, the cooling system comprising a skirt mounted to the lower portion of the cylindrical wall and having an intake for atmospheric air, a plurality of lower inlets in each side of the cylindrical wall, a plurality of upper outlets in each side of the cylindrical wall; ash removal means comprising a ram movable between a first retracted position and a second extended position, external means for extending and retracting the ram, a rear access assembly for selectively permitting access of the ram to the interior of the chamber; and a thermal reactor comprising a cylindrical premixing section connected to the upper opening of the chamber and having first air jets designed to inject a preselected amount of combustion air directed into the premixing section and away from the upper opening and imparting an axial direction to the combustion air and gasified material.

  7. Incinerator Completes Mission in Oak Ridge

    Broader source: Energy.gov [DOE]

    After more than 18 years of operation and more than 35 million pounds of waste safely incinerated, the Toxic Substances Control Act (TSCA) Incinerator will shut down operations on December 2.

  8. Waste Not, Want Not: Analyzing the Economic and Environmental Viability of Waste-to-Energy (WTE) Technology for Site-Specific Optimization of Renewable Energy Options

    SciTech Connect (OSTI)

    Funk, K.; Milford, J.; Simpkins, T.

    2013-02-01

    Waste-to-energy (WTE) technology burns municipal solid waste (MSW) in an environmentally safe combustion system to generate electricity, provide district heat, and reduce the need for landfill disposal. While this technology has gained acceptance in Europe, it has yet to be commonly recognized as an option in the United States. Section 1 of this report provides an overview of WTE as a renewable energy technology and describes a high-level model developed to assess the feasibility of WTE at a site. Section 2 reviews results from previous life cycle assessment (LCA) studies of WTE, and then uses an LCA inventory tool to perform a screening-level analysis of cost, net energy production, greenhouse gas (GHG) emissions, and conventional air pollution impacts of WTE for residual MSW in Boulder, Colorado. Section 3 of this report describes the federal regulations that govern the permitting, monitoring, and operating practices of MSW combustors and provides emissions limits for WTE projects.

  9. Trash, ash and the phoenix : a fifth anniversary review of the Supreme Court's City of Chicago waste-to-energy combustion ash decision.

    SciTech Connect (OSTI)

    Puder, M. G.; Environmental Assessment

    1999-01-01

    In 1994, the U.S. Supreme Court held that ash generated by waste-to-energy (WTE) facilities was not exempt from Subtitle C hazardous waste management regulations under the Resource Conservation and Recovery Act (RCRA). As a result of City of Chicago v. Environmental Defense Fund, Inc., WTE installations are required to test their combustion ash and determine whether it is hazardous. The WTE industry and the municipalities utilizing WTE technologies initially feared that if significant amounts of their ash tested hazardous, the costs and liabilities associated with RCRA Subtitle C hazardous waste management requirements would pose a serious threat to the continued viability of the WTE concept. In this article, the author presents a review of the WTE industry in the five years following the decision, and finds that the specter of the decline of WTE has not materialized.

  10. The early days of incineration

    SciTech Connect (OSTI)

    Valenti, M.

    1995-05-01

    Landfills reaching capacity, beaches fouled with trash, neighborhood residents protesting waste disposal sites in their backyards, and municipalities forced to recycle. Sound familiar? These issues might have been taken from today`s headlines, but they were also problems facing mechanical engineers a century ago. Conditions such as these were what led engineers to design the first incinerators for reducing the volume of municipal garbage, as well as for producing heat and electricity. The paper discusses these early days.

  11. Controlled air incinerator conceptual design study

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This report presents a conceptual design study for a controlled air incinerator facility for incineration of low level combustible waste at Three Mile Island Unit 2 (TMI-2). The facility design is based on the use of a Helix Process Systems controlled air incinerator. Cost estimates and associated engineering, procurement, and construction schedules are also provided. The cost estimates and schedules are presented for two incinerator facility designs, one with provisions for waste ash solidification, the other with provisions for packaging the waste ash for transport to an undefined location.

  12. Datong Fuqiao Waste Incineration Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Datong Fuqiao Waste Incineration Co Ltd Jump to: navigation, search Name: Datong Fuqiao Waste Incineration Co Ltd Place: Datong, Shanxi Province, China Zip: 37008 Product:...

  13. Method and apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Korenberg, Jacob

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  14. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  15. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  16. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors

    SciTech Connect (OSTI)

    Townsend, Aaron K.; Webber, Michael E.

    2012-07-15

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

  17. Technology documentation for selected radwaste incineration systems

    SciTech Connect (OSTI)

    Ziegler, D.L.

    1982-12-01

    Several incineration systems have been developed and demonstrated on a production scale for combustion of radioactive waste from contractor operated Department of Energy (DOE) facilities. Demonstrated operating information and engineered design information is documented in this report on four of these systems; the Cyclone Incinerator (CI), Fluidized Bed Incinerator (FBI), Controlled-Air Incinerator (CAI) and Electric Controlled Air Incinerator (ECAI). The CI, FBI and CAI have been demonstrated with actual contaminated plant waste and the ECAI has been demonstrated with simulated waste using dysprosium oxide as a stand-in for plutonium oxide. The weight and volume reduction that can be obtained by each system processing typical solid plant transuranic (TRU) waste has been presented. Where a given system has been tested for other applications, such as combustion of resins, TBP-solvent mixtures, organic liquids, polychlorinated biphenyl (PCB), resuts of these experiments have been included. This document is a compilation of reports prepared by the operating contractor personnel responsible for development of each of the systems. In addition, as a part of the program management responsibility, the Transuranic Waste System Office (TWSO) has provided an overview of the contractor supplied information.

  18. Comparison between MSW ash and RDF ash from incineration process

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Comparison between MSW ash and RDF ash from incineration process Citation Details In-Document Search Title: Comparison between MSW ash and RDF ash from incineration process Resource recovery plants with waste sorting process prior to incineration have not been successfully developed in many developing countries. The reuse potential of incineration ash in light of toxicity and compressive strength remains unclear due to the inhomogeneous composition and higher

  19. Incinerator thermal release valve risk assessment

    SciTech Connect (OSTI)

    Stevens, J.B.

    1998-12-31

    Human health risk assessments were conducted on emissions from several types of incinerators--a hazardous waste combustor, a medical waste/tire combustor, and a refuse derived fuel combustor in three different states. As part of these studies, the short-term emissions from thermal release valves operating during upset conditions were additionally evaluated. The latter assessments addressed two specific risk-related questions: (1) what are the incremental long-term risks/hazards associated with these short-term emissions; (2) what are the acute health hazards associated with these emissions? For each study, emission estimates for both the incinerator stack and the thermal release valve were obtained from the facility. Stack testing was utilized to obtain stack gas concentrations of emissions at one facility; engineering estimates were used to ascertain emissions from the thermal release valve. The two facilities were proposed incinerators, so literature-derived emissions were used throughout.

  20. Energy utilization: municipal waste incineration. Final report

    SciTech Connect (OSTI)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  1. Guidance manual for hazardous waste incinerator permits. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    The manual provides guidance to the permit writer for designating facility - specific operating conditions necessary to comply with the RCRA standards for hazardous waste incinerators. Each section of the incineration regulation is addressed, including: waste analysis, designation of principal organic hazardous constituents and requirements for operation, inspection and monitoring. Guidance is also provided for evaluating incinerator performance data and trial burn procedures.

  2. Mobility of organic carbon from incineration residues

    SciTech Connect (OSTI)

    Ecke, Holger Svensson, Malin

    2008-07-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2{sup 6-1} experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO{sub 2} until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.

  3. Incinerators and cement kilns face off

    SciTech Connect (OSTI)

    Kim, I.

    1994-04-01

    For the past few years, US incinerators have been at odds with thermal waste processors such as cement kilns. Originally, there was enough room in the industrial waste treatment market for both types of treatment. As waste generators turned to pollution prevention and onsite treatment, however, the volume of waste decreased and its composition changed. Now, each sees the other crowding it out of a tightening market, and the fight between them is growing increasingly bitter. At the center of this battle are the products of alternative thermal processes--for cement kilns, the dust formed after processing, and for other processes, a variety of materials, many of which can be used for construction. Currently, these materials are exempted from regulation under the US Resource Conservation and Recovery Act (RCRA). In addition, the alternative processes offer generators a significant cost advantage over incineration. The question that US regulators are now grappling with is whether these materials are safe enough to justify this preferential treatment. So far, the answer seems to be a qualified yes. The paper discusses these issues.

  4. Waste-to-Energy Roadmapping Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Biosolids Anaerobic Digestion of Foodstuffs and Other Organic Municipal Solid Waste Hydrothermal Liquefaction of Wastewater Residuals and Biosolids Other ...

  5. Waste to Energy | OpenEI Community

    Open Energy Info (EERE)

    to energy market is fueled by reduced GHG emission from landfills, rising concern towards energy security, growing regulatory support as well as incentives, and tax increment on...

  6. Waste-to-Energy Road Mapping Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for biogas to remove contaminants that damage downstream equipment * Basic gas ... impact products * High protein, high lipids more oil * High fiber more biochar * ...

  7. Waste-to-Energy Workshop Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... conversion of manure and organic substrates (waste) to middle distillate fuels ... with solid feedstocks (biomass, coal, pet coke, etc.) - Catalytic hydrothermal ...

  8. Clean Coal and Waste to Energy Session

    Energy Savers [EERE]

    ... technology is applicable to coal-fired power generation Hanson Permanente Cement Kiln, ... Phase (2005-2011) 20 injection tests in saline formations, depleted oil, unmineable coal ...

  9. Waste to Energy Technologies | Open Energy Information

    Open Energy Info (EERE)

    Biomass Product: Turn key WtEbiomass plant supplier with long term operations and maintenance contracts. Coordinates: 40.4203, -3.705774 Show Map Loading map......

  10. Electric controlled air incinerator for radioactive wastes

    DOE Patents [OSTI]

    Warren, Jeffery H.; Hootman, Harry E.

    1981-01-01

    A two-stage incinerator is provided which includes a primary combustion chamber and an afterburner chamber for off-gases. The latter is formed by a plurality of vertical tubes in combination with associated manifolds which connect the tubes together to form a continuous tortuous path. Electrically-controlled heaters surround the tubes while electrically-controlled plate heaters heat the manifolds. A gravity-type ash removal system is located at the bottom of the first afterburner tube while an air mixer is disposed in that same tube just above the outlet from the primary chamber. A ram injector in combination with rotary magazine feeds waste to a horizontal tube forming the primary combustion chamber.

  11. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    SciTech Connect (OSTI)

    Beylot, Antoine Villeneuve, Jacques

    2013-12-15

    Highlights: 110 French incinerators are compared with LCA based on plant-specific data. Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. E.g. climate change impact ranges from ?58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of ?58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  12. Alternatives to incineration. Technical area status report

    SciTech Connect (OSTI)

    Schwinkendorf, W.E.; McFee, J.; Devarakonda, M.; Nenninger, L.L.; Fadullon, F.S.; Donaldson, T.L.; Dickerson, K.

    1995-04-01

    Recently, the DOE`s Mixed Waste Integrated Program (MWIP) (superseded by the Mixed Waste Focus Area) initiated an evaluation of alternatives to incineration to identify technologies capable of treating DOE organically contaminated mixed wastes and which may be more easily permitted. These technologies have the potential of alleviating stakeholder concerns by decreasing off-gas volurties and the associated emissions of particulates, volatilized metals and radionuclides, PICs, NO{sub x}, SO{sub x}, and recombination products (dioxins and furans). Ideally, the alternate technology would be easily permitted, relatively omnivorous and effective in treating a variety of wastes with varying constituents, require minimal pretreatment or characterization, and be easy to implement. In addition, it would produce secondary waste stream volumes significantly smaller than the original waste stream, and would minimize the environmental health and safety effects on workers and the public. The purpose of this report is to provide an up-to-date (as of early 1995) compendium of iternative technologies for designers of mixed waste treatment facilities, and to identify Iternate technologies that may merit funding for further development. Various categories of non-thermal and thermal technologies have been evaluated and are summarized in Table ES-1. Brief descriptions of these technologies are provided in Section 1.7 of the Introduction. This report provides a detailed description of approximately 30 alternative technologies in these categories. Included in the report are descriptions of each technology; applicable input waste streams and the characteristics of the secondary, or output, waste streams; the current status of each technology relative to its availability for implementation; performance data; and costs. This information was gleaned from the open literature, governments reports, and discussions with principal investigators and developers.

  13. Design and performance of a fluidized-bed incinerator for TRU combustible wastes

    SciTech Connect (OSTI)

    Meile, L.J.; Meyer, F.G.

    1982-01-01

    Problems encountered in the incineration of glovebox generated waste at Rocky Flats Plant (RFP) led to the development of a fluidized-bed incineration (FBI) system for transuranic (TRU) combustible wastes. Laboratory and pilot-scale testing of the process preceded the installation of an 82-kg/h production demonstration incinerator at RFP. The FBI process is discussed, and the design of the demonstration incinerator is described. Operating experience and process performance for both the pilot and demonstration units are presented.

  14. Siting landfills and incinerators in areas of historic unpopularity: Surveying the views of the next generation

    SciTech Connect (OSTI)

    De Feo, Giovanni; Williams, Ian D.

    2013-12-15

    Highlights: Opinions and knowledge of young people in Italy about waste were studied. Historic opposition to construction of waste facilities is difficult to overcome. Awareness of waste management develops with knowledge of environmental issues. Many stakeholders views are needed when siting a new waste management facility. Respondents opinions were influenced by their level of environmental knowledge. - Abstract: The Campania Region in Southern Italy has suffered many problems with municipal solid waste management since the mid-1990s, leading to significant public disturbances and subsequent media coverage. This paper reports on the current views and knowledge of young people (university students) in this region about waste management operations and facilities, specifically the siting of landfills and incinerators. By means of a structured questionnaire, opinion and knowledge were systematically examined by degree type and course year. The study took place in 2011 at the University of Salerno campus. A sample of 900 students, comprising 100 students for each of the nine considered faculties, and 20 students for every academic course year, was randomly selected. Only about a quarter of respondents were not opposed to the siting of a landfill or an incinerator in their city. This clearly highlights that historic opposition to the construction of waste facilities is difficult to overcome and that distrust for previous poor management or indiscretions is long-lived and transcends generations. Students from technical faculties expressed the most reasonable opinion; opinion and knowledge were statistically related (Chi-square test, p < 0.05) to the attended faculty, and the knowledge grew linearly with progression through the university. This suggests that awareness of waste management practices develops with experience and understanding of environmental issues. There is general acceptance that many stakeholders technicians, politicians and citizens all have to be part of the decision process when siting a new waste management facility. The opinions of the young respondents were significantly influenced by their level of environmental knowledge.

  15. High-temperature corrosion in an incinerator offgas system

    SciTech Connect (OSTI)

    Jenkins, C.F. )

    1989-11-01

    Corrosion studies at about 1000{sup 0}C in a radioactive waste incinerator exhaust stream are described. Alloys with 30% chromium, chromium and duplex chromium/aluminum diffusion coatings on high-chromium materials, a 20% Cr-5% Al-iron alloy, and water cooling were each found to benefit a reduction in metal wastage in this offgas system.

  16. Development of a trial burn plan for a mixed waste fluidized bed incinerator

    SciTech Connect (OSTI)

    Kabot, F.J.; Ziegler, D.L.

    1988-01-01

    One of the more important elements of the incinerator permitting process under RCRA is the development of the Trial Burn Plan. This document describes the incinerator and defines the incinerator's process envelope within which the trial burns will be conducted. The data obtained during the trial burns will be the basis for the incinerator's operating permit. This paper describes the development of the Trial Burn Plan for a unique fluidized bed incinerator to be used for the incineration of hazardous and mixed wastes at the Department of Energy's Rocky Flats Plant. It describes a review process of the Trial Burn Plan involving a public comment period that actually preceded the trial burns. 2 refs., 1 fig.

  17. Completion of the INEEL's WERF Incinerator Trial Burn

    SciTech Connect (OSTI)

    C. K. Branter; D. A. Conley; D. R. Moser; S. J. Corrigan

    1999-05-01

    This paper describes the successes and challenges associated with Resource Conservation and Recovery Act (RCRA) permitting of the Idaho National Engineering and Environmental Laboratory's (INEEL) Waste Experimental Reduction Facility (WERF) hazardous and mixed waste incinerator. Topics to be discussed include facility modifications and problems, trial burn results and lessons learned in each of these areas. In addition, a number of challenges remain including completion and final issue of the RCRA Permit and implementation of all the permit requirements. Results from the trial burn demonstrated that the operating conditions and procedures will result in emissions that are satisfactorily protective of human health, the environment, and are in compliance with Federal and State regulations.

  18. Completion of the INEEL's WERF Incinerator Trial Burn

    SciTech Connect (OSTI)

    Branter, Curtis Keith; Conley, Dennis Allen; Corrigan, Shannon James; Moser, David Roy

    1999-05-01

    This paper describes the successes and challenges associated with Resource Conservation and Recovery Act (RCRA) permitting of the Idaho National Engineering and Environmental Laboratory's (INEEL) Waste Experimental Reduction Facility (WERF) hazardous and mixed waste incinerator. Topics to be discussed include facility modifications and problems, trial burn results and lessons learned in each of these areas. In addition, a number of challenges remain including completion and final issue of RCRA Permit and implementation of all the permit requirements. Results from the trial burn demonstrated that the operating conditions and procedures will result in emissions that are satisfactorily protective of human health, the environment, and are in compliance with Federal and State regulations.

  19. Fossil and biogenic CO{sub 2} from waste incineration based on a yearlong radiocarbon study

    SciTech Connect (OSTI)

    Mohn, J.; Szidat, S.; Zeyer, K.; Emmenegger, L.

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Yearlong radiocarbon study on the share of biogenic CO{sub 2} from waste incineration. Black-Right-Pointing-Pointer Direct approach combining temporal integrating gas sampling and {sup 14}CO{sub 2} analysis by AMS. Black-Right-Pointing-Pointer Significant differences between incinerators with 43% and 54%Fos C. Black-Right-Pointing-Pointer No annual cycle of fossil CO{sub 2} for all, except one, of the included incinerators. - Abstract: We describe the first long-term implementation of the radiocarbon ({sup 14}C) method to study the share of biogenic (%Bio C) and fossil (%Fos C) carbon in combustion CO{sub 2}. At five Swiss incinerators, a total of 24 three-week measurement campaigns were performed over 1 year. Temporally averaged bag samples were analyzed for {sup 14}CO{sub 2} by accelerator mass spectrometry. Significant differences between the plants in the share of fossil CO{sub 2} were observed, with annual mean values from 43.4 {+-} 3.9% to 54.5 {+-} 3.1%. Variations can be explained by the waste composition of the respective plant. Based on our dataset, an average value of 48 {+-} 4%Fos C was determined for waste incineration in Switzerland. No clear annual trend in %Fos C was observed for four of the monitored incinerators, while one incinerator showed considerable variations, which are likely due to the separation and temporary storage of bulky goods.

  20. Cementation and solidification of Rocky Flats Plant incinerator ash

    SciTech Connect (OSTI)

    Phillips, J.A.; Semones, G.B.

    1994-04-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes.

  1. Permeability of Consolidated Incinerator Facility Wastes Stabilized with Portland Cement

    SciTech Connect (OSTI)

    Walker, B.W.

    1999-08-23

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and off-gas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as waste water. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete and will continue to be treated this way for listed waste burns and scrubber solution that do not meet the Effluent Treatment Facility (ETF) Waste Acceptance Criteria (WAC).

  2. Assessment of incineration and melting treatment technologies for RWMC buried waste

    SciTech Connect (OSTI)

    Geimer, R.; Hertzler, T.; Gillins, R.; Anderson, G.L.

    1992-02-01

    This report provides an identification, description, and ranking evaluation of the available thermal treatment technologies potentially capable of treating the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried mixed waste. The ranking evaluation focused separately upon incinerators for treatment of combustible wastes and melters for noncombustible wastes. The highest rank incinerators are rotary kilns and controlled air furnaces, while the highest rank melters are the hearth configuration plasma torch, graphite electrode arc, and joule-heated melters. 4 refs.

  3. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis

    SciTech Connect (OSTI)

    Chen, H.-W.; Chang, N.-B.; Chen, J.-C.; Tsai, S.-J.

    2010-07-15

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA) - a production economics tool - to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.

  4. Waste to Energy Market | OpenEI Community

    Open Energy Info (EERE)

    to energy market is fueled by reduced GHG emission from landfills, rising concern towards energy security, growing regulatory support as well as incentives, and tax increment on...

  5. Waste to Energy: Escalating Energy Concerns to Push Global Market...

    Open Energy Info (EERE)

    to energy market is fueled by reduced GHG emission from landfills, rising concern towards energy security, growing regulatory support as well as incentives, and tax increment on...

  6. Biogas Upgrading and Waste-to-Energy | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Biogas Potential in the United States Biogas is the gaseous product of anaerobic digestion, a biological process in which microorganisms break down biodegradable material in the absence of oxygen. Biogas is comprised primarily of methane (50%-70%) and carbon dioxide (30%-50%), with trace amounts of other particulates and contaminants. It can be produced from various waste sources, including landfll material; animal manure; wastewater; and industrial, institutional, and commercial

  7. "Wet" Waste-to-Energy in the Bioenergy Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... INNOVATION 7 | Bioenergy Technologies Office Omnibus Language for FY 2015: Focus on Waste ... government can undertake to overcome barriers to a robust biogas industry in the ...

  8. "Wet" Waste-to-Energy in the Bioenergy Technologies Office

    Broader source: Energy.gov [DOE]

    Introductory presentation by Jonathan Male, U.S. Department of Energy Bioenergy Technologies Office Director, at the Hydrogen, Hydrocarbons, and Bioproduct Precursors from Wastewaters Workshop held March 18–19, 2015.

  9. Biomass and Waste-to-Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Digestion & Biogas: Industry Perspectives ... waste and manure, and municipal commercial food waste. ... Production of Gasoline and Diesel from Biomass via Fast ...

  10. Waste-to-Energy Biomass Digester with Decreased Water Consumption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Disposal of solid animal waste and generation of biogas Suitable for large-scale animal ... Date Application 20120034681 Application 20120034681 DIGESTER FOR HIGH SOLIDS WASTE A ...

  11. Fixation and partitioning of heavy metals in slag after incineration of sewage sludge

    SciTech Connect (OSTI)

    Chen Tao; Yan Bo

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer The contents and partitioning of HMs in slag of sludge incineration were examined. Black-Right-Pointing-Pointer The fixation rate decreases with residential time and finally keeps a constant. Black-Right-Pointing-Pointer Water mass fraction of 55% is optimal for the sediment for Ni, Mn, Zn, Cu and Cr. Black-Right-Pointing-Pointer Water mass fraction of 75% is optimal for the sediment for Pb. Black-Right-Pointing-Pointer We found higher temperature versus lower non-residual fraction except that of Pb. - Abstract: Fixation of heavy metals in the slag produced during incineration of sewage sludge will reduce emission of the metals to the atmosphere and make the incineration process more environmentally friendly. The effects of incineration conditions (incineration temperature 500-1100 Degree-Sign C, furnace residence time 0-60 min, mass fraction of water in the sludge 0-75%) on the fixation rates and species partitioning of Cd, Pb, Cr, Cu, Zn, Mn and Ni in slag were investigated. When the incineration temperature was increased from 500 to 1100 Degree-Sign C, the fixation rate of Cd decreased from 87% to 49%, while the fixation rates of Cu and Mn were stable. The maximum fixation rates for Pb and Zn and for Ni and Cr were reached at 900 and 1100 Degree-Sign C, respectively. The fixation rates of Cu, Ni, Cd, Cr and Zn decreased as the residence time increased. With a 20 min residence time, the fixation rates of Pb and Mn were low. The maximum fixation rates of Ni, Mn, Zn, Cu and Cr were achieved when the mass fraction of water in the sludge was 55%. The fixation rate of Cd decreased as the water mass fraction increased, while the fixation rate of Pb increased. Partitioning analysis of the metals contained in the slag showed that increasing the incineration temperature and residence time promoted complete oxidation of the metals. This reduced the non-residual fractions of the metals, which would lower the bioavailability of the metals. The mass fraction of water in the sludge had little effect on the partitioning of the metals. Correlation analysis indicated that the fixation rates of heavy metals in the sludge and the forms of heavy metals in the incinerator slag could be controlled by optimization of the incineration conditions. These results show how the bioavailability of the metals can be reduced for environmentally friendly disposal of the incinerator slag.

  12. Permeability of consolidated incinerator facility wastes stabilized with portland cement

    SciTech Connect (OSTI)

    Walker, B.W.

    2000-04-19

    The Consolidated Incinerator Facility (CIF) at the Savannah River Site (SRS) burns low-level radioactive wastes and mixed wastes as a method of treatment and volume reduction. The CIF generates secondary waste, which consists of ash and offgas scrubber solution. Currently the ash is stabilized/solidified in the Ashcrete process. The scrubber solution (blowdown) is sent to the SRS Effluent Treatment Facility (ETF) for treatment as wastewater. In the past, the scrubber solution was also stabilized/solidified in the Ashcrete process as blowcrete, and will continue to be treated this way for listed waste burns and scrubber solutions that do not meet the ETF Waste Acceptance Criteria (WAC). The disposal plan for Ashcrete and special case blowcrete is to bury these containerized waste forms in shallow unlined trenches in E-Area. The WAC for intimately mixed, cement-based wasteforms intended for direct disposal specifies limits on compressive strength and permeability. Simulated waste and actual CIF ash and scrubber solution were mixed in the laboratory and cast into wasteforms for testing. Test results and related waste disposal consequences are given in this report.

  13. High temperature corrosion problems in waste incineration systems

    SciTech Connect (OSTI)

    Krause, H.H.

    1986-03-01

    Corrosion of high temperature metal surfaces in waste incineration systems results primarily from compounds of chlorine, sulfur, and metals such as lead, zinc, and tin. The presence of such compounds in municipal refuse and chemical wastes can result in severe metal wastage in energy recovery systems. The corrosion mechanism involves interaction of sulfur oxides with chlorides in deposits to generate HCl and chlorine at the metal surface. Metal chlorides also can contribute by forming low melting eutectics. Reducing atmospheres, particularly carbon monoxide, in the combustion gases also appear to be a factor in corrosion. Corrosion rates of carbon and low alloy steels increase significantly with both metal temperature and gas temperature. The rates for stainless steels initially decrease as the metal temperature increases, and are less sensitive to gas temperature. Corrosion by chlorine can be inhibited by maintaining a sufficiently high concentration of sulfur or silica in the fuel. The results of corrosion probe exposures in waste-fueled boilers are presented to illustrate these mechanisms.

  14. Zinc Bromide Combustion: Implications for the Consolidated Incinerator Facility

    SciTech Connect (OSTI)

    Oji, L.N.

    1998-12-16

    In the nuclear industry, zinc bromide (ZnBr2) is used for radiation shielding. At Savannah River Site (SRS) zinc bromide solution, in appropriate configurations and housings, was used mainly for shielding in viewing windows in nuclear reactor and separation areas. Waste stream feeds that will be incinerated at the CIF will occasionally include zinc bromide solution/gel matrices.The CIF air pollution systems control uses a water-quench and steam atomizer scrubber that collects salts, ash and trace metals in the liquid phase. Water is re-circulated in the quench unit until a predetermined amount of suspended solids or dissolved salts are present. After reaching the threshold limit, "dirty liquid", also called "blowdown", is pumped to a storage tank in preparation for treatment and disposal. The air pollution control system is coupled to a HEPA pre-filter/filter unit, which removes particulate matter from the flue gas stream (1).The objective of this report is to review existing literature data on the stability of zinc bromide (ZnBr2) at CIF operating temperatures (>870 degrees C (1600 degrees F) and determine what the combustion products are in the presence of excess air. The partitioning of the combustion products among the quencher/scrubber solution, bottom ash and stack will also be evaluated. In this report, side reactions between zinc bromide and its combustion products with fuel oil were not taken into consideration.

  15. The estimation of N{sub 2}O emissions from municipal solid waste incineration facilities: The Korea case

    SciTech Connect (OSTI)

    Park, Sangwon; Choi, Jun-Ho; Park, Jinwon

    2011-08-15

    The greenhouse gases (GHGs) generated in municipal solid waste (MSW) incineration are carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). In South Korea case, the total of GHGs from the waste incineration facilities has been increasing at an annual rate 10%. In these view, waste incineration facilities should consider to reduce GHG emissions. This study is designed to estimate the N{sub 2}O emission factors from MSW incineration plants, and calculate the N{sub 2}O emissions based on these factors. The three MSW incinerators examined in this study were either stoker or both stoker and rotary kiln facilities. The N{sub 2}O concentrations from the MSW incinerators were measured using gas chromatography-electron capture detection (GC-ECD) equipment. The average of the N{sub 2}O emission factors for the M01 plant, M02 plant, and M03 plant are 71, 75, and 153 g-N{sub 2}O/ton-waste, respectively. These results showed a significant difference from the default values of the intergovernmental panel on climate change (IPCC), while approaching those values derived in Japan and Germany. Furthermore, comparing the results of this study to the Korea Energy Economics Institute (KEEI) (2007) data on waste incineration, N{sub 2}O emissions from MSW incineration comprised 19% of the total N{sub 2}O emissions.

  16. A simulator designated to the help sizing of waste incineration plant with energy valorization

    SciTech Connect (OSTI)

    Lemoult, B.

    1998-07-01

    The integrated waste treatment (sorting, recycling, composting, incineration, tip) concept is increasing. In this concept, incineration remains the last way of destruction before tipping of refuse. With the aim to improve thermal and economic efficiencies of this kind of treatment, thermal and/or electrical energy are produced in incineration plants. If environmental rules lead to a steady increase of such plants, a lot of data have to be evaluated to find the best size, especially under economic aspects, for a given project. The author presents the specification of the software ARTEMIS, which helps a project manager to find the optimal size of a plant, to quantify the effect of various technical options, and to compare some operating management. Garbage deposit (quantity and quality), energy valorization (electricity price, thermal needs), machines (furnace, high and low pressure turbines, heat exchanger, auxiliary boiler) are taken into account. Energy and economic annual balance are also calculated with a hourly simulation step.

  17. Generation and distribution of PAHs in the process of medical waste incineration

    SciTech Connect (OSTI)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-15

    Highlights: ? PAHs generation and distribution features of medical waste incineration are studied. ? More PAHs were found in fly ash than that in bottom ash. ? The highest proportion of PAHs consisted of the seven most carcinogenic ones. ? Increase of free oxygen molecule and burning temperature promote PAHs degradation. ? There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.

  18. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion

    SciTech Connect (OSTI)

    Assamoi, Bernadette; Lawryshyn, Yuri

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Residential waste diversion initiatives are more successful with organic waste. Black-Right-Pointing-Pointer Using a incineration to manage part of the waste is better environmentally. Black-Right-Pointing-Pointer Incineration leads to more power plant emission offsets. Black-Right-Pointing-Pointer Landfilling all of the waste would be preferred financially. - Abstract: This study evaluates the environmental performance and discounted costs of the incineration and landfilling of municipal solid waste that is ready for the final disposal while accounting for existing waste diversion initiatives, using the life cycle assessment (LCA) methodology. Parameters such as changing waste generation quantities, diversion rates and waste composition were also considered. Two scenarios were assessed in this study on how to treat the waste that remains after diversion. The first scenario is the status quo, where the entire residual waste was landfilled whereas in the second scenario approximately 50% of the residual waste was incinerated while the remainder is landfilled. Electricity was produced in each scenario. Data from the City of Toronto was used to undertake this study. Results showed that the waste diversion initiatives were more effective in reducing the organic portion of the waste, in turn, reducing the net electricity production of the landfill while increasing the net electricity production of the incinerator. Therefore, the scenario that incorporated incineration performed better environmentally and contributed overall to a significant reduction in greenhouse gas emissions because of the displacement of power plant emissions; however, at a noticeably higher cost. Although landfilling proves to be the better financial option, it is for the shorter term. The landfill option would require the need of a replacement landfill much sooner. The financial and environmental effects of this expenditure have yet to be considered.

  19. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    SciTech Connect (OSTI)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab.

  20. Influences of chemical activators on incinerator bottom ash

    SciTech Connect (OSTI)

    Qiao, X.C. Cheeseman, C.R.; Poon, C.S.

    2009-02-15

    This research has applied different chemical activators to mechanically and thermally treated fine fraction (<14 mm) of incinerator bottom ash (IBA), in order to investigate the influences of chemical activators on this new pozzolanic material. IBA has been milled and thermally treated at 800 deg. C (TIBA). The TIBA produced was blended with Ca(OH){sub 2} and evaluated for setting time, reactivity and compressive strength after the addition of 0.0565 mole of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, NaOH, KOH and CaCl{sub 2} into 100 g of binder (TIBA+Ca(OH){sub 2}). The microstructures of activated IBA and hydrated samples have been characterized by X-ray diffraction (XRD) and thermogravimetry (TG) analysis. Thermal treatment is found to produce gehlenite (Ca{sub 2}Al{sub 2}SiO{sub 7}), wollastonite (CaSiO{sub 3}) and mayenite (Ca{sub 12}Al{sub 14}O{sub 33}) phases. The thermally treated IBA samples are significantly more reactive than the milled IBA. The addition of Na{sub 2}CO{sub 3} can increase the compressive strength and calcium hydroxide consumption at 28-day curing ages. However, the addition of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, K{sub 2}CO{sub 3}, NaOH and KOH reduces the strength and hydration reaction. Moreover, these chemicals produce more porous samples due to increased generation of hydrogen gas. The addition of CaCl{sub 2} has a negative effect on the hydration of TIBA samples. Calcium aluminium oxide carbonate sulphide hydrate (Ca{sub 4}Al{sub 2}O{sub 6}(CO{sub 3}){sub 0.67}(SO{sub 3}){sub 0.33}(H{sub 2}O){sub 11}) is the main hydration product in the samples with activated IBA, except for the sample containing CaCl{sub 2}.

  1. Garbage in, power out

    SciTech Connect (OSTI)

    Wollard, K.

    1988-06-01

    Faced with the specter of garbage everywhere, communities are turning increasingly to waste-to-energy incineration and encountering unique challenges.

  2. Sandia National Laboratories: Pollution Prevention: Reuse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reuse Reuse is more important and environmentally rewarding than recycling or waste-to-energy incineration, according to the waste management hierarchy. These highlighted programs...

  3. EIS-0084: Incineration Facility for Radioactively Contaminated PCBs and Other Wastes, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Uranium Enrichment and Assessment prepared this statement to assess the environmental impacts of the construction and operation of the proposed Oak Ridge Gaseous Diffusion Plant, an incineration facility to dispose of radioactively contaminated polychlorinated biophenyls, as well as combustible waste from the Paducah, Portsmouth and Oak Ridge facilities.

  4. Mixed-waste treatment -- What about the residuals? A comparative analysis of MSO and incineration

    SciTech Connect (OSTI)

    1993-06-01

    This report examines the issues concerning final waste forms, or residuals, that result from the treatment of mixed waste in molten salt oxidation (MSO) and incinerator systems. MSO is a technology with the potential to treat a certain segment of the waste streams at US Department of Energy (DOE) sites. MSO was compared with incineration because incineration is the best demonstrated available technology (BDAT) for the same waste streams. The Grand Junction Projects Office (GJPO) and Oak Ridge National Laboratory (ORNL) prepared this report for the DOE Office of Environmental Restoration (OER). The goals of this study are to objectively evaluate the anticipated residuals from MSO and incineration, examine regulatory issues for these final waste forms, and determine secondary treatment options. This report, developed to address concerns that MSO residuals present unique disposal difficulties, is part of a larger effort to successfully implement MSO as a treatment technology for mixed and hazardous waste. A Peer Review Panel reviewed the MSO technology in November 1991, and the implementation effort is ongoing under the guidance of the MSO Task Force.

  5. Pilot-scale testing of paint-waste incineration. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-07-01

    Operations at the U.S. Army depots generate large quantities of paint removal and application wastes. These wastes, many of which are hazardous, are currently disposed of off site. Off-site disposal of solids is often by landfilling, which will be banned or highly restricted in the future. Several research activities have been initiated by USATHAMA to evaluate alternative technologies for management of paint wastes. The project described in this report involved pilot-scale incineration testing of two paint wastes: spent plastic blast media and spent agricultural blast media (ground walnut shells). The objective of this task was to continue development of incineration as an alternative treatment technology for paint wastes through pilot-scale rotary-kiln incineration testing. The results of the pilot test were evaluated to assess how the paint waste characteristics and incinerator operating conditions affected the following: characteristics of ash residue volume reduction achieved, destruction and removal efficiencies (DRE's) for organic compound and characteristics of stack gases.

  6. Cost analysis of paint-waste-incineration technology at U. S. Army depots. Final report, Nov 88-Oct 91

    SciTech Connect (OSTI)

    Hall, F.D.; McKibben, R.S.

    1991-10-01

    The U.S. Army Depot System Command (DESCOM) has 16 maintenance depots located throughout the U.S. Several army depots generate paint wastes that must be disposed of. These depots are located in different parts of the country, and a comprehensive strategy is required to manage the disposal of the paint wastes generated at the individual depots. Incineration is a candidate technology for disposal of such wastes. This report presents an economic analysis of developing an incineration strategy. The economic analysis of paint waste incineration was limited to six major maintenance depots: Anniston, Corpus Christi, Letterkenny, Red River, Tobyhanna, and Tooele. These particular depots are included in the analysis because they are responsible for the majority of all paint wastes generated annually be DESCOM. Three scenarios were evaluated: (1) locating an incinerator at each depot, (2) locating an incinerator at a single site and transporting waste from other depots to this location, and (3) using multiple units at two or more depots. The analysis considers the locations of the army depots, the types and quantities of the wastes they generate, and transportation of the wastes. It also assumes that the individual army depots are equally equipped for proper management of the paint waste by the incineration technology and that the waste can be transferred between the depots without any restrictions. It is further assumed that only incinerable paint wastes will be treated.

  7. Oxygen-enriched multiple-hearth sewage sludge incineration demonstration. Final report

    SciTech Connect (OSTI)

    1998-07-01

    Oxygen-enhanced multiple-hearth sludge incineration was the focus of a five-month joint study by Praxair and the New York State Energy Research and Development Authority. Testing and demonstration were conducted in Rochester NY, at Monroe County`s Frank E. Van Lare Sewage Treatment Plant. A simple retrofit of high-momentum oxygen lances created a convection hearth in which convective heat and mass transfer with the drying sludge were greatly enhanced, while hearth temperatures were moderated by the wet sludge to prevent overheating. Based on the results of short- and long-term controlled tests discussed in this report, oxygen enhancement of multiple-hearth sludge incinerators can be economically viable, with a savings between $30 and $60 per hour at Van Lare based upon increased sludge throughput and reduced fuel consumption.

  8. Quality assurance/quality control (QA/QC) procedures for hazardous-waste incineration. Handbook

    SciTech Connect (OSTI)

    Dux, T.; Gilford, P.; Bergman, F.; Boomer, B.; Hooton, D.

    1990-01-01

    The Environmental Protection Agency (EPA) has promulgated regulations for hazardous waste incinerators under the Resource Conservation and Recovery Act. These regulations require the permit applicant to conduct trial burns to demonstrate compliance with the regulatory limits and provide data needed to write the individual permits. Trial burns require a Quality Assurance Project Plan (QAPjP) with quality assurance/quality control (QA/QC) procedures to control and evaluate data quality. The primary focus of the handbook is the trial burn itself; however, a discussion of the QA/QC for routine incinerator monitoring and permit compliance is included in a separate chapter. The area has slightly different requirements and objectives from those of the trial burn. The trial burn should be viewed as a short-term project with a defined beginning and end, while compliance monitoring is considered an ongoing process.

  9. High temperature materials for radioactive waste incineration and vitrification. Revision 1

    SciTech Connect (OSTI)

    Bickford, D F; Ondrejcin, R S; Salley, L

    1986-01-01

    Incineration or vitrification of radioactive waste subjects equipment to alkaline or acidic fluxing, oxidation, sulfidation, carburization, and thermal shock. It is necessary to select appropriate materials of construction and control operating conditions to avoid rapid equipment failure. Nickel- and cobalt-based alloys with high chromium or aluminum content and aluminum oxide/chromium oxide refractories with high chromium oxide content have provided the best service in pilot-scale melter tests. Inconel 690 and Monofrax K-3 are being used for waste vitrification. Haynes 188 and high alumina refractory are undergoing pilot scale tests for incineration equipment. Laboratory tests indicate that alloys and refractories containing still higher concentrations of chromium or chromium oxide, such as Inconel 671 and Monofrax E, may provide superior resistance to attack in glass melter environments.

  10. Application of holographic neural networks for flue gas emissions prediction in the Burnaby incinerator

    SciTech Connect (OSTI)

    Zheng, L.; Dockrill, P.; Clements, B.

    1997-12-31

    This article describes the development of a parametric prediction system (PPS) for various emission species at the Burnaby incinerator. The continuous emissions monitoring system at the Burnaby incinerator is shared between three boilers and therefore actual results are only available 5 minutes out of every 15 minutes. The PPS was developed to fill in data for the 10 minutes when the Continuous Emission Monitor (CEM) is measuring the other boilers. It bases its prediction on the last few actual readings taken and parametrically predicts CO, SO2 and NOx. The Burnaby Incinerator is located in the commercial/industrial area of South Burnaby, British Columbia. It consists of three separate lines, each burning ten tonnes of garbage per hour and producing about three tonnes of steam for every tonne of garbage burned. The air pollution control system first cools the combustion products with water injection and then scrubs them with very fine hydrated lime. Carbon is added to the lime to enhance the scrubbing of the combustion products. The CEM monitors the levels of oxygen, carbon monoxide, nitrogen oxides, sulphur dioxide and opacity. In 1996, an expert system was installed on one of boilers at the Burnaby Incinerator plant to determine if it could improve the plant=s operations and reduce overall emission. As part of the expert system, the PPS was developed. Holographic Neural Technology (HNeT), developed by AND Corporation of Toronto, Ontario, is a novel neural network technology using complex numbers in its architecture. Compared to the traditional neural networks, HNeT has some significant advantage. It is more resilient against converging on local minima; is faster training and executing; less prone to over fitting; and, in most cases, has significantly lower error. Selection of independent variabs, training set preparation, testing neural nets and other related issue will be discussed.

  11. Synthesis of mesoporous silica materials from municipal solid waste incinerator bottom ash

    SciTech Connect (OSTI)

    Liu, Zhen-Shu Li, Wen-Kai; Huang, Chun-Yi

    2014-05-01

    Highlights: The optimal alkaline agent for the extraction of silica from bottom ash was Na{sub 2}CO{sub 3}. The pore sizes for the mesoporous silica synthesized from bottom ash were 23.8 nm. The synthesized materials exhibited a hexagonal pore structure with a smaller order. The materials have potential for the removal of heavy metals from aqueous solutions. - Abstract: Incinerator bottom ash contains a large amount of silica and can hence be used as a silica source for the synthesis of mesoporous silica materials. In this study, the conditions for alkaline fusion to extract silica from incinerator bottom ash were investigated, and the resulting supernatant solution was used as the silica source for synthesizing mesoporous silica materials. The physical and chemical characteristics of the mesoporous silica materials were analyzed using BET, XRD, FTIR, SEM, and solid-state NMR. The results indicated that the BET surface area and pore size distribution of the synthesized silica materials were 992 m{sup 2}/g and 23.8 nm, respectively. The XRD patterns showed that the synthesized materials exhibited a hexagonal pore structure with a smaller order. The NMR spectra of the synthesized materials exhibited three peaks, corresponding to Q{sup 2} [Si(OSi){sub 2}(OH){sub 2}], Q{sup 3} [Si(OSi){sub 3}(OH)], and Q{sup 4} [Si(OSi){sub 4}]. The FTIR spectra confirmed the existence of a surface hydroxyl group and the occurrence of symmetric SiO stretching. Thus, mesoporous silica was successfully synthesized from incinerator bottom ash. Finally, the effectiveness of the synthesized silica in removing heavy metals (Pb{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, and Cr{sup 2+}) from aqueous solutions was also determined. The results showed that the silica materials synthesized from incinerator bottom ash have potential for use as an adsorbent for the removal of heavy metals from aqueous solutions.

  12. Two stage, low temperature, catalyzed fluidized bed incineration with in situ neutralization for radioactive mixed wastes

    SciTech Connect (OSTI)

    Wade, J.F.; Williams, P.M.

    1995-05-17

    A two stage, low temperature, catalyzed fluidized bed incineration process is proving successful at incinerating hazardous wastes containing nuclear material. The process operates at 550{degrees}C and 650{degrees}C in its two stages. Acid gas neutralization takes place in situ using sodium carbonate as a sorbent in the first stage bed. The feed material to the incinerator is hazardous waste-as defined by the Resource Conservation and Recovery Act-mixed with radioactive materials. The radioactive materials are plutonium, uranium, and americium that are byproducts of nuclear weapons production. Despite its low temperature operation, this system successfully destroyed poly-chlorinated biphenyls at a 99.99992% destruction and removal efficiency. Radionuclides and volatile heavy metals leave the fluidized beds and enter the air pollution control system in minimal amounts. Recently collected modeling and experimental data show the process minimizes dioxin and furan production. The report also discusses air pollution, ash solidification, and other data collected from pilot- and demonstration-scale testing. The testing took place at Rocky Flats Environmental Technology Site, a US Department of Energy facility, in the 1970s, 1980s, and 1990s.

  13. Rudimentary, low tech incinerators as a means to produce reactive pozzolan out of sugar cane straw

    SciTech Connect (OSTI)

    Martirena, Fernando . E-mail: f.martirena@enet.cu; Middendorf, Bernhard; Day, Robert L.; Gehrke, Matthias; Roque, Pablo; Martinez, Lesday; Betancourt, Sergio

    2006-06-15

    The ashes of agricultural wastes from the processing of sugar cane are recognized as having pozzolanic properties. Burning of these wastes under controlled conditions, e.g. temperature and residence time results in significant improvement in reactivity. There are many reports of low-tech incinerators that have been successfully used to produce reactive rice husk ash in Asia. The paper presents the results of the evaluation of a rudimentary incinerator where sugar cane straw is burnt in order to obtain a reactive ash. The incinerator is designed and constructed according to state-of-the-art recommendations for this kind of device. Various burning trials were performed in order to obtain ash for the experiment. X-ray diffraction analysis performed on powdered ash shows significant presence of amorphous (glassy) material. Lime-pozzolana pastes were prepared. The pastes were subjected to X-ray diffraction, thermo-gravimetric analysis, chemical titration, and SEM observation, as a means to examine the pozzolanicity of the ash via the progress with time of calcium hydroxide consumption, and changes in the pore size distribution and strength. Calcium silicate hydrate phases are the main reaction product of the pozzolanic reaction. The long residence time of the ash in the burning chamber seems to be the reason for the fairly low reactivity of the ash; the reactivity of the ash was not significantly improved in comparison with that of the ash burnt in uncontrolled conditions in the open air.

  14. Incineration of residue from paint stripping operations using plastic media blasting

    SciTech Connect (OSTI)

    Helt, J.E.; Mallya, N.

    1988-01-01

    A preliminary investigation has been performed on the environmental consequences of incinerating plastic-media-blasting (PMB) wastes from plant removal operations. PMB is similar to sandblasting although blasting taken place at a much lower pressure. The blasted media can be recovered and recycled several times, but ultimately a residue of paint dust/chips and attrited media dust are left for disposal. This residue is a dry solid that may potentially be classified as a hazardous waste. One possible alternative to depositing the waste residue directly into a hazardous waste landfill is incineration. Incineration would provide desirable volume reduction. However, the fate of heavy metals from the entrained paint waste is not known. Samples of PMB residue were combusted at temperatures between 690/degree/C and 815/degree/C with approximately 125% of the stoichiometric air. The ash remaining after combustion was then analyzed for heavy metal content and tested for leachability using the EPA toxicity characteristics leaching procedures (TCLP). 6 refs., 7 tabs.

  15. University Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Universities Provide Pipeline of Talent, Ideas, and Innovation Universities Provide Pipeline of Talent, Ideas, and Innovation February 17, 2016 - 11:07am Addthis Hyliion from Carnegie Mellon University won the 2015 top student DOE cleantech entrepreneur prize. Who will win in 2016? Hyliion from Carnegie Mellon University won the 2015 top student DOE cleantech entrepreneur prize. Who will win in 2016? Tomorrow marks the beginning of a very exciting collegiate season. No we aren't

  16. Local Universities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Universities Local Universities Los Alamos Lab recruits the best minds on the planet and offers job search information and assistance to our dual career spouses or partners. Contact Us dualcareers@lanl.gov The listing of schools, colleges and universities in New Mexico is organized by region. Northern New Mexico Area Espanola Public Schools District (K-12) Los Alamos Public Schools McCurdy Charter School New Mexico School for the Deaf Northern New Mexico Community College Pojoaque Valley Schools

  17. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect (OSTI)

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.

  18. Natural gas cofiring in a refuse derived fuel incinerator: Results of a field evaluation. Topical report

    SciTech Connect (OSTI)

    Beshai, R.Z.; Hong, C.C.

    1993-10-01

    An evaluation of emissions reduction and improved operation of a municipal solid waste incinerator through natural gas cofiring is presented. A natural gas cofiring system was retrofitted on a refuse derived fuel combustor of the Columbis Solid Waste Reduction Facility in Columbus, Ohio. The field evaluation, conducted between July 6 and August 5, 1992, showed significant improvements in emissions and boiler operations. Carbon monoxide emissions were reduced from the baseline operations range of 530 to 1,950 parts per million to less than 50 ppm. Emissions of carbon dioxide, sulfur dioxide, hydrocarbons, and polychlorinated dibenzo-p-dioxins and furans were also reduced.

  19. Control strategies for an expert system at a municipal solid waste incinerator

    SciTech Connect (OSTI)

    Dockrill, P.; Zheng, L.; Clements, B.; Ram, K.; Boatwright, K.

    1997-12-31

    Optimal burning of municipal waste is challenging due to the unknown variability of the garbage and the strict limits on the emission streams. Proper operation relies upon procedures that are, to a certain extent, based upon previous experience. Therefore this is an excellent application for an expert system since they are designed to initiate operator actions before actual operator intervention is necessary. This paper briefly discusses the rationale for developing an expert system at the Burnaby Incinerator, Burnaby, British Columbia and how it was implemented. The Burnaby Incinerator, owned by the Greater Vancouver Regional District and operated by Montenay, Inc., was a test location for an expert system jointly funded by Environment Canada and the Panel for Energy Research and Development and developed by the CANMET Energy Technology Centre. The expert system was designed to perform a number of functions: identification of boiler upsets due to fuel variations, prediction of stack emissions and control of lime injection for SO{sub 2} emissions. These particular functions were chosen to smooth the boiler operation and reduce the cost of plant operation. The expert system is a PC based system using both commercial and developed software. It incorporates rule based and model based techniques and neural network technology. The results of the expert system project are presented.

  20. Effect of natural ageing on volume stability of MSW and wood waste incineration residues

    SciTech Connect (OSTI)

    Gori, Manuela; Bergfeldt, Britta; Reichelt, Jrgen; Sirini, Piero

    2013-04-15

    Highlights: ? Natural weathering on BA from MSW and wood waste incineration was evaluated. ? Type of mineral phases, pH and volume stability were considered. ? Weathering reactions effect in improved stability of the materials. - Abstract: This paper presents the results of a study on the effect of natural weathering on volume stability of bottom ash (BA) from municipal solid waste (MSW) and wood waste incineration. BA samples were taken at different steps of treatment (fresh, 4 weeks and 12 weeks aged) and then characterised for their chemical and mineralogical composition and for volume stability by means of the mineralogical test method (M HMVA-StB), which is part of the German quality control system for using aggregates in road construction (TL Gestein-StB 04). Changes of mineralogical composition with the proceeding of the weathering treatment were also monitored by leaching tests. At the end of the 12 weeks of treatment, almost all the considered samples resulted to be usable without restrictions in road construction with reference to the test parameter volume stability.

  1. Polychlorodibenzo-p-dioxins and polychlorodibenzofurans in the soil near the municipal incinerator of Florence, Italy

    SciTech Connect (OSTI)

    Berlincioni, M.; di Domenico, A.

    1987-11-01

    Tetra- to octachlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) emissions from the municipal incinerator near Florence were monitored during 1980-1985. Typical PCDD or PCDF series concentrations in vapors and smokes ranged from 10/sup 2/ to 10/sup 3/ ng/m/sup 3/. The more chlorinated congeners generally exhibited levels remarkably higher than the less chlorinated ones. Contrary to earlier findings, fly ash in 1985 contributed <10% of overall PCDD and PCDF emissions. Most topsoil sampling sites in the study area were within approximately 1 km of the incineration plant. Findings from 1979 to 1985 indicated the presence of widespread contamination: this was due to the more chlorinated PCDD and PCDF congeners, in particular. The maximum level found was in the order of 2 x 10/sup 4/ ng/m/sup 2/ of soil surface. In late 1985, five soil sampling sites were selected near the site that had previously shown the highest PCDD and PCDF levels. Each soil specimen was obtained by coring the 20 cm thick upper layer. Results were qualitatively and quantitatively consistent and confirmed the prevailing presence of the more chlorinated congeners. Maximum PCDD content was approximately 7 x 10/sup 4/ ng/m/sup 2/ of soil surface. 18 references, 5 figures, 4 tables.

  2. Rocky Flats Plant fluidized-bed incinerator. Engineering design and reference manual

    SciTech Connect (OSTI)

    Meile, L.J.

    1982-11-05

    The information in this manual is being presented to complete the documentation of the fluidized-bed incineration (FBI) process development at the Rocky Flats Plant. The information pertains to the 82-kg/hour demonstration unit at the Rocky Flats Plant. This document continues the presentation of design reference material in the aeas of equipment drawings, space requirements, and unit costs. In addition, appendices contain an operating procedure and an operational safety analysis of the process. The cost figures presented are based on 1978 dollars and have not been converted to a current dollar value. Also, the cost of modifications are not included, since they would be insignificant if they were incorporated into a new installation.

  3. Cotton gin trash incinerator-air heat project. Consultant report (final)

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The California Energy Commission has funded the final phase of a four year project resulting in development of a successful system for burning cotton gin trash as a fuel providing the heat for ginning. The incinerator - air heater system installed in Corcoran, California operates continuously throughout the ginning season. Trash feeding and burning rate is automatically controlled from the combustion temperature, hot air temperature is controlled by the drying needs, and ashes are automatically removed from the system and pneumatically conveyed to the disposal site. The system complies with state and county air pollution codes by means of baghouse collectors. Savings in fossil fuel and trash disposal costs have demonstrated the equipment system is feasible for a four year payback at large, well utilized gins.

  4. On-line early fault detection and diagnosis of municipal solid waste incinerators

    SciTech Connect (OSTI)

    Zhao Jinsong [College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: jinsongzhao@mail.tsinghua.edu.cn; Huang Jianchao [College of Information Science and Technology, Beijing Institute of Technology, Beijing 10086 (China); Sun Wei [College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2008-11-15

    A fault detection and diagnosis framework is proposed in this paper for early fault detection and diagnosis (FDD) of municipal solid waste incinerators (MSWIs) in order to improve the safety and continuity of production. In this framework, principal component analysis (PCA), one of the multivariate statistical technologies, is used for detecting abnormal events, while rule-based reasoning performs the fault diagnosis and consequence prediction, and also generates recommendations for fault mitigation once an abnormal event is detected. A software package, SWIFT, is developed based on the proposed framework, and has been applied in an actual industrial MSWI. The application shows that automated real-time abnormal situation management (ASM) of the MSWI can be achieved by using SWIFT, resulting in an industrially acceptable low rate of wrong diagnosis, which has resulted in improved process continuity and environmental performance of the MSWI.

  5. Open University

    ScienceCinema (OSTI)

    None

    2011-04-25

    Michel Pentz est née en Afrique du Sud et venu au Cern en 1957 comme physicien et président de l'associaion du personnel. Il est également fondateur du mouvement Antiapartheid de Genève et a participé à la fondation de l'Open University en Grande-Bretagne. Il nous parle des contextes pédagogiques, culturels et nationaux dans lesquels la méthode peut s'appliquer.

  6. Pollution prevention opportunity assessment for the K-25 Site Toxic Substances Control Act Incinerator Operations, Level III

    SciTech Connect (OSTI)

    1995-09-01

    A Level III pollution prevention opportunity assessment (PPOA) was performed for the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator to evaluate pollution prevention (P2) options for various waste streams: The main objective of this study was to identify and evaluate options to reduce the quantities of each waste stream generated by the TSCA Incinerator operations to realize significant environmental and/or economic benefits from P2. For each of the waste streams, P2 options were evaluated following the US Environmental Protection Agency (EPA) hierarchy to (1) reduce the quantity of waste generated, (2) recycle the waste, and/or (3) use alternate waste treatment or segregation methods. This report provides process descriptions, identification and evaluation of P2 options, and final recommendations.

  7. Emissions of dioxins and furans from garbage-burning incinerators can be minimized by good combustion practices

    SciTech Connect (OSTI)

    Not Available

    1987-10-01

    The American Society of Mechanical Engineers (ASME) have stated that emissions of dioxin and furan from garbage-burning incinerators can be minimized by good combustion practices. They have found that maintaining the heat of combustion above 815 degrees centigrade and reducing the carbon monoxide level to below 100 ppm will reduce the emissions of furan and dioxin. The combustion research that lead to these conclusions was sponsored by ASME and the New York energy authority

  8. Mathematical Simulation of the Gas-Particles Reaction Flows in Incineration of Metal-Containing Waste

    SciTech Connect (OSTI)

    Ojovan, M. I.; Klimov, V. L.; Karlina, O. K.

    2002-02-26

    A ''quasi-equilibrium'' approach for thermodynamic calculation of chemical composition and properties of metal-containing fuel combustion products has been developed and used as a part of the mathematical model of heterogeneous reacting flow which carry burning and/or evaporating particles. By using of this approach, the applicable mathematical model has been devised, which allows defining the change in chemical composition and thermal characteristics of combustion products along the incineration chamber. As an example, the simulation results of the reacting flow of magnesium-sodium nitrate-organic mixture are presented. The simulation results on the gas phase temperature in the flow of combustion products are in good agreement with those obtained experimentally. The proposed method of ''quasi-equilibrium'' thermodynamic calculation and mathematical model provide a real possibility for performing of numerical experiments on the basis of mathematical simulation of nonequilibrium flows of combustion products. Numerical experiments help correctly to estimate the work characteristics in the process of treatment devices design saving time and costs.

  9. Void reactivity feedback analysis for U-based and Th-based LWR incineration cycles

    SciTech Connect (OSTI)

    Lindley, B.A.; Parks, G.T.; Franceschini, F.

    2013-07-01

    In reduced-moderation LWRs, an external supply of transuranic (TRU) can be incinerated by mixing it with a fertile isotope ({sup 238}U or {sup 232}Th) and recycling all the actinides after each cycle. Performance is limited by coolant reactivity feedback - the moderator density coefficient (MDC) must be kept negative. The MDC is worse when more TRU is loaded, but TRU feed is also needed to maintain criticality. To assess the performance of this fuel cycle in different neutron spectra, three LWRs are considered: 'reference' PWRs and reduced-moderation PWRs and BWRs. The MDC of the equilibrium cycle is analysed by reactivity decomposition with perturbed coolant density by isotope and neutron energy. The results show that using {sup 232}Th as a fertile isotope yields superior performance to {sup 238}U. This is due essentially to the high resonance η of U bred from Th (U3), which increases the fissility of the U3-TRU isotope vector in the Th-fueled system relative to the U-fueled system, and also improves the MDC in a sufficiently hard spectrum. Spatial separation of TRU and U3 in the Th-fueled system renders further improvement by hardening the neutron spectrum in the TRU and softening it in the U3. This improves the TRU η and increases the negative MDC contribution from reduced thermal fission in U3. (authors)

  10. Testing the performance of real-time incinerator emission monitors. Project report

    SciTech Connect (OSTI)

    Ghorishi, S.B.; Whitworth, W.E.; Goldman, C.G.; Waterland, L.R.

    1997-03-01

    Ten prototypes of continuous emission monitors (CEMs) for measuring trace metal or trace organic species concentrations were tested. Of the 10 CEMs tested, four measured incinerator flue gas concentrations of several specific volatile organic compounds (VOCs), one measured total particulate-bound polynuclear aromatic hydrocarbon (PAH) concentrations, two measured flue gas concentrations of several (up to 14) trace metals, and three measured mercury concentrations. While the testing consisted of obtaining quantitative measurement data on the four measures of CEM performance checked in a relative accuracy test audit (RATA) as described in 40 CFR 60 Appendix F -- relative accuracy (RA), calibration drift (CD), zero drift (ZD), and response time - the primary project objective focused on the RA measurement. Four series of tests were performed, each simultaneously testing up to three monitors measuring the same or similar analyte type. Each test series consisted of performing triplicate Reference Method (RM) measurements at each of three target flue gas monitored analyte concentrations while the tested CEMs were in operation.

  11. A corrosion mechanism for the fireside wastage of superheater materials in waste incinerators

    SciTech Connect (OSTI)

    Otsuka, N.; Tsukaue, Y.; Nakagawa, K.; Kawahara, Y.; Yukawa, K.

    1997-08-01

    Heat of fusion of twenty-three boiler tube deposits taken from corrosion test probes in existing waste incinerators exposed at 550 C for 700 h and 3,000 h was measured by DSC in a simulated flue gas atmosphere. Heat of fusion was summed for up to 550 C, and the sum was considered to represent the relative amount of fused salts in the deposits at 550 C. The sum of heat of fusion was related to the corrosion rates of the corresponding corrosion probes of TP347H and Alloy 625. For ashes taken from the bottom portion of the tube deposits, the corrosion rates of TP347H and Alloy 625, exposed at 550 C for 3,000 h, were higher for ashes of greater sum of heat of fusion, suggesting that the corrosion of steels and alloys becomes more severe when the ashes contain greater amount of fused salt constituents on the surface side of the boiler tubes.

  12. Long-term leaching test of incinerator bottom ash: Evaluation of Cu partition

    SciTech Connect (OSTI)

    Lin, Cheng-Fang Wu, Chung-Hsin; Liu, Yen-Chiun

    2007-07-01

    Two types of leaching tests were performed on the bottom ash from municipal solid waste incinerators. A short-term batch test specified by the America Nuclear Society (ANS) and long-term column tests with acetic acid (pH 5.2) as leaching solution were used to evaluate copper leachability. The Cu leaching after the 5-d ANS test is about 1% of the original Cu content of 5300 mg/kg. Upon addition of a stabilizing agent, the Cu leaching quantity is reduced; the extent of reduction depends on the type of chemical used (phosphate, carbonate and sulfide). The 1.6% Na{sub 2}S addition showed negligible Cu leaching, and Na{sub 2}S was, therefore, used in subsequent column tests. The 30-d column test indicates a steady increase of Cu leaching amount with time and reaches about 1.5% of the original Cu content after 30 d. A 180-d column test further increased the Cu leaching to about 5.1% of the original Cu content, whereas no appreciable Cu leaching was found with the addition of 1.6% Na{sub 2}S. A sequential extraction was conducted on the raw ash, ash with the addition of Na{sub 2}S and the residue ash after 30 d of operation to characterize Cu affinity for different solid fractions. The data were used to evaluate the fate of Cu through these interactions.

  13. Waste-To-Energy Techno-Economic Analysis and Life-Cycle Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statement * Conduct the techno-economic analysis (TEA) and life-cycle analysis (LCA) of ... 3 | Bioenergy Technologies Office Quad Chart Overview * Started: January 2014 * End: ...

  14. EA-1862: Oneida Seven Generation Corporation Waste-To-Energy System, Ashwaubenon, Wisconsin

    Broader source: Energy.gov [DOE]

    Oneidas Energy Recovery Project would construct and operate a solid waste-to-electricity power plant on vacant property within the Bayport Industrial Center in the City of Green Bay, Brown County, Wisconsin. This energy recovery process would involve bringing municipal solid waste into the plant for sizing (shredding), sorting (removing recyclable material), and conveying into one of three pyrolytic gasification systems.

  15. Microsoft PowerPoint - Tribal Leader Forum Waste to Energy Introductio...

    Office of Environmental Management (EM)

    The issues, for much of the world: * Waste disposal is a major expense * High energy prices * ... Municipal solid waste (MSW) is a heterogeneous mixture Organic material is the primary ...

  16. EA-1860: Richland Renewable Energy Waste-to-Energy Project, Richland, Wisconsin

    Broader source: Energy.gov [DOE]

    DOE is preparing a draft Environmental Assessment to analyze the potential environmental impacts of the proposed construction and operation of a new wastewater treatment facility and the alternative of not implementing this project.

  17. Greenhouse gas emissions from MSW incineration in China: Impacts of waste characteristics and energy recovery

    SciTech Connect (OSTI)

    Yang Na; Zhang Hua; Chen Miao; Shao Liming; He Pinjing

    2012-12-15

    Determination of the amount of greenhouse gas (GHG) emitted during municipal solid waste incineration (MSWI) is complex because both contributions and savings of GHGs exist in the process. To identify the critical factors influencing GHG emissions from MSWI in China, a GHG accounting model was established and applied to six Chinese cities located in different regions. The results showed that MSWI in most of the cities was the source of GHGs, with emissions of 25-207 kg CO{sub 2}-eq t{sup -1} rw. Within all process stages, the emission of fossil CO{sub 2} from the combustion of MSW was the main contributor (111-254 kg CO{sub 2}-eq t{sup -1} rw), while the substitution of electricity reduced the GHG emissions by 150-247 kg CO{sub 2}-eq t{sup -1} rw. By affecting the fossil carbon content and the lower heating value of the waste, the contents of plastic and food waste in the MSW were the critical factors influencing GHG emissions of MSWI. Decreasing food waste content in MSW by half will significantly reduce the GHG emissions from MSWI, and such a reduction will convert MSWI in Urumqi and Tianjin from GHG sources to GHG sinks. Comparison of the GHG emissions in the six Chinese cities with those in European countries revealed that higher energy recovery efficiency in Europe induced much greater reductions in GHG emissions. Recovering the excess heat after generation of electricity would be a good measure to convert MSWI in all the six cities evaluated herein into sinks of GHGs.

  18. Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production

    SciTech Connect (OSTI)

    Wu Kai; Shi Huisheng; Guo Xiaolu

    2011-09-15

    Highlights: > The replacement can be taken up to 30% of MSWI fly ash in the raw mix. > The novelty compositional parameters were defined, their optimum values were determined. > Expansive property of SAC is strongly depended on gypsum content. > Three leaching test methods are used to assess the environmental impact. - Abstract: The feasibility of partially substituting raw materials with municipal solid waste incineration (MSWI) fly ash in sulfoaluminate cement (SAC) clinker production was investigated by X-ray diffraction (XRD), compressive strength and free expansion ratio testing. Three different leaching tests were used to assess the environmental impact of the produced material. Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes. The good quality SAC clinkers are obtained by controlling the compositional parameters at alkalinity modulus (C{sub m}) around 1.05, alumina-sulfur ratio (P) around 2.5, alumina-silica ratio (N) around 2.0{approx}3.0 and firing the raw mixes at 1250 deg. C for 2 h. The compressive strengths of SAC are high in early age while that develop slowly in later age. Results also show that the expansive properties of SAC are strongly depended on the gypsum content. Leaching studies of toxic elements in the hydrated SAC-based system reveal that all the investigated elements are well bounded in the clinker minerals or immobilized by the hydration products. Although some limited positive results indicate that the SAC prepared from MSWI fly ash would present no immediate thread to the environment, the long-term toxicity leaching behavior needs to be further studied.

  19. Design considerations for the cross jet air mixing in the municipal solid waste incinerators

    SciTech Connect (OSTI)

    Ryu, C.K.; Choi, S.

    1995-12-31

    In the mass-burning municipal solid waste incinerators, overfire air injection plays a key role in the improvement of mixing and reaction between oxygen and incomplete combustion products and/or pollutants. However, design parameters of overfire air nozzles are not well understood and sometimes confusing. In this paper, major design parameters of the cross jet air nozzles are discussed along with flow simulation results for the simplified furnace geometry. The overall performance of the jet air mixing and the effects of design parameters are quantitatively evaluated. The flow simulation results are interpreted in terms of the penetration depth of the jet into the main flow, the size of the recirculation zone and the ratio of the unmixed portion of the gas flow. The momentum flux ratio(J) of the jet to the cross flow strongly affects the penetration depth of the jet and the mixing of two flow streams. As the inter-nozzle distance (S in non-dimensional form) decreases, the penetration depth decreases but the size of recirculation zone increases and the resultant mixing deteriorates. The degree of mixing of the jet with the cross gas stream is evaluated in terms of the mass-averaged probability distribution of the relative concentration. Fresh air disperses more efficiently into the gas stream as J and S increase. The momentum flux ratio and the inter-nozzle distance are considered as important design parameters, and optimum values of these variables can be chosen for the given furnace conditions. This numerical evaluation also provides the basis of the similarity consideration for the cold flow model tests and the validity of the 2-dimensional idealization.

  20. Emissions of polychlorinated biphenyls as products of incomplete combustion from incinerators. Report for October 1998--March 1999

    SciTech Connect (OSTI)

    Lemieux, P.M.; Lee, C.W.; Kilgroe, J.D.; Ryan, J.V.

    1999-10-01

    The paper discusses emissions of polychlorinated biphenyls (PCBs) as products of incomplete combustion from incinerators. PCBs were used widely as industrial chemicals, particularly as additives in electrical transformer cooling oil. PCBs are still being released into the environment as an unwanted by-product of combustion processes, particularly those associated with chlorinated materials. A subset of PCBs, coplanar isomers, exhibit biological activity similar to that of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), a widely recognized byproduct of combustion processes. The paper presents background information on some of the combustion sources that generate PCBs.

  1. University Partners Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Matt Tirrell, Pritzker Director and Professor, Institute for Molecular Engineering, University of Chicago Thomas Glasmacher, Facility for Rare Isotope Beams (FRIB) Project Manager, Michigan State University

  2. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece

    SciTech Connect (OSTI)

    Samolada, M.C.; Zabaniotou, A.A.

    2014-02-15

    Highlights: The high output of MSS highlights the need for alternative routes of valorization. Evaluation of 3 sludge-to-energy valorisation methods through SWOT analysis. Pyrolysis is an energy and material recovery process resulting to zero waste. Identification of challenges and barriers for MSS pyrolysis in Greece was investigated. Adopters of pyrolysis systems face the challenge of finding new product markets. - Abstract: For a sustainable municipal sewage sludge management, not only the available technology, but also other parameters, such as policy regulations and socio-economic issues should be taken in account. In this study, the current status of both European and Greek Legislation on waste management, with a special insight in municipal sewage sludge, is presented. A SWOT analysis was further developed for comparison of pyrolysis with incineration and gasification and results are presented. Pyrolysis seems to be the optimal thermochemical treatment option compared to incineration and gasification. Sewage sludge pyrolysis is favorable for energy savings, material recovery and high added materials production, providing a zero waste solution. Finally, identification of challenges and barriers for sewage sludge pyrolysis deployment in Greece was investigated.

  3. University of Tennessee | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    University of Tennessee

  4. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland

    SciTech Connect (OSTI)

    Boesch, Michael E.; Vadenbo, Carl; Saner, Dominik; Huter, Christoph; Hellweg, Stefanie

    2014-02-15

    Highlights: An enhanced process-based LCA model for MSWI is featured and applied in case study. LCA modeling of recent technological developments for metal recovery from fly ash. Net release from Swiss MSWI 133 kg CO{sub 2}-eq/tonne waste from attributional LCA perspective. Net savings from a consequential LCA perspective reach up to 303 kg CO{sub 2}-eq/tonne waste. Impacts according to ReCiPe and CExD show similar pattern to climate change. - Abstract: A process model of municipal solid waste incinerators (MSWIs) and new technologies for metal recovery from combustion residues was developed. The environmental impact is modeled as a function of waste composition as well as waste treatment and material recovery technologies. The model includes combustion with a grate incinerator, several flue gas treatment technologies, electricity and steam production from waste heat recovery, metal recovery from slag and fly ash, and landfilling of residues and can be tailored to specific plants and sites (software tools can be downloaded free of charge). Application of the model to Switzerland shows that the treatment of one tonne of municipal solid waste results on average in 425 kg CO{sub 2}-eq. generated in the incineration process, and 54 kg CO{sub 2}-eq. accrue in upstream processes such as waste transport and the production of operating materials. Downstream processes, i.e. residue disposal, generates 5 kg CO{sub 2}-eq. Savings from energy recovery are in the range of 67 to 752 kg CO{sub 2}-eq. depending on the assumptions regarding the substituted energy production, while the recovery of metals from slag and fly ash currently results in a net saving of approximately 35 kg CO{sub 2}-eq. A similar impact pattern is observed when assessing the MSWI model for aggregated environmental impacts (ReCiPe) and for non-renewable resource consumption (cumulative exergy demand), except that direct emissions have less and no relevance, respectively, on the total score. The study illustrates that MSWI plants can be an important element of industrial ecology as they provide waste disposal services and can help to close material and energetic cycles.

  5. Field Evaluation of MERCEM Mercury Emission Analyzer System at the Oak Ridge TSCA Incinerator East Tennessee Technology Park Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    2000-03-01

    The authors reached the following conclusions: (1) The two-month evaluation of the MERCEM total mercury monitor from Perkin Elmer provided a useful venue in determining the feasibility of using a CEM to measure total mercury in a saturated flue gas. (2) The MERCEM exhibited potential at a mixed waste incinerator to meet requirements proposed in PS12 under conditions of operation with liquid feeds only at stack mercury concentrations in the range of proposed MACT standards. (3) Performance of the MERCEM under conditions of incinerating solid and liquid wastes simultaneously was less reliable than while feeding liquid feeds only for the operating conditions and configuration of the host facility. (4) The permeation tube calibration method used in this test relied on the CEM internal volumetric and time constants to relate back to a concentration, whereas a compressed gas cylinder concentration is totally independent of the analyzer mass flowmeter and flowrates. (5) Mercury concentration in the compressed gas cylinders was fairly stable over a 5-month period. (6) The reliability of available reference materials was not fully demonstrated without further evaluation of their incorporation into routine operating procedures performed by facility personnel. (7) The degree of mercury control occurring in the TSCA Incinerator off-gas cleaning system could not be quantified from the data collected in this study. (8) It was possible to conduct the demonstration at a facility incinerating radioactively contaminated wastes and to release the equipment for later unrestricted use elsewhere. (9) Experience gained by this testing answered additional site-specific and general questions regarding the operation and maintenance of CEMs and their use in compliance monitoring of total mercury emissions from hazardous waste incinerators.

  6. Lessons learned from an installation perspective for chemical demilitarization plant start-up at four operating incineration sites.

    SciTech Connect (OSTI)

    Motz, L.; Decision and Information Sciences

    2011-02-21

    This study presents the lessons learned by chemical storage installations as they prepared for the start of chemical demilitarization plant operations at the four current chemical incinerator sites in Alabama, Arkansas, Oregon, and Utah. The study included interviews with persons associated with the process and collection of available documents prepared at each site. The goal was to provide useful information for the chemical weapons storage sites in Colorado and Kentucky that will be going through plant start-up in the next few years. The study is not a compendium of what to do and what not to do. The information has been categorized into ten lessons learned; each is discussed individually. Documents that may be useful to the Colorado and Kentucky sites are included in the appendices. This study should be used as a basis for planning and training.

  7. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons

    SciTech Connect (OSTI)

    Hajizadeh, Yaghoub; Onwudili, Jude A.; Williams, Paul T.

    2011-06-15

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275 deg. C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 {mu}g I-TEQ kg{sup -1} toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 {mu}g I-TEQ kg{sup -1} in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases.

  8. K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN

    SciTech Connect (OSTI)

    Beck, Ch.A.; Tiepel, E.W.; Swientoniewski, M.D.; Crow, K.R.

    2008-07-01

    This paper will discuss the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource Conservation and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. The incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (blow down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinerator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 7.95 to 17 cubic meters per hour (m3/hr) (35 to 75 gallons per minute; gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, micro-filtration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to provide portability of the WWTS to other applications, the system was installed in three, over-the-road semi trailers, and interconnected with piping and power. Trailers were oriented on a small site footprint to facilitate ease of installation. A remote sump pump skid was provided to convey water from two holding sumps adjacent to the treatment process. An accumulation tank and pump were also provided to receive miscellaneous wastewaters for treatment if they meet the waste acceptance criteria. The paper will include details of the technology used in the design, the requirements for compliance, and the initial performance demonstration and jar testing results. The WWTS successfully allowed for highly efficient, high-volume treatment with compliant discharge to off-site surface water. (authors)

  9. University of Nebraska-Lincoln and University of Florida (Building...

    Open Energy Info (EERE)

    Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) Jump to: navigation, search Name: University of Nebraska-Lincoln and University of Florida...

  10. Lancaster University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Lancaster University Address: Engineering Department Lancaster University Place: Lancaster Zip: LA1 4YR Region: United Kingdom Sector:...

  11. Napier University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Napier University Place: Edinburgh, Scotland, United Kingdom Zip: EH14 1DJ Product: A university located in Edinburgh, Scotland that...

  12. Hamdard University | Open Energy Information

    Open Energy Info (EERE)

    Hamdard University Jump to: navigation, search Name: Hamdard University Place: Karachi, Pakistan Zip: 74600 Sector: Solar Product: University setting up Pakistan's first solar lab....

  13. Purdue University | Open Energy Information

    Open Energy Info (EERE)

    Purdue University Jump to: navigation, search Logo: Purdue University Name: Purdue University Address: West Lafayette, IN Zip: 47907 Phone Number: (765) 494-4600 Website:...

  14. Peer review panel summary report for technical determination of mixed waste incineration off-gas systems for Rocky Flats; Appendix A

    SciTech Connect (OSTI)

    1992-12-31

    A Peer Review Panel was convened on September 15-17, 1992 in Boulder, Co. The members of this panel included representatives from DOE, EPA, and DOE contractors along with invited experts in the fields of air pollution control and waste incineration. The primary purpose of this review panel was to make a technical determination of a hold, test and release off gas capture system should be implemented in the proposed RF Pland mixed waste incineration system; or if a state of the art continuous air pollution control and monitoring system should be utilized as the sole off-gas control system. All of the evaluations by the panel were based upon the use of the fluidized bed unit proposed by Rocky Flats and cannot be generalized to other systems.

  15. Duke University and Duke University Medical Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duke University and Duke University Medical Center Date Revised: 3/5/97; 4/25/01 PERSONNEL DOSIMETER REQUEST AND RADIATION EXPOSURE HISTORY 1. Name (Please print - Last name, First name, MI) 2. Duke Unique ID 3. Date of Birth 4. Age (in full years) 5. Gender (circle one) Male Female 6. WORK Telephone No. 7. Name of Department AND Authorized User X-rays Specify type of equipment: 8. Type of radiation to be monitored Radioactive Materials Specify radioisotopes: Other Specify: 9. Have you been

  16. PULSE at Stanford University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science @ SLAC - LCLS - LUSI - SSRL - PULSE - Stanford University Go Search Home Publications Atomic & Molecular Physics Condensed Matter Physics Single Molecule Imaging...

  17. University Coal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Universities frequently win Fossil Energy research competitions or join with private companies to submit successful research proposals. Today approximately 16 percent of the Office of Fossil Energy...

  18. university of california

    National Nuclear Security Administration (NNSA)

    Led by University of California, Berkeley Awarded 25M NNSA Grant for Nuclear Science and Security Research http:nnsa.energy.govmediaroompressreleases...

  19. Nuclear Energy University Programs

    Broader source: Energy.gov (indexed) [DOE]

    * Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of...

  20. University Research Summaries

    Broader source: Energy.gov [DOE]

    The Idaho National Laboratory published the U.S. Department of Energy's (DOE) Geothermal Technologies Office 2001 University Research Summaries. 

  1. K-1435 Wastewater Treatment System for the Toxic Substances Control Act Incinerator Wastewater at the East Tennessee Technology Park, Oak Ridge, TN

    SciTech Connect (OSTI)

    Swientoniewski M.D.

    2008-02-24

    This paper discusses the design and performance of a wastewater treatment system installed to support the operation of a hazardous waste incinerator. The Oak Ridge Toxic Substances Control Act Incinerator (TSCAI), located at the East Tennessee Technology Park (ETTP), is designed and permitted to treat Resource ConservatioN and Recovery Act (RCRA) wastes including characteristic and listed wastes and polychlorinated biphenyl (PCB)-contaminated mixed waste. the incinerator process generates acidic gases and particulates which consist of salts, metals, and radionuclides. These off-gases from the incinerator are treated with a wet off-gas scrubber system. The recirculated water is continuously purged (below down), resulting in a wastewater to be treated. Additional water sources are also collected on the site for treatment, including storm water that infiltrates into diked areas and fire water from the incinerator's suppression system. To meet regulatory requirements for discharge, a wastewater treatment system (WWTS) was designed, constructed, and operated to treat these water sources. The WWTS was designed to provide for periodic fluctuation of contaminant concentrations due to various feed streams to the incinverator. Blow down consists of total suspended solids (TSS) and total dissolved solids (TDS), encompassing metals, radionuclide contamination and trace organics. The system design flow rate range is 35 to 75 gallons per minute (gpm). The system is designed with redundancy to minimize time off-line and to reduce impacts to the TSCAI operations. A novel treatment system uses several unit operations, including chemical feed systems, two-stage chemical reaction treatment, microfiltration, sludge storage and dewatering, neutralization, granular activated carbon, effluent neutralization, and a complete programmable logic controller (PLC) and human-machine interface (HMI) control system. To meet the space requirements and to provide portability of the WWTS to other applications, the system was installed in three, over-the-road semi trailers, and interconnected with piping and power. Trailers were oriented on a small site footprint to facilitate ease of installation. A remote sump pump skid was provided to convey water from two holding sumps adjacent to the treatment process. An accumulation tank and pump were also provided to receive miscellaneous wastewaters for treatment if they meet the waste acceptance criteria. The paper includes details of the technology used in the design, the requirements for compliance, and the initial performance demonstration and jar testing results. The WWTS successfully allowed for highly efficient, high-volume treatment with compliant discharge to off-site surface water.

  2. Browse by Discipline -- E-print Network Subject Pathways: Environmenta...

    Office of Scientific and Technical Information (OSTI)

    Technology (CREST)- Renewable Energy Policy Project Columbia University - Waste-to-Energy Research and Technology Council (WTERT) Columbia University, Department of Earth ...

  3. University of Delaware | CCEI Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Its Partner Institutions The Catalysis Center for Energy Innovation (CCEI) is a partnership between the University of Delaware, 8 academic institutions and 1 national laboratory. The University of Delaware is the lead institution and home to the center's administrative headquarters. Brookhaven National Laboratory California Institute of Technology Columbia University Georgia Institute of Technology Lehigh University Rutgers University University of Delaware (lead institution) University of

  4. Bagley University Classroom Building

    High Performance Buildings Database

    Duluth, MN, MN LEED PLATINUM CERTIFIED AND PASSIVHAUS ( certification pending) CLASSROOM BUILDING The Nature Preserve where this building is located is a contiguous natural area, 55 acres in size, deeded to the University in the 1950's for educational and recreational use. The site has hiking trails through old growth hard woods frequented by the university students as well as the public. We were charged with designing a facility to serve eight different departments for the nature portions of their teaching and study at a regional University.

  5. Conceptual design phase of a district heating and cooling plant with cogeneration to serve James Madison University and the Harrisonburg Electric Commission

    SciTech Connect (OSTI)

    Belcher, J.B.

    1995-12-31

    A unique opportunity for cooperation and community development exists in Harrisonburg, Virginia. James Madison University, located in Harrisonburg, is undergoing an aggressive growth plan of its academic base which also includes the physical expansion of its campus. The City of Harrisonburg is presently supplying steam to meet a portion of the heating needs of the existing James Madison campus from a city owned and operated waste-to-energy plant. In an effort of cooperation, Harrisonburg and James Madison University have now negotiated an agreement for the city to provide all of the heating and cooling requirements of the new campus expansion. In another unique turn of events, the local electrical power distributor, Harrisonburg Electric Commission, approached the city concerning the inclusion of cogeneration in the project in order to reduce and maintain existing electric rates thus further benefiting the community. Through the cooperation of these three entities, the conceptual design phase of the project has been completed. The plant design developed through this process includes 3,000 tons of chilled water capacity, an additional 64,000 lb/hr of steam capacity and 2.5 MW of cogeneration capacity. This paper describes the conceptual design process for this interesting project.

  6. NEUP Approved Universities

    Broader source: Energy.gov [DOE]

    U.S. universities and colleges must apply to the U.S. Department of Energy to administer NEUP scholarships and fellowships.  That is done through a separate solicitation operated by the Department...

  7. College / University Programs - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    header-college College/University Programs Colleges and universities in the SRSCRO region offer a variety of educational opportunities that prepare students for careers in the nuclear industry. Programs are designed for students choosing to start a career for the first time and those seeking to enhance or change careers. Aiken Technical College Certificate and associate degree opportunities are available for students interested in pursuing a career in the nuclear industry, including nuclear

  8. MISSOURI UNIVERSITY OF SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY (MS&T) RPSEA SUBCONTRACT# 11123-14 DR. BAOJUN BAI PRINCIPAL INVESTIGATOR STUDY AND PILOT TEST OF PREFORMED PARTICLE GEL CONFORMANCE CONTROL COMBINED WITH SURFACTANT TREATMENT Final Report Covering the period from November 2012 to August 2015 Prime Contractor's Technical Point of Contact: Baojun Bai Phone: 573-341-4016; Email: baib@mst.edu Missouri University of Science and Technology August 2015 Study and Pilot Test of Preformed Particle Gel

  9. Fermilab Today | University Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Profiles Archive Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO More than 2,000 scientists worldwide work with Fermilab. In the United States, about 1,300 scientists from institutions in 36 states rely on Fermilab for their research, with support from the U.S. Department of Energy and the National Science Foundation. These profiles, published in Fermilab Today, spotlight the critical role of universities in particle physics research. We'd love to profile your

  10. Oak Ridge Associated Universities

    Office of Legacy Management (LM)

    Facility and Site Decommissioning U.S. Department of Energy ORAU 89lA-42 VERIFICATION OF REMEDIAL ACTION ON VENTILATION SYSTEMS JONES CHEMICAL LABORATORY UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS M. R. LANDIS Radiological Site Assessment Program Manpower Education, Research, and Training Division FINAL REPORT JANUARY 1989 ORAU 89IA-42 3 VERIFICATION OF REMEDIAL ACTION ON VENTILATION SYSTEMS JONES CHEMICAL LABORATORY UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS Prepared by M.R. Landis Radiological Site

  11. Healthcare Energy: State University of New York Upstate Medical University

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    East Wing | Department of Energy State University of New York Upstate Medical University East Wing Healthcare Energy: State University of New York Upstate Medical University East Wing The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. This page contains highlights from monitoring at the East Wing, a hospital building addition at the State University of New York Upstate Medical University. In the figure above, click on

  12. Alteration of municipal solid waste incineration bottom ash focusing on the evolution of iron-rich constituents

    SciTech Connect (OSTI)

    Wei Yunmei; Shimaoka, Takayuki; Saffarzadeh, Amirhomayoun; Takahashi, Fumitake

    2011-09-15

    Municipal solid waste incineration (MSWI) bottom ash contains a considerable amount of Fe-rich constituents. The behaviors of these constituents, such as dissolution and precipitation, are quite important as they regulate the distribution of a series of ions between the liquid (percolated fluid) and solid (ash deposit) phases. This paper studied both fresh and weathered MSWI bottom ash from the mineralogical and geochemical viewpoint by utilizing optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and powder X-ray diffraction. The analysis results revealed that for the fresh bottom ash, iron preferentially existed in the chemical forms of spinel group (mainly Fe{sub 3}O{sub 4}, and a series of Al- or Ti- substituted varieties), metallic inclusions (including Fe-P, Fe-S, Fe-Cu-Pb), hematite (Fe{sub 2}O{sub 3}) and unburned iron pieces. In the 1-20 years weathered bottom ash collected from a landfill site, interconversions among these Fe-rich constituents were identified. Consequently, numerous secondary products were developed, including goethite ({alpha}-FeOOH), lepidocrocite ({gamma}-FeOOH), hematite, magnetite, wustite (FeO), Fe-Si-rich gel phase. Of all these transformation products, hydrous iron oxides were the most common secondary minerals. Quantitative chemical analysis of these secondary products by SEM/EDX disclosed a strong association between the newly formed hydrous iron oxides and heavy metals (e.g. Pb, Zn, Ni, and Cu). The results of this study suggest that the processes of natural weathering and secondary mineralization contribute to reduction of the potential risks of heavy metals to the surrounding environments.

  13. University contracts summary book

    SciTech Connect (OSTI)

    1980-08-01

    The principal objectives of the Fossil Energy Program are to seek new ideas, new data, fundamental knowledge that will support the ongoing programs, and new processes to better utilize the nation's fossil energy resources with greater efficiency and environmental acceptability. Toward this end, the Department of Energy supports research projects conducted by universities and colleges to: Ensure a foundation for innovative technology through the use of the capabilities and talents in our academic institutions; provide an effective, two-way channel of communication between the Department of Energy and the academic community; and ensure that trained technical manpower is developed to carry out basic and applied research in support of DOE's mission. Fossil Energy's university activities emphasize the type of research that universities can do best - research to explore the potential of novel process concepts, develop innovative methods and materials for improving existing processes, and obtain fundamental information on the structure of coal and mechanisms of reactions of coal, shale oil, and other fossil energy sources. University programs are managed by different Fossil Energy technical groups; the individual projects are described in greater detail in this book. It is clear that a number of research areas related to the DOE Fossil Energy Program have been appropriate for university involvement, and that, with support from DOE, university scientific and technical expertise can be expected to continue to play a significant role in the advancement of fossil energy technology in the years to come.

  14. University) [Johns Hopkins University] 71 CLASSICAL AND QUANTUM...

    Office of Scientific and Technical Information (OSTI)

    Zlatko (Johns Hopkins University) Johns Hopkins University 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY;...

  15. Murdoch University | Open Energy Information

    Open Energy Info (EERE)

    offers a university education of the highest quality and has been ranked the best teaching campus of all Australia's public universities in an independent national survey of...

  16. CASL - North Carolina State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Carolina State University Raleigh, NC NC State University has a proven record of working with industry and government to advance research in support of solving nuclear...

  17. Universally oriented renewable liquid mirror

    DOE Patents [OSTI]

    Ryutov, Dmitri D.; Toor, Arthur

    2004-07-20

    A universally oriented liquid mirror. A liquid and a penetrable unit are operatively connected to provide a mirror that can be universally oriented.

  18. Fermilab Today | Kansas State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kansas State University Feb. 27, 2013 NAME: Kansas State University HOME TOWN: Manhattan, Kan. MASCOT: Willie the Wildcat COLORS: Royal purple COLLABORATING AT FERMILAB SINCE: 1993...

  19. Fermilab Today | Purdue University Calumet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Calumet Jan. 9, 2013 NAME: Purdue University Calumet HOME TOWN: Hammond, Ind. MASCOT: Peregrine COLORS: Black and gold COLLABORATING AT FERMILAB SINCE: 2005 WORLDWIDE...

  20. Sichuan University | Open Energy Information

    Open Energy Info (EERE)

    Sichuan University Place: Chengdu, Sichuan Province, China Zip: 610065 Product: A comprehensive university in south-west China. Coordinates: 30.67, 104.071022 Show Map Loading...

  1. Uppsala University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Uppsala University Address: Box 534 Place: Uppsala Zip: 75121 Region: Sweden Sector: Marine and Hydrokinetic Phone Number:...

  2. Universal Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Universal Energy Place: Nanjing, Jiangsu Province, China Sector: Solar Product: Universal Energy is a PV module and solar hot water systems...

  3. Fermilab Today | Brown University Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brown University April 29, 2010 NAME: Brown University HOME TOWN: Providence, Rhode Island MASCOT: Bruno the Bear SCHOOL COLORS: Seal brown and cardinal red PARTICLE PHYSICS...

  4. Split University | Open Energy Information

    Open Energy Info (EERE)

    Name: Split University Place: Zagreb, Croatia Sector: Hydro, Solar Product: Croatia-based electrical engineering faculty of Split University. Involved in developing small hydro and...

  5. Fermilab Today | Wayne State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wayne State University May 29, 2013 NAME: Wayne State University HOME TOWN: Detroit, Mich. COLORS: Green and gold COLLABORATING AT FERMILAB SINCE: 1995 WORLDWIDE PARTICLE PHYSICS...

  6. H. R. 2670: A bill to amend the Solid Waste Disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste, introduced in the US House of Representatives, One Hundred Second Congress, First Session, June 18, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This bill was introduced into the US House of Representatives on June 18, 1991 to amend the Solid Waste disposal Act to regulate ash from municipal solid waste incinerators as a hazardous waste. When garbage is burned, toxic materials are concentrated in the ash. If the ash is disposed of in a landfill, these toxic materials can contaminate the ground water or surface water by leaching toxic materials from the ash. In addition, disposing of contaminated ash improperly can pose a health hazard. New authority is provided for regulating incinerator ash as a hazardous waste.

  7. Niagara Air Quality Survey Report, 1987: Occidental Chemical Corporation, Niagara Falls, New York, USA, non-aqueous phase liquid (NAPL) incineration test. Report no. ARB-166-87-AR/SP

    SciTech Connect (OSTI)

    Bell, R.W.; DeBrou, G.

    1988-01-01

    An ambient air quality survey was conducted in the Niagara Falls area of Ontario from October 8-12, 1987 to provide on-site real-time screening for selected polychlorinated biphenyl congeners and other chlorinated organics at times when the Occidental Chemical Corporation was conducting tests at its liquid hazardous waste incineration facility in Niagara Falls, N.Y. During the incineration tests, the winds were such that the gaseous emissions from the Occidental facility were carried into the U.S. Since the monitoring units were restricted to the Canadian side of the Niagara River, only upwind air quality parameters could be measured.

  8. Music of the Universe

    SciTech Connect (OSTI)

    2010-01-01

    Scientists are quite familiar with what a supernova looks like when these stars are destroyed in the most massive explosions in the universe, they leave their mark as one of the brightest objects in space, at least for several weeks. While the supernova can be seen, it cant be heard, as sound waves cannot travel through space. But what if the light waves emitted by the exploding star and other cosmological phenomena could be translated into sound? Thats the idea behind a Rhythms of the Universe, a musical project to sonify the universe by Grateful Dead percussionist and Grammy award-winning artist Mickey Hart that caught the attention of Nobel Prize-winning astrophysicist George Smoot of Lawrence Berkeley National Laboratory. Sounds courtesy of Keith Jackson. Images courtesy of NASA

  9. Report of the DOD-DOE Workshop on Converting Waste to Energy Using Fuel Cells: Workshop Summary and Action Plan

    Broader source: Energy.gov [DOE]

    This report discusses the results of a January 13, 2011, workshop that focused on utilizing biowaste as an energy feedstock and converting this feedstock into heat and/or power using fuel cells. DOD and DOE are collaborating under a Memorandum of Understanding (MOU) to pursue technology-driven solutions that reduce petroleum use, among other objectives. One of the solutions being explored under the MOU is leveraging waste as feedstock for fuel cell applications in fixed and deployed military operations.

  10. Oregon State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Logo: Oregon State University Name: Oregon State University Address: Oregon State University Corvallis, OR Zip: 97331-4501 Year Founded: 1868...

  11. Pennsylvania State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Logo: Pennsylvania State University Name: Pennsylvania State University Address: 201 Shields Building University Park, PA 16802 Zip: 16802...

  12. Triangle Universities Nuclear Laboratory : 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TUNL personnel and collaborators from the University of Notre Dame pose after photoneutron studies at HIGS

  13. Environmental impact of APC residues from municipal solid waste incineration: Reuse assessment based on soil and surface water protection criteria

    SciTech Connect (OSTI)

    Quina, Margarida J.; Bordado, Joao C.M.; Quinta-Ferreira, Rosa M.

    2011-09-15

    Highlights: > The Dutch Building Material Decree (BMD) was used to APC residues from MSWI. > BMD is a straightforward tool to calculate expectable loads to the environment of common pollutants. > Chloride load to the environment lead to classification of building material not allowed. > At least a pre-treatment (e.g. washing) is required in order to remove soluble salts. > The stabilization with phosphates or silicates eliminate the problem of heavy metals. - Abstract: Waste management and environmental protection are mandatory requirements of modern society. In our study, air pollution control (APC) residues from municipal solid waste incinerators (MSWI) were considered as a mixture of fly ash and fine particulate solids collected in scrubbers and fabric filters. These are hazardous wastes and require treatment before landfill. Although there are a number of treatment options, it is highly recommended to find practical applications rather than just dump them in landfill sites. In general, for using a construction material, beyond technical specifications also soil and surface water criteria may be used to ensure environmental protection. The Dutch Building Materials Decree (BMD) is a valuable tool in this respect and it was used to investigate which properties do not meet the threshold criteria so that APC residues can be further used as secondary building material. To this end, some scenarios were evaluated by considering release of inorganic species from unmoulded and moulded applications. The main conclusion is that the high amount of soluble salts makes the APC residues a building material prohibited in any of the conditions tested. In case of moulding materials, the limits of heavy metals are complied, and their use in Category 1 would be allowed. However, also in this case, the soluble salts lead to the classification of 'building material not allowed'. The treatments with phosphates or silicates are able to solve the problem of heavy metals, but difficulties with the soluble salts are still observed. This analysis suggests that for APC residues to comply with soil and surface water protection criteria to be further used as building material at least a pre-treating for removing soluble salts is absolutely required.

  14. Cleantech University Prize

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s (DOE’s) Cleantech University Prize (CUP) aims to inspire the next generation of clean energy entrepreneurs and innovators by providing them with competitive funding for business development and commercialization training and other educational opportunities.

  15. Universal nonlinear entanglement witnesses

    SciTech Connect (OSTI)

    Kotowski, Marcin; Kotowski, Michal [College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Warsaw University, PL-Warszawa (Poland); Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikow 32/44, PL-02-668 Warszawa (Poland); Kus, Marek [Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikow 32/44, PL-02-668 Warszawa (Poland)

    2010-06-15

    We give a universal recipe for constructing nonlinear entanglement witnesses able to detect nonclassical correlations in arbitrary systems of distinguishable and/or identical particles for an arbitrary number of constituents. The constructed witnesses are expressed in terms of expectation values of observables. As such, they are, at least in principle, measurable in experiments.

  16. Madalina Furis: University of Vermont

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University (Tallahassee) and the other at the University of Florida (Gainesville). ... and unique Florida Helix Magnet at the Tallahassee site of the MagLab, In addition to ...

  17. Fermilab Today | University of Arizona

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A&M University Dec. 12, 2012 NAME: Texas A&M University HOME TOWN: College Station, Texas MASCOT: Reveille COLORS: Maroon and white COLLABORATING AT FERMILAB SINCE: Early 1980s....

  18. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hill KamLAND: Hugon Karwowski and Ryan Rohm, UNC at Chapel Hill; Christopher Gould and Albert Young, NC State University; Diane Markoff, NC Central University; and Werner Tornow,...

  19. Reducing volatilization of heavy metals in phosphate-pretreated municipal solid waste incineration fly ash by forming pyromorphite-like minerals

    SciTech Connect (OSTI)

    Sun Ying; Zheng Jianchang; Zou Luquan; Liu Qiang; Zhu Ping; Qian Guangren

    2011-02-15

    This research investigated the feasibility of reducing volatilization of heavy metals (lead, zinc and cadmium) in municipal solid waste incineration (MSWI) fly ash by forming pyromorphite-like minerals via phosphate pre-treatment. To evaluate the evaporation characteristics of three heavy metals from phosphate-pretreated MSWI fly ash, volatilization tests have been performed by means of a dedicated apparatus in the 100-1000 deg. C range. The toxicity characteristic leaching procedure (TCLP) test and BCR sequential extraction procedure were applied to assess phosphate stabilization process. The results showed that the volatilization behavior in phosphate-pretreated MSWI fly ash could be reduced effectively. Pyromorphite-like minerals formed in phosphate-pretreated MSWI fly ash were mainly responsible for the volatilization reduction of heavy metals in MSWI fly ash at higher temperature, due to their chemical fixation and thermal stabilization for heavy metals. The stabilization effects were encouraging for the potential reuse of MSWI fly ash.

  20. Drexel University Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  1. THE UNIVERSITY' OF CHICAGO

    Office of Legacy Management (LM)

    .G: THE UNIVERSITY' OF CHICAGO DATE December 28, 194s I_ TO C. F. Hiskey DLP*Rr"LNT MUCtf=t+-3I ~ DEPARTMENT This document ConhtS Of...2, IN RE: Bloaaningtcn' Experiments pages and ._____._ L? ____ ~--~-~----7 Nos~f&COplES, Merle &aft Chicago on Sunday, Deccrmber 12, for Bloomington, Indian where I was to work in oonjuncticn with Dr. Mitohell. Carried along approxi- mately 1200 grams of D20. On Monday, Deomber 13, 8aue ne0eesW-y equi&.anent arrived from Chicago. was unpaoked,

  2. UNIVERSITY OF CALIFORNIA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jean-Luc Vay With inputs from J. Amundson, J. Cary, W. Mori, C.-K. Ng, R. Ryne, J. Qiang Exascale Requirements Reviews: High Energy Physics June 10-12, 2015 Traditional HPC needs: particle accelerators 2 2 UNIVERSITY OF CALIFORNIA Office of Science Advanced s imula.ons p lay a n i ncreasingly i mportant r ole in the design, o pera.on and t uning o f a ccelerators. CERN ( HL---)LHC FNAL P IP(---II/III) "Conven.onal a ccelerators" accelerate b eams i n R F c avi.es "Advanced c

  3. A Study of the Stability and Characterization Plutonium Dioxide and Chemical Characterization [of] Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash

    SciTech Connect (OSTI)

    Ray, A.K.; Boettger, J.C.; Behrens, Robert G.

    1999-11-29

    In the presentation ''A Study of the Stability and Characterization of Plutonium Dioxide'', the authors discuss their recent work on actinide stabilities and characterization, in particular, plutonium dioxide PuO{sub 2}. Earlier studies have indicated that PuO{sub 2} has the fluorite structure of CaF{sub 2} and typical oxide semiconductor properties. However, detailed results on the bulk electronic structure of this important actinide oxide have not been available. The authors have used all-electron, full potential linear combinations Gaussian type orbitals fitting function (LCGTO-FF) method to study PuO{sub 2}. The LCGTO-FF technique characterized by its use of three independent GTO basis sets to expand the orbitals, charge density, and exchange-correlation integral kernels. Results will be presented on zero pressure using both the Hedin-Lundquist local density approximation (LDA) model or the Perdew-Wang generalized gradient approximation (GGA) model. Possibilities of different characterizations of PuO{sub 2} will be explored. The paper ''Chemical Characterization Rocky Flats and Los Alamos Plutonium-Containing Incinerator Ash'' describes the results of a comprehensive study of the chemical characteristics of virgin, calcined and fluorinated incinerator ash produced at the Rocky Flats Plant and at the Los Alamos National Laboratory prior to 1988. The Rocky Flats and Los Alamos virgin, calcined, and fluorinated ashes were also dissolved using standard nitrate dissolution chemistry. Corresponding chemical evaluations were preformed on the resultant ash heel and the results compared with those of the virgin ash. Fluorination studies using FT spectroscopy as a diagnostic tool were also performed to evaluate the chemistry of phosphorus, sulfur, carbon, and silicon containing species in the ash. The distribution of plutonium and other chemical elements with the virgin ash, ash heel, fluorinated ash, and fluorinated ash heel particulates were studied in detail using microprobe analysis. Some of the more interesting results of these investigations are presented.

  4. University of Neuchatel | Open Energy Information

    Open Energy Info (EERE)

    Neuchatel Jump to: navigation, search Name: University of Neuchatel Place: Switzerland Product: The University of Neuchatel, Switzerland References: University of Neuchatel1 This...

  5. Fermilab Today | Johns Hopkins University Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hopkins University September 9, 2010 NAME: The Johns Hopkins University HOME TOWN: Baltimore, Maryland MASCOT: Blue jay SCHOOL COLORS: The university's official colors are gold...

  6. University of Cape Town | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: University of Cape Town Place: South Africa Product: Teaching and research university. References: University of Cape Town1 This article is a...

  7. Robert Gordon University | Open Energy Information

    Open Energy Info (EERE)

    Gordon University Jump to: navigation, search Name: Robert Gordon University Address: Centre for Research in Energy and the Environment The Robert Gordon University Schoolhill...

  8. North Carolina State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: North Carolina State University Place: Raleigh, North Carolina Zip: 27695 Sector: Biofuels, Biomass, Solar Product: Public university...

  9. Michigan State University | Open Energy Information

    Open Energy Info (EERE)

    State University Jump to: navigation, search Name: Michigan State University Place: East Lansing, MI Website: www.michiganstateuniversity.co References: Michigan State University...

  10. Washington State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Washington State University Place: Spokane, WA Website: www.washingtonstateuniversity. References: Washington State University1...

  11. Kansas State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name Kansas State University Facility Kansas State University Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  12. University of Delaware Wind | Open Energy Information

    Open Energy Info (EERE)

    search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of...

  13. Case Western University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name Case Western University Facility Case Western University Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  14. Polytechnic University of Madrid | Open Energy Information

    Open Energy Info (EERE)

    Polytechnic University of Madrid Jump to: navigation, search Name: Polytechnic University of Madrid Place: Madrid, Spain Sector: Solar Product: University piloting a 2.7MW solar...

  15. Inflating an inhomogeneous universe

    SciTech Connect (OSTI)

    Easther, Richard; Price, Layne C.; Rasero, Javier E-mail: lpri691@aucklanduni.ac.nz

    2014-08-01

    While cosmological inflation can erase primordial inhomogeneities, it is possible that inflation may not begin in a significantly inhomogeneous universe. This issue is particularly pressing in multifield scenarios, where even the homogeneous dynamics may depend sensitively on the initial configuration. This paper presents an initial survey of the onset of inflation in multifield models, via qualitative lattice-based simulations that do not include local gravitational backreaction. Using hybrid inflation as a test model, our results suggest that small subhorizon inhomogeneities do play a key role in determining whether inflation begins in multifield scenarios. Interestingly, some configurations which do not inflate in the homogeneous limit ''succeed'' after inhomogeneity is included, while other initial configurations which inflate in the homogeneous limit ''fail'' when inhomogeneity is added.

  16. University Engagement at INL

    SciTech Connect (OSTI)

    Morrell, Sean Robert; Rynes, Amanda Renee

    2014-07-01

    There are currently over 900 facilities in over 170 countries which fall under International Atomic Energy Agency (IAEA) safeguards. As additional nations look to purse civilian nuclear programs or to expand infrastructure already in place, the number of reactors and accompanying facilities as well as the quantity of material has greatly increased. Due to the breadth of the threat and the burden placed on the IAEA as nuclear applications expand, it has become increasingly important that safeguards professionals have a strong understanding of both the technical and political aspects of nonproliferation starting early in their career. To begin overcoming this challenge, Idaho National Laboratory, has partnered with local universities to deliver a graduate level nuclear engineering course that covers both aspects of the field with a focus on safeguards applications. To date over 60 students across multiple disciplines have participated in this course with many deciding to transition into a nonproliferation area of focus in both their academic and professional careers.

  17. Oak Ridge Associ Universities

    Office of Legacy Management (LM)

    ir.\ "'t-"' , i 'Prepared by Oak Ridge Associ Universities Prepared for Division of Remedial Action Proiects 'U.S. Department of Energy 5 : ! l :;"i\ r l!! ,iri$, t . r ' i , , . 1 . E".:r- i{$, i. 'ii idi 1, . :{. I i:li C O M P R E H E N S I V E R A D I O L O G I C A L S U R V E Y O F F - S I T E P R O P E R T Y W N I A G A R A F A L L S S T O R A G E S I T E LEWlsToN, NEW YORK J . D . B E R G E R Radiol-oglcal Site Assessment Program Manpower Education, Research, and

  18. Oak Ridge Universities

    Office of Legacy Management (LM)

    Oak Ridge Universities Prepared for Division of Remedial Action Projects U.S. Department of Energy C O M P R E H E N S I V E R A D I O L O G I C A L S U R V E Y O F F - S I T E P R O P E R T Y X N I A G A R A F A L L S S T O R A G E S I T E L E W l s T o N , N E W Y O R K J . D . B E R G E R R a d i o l o g i c a l M a n p o w e r E d u c a t i o n ' Site Assessment Program Research, and Training Division FINA], May REPORT 1 9 8 4 COMPREHENSIVE MDIOLOGICAI SURVEY OFF-SITE PROPERTY X NIAGARA

  19. Several organic parameters on underlying hazardous constituents list can not be measured at the universal treatment standards

    SciTech Connect (OSTI)

    Johnson, H.C.

    1998-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has several permitted treatment, storage and disposal facilities. The INEEL Sample Management Office (SMO) conducts all analysis subcontracting activities for Department of Energy Environmental Management programs at the INEEL. In this role, the INEEL SMO has had the opportunity to subcontract the analyses of various wastes (including ash from an interim status incinerator) requesting a target analyte list equivalent to the constituents listed in 40 Code of Federal Regulations. These analyses are required to ensure that treated wastes do not contain underlying hazardous constituents (UHC) at concentrations greater than the universal treatment standards (UTS) prior to land disposal. The INEEL SMO has conducted a good-faith effort by negotiating with several commercial laboratories to identify the lowest possible quantitation and detection limits that can be achieved for the organic UHC analytes. The results of this negotiating effort has been the discovery that no single laboratory (currently under subcontract with the INEEL SMO) can achieve a detection level that is within an order of magnitude of the UTS for all organic parameters on a clean sample matrix (e.g., sand). This does not mean that there is no laboratory that can achieve the order of magnitude requirements for all organic UHCs on a clean sample matrix. The negotiations held to date indicate that it is likely that no laboratory can achieve the order of magnitude requirements for a difficult sample matrix (e.g., an incinerator ash). The authors suggest that the regulation needs to be revised to address the disparity between what is achievable in the laboratory and the regulatory levels required by the UTS.

  20. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics| NC-State Physics| UNC-Chapel Hill Physics| Graduate Education at TUNL - Students from Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill perform collaborative research on a wide variety of topics. There are approximately 40 graduate students conducting research projects on a wide variety of topics that include nuclear astrophysics, fundamental symmetries, neutrino physics, weak interactions, few-nucleon, sub-nucleon, and many-body

  1. University of Delaware | Contact CCEI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information: The administrative offices of CCEI are located inside the Interdisciplinary Science and Engineering Laboratory (ISE Lab) at the University of Delaware. Address Catalysis Center for Energy Innovation University of Delaware 221 Academy Street Newark, DE 19716 Phone Number (302) 831-1628 Email efrc-info@udel.edu Visitors A downloadable PDF of the campus parking map is available. For hotel accommodations, please visit the University's visitor page.

  2. Cornell University | Open Energy Information

    Open Energy Info (EERE)

    first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. It is both a private university and the land-grant institution of New York...

  3. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Members of the HIGS PAC are listed below: Gerald T. Garvey, Chair Los Alamos National Laboratory Elizabeth J. Beise University of Maryland T. William Donnelly Massachusetts...

  4. Bucknell University | Open Energy Information

    Open Energy Info (EERE)

    University Address Civil & Mechanical Engineering Departments, Hydraulic Flume, 701 Moore Avenue, Dana Engineering Building Place Lewisburg, PA Zip 17837 Sector Hydro Phone...

  5. Pennsylvania State University: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary The Pennsylvania State University's team, Remote Wind Power Systems Unit (PSU), is focused on developing a sustainable, portable wind turbine that can provide ...

  6. Fermilab Today | Texas Tech University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and to increasing public awareness of physics research. FUNDING AGENCIES: DOE, NSF Texas Tech University High-Energy Physics Group: (Left) From left: Kittikul Kovitanggoon, Nural...

  7. Auburn University | Open Energy Information

    Open Energy Info (EERE)

    Alabama Zip: 36849 Product: Largest university in Alabama, enrolling approximately 23,000 students in 230 undergraduate, graduate, and professional programs. References:...

  8. University Turbine Systems Research Program

    SciTech Connect (OSTI)

    Leitner, Robert; Wenglarz, Richard

    2010-12-31

    The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).

  9. Texas A&M University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from women, minorities, individuals with disabilities, and veterans. In addition, Texas A&M University strives to be responsive to the particular needs of dual career...

  10. Shanghai University | Open Energy Information

    Open Energy Info (EERE)

    Place: Shanghai Municipality, China Zip: 200072 Product: Key institution of higher learning in Shanghai. References: Shanghai University1 This article is a stub. You can help...

  11. Denver University - International Institute for Environment and...

    Open Energy Info (EERE)

    - International Institute for Environment and Enterprise Name: Denver University - International Institute for Environment and Enterprise Address: 2199 S. University Blvd....

  12. Funding Opportunity Webinar - Buildings University Innovators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings University Innovators and Leaders Development (BUILD) Funding Opportunity Webinar - Buildings University Innovators and Leaders Development (BUILD) View the Funding ...

  13. Oak Ridge Associated Universities Procurement Questionnaire Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities Procurement Questionnaire ...

  14. Pennsylvania State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Pennsylvania State University Address Applied Research Laboratory, Garfield...

  15. Florida International University Science and Technology Workforce...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us Jobs & Internships Florida International University Science and Technology Workforce Development Program Florida International University Science and Technology ...

  16. Workplace Charging Challenge Partner: University of California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa Barbara Workplace Charging Challenge Partner: University of California, Santa ...

  17. Toronto University Innovation Foundation | Open Energy Information

    Open Energy Info (EERE)

    Toronto University Innovation Foundation Jump to: navigation, search Name: Toronto University Innovation Foundation Place: Canada Sector: Services Product: General Financial &...

  18. Universal ripper miner

    DOE Patents [OSTI]

    Morrell, Roger J.; Larson, David A.

    1991-01-01

    A universal ripper miner used to cut, collect and transfer material from an underground mine working face includes a cutter head that is vertically movable in an arcuate cutting cycle by means of drive members, such as hydraulically actuated pistons. The cutter head may support a circular cutter bit having a circular cutting edge that may be indexed to incrementally expose a fresh cutting edge. An automatic indexing system is disclosed wherein indexing occurs by means of a worm gear and indexing lever mechanism. The invention also contemplates a bi-directional bit holder enabling cutting to occur in both the upstroke and the downstroke cutting cycle. Another feature of the invention discloses multiple bits arranged in an in-line, radially staggered pattern, or a side-by-side pattern to increase the mining capacity in each cutting cycle. An on-board resharpening system is also disclosed for resharpening the cutting edge at the end of cutting stroke position. The aforementioned improvement features may be used either singly, or in any proposed combination with each other.

  19. Universal: Order (2013-SE-26004)

    Broader source: Energy.gov [DOE]

    DOE ordered Universal Lighting Technologies, Inc. to pay a $7,264 civil penalty after finding Universal had manufactured and distributed in commerce in the U.S. 454 units of model B140R277HP, a noncompliant fluorescent lamp ballast.

  20. Cleantech University Prize | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Home » Cleantech University Prize Cleantech University Prize Hyliion from Carnegie Mellon University won the 2015 Cleantech University Prize. | Photo by Matt Dozier, Energy Department. Hyliion from Carnegie Mellon University won the 2015 Cleantech University Prize. | Photo by Matt Dozier, Energy Department. The U.S. Department of Energy's (DOE's) Cleantech University Prize (CUP) aims to inspire the next generation of clean energy entrepreneurs and innovators by providing them with competitive

  1. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator

    SciTech Connect (OSTI)

    Zhong Zhaoping . E-mail: zzhong@seu.edu.cn; Jin Baosheng; Huang Yaji; Zhou Hongcang; Lan Jixiang

    2006-07-01

    This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m{sup 3}/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5 m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10{sup -13} kg/Nm{sup 3} and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries.

  2. Fermilab Today | Oklahoma State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University group is involved in top quark studies, searches for a non-Standard Model Higgs boson, heavy flavor tagging and upgrade of the pixel detector in the ATLAS...

  3. EERE Days at Stanford University

    Broader source: Energy.gov [DOE]

    The Department of Energy hosts the Office of Energy Efficiency and Renewable Energy (EERE) Days at Stanford University to engage students and faculty on key energy issues aligned with EERE’s...

  4. Harvard University Video (Text Version)

    Broader source: Energy.gov [DOE]

    To encourage the use of electric vehicles, Parking Services has installed a number of electric vehicle charging stations across the university. These stations allow drivers who obtain a special...

  5. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This symposium celebrates the contributions of Edward G. Bilpuch to nuclear physic and to the Triangle Universities Nuclear Laboratory (TUNL), which is a U.S. Department of Energy Center of Excellence in Nuclear Physics. Dr. Bilpuch was a Henry W. Newson Professor of Physics at Duke University, a member of the first generation of nuclear physicists who founded TUNL and the longest-term director of TUNL.

  6. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Postdoctoral Position in Fundamental Symmetries Postdoctoral Position in Fundamental Symmetries - North Carolina State University, Department of Physics The Experimental Nuclear Physics group at North Carolina State University solicits applications for a postdoctoral research associate to work with us on the SNS-based neutron electric dipole moment experiment. Applicants must have a Ph.D. in physics, astronomy, or a related field. Candidates having low temperature (<4 K) experience are

  7. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consortium Universities Research Hadron Structure Nuclei: Structure to Stars Fundamental Symmetries Neutrinos and Dark Matter Applications of Nucl. Phys. Facilities HIGS LENA Tandem Laboratory Resources HIGS / Tandem Schedules TUNL Seminars Conferences/Schools/Events Rooms/Docs/Technical TUNL Management Employment Opportunities Duke NCSU UNC The Triangle Universities Nuclear Laboratory (TUNL) is a U.S. Department of Energy (DOE) Center of Excellence that focuses on low-energy nuclear physics

  8. Clocking the Early Universe's Expansion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clocking the Early Universe Clocking the Early Universe's Expansion Calculations Performed at NERSC Help Scientists Close in on the Nature of Dark Energy April 17, 2014 Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 NERSC PI: David Schlegel Lead Institution: Lawrence Berkeley National Laboratory Project Title: Baryon Oscillation Spectroscopic Survey NERSC Resources Used: Hopper DOE Program Office: High Energy Physics Astronomers have made the most accurate calculation yet of the expansion rate of

  9. Alumni: Claire White, Princeton University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Claire White, Princeton University Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Alumni: Claire White, Princeton University Reducing air emissions with new ways to make concrete May 1, 2015 The site offers a variety of Los Alamos-developed biosurveillance tools that can be used for decision support in disease surveillance. The site offers a variety of Los Alamos-developed biosurveillance tools that can be used for

  10. Fermilab | Science | Questions for the Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Universe To discover what the universe is made of and how it works is the challenge of particle physics. The landmark Quantum Universe report defines the quest of particle...

  11. Universal Display Corp | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Universal Display Corp. Place: New Jersey Product: OLED (Organic Light Emitting Device) Developer References: Universal Display Corp.1 This...

  12. Seoul National University | Open Energy Information

    Open Energy Info (EERE)

    Zip: 151-742 Product: SNU was the first ever national university established in modern Korean history and is still perceived as the leading university in Korea. Coordinates:...

  13. university of california | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    university of california | National Nuclear Security Administration Facebook Twitter ... Apply for Our Jobs Our Jobs Working at NNSA Blog Home university of california ...

  14. Oak Rigde Associated Universities (ORAU) Radiation Emergency...

    Office of Environmental Management (EM)

    Rigde Associated Universities (ORAU) Radiation Emergency Assistance CenterTraining Site (REACTS), ORAU Director Oak Rigde Associated Universities (ORAU) Radiation Emergency...

  15. Montage Builders Northern Forest, Ryerson University Selected...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University, and Onondaga Community College - Best single family detached design Ryerson University's Urban Harvest team - Best single family attached design Best Design Solution ...

  16. University of Michigan Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Michigan Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Michigan Address 1085 South University Avenue Place Ann Arbor,...

  17. Building America Program Evaluation, Harvard University, Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Program Evaluation, Harvard University, Volume 2, 2004 Building America ... (ETIP), Kennedy School of Government, Harvard University, Vicki Norberg-Bohm, Principal ...

  18. Building America Program Evaluation, Harvard University, Volume...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Program Evaluation, Harvard University, Volume 1, 2004 Building America ... (ETIP), Kennedy School of Government, Harvard University, Vicki Norberg-Bohm, Principal ...

  19. Property:CSC-University | Open Energy Information

    Open Energy Info (EERE)

    Pages using the property "CSC-University" Showing 5 pages using this property. L Lightning Dock Geothermal Area + University of North Dakota + M Magic Reservoir...

  20. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  1. Next generation safeguards initiative university outreach: the...

    Office of Scientific and Technical Information (OSTI)

    Next generation safeguards initiative university outreach: the unique Los Alamos and the ... Title: Next generation safeguards initiative university outreach: the unique Los Alamos ...

  2. The University of Wisconsin | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: The University of Wisconsin Place: Madison, WI Website: www.wisc.edu References: The University of Wisconsin 1 Information About Partnership with NREL...

  3. Building a Universal Nuclear Energy Density Functional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

  4. California State University CSU | Open Energy Information

    Open Energy Info (EERE)

    University CSU Jump to: navigation, search Name: California State University (CSU) Place: Los Angeles, California Zip: 90802-4210 Sector: Solar Product: One of the largest higher...

  5. Ferris State University | Open Energy Information

    Open Energy Info (EERE)

    Ferris State University Jump to: navigation, search Name: Ferris State University Place: Big Rapids, MI Website: www.ferrisstateuniversity.com References: Ferris State...

  6. Arizona State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Arizona State University Place: Tempe, Arizona Zip: 85287 Website: asu.edu Coordinates: 33.4183159, -111.9311939 Show Map Loading...

  7. University of Tennessee | Open Energy Information

    Open Energy Info (EERE)

    Testing Facilities Name University of Tennessee Address University of Tennessee Space Center, 411 B.H. Goethert Parkway Place Tullahoma, Tennessee Zip 37388 Sector Hydro...

  8. Nuclear Energy University Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 ... Drag and zoom map to see more recipients. Investing in the next generation of nuclear ...

  9. University of Maine | Open Energy Information

    Open Energy Info (EERE)

    search Name: University of Maine Place: United States Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: University of...

  10. Australian National University | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Australian National University Place: Canberra, Australian Capital Territory, Australia Zip: 200 Product: One of the top five Australian Universities....

  11. The University of Wyoming | Open Energy Information

    Open Energy Info (EERE)

    Wyoming Jump to: navigation, search Name: The University of Wyoming Abbreviation: UW Address: 1000 East University Avenue Place: Laramie, Wyoming Zip: 82071 Phone Number:...

  12. University of Michigan | Open Energy Information

    Open Energy Info (EERE)

    Michigan Jump to: navigation, search Name: University of Michigan Place: Ann Arbor, Michigan Zip: 48109 Product: Offers research across all disciplines. References: University of...

  13. University of Washington | Open Energy Information

    Open Energy Info (EERE)

    Washington Jump to: navigation, search Name: University of Washington Place: Seattle, Washington Product: Public research university with campuses in Seattle, Tacoma, and Bothell....

  14. University of Toledo | Open Energy Information

    Open Energy Info (EERE)

    Toledo Jump to: navigation, search Name: University of Toledo Place: Toledo, Ohio Zip: 43606-3390 Product: A student-centered public metropolitan research university. Coordinates:...

  15. University of Colorado | Open Energy Information

    Open Energy Info (EERE)

    Colorado Jump to: navigation, search Name: University of Colorado Place: Boulder, Colorado Zip: 80309 Product: A public university in Colorado. Coordinates: 42.74962,...

  16. University of Maryland | Open Energy Information

    Open Energy Info (EERE)

    Maryland Jump to: navigation, search Logo: University of Maryland Name: University of Maryland Address: College Park, MD Zip: 20742 Website: www.umd.edu Coordinates: 38.980666,...

  17. The George Washington University | Open Energy Information

    Open Energy Info (EERE)

    Washington University Jump to: navigation, search Name: The George Washington University Place: Washington, District of Columbia Zip: 20052 Website: www.gwu.edu Coordinates:...

  18. Baylor University - Renewable Aviation Fuels Development Center...

    Open Energy Info (EERE)

    University - Renewable Aviation Fuels Development Center Jump to: navigation, search Name: Baylor University - Renewable Aviation Fuels Development Center Address: One Bear Place...

  19. University of South Florida | Open Energy Information

    Open Energy Info (EERE)

    South Florida Jump to: navigation, search Name: University of South Florida Place: St. Petersburg, Florida Zip: FL 33701 Product: Educational and research university. References:...

  20. University Park “STEP-UP” Proposal

    Broader source: Energy.gov [DOE]

    University Park “STEP-UP” Proposal: DE-FOA-0000148, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  1. University Park Data Dashboard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    data dashboard for University Park, Maryland, a partner in the Better Buildings Neighborhood Program. Office spreadsheet icon University Park Data Dashboard More Documents & ...

  2. Carborundum Universal Ltd | Open Energy Information

    Open Energy Info (EERE)

    Carborundum Universal Ltd Jump to: navigation, search Name: Carborundum Universal Ltd Place: Chennai, Tamil Nadu, India Zip: 600001 Product: Chennai-based abrasives manufacturer....

  3. Universal Lighting Technologies | Open Energy Information

    Open Energy Info (EERE)

    Lighting Technologies Jump to: navigation, search Name: Universal Lighting Technologies Place: Nashville, Tennessee Zip: 37214-3683 Product: Universal Lighting Technologies...

  4. Universal Carbon Credits Limited | Open Energy Information

    Open Energy Info (EERE)

    Universal Carbon Credits Limited Jump to: navigation, search Name: Universal Carbon Credits Limited Place: London, England, United Kingdom Zip: EC3A6DF Sector: Carbon Product:...

  5. University of Johannesburg | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: University of Johannesburg Place: Auckland Park, South Africa Zip: 2006 Sector: Solar Product: University with solar research activities....

  6. University of Kansas | Open Energy Information

    Open Energy Info (EERE)

    Kansas Jump to: navigation, search Name: University of Kansas Place: Lawrence, Kansas Zip: 66045 Product: A public university in the state of Kansas. Coordinates: 44.40581,...

  7. Northern Arizona University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Northern Arizona University Place: Flagstaff, AZ Zip: 86011 Phone Number: 928-523-0715 Website: nau.edu Coordinates: 35.1905403,...

  8. The effects of the mechanicalchemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste

    SciTech Connect (OSTI)

    Chen, Cheng-Gang; Sun, Chang-Jung; Gau, Sue-Huai; Wu, Ching-Wei; Chen, Yu-Lun

    2013-04-15

    Highlights: ? Milling extracted MSWI fly ash. ? Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ? Increasing heavy metal stability. ? Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH){sub 2} and led to the generation of calciumsilicatehydrates (CSH) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.

  9. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Main Office June Tirpak, Grants and Contracts Administrator Room 414, TUNL Phone : (919) 660 - 2600 Fax : (919) 660 - 2634 Email : june.tirpak@tunl.duke.edu Courier Deliveries Duke University 116 Science Drive TUNL Building, Room 414 Durham, NC 27708 USA Post Office Mail Duke University Physics Department/TUNL P. O. Box 90308 Durham, NC 27708-0308 USA HIGS/New Visitor Matthew Paul, Staff Assistant Room 125, DFELL Phone : (919) 660 - 2681 Email : mpaul@tunl.duke.edu Director's Office Calvin

  10. The Creation of the Universe

    ScienceCinema (OSTI)

    None

    2011-10-06

    Gravity and quantum theory cause the Universe to be spontaneously created out of nothing. Most of these universes are quite unlike our own but we select out a subset that are compatible with what we observe. Please note that Professor Hawking's talk will be broadcasted in the following rooms : TH auditorium (4-3-006) TE auditorium (30-7-018) 40-S2-A01 40-S2-C01 BE Meyrin (6-2-024) BE Prévessin (864-1-D02)

  11. The Creation of the Universe

    SciTech Connect (OSTI)

    2009-09-09

    Gravity and quantum theory cause the Universe to be spontaneously created out of nothing. Most of these universes are quite unlike our own but we select out a subset that are compatible with what we observe. Please note that Professor Hawking's talk will be broadcasted in the following rooms : TH auditorium (4-3-006) TE auditorium (30-7-018) 40-S2-A01 40-S2-C01 BE Meyrin (6-2-024) BE Prévessin (864-1-D02)

  12. Universal equation for Efimov states

    SciTech Connect (OSTI)

    Braaten, Eric; Hammer, H.-W.; Kusunoki, M.

    2003-02-01

    Efimov states are a sequence of shallow three-body bound states that arise when the two-body scattering length is large. Efimov showed that the binding energies of these states can be calculated in terms of the scattering length and a three-body parameter by solving a transcendental equation involving a universal function of one variable. We calculate this universal function using effective field theory and use it to describe the three-body system of {sup 4}He atoms. We also extend Efimov's theory to include the effects of deep two-body bound states, which give widths to the Efimov states.

  13. Alumni: Duane Hatch, Belmont University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duane Hatch, Belmont University Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Alumni: Duane Hatch, Belmont University Hatch and two students spend the summer at the Lab September 1, 2015 Duane Hatch (m) and two students; Ambrose Rice (l) and Ryan Agh (r) worked at the Lab this summer. Duane Hatch (m) and two students; Ambrose Rice (l) and Ryan Agh (r) worked at the Lab this summer. Contact Linda Anderman Email

  14. Triangle Universities Nuclear Laboratory : 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education| REU| Nuclear Data Evaluation| Publications| Directory| WebMail| Consortium Universities Research Hadron Structure Nuclei: Structure to Stars Fundamental Symmetries Neutrinos and Dark Matter Applications of Nucl. Phys. Facilities HIGS LENA Tandem Laboratory Resources HIGS / Tandem Schedules TUNL Seminars Technical Support Rooms and Documents Conferences/Schools/Events TUNL Management Employment Opportunities Useful Links Duke NCSU UNC Research scientist Alex Crowell and graduate

  15. PROJECT PROFILE: George Washington University

    Broader source: Energy.gov [DOE]

    The GW Solar Institute at the George Washington University is developing multimedia solar energy training materials that can be used to train a spectrum of diverse audiences. The resulting solar knowledge library serves as an invaluable resource for other STEP awardees who are directly engaging and training communities as diverse as real estate agents, financiers, and state regulators and policymakers.

  16. Workplace Charging Challenge Partner: Eastern Washington University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington University Workplace Charging Challenge Partner: Eastern Washington University Workplace Charging Challenge Partner: Eastern Washington University Joined the Challenge: August 2015 Headquarters: Cheney, WA Charging Locations: N/A Domestic Employees: 1,989 In 2007 Eastern Washington University accepted the challenge to reduce campus emissions by becoming signatory to the American Colleges and University President's Climate Commitment (ACUPCC). Installing

  17. Spotlighting Howard University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spotlighting Howard University Spotlighting Howard University February 27, 2012 - 2:45pm Addthis Students at Howard University are helping to solve one of the biggest challenges facing renewable energy. | Photo by Jim Pleasant. Students at Howard University are helping to solve one of the biggest challenges facing renewable energy. | Photo by Jim Pleasant. Kate Bannan Communications and Outreach Specialist Students at Washington, D.C.'s Howard University are helping to solve one of the biggest

  18. Energy aspects of solid waste management: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  19. Energy aspects of solid waste management: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Eighteenth Annual Illinois Energy Conference entitled Energy Aspects of Solid Waste Management'' was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois' and the Midwest's solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  20. The age of the universe

    SciTech Connect (OSTI)

    Schramm, D.N.

    1996-10-01

    An overview of the current controversy on the age of the universe is presented. It is shown that the age of the oldest star, globular clusters, yields an age estimate of approximately 14 {+-} 2 {+-} 2 Gyr (where the first {+-} is statistical and the second systematic, and the two should {ital not} be added in quadrature), with a firm lower bound of {ge} 10 Gyr. It is shown how radioactive dating, nucleocosmochronology, also yields a firm lower bound of {approx_gt} 10 Gyr. The currently favored values for the Hubble constant, when converted to ages using a cosmological model with zero cosmological constant, are shown {ital not} to be in conflict with statistical and systematic uncertainties at the present time when one takes both into account, even for critical density universes. 25 refs. , 3 figs., 1 tab.

  1. A map of the universe

    SciTech Connect (OSTI)

    Gott III, J. Richard; Juric, Mario; Schlegel, David; Hoyle, Fiona; Vogeley, Michael; Tegmark, Max; Bahcall, Neta; Brinkmann, Jon

    2003-10-20

    We have produced a new conformal map of the universe illustrating recent discoveries, ranging from Kuiper belt objects in the Solar system, to the galaxies and quasars from the Sloan Digital Sky Survey. This map projection, based on the logarithm map of the complex plane, preserves shapes locally, and yet is able to display the entire range of astronomical scales from the Earth s neighborhood to the cosmic microwave background. The conformal nature of the projection, preserving shapes locally, may be of particular use for analyzing large scale structure. Prominent in the map is a Sloan Great Wall of galaxies 1.37 billion light years long, 80 percent longer than the Great Wall discovered by Geller and Huchra and therefore the largest observed structure in the universe.

  2. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parking Directions and Map The Duke University campus map shows the Duke Physics Building on Science Drive behind Duke Chapel. The former 4 MeV Van de Graaff accelerator laboratory in its basement is now the location of TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA). Graduates since 1965 will recall the tandem accelerator laboratory is located behind the Physics Building, but those who graduated before 1990 may not recognize a newer larger building behind the tandem lab which

  3. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Projects 2015| REU flickr| Schedule of Activities| 2016 TUNL/Duke REU Program Undergraduate Research in Nuclear and Particle Physics at TUNL/Duke University The 2016 TUNL REU program dates are Tuesday, May 31, 2016 to August 6, 2016. This year's application deadline was February 5, 2016. The online application process is now closed. We will accept recommendation letters through Wednesday, Feb. 10. The Research Experience for Undergraduates (REU) programs provide opportunities for students

  4. University of Delaware Energy Institute

    SciTech Connect (OSTI)

    Klein, Michael T

    2012-09-30

    The main goal of this project funded through this DOE grant is to help in the establishment of the University of Delaware Energy Institute (UDEI) which is designed to be a long-term, on-going project. The broad mission of UDEI is to develop collaborative programs encouraging research activities in the new and emerging energy technologies and to partner with industry and government in meeting the challenges posed by the nationâ??s pressing energy needs.

  5. ESnet LHCONE Service for Universities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LHCONE Service for Universities Version January 28 2015 Date Edited By Change 13-Jan-2015 J Metzger Created 15-Jan-2015 J Metzger Minor updates 16-Jan-2015 P Giuntoli, J Metzger Improved Clarity & Focus, added Appendix 2. 22-Jan-2015 Dorn Readability improvements; consistency of terms (especially ESnet LHCONE Service and global LHCONE VRF network) 28-Jan-2015 J Metzger Entered Experiment Site Coordinator Names. Overview Service Description Service Design Demarcation Point Service Policies

  6. Susanne Crewell, University of Cologne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extending operational satellite cloud remote sensing into the submillimeter range: The challenge of supercooled liquid water absorption Susanne Crewell, University of Cologne How will the future observational system develop? a journey from ground to space Global Observing System (GOS) co-ordinated by the World Meteorological Organization (WMO) From simple clouds to Seamless Prediction of the Earth System: From minutes to months" WMO, G Brunet, S Jones, PM Ruti Eds., WMO-No. 1156, (ISBN

  7. University of Delaware | About CCEI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Center for Energy Innovation About CCEI The Catalysis Center for Energy Innovation (CCEI) is a multi-institutional research center at the University of Delaware. It was established in 2009 by a grant from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. It is one of 46 Energy Frontier Research Centers (EFRCs) and one of very few externally funded centers on heterogeneous catalysis. The center builds upon the long tradition of novel catalytic research

  8. University of Delaware | CCEI News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News [January 2016] Wei Fan, professor of chemical engineering at the University of Massachusetts Amherst, is among scientists highlighted in the U.S. Department of Energy's online feature article titled "Driving to Great: Science and the Journey to Waste-Free Biodiesel." The article, which discusses how scientists are overcoming obstacles in order to turn fuel waste into valued chemicals, discusses Fan's discovery of a one-pot reaction that turns glycerol into large quantities of

  9. transims-studies-at-the-university

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies at the University at Buffalo, the State University of New York Adel W. Sadek, Ph.D. Associate Professor University at Buffalo, The State University of New York 233 Ketter Hall Buffalo, NY 14260 Phone: (716) 645-4367 FAX: (716) 645-3733 E-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. List of Authors ================ Adel W. Sadek, Ph.D. Shan Huang Liya Guo Yan Yang Irene Casas, Ph.D. University at Buffalo, The State University of New

  10. DOE Announces $375,000 Grant to Lincoln University and the University...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Reynolds, intern, Mercer University; Guannian Zeng, intern, City College of New York; Anna Knox, SRNL scientist; Daniel Berry, intern, University of South Carolina-Aiken; Thomas ...

  11. Tel Aviv University | Open Energy Information

    Open Energy Info (EERE)

    Aviv University Jump to: navigation, search Name: Tel Aviv University Place: Tel Aviv, Israel Zip: 69978 Sector: Solar Product: R&D of solar energy, fuel cells and new materials...

  12. National Laboratories Recruiting Day" at Howard University |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratories Recruiting Day" at Howard University February 4, 2016 11:00AM to 6:00PM EST Howard University, School of Engineering, Architecture and Computer Sciences....

  13. Toward Design of a Universal Flu Vaccine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toward Design of a Universal Flu Vaccine Toward Design of a Universal Flu Vaccine Print Wednesday, 30 January 2013 00:00 Worldwide, influenza causes substantial deaths and yearly ...

  14. Colorado State University | Open Energy Information

    Open Energy Info (EERE)

    University Jump to: navigation, search Name: Colorado State University Place: Colorado Phone Number: (970) 491-1101 or 907-491-6444 Website: www.colostate.edu Outage Hotline:...

  15. Illinois State University | OpenEI Community

    Open Energy Info (EERE)

    Illinois State University Home Dloomis's picture Submitted by Dloomis(21) Member 28 June, 2012 - 15:41 User Manuals Illinois State University We have a beta version of two user...

  16. University of Alberta | Open Energy Information

    Open Energy Info (EERE)

    Alberta Jump to: navigation, search Logo: University of Alberta Name: University of Alberta Address: 116 St. and 85 Ave., Edmonton, AB, Canada T6G 2R3 Place: Edmonton, Alberta...

  17. University of Waterloo UW | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: University of Waterloo (UW) Place: Waterloo, Ontario, Canada Zip: N2L 3G1 Product: Research-intensive university that has received grants to pursue...

  18. Buildings University Innovators and Leaders Development (BUILD...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Institutional requirements Lead institution must be an Institution of Higher Education: Universities, 2-year community colleges, predominately undergraduate ...

  19. Workplace Charging Challenge Partner: Colorado State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Colorado State University Workplace Charging Challenge Partner: Colorado State University Workplace Charging Challenge Partner: Colorado State University Joined the Challenge: July 2015 Headquarters: Fort Collins, CO Charging Location: Fort Collins, CO Domestic Employees: 6,985 Colorado State University (CSU) has received the first Platinum rating and the highest score ever submitted in STARS, the American Association of Sustainability in Higher Education's

  20. Workplace Charging Challenge Partner: Louisiana State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Louisiana State University Workplace Charging Challenge Partner: Louisiana State University Workplace Charging Challenge Partner: Louisiana State University Joined the Challenge: October 2015 Headquarters: Baton Rouge, LA Charging Location: Baton Rouge, LA Domestic Employees: 36,757 Louisiana State University (LSU) has 3 charging stations on campus, and 12 plug-in electric vehicles routinely used the stations in 2015. LSU Campus Sustainability aims to promote energy

  1. PROJECT PROFILE: Boston University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boston University PROJECT PROFILE: Boston University Funding Opportunity: CSP: APOLLO SunShot Subprogram: CSP Location: Boston, MA Amount Awarded: $1,150,000 Awardee Cost Share: $390,864 Boston University Logo.png The Boston University project under CSP: Apollo will use laboratory-scale electrodynamic-screen self-cleaning solar technology with heliostat mirrors and parabolic troughs in large scale solar plants. The objective is to reduce both the need to clean mirrors with water and the

  2. University Partnerships | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Multidisciplinary Simulation Center for High Efficiency Electric Power Generation with Carbon Capture," an MSC University of Illinois-Urbana-Champaign,...

  3. University Partnerships | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    University Partnerships Historically, universities have had a close relationship with NNSA National Laboratories. In fact, Los Alamos and Lawrence Livermore have been operated for NNSA by the University of California for many years. The mission of the Defense Programs laboratories is focused on Science-Based Stockpile Stewardship, and ASC and the universities share a common and critical interest in making that vision a reality. The success of ASC depends on the ability to demonstrate that

  4. Bioelectrochemical Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Cirucci Air Products and Chemicals, Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective Develop a novel system that produces electricity or hydrogen from waste heat conversion and waste effluent oxidation waste water effluent treated effluent dual benefit process waste heat electricity or hydrogen Issues with existing,

  5. Enclosed ground-flare incinerator

    DOE Patents [OSTI]

    Wiseman, Thomas R.

    2000-01-01

    An improved ground flare is provided comprising a stack, two or more burner assemblies, and a servicing port so that some of the burner assemblies can be serviced while others remain in operation. The burner assemblies comprise a burner conduit and nozzles which are individually fitted to the stack's burner chamber and are each removably supported in the chamber. Each burner conduit is sealed to and sandwiched between a waste gas inlet port and a matching a closure port on the other side of the stack. The closure port can be opened for physically releasing the burner conduit and supplying sufficient axial movement room for extracting the conduit from the socket, thereby releasing the conduit for hand removal through a servicing port. Preferably, the lower end of the stack is formed of one or more axially displaced lower tubular shells which are concentrically spaced for forming annular inlets for admitting combustion air. An upper tubular exhaust stack, similarly formed, admits additional combustion air for increasing the efficiency of combustion, increasing the flow of exhausted for improved atmospheric dispersion and for cooling the upper stack.

  6. Energy conservation from regenerative incineration

    SciTech Connect (OSTI)

    Pennington, R.L.

    1982-06-01

    The oil embargo in the winter of 1973 covered the nation with a serious energy crisis. Although the ''gas lines'' have subsided, sky-rocketing fuel costs and diminishing energy supplies linger on. Projected U.S. energy demands indicate normal energy requirements over a normal growth rate. However, when compared with the projected U.S. energy supplies, a very significant energy deficit may exist in the near future. Although coal and nuclear show substantial potential as energy sources, it is unlikely that they will fill the gap between energy demands and the gas and oil supplies. In view of the Three-Mile Island nuclear incident, and cutbacks in the state of Washington, it is doubtful that the 13% contribution to the energy supply in the part of nuclear power will ever materialize. Although coal supplies are very abundant, the development of coal technology will not meet the next decade's energy requirements as it is indicated by the fact that coal is supplying far less energy than forecasted by the government.

  7. University Park Data Dashboard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Dashboard University Park Data Dashboard The data dashboard for University Park, Maryland, a partner in the Better Buildings Neighborhood Program. Office spreadsheet icon University Park Data Dashboard More Documents & Publications Massachusetts -- SEP Data Dashboard Maryland Data Dashboard Bainbridge Island Data Dashboard

  8. Workplace Charging Challenge Partner: University of Connecticut |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Connecticut Workplace Charging Challenge Partner: University of Connecticut Workplace Charging Challenge Partner: University of Connecticut Joined the Challenge: February 2015 Headquarters: Storrs, CT Charging Location: Storrs, CT Domestic Employees: 4,816 The University of Connecticut is committed to leadership in campus sustainability, including objective measurement and clear, concise communications about its progress. Joining the Workplace Charging Challenge commits

  9. Oak Ridge Associated Universities Procurement Questionnaire Application

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Supplier Profile PIA, Oak ridge Operations Office | Department of Energy Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office PDF icon Oak Ridge Associated

  10. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subscribe to TUNL Seminars| Duke Colloquia| UNC Colloquia| NC-State Colloquia| TNT Seminars| All talks are on Thursday at 2:00 pm in Room 298 of the Physics Building, unless otherwise noted. There is a reception prior to the talk at 1:45 pm in the TUNL lobby. If you have questions about the seminars, you can email the TUNL secretary or call (919)-660-2600. Chairman: John Kelley. Thomas Langford Yale University Thursday, 02/04/2016, 02:00:PM, Physics 298 TBA Read the Abstract Steve Wender LANL

  11. Universality of Charged Multiplicity Distributions

    SciTech Connect (OSTI)

    Goulianos, K.; /Rockefeller U.

    1981-12-01

    The charged multiplicity distributions of the diffractive and non-diffractive components of hadronic interactions, as well as those of hadronic states produced in other reactions, are described well by a universal Gaussian function that depends only on the available mass for pionization, has a maximum at n{sub o} {approx_equal} 2M{sup 1/2}, where M is the available mass in GeV, and a peak to width ratio n{sub o}/D {approx_equal} 2.

  12. Bisfuel links - Arizona State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona State University http://chemistry.asu.edu/" target="_blank">ASU Department of Chemistry and Biochemistry http://sustainability.asu.edu/index.php" target="_blank">ASU Global Institute of Sustainability http://asulightworks.com/" target="_blank">ASU Lightworks http://sols.asu.edu/" target="_blank">ASU School of Life Sciences http://www.biodesign.asu.edu/" target="_blank">Biodesign Institute

  13. University of Illinois Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) University of Illinois Project 29609 irradiation. The objective of this test was to assess the radiation performance of ferritic alloys for advanced reactor applications. The FeCr-based alloy system is considered the lead alloy system for a variety of advanced reactor components and applications. Irradiations of FeCr alloy samples were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in a static capsule in the A-11 position of the ATR.

  14. RHIC - Exploring the Universe Within

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    A guided tour of Brookhaven's Relativistic Heavy Ion Collider (RHIC) conducted by past Laboratory Director John Marburger. RHIC is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around the world use RHIC to study what the universe may have looked like in the first few moments after its creation. RHIC drives two intersecting beams of gold ions head-on, in a subatomic collision. What physicists learn from these collisions may help us understand more about why the physical world works the way it does, from the smallest subatomic particles, to the largest stars.

  15. Portland State University Shattuck Hall

    High Performance Buildings Database

    Portland, OR Portland State's Shattuck hall was originally constructed as an elementary school in 1915. In 2007 the university undertook extensive renovations of the building to bring it up to current seismic requirements. In addition to structural improvements, the design team was able to upgraded the building's aging mechanical and electrical systems, upgrade plumbing, and restore the large light wells that bring daylight into the U-shaped building. The resulting building houses Portland State's Architecture department, where students are able to learn from the exposed building systems.

  16. UNIVERSITY OF CALIFORNIA BERKELEY UCR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    n 1 1 J} > 0 > , H 0 z r > DD 0 7} 0 7} < n * * UNIVERSITY OF CALIFORNIA BERKELEY UCR ^ r DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

  17. Research universities for the 21st century

    SciTech Connect (OSTI)

    Gover, J.; Huray, P.G.

    1998-05-01

    The `public outcomes` from research universities are educated students and research that extends the frontiers of knowledge. Measures of these `public outcomes` are inadequate to permit either research or education consumers to select research universities based on quantitative performance data. Research universities annually spend over $20 billion on research; 60% of these funds are provided by Federal sources. Federal funding for university research has recently grown at an annual rate near 6% during a time period when other performers of Federal research have experienced real funding cuts. Ten universities receive about 25% of the Federal funds spent on university research. Numerous studies of US research universities are reporting storm clouds. Concerns include balancing research and teaching, the narrow focus of engineering education, college costs, continuing education, and public funding of foreign student education. The absence of research on the `public outcomes` from university research results in opinion, politics, and mythology forming the basis of too many decisions. Therefore, the authors recommend studies of other nations` research universities, studies of various economic models of university research, analysis of the peer review process and how well it identifies the most capable research practitioners and at what cost, and studies of research university ownership of intellectual property that can lead to increased `public outcomes` from publicly-funded research performed by research universities. They advocate two practices that could increase the `public outcomes` from university research. These are the development of science roadmaps that link science research to `public outcomes` and `public outcome` metrics. Changes in the university research culture and expanded use of the Internet could also lead to increased `public outcomes`. They recommend the use of tax incentives to encourage companies to develop research partnerships with research universities.

  18. 2014 Race to Zero Student Design Competition: Ryerson University...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ryerson University's Urban Harvest Team Submission 2014 Race to Zero Student Design Competition: Ryerson University's Urban Harvest Team Submission Ryerson University's Urban ...

  19. 2014 Race to Zero Student Design Competition: Penn State University...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Penn State University Profile 2014 Race to Zero Student Design Competition: Penn State University Profile 2014 Race to Zero Student Design Competition: Penn State University ...

  20. Four Minority Universities Selected for Fossil Energy Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Students and faculty from the chosen universities - the University of Texas, El Paso; ... University of Texas, El Paso (El Paso, Texas) -- The design, optimization and control of ...

  1. Northern Arizona University Wind Projects | Open Energy Information

    Open Energy Info (EERE)

    Northern Arizona University Wind Projects (Redirected from Northern Arizona University Wind Project) Jump to: navigation, search Northern Arizona University ARD Wind Project...

  2. University Prosperity Game. Final report

    SciTech Connect (OSTI)

    Boyack, K.W.; Berman, M.

    1996-03-01

    Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games are unique in that both the game format and the player contributions vary from game to game. This report documents the University Prosperity Game conducted under the sponsorship of the Anderson Schools of Management at the University of New Mexico. This Prosperity Game was initially designed for the roadmap making effort of the National Electronics Manufacturing Initiative (NEMI) of the Electronics Subcommittee of the Civilian Industrial Technology Committee under the aegis of the National Science and Technology Council. The game was modified to support course material in MGT 508, Ethical, Political, and Social Environment of Business. Thirty-five students participated as role players. In this educational context the game`s main objectives were to: (1) introduce and teach global competitiveness and business cultures in an experiential classroom setting; (2) explore ethical, political, and social issues and address them in the context of global markets and competition; and (3) obtain non-government views regarding the technical and non-technical (i.e., policy) issues developed in the NEMI roadmap-making endeavor. The negotiations and agreements made during the game, along with the student journals detailing the players feelings and reactions to the gaming experience, provide valuable insight into the benefits of simulation as an advanced learning tool in higher education.

  3. NREL: MIDC/Elizabeth City State University (36.28 N, 76.22 W, 26 m, GMT-5)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elizabeth City State University

  4. University of Utah | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of Utah University of Utah FORGE logos 010416-06.jpg The Milford, Utah FORGE team, led by the University of Utah - Energy & Geoscience Institute (EGI), has identified a location where they propose to establish a geothermal laboratory. The proposed area has an established history of geothermal research and development, with a vast set of data from exploration wells and seismic stations that will help the Milford, Utah FORGE team characterize their potential site. The Milford, Utah

  5. Colleges and Universities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Professional Development » Colleges and Universities Colleges and Universities STATE All College All SEARCH Reset Map Here you'll find resources on higher education learning opportunities in energy, particularly those concerning energy efficiency and renewable energy. This list is a work in progress and is not intended to be all-inclusive or to assure individual program quality. You can also search for university programs in your state at the Interstate Renewable Energy

  6. James Madison University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    James Madison University James Madison University Back row: Kyle Kingsborough, Ryan Hoag, James Merrick, Kyle Byrd, Jackson Snarr, Corey Allison, Scott Beatty, Mick Blackwell, Blake Chapman, Nolan Morris. Middle row: Jonathan Romero, Philip Sturm, David Hryvniak, William Romov, Jonathan Nichols, Michael Daddio, Erwin James Will. Front row: Jesse Mlcoch, Natasha Babiarz, Ashleigh Cotting, Ashlynn Buttram, Genevieve D'Antonio. Photo from James Madison University. Back row: Kyle Kingsborough, Ryan

  7. University of Alaska Fairbanks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Fairbanks University of Alaska Fairbanks From left to right: Shannan Hoyos, Ed Greene, Matthew Staley, Patrick Wade, Nick Janssen, Chic O'Dell, Pryce Brown, Bruce Lee, Wyatt Rehder, Dominic Dionne. Photo from the University of Alaska, Fairbanks. From left to right: Shannan Hoyos, Ed Greene, Matthew Staley, Patrick Wade, Nick Janssen, Chic O'Dell, Pryce Brown, Bruce Lee, Wyatt Rehder, Dominic Dionne. Photo from the University of Alaska, Fairbanks. Project Description For the inaugural U.S.

  8. Dark matter in a bouncing universe

    SciTech Connect (OSTI)

    Cheung, Yeuk-Kwan E.; Kang, Jin U; Li, Changhong E-mail: jin.u.kang2@gmail.com

    2014-11-01

    We investigate a new scenario of dark matter production in a bouncing universe, in which dark matter was produced completely out of equilibrium in the contracting as well as expanding phase. We explore possibilities of using dark matter as a probe of the bouncing universe, focusing on the relationship between a critical temperature of the bouncing universe and the present relic abundance of dark matter.

  9. Exploring the Repeat-Protein Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring the Repeat-Protein Universe Exploring the Repeat-Protein Universe Print Wednesday, 13 April 2016 00:00 Naturally occurring proteins-chains of amino acids that fold into functional, three-dimensional shapes-are believed to represent just a small fraction of the universe of all possible permutations of amino-acid sequences and folds. How can we begin to systematically sift through those permutations to find and engineer from scratch (de novo) proteins with the characteristics desired for

  10. Kansas State University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kansas State University Kansas State University From left to right: Aaron Thomsen, Stuart Disberger, Bret Gross, Cody Yost, Joe Kuhn, Lane Yoder, Hussam Alghamdi, Will Duren, Martin Mixon, Ying Huang, Alex Wurtz, Tanzila Ahmed, Armando Marquez. Not pictured: Jordan Robl, Brandon Young, Shae Pelkowski. Photo from Kansas State University. From left to right: Aaron Thomsen, Stuart Disberger, Bret Gross, Cody Yost, Joe Kuhn, Lane Yoder, Hussam Alghamdi, Will Duren, Martin Mixon, Ying Huang, Alex

  11. Workplace Charging: Charging Up University Campuses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Workplace Charging: Charging Up University Campuses Carrie Giles, ICF International Carrie Ryder, ICF International Stephen Lommele, National Renewable Energy Laboratory March 2016 DRAFT REPORT Workplace 2 Workplace Charging: Charging Up University Campuses As leading regional employers, colleges and universities are on the front line of local- and national-level technology trends. To remain competitive, many schools are offering plug-in electric vehicle (PEV) charging to their faculty, staff,

  12. University of Alaska Fairbanks: Business Plan

    Office of Environmental Management (EM)

    Advisory Committee | Department of Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel,"

  13. Boise State University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boise State University Boise State University Top left: Mike Sansorm, Calvin Brown, Cody McConkey, Luke Weaver. Top right: Cameron Allen, Scott Roskens, Mitchell Petronek, Davis Gumbo. Bottom Left: Jerad Deitrick, Brandon Lee, Nael Naser, Luke Ganschow. Bottom middle: Grant Stephens, Michael Shoaee, Brian Cardwell, Rory O'Leary. Bottom right: Brian Dambi, Stephan Stuats, Adrian Reyes, Haitian Xu, Firaj Almasyabi. Photo from Boise State University. Top left: Mike Sansorm, Calvin Brown, Cody

  14. Alumni: Sarah Nurre, University of Arkansas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sarah Nurre, University of Arkansas Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Alumni: Sarah Nurre, University of Arkansas Optimizing complex systems July 1, 2015 Sarah Nurre Sarah Nurre Contact Linda Anderman Email Sarah Nurre Sarah Nurre moving to the University of Arkansas Even though Sarah Nurre only spent two months at the Lab, in what is now Defense Systems and Analysis, she says it was a great experience,

  15. New observatory studies universe's most energetic phenomena

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    computer keyboard were a detector array? To envision how the detectors work, Jordan Goodman, professor of physics at the University of Maryland and principal investigator for...

  16. Oregon State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    search Hydro | Hydrodynamic Testing Facilities Name Oregon State University Address O.H. Hinsdale Wave Research Laboratory, 220 Owen Hall Place Corvallis, Oregon Zip 97331...

  17. University of Maine Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    search Hydro | Hydrodynamic Testing Facilities Name University of Maine Address 208 Boardman Hall Place Orono, Maine Zip 04469 Sector Hydro Phone number (207) 581-2129 Website...

  18. Fermilab Today | University of Wisconsin Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Wisconsin experimental particle physics group focuses on searches for the Higgs boson within and beyond the Standard Model. The group also focuses on new exotic...

  19. University Partnerships / Academic Alliances | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Consequently, the Office of Research, Development, Test and Evaluation supports university partnerships in areas of fundamental science and technology relevant to Stockpile ...

  20. Workplace Charging Challenge Partner: Stanford University | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford University employs best practices to minimize the environmental impact of its operations, including its award-winning Transportation Demand Management program. As part of ...

  1. University of Minnesota Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Minnesota Address St. Anthony Falls Laboratory, 2 Third Avenue SE Place...

  2. NREL, Universities Hail Renewable Energy 'Collaboratory' Bill...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL, Universities Hail Renewable Energy 'Collaboratory' Bill June 8, 2006 Denver, Colo. - Leaders of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), ...

  3. University of New Orleans | Open Energy Information

    Open Energy Info (EERE)

    Testing Facilities Name University of New Orleans Address School of Naval Architecture, Engineering Bldg UNO Lakefront Campus, 2000 Lakeshore Drive Place New Orleans,...

  4. NETL: University Turbine Systems Research Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UTSR also offers a Gas Turbine Industrial Fellowship program to recruit qualified university research students. This fellowship brings highly trained student researchers from the ...

  5. University of Alaska Fairbanks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Matt Weisbrod, Mechanical Engineering Kansas State University Team roster: David Chang, Business AdministrationInternational Business and Logistics; Nathan Griffin, Business ...

  6. Fermilab Today | University of Texas at Austin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Austin March 13, 2013 NAME: University of Texas at Austin HOME TOWN: Austin, Texas MASCOT: Bevo the Longhorn COLORS: Burnt orange COLLABORATING AT FERMILAB SINCE: Mid-1990s...

  7. University of North Carolina | Open Energy Information

    Open Energy Info (EERE)

    Carolina Jump to: navigation, search Name: University of North Carolina Place: Chapel Hill, North Carolina Zip: 27514 Sector: Solar, Wind energy Product: Chapel Hill-based public...

  8. University of Delaware | Open Energy Information

    Open Energy Info (EERE)

    Newark, Delaware Sector: Solar Product: University with a research department leading a solar cell development consortium. Coordinates: 44.690435, -71.951685 Show Map Loading...

  9. 2015 University Turbine Systems Research Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Turbine Systems Research Workshop November 3-5, 2015 Accommodations Georgian Terrace Hotel 659 Peachtree Street, NE Atlanta, GA 30308 The Georgian Terrace Hotel will be...

  10. Northwestern University Team Wins Energy Department's National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department's National Clean Energy Business Plan Competition Northwestern University ... NuMat Technologies won based on its commercialization idea, go-to market strategy, team ...

  11. University of California, Berkeley | Open Energy Information

    Open Energy Info (EERE)

    Berkeley Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of California, Berkeley Address 1301 S 46th Street Place Richmond, California Zip 94804...

  12. University Program in Advanced Technology | National Nuclear...

    National Nuclear Security Administration (NNSA)

    ASC at the Labs Supercomputers University Partnerships Predictive Science Academic ... ASC Program Elements Facility Operations and User Support Computational Systems & Software ...

  13. University of California Davis | Open Energy Information

    Open Energy Info (EERE)

    65714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map References: University of California, Davis1 This article is a stub. You can help...

  14. Toward Design of a Universal Flu Vaccine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toward Design of a Universal Flu Vaccine Print Worldwide, influenza causes substantial deaths and yearly economic burdens, but the highly changeable nature of the flu virus ...

  15. University of Rhode Island | Open Energy Information

    Open Energy Info (EERE)

    Testing Facilities Name University of Rhode Island Address Department of Ocean Engineering, Sheets Building, Bay Campus Place Narragansett, Rhode Island Zip 02882 Sector...

  16. Our Universe from the cosmological constant

    SciTech Connect (OSTI)

    Barrau, Aurlien; Linsefors, Linda E-mail: linda.linsefors@lpsc.in2p3.fr

    2014-12-01

    The issue of the origin of the Universe and of its contents is addressed in the framework of bouncing cosmologies, as described for example by loop quantum gravity. If the current acceleration is due to a true cosmological constant, this constant is naturally conserved through the bounce and the Universe should also be in a (contracting) de Sitter phase in the remote past. We investigate here the possibility that the de Sitter temperature in the contracting branch fills the Universe with radiation that causes the bounce and the subsequent inflation and reheating. We also consider the possibility that this gives rise to a cyclic model of the Universe and suggest some possible tests.

  17. Fermilab Today | University of Washington Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington August 27, 2009 NAME: University of Washington HOME TOWN: Seattle, Washington MASCOT: Husky SCHOOL COLORS: Purple and gold PARTICLE PHYSICS COLLABORATIONS: DZero and...

  18. Colorado State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Colorado State University Address Daryl B. Simons Building, Engineering Research Center, 1320 Campus...

  19. Oregon State University OSU | Open Energy Information

    Open Energy Info (EERE)

    OSU Jump to: navigation, search Name: Oregon State University OSU Address: 1148 Kelley Engineering Center Place: Corvallis Zip: 97331 Region: United States Sector: Marine and...

  20. Susan Murabana - Astronomer, Global Hands On Universe

    ScienceCinema (OSTI)

    Murabana, Susan

    2013-05-29

    Susan Murabana is working to bring astronomy education to Africa through Global Hands-On Universe, a program founded by Berkeley Lab astronomer Carl Pennypacker.

  1. University of Minnesota | Open Energy Information

    Open Energy Info (EERE)

    search Name: University of Minnesota Place: Minneapolis, Minnesota Product: Higher education research institution. Coordinates: 44.979035, -93.264929 Show Map Loading map......

  2. Steven K. Krueger, University of Utah

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Cumulus Convection and the Boundary Layer at the Southern Great Plains ACRF Steven K. Krueger, University of Utah from Arakawa and Jung (2003) Interactions of Cumulus...

  3. University, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    University, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.6435064, -82.3506142 Show Map Loading map... "minzoom":false,"mappingse...

  4. University of Manchester | Open Energy Information

    Open Energy Info (EERE)

    Name: University of Manchester Address: Core Technology Facility 46 Grafton St Place: Manchester Zip: M13 9NT Region: United Kingdom Sector: Marine and Hydrokinetic Phone Number:...

  5. University of Greenwich | Open Energy Information

    Open Energy Info (EERE)

    Greenwich Jump to: navigation, search Name: University of Greenwich Address: Old Royal Naval College, 30 Park Row, London, Greenwich SE10 9LS, United Kingdom Year Founded: 1890...

  6. Columbia University | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Columbia University Professor Michael Mauel PPPL Engineer Steve Raftopoulos assisted ... Close collaboration between the PPPL metrology engineer Steve Raptopoulos and the Columbia ...

  7. Energy Department Announces Finalists for National University...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    engineering, and math, the U.S. Energy Department announced that eight university teams have been selected to compete in the 2012 National Geothermal Student Competition. ...

  8. University Partnerships | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    The success of ASC depends on the ability to demonstrate that simulations can credibly be used to replace nuclear testing as a means of ensuring stockpile confidence. Universities ...

  9. Jelly Bean Universe (Dark Matter / Dark Energy)

    ScienceCinema (OSTI)

    Kurt Riesselmann

    2010-01-08

    Fermilab's Kurt Riesselmann explains how to make a jelly bean universe to help explain the mysteries of dark matter and dark energy.

  10. Universal GeoPower | Open Energy Information

    Open Energy Info (EERE)

    GeoPower Jump to: navigation, search Name: Universal GeoPower Place: Houston, Texas Zip: 77007 Sector: Geothermal energy Product: A Texas-based geothermal development company....

  11. Argonne National Laboratory and Mississippi State University...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory and Mississippi State University Partner to Create Energy Storage Technology Solutions for Southeast Region News Release Media Contacts Ben Schiltz ...

  12. Universal: Proposed Penalty (2013-SE-26004)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Universal Lighting Technologies, Inc. manufactured and distributed noncompliant fluorescent lamp ballasts in the U.S.

  13. Fermilab Today | University of Texas at Arlington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas at Arlington Aug. 22, 2012 NAME: University of Texas at Arlington HOME TOWN: Arlington, Texas MASCOT: Blaze the Mustang SCHOOL COLORS: Orange and blue COLLABORATING AT...

  14. Applications from Universities and Other Research Institutions...

    Office of Science (SC) Website

    Applications from Universities and Other Research Institutions Basic Energy Sciences (BES) BES ... Construction Review EPSCoR DOE Office of Science Graduate Fellowship (DOE ...

  15. Multidisciplinary University Research Initiative: High Operating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In August 2012, DOE announced two awards under the Multidisciplinary University Research Initiative (MURI) to develop high-operating temperature heat-transfer fluids for ...

  16. Purdue University Energy Center | Open Energy Information

    Open Energy Info (EERE)

    society is currently seeking as society prepares for the eventual transition from fossil fuels to other energy sources. References: Purdue University Energy Center1 This...

  17. University of Alaska Fairbanks: Technical Design Report

    Office of Environmental Management (EM)

    University of Alaska Fairbanks Collegiate 2014 Technical Report 2 Table of Contents Turbine Overview ................................................................................................................................................. 3 Blade Design Techniques and Methods ......................................................................................................... 3 Hub Design Techniques and Methods

  18. Workplace Charging Challenge Partner: University of Maryland...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UM BWMC's Green Health Committee is made up of hospital leaders, managers, nurses and ... University of Maryland Baltimore Washington Medical Center First Hospital in Maryland to ...

  19. Toward Design of a Universal Flu Vaccine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toward Design of a Universal Flu Vaccine Print Worldwide, influenza causes substantial deaths and yearly economic burdens, but the highly changeable nature of the flu virus...

  20. Southern Oregon University: Committed to Sustainability

    Broader source: Energy.gov [DOE]

    In this edition of “Clean Energy in Our Community," we explore how Southern Oregon University is working to create a carbon-neutral campus by 2050.

  1. structures. Hazra, Siddharth S. (Carnegie Mellon University,...

    Office of Scientific and Technical Information (OSTI)

    fracture in micron-scale polycrystalline silicon MEMS structures. Hazra, Siddharth S. (Carnegie Mellon University, Pittsburgh, PA); de Boer, Maarten Pieter (Carnegie Mellon...

  2. The Ohio State University Bioproducts Innovation Center Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ohio State University Bioproducts Innovation Center Sustainable Materials Networking Event The Ohio State University Bioproducts Innovation Center Sustainable Materials Networking...

  3. University at Albany: State University of New York Video (Text Version)

    Broader source: Energy.gov [DOE]

    Mary Ellen Mallia: Hi, I'm Mary Ellen Malia, the Director of Sustainability at the University at Albany.

  4. EM, University of Nevada, Reno Team on "Packaging University" |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy University of Nevada, Reno Team on "Packaging University" EM, University of Nevada, Reno Team on "Packaging University" January 14, 2016 - 12:25pm Addthis Ron Hafner with Lawrence Livermore National Laboratory lectures for a course in San Ramon, Calif. on packaging and transporting radioactive material. Ron Hafner with Lawrence Livermore National Laboratory lectures for a course in San Ramon, Calif. on packaging and transporting radioactive material.

  5. TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS

    SciTech Connect (OSTI)

    Cem Sarica; Michael Volk

    2004-06-01

    As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multi-phase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines, because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines.

  6. Summary report : universal fuel processor.

    SciTech Connect (OSTI)

    Coker, Eric Nicholas; Rice, Steven F.; Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M.

    2008-01-01

    The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

  7. Boise State University Idaho | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boise State University Idaho Boise State University Idaho Team Roster: Anaysa Aguilar, Mechanical Engineering; Chris Davis, Mechanical Engineering; Dennis Twitty, Mechanical Engineering; Omar Alozaymi, Electrical Engineering; Joe Fercho, Electrical Engineering; Seth Townsend, Electrical Engineering; Carson Heagen, Business; Alex Hernandez, Business; Ashley Hulse, Business; Colin Lesch, Business; Joseph Skogen, Business Team Roster: Anaysa Aguilar, Mechanical Engineering; Chris Davis, Mechanical

  8. California State University, Chico | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California State University, Chico California State University, Chico Team roster: Aditya Joshi , Computer Science; Angelina Teal Jonson, Mechanical Engineering; Aubrey Connors, Business Administration, Option: Entrepreneurship; Colleen Robb, Co-PI, Entrepreneurship, College of Business; Corey Starbird, Electrical Engineering; Darrell Sinclair, Mechanical Engineering; David Alexander, PI, Mechanical Engineering; Eric Myers, Business Administration, Option: Entrepreneurship; Henry Sanchez,

  9. Kansas State University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kansas State University Kansas State University Team roster: Tanzila Ahmed, Electrical Engineering; Lawryn Edmonds, Electrical Engineering; Jacob Meyer, Electrical Engineering; Michael Banowetz, Electrical Engineering; David Plenert, Electrical Engineering; Timothy Sample, Electrical Engineering; Stephen Debes, Electrical Engineering; Connor Krause, Electrical Engineering; Andrew Johnson, Electrical Engineering; Sshangxian Wang, Electrical Engineering; Mark Ronning, Electrical Engineering;

  10. Quantum chaos in the mixmaster universe

    SciTech Connect (OSTI)

    Berger, B.K.

    1989-04-15

    A Monte Carlo simulation of the vacuum Bianchi type-IX (mixmaster) cosmology yields a significant correlation between large universe volume and high anisotropy. An analog of the model's chaotic classical behavior is seen in the break up of the universe wave function at large volume into fingers in the corners of the minisuperspace anisotropy potential.

  11. Northern Arizona University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northern Arizona University Northern Arizona University Team Roster: Anas Alkandari, Mechanical Engineering; Randon Allen, Electrical Engineering; Hashim Alramadhan, Mechanical Engineering; Jessica Bauer, Mechanical Engineering; Luke Baxter, Business Administration; Thomas Begay, Business Administration; Connor Campbell, Business Administration; Nathan Ceniceros, Mechanical Engineering; Norman Clark, Mechanical Engineering; Michael Coil, Business Administration; Jeremy Cook, Mechanical

  12. Stabilizing oscillating universes against quantum decay

    SciTech Connect (OSTI)

    Mithani, Audrey T.; Vilenkin, Alexander

    2015-07-07

    We investigate the effect of vacuum corrections, due to the trace anomaly and Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. However, stability may be achieved for some specially fine-tuned non-vacuum states.

  13. The Pennsylvania State University | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Pennsylvania State University The Pennsylvania State University Team roster: Mitchell Proulx, Mechanical Engineering; Jason Cornelius, Aerospace Engineering; Kyle Dolf, Mechanical Engineering; Nader Abdelnour, Finance; Paul Caldwell, Industrial Engineering; Joseph Consoli, Mechanical Engineering; Adam DiPillo, Aerospace Engineering; Lindsey Hutterer, Public relations; Emily Kaercher, Mechanical Engineering; Daehyun David Lee, Chemical Engineering; Jhi Yong Loke, Mechanical Engineering; John

  14. DOE Announces $375,000 Grant to Lincoln University and the University of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Missouri-Rolla | Department of Energy 5,000 Grant to Lincoln University and the University of Missouri-Rolla DOE Announces $375,000 Grant to Lincoln University and the University of Missouri-Rolla December 7, 2005 - 4:43pm Addthis Funding to Expand Collaborative Program in Nuclear Engineering Education WASHINGTON, DC - The Department of Energy (DOE) today awarded a $375,000 grant to two universities in Missouri to establish a collaborative nuclear engineering program. The partnership between

  15. NETL Launches a University Coalition for Fossil Energy Research at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pennsylvania State University | Department of Energy Launches a University Coalition for Fossil Energy Research at Pennsylvania State University NETL Launches a University Coalition for Fossil Energy Research at Pennsylvania State University May 11, 2016 - 9:00am Addthis The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected Pennsylvania State University as the lead institution to establish the University Coalition for Fossil Energy Research. The Coalition

  16. University Research | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Research Universities Universities Home Interactive Grants Map SC In Your State University Science Highlights University Research News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 University Research Print Text Size: A A A Subscribe FeedbackShare Page GO 05.11.16University Research CERN's Large Hadron Collider is Once Again Smashing Protons and Taking Data External link Several thousand physicists

  17. University of Delaware | CCEI Past Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Events DATE EVENT PRESENTER(S) TIME (EST) October 21, 2015 Student Seminar Tyler Josephson University of Delaware (Advisor: Dr. Stavros Caratzoulas) 12:30 p.m. - 1:30 p.m. October 13, 2015 Guest Speaker Seminar Professor John Kitchin Carnegie Mellon University "Emacs + Org-mode for Reproducible, Functional Scientific Documents" 11:30 a.m. - 12:30 p.m. September 30, 2015 Postdoc Seminar Dr. Glen Jenness University of Delaware (Advisor: Dr. Stavros Caratzoulas) 12:30 p.m. - 1:30

  18. Ni Ni: University of California - Los Angeles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ni Ni: University of California - Los Angeles Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Ni Ni: University of California - Los Angeles Condensed matter January 1, 2015 Ni Ni Ni Ni Contact Linda Anderman Email Ni Ni Ni Ni now at the University of California-Los Angeles After finishing her work at Princeton, Ni Ni began at the Lab as a postdoc in 2012 with the Condensed Matter and Magnetic Science Group. Ni was

  19. Workplace Charging Challenge Partner: Eastern Connecticut State University

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Connecticut State University Workplace Charging Challenge Partner: Eastern Connecticut State University Workplace Charging Challenge Partner: Eastern Connecticut State University Joined the Challenge: September 2015 Headquarters: Willimantic, CT Charging Location: Willimantic, CT Domestic Employees: 980 As part of the University's commitment to Sustainability, Eastern Connecticut State University installed its first Level 2 charging station in December 2014, creating

  20. Alternative Fuels Data Center: James Madison University Teaches Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation James Madison University Teaches Alternative Transportation to someone by E-mail Share Alternative Fuels Data Center: James Madison University Teaches Alternative Transportation on Facebook Tweet about Alternative Fuels Data Center: James Madison University Teaches Alternative Transportation on Twitter Bookmark Alternative Fuels Data Center: James Madison University Teaches Alternative Transportation on Google Bookmark Alternative Fuels Data Center: James Madison University

  1. Universal: Noncompliance Determination (2013-SE-26004)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Universal Lighting Technologies, Inc. finding that fluorescent lamp ballast model B140R277HP does not comport with the energy conservation standards.

  2. Emergent universe in spatially flat cosmological model

    SciTech Connect (OSTI)

    Zhang, Kaituo; Yu, Hongwei; Wu, Puxun E-mail: wpx0227@gmail.com

    2014-01-01

    The scenario of an emergent universe provides a promising resolution to the big bang singularity in universes with positive or negative spatial curvature. It however remains unclear whether the scenario can be successfully implemented in a spatially flat universe which seems to be favored by present cosmological observations. In this paper, we study the stability of Einstein static state solutions in a spatially flat Shtanov-Sahni braneworld scenario. With a negative dark radiation term included and assuming a scalar field as the only matter energy component, we find that the universe can stay at an Einstein static state past eternally and then evolve to an inflation phase naturally as the scalar field climbs up its potential slowly. In addition, we also propose a concrete potential of the scalar field that realizes this scenario.

  3. University of Rochester | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    University of Rochester OMEGA and OMEGA EP Two glass laser systems make up the Omega Laser Facility: the 60-beam, 30kJ UV OMEGA laser that has been operational since 1995, and the ...

  4. Photosynthetic Antenna Research Center | Washington University...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All Hands 2015 Our sixth annual meeting at Washington University in St. Louis PARC: Harvesting Solar Energy for the Future In this video, we detail the vision and goals of PARC's ...

  5. DOT Awards University Transportation Centers $63 Million

    Broader source: Energy.gov [DOE]

    The U.S. Department of Transportation's (DOT) announced approximately $63 million in grants to 33 University Transportation Centers to advance research and education programs that address critical transportation challenges.

  6. University of Pittsburgh | Open Energy Information

    Open Energy Info (EERE)

    in 1787, the University of Pittsburgh is one of the oldest institutions of higher education in the United States. Coordinates: 40.438335, -79.997459 Show Map Loading map......

  7. University Coal Research Program 2013 Selections

    Broader source: Energy.gov [DOE]

    Since the University Coal Research Program's inception in 1979, more than 728 research projects have been funded. With a combined value in excess of $132 million, these projects have provided new...

  8. Saybolt universal viscosity converted to kinematic

    SciTech Connect (OSTI)

    Anaya, C.; Bermudez, O.

    1987-09-21

    This article describes a program for personal and handheld computers, written in Basic, which has been developed for the conversion of Saybolt universal viscosity in Saybolt Universal Seconds (SSU or SUS) to kinematic viscosity in centistokes (cSt), at any selected temperature. It was developed using the mathematical relationship presented in the American Society for Testing and Materials (ASTM) standard D2161-82. In the standard, an equation is presented to convert kinematic viscosity to Saybolt universal viscosity, but nothing is presented to convert from Saybolt to kinematic because it is necessary to find the roots of a nonexplicit function. There are several numerical methods that can be used to determine the roots of the nonexplicit function, and therefore, convert Saybolt universal viscosity to kinematic viscosity. In the program, the first iteration of the second-order Newton-Raphson method is followed by the Wegstein method as a convergence accelerator.

  9. Gallaudet University Spring 2015 Career Fair

    Broader source: Energy.gov [DOE]

    Gallaudet University, Field House Gymnasium, 800 Florida Avenue NE, Washington, DC 20002 Contact: DOECorporateRecruitment@hq.doe.govhttp://bit.ly/1vjfWjFThis event was rescheduled due to inclement...

  10. University of Portland Google Vernier Software + Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sponsors for their support of the bpa science bowl University of Portland Google Vernier Software + Technology Schweitzer Engineering Laboratories B O N N E V I L L E P O W E...

  11. SSL GATEWAY UNIVERSITY OF FLORIDA DANCE SHOWCASE

    Broader source: Energy.gov [DOE]

    View the video showing side-by-side dance performances with halogen and LED sidelighting as part of the Solid-State Lighting GATEWAY demonstration at the University of Florida.

  12. Exploring the Repeat-Protein Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring the Repeat-Protein Universe Print Naturally occurring proteins-chains of amino acids that fold into functional, three-dimensional shapes-are believed to represent just a small fraction of the universe of all possible permutations of amino-acid sequences and folds. How can we begin to systematically sift through those permutations to find and engineer from scratch (de novo) proteins with the characteristics desired for medical, environmental, and industrial purposes? To address this

  13. Exploring the Repeat-Protein Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring the Repeat-Protein Universe Print Naturally occurring proteins-chains of amino acids that fold into functional, three-dimensional shapes-are believed to represent just a small fraction of the universe of all possible permutations of amino-acid sequences and folds. How can we begin to systematically sift through those permutations to find and engineer from scratch (de novo) proteins with the characteristics desired for medical, environmental, and industrial purposes? To address this

  14. Exploring the Repeat-Protein Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring the Repeat-Protein Universe Print Naturally occurring proteins-chains of amino acids that fold into functional, three-dimensional shapes-are believed to represent just a small fraction of the universe of all possible permutations of amino-acid sequences and folds. How can we begin to systematically sift through those permutations to find and engineer from scratch (de novo) proteins with the characteristics desired for medical, environmental, and industrial purposes? To address this

  15. Toward Design of a Universal Flu Vaccine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toward Design of a Universal Flu Vaccine Toward Design of a Universal Flu Vaccine Print Wednesday, 30 January 2013 00:00 Worldwide, influenza causes substantial deaths and yearly economic burdens, but the highly changeable nature of the flu virus complicates the production of an effective vaccine. The Centers for Disease Control and Prevention (CDC) estimates that the effectiveness of this year's flu vaccine is about 62%. For comparison, this number for childhood vaccines is routinely well over

  16. University of Kansas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kansas University of Kansas First row: Katrina Legursky, Eleazar Lechino, Brandon Basgall , Sunayan Mullick, Eilish McGuinness, Mary Pat Whittaker, Cindy Dunham, Alejandra Escalera, Arnobio Morelix. Middle row: Julian McCafferty, Darwin May, Yinglong Xu, James Sellers, Luis Berges, Emily Thompson, Andrew Lichter, Ben Tumbleson. Back row: Sean Derry, Evan Iliff, Michael Zielinski, Tondi Kambarami, Mark Fletcher, Evan Reznicek. Photo from University of Kansas. First row: Katrina Legursky, Eleazar

  17. GATEWAY DEMONSTRATION UNIVERSITY PROJECTS | Department of Energy

    Energy Savers [EERE]

    DEMONSTRATION UNIVERSITY PROJECTS GATEWAY DEMONSTRATION UNIVERSITY PROJECTS A college campus features a wide range of lighting applications under one administrative "rooftop" - classrooms, offices, theaters, labs, libraries, dining halls, dormitories, museums, chapels, walkways, parking lots, parking garages, lecture halls, arenas, and outdoor stadiums. Campuses are ideal testing grounds in which to study lighting in its many forms, and they provide unique opportunities for broad

  18. Nurturing young children's curiosity about the universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nurturing young children's curiosity about the universe Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Nurturing young children's curiosity about the universe STEM to Read program inspires young minds July 1, 2014 Story time at the Embudo Valley Library. Story time at the Embudo Valley Library. Contact Community Programs Director Kurt Steinhaus Email Editor Ute Haker Email Over the coming year

  19. NERSC and the Fate of the Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC and the Fate of the Universe NERSC and the Fate of the Universe Science Magazine Names Supernova Cosmology Project "Breakthrough of the Year" January 4, 1999 When the National Energy Research Scientific Computing Center (NERSC) moved to Berkeley Lab in 1996, a computational science program was created to encourage collaborations between physical and computer scientists. The Supernova Cosmology Project's work was one of the first projects funded; it demonstrates how

  20. Oak Ridge Associated Universities 2010 Bibliography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Bibliography Prepared by ORAU Communications and Marketing P.O. Box 117, MS 44 Oak Ridge, Tennessee 37831-0117 www.orau.org/about-orau/publications.aspx Oak Ridge Associated Universities (ORAU) is a university consortium leveraging the scientific strength of major research institutions to advance science and education by partnering with national laboratories, government agencies, and private industry. ORAU manages the Oak Ridge Institute for Science and Education for the U.S. Department of

  1. Exploring the Repeat-Protein Universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exploring the Repeat-Protein Universe Print Naturally occurring proteins-chains of amino acids that fold into functional, three-dimensional shapes-are believed to represent just a small fraction of the universe of all possible permutations of amino-acid sequences and folds. How can we begin to systematically sift through those permutations to find and engineer from scratch (de novo) proteins with the characteristics desired for medical, environmental, and industrial purposes? To address this

  2. A New Universal Parameter for Superconductivity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Universal Parameter for Superconductivity A New Universal Parameter for Superconductivity Print Thursday, 14 April 2016 00:00 Scientists have been researching high-temperature (high-Tc) superconductors for decades with the goal of finding materials that express superconducting capabilities at room temperature, which would be a requirement for practical and cost-effective applications. The higher the operating temperature, the more realistic energy-saving applications such as lossless

  3. Director, health Physics Office Columbia University

    Office of Legacy Management (LM)

    f. 3 -J Mr. Philip tori0 Director, health Physics Office Columbia University 289 Engineering Terrace 520 West 120th Street New York, New York 10027 NY.3 "I A\, 4 f- ' :""5 . . ;. ,_ i._ ' L, Dear Mr. Lorio: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on Columbia University facilities to determine whether they contain residual radioactivity traceable to activities conducted on behalf of the

  4. Universal Fluid Droplet Ejector - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Find More Like This Return to Search Universal Fluid Droplet Ejector SLAC National Accelerator Laboratory Contact SLAC About This Technology Technology Marketing SummaryStanford researchers have developed a patented, economical fluid droplet ejector that is capable of varying the vertical and horizontal inter-droplet spacing of a two-dimensional droplet array in real time. This universal design is compatible for a wide variety of fluids because it

  5. Auburn University | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Auburn University Auburn University Professors J. Hanson and G. Hartwell Plasma equilibrium reconstruction relies on many pin-point magnetic field measurements (~ 100) during the plasma discharge and rather detailed analysis. A widely used analysis code to perform these reconstructions is the VMEC MHD equilibrium code, developed for the 2-D magnetic field configuration of the tokamak device. One complication to the magnetic field measurements within the plasma is compensating for induced

  6. Howard University Career Exploration Fair | Department of Energy

    Energy Savers [EERE]

    University Career Exploration Fair Howard University Career Exploration Fair February 2, 2016 2:00PM to 6:00PM EST Howard University Website Link Contact Kimberly Chappell or...

  7. 24 Universities Receiving Funding to Train Next Generation of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    San Francisco, CA 1,143,093 San Diego State University Research Foundation San Diego, CA ... University of Miami Coral Gables, FL 1,000,000 Iowa State University of Science and ...

  8. VWZ-0017- In the Matter of University of California

    Broader source: Energy.gov [DOE]

    This decision considers a Motion to Dismiss filed by the University of California (the University) on October 6, 1999. In its Motion, the University seeks dismissal of the complaint filed against...

  9. University of California San Diego | Open Energy Information

    Open Energy Info (EERE)

    University of California, San Diego Product: A University in California. References: University of California, San Diego1 This article is a stub. You can help OpenEI by expanding...

  10. Categorical Exclusion Determinations: NNSA-Defense Science University

    Energy Savers [EERE]

    Programs | Department of Energy Defense Science University Programs Categorical Exclusion Determinations: NNSA-Defense Science University Programs Categorical Exclusion Determinations issued by NNSA-Defense Science University Programs. DOCUMENTS AVAILABLE FOR DOWNLOAD No downloads found for this office.

  11. Waste utilization as an energy source: Municipal wastes. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The bibliography contains citations concerning the utilization of municipal wastes as an energy source. Articles discuss energy derived from incineration/combustion, refuse-derived fuels, co-firing municipal waste and standard fuels, landfill gas production, sewage combustion, and other waste-to-energy technologies. Citations address economics and efficiencies of various schemes to utilize municipal waste products as energy sources. (Contains a minimum of 130 citations and includes a subject term index and title list.)

  12. The Future of Electric Vehicles and Arizona State University's MAIL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battery | Department of Energy The Future of Electric Vehicles and Arizona State University's MAIL Battery The Future of Electric Vehicles and Arizona State University's MAIL Battery August 11, 2010 - 4:26pm Addthis Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Cody Friesen and his team at Arizona State University | Photo Credit Arizona State University Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this

  13. Workplace Charging Challenge Partner: University at Albany: State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University of New York | Department of Energy at Albany: State University of New York Workplace Charging Challenge Partner: University at Albany: State University of New York Workplace Charging Challenge Partner: University at Albany: State University of New York Joined the Challenge: October 2015 Headquarters: Albany, NY Charging Location: Albany, NY Domestic Employees: 5,900 The Office of Environmental Sustainability and the Office of Parking & Mass Transit Services are committed to

  14. University Park Community Solar LLC | Open Energy Information

    Open Energy Info (EERE)

    Park Community Solar LLC Jump to: navigation, search Name: University Park Community Solar LLC Address: 4313 Tuckerman St. Place: University Park, Maryland Zip: 20782 Region:...

  15. DOE Announces Over $30 Million to Help Universities Train the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30 Million to Help Universities Train the Next Generation of Industrial Energy Efficiency Experts DOE Announces Over 30 Million to Help Universities Train the Next Generation of ...

  16. Universal Entanglement Entropy in 2D Conformal Quantum Critical...

    Office of Scientific and Technical Information (OSTI)

    Universal Entanglement Entropy in 2D Conformal Quantum Critical Points Citation Details In-Document Search Title: Universal Entanglement Entropy in 2D Conformal Quantum Critical ...

  17. FACT SHEET: Clean Coal University Research Awards and Project...

    Energy Savers [EERE]

    FACT SHEET: Clean Coal University Research Awards and Project Descriptions FACT SHEET: Clean Coal University Research Awards and Project Descriptions As part of President Obama's ...

  18. DOE - Office of Legacy Management -- University of Rochester...

    Office of Legacy Management (LM)

    -- Colleges and Universities; September 23, 1987 NY.20-2 - DOE Letter; J. Wagoner to Mayor Johnson; Subject: information on the University of Rochester site; April 3, 1995...

  19. Case Western Reserve University's Institute for Advanced Materials...

    Open Energy Info (EERE)

    Reserve University's Institute for Advanced Materials Jump to: navigation, search Name: The Institute for Advanced Materials at Case Western Reserve University Address: 2061...

  20. University of Minnesota Morris II - PES | Open Energy Information

    Open Energy Info (EERE)

    Morris II - PES Jump to: navigation, search Name University of Minnesota Morris II - PES Facility University of Minnesota Morris II - PES Sector Wind energy Facility Type Community...