Powered by Deep Web Technologies
Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ORISE: University Radioactive Ion Beam Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

UNIRIB UNIRIB Research Overview Physics Topics Equipment Development Education and Training People Publications Overview 2009 Bibliography 2008 Bibliography 2007 Bibliography 2006 Bibliography How to Work With Us Contact Us Oak Ridge Institute for Science Education University Radioactive Ion Beam Consortium The University Radioactive Ion Beam (UNIRIB) consortium is a division of the Oak Ridge Institute for Science and Education (ORISE) focused on cutting-edge nuclear physics research. UNIRIB is a collaborative partnership involving Oak Ridge National Laboratory (ORNL) and nine member universities that leverages national laboratory and university resources to effectively accomplish the U.S. Department of Energy's (DOE) strategic goals in the fundamental structure of nuclei.

2

Laser ion source development at Holifield Radioactive Ion Beam Facility  

Science Conference Proceedings (OSTI)

This report describes the efforts made to develop a resonant-ionization laser ion source based on tunable Ti:sapphire lasers for nuclear physics and astrophysics research at Holifield Radioactive Ion Beam Facility. Three Ti:sapphire lasers have been upgraded with individual pump lasers to eliminate laser power losses due to synchronization delays. Ionization schemes for 14 elements have been obtained. Off-line studies show that the overall efficiency of the laser ion source can be as high as 40%. TaC surface coatings have been investigated for minimizing surface and bulk trapping of the atoms of interest.

Liu, Y.; Havener, C. C.; Beene, J. R. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Gottwald, T.; Mattolat, C.; Vane, C. R.; Wendt, K. [Institute of Physics, University of Mainz, D-55099 Mainz (Germany); Howe, J. Y.; Kiggans, J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2012-02-15T23:59:59.000Z

3

Radioactive Ion Beam Physics and Nuclear Astrophysics in China  

E-Print Network (OSTI)

Based on the intermediate energy radioactive Ion Beam Line in Lanzhou (RIBLL) of Heavy Ion Research Facility in Lanzhou (HIRFL) and Low Energy Radioactive Ion Beam Line (GIRAFFE) of Beijing National Tandem Accelerator Lab (HI13), the radioactive ion beam physics and nuclear astrophysics will be researched in detail. The key scientific problems are: the nuclear structure and reaction for nuclear far from $\\beta$-stability line; the synthesize of new nuclides near drip lines and new super heavy nuclides; the properties of asymmetric nuclear matter with extra large isospin and some nuclear astro- reactions.

Y. G. Ma; X. Z. Cai; W. Q. Shen; W. L. Zhan; Y. L. Ye; W. P. Liu; G. M. Jin; X. H. Zhou; S. W. Xu; L. H. Zuo; S. J. Zhu; Z. H. Liu; J. Meng

2004-10-14T23:59:59.000Z

4

Fusion Induced by Radioactive Ion Beams  

E-Print Network (OSTI)

The use of radioactive beams opens a new frontier for fusion studies. The coupling to the continuum can be explored with very loosely bound nuclei. Experiments were performed with beams of nuclei at or near the proton and neutron drip-lines to measure fusion and associated reactions in the vicinity of the Coulomb barrier. In addition, the fusion yield is predicted to be enhanced in reactions involving very neutron-rich unstable nuclei. Experimental measurements were carried out to investigate if it is feasible to use such beams to produce new heavy elements. The current status of these experimental activities is given in this review.

J. F. Liang; C. Signorini

2005-04-26T23:59:59.000Z

5

High intensity electron beam ion trap for charge state boosting of radioactive ion beams  

SciTech Connect

A high intensity electron beam ion trap under development at LLNL could be adapted for charge state boosting of radioactive ion beams, enabling a substantial reduction in the size and cost of a post-accelerator. We report estimates of the acceptance, ionization time, charge state distribution, emittance, and beam intensity for charge state boosting of radioactive ions in this device. The estimates imply that, for tin isotopes, over 10{sup 10} ions/s can be ionized to q = 40+ with an absolute emittance of approximately 1 (pi) mm mrad at an energy of 30 x q.k.

Marrs, R.

1998-09-30T23:59:59.000Z

6

Study of Nuclear Reactions with 11C and 15O Radioactive Ion Beams  

Science Conference Proceedings (OSTI)

Nuclear reaction study with radioactive ion beams is one of the most exciting research topics in modern nuclear physics. The development of radioactive ion beams has allowed nuclear scientists and engineers to explore many unknown exotic nuclei far from the valley of nuclear stability, and to further our understanding of the evolution of the universe. The recently developed radioactive ion beam facility at the Lawrence Berkeley National Laboratory's 88-inch cyclotron is denoted as BEARS and provides {sup 11}C, {sup 14}O and {sup 15}O radioactive ion beams of high quality. These moderate to high intensity, proton-rich radioactive ion beams have been used to explore the properties of unstable nuclei such as {sup 12}N and {sup 15}F. In this work, the proton capture reaction on {sup 11}C has been evaluated via the indirect d({sup 11}C, {sup 12}N)n transfer reaction using the inverse kinematics method coupled with the Asymptotic Normalization Coefficient (ANC) theoretical approach. The total effective {sup 12}N {yields} {sup 11}C+p ANC is found to be (C{sub eff}{sup 12{sub N}}){sup 2} = 1.83 {+-} 0.27 fm{sup -1}. With the high {sup 11}C beam intensity available, our experiment showed excellent agreement with theoretical predictions and previous experimental studies. This study also indirectly confirmed that the {sup 11}C(p,{gamma}) reaction is a key step in producing CNO nuclei in supermassive low-metallicity stars, bypassing the slow triple alpha process. The newly developed {sup 15}O radioactive ion beam at BEARS was used to study the poorly known level widths of {sup 16}F via the p({sup 15}O,{sup 15}O)p reaction. Among the nuclei in the A=16, T=1 isobaric triad, many states in {sup 16}N and {sup 16}O have been well established, but less has been reported on {sup 16}F. Four states of {sup 16}F below 1 MeV have been identified experimentally: 0{sup -}, 1{sup -}, 2{sup -}, and 3{sup -} (E{sub x} = 0.0, 0.19, 0.42, and 0.72 MeV, respectively). Our study utilized R-matrix analysis and found that the 0- state has a level width of 23.1 {+-} 2.2 keV, and that the broader 1- state has a width of 91.1 {+-} 9.9 keV. The level width of the 2{sup -} state is found to be 3.3 {+-} 0.6 keV which is much narrower than the compiled value of 40 {+-} 30 keV, while a width of 14.1 {+-} 1.7 keV for the 3{sup -} state is in good agreement with the reported value (< 15 keV). These experimental level widths of all four levels are also in accordance with theoretical predictions using single particle shell model calculation.

Lee, Dongwon

2007-05-14T23:59:59.000Z

7

Thermal-electric numerical simulation of a target for the production of radioactive ion beams  

Science Conference Proceedings (OSTI)

The production target is the core of the facilities aimed at the production of Radioactive Ion Beams. In the facility analysed in this paper, a proton beam directly impinges a target made of uranium carbide that generates the radioactive isotopes needed ... Keywords: ANSYS® software, Coupled field analysis, High temperature, Radiosity solver method, SPES project, Thermal-electric analysis

Giovanni Meneghetti; Mattia Manzolaro; Alberto Andrighetto

2011-05-01T23:59:59.000Z

8

Universal digital quantum simulation with trapped ions  

E-Print Network (OSTI)

A digital quantum simulator is an envisioned quantum device that can be pro- grammed to efficiently simulate any other local system. We demonstrate and investigate the digital approach to quantum simulation in a system of trapped ions. Using sequences of up to 100 gates and 6 qubits, the full time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally present in our simulator are accurately reproduced and quantitative bounds are provided for the overall simulation quality. Our results demon- strate the key principles of digital quantum simulation and provide evidence that the level of control required for a full-scale device is within reach.

B. P. Lanyon; C. Hempel; D. Nigg; M. Müller; R. Gerritsma; F. Zähringer; P. Schindler; J. T. Barreiro; M. Rambach; G. Kirchmair; M. Hennrich; P. Zoller; R. Blatt; C. F. Roos

2011-09-07T23:59:59.000Z

9

Ion-exchange material and method of storing radioactive wastes  

DOE Patents (OSTI)

A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

Komarneni, S.; Roy, D.M.

1983-10-31T23:59:59.000Z

10

Recent developments of the ion sources at Tri University Meson Factory/Isotope Separator and ACcelerator Facility  

SciTech Connect

This paper describes the recent progresses concerning the on-line ion source at the Tri University Meson Factory/Isotope Separator and ACcelerator (TRIUMF/ISAC) Radioactive Ion-Beam Facility; description of the new design of the surface-ion-source for improved stability of the beam intensity, description of the transport path to the east target station at ISAC, description of the new brazing techniques that solved recurrent problems with water leaks on the target/ion source assembly in the vacuum system, finally, recent developments concerning the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source are reported. In particular, a study on the effect of the plasma chamber volume on the ionization efficiency was completed.

Bricault, P. G.; Ames, F.; Dombsky, M.; Labrecque, F.; Lassen, J.; Mjos, A.; Minor, G. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Tigelhoefer, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Department Of Physics, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

2012-02-15T23:59:59.000Z

11

Holifield!Radioactive!Ion!Beam!Facility! Cyclotron!Driver!White!Paper!  

E-Print Network (OSTI)

Holifield!Radioactive!Ion!Beam!Facility! Cyclotron!Driver!White!Paper! ! ! ! ! prepared and design work has progressed. One of the original purposes of the White Paper was a comparison-writing the document now, most of these references would not be relevant. #12;2 1.0 Introduction! ! This!white!paper

12

Design, optimization, and selectivity of inorganic ion-exchangers for radioactive waste remediation  

E-Print Network (OSTI)

The processes of development of nuclear weapons resulted in accumulation of thousands of curies of high-level radioactive waste. Liquid waste produced in the US has been stored in carbon steel tanks in highly alkaline (1-3 M NaOH, 6 M sodium salts) media for fifty years and leakage has occurred. One of the approaches to the solution of the problem of radioactive waste is to adsorb the nuclides on highly selective ion-exchange material, solidify in a glass matrix and dispose in a geological formation. The use of the ion-exchange technology is limited by the time of the sorbent-solution contact required to reduce the activity of the streams to acceptable levels. Inorganic ion-exchangers are promising materials due to their high radiation stability, extreme selectivity, and compatibility with the glass matrix. The contact time can be reduced by improving selectivities, kinetics, and capacities of the materials towards the target ions. This can be accomplished in part through understanding of the origin of ion-exchange selectivity. Crystalline zeotypes with minerals sitinakite (ideal formula Na2Ti2O3SiO4??2H2O) and pharmacosiderite (HM3(TO)4(GeO4)x(SiO4)3-x M = Cs+, Na+, K+, T=Nb5+, Ge4+, Ti4+) structures are excellent candidates for selectivity studies because of their ion-exchange properties tunable by alterations of synthetic procedures, and isomorphous framework substitution. The Nb-substitution in titanium sites reduces the framework charge, whereas Ge substitution decreases the unit cell size if in titanium sites and increases if it in silicon sites. The compounds were hydrothermally synthesized in Ti/Si, Ti/Nb/Si, Ti/Ge/Si forms and characterized by structural and ion-exchange studies. The 25% Nb substitution in titanosilicate sitinakite resulted in enhanced selectivity for cesium and additional bond formation of cesium within the channel. The selectivity for cesium in germanium substituted pharmacosiderite also was correlated with the coordination environment within the channel. In the advanced stages of this study semi-crystalline (sodium nonatitanate) and amorphous (monosodium titanate) materials also were considered because of their remarkable strontium selectivity. In situ X-ray diffraction techniques revealed that the sodium nonatitanate precedes the formation of the TS phase in hydrothermal synthesis. This knowledge allowed us to design and synthesize material for combined cesium and strontium removal.

Medvedev, Dmitry Gennadievich

2004-08-01T23:59:59.000Z

13

Proceedings of the workshop on the science of intense radioactive ion beams  

SciTech Connect

This report contains the proceedings of a 2-1/2 day workshop on the Science of Intense Radioactive Ion Beams which was held at the Los Alamos National Laboratory on April 10--12, 1990. The workshop was attended by 105 people, representing 30 institutions from 10 countries. The thrust of the workshop was to develop the scientific opportunities which become possible with a new generation intense Radioactive Ion Beam (RIB) facility, currently being discussed within North America. The workshop was organized around five primary topics: (1) reaction physics; (2) nuclei far from stability/nuclear structure; (3) nuclear astrophysics; (4) atomic physics, material science, and applied research; and (5) facilities. Overview talks were presented on each of these topics, followed by 1-1/2 days of intense parallel working group sessions. The final half day of the workshop was devoted to the presentation and discussion of the working group summary reports, closing remarks and a discussion of future plans for this effort.

McClelland, J.B.; Vieira, D.J. (comps.)

1990-10-01T23:59:59.000Z

14

Development of Radioactive Ion Beam Purification by Selective Adsorption at the HRIBF  

SciTech Connect

In the past decades many techniques have been developed to reduce isobaric contaminations in ISOL (Isotope Separation On-Line) beams. Another promising method to achieve improved selectivity is employing surface effects in the transfer line between target container and ion source. Thus adsorption materials with suitable atomic structure and polarity can lead to a high chemical selectivity. The principle of selective adsorption has already been employed successfully in the past. Quartz transfer lines are applied on-line at ISOLDE and have been shown to reduce Rb contaminations by 5 orders of magnitude. Since quartz is the only compound that has been tested yet we plan to conduct a broad on-line study of the adsorption behavior of various elements on a range of materials. For testing at the On-Line Test Facility at the Holifield Radioactive Ion Beam Facility (HRIBF) a special target-ion source unit with a variable-temperature transfer line has been constructed in collaboration with the ISOLDE technical group. Based on the design of the ISOLDE prototype unit it was modified to match the unique capabilities of the OLTF. Preliminary results of on-line tests are presented.

Jost, C. [Institut fuer Kernchemie, 55128 Mainz (Germany); Oak Ridge Associated Universities, Oak Ridge, TN 37833 (United States); Carter, H. K.; Goans, R. E.; Griffith, B. O.; Katakam, R.; Reed, C. A.; Spejewski, E. H. [Oak Ridge Associated Universities, Oak Ridge, TN 37833 (United States); Kratz, K.-L. [Institut fuer Kernchemie, 55128 Mainz (Germany); Stora, T. [CERN-ISOLDE, CH-1211, Geneva (Switzerland); Stracener, D. W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2009-03-10T23:59:59.000Z

15

THE KINETICS OF THE ELECTROCHEMICAL DEPOSITION OF RADIOACTIVE IONS ON METAL SURFACES  

SciTech Connect

The Nernst-Brunner equation hss been applied to the electrochemical deposition of carrier-free radioactive ions on metal foils in a modified form to include decay and growth. The modified equation was shown to hold for the depesition of B/sup 212/(ThC) and Bi/sup 210/(RaE) on nickel foils from weak hydrochloric acid solutions under the following conditions: pure Bl/sup 212/ in equilibrium with Pb/sup 212/(ThB), Bi/sup 212/ in equilibrium with Th/sup 228/ (RdTh), and Bi/sup 210/ in equilibrium with Pb/sup 210/(RaD), Some indications of the purity of the deposited radio-bismuth are given. (auth)

Fahland, J.; Herrmann, G.; Strassmann, F.

1958-10-01T23:59:59.000Z

16

Nuclear reactions with 11C and 14O radioactive ion beams  

Science Conference Proceedings (OSTI)

Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z = 8 proton magic number for odd Z, Tz=-3/2 nuclei. It is expected that future work on proton-rich nuclides will rely heavily on RIBs and/or mass separators. Currently, radioactive ion beam intensities are sufficient for the study of a reasonable number of very proton-rich nuclides.

Guo, Fanqing

2004-12-09T23:59:59.000Z

17

Development of Neutron Detectors for the Next Generation of Radioactive Ion-Beam Facilities  

E-Print Network (OSTI)

The next generation of radioactive ion beam facilities, which will give experimental access to many exotic nuclei, are presently being developed. These facilities will make it possible to study very short lived exotic nuclei with extreme values of isospin far from the line of beta stability. Such nuclei will be produced with very low cross sections and to study them, new detector arrays are being developed. At the SPIRAL facility in GANIL a neutron detector array, the Neutron Wall, is located. In this work the Neutron Wall has been characterized regarding neutron detection efficiency and discrimination between neutrons and gamma rays. The possibility to increase the efficiency by increasing the high voltage of the photomultiplier tubes has also been studied. For SPIRAL2 a neutron detector array, NEDA, is being developed. NEDA will operate in a high gamma-ray background environment which puts a high demand on the quality of discrimination between neutrons and gamma rays. To increase the quality of the discrimination methods pulse-shape discrimination techniques utilizing digital electronics have been developed and evaluated regarding bit resolution and sampling frequency of the ADC. The conclusion is that an ADC with a bit resolution of 12 bits and a sampling frequency of 100 MS/s is adequate for pulse-shape discrimination of neutrons and gamma rays for a neutron energy range of 0.3-12 MeV.

Pär-Anders Söderström

2009-05-13T23:59:59.000Z

18

Development of Neutron Detectors for the Next Generation of Radioactive Ion-Beam Facilities  

E-Print Network (OSTI)

The next generation of radioactive ion beam facilities, which will give experimental access to many exotic nuclei, are presently being developed. These facilities will make it possible to study very short lived exotic nuclei with extreme values of isospin far from the line of beta stability. Such nuclei will be produced with very low cross sections and to study them, new detector arrays are being developed. At the SPIRAL facility in GANIL a neutron detector array, the Neutron Wall, is located. In this work the Neutron Wall has been characterized regarding neutron detection efficiency and discrimination between neutrons and gamma rays. The possibility to increase the efficiency by increasing the high voltage of the photomultiplier tubes has also been studied. For SPIRAL2 a neutron detector array, NEDA, is being developed. NEDA will operate in a high gamma-ray background environment which puts a high demand on the quality of discrimination between neutrons and gamma rays. To increase the quality of the discrimi...

Söderström, Pär-Anders

2009-06-01T23:59:59.000Z

19

Enforcement Letter - Evaluation of Deficiencies Operational Emergency at Building 6000, Holifield Radioactive Ion Beam Facility, Oak Ridge National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3,2009 3,2009 Dr. Thom Mason President and CEO UT-Battelle Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6255 Dear Dr. Mason: The Department of Energy's Office of Enforcement within the Office of Health, Safety and Security has conducted an evaluation of the deficiencies described in Noncompliance Tracking System (NTS) report NTS-ORO--0RNL-XlOPHYSICS-2008-0001, Operational Emergency at Building 6000, Holzfield Radioactive Ion Beam Facility. Our evaluation included a review of the Oak Ridge National Laboratory (ORNL) Management Investigation Team Report dated November 19,2008, the associated corrective action plan, and discussions with site personnel. The subject NTS report described a series of deficiencies at the Holifield Radioactive Ion

20

Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams  

E-Print Network (OSTI)

ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small ‘chemical factory’, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the ‘alchemists’ once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

Fernandes, Sandrina; Stora, Thierry

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Radioactivities in Solution by Particle Radiation can Increase Sister  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactivities in Solution by Particle Radiation can Increase Sister Radioactivities in Solution by Particle Radiation can Increase Sister Chromatid Exchanges Junko Maeda Colorado State University Abstract Introduction Non-radioactive atoms can become radioactive from a nuclear reaction when atoms are hit by other high energy particles. These radioactivations are observed in nuclear facilities and may result in health effects in humans. Protons, carbon-ions, and iron-ions are tested to verify this hypothesis. Materials and Methods Protons were accelerated to 70MeV in cyclotron (NIRS-930) at National Institute of Radiological Sciences (NIRS). Carbon-ions and iron-ions were accelerated to 290MeV/n and 500MeV/n respectively, in HIMAC (Heavy ion Medical Accelerator in Chiba) at NIRS. 60ml of sterilized Milli-Q ultra pure water or PBS were filled in Falcon T25 flasks and exposed to ionizing

22

Carbon Ion Radiotherapy At Gunma University: Currently Indicated Cancer And Estimation Of Need  

SciTech Connect

Carbon ion radiotherapy for the first patient at Gunma University Heavy Ion Medical Center (GHMC) was initiated in March of 2010. The major specifications of the facility were determined based on the experience of clinical treatments at National Institute of Radiological Sciences (NIRS). The currently indicated sites of cancer treatment at GHMC are lung, prostate, head and neck, liver, rectum, bone and soft tissue. In order to evaluate the potential need for treatment in the region including Gunma prefecture and the adjacent 4 prefectures, an estimation model was constructed based on the Japanese cancer registration system, regular structure surveys by the Cancer Societies, and published articles on each cancer type. Carbon ion RT was potentially indicated for 8,085 patients and realistically for 1,527 patients, corresponding to 10% and 2% of the newly diagnosed cancer patients in the region. Prostate cancer (541 patients) followed by lung cancer (436 patients), and liver cancer (313 patients) were the most commonly diagnosed cancers.

Ohno, Tatsuya; Nakano, Takashi; Kanai, Tatsuaki; Yamada, Satoru [Gunma University Heavy Ion Medical Center, Gunma University, 3-39-22 Showa, Maebashi 371-8511 (Japan)

2011-06-01T23:59:59.000Z

23

Oxide Target Designs for High Primary Beam Intensities for Future Radioactive Ion Beam Facilities  

SciTech Connect

Oxide targets used nowadays in ISOL facilities can only accommodate up to a few kW incoming beam power because of the targets' moderate operation temperatures and their low thermal conductivities. A generic design to accommodate a 100 kW, 1 GeV proton beam, used as baseline parameters in the ongoing EURISOL-DS project, along with the numerical and experimental tools required for its validation, are reported here. We provide some details on these high-power composite oxide-refractory metal targets and on the proposed arrangement in several sub-units merging into a single ion source.

Stora, T.; Bouquerel, E.; Bruno, L.; Catherall, R.; Fernandes, S.; Kasprowicz, P.; Lettry, J.; Marzari, S.; Noah, E.; Penescu, L.; Wilfinger, R. [AB Department, CERN, CH-1211 Geneva 23 (Switzerland); Singh, B. S. Nara [Department of Physics, University of York, York, Y10 5DD (United Kingdom)

2009-03-10T23:59:59.000Z

24

Analysis of the Supplies of Laboratories at the University of Kansas Abstract: Laboratories at this University utilize chemicals ranging from radioactive materials to  

E-Print Network (OSTI)

to the environmental are halted by strong regulation and proper disposal. Because of strong bonding nature methane gas into usable energy. Methane gas is about one half as efficient as natural gas and using storage, waste disposal, regulations, chemicals 1.Introduction The University of Kansas is a Division One

Peterson, Blake R.

25

The Universal Solvent Exchange (UNEX) Process II: Flowsheet Development & Demonstration of the UNEX Process for the Separation of Cesium, Strontium, and Actinides from Actual Acidic Radioactive Waste  

Science Conference Proceedings (OSTI)

A novel solvent extraction process, the Universal Extraction (UNEX) process, has been developed for the simultaneous separation of cesium, strontium, and the actinides from acidic waste solutions. The UNEX process solvent consists of chlorinated cobalt dicarbollide for the extraction of 137Cs, polyethylene glycol for the extraction of 90Sr, and diphenyl-N,N-dibutylcarbamoyl phosphine oxide for the extraction of the actinides and lanthanides. A nonnitroaromatic polar diluent consisting of phenyltrifluoromethyl sulfone has been developed for this process. A UNEX flowsheet consisting of a single solvent extraction cycle has been developed as a part of a collaborative effort between the Khlopin Radium Institute (KRI) and the Idaho National Engineering and Environmental Laboratory (INEEL). This flowsheet has been demonstrated with actual acidic radioactive tank waste at the INEEL using 24 stages of 2-cm diameter centrifugal contactors installed in a shielded cell facility. The activities of 137Cs, 90Sr, and the actinides were reduced to levels at which a grout waste form would meet NRC Class A LLW requirements. The extraction of 99Tc and several nonradioactive metals by the UNEX solvent has also been evaluated.

Law, Jack Douglas; Herbst, Ronald Scott; Todd, Terry Allen; Romanovskiy, V. N.; Smirnov, I. V.; Esimantovskiy, V. M.; Zaitsev. B. N.; Babain, V. A.

2001-01-01T23:59:59.000Z

26

81.114- University Reactor Infrastructure and Education Support / Prompt Gamma-ray Activation Analysis of Lithioum Ion Battery Cathodes  

Science Conference Proceedings (OSTI)

This project focuses on the use of the Prompt Gamma-ray Activation Analysis (PGAA) technique available at the Nuclear Engineering Teaching Laboratory of the University of Texas at Austin to precisely determine the hydrogen (proton) contents in layered oxide cathode samples obtained by chemical lithium extraction in order to obtain a better understanding of the factors limiting the practical capacities and overall performance of lithium ion battery cathodes. The project takes careful precautionary experimental measures to avoid proton contamination both from solvents used in chemical delithiation and from ambient moisture. The results obtained from PGAA are complemented by the data obtained from other techniques such as thermogravimetric analysis, redox titration, atomic absorption spectroscopy, X-ray diffraction, and mass spectroscopic analysis of the evolved gas on heating. The research results broaden our understanding of the structure-property-performance relationships of lithium ion battery cathodes and could aid the design and development of new better performing lithium ion batteries for consumer (portable and electric vehicles), military, and space applications.

Manthiram, Arumugam; Landsberger, S.

2006-11-11T23:59:59.000Z

27

The Radioactive Beam Program at Argonne  

E-Print Network (OSTI)

In this talk I will present selected topics of the ongoing radioactive beam program at Argonne and discuss the capabilities of the CARIBU radioactive ion production facility as well as plans for construction of a novel superconducting solenoid spectrometer.

B. B. Back

2006-06-06T23:59:59.000Z

28

ESTIMATION OF RADIOLYTIC GAS GENERATION RATE FOR CYLINDRICAL RADIOACTIVE WASTE PACKAGES - APPLICATION TO SPENT ION EXCHANGE RESIN CONTAINERS  

DOE Green Energy (OSTI)

Radioactive waste packages containing water and/or organic substances have the potential to radiolytically generate hydrogen and other combustible gases. Typically, the radiolytic gas generation rate is estimated from the energy deposition rate and the radiolytic gas yield. Estimation of the energy deposition rate must take into account the contributions from all radionuclides. While the contributions from non-gamma emitting radionuclides are relatively easy to estimate, an average geometry factor must be computed to determine the contribution from gamma emitters. Hitherto, no satisfactory method existed for estimating the geometry factors for a cylindrical package. In the present study, a formulation was developed taking into account the effect of photon buildup. A prototype code, called PC-CAGE, was developed to numerically solve the integrals involved. Based on the selected dimensions for a cylinder, the specified waste material, the photon energy of interest and a value for either the absorption or attenuation coefficient, the code outputs values for point and average geometry factors. These can then be used to estimate the internal dose rate to the material in the cylinder and hence to calculate the radiolytic gas generation rate. Besides the ability to estimate the rates of radiolytic gas generation, PC-CAGE can also estimate the dose received by the container material. This is based on values for the point geometry factors at the surface of the cylinder. PC-CAGE was used to calculate geometry factors for a number of cylindrical geometries. Estimates for the absorbed dose rate in container material were also obtained. The results for Ontario Power Generation's 3 m3 resin containers indicate that about 80% of the source gamma energy is deposited internally. In general, the fraction of gamma energy deposited internally depends on the dimensions of the cylinder, the material within it and the photon energy; the fraction deposited increases with increasing dimensions of the cylinder and decreases with increasing photon energy.

Husain, A.; Lewis, Brent J.

2003-02-27T23:59:59.000Z

29

CONFERENCE ON ION AND PLASMA RESEARCH AT THE UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND, SEPTEMBER 30-OCTOBER 2, 1958  

SciTech Connect

Abstracts of papers presented at the conference on ion and plasma research are given. The status and progress of the various programs are summarized. Fifty-six Air Force sponsored projects are reported on. (W.D.M.)

1959-10-31T23:59:59.000Z

30

RADIOACTIVE BATTERY  

DOE Patents (OSTI)

A radioactive battery which includes a capsule containing the active material and a thermopile associated therewith is presented. The capsule is both a shield to stop the radiations and thereby make the battery safe to use, and an energy conventer. The intense radioactive decay taking place inside is converted to useful heat at the capsule surface. The heat is conducted to the hot thermojunctions of a thermopile. The cold junctions of the thermopile are thermally insulated from the heat source, so that a temperature difference occurs between the hot and cold junctions, causing an electrical current of a constant magnitude to flow.

Birden, J.H.; Jordan, K.C.

1959-11-17T23:59:59.000Z

31

Finding Aids: Radioactive Fallout  

NLE Websites -- All DOE Office Websites (Extended Search)

A Guide to Archival Collections Relating to Radioactive Fallout from Nuclear Weapon Testing A Guide to Archival Collections Relating to Radioactive Fallout from Nuclear Weapon Testing Table of Contents INTRODUCTION Argonne National Laboratory Bancroft Library, University of California Boeing Aircraft Company Brookhaven National Laboratory Coordination and Information Center (CIC) Eastman Kodak EG&G, Energy Measurements Holmes and Narver Lawrence Livermore National Laboratory Los Alamos National Laboratory Manuscript Division, Library of Congress National Academy of Sciences Archives Oak Ridge National Laboratory Pacific Northwest Laboratory Sandia National Laboratories Scripps Institution of Oceanography Archives Smithsonian Institution Archives U.S. Air Force Brooks Air Force Base Kirtland Air Force Base USAF Historical Research Center U.S. Army Chemical Corps (Aberdeen Proving Ground)

32

Radioactivity and Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactivity and Radiation Radioactivity and Radiation Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects Radioactivity and Radiation Discussion of radioactivity and radiation, uranium and radioactivity, radiological health risks of uranium isotopes and decay products. Radioactivity Radioactivity is the term used to describe the natural process by which some atoms spontaneously disintegrate, emitting both particles and energy as they transform into different, more stable atoms. This process, also called radioactive decay, occurs because unstable isotopes tend to transform into a more stable state. Radioactivity is measured in terms of disintegrations, or decays, per unit time. Common units of radioactivity

33

WASTE DISPOSAL SECTION CORNELL UNIVERSITY  

E-Print Network (OSTI)

2/07 WASTE DISPOSAL SECTION CORNELL UNIVERSITY PROCEDURE for DISPOSAL of RADIOACTIVE MATERIALS This procedure has been developed to ensure the safety of those individuals who handle radioactive waste identified hazardous waste, or other unusual issues require special consideration. Contact the Department

Manning, Sturt

34

Radioactive waste systems and radioactive effluents  

SciTech Connect

Radioactive waste systems for handling gaseous, liquid, and solid wastes generated at light and pressurized water reactors are described. (TFD)

Row, T.H.

1973-01-01T23:59:59.000Z

35

University of Waste Procedures  

E-Print Network (OSTI)

University of Maryland Hazardous And Regulated Waste Procedures Manual Revised July 2001 #12;Review II. HAZARDOUS WASTE MANAGEMENT III. BIOLOGICAL, PATHOLOGICAL AND MEDICAL WASTE (BPMW) MANAGEMENT IV. LOW-LEVEL RADIOACTIVE WASTE (LLRW) MANAGEMENT V. EMERGENCY PROCEDURES VI. WASTE MINIMIZATION VII

Rubloff, Gary W.

36

University of Missouri | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Missouri Missouri Research Research at Mizzou Vice Chancellor for Research Core Facilities Research Centers Undergraduate Research Research News & Multimedia DOE Research Reports UM Researchers in E-print Network Illumination Magazine Harnessing Radioactivity for Cancer Therapy Scientists from the University of Missouri, Oak Ridge National Lab and the University of Tennessee Graduate School of Medicine harness alpha particles for radiation cancer therapy. Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy, PLOS ONE Alpha Particle Therapy, Credit: Nathan Hurst Search this site: Search UM Columbia has a reputation of excellence in teaching and research and is the flagship campus of the four-campus University of Missouri System. Resources

37

Midwestern Radioactive Materials Transportation Committee Agenda...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

38

RADIO-ACTIVE TRANSDUCER  

DOE Patents (OSTI)

ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

Wanetick, S.

1962-03-01T23:59:59.000Z

39

PURDUE UNIVERSITY  

Science Conference Proceedings (OSTI)

... 7 Description of Formats of Binary Output Files .....194 Appendix B. Manual for the ... else: Cesium-137, a radioactive isotope. ...

2007-12-31T23:59:59.000Z

40

The laser ion source trap for highest isobaric selectivity in online exotic isotope production  

Science Conference Proceedings (OSTI)

The improvement in the performance of a conventional laser ion source in the laser ion source and trap (LIST) project is presented, which envisages installation of a repeller electrode and a linear Paul trap/ion guide structure. This approach promises highest isobaric purity and optimum temporal and spatial control of the radioactive ion beam produced at an online isotope separator facility. The functionality of the LIST was explored at the offline test separators of University of Mainz (UMz) and ISOLDE/CERN, using the UMz solid state laser system. Ionization efficiency and selectivity as well as time structure and transversal emittance of the produced ion beam was determined. Next step after complete characterization is the construction and installation of the radiation-hard final trap structure and its first online application.

Schwellnus, F.; Gottwald, T.; Mattolat, C.; Wendt, K. [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Blaum, K. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Catherall, R.; Crepieux, B.; Fedosseev, V.; Marsh, B.; Rothe, S.; Stora, T. [CERN, CH-1211 Geneva 23 (Switzerland); Kluge, H.-J. [GSI, Planckstrasse 1, D-64291 Darmstadt (Germany)

2010-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Radioactive Waste Management (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

This section regulates the transportation and disposal of high-level radioactive waste in Minnesota, and establishes a Nuclear Waste Council to monitor the federal high-level radioactive waste...

42

Radioactivity in consumer products  

SciTech Connect

Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)

1978-08-01T23:59:59.000Z

43

Radioactive ion beam research at LLNL  

DOE Green Energy (OSTI)

In this paper we discuss efforts underway at LLNL to develop the technology for the measurement of proton and alpha-particle reactions with unstable nuclei which are necessary for understanding the nucleosynthesis and energy generation in hot hydrogen-burning environments. 16 refs., 5 figs.

Mathews, G.J.; Bauer, R.W.; Haight, R.C.; Sale, K.E.

1985-08-01T23:59:59.000Z

44

ORNL radioactive waste operations  

SciTech Connect

Since its beginning in 1943, ORNL has generated large amounts of solid, liquid, and gaseous radioactive waste material as a by-product of the basic research and development work carried out at the laboratory. The waste system at ORNL has been continually modified and updated to keep pace with the changing release requirements for radioactive wastes. Major upgrading projects are currently in progress. The operating record of ORNL waste operation has been excellent over many years. Recent surveillance of radioactivity in the Oak Ridge environs indicates that atmospheric concentrations of radioactivity were not significantly different from other areas in East Tennesseee. Concentrations of radioactivity in the Clinch River and in fish collected from the river were less than 4% of the permissible concentration and intake guides for individuals in the offsite environment. While some radioactivity was released to the environment from plant operations, the concentrations in all of the media sampled were well below established standards.

Sease, J.D.; King, E.M.; Coobs, J.H.; Row, T.H.

1982-01-01T23:59:59.000Z

45

Radioactive Waste Management Basis  

SciTech Connect

The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2009-06-03T23:59:59.000Z

46

WEB RESOURCE: Radioactive Waste  

Science Conference Proceedings (OSTI)

May 8, 2007 ... This resource offers a a very broad explanation of how the Belgian Agency for Management of Radioactive Waste and Enriched Fissile Material ...

47

SCAVENGING OF RADIOACTIVE AEROSOLS  

DOE Patents (OSTI)

A process of decontaminatinig an atmosphere from suspended radioactive particles by introducing silicon tetrafluoride whereby the particles precipitate and are removed, is described. (AEC)

Rosinski, J.; Werle, D.K.

1963-12-01T23:59:59.000Z

48

Radioactive Nickel-63 - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Making Radioactive Nickel-63 Making Radioactive Nickel-63 ORNL-Supplied Nickel-63 Enables High-Sensitivity Explosives, Chemical Weapons, and Narcotics Detectors at Airports Explosives and narcotics detector. Detectors based on ion mobility spectrometry using ORNL 63Ni can now satisfy enhanced Homeland Security requirements at airports and other sensitive locations. When Transportation Security Administration (TSA) inspectors swipe a cloth over your luggage and then place it in an analyzer to check for explosives residue, they are using a device containing 63Ni, a radioactive isotope of nickel, made at ORNL. ORNL is the exclusive producer for 63Ni in North America and perhaps worldwide. "Our only competition would probably be Russia. They have high-flux research reactors and may well be supplying the material also,"

49

Princeton University  

NLE Websites -- All DOE Office Websites (Extended Search)

WHG 72711 PRINCETON UNIVERSITY INSTRUCTIONS FOR INVENTION DISCLOSURE FORM This Invention Disclosure Form is for use by University Faculty, Staff, and Students to report the...

50

Radioactive waste disposal package  

DOE Patents (OSTI)

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

51

Radioactive Waste: 1. Radioactive waste from your lab is  

E-Print Network (OSTI)

Radioactive Waste: 1. Radioactive waste from your lab is collected by the RSO. 2. Dry radioactive waste must be segregated by isotope. 3. Liquid radioactive waste must be separated by isotope. 4. Liquid scintillation vials must be collected separately. 5. Any "mixed waste" must be cleared with the RSO and labeled

52

Radioactivity in Nature  

NLE Websites -- All DOE Office Websites (Extended Search)

Fig. 3-8. The ratio of uranium to lead present on Earth today gives us an estimate of its age (4.5 billion years). Given Earths age, any much shorter lived radioactive nuclei...

53

Understanding radioactive waste  

SciTech Connect

This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

Murray, R.L.

1981-12-01T23:59:59.000Z

54

Container for radioactive materials  

DOE Patents (OSTI)

A container for housing a plurality of canister assemblies containing radioactive material and disposed in a longitudinally spaced relation within a carrier to form a payload package concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and a sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path.

Fields, Stanley R. (Richland, WA)

1985-01-01T23:59:59.000Z

55

Dynamic radioactive particle source  

SciTech Connect

A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

2012-06-26T23:59:59.000Z

56

University Launches Website for FIU Research Sponsored by EM | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Launches Website for FIU Research Sponsored by EM University Launches Website for FIU Research Sponsored by EM University Launches Website for FIU Research Sponsored by EM July 11, 2013 - 12:00pm Addthis The Applied Research Center at Florida International University covers four major environmental cleanup areas: radioactive waste processing, facility deactivation and decommissioning, soil and groundwater remediation and information technology development for environmental management. The Applied Research Center at Florida International University covers four major environmental cleanup areas: radioactive waste processing, facility deactivation and decommissioning, soil and groundwater remediation and information technology development for environmental management. MIAMI - A new website features research performed under a cooperative

57

The Universe Adventure - Today's Universe  

NLE Websites -- All DOE Office Websites (Extended Search)

4: Today's Accelerating Universe 4: Today's Accelerating Universe The Universe Today Dark matter has aided in forming the universe we see today; however, many questions regarding the cosmos remain. What is the status of the Universe today? We know the Universe is expanding... But what do we know about the expansion? Supernova survey. Surveys of supernova provide scientists with information about the history of the Universe. Classroom Cosmology Classroom Cosmology: Toilet Paper Cosmology In 1997 advances in telescope technology allowed astronomers to conduct redshift surveys of very distant type Ia supernovae. This enabled them to look further back into the Universe's history than previously possible. Their stunning results rivaled Hubble's original discovery and turned cosmology on its head. While most theoretical models predicted that the

58

Radioactivity in food crops  

SciTech Connect

Published levels of radioactivity in food crops from 21 countries and 4 island chains of Oceania are listed. The tabulation includes more than 3000 examples of 100 different crops. Data are arranged alphabetically by food crop and geographical origin. The sampling date, nuclide measured, mean radioactivity, range of radioactivities, sample basis, number of samples analyzed, and bibliographic citation are given for each entry, when available. Analyses were reported most frequently for /sup 137/Cs, /sup 40/K, /sup 90/Sr, /sup 226/Ra, /sup 228/Ra, plutonium, uranium, total alpha, and total beta, but a few authors also reported data for /sup 241/Am, /sup 7/Be, /sup 60/Co, /sup 55/Fe, /sup 3/H, /sup 131/I, /sup 54/Mn, /sup 95/Nb, /sup 210/Pb, /sup 210/Po, /sup 106/Ru, /sup 125/Sb, /sup 228/Th, /sup 232/Th, and /sup 95/Zr. Based on the reported data it appears that radioactivity from alpha emitters in food crops is usually low, on the order of 0.1 Bq.g/sup -1/ (wet weight) or less. Reported values of beta radiation in a given crop generally appear to be several orders of magnitude greater than those of alpha emitters. The most striking aspect of the data is the great range of radioactivity reported for a given nuclide in similar food crops with different geographical origins.

Drury, J.S.; Baldauf, M.F.; Daniel, E.W.; Fore, C.S.; Uziel, M.S.

1983-05-01T23:59:59.000Z

59

DETECTOR FOR RADIOACTIVE HYDROGEN  

SciTech Connect

A device of the Geiger-Mueller type is designed for detecting radioactive hydrogen in the presence of other radioactive substances. The device comprises an envelope with thin (1 to 5 mil thick) Ni or Pd windows at the ends, an anode and a cathode spaced apart in the envelope, and a counting gas within the envelope. In operation, the suspect atmosphere is blown against one of the windows, whereby only the hydrogen diffuses into the envelope for counting. Means is provided for heating the windows to the desired temperatures. (D.L.C.)

Christianson, C.; Gilman, M.; Maggio, R.C.

1963-12-10T23:59:59.000Z

60

Container for radioactive materials  

DOE Patents (OSTI)

A container is claimed for housing a plurality of canister assemblies containing radioactive material. The several canister assemblies are stacked in a longitudinally spaced relation within a carrier to form a payload concentrically mounted within the container. The payload package includes a spacer for each canister assembly, said spacer comprising a base member longitudinally spacing adjacent canister assemblies from each other and sleeve surrounding the associated canister assembly for centering the same and conducting heat from the radioactive material in a desired flow path. 7 figures.

Fields, S.R.

1984-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents (OSTI)

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

62

UNIVERSITY OF CALIFORNIA, DAVIS ENVIRONMENTAL HEALTH & SAFETY, HEALTH PHYSICS  

E-Print Network (OSTI)

contamination and internal exposures to radiation? Disposable gloves __X__ Disposable booties_____ Lab coat __XRUA # 1384 UNIVERSITY OF CALIFORNIA, DAVIS ENVIRONMENTAL HEALTH & SAFETY, HEALTH PHYSICS Radiation radioactive contamination and/or radiation fields? Wipes and liquid scintillation counting C. At what

Singer, Mitchell

63

ScienceDirect JOURNAL OF ENVIRONMENTAL RADIOACTIVITY  

Office of Legacy Management (LM)

ontine at wtYw.sciencedlrect.com ontine at wtYw.sciencedlrect.com ^-- 9 e* + - . , * * ScienceDirect JOURNAL OF ENVIRONMENTAL RADIOACTIVITY Journal o f Environmental Radioactivity 91 (2006) 27-40 www.elsevier.co~nAocate/jenvrad Radionuclides in marine macroalgae from Amchitka and Kiska Islands in the Aleutians: establishing a baseline for future biomonitoring Joanna Burger Michael Gochfeld C-d, David S . Kosson b7e, Charles W. Powers b-d*e7 Stephen Jewett b*f, Barry Friedlander b7d, Heloise Chenelot b=f7 Conrad D. Volz b-8, Christian Jeitner a-b Division of Life Sciences, Rutgers University, 6 0 4 Allison R o a d . Piscataway, N.I 0 8 8 5 4 - 8 0 8 2 , USA Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Piscataway. N.I 0 8 8 5 4 . USA Environmental and Occupational Health Sciences Institute (EOHSZ), Piscataway, NJ 0

64

Wide-range radioactive-gas-concentration detector  

DOE Patents (OSTI)

A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

Anderson, D.F.

1981-11-16T23:59:59.000Z

65

TABLE OF RADIOACTIVE ELEMENTS.  

SciTech Connect

For those chemical elements which have no stable nuclides with a terrestrial isotopic composition, the data on radioactive half-lives and relative atomic masses for the nuclides of interest and importance have been evaluated and the recommended values and uncertainties are listed.

HOLDEN,N.E.

2001-06-29T23:59:59.000Z

66

RADIOACTIVITY (NATURAL) Synonyms Definition  

Science Conference Proceedings (OSTI)

rays to the natural dose of radioactivity is strongly depen- dent on altitude and ... a noble gas, and its migration in groundwater and soil gas is of ..... trometers available on the market. ... example, using an oil immersion objective (NA 1.4) with.

67

RADIOACTIVITY STORED UP BY ALGAE  

SciTech Connect

A fast radiometric method of measuring radioactivity uptake by marine organisms is described. (R.V.J.)

Akamsin, A.D.; Parchevskii, V.P.; Polikarpov, G.G.

1960-02-01T23:59:59.000Z

68

Method for calcining radioactive wastes  

DOE Patents (OSTI)

This invention relates to a method for the preparation of radioactive wastes in a low leachability form by calcining the radioactive waste on a fluidized bed of glass frit, removing the calcined waste to melter to form a homogeneous melt of the glass and the calcined waste, and then solidifying the melt to encapsulate the radioactive calcine in a glass matrix.

Bjorklund, William J. (Richland, WA); McElroy, Jack L. (Richland, WA); Mendel, John E. (Kennewick, WA)

1979-01-01T23:59:59.000Z

69

Negative ion formation processes: A general review  

SciTech Connect

The principal negative ion formation processes will be briefly reviewed. Primary emphasis will be placed on the more efficient and universal processes of charge transfer and secondary ion formation through non-thermodynamic surface ionization. 86 refs., 20 figs.

Alton, G.D.

1990-01-01T23:59:59.000Z

70

NATURE OF RADIOACTIVE WASTES  

SciTech Connect

The integrated processes of nuclear industry are considered to define the nature of wastes. Processes for recovery and preparation of U and Th fuels produce wastes containing concentrated radioactive materials which present problems of confinement and dispersal. Fundamentals of waste treatment are considered from the standpoint of processes in which radioactive materials become a factor such as naturally occurring feed materials, fission products, and elements produced by parasitic neutron capture. In addition, the origin of concentrated fission product wastes is examined, as well as characteristics of present wastes and the level of fission products in wastes. Also, comments are included on high-level wastes from processes other than solvent extraction, active gaseous wastes, and low- to intermediate-level liquid wastes. (J.R.D.)

Culler, F.L. Jr.

1959-01-26T23:59:59.000Z

71

PROCESSING OF RADIOACTIVE WASTE  

DOE Patents (OSTI)

A process for treating radioactive waste solutions prior to disposal is described. A water-soluble phosphate, borate, and/or silicate is added. The solution is sprayed with steam into a space heated from 325 to 400 deg C whereby a powder is formed. The powder is melted and calcined at from 800 to 1000 deg C. Water vapor and gaseous products are separated from the glass formed. (AEC)

Johnson, B.M. Jr.; Barton, G.B.

1961-11-14T23:59:59.000Z

72

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

73

Millersville University  

E-Print Network (OSTI)

Violence Weapons Theft Use of University Equipment Section VII COMMUNICATIONS Guidelines for placing VIII EMPLOYEE SAFETY AND HEALTH Campus Emergency Procedures Threat Assessment Team Suspicious Leave Annual Leave #12; Section IX ATTENDANCE AND LEAVE continued Personal Leave Sick Leave Sick

Hardy, Christopher R.

74

RUA # _1384 UNIVERSITY OF CALIFORNIA, DAVIS  

E-Print Network (OSTI)

will be used to prevent contamination and internal exposures to radiation? Disposable gloves __X__ DisposableRUA # _1384 UNIVERSITY OF CALIFORNIA, DAVIS ENVIRONMENTAL HEALTH & SAFETY, HEALTH PHYSICS Radiation areas. B. How will you detect radioactive contamination and/or radiation fields? Wipes and liquid

Singer, Mitchell

75

ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS  

Science Conference Proceedings (OSTI)

This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

R.H. Little, P.R. Maul, J.S.S. Penfoldag

2003-02-27T23:59:59.000Z

76

DOE - Office of Legacy Management -- Brown University - Metcalf Research  

Office of Legacy Management (LM)

Brown University - Metcalf Research Brown University - Metcalf Research Lab - RI 01 FUSRAP Considered Sites Site: Brown University (Metcalf Research Lab.) (RI.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Providence , Rhode Island RI.01-1 Evaluation Year: 1987 RI.01-1 Site Operations: Research/Development on the preparation of pure halides of heavy metals, Bench Scale Process, and Sample & Analysis. RI.01-1 Site Disposition: Eliminated - Potential for residual radioactive contamination from small quantities of radioactive material is considered remote RI.01-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium RI.01-1 Radiological Survey(s): None Indicated

77

Yale University Radiation Safety  

E-Print Network (OSTI)

spillage in case of accident. Store liquid waste containers in secondary containers. 10. If radioactive

Haller, Gary L.

78

Ion production from solid state laser ion sources  

Science Conference Proceedings (OSTI)

Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

Gottwald, T.; Mattolat, C.; Raeder, S.; Wendt, K. [Institute for Physics, University of Mainz, Staudinger Weg 7, 55128 Mainz (Germany); Havener, C.; Liu, Y. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lassen, J. [TRIUMF-ISAC Division, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Rothe, S. [CERN, CH-1211 Geneve 23 (Switzerland)

2010-02-15T23:59:59.000Z

79

Bacteria eats radioactive waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Bacteria eats radioactive waste Bacteria eats radioactive waste Name: deenaharper Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: In my studies, I have found that everything in this world is balanced. When something dies it is converted into life. Is there anything out there that could convert radioactive material into a harmless substance? Some sort of bacteria that consumes radiation? Replies: The reason why radiation is so harmful is that is produces free radicals in living tissue, that is, it de-stabilizes molecules by tearing off electrons due to intense energies. These free radicals start a chain reaction of destruction, de-stabilizing neighboring molecules. If this continues unchecked, cells die, genetic material are mutated, and tissue aging accelerates. It is somewhat like being burned. Fire oxidizes by a similar free radical reaction. (Hence the term "sun burn.") The natural defenses against free radical reactions in biological systems are antioxidants, which are enzymes, nutrients, and other chemicals, which quench free radical reactions. Without them, life would very quickly cease. To my knowledge, no microorganism has an antioxidant capacity great enough to withstand even minimal exposure to any type of radiation. Microorganisms are actually very susceptible to radiation, which is why heat and gamma irradiation are used to sterilize food, instruments, etc. However, you raise an interesting possibility in that perhaps one can be genetically engineered to have super- antioxidant capacity, but that may be beyond current technology. Plus, if any got loose, given the exponential rate of reproduction, they may become an uncontrollable health hazard, as it would be very difficult to destroy them!

80

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Radioactive waste material disposal  

DOE Patents (OSTI)

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

82

Radioactive waste processing apparatus  

DOE Patents (OSTI)

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container.

Nelson, Robert E. (Lombard, IL); Ziegler, Anton A. (Darien, IL); Serino, David F. (Maplewood, MN); Basnar, Paul J. (Western Springs, IL)

1987-01-01T23:59:59.000Z

83

DOE - Office of Legacy Management -- Cornell University Medical College -  

Office of Legacy Management (LM)

Cornell University Medical College Cornell University Medical College - NY 28 FUSRAP Considered Sites Site: CORNELL UNIVERSITY MEDICAL COLLEGE (NY.28 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Cornell University and Medical College NY.28-1 Location: New York , New York NY.28-1 Evaluation Year: 1987 NY.28-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment. NY.28-1 Site Disposition: Eliminated - Potential for contamination considered remote - Only research quantities of material used NY.28-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Not Specified NY.28-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP

84

Ion source  

DOE Patents (OSTI)

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

Leung, Ka-Ngo (Hercules, CA); Ehlers, Kenneth W. (Alamo, CA)

1984-01-01T23:59:59.000Z

85

ESI/Ion Trap/Ion Mobility/Time-of-Flight Mass Spectrometry for Rapid and Sensitive Analysis of  

E-Print Network (OSTI)

discuss a new separation strategy for biomolecules that is based on differences in ion mobilitiesESI/Ion Trap/Ion Mobility/Time-of-Flight Mass Spectrometry for Rapid and Sensitive Analysis* Department of Chemistry, Indiana University, Bloomington, Indiana 47405 An ion trap/ion mobility

Clemmer, David E.

86

Radioactive isotopes on the Moon  

SciTech Connect

A limited review of experiments and studies of radioactivity and isotope ratios in lunar materials is given. Observations made on the first few millimeters of the surface where the effects of solar flare particles are important, some measurements on individual rocks, and some studies of radioactivities produced deep in the lunar soil by galactic cosmic rays, are among the experiments discussed. (GHT)

Davis, R. Jr.

1975-01-01T23:59:59.000Z

87

FAQ 5-Is uranium radioactive?  

NLE Websites -- All DOE Office Websites (Extended Search)

Is uranium radioactive? Is uranium radioactive? Is uranium radioactive? All isotopes of uranium are radioactive, with most having extremely long half-lives. Half-life is a measure of the time it takes for one half of the atoms of a particular radionuclide to disintegrate (or decay) into another nuclear form. Each radionuclide has a characteristic half-life. Half-lives vary from millionths of a second to billions of years. Because radioactivity is a measure of the rate at which a radionuclide decays (for example, decays per second), the longer the half-life of a radionuclide, the less radioactive it is for a given mass. The half-life of uranium-238 is about 4.5 billion years, uranium-235 about 700 million years, and uranium-234 about 25 thousand years. Uranium atoms decay into other atoms, or radionuclides, that are also radioactive and commonly called "decay products." Uranium and its decay products primarily emit alpha radiation, however, lower levels of both beta and gamma radiation are also emitted. The total activity level of uranium depends on the isotopic composition and processing history. A sample of natural uranium (as mined) is composed of 99.3% uranium-238, 0.7% uranium-235, and a negligible amount of uranium-234 (by weight), as well as a number of radioactive decay products.

88

UNIVERSITY OF MINNESOTA University Services  

E-Print Network (OSTI)

Church Street SE Minneapolis, MN 55455-0110 Office: 612-624-3557 Fax: 612-626-6278 www.uservices.umn.edu MEMORANDUM January 29, 2010 TO: Executive Team, Twin Cities Deans, Faculty Researchers FROM: Kathleen O'Brien, Vice President Subject: Status Report on the University of Minnesota and the Central Corridor Light

Amin, S. Massoud

89

NC STATE UNIVERSITY UNIVERSITY HOUSING  

E-Print Network (OSTI)

name to enter it on your application. Only current and accepted students will appear in the search box of the application process 1 #12;NC STATE UNIVERSITY SELECT THE FALL 2012 TERM 2 Once accepted by NC State, students accepting the terms and conditions associated with the Agreement. ELECTRONIC SIGNATURE #12;NC STATE

90

Low Radioactivity in CANDLES  

SciTech Connect

CANDLES is the project to search for double beta decay of 48Ca by using CaF2 crystals. Double beta decay of 48Ca has the highest Q value among all nuclei whose double beta decay is energetically allowed. This feature makes the study almost background free and becomes important once the study is limited by the backgrounds. We studied double beta decays of 48Ca by using ELEGANTS VI detector system which features CaF2(Eu) crystals. We gave the best limit on the lifetime of neutrino-less double beta decay of 48Ca although further development is vital to reach the neutrino mass of current interest for which CANDLES is designed. In this article we present how CANDLES can achieve low radioactivity, which is the key for the future double beta decay experiment.

Kishimoto, T.; Ogawa, I.; Hazama, R.; Yoshida, S.; Umehara, S.; Matsuoka, K.; Sakai, H.; Yokoyama, D.; Mukaida, K.; Ichihara, K.; Tatewaki, Y.; Kishimoto, K.; Hirano, Y.; Yanagisawa, A.; Ajimura, S. [Department of Physics, Osaka University, Toyonaka, Osaka, 560-0043 (Japan)

2005-09-08T23:59:59.000Z

91

Radioactive waste processing apparatus  

DOE Patents (OSTI)

Apparatus for use in processing radioactive waste materials for shipment and storage in solid form in a container is disclosed. The container includes a top, and an opening in the top which is smaller than the outer circumference of the container. The apparatus includes an enclosure into which the container is placed, solution feed apparatus for adding a solution containing radioactive waste materials into the container through the container opening, and at least one rotatable blade for blending the solution with a fixing agent such as cement or the like as the solution is added into the container. The blade is constructed so that it can pass through the opening in the top of the container. The rotational axis of the blade is displaced from the center of the blade so that after the blade passes through the opening, the blade and container can be adjusted so that one edge of the blade is adjacent the cylindrical wall of the container, to insure thorough mixing. When the blade is inside the container, a substantially sealed chamber is formed to contain vapors created by the chemical action of the waste solution and fixant, and vapors emanating through the opening in the container. The chamber may be formed by placing a removable extension over the top of the container. The extension communicates with the apparatus so that such vapors are contained within the container, extension and solution feed apparatus. A portion of the chamber includes coolant which condenses the vapors. The resulting condensate is returned to the container by the force of gravity.

Nelson, R.E.; Ziegler, A.A.; Serino, D.F.; Basnar, P.J.

1985-08-30T23:59:59.000Z

92

Integrated Management Program Radioactive Sealed Sources in Egypt  

Science Conference Proceedings (OSTI)

The radioactive materials in ''public'' locations are typically contained in small, stainless steel capsules known as sealed radiation sources (RS). These capsules seal in the radioactive materials, but not the radiation, because it is the radiation that is needed for a wide variety of applications at hospitals, medical clinics, manufacturing plants, universities, construction sites, and other facilities in the public sector. Radiation sources are readily available, and worldwide there are hundreds of thousands of RS. The IMPRSS Project is a cooperative development between the Egyptian Atomic Energy Authority (EAEA), Egyptian Ministry of Health (MOH), Sandia National Laboratories (SNL), New Mexico Tech University (NMT), and Agriculture Cooperative Development International (ACDI/VOCA). SNL will coordinate the work scope between the participant organizations.

Hasan, A.; Cochran, J. R.; El-Adham, K.; El-Sorougy, R.

2003-02-26T23:59:59.000Z

93

Materials Sustainability: Digital Resource Center - Radioactivity in ...  

Science Conference Proceedings (OSTI)

Jun 26, 2008 ... This video introduces terms and concepts associated with radioactivity and shows how to identify radioactive substances that might enter a ...

94

FAQ 4-What is radioactivity and radiation?  

NLE Websites -- All DOE Office Websites (Extended Search)

and radiation? What is radioactivity and radiation? Radioactivity is the term used to describe the natural process by which some atoms spontaneously disintegrate, emitting both...

95

i TP?TT<$wft Environmental Radioactivity  

E-Print Network (OSTI)

Abstract. Measurements of fallout radioactivity in the North Atlantic region including the Faroe Islands FALLOUT; GREENLAND; MAN; MILK; PLANTS; PLUTONIUM 239; PLU- TONIUM 240; RADIOACTIVITY; SEAWATER; SEAWEEDS

96

Environmental Radioactivity in the North Atlantic Region.  

E-Print Network (OSTI)

Radioactivity, Monaco Abstract. Measurements of fallout radioactivity in the North Atlantic region including ISLANDS; FOOD CHAINS; GLOBAL FALLOUT GREENLAND; LEAD 210; MAN; MILK; MOLLUSCS; POLONIUM 210; PLANTS

97

The age of the universe  

Science Conference Proceedings (OSTI)

An overview of the current controversy on the age of the universe is presented. It is shown that the age of the oldest star, globular clusters, yields an age estimate of approximately 14 {+-} 2 {+-} 2 Gyr (where the first {+-} is statistical and the second systematic, and the two should {ital not} be added in quadrature), with a firm lower bound of {ge} 10 Gyr. It is shown how radioactive dating, nucleocosmochronology, also yields a firm lower bound of {approx_gt} 10 Gyr. The currently favored values for the Hubble constant, when converted to ages using a cosmological model with zero cosmological constant, are shown {ital not} to be in conflict with statistical and systematic uncertainties at the present time when one takes both into account, even for critical density universes. 25 refs. , 3 figs., 1 tab.

Schramm, D.N.

1996-10-01T23:59:59.000Z

98

THE FLORIDA STATE UNIVERSITY UNIVERSITY HEALTH SERVICES  

E-Print Network (OSTI)

THE FLORIDA STATE UNIVERSITY UNIVERSITY HEALTH SERVICES HEALTH & WELLNESS CENTER University Health-8958 Healthcare Compliance Information Florida State University's University Health Services (UHS) is staffed service laboratory; pickup service is available for students whose insurance requires the use of Lab Corps

Weston, Ken

99

SELF SINTERING OF RADIOACTIVE WASTES  

DOE Patents (OSTI)

A method is described for disposal of radioactive liquid waste materials. The wastes are mixed with clays and fluxes to form a ceramic slip and disposed in a thermally insulated container in a layer. The temperature of the layer rises due to conversion of the energy of radioactivity to heat boillng off the liquid to fomn a dry mass. The dry mass is then covered with thermal insulation, and the mass is self-sintered into a leach-resistant ceramic cake by further conversion of the energy of radioactivity to heat.

McVay, T.N.; Johnson, J.R.; Struxness, E.G.; Morgan, K.Z.

1959-12-29T23:59:59.000Z

100

Ion Removal  

INL’s ion removal technology leverages the ability of phosphazene polymers discriminate between water and metal ions, which allows water to pass ...

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Radioactive decay data tables  

SciTech Connect

The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

Kocher, D.C.

1981-01-01T23:59:59.000Z

102

DOE - Office of Legacy Management -- Purdue University Van Der Graaf  

Office of Legacy Management (LM)

Purdue University Van Der Graaf Purdue University Van Der Graaf Laboratory - IN 02 FUSRAP Considered Sites Site: PURDUE UNIVERSITY VAN DER GRAAF LABORATORY (IN.02) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Lafayette , Indiana IN.02-1 Evaluation Year: 1987 IN.02-3 Site Operations: Conducted research and development operations involving small quantities of radioactive material. IN.02-3 Site Disposition: Eliminated - NRC licensed - Potential for contamination considered remote based on limited quantities of material handled IN.02-2 IN.02-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium IN.02-1 IN.02-3 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP

103

DOE - Office of Legacy Management -- New York University - NY 50  

Office of Legacy Management (LM)

University - NY 50 University - NY 50 FUSRAP Considered Sites Site: NEW YORK UNIVERSITY (NY.50) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New York , New York NY.50-1 Evaluation Year: 1987 NY.50-1 Site Operations: Activities were related to equipment development. Counters and a small quantity of uranium oxide were provided by the AEC for work under contract AT(30-1)-1256. NY.50-2 NY.50-3 NY.50-4 NY.50-1 Site Disposition: Eliminated - Potential for contamination considered remote - Limited quantity of radioactive material used at this site NY.50-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NY.50-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP

104

DOE - Office of Legacy Management -- University of Florida - FL 09  

NLE Websites -- All DOE Office Websites (Extended Search)

Florida - FL 09 Florida - FL 09 FUSRAP Considered Sites Site: UNIVERSITY OF FLORIDA (FL.09) Eliminated from consideration under FUSRAP - Referred to NRC Designated Name: Not Designated Alternate Name: None Location: Gainesville , Florida FL.09-1 Evaluation Year: 1995 FL.09-1 Site Operations: Research and development using test quantities of radioactive metal. FL.09-2 Site Disposition: Eliminated - No Authority - NRC licensed FL.09-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Test Quantities of Uranium and Plutonium FL.09-2 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP - Referred to NRC FL.09-2 Also see Documents Related to UNIVERSITY OF FLORIDA FL.09-1 - DOE Letter; Wagoner to DeLaney; Subject: University of

105

DOE - Office of Legacy Management -- Harvard University Electron  

Office of Legacy Management (LM)

Harvard University Electron Harvard University Electron Accelerator - MA 05 FUSRAP Considered Sites Site: Harvard University Electron Accelerator (MA.05 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cambridge , Massachusetts MA.05-1 Evaluation Year: 1987 MA.05-1 Site Operations: Facility performed research in support of AEC and MED utilizing small quantities of radioactive materials in a controlled environment. MA.05-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited activities at the site MA.05-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP

106

The largest radioactive waste glassification  

NLE Websites -- All DOE Office Websites (Extended Search)

largest radioactive waste glassification largest radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid nuclear waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called "vitrification," as the preferred option for treating liquid nuclear waste. By immobilizing the radioactivity in glass, the DWPF reduces the risks associated with the continued storage of liquid nuclear waste at SRS and prepares the waste for final disposal in a federal repository. About 38 million gallons of liquid nuclear wastes are now stored in 49 underground carbon-steel tanks at SRS. This waste has about 300 million curies of radioactivity, of which the vast majority

107

Radioactive waste material melter apparatus  

DOE Patents (OSTI)

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another. 8 figs.

Newman, D.F.; Ross, W.A.

1990-04-24T23:59:59.000Z

108

Radioactive waste material melter apparatus  

DOE Patents (OSTI)

An apparatus for preparing metallic radioactive waste material for storage is disclosed. The radioactive waste material is placed in a radiation shielded enclosure. The waste material is then melted with a plasma torch and cast into a plurality of successive horizontal layers in a mold to form a radioactive ingot in the shape of a spent nuclear fuel rod storage canister. The apparatus comprises a radiation shielded enclosure having an opening adapted for receiving a conventional transfer cask within which radioactive waste material is transferred to the apparatus. A plasma torch is mounted within the enclosure. A mold is also received within the enclosure for receiving the melted waste material and cooling it to form an ingot. The enclosure is preferably constructed in at least two parts to enable easy transport of the apparatus from one nuclear site to another.

Newman, Darrell F. (Richland, WA); Ross, Wayne A. (Richland, WA)

1990-01-01T23:59:59.000Z

109

Radioactivity of the Cooling Water  

DOE R&D Accomplishments (OSTI)

The most important source of radioactivity at the exit manifold of the pile will be due to O{sup 19}, formed by neutron absorption of O{sup 18}. A recent measurement of Fermi and Weil permits to estimate that it will be safe to stay about 80 minutes daily close to the exit manifolds without any shield. Estimates are given for the radioactivities from other sources both in the neighborhood and farther away from the pile.

Wigner, E. P.

1943-03-01T23:59:59.000Z

110

Storage depot for radioactive material  

Science Conference Proceedings (OSTI)

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, Milton J. (Richland, WA)

1983-01-01T23:59:59.000Z

111

Storage depot for radioactive material  

SciTech Connect

Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.

Szulinski, M.J.

1983-10-18T23:59:59.000Z

112

Emergency Responder Radioactive Material Quick Reference Sheet...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Emergency Preparedness Program (TEPP) Emergency Responder Radioactive Material Quick Reference Sheet...

113

Emergency Tests Focus on Lab Radioactivity Analyses  

Science Conference Proceedings (OSTI)

Emergency Tests Focus on Lab Radioactivity Analyses. For Immediate ... Berne. Radioanalytical emergency response exercise. Journal ...

2013-09-05T23:59:59.000Z

114

YEAR-END REPORT: HEAVY ION FUSION PROGRAM  

E-Print Network (OSTI)

1978-Mar. 1979, Heavy Ion Fusion Program, Lawrence BerkeleyOlson, Proceedings of the Heavy Ion Fusion Workshop, ArgonneUniversity Ravi N. Sudan KMS Fusion, Inc. Stanford Linear

Fusion Staff, Heavy Ion

2010-01-01T23:59:59.000Z

115

Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider managed for the U.S. Department of Energy by Brookhaven Science Associates, founded by Stony Brook University and Battelle. managed for the U.S. Department of Energy by Brookhaven Science Associates, a company founded by Stony Brook University and Battelle 07/07 Brookhaven National Laboratory Funded by the U.S. Department of Energy, Brookhaven National Laboratory is a multipurpose research institution located on a 5,300-acre site on Long Island, New York. Six Nobel Prize-winning discoveries have been made at Brookhaven Lab. The Laboratory operates large-scale scientific facilities and performs research in physics, chemistry, biology, medicine, applied science, and

116

SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE  

DOE Green Energy (OSTI)

Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

2009-10-01T23:59:59.000Z

117

DOE - Office of Legacy Management -- Princeton University - NJ 08  

NLE Websites -- All DOE Office Websites (Extended Search)

Princeton University - NJ 08 Princeton University - NJ 08 FUSRAP Considered Sites Site: PRINCETON UNIVERSITY (NJ.08) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Princeton , New Jersey NJ.08-1 Evaluation Year: 1985 NJ.08-2 Site Operations: During 1940's, performed experiments on uranium isotope separation and experiments for the development of diffusion barrier material for the gaseous diffusion enrichment process. NJ.08-2 Site Disposition: Eliminated - Radiation levels below criteria NJ.08-1 NJ.08-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium NJ.08-2 NJ.08-3 Radiological Survey(s): Yes NJ.08-1 NJ.08-4 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to PRINCETON UNIVERSITY

118

DOE - Office of Legacy Management -- Syracuse University - NY 29  

Office of Legacy Management (LM)

Syracuse University - NY 29 Syracuse University - NY 29 FUSRAP Considered Sites Site: SYRACUSE UNIVERSITY (NY.29) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Syracuse , New York NY.29-1 Evaluation Year: 1994 NY.29-2 Site Operations: Activities included work with uranium oxide and the precipitation of thorium iodate from homogeneous solution. NY.29-1 NY.29-3 NY.29-4 Site Disposition: Eliminated - Potential for contamination remote NY.29-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium NY.29-3 NY.29-4 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to SYRACUSE UNIVERSITY NY.29-1 - AEC Memorandum; Belmore to Rodden; Request for Uranium

119

DOE - Office of Legacy Management -- Wesleyan University - CT 12  

NLE Websites -- All DOE Office Websites (Extended Search)

Wesleyan University - CT 12 Wesleyan University - CT 12 FUSRAP Considered Sites Site: Wesleyan University (CT.12 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Middletown , Connecticut CT.12-1 Evaluation Year: 1995 CT.12-2 Site Operations: Spectrographic research on small quantities of uranium wire (several inches in length) in Physics Department circa late 1950. CT.12-1 Site Disposition: Eliminated - Potential for contamination considered remote due to the limited scope of activities performed CT.12-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CT.12-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Wesleyan University

120

DOE - Office of Legacy Management -- Johns Hopkins University - MD 02  

Office of Legacy Management (LM)

Johns Hopkins University - MD 02 Johns Hopkins University - MD 02 FUSRAP Considered Sites Site: JOHNS HOPKINS UNIVERSITY (MD.02 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Baltimore , Maryland MD.02-1 Evaluation Year: 1987 MD.02-2 Site Operations: Conducted spectroscopic studies under contract number AT(49-1)-309. MD.02-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited quantities of material used in a controlled environment MD.02-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Tritium MD.02-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to JOHNS HOPKINS UNIVERSITY

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Storage containers for radioactive material  

DOE Patents (OSTI)

A radioactive material storage system is claimed for use in the laboratory having a flat base plate with a groove in one surface thereof and a hollow pedestal extending perpendicularly away from the other surface thereof, a sealing gasket in the groove, a cover having a filter therein and an outwardly extending flange which fits over the plate, the groove and the gasket, and a clamp for maintaining the cover and the plate sealed together. The plate and the cover and the clamp cooperate to provide a storage area for radioactive material readily accessible for use or inventory. Wall mounts are provided to prevent accidental formation of critical masses during storage.

Groh, E.F.; Cassidy, D.A.; Dates, L.R.

1980-07-31T23:59:59.000Z

122

INSPECTION OF THE ACCOUNTABILITY AND CONTROL OF SEALED RADIOACTIVE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OF THE ACCOUNTABILITY AND CONTROL OF SEALED RADIOACTIVE SOURCES AT SELECTED DEPARTMENT OF ENERGY SITES, IG-0544 Sealed radioactive sources consist of radioactive material either...

123

Novel carbon-ion fuel cells  

DOE Green Energy (OSTI)

This report details acitvities by the Duke University Department of Mechanical Engineering and Material Science on the Novel Carbon-Ion Fuel Cells for the Department of Energy Advanced Coal Research Program grant for the third quarter of 1995.

Cocks, F.H.; LaViers, H.

1995-10-03T23:59:59.000Z

124

Environmental Radioactivity in the Faroes  

E-Print Network (OSTI)

IN THE FAROES IN 1979 A. Aarkroo and J. Lippert Abstract. Measurements of fallout radioactivity in the Faroes Descriptors [0] DIET, ENVIRONMENT, EXPERIMENTAL DATA, FAROE ISLANDS, FISHES, FOOD, FOOD CHAINS, GLOBAL FALLOUT 62°N #12;- 7 - 1. INTRODUCTION 1*1*. The fallout programme for the Faroes, which was initiated

125

DOE - Office of Legacy Management -- University of Rochester Medical Lab -  

Office of Legacy Management (LM)

Rochester Medical Lab Rochester Medical Lab - NY 20 FUSRAP Considered Sites Site: UNIVERSITY OF ROCHESTER MEDICAL LAB. (NY.20) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Rochester , New York NY.20-1 Evaluation Year: 1987 NY.20-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment. NY.20-1 Site Disposition: Eliminated - Potential for contamination remote NY.20-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Not Specified NY.20-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to UNIVERSITY OF ROCHESTER MEDICAL LAB. NY.20-1 - Aerospace Corporation Letter; C. Young to A. Wallo;

126

DOE - Office of Legacy Management -- University of Indiana - IN 06  

Office of Legacy Management (LM)

Indiana - IN 06 Indiana - IN 06 FUSRAP Considered Sites Site: UNIVERSITY OF INDIANA (IN.06) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Bloomington , Indiana IN.06-1 Evaluation Year: 1987 IN.06-3 Site Operations: Conducted research and development operations using test quantities of radioactive material. IN.06-3 Site Disposition: Eliminated - Potential for contamination considered remote due to the limited scope of operations at the site IN.06-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium IN.06-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to UNIVERSITY OF INDIANA

127

UK Radioactive Waste: Classification, Sources and Management ...  

Science Conference Proceedings (OSTI)

Paper contents outlook: Introduction; Radioactive waste classification; Sources of waste (Nuclear power plant operation/decommissioning, Reprocessing and ...

128

NNSA: Securing Domestic Radioactive Material | National Nuclear...  

National Nuclear Security Administration (NNSA)

Securing Domestic Radioactive Material | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

129

4. Nuclei and Radioactivity Paradoxes and Puzzles  

E-Print Network (OSTI)

radioactivity, it may not be legally sold in the United States. 4. Of those killed by the Hiroshima atomic bomb anecdotes and say, "Of course." Radioactivity Radioactivity is the explosion of the nucleus of the atom nucleus of one atom is about million times greater than in a chemical explosion of a single atom

Browder, Tom

130

Radioactive Waste Management BasisApril 2006  

Science Conference Proceedings (OSTI)

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Perkins, B K

2011-08-31T23:59:59.000Z

131

The Universe Adventure - The Modern Universe  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Universe Modern Universe Like astronomers throughout history, modern cosmologists are interested in making an accurate model of the Universe. Starting with the laws of physics which explain how fundamental particles and forces interact, physicists derive general equations describing the evolution of the Universe's structure. Cosmologists use experimental evidence to select a set of initial conditions enabling them to solve the general equations, and calculate the state of the Universe at times in the past, present, or future. This generates a possible model, which can be tested by comparing the phenomena it predicts with observational data. In this manner, following the rigorous scientific method, cosmologists work to build a successful Universal model. In the next section we will examine evidence for the current Big Bang

132

DOE - Office of Legacy Management -- Ohio State University Metallurgical  

NLE Websites -- All DOE Office Websites (Extended Search)

Ohio State University Metallurgical Ohio State University Metallurgical Engineering Experiment Station -OH 0-05 FUSRAP Considered Sites Site: OHIO STATE UNIVERSITY, METALLURGICAL ENGINEERING EXPERIMENT STATION (OH.0-05 ) Eliminated from consideration under FUSRAP - Referred to NRC Designated Name: Not Designated Alternate Name: None Location: Columbus , Ohio OH.0-05-1 Evaluation Year: 1986 OH.0-05-2 Site Operations: Ohio State ordered 130 grams of uranium from the AEC. This commercial supply order was filled by Fernald. OH.0-05-1 OH.0-05-3 Site Disposition: Eliminated - AEC/NRC licensed operation OH.0-05-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium OH.0-05-1 OH.0-05-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP - Referred to NRC

133

DOE - Office of Legacy Management -- University of California - Lab for  

Office of Legacy Management (LM)

- Lab for - Lab for Energy Related-Health Research - LEHR - CA 0-05 FUSRAP Considered Sites Site: University of California - Lab. for Energy Related-Health Research - (LEHR) (CA.0-05 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Laboratory for Energy-Related Health Research (LEHR), California, Site Documents Related to University of California - Lab. for Energy Related-Health Research - (LEHR) Annual Site Environmental Report Calendar Year 2008 for the Laboratory for Energy-Related Health Research University of California, DavisSeptember 2009Rev. 0 Annual Site Environmental Report Calendar Year 2007 for the

134

DOE - Office of Legacy Management -- Iowa State University Ames Laboratory  

Office of Legacy Management (LM)

Iowa State University Ames Iowa State University Ames Laboratory - IA 01 FUSRAP Considered Sites Site: Iowa State University Ames Laboratory (IA.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Wallace Road , Ames , Iowa IA.01-1 IA.01-2 Evaluation Year: Circa 1985 IA.01-3 Site Operations: Produced uranium and thorium metal, recovered uranium scrap, and conducted studies and experimental investigations in connection with chemistry and metallurgy of natural uranium and its allied forms. IA.01-1 IA.01-4 IA.01-5 IA.01-6 IA.01-7 Site Disposition: Eliminated - Referred to Chicago Operations Office for appropriate action IA.01-6 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium IA.01-1

135

DOE - Office of Legacy Management -- Fordham University - NY 0-12  

Office of Legacy Management (LM)

Fordham University - NY 0-12 Fordham University - NY 0-12 FUSRAP Considered Sites Site: Fordham University (NY.0-12 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New York , New York NY.0-12-1 Evaluation Year: 1987 NY.0-12-1 Site Operations: Research and development involving small quantities of radioactive material in a controlled environment NY.0-12-1 Site Disposition: Eliminated - Potential for contamination remote NY.0-12-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Not Specified NY.0-12-1 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Fordham University NY.0-12-1 - Aerospace Letter; Young to Wallo; Subject: Elimination

136

Tracking of Ions Produced at Near Barrier Energies in Nuclear Reactions  

SciTech Connect

Examples of detectors, presently in use, for tracking products from nuclear reactions induced by radioactive ion beams are described. A new tracking detector is being designed to study the binary products from reactions induced by heavy neutron-rich radioactive ion beams on heavy neutron-rich target nuclei. The motivation for such studies and the features designed to accomplish this goal will be presented.

Shapira, Dan [ORNL

2010-01-01T23:59:59.000Z

137

Radioactivity  

Science Conference Proceedings (OSTI)

... Mixed-alpha-emitting sources may be calibrated using the 2 ? proportional counter and the percentage per radionuclide is determined using a ...

2013-07-27T23:59:59.000Z

138

Radioactivity  

NLE Websites -- All DOE Office Websites (Extended Search)

and allows the nucleus to achieve a more stable, lower energy configuration. Spontaneous fission of a large-mass nucleus into smaller-mass products is also a form of...

139

Fudan University HSK level 6  

E-Print Network (OSTI)

of King Mongkut's University of Technology Thonburi 0 Australian National University Plasma Research

Takada, Shoji

140

Radioactive Waste Management BasisSept 2001  

SciTech Connect

This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

Goodwin, S S

2011-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ION SWITCH  

DOE Patents (OSTI)

An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

Cook, B.

1959-02-10T23:59:59.000Z

142

Process for reducing radioactive contamination in phosphogypsum  

Science Conference Proceedings (OSTI)

A process of two crystallization stages for reducing radioactive contamination of phosphogypsum is disclosed. In the process anhydrite crystals are obtained through dehydration of the radiation containing phosphogypsum in strong sulfuric acid; a portion of the anhydrite crystals containing the radioactive contamination is converted to substantially radiation free gypsum by crystallizing out on a large solids concentration of radiation free gypsum seed crystals; and coarse radiation free gypsum crystals are separated from small anhydrite crystal relics containing substantially all of the radioactive contamination.

Gaynor, J.C.; Palmer, J.W.

1983-06-14T23:59:59.000Z

143

WEB RESOURCE: Radioactive Waste Management in Australia  

Science Conference Proceedings (OSTI)

May 8, 2007 ... A glossary of terms and public discussion papers on current and past projects are included. Citation: "Radioactive Waste Management in ...

144

Uranium Compounds and Other Natural Radioactivities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Science Division XSD Groups Industry Argonne Home Advanced Photon Source Uranium Compounds and Other Natural Radioactivities Uranium containing compounds and other...

145

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

of radioactive material are determined by the Nuclear Regulatory Commission (NRC), Department of Transportation (DOT), Department of Energy (DOE), and U.S. Postal...

146

Radioactive Material or Multiple Hazardous Materials Decontamination  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this procedure is to provide guidance for performing decontamination of individuals who have entered a “hot zone” during transportation incidents involving  radioactive.

147

Radiation Machines and Radioactive Materials (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These chapters describe general provisions and regulatory requirements; registration, licensure, and transportation of radioactive materials; and exposure standards for radiation protection.

148

Radiation Sources and Radioactive Materials (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to persons who receive, transfer, possess, manufacture, use, store, handle, transport or dispose of radioactive materials and/or sources of ionizing radiation. Some...

149

Riso-R-489LK Environmental Radioactivity  

E-Print Network (OSTI)

Abstract. Measurements of fallout radioactivity in Greenland in 1982 are reported. Strontium-90 (and Cesium Descriptors [0] DEER, DIET, ENVIRONMENT, EXPERIMENTAL DATA, FISHES, POOD CHAINS, GLOBAL FALLOUT, GRAPHS

150

'^^ Ris-R-449 Environmental Radioactivity  

E-Print Network (OSTI)

, Sweden Abstract. Measurements of fallout radioactivity in Greenland in 1980 are reported. Strontium-90. INIS Descriptors [O] DEER, DIET, ENVIRONMENT, EXPERIMENTAL DATA, PISHES, POOD CHAINS, GLOBAL FALLOUT

151

Radioactive Materials Transportation and Incident Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEMA 358, 0510 Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q...

152

ION SOURCE  

DOE Patents (OSTI)

An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

Blue, C.W.; Luce, J.S.

1960-07-19T23:59:59.000Z

153

ION SOURCE  

DOE Patents (OSTI)

The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

Leland, W.T.

1960-01-01T23:59:59.000Z

154

The Universe Adventure - Expansion  

NLE Websites -- All DOE Office Websites (Extended Search)

Expansion: Chunk-by-Chunk Expansion: Chunk-by-Chunk A sample of the Universe. A very small portion of the Universe. In order to better understand the significance of expansion, let's look at a cubic sample of space. By considering a finite volume we can follow changes in the size of the Universe as we move forwards and backwards in time. Remember, only the size of the cube will change. The galaxies inside the cube stay the same size. This animation illustrates how our cubic piece of the Universe changes with time. If the Universe followed the simplest expansionary models, its size would increase linearly with time. The Universe would continue to expand at a constant rate forever. If you look at only a narrow time-slice of the Universe's history, it does, in fact, appear that this is how the Universe

155

The Universe Adventure - Credits  

NLE Websites -- All DOE Office Websites (Extended Search)

School) GraphicWeb Design Melissa McClure (student, University of Rochester) Jonathan Thai (student, UC Irvine) 2005 Summer (Universe Adventure rev 2.0) Lead Content guided by...

156

Comparison of inorganic ion exchange materials for removing cesium, strontium, and transuranic elements from K-basin water  

SciTech Connect

The work presented in this report was conducted by the Pacific Northwest National Laboratory (PNNL) under the Efficient Separations and Crosscutting Program (ESP), Office of Science and Technology, U.S. Department of Energy (DOE). The objective of this work was to investigate radionuclide uptake by several newly produced ion exchange materials under actual waste conditions, and to compare the performance of those materials with that of commercially available ion exchangers. The equilibrium uptake data presented in this report are useful for identifying potential materials that are capable of removing cesium and strontium from 105-KE Basin water. The data show the relative selectivities of the ion exchange materials under similar operating conditions. Additional flow studies are needed to predict material capacities and to develop complete ion exchange process flow sheets. The materials investigated in this study include commercially available ion exchangers such as IONSIV{reg_sign} IE-911 (manufactured by UOP), clinoptilolite (a naturally occurring zeolite), and materials produced on an experimental basis by AlliedSignal (biotites and nonatitanates), 3M (hexacyanoferrates), Selion Technologies, Inc. (hexacyanoferrates and titanates), and Texas A&M University (pharmacosiderites, biotites, and nonatitanates). In all, the performance of 14 ion exchange materials was evaluated at two solution-to-exchanger mass ratios (i.e., 10{sup 4} and 10{sup 5}) using actual 105-KE Basin water. Evaluation consisted of determining cesium and strontium batch distribution coefficients, loading, and decontamination factors. Actual 105-KE Basin water was obtained from a sample collected during the sludge dissolution work conducted by PNNL in FY 1996. This sample was taken from the bottom of the basin and contained significantly higher concentrations of the radioactive constituents than do samples taken from the top of the basin.

Brown, G.N.; Bontha, J.R.; Carson, K.J.; Elovich, R.J.; DesChane, J.R.

1997-10-01T23:59:59.000Z

157

Director, health Physics Office Columbia University  

Office of Legacy Management (LM)

f. 3 -J f. 3 -J Mr. Philip tori0 Director, health Physics Office Columbia University 289 Engineering Terrace 520 West 120th Street New York, New York 10027 NY.3 "I A\, 4 f- ' :""5 . . ;. ,_ i._ ' L, Dear Mr. Lorio: The Department of Energy (DOE), as part of its Formerly Utilized Sites Remedial Action Program (FUSRAP), has reviewed information on Columbia University facilities to determine whether they contain residual radioactivity traceable to activities conducted on behalf of the Manhattan Engineer District or the Atomic Energy Commission (predecessors to DOE). A radiological survey indicated that the radiation levels are equal to natural background in all areas not currently in use for licensed operations with radionuclides, Therefore, no remedial action is required,

158

DOE - Office of Legacy Management -- University of Pennsylvania - PA 0-06  

Office of Legacy Management (LM)

Pennsylvania - PA Pennsylvania - PA 0-06 FUSRAP Considered Sites Site: UNIVERSITY OF PENNSYLVANIA (PA.0-06 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Philadelphia , Pennsylvania PA.0-06-1 Evaluation Year: 1987 PA.0-06-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment. PA.0-06-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote PA.0-06-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Radium PA.0-06-2 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to UNIVERSITY OF PENNSYLVANIA

159

DOE - Office of Legacy Management -- University of Pittsburgh - PA 0-07  

Office of Legacy Management (LM)

Pittsburgh - PA 0-07 Pittsburgh - PA 0-07 FUSRAP Considered Sites Site: UNIVERSITY OF PITTSBURGH (PA.0-07) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Pittsburgh , Pennsylvania PA.0-07-1 Evaluation Year: 1987 PA.0-07-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment. PA.0-07-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote PA.0-07-1 Radioactive Materials Handled: Yes PA.0-07-1 Primary Radioactive Materials Handled: Not Indicated Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see Documents Related to UNIVERSITY OF PITTSBURGH

160

Nevada University Transportation  

E-Print Network (OSTI)

illnesses and disabilities · Development of professionals and future leaders in the area of transportationNUTC Nevada University Transportation Center University of Nevada, Las Vegas Sustainable Transporation in Arid Regions 2007-2009 Biennial Report 5 #12;2007-2009 Nevada University Transportation Center

Ahmad, Sajjad

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE Solar Decathlon: Team Ontario: Queen's University, Carleton University,  

NLE Websites -- All DOE Office Websites (Extended Search)

Team Ontario: Queen's University, Carleton University, and Algonquin Team Ontario: Queen's University, Carleton University, and Algonquin College Team website: ontariosd.ca Photo of members of the Queen's University, Carleton University, and Algonquin College Solar Decathlon 2013 team on the deck of their partially constructed house. Several members are laughing and throwing snowballs. Enlarge image The Queen's University, Carleton University, and Algonquin College Solar Decathlon 2013 team (Courtesy of the Queen's University, Carleton University, and Algonquin College Solar Decathlon 2013 team) he Queen's University, Carleton University, and Algonquin College audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings

162

University of Nebraska-Lincoln and University of Florida (Building...  

Open Energy Info (EERE)

Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) Jump to: navigation, search Name University of Nebraska-Lincoln and University of Florida...

163

Norwich University, Stanford University and Kentucky/Indiana...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy, (202) 779-3295 Jason.Lutterman@ee.doe.gov Norwich University, Stanford University and Team KentuckyIndiana Take the Affordability Contest and University of...

164

Accelerators for heavy ion fusion  

SciTech Connect

Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

Bangerter, R.O.

1985-10-01T23:59:59.000Z

165

HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE  

SciTech Connect

This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Various thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.

Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.; Kobelev, A.P.; Popkov, V.N.; Polkanov, M.A.; Savkin, A.E.; Varlakov, A.P.; Karlin, S.V.; Stefanovsky, S.V.; Karlina, O.K.; Semenov, K.N.

2003-02-27T23:59:59.000Z

166

Proceedings of the workshop on the production and use of intense radioactive beams at the Isospin Laboratory  

SciTech Connect

These proceedings report the deliberations of a 3 1/2 day workshop on the Production and Use of Intense Radioactive Ion Beams at the Isospin Laboratory, which was held at the Joint Institute for Heavy Ion Research in Oak Ridge, Tennessee, October 1992. The purpose of this workshop was not to duplicate the programs of other recent radioactive ion beam workshops or international conferences that have focused on the scientific concepts which radioactive beams can, and in fact already are, addressing. Instead, the intent was to address the technical problems associated with the construction of the next generation ISOL facility and to initiate a discussion of the type of experimental equipment that should be developed for such a facility. We have tried to bring together in Oak Ridge the world`s experts in radioactive targets/ion sources, light and heavy-ion accelerators, and detection systems. After 1 1/2 days of overview presentations, the participants divided into three discussion groups (Experiments with Radioactive Beams, Target Ion Sources and Mass Separation, and Accelerators-Primary and Secondary) for 1 1/2 days of detailed discussions of the most pertinent issues. The final session was devoted to reports from each of the discussion groups and a general discussion of where to go from here. An outgrowth of these discussions was the establishment of working groups to coordinate future technical developments associated with the pertinent issues. The proceedings include the text of all the overview presentations, reports from each discussion group, as well as contributions from those participants who chose to provide the text of their presentations in the discussion groups and the Concluding Remarks. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Garrett, J.D. [ed.

1992-12-31T23:59:59.000Z

167

Heavy ion radiation damage simulations for CMOS image sensors Henok Mebrahtua  

E-Print Network (OSTI)

Heavy ion radiation damage simulations for CMOS image sensors Henok Mebrahtua , Wei Gaoa , Paul J, University of Toronto, Toronto, Ontario, Canada ABSTRACT Damage in CMOS image sensors caused by heavy ions and range of ions in matter) simulation results of heavy ion radiation damage to CMOS image sensors

Hornsey, Richard

168

Diverter assembly for radioactive material  

DOE Patents (OSTI)

A diverter assembly for diverting a pneumatically conveyed holder for a radioactive material between a central conveying tube and one of a plurality of radially offset conveying tubes includes an airtight container. A diverter tube having an offset end is suitably mounted in the container for rotation. A rotary seal seals one end of the diverter tube during and after rotation of the diverter tube while a spring biased seal seals the other end of the diverter tube which moves between various offset conveying tubes. An indexing device rotatably indexes the diverter tube and this indexing device is driven by a suitable drive. The indexing mechanism is preferably a geneva-type mechanism to provide a locking of the diverter tube in place. 3 figs.

Andrews, K.M.; Starenchak, R.W.

1988-04-11T23:59:59.000Z

169

Method for immobilizing radioactive iodine  

DOE Patents (OSTI)

Radioactive iodine, present as alkali metal iodides or iodates in an aqueous solution, is incorporated into an inert solid material for long-term storage by adding to the solution a stoichiometric amount with respect to the formation of a sodalite (3M.sub.2 O.3Al.sub.2 O.sub.3. 6SiO.sub.2.2MX, where M=alkali metal; X=I.sup.- or IO.sub.3.sup.-) of an alkali metal, alumina and silica, stirring the solution to form a homogeneous mixture, drying the mixture to form a powder, compacting and sintering the compacted powder at 1073 to 1373 K (800.degree. to 1100.degree. C.) for a time sufficient to form sodalite.

Babad, Harry (Richland, WA); Strachan, Denis M. (Richland, WA)

1980-01-01T23:59:59.000Z

170

Environmental geochemistry of radioactive contamination.  

Science Conference Proceedings (OSTI)

This report attempts to describe the geochemical foundations of the behavior of radionuclides in the environment. The information is obtained and applied in three interacting spheres of inquiry and analysis: (1) experimental studies and theoretical calculations, (2) field studies of contaminated and natural analog sites and (3) model predictions of radionuclide behavior in remediation and waste disposal. Analyses of the risks from radioactive contamination require estimation of the rates of release and dispersion of the radionuclides through potential exposure pathways. These processes are controlled by solubility, speciation, sorption, and colloidal transport, which are strong functions of the compositions of the groundwater and geomedia as well as the atomic structure of the radionuclides. The chemistry of the fission products is relatively simple compared to the actinides. Because of their relatively short half-lives, fission products account for a large fraction of the radioactivity in nuclear waste for the first several hundred years but do not represent a long-term hazard in the environment. The chemistry of the longer-lived actinides is complex; however, some trends in their behavior can be described. Actinide elements of a given oxidation state have either similar or systematically varying chemical properties due to similarities in ionic size, coordination number, valence, and electron structure. In dilute aqueous systems at neutral to basic pH, the dominant actinide species are hydroxy- and carbonato-complexes, and the solubility-limiting solid phases are commonly oxides, hydroxides or carbonates. In general, actinide sorption will decrease in the presence of ligands that complex with the radionuclide; sorption of the (IV) species of actinides (Np, Pu, U) is generally greater than of the (V) species. The geochemistry of key radionuclides in three different environments is described in this report. These include: (1) low ionic strength reducing waters from crystalline rocks at nuclear waste research sites in Sweden; (2) oxic water from the J-13 well at Yucca Mountain, Nevada, the site of a proposed repository for high level nuclear waste (HLW) in tuffaceous rocks; and (3) reference brines associated with the Waste Isolation Pilot Plant (WIPP). The transport behaviors of radionuclides associated with the Chernobyl reactor accident and the Oklo Natural Reactor are described. These examples span wide temporal and spatial scales and include the rapid geochemical and physical processes important to nuclear reactor accidents or industrial discharges as well as the slower processes important to the geologic disposal of nuclear waste. Application of geochemical information to remediating or assessing the risk posed by radioactive contamination is the final subject of this report. After radioactive source terms have been removed, large volumes of soil and water with low but potentially hazardous levels of contamination may remain. For poorly-sorbing radionuclides, capture of contaminated water and removal of radionuclides may be possible using permeable reactive barriers and bioremediation. For strongly sorbing radionuclides, contaminant plumes will move very slowly. Through a combination of monitoring, regulations and modeling, it may be possible to have confidence that they will not be a hazard to current or future populations. Abstraction of the hydrogeochemical properties of real systems into simple models is required for probabilistic risk assessment. Simplifications in solubility and sorption models used in performance assessment calculations for the WIPP and the proposed HLW repository at Yucca Mountain are briefly described.

Bryan, Charles R.; Siegel, Malcolm Dean

2003-09-01T23:59:59.000Z

171

Productive commercialization of university technology.  

E-Print Network (OSTI)

??Productive commercialization of university technology is a concern for the many stakeholders of the commercialization system. Do more total university research expenditures and more university… (more)

Winder, Charles

2012-01-01T23:59:59.000Z

172

Radioactive Samples / Materials at the APS  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Radioactive Samples / Materials at the APS Using Radioactive Samples / Materials at the APS The use of radioactive samples requires additional information for review and approval. All proposed experiments involving radioactive samples will be reviewed by the APS Radioactive Sample Safety Review Committee (RSSRC). The review will be on a graded basis. Hence, the experimenters are strongly advised to send in the experiment proposal in detail at least 2 months before the expected scheduled date of the experiment. Previously approved containment, isotopes and weights can be submitted as late as 2 weeks in advance. If your ESAF was submitted less than seven (7) days in advance of its scheduled start date you may be delayed to allow time for a safety review. The following guidelines are to be followed for all experiments with

173

APS Radioactive Sample Safety Review Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Sample Safety Review Committee Radioactive Sample Safety Review Committee March 6, 2012 1. Purpose The APS Safety Radioactive Sample Safety Review Committee (RSSRC) advises the AES Division Director on the radioactive samples to be used at the APS and the adequacy of controls in place for the duration of their use. The RSSRC reviews the radioactive material samples proposed to be run at the APS to ensure that they fall within established safety envelopes of the APS. 2. Membership The RSSRC members are appointed by the AES Division Director. The current members of the RSRC are: B. Glagola AES - Chair S. Davey AES G. Pile AES L. Soderholm CHM J. Vacca RSO W. VanWingeren AES M. Beno XSD E. Alp XSD M. Rivers PUC 3. Method The AES User Safety Coordinator will notify the RSSRC of any samples

174

Apparatus and method for radioactive waste screening  

DOE Patents (OSTI)

An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.

Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy

2012-09-04T23:59:59.000Z

175

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

SAFE are radioactive material transportations packages? SAFE are radioactive material transportations packages? RAM PACKAGES TESTING & CERTIFICATION REGULATIONS & GUIDANCE SITE MAP This graphic was generated from a computer analysis and shows the results from a regulatory puncture test of a stainless steel packaging dropping 40 inches (10 MPH) onto a 6 inch diameter steel spike. U.S. DOE | Office of Civilian Radioactive Waste Management (OCRWM) Sandia National Laboratories | Nuclear Energy & Fuel Cucle Programs © Sandia Corporation | Site Contact | Sandia Site Map | Privacy and Security An internationally recognized web-site from PATRAM 2001 - the 13th International Symposium on the Packaging and Transportation of Radioactive Material. Recipient of the AOKI AWARD. PATRAM, sponsored by the U.S. Department of Energy in cooperation with the International Atomic Energy Agency brings government and industry leaders together to share information on innovations, developments, and lessons learned about radioactive materials packaging and transportation.

176

He Ion Irradiation Damage in Fe/W Nanolayer Films - TMS  

Science Conference Proceedings (OSTI)

He Ion Irradiation Damage in Fe/VV N anolayer Films. Nan Li, X. Zhang. Department of Mechanical Engineering, Texas A&M University, College Station, ...

177

UNIVERSITY OF CALIFORNIA, SANTA CRUZ UNIVERSITY OF CALIFORNIA OBSERVATORIES  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA, SANTA CRUZ UNIVERSITY OF CALIFORNIA OBSERVATORIES Postdoctoral Scholar - Employee The University of California Observatories invites applications for one Postdoctoral Scholar of funding. For appointments within the University of California, the total duration of an individual

California at Santa Cruz, University of

178

Tabulation of thermodynamic data for chemical reactions involving 58 elements common to radioactive waste package systems  

DOE Green Energy (OSTI)

The rate of release and migration of radionuclides from a nuclear waste repository to the biosphere is dependent on chemical interactions between groundwater, the geologic host rock, and the radioactive waste package. For the purpose of this report, the waste package includes the wasteform, canister, overpack, and repository backfill. Chemical processes of interest include sorption (ion exchange), dissolution, complexation, and precipitation. Thermochemical data for complexation and precipitation calculations for 58 elements common to the radioactive waste package are presented. Standard free energies of formation of free ions, complexes, and solids are listed. Common logarithms of equilibrium constants (log K's) for speciation and precipitation reactions are listed. Unless noted otherwise, all data are for 298.15/sup 0/K and one atmosphere.

Benson, L.V.; Teague, L.S.

1980-08-01T23:59:59.000Z

179

DOE - Office of Legacy Management -- University of California Chemistry  

Office of Legacy Management (LM)

California Chemistry California Chemistry Building and Radiation Lab - CA 05 FUSRAP Considered Sites Site: UNIVERSITY OF CALIFORNIA (CHEMISTRY BUILDING AND RADIATION LABORATORY) (CA.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Berkeley , California CA.05-1 Evaluation Year: 1989 CA.05-2 Site Operations: Performed research in areas including nuclear fission and the TTA extraction process. CA.05-3 CA.05-4 Site Disposition: Eliminated - NRC licensed CA.05-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CA.05-1 CA.05-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to UNIVERSITY OF CALIFORNIA (CHEMISTRY BUILDING AND

180

DOE - Office of Legacy Management -- University of Utah Medical Research  

Office of Legacy Management (LM)

Utah Medical Research Utah Medical Research Center - UT 02 FUSRAP Considered Sites Site: UNIVERSITY OF UTAH, MEDICAL RESEARCH CENTER (UT.02) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Salt Lake City , Utah UT.02-2 Evaluation Year: 1987 UT.02-1 Site Operations: Research and development on animal inhalation of uranium dust during the 1950s. UT.02-2 Site Disposition: Eliminated - Radiation levels below criteria UT.02-1 UT.02-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium UT.02-2 Radiological Survey(s): Yes UT.02-2 Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to UNIVERSITY OF UTAH, MEDICAL RESEARCH CENTER UT.02-1 - DOE Letter; Fiore to Schiager; Subject: Elimination of

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

University Connections | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Research on the "Go" with OSTI mobile Research on the "Go" with OSTI mobile Research on the "Go" with OSTI mobile Get the EDUconnections widget and many other great free widgets at Widgetbox! University Spotlight Program The U.S. Department of Energy (DOE) Office of Scientific and Technical Information (OSTI) connects with university research departments and libraries across the nation to increase awareness of DOE's valuable scientific and technical information. OSTI "spotlights" individual universities with connections to DOE scientific research programs. Visit our spotlight below to see examples of universities that are supporting and advancing scientific research and discovery! University Spotlight Visit our Spotlight Archive to learn about great colleges and universities

182

Enhancements to System for Tracking Radioactive Waste Shipments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users...

183

EA-1146: Radioactive Waste Storage at Rocky Flats Environmental...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

46: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site,...

184

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT This Fiscal Year...

185

RESRAD Computer Code- Evaluation of Radioactively Contaminated Sites  

Energy.gov (U.S. Department of Energy (DOE))

The evaluation of sites with radioactive contamination was a problem until the RESidual RADioactivity (RESRAD) Computer Code was first released in 1989.

186

Information-Sharing Protocol for the Transportation of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preliminary Draft for Review Only Information-Sharing for Transportation of Radioactive Waste to Yucca Mountain Office of Logistics Management Office of Civilian Radioactive Waste...

187

Southeast Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Southeast Interstate Low-Level Radioactive Waste Management Compact (multi-state) Eligibility...

188

Northwest Interstate Compact on Low-Level Radioactive Waste Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States) Northwest Interstate Compact on Low-Level Radioactive Waste Management (Multiple States)...

189

Atlantic Interstate Low-Level Radioactive Waste Management Compact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Eligibility...

190

Public Preferences Related to Consent-Based Siting of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal Public Preferences Related to Consent-Based Siting of Radioactive Waste...

191

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste...

192

Quantization in Classical Mechanics and Diffusion Mechanism of Alpha Decay, Proton and Cluster Radioactivity, Spontaneous Fission  

SciTech Connect

Based on the Chetaev generalized theorem the Schroedinger equation as the stability condition of trajectories in classical dynamics in the presence of dissipative forces is derived. In the framework of this approach the alternative model for unified description of alpha decay, spontaneous fission, cluster and proton radioactivity and is developed. We show the possibility of the classical (without tunneling) description of radioactive decay of heavy nuclei, when the so called noise-induced transition or, in other words, the stochastic channel of radioactive decay conditioned by the Kramers diffusion mechanism is generated under certain conditions.Using the ENSDF nuclear data, we have found the parametrized solutions of the Kramers equation of the Langevin type by the Alexandrov dynamic auto-regularization method (REGN-Dubna program). These solutions describe with high-accuracy the dependences of half-life (the decay probability) of heavy radioactive nuclei on total kinetic energy of daughter decay products.Verification of the inverse problem solution in the framework of the universal Kramers description of alpha decay, spontaneous fission, cluster and proton radioactivity, which based on the newest experimental data for alpha-decay of even-even superheavy nuclei (Z = 114, 116, 118), shows good coincidence of the experimental and theoretical dependences of half-life on alpha-decay energy.

Rusov, V. D.; Vlasenko, D. S.; Deliyergiyev, M. A. [Department of Theoretical and Experimental Nuclear Physics, Odessa National Polytechnic University, Odessa (Ukraine); Mavrodiev, S. Cht. [Institute for Nuclear Research and Nuclear Energy, BAS, Sofia (Bulgaria)

2010-01-01T23:59:59.000Z

193

Quantization in Classical Mechanics and Diffusion Mechanism of Alpha Decay, Cluster Radioactivity, Spontaneous Fission  

SciTech Connect

Based on the Chetaev generalized theorem the Schredinger equation as the stability condition of trajectories in classical dynamics in the presence of dissipative forces is derived. In the framework of this approach the alternative model for unified description of alpha decay, spontaneous fission, cluster radioactivity and is developed. We show the possibility of the classical (without tunneling) description of radioactive decay of heavy nuclei, when the so called noise-induced transition or, in other words, the stochastic channel of radioactive decay conditioned by the Kramers diffusion mechanism is generated under certain conditions.Using the ENSDF nuclear data, we have found the parametrized solutions of the Kramers equation of the Langevin type by the Alexandrov dynamic auto-regularization method (REGN-Dubna program). These solutions describe with high-accuracy the dependences of half-life (the decay probability) of heavy radioactive nuclei on total kinetic energy of daughter decay products.Verification of the inverse problem solution in the framework of the universal Kramers description of alpha decay, spontaneous fission, cluster radioactivity, which based on the newest experimental data for alpha-decay of even-even superheavy nuclei (Z = 114, 116, 118), shows good coincidence of the experimental and theoretical dependences of half-life on alpha-decay energy.

Rusov, V. D.; Vlasenko, D. S.; Deliyergiyev, M. A. [Department of Theoretical and Experimental Nuclear Physics, Odessa National Polytechnic University, Odessa (Ukraine); Mavrodiev, S. Cht. [Institute for Nuclear Research and Nuclear Energy, BAS, Sofia (Bulgaria)

2010-05-04T23:59:59.000Z

194

University and College Contacts  

Science Conference Proceedings (OSTI)

... University of Kentucky Office of External Scholarships Dr. Lisa Broome-Price Lisa.broome-price@uky.edu (859) 257-1537 OR Experiences in ...

2013-09-24T23:59:59.000Z

195

Stanford University | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Prof. Wendy Mao create amorphous diamond Stanford University Dept. of Sustainability and Energy Management Stanford School of Engineering San Francisco, bordered by the Bay and...

196

PULSE at Stanford University  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Science @ SLAC - LCLS - LUSI - SSRL - PULSE - Stanford University Go Search Home Publications Atomic & Molecular Physics Condensed Matter Physics Single Molecule Imaging...

197

DOE Virtual University  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy Virtual University (DVU) is a central venue for executing, managing, partnering and sharing corporate learning activities and programs. The DVU provides employees cost...

198

Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Tebes is affiliated with the University of Illinois. Tebes is affiliated with the University of Illinois. ANL/EAD-2 Radiological Dose Assessment Related to Management of Naturally Occurring Radioactive Materials Generated by the Petroleum Industry by K.P. Smith, D.L. Blunt, G.P. Williams, and C.L. Tebes * Environmental Assessment Division Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 September 1996 Work sponsored by the United States Department of Energy, Office of Policy iii CONTENTS ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

199

RHIC | Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

Relativistic Heavy Ion Collider Relativistic Heavy Ion Collider Photo of LINAC The Relativistic Heavy Ion Collider (RHIC) is a world-class particle accelerator at Brookhaven National Laboratory where physicists are exploring the most fundamental forces and properties of matter and the early universe. RHIC accelerates beams of particles (e.g., the nuclei of heavy atoms such as gold) to nearly the speed of light, and smashes them together to recreate a state of matter thought to have existed immediately after the Big Bang some 13.8 billion years ago. STAR and PHENIX, two large detectors located around the 2.4-mile-circumference accelerator, take "snapshots" of these collisions to reveal a glimpse of the basic constituents of visible matter, quarks and gluons. Understanding matter at

200

GEORGIA SOUTHERN UNIVERSITY University System of Georgia  

E-Print Network (OSTI)

specialties in accounting information systems, business intelligence, electronic commerce, enterprise resource selective student body representing 49 U.S. states and more than 100 nations. The University continues the State of Georgia and the region through the benefits of higher education, offering both campus

Hutcheon, James M.

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Experiments with radioactive samples at the Advanced Photon Source.  

SciTech Connect

The Advanced Photon Source (APS) at Argonne National Laboratory is a national synchrotron-radiation light source research facility. The 7 GeV electron Storage Ring is currently delivering intense high brilliance x-ray beams to a total of 34 beamlines with over 120 experiment stations to members of the international scientific community to carry out forefront basic and applied research in several scientific disciplines. Researchers come to the APS either as members of Collaborative Access Teams (CATs) or as Independent Investigators (IIs). Collaborative Access Teams comprise large number of investigators from universities, industry, and research laboratories with common research objectives. These teams are responsible for the design, construction, finding, and operation of beamlines. They are the owners of their experimental enclosures (''hutches'') designed and built to meet their specific research needs. Fig. 1 gives a plan view of the location of the Collaborative Access Teams by Sector and Discipline. In the past two years, over 2000 individual experiments were conducted at the APS facility. Of these, about 60 experiments involved the use of radioactive samples, which is less than 3% of the total. However, there is an increase in demand for experiment stations to accommodate the use of radioactive samples in different physical forms embedded in various matrices with activity levels ranging from trace amounts of naturally occurring radionuclides to MBq (mCi) quantities including transuranics. This paper discusses in some detail the steps in the safety review process for experiments involving radioactive samples and how ALARA philosophy is invoked at each step and implemented.

Veluri, V. R.; Justus, A.; Glagola, B.; Rauchas, A.; Vacca, J.

2000-11-01T23:59:59.000Z

202

DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES  

Science Conference Proceedings (OSTI)

Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

Jantzen, C.

2010-03-18T23:59:59.000Z

203

Radioactive anomaly discrimination from spectral ratios  

DOE Patents (OSTI)

A method for discriminating a radioactive anomaly from naturally occurring radioactive materials includes detecting a first number of gamma photons having energies in a first range of energy values within a predetermined period of time and detecting a second number of gamma photons having energies in a second range of energy values within the predetermined period of time. The method further includes determining, in a controller, a ratio of the first number of gamma photons having energies in the first range and the second number of gamma photons having energies in the second range, and determining that a radioactive anomaly is present when the ratio exceeds a threshold value.

Maniscalco, James; Sjoden, Glenn; Chapman, Mac Clements

2013-08-20T23:59:59.000Z

204

Simplified scheme or radioactive plume calculations  

SciTech Connect

A simplified mathematical scheme to estimate external whole-body $gamma$ radiation exposure rates from gaseous radioactive plumes was developed for the Rio Blanco Gas Field Nuclear Stimulation Experiment. The method enables one to calculate swiftly, in the field, downwind exposure rates knowing the meteorological conditions and $gamma$ radiation exposure rates measured by detectors positioned near the plume source. The method is straightforward and easy to use under field conditions without the help of mini-computers. It is applicable to a wide range of radioactive plume situations. It should be noted that the Rio Blanco experiment was detonated on May 17, 1973, and no seep or release of radioactive material occurred. (auth)

Gibson, T.A.; Montan, D.N.

1976-11-21T23:59:59.000Z

205

Calcination process for radioactive wastes  

DOE Patents (OSTI)

The present invention provides a method for minimizing the volatilization of chlorides during solidification in a fluidized-bed calciner of liquids containing sodium, nitrate and chloride ions. Zirconium and fluoride are introduced into the liquid, and one-half mole of calcium nitrate is added per mole of fluoride present in the liquid mixture. The mixture is calcined in the fluidized-bed calciner at about 500.degree.C., producing a high bulk density calcine product containing the chloride, thus tying up the chloride in the solid product and minimizing chloride volatilization.

Kilian, Douglas C. (Kennewick, WA)

1976-05-04T23:59:59.000Z

206

Solid-state Inorganic Lithium-Ion Conductors  

A research team at the University of Colorado Boulder led by Se-Hee Lee has developed an advanced single step, high energy ball milling system for preparation of electrodes for use in a solid state lithium-ion battery.

207

Li-Ion Batteries for Transportation Applications II  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Energy Storage: Materials, Systems, and Applications: Li-Ion Batteries for ... storage and utilization of renewable energies like solar and wind. Cost ... Rahul Singhal1; Karina Asmar1; Ram Katiyar1; 1University of Puerto Rico

208

Geochemistry of the Dakota Formation of Northwestern New Mexico: Relevance to Radioactive Waste Studies  

Science Conference Proceedings (OSTI)

Technical Paper / The Backfill as an Engineered Barrier for Radioactive Waste Management / Radioactive Waste Management

Douglas G. Brookins

209

Universal software safety standard  

Science Conference Proceedings (OSTI)

This paper identifies the minimum subset required for a truly universal safety-critical software standard. This universal software standard could be used in but is not limited to the following application domains: commercial, military and space ... Keywords: software safety, system safety, validation, verification

P. V. Bhansali

2005-09-01T23:59:59.000Z

210

CORNELL UNIVERSITY POLICY LIBRARY  

E-Print Network (OSTI)

________________________________________________________________________________________________________________________________________________ ________________________________________________________________________________________________________________________________________________ 1 Cornell University prohibits the smoking or carrying of lighted cigars, cigarettes or pipes in all Brochure Cornell University Dining Brochure Faculty Handbook Human Resource Policy 6.11.4, Staff Complaint and Grievance Procedure Student Handbook City of Ithaca Municipal Code Respiratory Effects of Passive Smoking

Manning, Sturt

211

UNIVERSITIES IN TEXAS, PRIVATE  

E-Print Network (OSTI)

Caption FOR PUBLIC UNIVERSITIES IN TEXAS, PRIVATE SUPPORT IS THE ENGINE OF QUALITY. Indeed, state support (general revenues) today provides just one-third of Texas A&M University's total budget per student as Texas A&M. COLLEGE OF SCIENCE http://www.science.tamu.edu 3257 TAMU College Station

212

UNIVERSITY POLICE ANNUAL SECURITY  

E-Print Network (OSTI)

UNIVERSITY POLICE 2013 ANNUAL SECURITY AND FIRE SAFETY GUIDE In compliance with the Jeanne Clery Disclosure of Campus Security Policy and Campus Crime Statistics Act The University of New Orleans. Please take a moment to read the following information. #12;ANNUAL SECURITY AND FIRE SAFETY GUIDE 2013

Kulp, Mark

213

Ion Distributions Near a Liquid-Liquid Interface  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Distributions Near a Liquid-Liquid Interface Ion Distributions Near a Liquid-Liquid Interface Researchers from the University of Illinois at Chicago; Northern Illinois University; the University of California, Santa Cruz; and ChemMatCARS (sector 15 at the APS) used x-ray reflectivity from ion distributions at the liquid-liquid interface to provide strong evidence that the interfacial structure of a liquid alters the ion distributions near a charged interface, contrary to earlier theories about ions at charged surfaces. Coulomb's Law describes the interaction between two, otherwise isolated, point charges. If many charges are present in the region between these two charges, the net interaction between them is modified. This is commonly found in real systems, such as a plasma gas of electrons and ionized

214

Using Neutrons to Study Radioactive Materials  

Science Conference Proceedings (OSTI)

Symposium, Applied Neutron Scattering in Engineering and Materials Science Research ... to the unique infrastructure and specialized staff of the Nuclear Laboratory. Shielded cells enable neutron diffraction studies on highly radioactive ...

215

ORISE: Radiation and Radioactive Contamination FAQ  

NLE Websites -- All DOE Office Websites (Extended Search)

take potassium iodide, also known as KI? A: KI is a medication that blocks the thyroid gland from absorbing radioactive iodine. It works by providing all the iodine the gland...

216

Radioactive materials shipping cask anticontamination enclosure  

DOE Patents (OSTI)

An anticontamination device for use in storing shipping casks for radioactive materials comprising (1) a seal plate assembly; (2) a double-layer plastic bag; and (3) a water management system or means for water management.

Belmonte, Mark S. (Irwin, PA); Davis, James H. (Pittsburgh, PA); Williams, David A. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

217

Environmental Radioactivity in Greenland in 1981  

E-Print Network (OSTI)

. Measurements of fallout radioactivity in Greenland in 1981 are reported. Strontium-90 (and Cesium-137 in most. INIS Descriptors [0] DEER, DIET, ENVIRONMENT, EXPERIMENTAL DATA, FISHES, POOD CHAINS, GLOBAL FALLOUT

218

Method for storing radioactive combustible waste  

DOE Patents (OSTI)

A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

Godbee, H.W.; Lovelace, R.C.

1973-10-01T23:59:59.000Z

219

Categorical Exclusion Determinations: Civilian Radioactive Waste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B5.1 Date: 04052011 Location(s): Hot Springs, Arkansas Office(s): Civilian Radioactive Waste Management, Energy Efficiency and Renewable Energy March 25, 2011 CX-005570:...

220

Principles for Sampling Airborne Radioactivity from Stacks  

SciTech Connect

This book chapter describes the special processes involved in sampling the airborne effluents from nuclear faciities. The title of the book is Radioactive Air Sampling Methods. The abstract for this chapter was cleared as PNNL-SA-45941.

Glissmeyer, John A.

2010-10-18T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What's their construction? Who uses them? Who makes rules? What are the requirements? Safety Record Radioactive materials are carried by road, rail, water, and air. There are strict regulations that originate from the International Atomic Energy Agency (IAEA) which cover the packaging and transportation of radioactive materials. Road Rail Water Air [Road transport] Click to view picture [Rail transport] Click to view picture [Sea transport] Click to view picture [Air transport] Click to view picture 1998 DOE Radioactive Shipments in the United States Out of the 3 million hazardous material shipments are made each year, DOE accounts for less than 1% of all radioactive materials shipments and 75% of the total curies shipped in the United States Ship 0 Train 308

222

Vitrification of hazardous and radioactive wastes  

SciTech Connect

Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

Bickford, D.F.; Schumacher, R.

1995-12-31T23:59:59.000Z

223

DOE - Office of Legacy Management -- Naval Office at the University of New  

NLE Websites -- All DOE Office Websites (Extended Search)

Office at the University of Office at the University of New Mexico - NM 0-03 FUSRAP Considered Sites Site: NAVAL OFFICE AT THE UNIVERSITY OF NEW MEXICO (NM.0-03) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Albuquerque , New Mexico NM.0-03-1 Evaluation Year: 1987 NM.0-03-1 Site Operations: Site was a transshipment station for equipment to the Los Alamos site. NM.0-03-1 Site Disposition: Eliminated - Referred to DOD NM.0-03-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None NM.0-03-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP - Referred to DOD NM.0-03-1 Also see Documents Related to NAVAL OFFICE AT THE UNIVERSITY OF NEW MEXICO

224

The IAEA and Control of Radioactive SourcesThe  

SciTech Connect

This presentation discusses the International Atomic Energy Agency (IAEA) and the control of radioactive sources.

Dodd, B.

2004-10-03T23:59:59.000Z

225

How to deal with laboratory waste Radioactive waste  

E-Print Network (OSTI)

How to deal with laboratory waste Radioactive waste: Any laboratory waste, whether chemical or biological, containing radioactive material, should be disposed as radioactive waste. Radioactive waste should be removed from the laboratory to the departmental waste area, soon after finishing the experiment

Maoz, Shahar

226

SRP RADIOACTIVE WASTE RELEASES S  

Office of Scientific and Technical Information (OSTI)

. . . . . . -- SRP RADIOACTIVE WASTE RELEASES S t a r t u p t h r o u g h 1 9 5 9 September 1 9 6 0 _- R E C O R D - W O R K S T E C H N I C A L D E P A R T M E N T 1 J. E. C o l e , W i l n i 1 4 W. P. 3ebbii 3 H. Worthington, Wilm 16 C. $?. P~.t-Lei-s~:; - 5 J. D. E l l e t t - 17 E. C. Morris 6 F. H. Endorf 19 3 . L. &tier 7 K. W. F r e n c h 20 bi. C . 3 e i n i g 8 J. K. Lower 2 1 2. 3 . 3 G : - x r 9 K. W. M i l l e t t 22 R . FJ . V 2 x 7 : W ~ ~ C k 1 c - 2 J. B. Tinker, W i h L-, i . c . E?-ens 4 W F i l e P. 3 . K t B U ? & J. A. Monier, Jr. 13. : . A. KcClesrer. 1 0 M. 2 . Wahl . - 23 C. Ashley C. W. J. Wende 24 T I S F i l e 11 J. W. Morris - 2s T'pC File D. E. Waters 26 P3D F i l e , 736-C R. B. Fenninger 33 V l ~ a l Records F i l e 12 W. P. Overbeck - 27 -23 P3D % x : r a Czpies P33 2e:ol.d C ~ p l *iB+ ' / - - & OF THIS DQCUMENT I S UNuMITEI) E. 1. ciu /'(I,\ 7' d

227

Improved ion source  

DOE Patents (OSTI)

A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

Leung, K.N.; Ehlers, K.W.

1982-05-04T23:59:59.000Z

228

UNIVERSITY OF CALIFORNIA, SANTA CRUZ UNIVERSITY OF CALIFORNIA OBSERVATORIES  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA, SANTA CRUZ UNIVERSITY OF CALIFORNIA OBSERVATORIES POSTDOCTORAL SCHOLAR ­ EMPLOYEE The University of California Observatories invites applications for one Postdoctoral Scholar of California, the total duration of an individual's postdoctoral service may not exceed five years, including

California at Santa Cruz, University of

229

Delaware State University | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Delaware State University Delaware State University Research Office of the Associate Provost for Research General Research Capability Center for Integrated Biological & Environmental Research Experimental Program to Stimulate Competitive Research Delaware IDeA Network of Biomedical Research Excellence Faculty Research DSU Leads the Way in Better Buildings DSU is one of the first university partners in the US to join the Department of Energy's Better Buildings inititative to reduce its carbon footprint by 25% by 2015. Secretary of Energy Chu participated in the DSU kick-off program to commemorate the school's efforts in July 2012. Read more about this showcase project. Search this site: Search Prestigious research projects underway by Delaware State University (DSU) serve to enhance DSU's land-grant mission and its contributions to the

230

University | OpenEI  

Open Energy Info (EERE)

University University Dataset Summary Description Provides annual energy usage for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005 through 2010. Source University of Texas (UT) at Austin, Utilities & Energy Management Date Released Unknown Date Updated Unknown Keywords Electricity Consumption Natural Gas Texas Unit Cost Electricity Unit Cost Natural Gas University Water Data application/vnd.ms-excel icon Energy and Water Use Data for UT-Austin (xls, 32.8 KiB) Quality Metrics Level of Review Some Review Comment Assume data was reviewed by someone at UT-Austin prior to adding to website. Temporal and Spatial Coverage Frequency Annually Time Period 1989 - 2010

231

Ideal Gas Stephani Universes  

E-Print Network (OSTI)

The Stephani Universes that can be interpreted as an ideal gas evolving in local thermal equilibrium are determined, and the method to obtain the associated thermodynamic schemes is given

Bartolomé Coll; Joan Josep Ferrando

2003-12-04T23:59:59.000Z

232

Quantum mechanical Universal constructor  

E-Print Network (OSTI)

Arbitrary quantum states cannot be copied. In fact, to make a copy we must provide complete information about the system. However, can a quantum system self-replicate? This is not answered by the no-cloning theorem. In the classical context, Von Neumann showed that a `universal constructor' can exist which can self-replicate an arbitrary system, provided that it had access to instructions for making copy of the system. We question the existence of a universal constructor that may allow for the self-replication of an arbitrary quantum system. We prove that there is no deterministic universal quantum constructor which can operate with finite resources. Further, we delineate conditions under which such a universal constructor can be designed to operate dterministically and probabilistically.

Pati, A K; Pati, Arun K.; Braunstein, Samuel L.

2003-01-01T23:59:59.000Z

233

Quantum mechanical Universal constructor  

E-Print Network (OSTI)

Arbitrary quantum states cannot be copied. In fact, to make a copy we must provide complete information about the system. However, can a quantum system self-replicate? This is not answered by the no-cloning theorem. In the classical context, Von Neumann showed that a `universal constructor' can exist which can self-replicate an arbitrary system, provided that it had access to instructions for making copy of the system. We question the existence of a universal constructor that may allow for the self-replication of an arbitrary quantum system. We prove that there is no deterministic universal quantum constructor which can operate with finite resources. Further, we delineate conditions under which such a universal constructor can be designed to operate dterministically and probabilistically.

Arun K. Pati; Samuel L. Braunstein

2003-03-19T23:59:59.000Z

234

Texas Tech University  

E-Print Network (OSTI)

Texas Tech University :: TechAnnounce http Academic Departmental Citing scheduling conflicts with the Texas Oklahoma-Texas Tech football game and international environmental reporters, experts and industry and government leaders to the Hub City. Texas Tech

Rock, Chris

235

NCAR and the Universities  

Science Conference Proceedings (OSTI)

The National Center for Atmospheric Research (NCAR) has a responsibility for enhancing and assisting the national university-based atmospheric research effort. This responsibility is met partly by programs of research at NCAR that involve ...

Wilmot N. Hess

1985-05-01T23:59:59.000Z

236

EPCglobal : a universal standard  

E-Print Network (OSTI)

This thesis evaluates the likelihood of EPCglobal becoming the universal RFID standard by presenting a framework of ten factors used to analyze and determine if EPCglobal is moving in the right direction. The ten factors ...

Aguirre, Juan Ignacio

2007-01-01T23:59:59.000Z

237

Universal desktop fabrication  

Science Conference Proceedings (OSTI)

Advances in digital design and fabrication technologies are leading toward single fabrication systems capable of producing almost any complete functional object. We are proposing a new paradigm for manufacturing, which we call Universal Desktop Fabrication ...

T. Vilbrandt; E. Malone; H. Lipson; A. Pasko

2008-01-01T23:59:59.000Z

238

SEM Facility for Examination of Reactive and Radioactive Materials  

SciTech Connect

A scanning electron microscope (SEM) facility for the examination of tritium-containing materials is operational at Mound Laboratory. The SEM is installed with the sample chamber incorporated as an integral part of an inert gas glovebox facility to enable easy handling of radioactive and pyrophoric materials. A standard SEM (ETEC Model B-1) was modified to meet dimensional, operational, and safety-related requirements. A glovebox was designed and fabricated which permitted access with the gloves to all parts of the SEM sample chamber to facilitate detector and accessory replacement and repairs. A separate console combining the electron optical column and specimen chamber was interfaced to the glovebox by a custom-made, neoprene bellows so that the vibrations normally associated with the blowers and pumps were damped. Photomicrographs of tritiated pyrophoric materials show the usefulness of this facility. Some of the difficulties involved in the investigation of these materials are also discussed. The SEM is also equipped with an energy dispersive X-ray detector (ORTEC) and a Secondary Ion Mass Spectrometer (3M) attachments. This latter attachment allows analysis of secondary ions with masses ranging from 1-300 amu.

Downs, G. L.; Tucker, P. A.

1973-06-01T23:59:59.000Z

239

Public involvement in radioactive waste management decisions  

SciTech Connect

Current repository siting efforts focus on Yucca Mountain, Nevada, where DOE`s Office of Civilian Radioactive Waste Management (OCRWM) is conducting exploratory studies to determine if the site is suitable. The state of Nevada has resisted these efforts: it has denied permits, brought suit against DOE, and publicly denounced the federal government`s decision to study Yucca Mountain. The state`s opposition reflects public opinion in Nevada, and has considerably slowed DOE`s progress in studying the site. The Yucca Mountain controversy demonstrates the importance of understanding public attitudes and their potential influence as DOE develops a program to manage radioactive waste. The strength and nature of Nevada`s opposition -- its ability to thwart if not outright derail DOE`s activities -- indicate a need to develop alternative methods for making decisions that affect the public. This report analyzes public participation as a key component of this openness, one that provides a means of garnering acceptance of, or reducing public opposition to, DOE`s radioactive waste management activities, including facility siting and transportation. The first section, Public Perceptions: Attitudes, Trust, and Theory, reviews the risk-perception literature to identify how the public perceives the risks associated with radioactivity. DOE and the Public discusses DOE`s low level of credibility among the general public as the product, in part, of the department`s past actions. This section looks at the three components of the radioactive waste management program -- disposal, storage, and transportation -- and the different ways DOE has approached the problem of public confidence in each case. Midwestern Radioactive Waste Management Histories focuses on selected Midwestern facility-siting and transportation activities involving radioactive materials.

NONE

1994-04-01T23:59:59.000Z

240

CHAPTER 5-RADIOACTIVE WASTE MANAGEMENT  

SciTech Connect

The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Marie Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.

Marra, J.

2010-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE - Office of Legacy Management -- University of Washington - WA 0-01  

Office of Legacy Management (LM)

Washington - WA 0-01 Washington - WA 0-01 FUSRAP Considered Sites Site: UNIVERSITY OF WASHINGTON (WA.0-01) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Seattle , Washington WA.0-01-1 Evaluation Year: 1987 WA.0-01-1 Site Operations: Research activities involving small quantities of radioactive materials in a controlled environment. WA.0-01-1 Site Disposition: Eliminated - Potential for residual radioactive contamination considered remote - Operating under active NRC license WA.0-01-1 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: None Indicated WA.0-01-1 Radiological Survey(s): None Indicated Site Status: Eliminated from further consideration under FUSRAP Also see

242

Thermodynamics of Fractal Universe  

E-Print Network (OSTI)

We investigate the thermodynamical properties of the apparent horizon in a fractal universe. We find that one can always rewrite the Friedmann equation of the fractal universe in the form of the entropy balance relation $ \\delta Q=T_h d{S_h}$, where $ \\delta Q $ and $ T_{h} $ are the energy flux and Unruh temperature seen by an accelerated observer just inside the apparent horizon. We find that the entropy $S_h$ consists two terms, the first one which obeys the usual area law and the second part which is the entropy production term due to nonequilibrium thermodynamics of fractal universe. This shows that in a fractal universe, a treatment with nonequilibrium thermodynamics of spacetime may be needed. We also study the generalized second law of thermodynamics in the framework of fractal universe. When the temperature of the apparent horizon and the matter fields inside the horizon are equal, i.e. $T=T_h$, the generalized second law of thermodynamics can be fulfilled provided the deceleration and the equation of state parameters ranges either as $-1 \\leq q thermodynamics can be secured in a fractal universe by suitably choosing the fractal parameter $\\beta$.

Ahmad Sheykhi; Zeinab Teimoori; Bin Wang

2012-10-29T23:59:59.000Z

243

InternAtIonAl simon fraser university,  

E-Print Network (OSTI)

of study, new explorations and research, and new combinations and applications of knowledge. SFU works approach. At SFU this includes the creation of mobility opportunities for students, staff, and faculty

244

UNIRIB: Research  

NLE Websites -- All DOE Office Websites (Extended Search)

mission focus of the University Radioactive Ion Beam (UNIRIB) consortium is to perform nuclear physics research, and provide training and education. UNIRIB member universities...

245

Project Rio Blanco radioactivity and the environment  

SciTech Connect

Data are presented on radiological measurements of the environment and on documenting the transfer to a subsurface disposal well of radioactive water separated from the produced gas stream. Analysis of gas and water through the drilling well control unit revealed the presence of $sup 3$H and $sup 85$Kr in the gas and $sup 3$H, $sup 137$Cs, and $sup 90$Sr in the water. The production test, disposal system, and radiological monitoring system are described. Data on effluents are presented under the headings: gas and water production, radioactivity concentrations in gas, radioactivity concentrations in separator water samples, radioactivity concentrations in injected water volumes, and disposition of radioactivity. Tritium, $sup 39$Ar, $sup 14$C, $sup 85$Kr, and $sup 222$Rn were present in gas. Tritium, $sup 134$CCs, $sup 137$Cs, $sup 90$Sr, $sup 75$Se, and $sup 106$Ru were present in separator water samples. Data on environmental monitoring and RB-AR-2 drilling and testing are presented under the headings air sampling, air moisture and precipitation sampling, soil sampling, water sampling, Fawn Creek sediments and algae/moss samples, bioassays, aerial surveillance, and potential environmental radiation doses. (HLW)

1975-10-01T23:59:59.000Z

246

Electron Ion Collider: The Next QCD Frontier Understanding  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Electron Ion Collider: The Next QCD Frontier Understanding the glue that binds us all White Paper Writing Committee Elke C. Aschenauer Brookhaven National Laboratory William Brooks Universidad T´ ecnica Federico Santa Maria Abhay Deshpande 1 Stony Brook University Markus Diehl Deutsches Elektronen-Synchrotron DESY Haiyan Gao Duke University Roy Holt Argonne National Laboratory Tanja Horn The Catholic University of America Andrew Hutton Thomas Jefferson National Accelerator Facility Yuri Kovchegov The Ohio State University Krishna Kumar University of Massachusetts, Amherst Zein-Eddine Meziani 1 Temple University Alfred Mueller Columbia University Jianwei Qiu 1 Brookhaven National Laboratory Michael Ramsey-Musolf University of Wisconsin Thomas Roser Brookhaven National Laboratory 1 Co-Editor 1 Franck Sabati´ e Commissariat ` a l' ´ Energie Atomique-Saclay

247

The Universe Adventure - Early Models  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Models of the Universe Ready for Blast-off Space exploration missions contribute greatly to our understanding of the Universe. With our new understanding of the fundamental...

248

J Apostolov Zlatomir D University  

NLE Websites -- All DOE Office Websites (Extended Search)

of Tennessee-Knoxville Group C Group I Saparov Bayrammurad University of Delaware Nguyen Lam T. Florida State University Kanitpanyacharoen K itpanyach Waruntorn Warunt...

249

Auburn University | Open Energy Information  

Open Energy Info (EERE)

University Place Auburn, Alabama Zip 36849 Product Largest university in Alabama, enrolling approximately 23,000 students in 230 undergraduate, graduate, and professional programs....

250

Split University | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name Split University Place Zagreb, Croatia Sector Hydro, Solar Product Croatia-based electrical engineering faculty of Split University....

251

Annual Report FY2012 University of Rhode Island  

E-Print Network (OSTI)

2006 5 4 New category (as of FY2006): US Dept. of Defense excluding funds from Army, Navy and Air Force. 1 5 6 New category (as of FY2006): University funds other than URI. 2 1 FY2007 FY2008 1 FY2009 1 FY DEVELOPMENT OF NEW ELECTROLYTE SYSTEMS LITHIUM ION BATTERY S $674,769 $674,769 LUCHT, BRETT INVESTIGATION

Rhode Island, University of

252

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What are the requirements? Safety Record The Agencies that Generate Rules that Promulgate the Transport of Radioactive Materials: Regulations to control the transport of radioactive material were initiated about 1935 by the Postal Service. Over the years, the Interstate Commerce Commission (ICC) became involved and in 1948 promulgated regulations as Title 49 of the Code of Federal Regulations. In 1966, DOT received hazardous materials regulatory authority that had been exercised by the ICC, Federal Aviation Administration (FAA) and United States Costal Guard (USCG). Currently, five groups generate rules governing the transport of radioactive material -- the DOT, NRC, USPS, DOE, and various State agencies. Among these, DOT and NRC are the primary agencies issuing regulations based on the model regulations developed by the International Atomic Energy Agency (IAEA).

253

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What are the requirements? What are the requirements? Safety Record Radioactive material has been shipped in the U. S. for more than 50 years with no occurrences of death or serious injury from exposure of the contents of these shipments. Hazardous Material Shipments for 1 Year Internationally 300 million United States 3 million DOE <1% or 5,000 (out of 3 million) [U.S. DOE NTP, 1999, Transporting Radioactive Materials] All radioactive shipments are regulated by the Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC). Since transport accidents cannot be prevented, the regulations are primarily designed to: Insure safety in routine handling situations for minimally hazardous material Insure integrity under all circumstances for highly dangerous materials

254

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

When are they used? How are they moved? What's their construction? Who uses them? Who makes rules? What are the requirements? Safety Record A radioactive material (RAM) packaging is a container that is used to safely transport radioactive material from one location to another. In RAM transportation the container alone is called the Packaging. The packaging together with its contents is called the Package. Basic types of radioactive material packagings are: Excepted Packaging Industrial Packaging Type A Packaging Type B Packaging [EXCEPTED] Click to view picture [IP] Click to view picture [TYPE A] Click to view picture [TYPE B] Click to view picture Excepted Packagings are designed to survive normal conditions of transport. Excepted packagings are used for transportation of materials that are either Low Specific Activity (LSA) or Surface Contaminated Objects (SCO) and that are limited quantity shipments, instruments or articles, articles manufactured from natural or depleted uranium or natural thorium; empty packagings are also excepted (49CFR 173.421-428).

255

Excellence in radioactive waste volume reduction  

SciTech Connect

The Brunswick plant is a two-unit boiling water reactor located at the mouth of the Cape Fear River near Wilmington, North Carolina. The plant has a once-through cooling system with highly brackish water. The operations subunit is responsible for liquid radwaste processing. The radiation control subunit is responsible for dry active waste processing and the transportation of all radioactive wast off-site. For the Brunswick plant, the development of an effective radioactive waste volume reduction program was a process involving a tremendous amount of grass-roots worker participation. With radioactive waste responsibilities divided between two separate groups, this process took place on a somewhat different schedule for liquid process waste and dry active waste. However, this development process did not begin until dedicated personnel were assigned to manage radwaste independently of other plant duties.

Henderson, J.

1987-01-01T23:59:59.000Z

256

Radioactive tank waste remediation focus area  

SciTech Connect

EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

1996-08-01T23:59:59.000Z

257

California Stanford University of University Institute of University California of Southern  

E-Print Network (OSTI)

California Stanford University of University Institute of University California of Southern Technology California ____________________________________________________________ February 15, 2011 Dear Representative, As Congress considers funding options for the remainder of fiscal year (FY) 2011, California

Narayanan, Shrikanth S.

258

DOE - Office of Legacy Management -- University of Denver Research...  

Office of Legacy Management (LM)

of radioactive metal - circa 1965. CO.13-2 Site Disposition: Eliminated - No Authority - NRC licensed CO.13-1 Radioactive Materials Handled: Yes Primary Radioactive Materials...

259

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Emergency Response Effects of Radiation History Gallery Glossary of Nuclear Terms [Majority from NRC] Contacts Comments & Questions Agencies U. S. Department of Transportation (DOT), U. S. Nuclear Regulatory Commission (NRC) Postal Services (USPS) U. S. Department of Energy (DOE), National Conference of State Legislatures - Environment, Energy and Transportation Program, Hazardous and Radioactive Materials International Atomic Energy Agency (IAEA) U. S. Environmental Protection Agency (EPA) Regulations Code of Federal Regulations: Title 10 - Energy Code of Federal Regulations: Title 10, PART 71 - Packaging and Transportation of Radioactive Material Code of Federal Regulations: Title 49 - Transportation Code of Federal Regulations: Title 49, PART 173 - Shippers - General

260

1969 audit of SRP radioactive waste  

SciTech Connect

This report summarizes releases of radioactive waste to the environs of the Savannah River Plant during the calendar year 1969. Total quantities of radioactive waste released from plant startup through 1969 are also reported. Accuracy is not always implied to the degree indicated by the number of significant figures reported. Values were not rounded off, since data will be used in future cumulative summaries. No explanations are given for unusual releases; this information may be found in the Radiological Sciences Division Monthly Reports and in the Semi-annual and Annual Environmental Monitoring Reports for 1969.

Ashley, C.

1970-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

1965 audit of SRP radioactive waste  

SciTech Connect

This report summarizes releases of radioactive waste to the environs of the Savannah River Plant during the calendar year 1965. Total quantities of radioactive waste released from plant startup through 1965 are also reported. Accuracy is not always implied to the degree indicated by the number of significant figures reported. Values were not rounded off, since data will be used in future cumulative summaries. No explanations are given for unusual releases; this information may be found in the Radiological and Environmental Sciences Division Monthly Reports and in the Semi- annual and Annual Environmental Monitoring Reports for 1965.

Ashley, C.

1966-05-01T23:59:59.000Z

262

CRAD, Radioactive Waste Management - June 22, 2009 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Waste Management - June 22, 2009 Radioactive Waste Management - June 22, 2009 CRAD, Radioactive Waste Management - June 22, 2009 June 22, 2009 Radioactive Waste Management, Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-33, Rev. 0) The following provides an overview of the typical activities that will be performed to collect information to evaluate the management of radioactive wastes and implementation of integrated safety management. The following Inspection Activities apply to all Inspection Criteria listed below: Review radioactive waste management and control processes and implementing procedures. Interview personnel including waste management supervision, staff, and subject matter experts. Review project policies, procedures, and corresponding documentation related to ISM core function

263

EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emer Emer Emer Emer Emer Emergency Response to a T gency Response to a T gency Response to a T gency Response to a T gency Response to a Transportation ransportation ransportation ransportation ransportation Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional

264

Oak Ridge Associated Universities  

Office of Legacy Management (LM)

Facility and Site Decommissioning U.S. Department of Energy ORAU 89lA-42 VERIFICATION OF REMEDIAL ACTION ON VENTILATION SYSTEMS JONES CHEMICAL LABORATORY UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS M. R. LANDIS Radiological Site Assessment Program Manpower Education, Research, and Training Division FINAL REPORT JANUARY 1989 ORAU 89IA-42 3 VERIFICATION OF REMEDIAL ACTION ON VENTILATION SYSTEMS JONES CHEMICAL LABORATORY UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS Prepared by M.R. Landis Radiological Site Assessment Program Manpower Education, Research, and Training Division Oak Ridge Associated Universities Oak Ridge, TN 37831-0117 Project Staff J.D. Berger R.D. Condra J.F. Lisco C.F. Weaver Prepared for U.S. Department of Energy as part of the Formerly Utilized Sites -

265

Universe Adventure Web Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Universe Universe Adventure Web Standards for the Smart Physics Student Author: Patrick Lii - plii@ugastro.berkeley.edu Date: August 3, 2007 ABSTRACT You may be wondering: why are the Universe Adventure web standards so impor- tant? And why do I have to read this stupid document about them? The old versions of our site were plagued with messy (and faulty) coding: the pages were littered with broken links, missing images, broken flash files, and all sorts of other problems which made the site highly inaccessible. When we tried to fix these errors, we found that the coding was so incredibly messy that a simple edit like changing some of the words in a paragraph or adding an image took hours rather than minutes. In fact, the coding was so horrific that we simply constructed an entirely new site rather than making the laborious attempt to fix the old one. In order to make sure that future students working

266

DOE - Office of Legacy Management -- University of Michigan - MI 08  

Office of Legacy Management (LM)

Michigan - MI 08 Michigan - MI 08 FUSRAP Considered Sites Site: UNIVERSITY OF MICHIGAN (MI.08) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Ann Arbor , Michigan MI.08-1 Evaluation Year: 1987 MI.08-2 Site Operations: Conducted research with a supersonic reflectroscope to detect flaws within a metal slug and developed methods for testing the adequacy of coatings which are applied to pieces of uranium metal. MI.08-1 MI.08-3 Site Disposition: Eliminated - Potential for contamination considered remote due to limited quantities of materials handled in a controlled environment MI.08-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Metal MI.08-1 MI.08-3 Radiological Survey(s): None Indicated

267

University Location Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location Project Description Location Project Description Boise State University Boise, Idaho Boise State University has undertaken a study of the structural setting and geothermal potential at Neal Hot Springs that will integrate geology, geochemistry, and geophysics to analyze the site on the western Snake River plain. Boise State will determine if Neal Hot Springs sustains the necessary rock dilation and conduit pathways for hydrothermal fluid flow and successful geothermal development. The result will be new data acquisition, including a deep geophysical survey and fault surface data. Colorado School of Mines Golden, Colorado Colorado School of Mines will conduct an investigation near Homedale, Idaho, an area that straddles volcanic rock and unconsolidated sediments.

268

Quantum Universe Hitoshi Murayama (Berkeley)  

E-Print Network (OSTI)

Quantum Universe Hitoshi Murayama (Berkeley) University of Tennessee, Jan 22, 2007 #12;COBE showed quantum origin of the universe #12;400Kyr 13.7Byr 1min 10 -10sec #12;To understand physics at the largest made of? · How did it come to be? · Why do we exist? Moving from philosophy to physics Quantum Universe

Murayama, Hitoshi

269

DOE - Office of Legacy Management -- University of Miami - FL 0-01  

Office of Legacy Management (LM)

Miami - FL 0-01 Miami - FL 0-01 FUSRAP Considered Sites Site: UNIVERSITY OF MIAMI (FL.0-01 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Miami , Florida FL.0-01-1 Evaluation Year: 1987 FL.0-01-1 Site Operations: Research. FL.0-01-1 Site Disposition: Eliminated - Potential for contamination considered remote based on nature of the operations FL.0-01-1 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled: None Indicated FL.0-01-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to UNIVERSITY OF MIAMI FL.0-01-1 - Aerospace Letter; Young to Wallo; Subject: Elimination Recommendation -- Colleges and Universities; September 23, 1987

270

Method for decontamination of radioactive metal surfaces  

DOE Patents (OSTI)

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, Lane A. (Richland, WA)

1996-01-01T23:59:59.000Z

271

Canister arrangement for storing radioactive waste  

DOE Patents (OSTI)

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, Donald K. (Knoxville, TN); Van Cleve, Jr., John E. (Kingston, TN)

1982-01-01T23:59:59.000Z

272

High-level radioactive wastes. Supplement 1  

SciTech Connect

This bibliography contains information on high-level radioactive wastes included in the Department of Energy's Energy Data Base from August 1982 through December 1983. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. 1452 citations.

McLaren, L.H. (ed.) [ed.

1984-09-01T23:59:59.000Z

273

A Study of Natural Radioactive Equilibrium  

E-Print Network (OSTI)

minerals are in equilibrium can have significant economic impacts where uranium mining and yellowcake radiometric measurements and the actual uranium content of the ore. Anderson reports that "The miningA Study of Natural Radioactive Equilibrium In Selected Uranium Minerals Erik Hunter Colorado School

274

Radioactive air emissions 1992 summary. Progress report  

Science Conference Proceedings (OSTI)

This report summarizes, by radionuclide or product and by emitting facility, the Laboratory`s 1992 radioactive air emissions. In 1992, the total activity of radionuclides emitted into the air from Laboratory stacks was approximately 73,500 Ci. This was an increase over the activity of the total 1991 radioactive air emissions, which was approximately 62,400 Ci. Total 1992 Laboratory emissions of each radionuclide or product are summarized by tables and graphs in the first section of this report. Compared to 1991 radioactive air emissions, total tritium activity was decreased, total plutonium activity was decreased, total uranium activity was decreased, total mixed fission product activity was increased, total {sup 41}Ar activity was decreased, total gaseous/mixed activation product (except {sup 41}Ar) activity was increased, total particulate/vapor activation product activity was increased, and total {sup 32}P activity was decreased. Radioactive emissions from specific facilities are detailed in this report. Each section provides 1992 data on a single radionuclide or product and is further divided by emitting facility. For each facility from which a particular radionuclide or product was emitted, a bar chart displays the air emissions of each radionuclide or product from each facility over the 12 reporting periods of 1992, a line chart shows the trend in total emissions of that radionuclide or product from that facility for the past three years, the greatest activity during the 1990--1992 period is discussed, and unexpected or unusual results are noted.

Wahl, L. [comp.

1993-10-01T23:59:59.000Z

275

Industry Survey of Radioactive Material Control Practices  

Science Conference Proceedings (OSTI)

Workers and materials entering and exiting the radiation control areas (RCAs) of nuclear power plants are carefully monitored for radioactivity. This report documents a survey developed to evaluate the range of instrumentation and practices used by the industry for performing such measurements.

2003-11-26T23:59:59.000Z

276

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2008  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2008 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

West, B.; Waltz, R.

2009-06-11T23:59:59.000Z

277

Canister arrangement for storing radioactive waste  

DOE Patents (OSTI)

The subject invention relates to a canister arrangement for jointly storing high level radioactive chemical waste and metallic waste resulting from the reprocessing of nuclear reactor fuel elements. A cylindrical steel canister is provided with an elongated centrally disposed billet of the metallic waste and the chemical waste in vitreous form is disposed in the annulus surrounding the billet.

Lorenzo, D.K.; Van Cleve, J.E. Jr.

1980-04-23T23:59:59.000Z

278

CLEANING OF RADIOACTIVE CONTAMINATED OCCUPATIONAL CLOTHING  

SciTech Connect

The soiling and contamination of work clothing and ways of removing this contamination are discussed. Means of disinfection, washing tests with radioactive-contaminated cotton clothing, construction of the laundry, and cleaning protective clothing of plastic and other materials with the help of washing methods and polyphosphates are described. (M.C.G.)

Siewert, G.; Schikora, Th.

1963-11-01T23:59:59.000Z

279

Environmental Radioactivity in Greenland in 1978  

E-Print Network (OSTI)

of fallout radioactivity in Greenland in 1978 are reported. Strontium-90 (and Cesium-137 in most cases, FOOD CHAINS, GLOBAL FALLOUT, GRAPHS, GREENLAND, PLANTS, RADIOAC- TIVITY, SEAWATER, SHEEP, TABLES [1 ' the fallout levels increased similarly from 1977 to 1978. 90 Fig. 2.1 shows the accumulated Sr at the various

280

Environmental Radioactivity in the Faroes in 1978  

E-Print Network (OSTI)

of fallout radioactivity in the Faroes in 137 1978 are presented. Strontium-90 (and Cs in most cases, ENVIRONEMNT, EXPERIMENTAL DATA, FAROE ISLANDS, FISHES, FOOD, FOOD CHAINS, GLOBAL FALLOUT, GRAPHS, MILK, PLANTS to counting) B.D.L. below detection limit #12;5 - 1. INTRODUCTION 1.1. The fallout progress« for the Faroes

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method for decontamination of radioactive metal surfaces  

DOE Patents (OSTI)

Disclosed is a method for removing radioactive contaminants from metal surfaces by applying steam containing an inorganic acid and cerium IV. Cerium IV is applied to contaminated metal surfaces by introducing cerium IV in solution into a steam spray directed at contaminated metal surfaces. Cerium IV solution is converted to an essentially atomized or vapor phase by the steam.

Bray, L.A.

1996-08-13T23:59:59.000Z

282

High-level radioactive waste management alternatives  

SciTech Connect

A summary of a comprehensive overview study of potential alternatives for long-term management of high-level radioactive waste is presented. The concepts studied included disposal in geologic formations, disposal in seabeds, disposal in ice caps, disposal into space, and elimination by transmutation. (TFD)

1974-05-01T23:59:59.000Z

283

Annual Radioactive Waste Tank Inspection Program - 2000  

SciTech Connect

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2000 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report.

West, W.R.

2001-04-17T23:59:59.000Z

284

Method for solidifying liquid radioactive wastes  

DOE Patents (OSTI)

The quantity of nitrous oxides produced during the solidification of liquid radioactive wastes containing nitrates and nitrites can be substantially reduced by the addition to the wastes of a stoichiometric amount of urea which, upon heating, destroys the nitrates and nitrites, liberating nontoxic N.sub.2, CO.sub.2 and NH.sub.3.

Berreth, Julius R. (Idaho Falls, ID)

1976-01-01T23:59:59.000Z

285

Graduate Handbook Clemson University  

E-Print Network (OSTI)

Graduate Handbook Clemson University #12;2 Table of Contents Introduction to fundamental knowledge in a student's chosen area of concentration (i.e., applied fluid mechanics, construction to fundamental knowledge in a student's chosen area of concentration (i.e., applied fluid mechanics, construction

Bolding, M. Chad

286

Cornell University Facilities Services  

E-Print Network (OSTI)

- substation design engineers, protective relay engineers, dispatchers in the control centers etc. AnotherRequirements Specification for and Evaluation of an Automated Substation Monitoring System Mladen for the Automated Analysis Substation System (AASS) implemented at Texas A&M University, aimed at monitoring

Manning, Sturt

287

Texas Tech University System  

E-Print Network (OSTI)

Texas Tech University System :: Huffaker Named as Texas Tech System General Counsel http://www.texastech.edu/stories/12-03-TTUS-Washington-DC-Trip.php[4/2/2012 8:13:27 AM] Chancellor Hance and leadership from the Texas visited with Texas Tech students and Congressional interns while in Washington, D.C. March 27, 2012 Texas

Rock, Chris

288

UNIVERSITY OF FINANCIAL MANAGEMENT  

E-Print Network (OSTI)

UNIVERSITY OF HAWAI`I FINANCIAL MANAGEMENT INFORMATION SYSTEMS (FMIS) ON-LINE QUICK REFERENCE GUIDE Reference Guide FIXED ASSETS SYSTEM (FFX) Scrn Num Screen Name 502 Asset Maintenance Use this screen-2093 Fixed Assets System (FFX), Inventory Maintenance - transfer, disposal of equipment, decal, equipment

289

Models for universal usability  

Science Conference Proceedings (OSTI)

This paper discusses how model-based approaches can support designers and developers to address a number of challenges raised by universal usability, such as the possibility of obtaining user interfaces able to adapt to any device and usability evaluation ... Keywords: abstract user interfaces, authoring environments, heterogeneous clients, multi-platform user interfaces, remote evaluation, task Models

Fabio Paternò

2003-11-01T23:59:59.000Z

290

Universal nonlinear entanglement witnesses  

Science Conference Proceedings (OSTI)

We give a universal recipe for constructing nonlinear entanglement witnesses able to detect nonclassical correlations in arbitrary systems of distinguishable and/or identical particles for an arbitrary number of constituents. The constructed witnesses are expressed in terms of expectation values of observables. As such, they are, at least in principle, measurable in experiments.

Kotowski, Marcin; Kotowski, Michal [College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Warsaw University, PL-Warszawa (Poland); Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikow 32/44, PL-02-668 Warszawa (Poland); Kus, Marek [Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotnikow 32/44, PL-02-668 Warszawa (Poland)

2010-06-15T23:59:59.000Z

291

Northwestern University Transportation Center  

E-Print Network (OSTI)

Northwestern University Transportation Center 2011 Business Advisory Committee NUTC #12;#12;I have the pleasure of presenting our Business Advisory Committee members--a distinguished group of transportation industry lead- ers who have partnered with the Transportation Center in advancing the state of knowledge

Bustamante, Fabián E.

292

Broadband and universal service  

Science Conference Proceedings (OSTI)

Section 254(b)(3) of the 1996 Telecommunications Act established the objective that residents of rural areas should have access to advanced telecommunications and information services comparable to services in urban areas. Pursuant to the passage of ... Keywords: Broadband policy, Empirical analysis, Rural, Telecommunications policy, Universal service

David Gabel

2007-07-01T23:59:59.000Z

293

Transporting & Shipping Hazardous Materials at LBNL: Radioactive Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Materials Radioactive Materials Refer to transportation guidelines in the applicable Radioactive Work Authorization (RWA). Contact the Radiation Protection Group (x7652) if transportation assistance is needed or if radioactive materials need to be shipped. Refer to RPG's Zone sheet to identifying the RCT or HP for your building: https://ehswprod.lbl.gov/rpg/who_to_call.shtml Need radioactive material shipped from LBNL? Please complete the request for shipment form online, print, sign, and forward to your building assigned RPG support person: RPG Transportation - Request for Shipment Form: http://www.lbl.gov/ehs/rpg/assets/docs/Transportation4.pdf Receiving radioactive material at LBNL? If receiving radioactive material at LBNL; radioactive material should be sent to the following address:

294

Low energy spread ion source with a coaxial magnetic filter  

DOE Patents (OSTI)

Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

Leung, Ka-Ngo (Hercules, CA); Lee, Yung-Hee Yvette (Berkeley, CA)

2000-01-01T23:59:59.000Z

295

California Stanford University of University of Institute of University California Southern  

E-Print Network (OSTI)

California Stanford University of University of Institute of University California Southern Technology California March 13, 2012 The Honorable Dianne Feinstein 331 Hart Senate Office Building Washington, DC 20510-0504 Dear Senator Feinstein: On behalf of California's research universities, we write

Southern California, University of

296

RadTrac: Portable and Compact Tracking Radioactive Materials  

Hot cell exits where radioactive materials are used, or at nonproliferation sites Defense companies and airport security equipment manufacturers

297

The Schrodinger-Chetaev Equation in Bohmian Quantum Mechanics and Diffusion Mechanism for Alpha Decay, Cluster Radioactivity and Spontaneous Fission  

E-Print Network (OSTI)

In the framework of Bohmian quantum mechanics supplemented with the Chetaev theorem on stable trajectories in dynamics in the presence of dissipative forces we have shown the possibility of the classical (without tunneling) universal description of radioactive decay of heavy nuclei, in which under certain conditions so called noise-induced transition is generated or, in other words, the stochastic channel of alpha decay, cluster radioactivity and spontaneous fission conditioned by the Kramers diffusion mechanism. Based on the ENSDF database we have found the parametrized solutions of the Kramers equation of Langevin type by Alexandrov dynamic auto-regularization method (FORTRAN program REGN-Dubna). These solutions describe with high-accuracy the dependence of the half-life (decay probability) of heavy radioactive nuclei on total kinetic energy of daughter decay products. The verification of inverse problem solution in the framework of the universal Kramers description of the alpha decay, cluster radioactivity and spontaneous fission, which was based on the newest experimental data of alpha-decay of even-even super heavy nuclei (Z=114, 116, 118) have shown the good coincidence of the experimental and theoretical half-life depend upon of alpha-decay energy.

V. D. Rusov; S. Cht. Mavrodiev; M. A. Deliyergiyev

2008-10-16T23:59:59.000Z

298

Plasma ion sources and ion beam technology in microfabrications  

E-Print Network (OSTI)

5 Ion source for metallic ion beam generation and thin filmnew plasma source for metallic ion beam generation and metal5: Ion source for metallic ion beam generation and thin film

Ji, Lili

2007-01-01T23:59:59.000Z

299

TRImP - A new facility to produce and trap radioactive isotopes  

E-Print Network (OSTI)

At the Kernfysisch Vensneller Institiutr (KVI) in Groningen, NL, a new facility (TRImP) is under development. It aims for producing, slowing down, and trapping of radioactive isotopes in order to perform accurate measurements on fundamental symmetries and interactions. A production target station and a dual magnetic separator installed and commissioned. We will slow down the isotopes of interest using an ion catcher and in a further stage a radiofrequency quadropole gas cooler (RFQ). The isotopes will finally be trapped in an atomic trap for precision studies.

Sohani, M

2006-01-01T23:59:59.000Z

300

TRImP - A new facility to produce and trap radioactive isotopes  

E-Print Network (OSTI)

At the Kernfysisch Vensneller Institiutr (KVI) in Groningen, NL, a new facility (TRImP) is under development. It aims for producing, slowing down, and trapping of radioactive isotopes in order to perform accurate measurements on fundamental symmetries and interactions. A production target station and a dual magnetic separator installed and commissioned. We will slow down the isotopes of interest using an ion catcher and in a further stage a radiofrequency quadropole gas cooler (RFQ). The isotopes will finally be trapped in an atomic trap for precision studies.

M. Sohani

2006-01-17T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

First experiment on fission transients in highly fissile spherical nuclei produced by fragmentation of radioactive beams  

E-Print Network (OSTI)

We report on a novel experimental approach for studying the dissipative spreading of collective motion in a meta-stable nuclear system, using, for the first time, highly fissile nuclei with spherical shape. This was achieved by fragmentation of 45 radioactive heavy-ion beams at GSI, Darmstadt. The use of inverse kinematics and a dedicated experimental set-up allowed for the identification in atomic number of both fission fragments. From the width of their charge distributions, a transient time of (3.3 +/- 0.7) 10-21 s is deduced for initially spherical nuclei.

C. Schmitt; P. N. Nadtochy; A. Heinz; B. Jurado; A. Kelic; K. -H. Schmidt

2007-02-12T23:59:59.000Z

302

The Universe Adventure - Redshift  

NLE Websites -- All DOE Office Websites (Extended Search)

Expansion of the Universe Expansion of the Universe Redshift Expansion of Space Redshifts Light The expansion of space redshifts light. As space expands, light waves get stretched and their wavelengths shift. The more that light is stretched, the longer its wavelengths become, and the color of each wave shifts toward the red end of the light spectrum. We say that this light is redshifted. The Doppler Effect in action. A moving fire truck's siren changes pitch as it moves past you. This is known as the Doppler Effect. To get a better idea of how this actually works, we'll look at a common phenomenon: the Doppler Effect. Imagine you hear a fire truck coming right toward you. As the truck approaches, the pitch of the siren gets higher and higher. As soon as the truck passes you however, the pitch drops lower as

303

Nuclear Energy University Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEUP FY2011 Process Presentation to NEAC December 9, 2010 Marsha Lambregts, NEUP-IO Manager FUNDED R&D PROPOSALS BY STATE 2010 * Awards/Full Submissions - 42/128 * Awards to PIs for first time - 29 * Awards to junior faculty - 20 * Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of awards with lab partners - 20 * Number of universities receiving awards for first time - 8 2 2010 INFRASTRUCTURE * Major Reactor: 4 awards for a total of $3.75 M * Minor Reactor: 12 awards for $1.95 M * General Scientific Infrastructure: 33 award for $7.47 M * Since 2009, $ 19.438 M has been awarded in General Scientific Infrastructure (did not issue Major or Minor Reactor calls in 2009).

304

Regional University Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Alliance Alliance Developed by the National Energy Technology Laboratory in collaboration with NETL-Regional University Alliance WVU National Research Center for Coal and Energy Fossil Consulting Services, Inc. The AVESTAR(tm) Center provides a state-of- the-art, highly realistic, dynamic simulator for a coal-fired power plant using Integrated Gasification Combined Cycle (IGCC) technology with CO 2 capture. The system is based on Invensys' DYNSIM ® software

305

WESTERN UNIVERSITY Disaster Plan  

E-Print Network (OSTI)

.7 Assumptions 1.7.1 Emergency 1.7.2 Disaster 1.8 Concept of Operations 1.8.1 Background 1.8.2 Emergency Response/Administrative Unit Responsibilities 1.8.8 Situation Reports 2. UTILIZING THE DISASTER PLAN 2.1 Emergency Process Members ­ Individual Responsibilities #12;WESTERN UNIVERSITY Disaster Plan January, 2013 2.7.1 VP

Sinnamon, Gordon J.

306

Universal battery terminal connector  

SciTech Connect

This patent describes a universal battery terminal connector for connecting either a top post battery terminal or a side post battery terminal to a battery cable. The connector comprises an elongated electrically conductive body having: (a) first means for connection to a top post battery terminal; (b) second means for connection to a side post battery terminal, and (c) third means for receiving one end of a battery cable and providing an electrical connection therewith.

Norris, R.W.

1987-01-13T23:59:59.000Z

307

University Science Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

universities/highlights/ The Office of Science is universities/highlights/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {B0DFBA1D-D6A0-4920-8E73-4779F8F5ACEA}http://science.energy.gov/np/highlights/2013/np-2013-12-a/ Modeling Cosmic Nucleosynthesis First measurements of isotopes produced by Argonne's new CARIBU facility provide insight into the creation of the elements in the universe. Thu, 09

308

College/University: University of Indonesia; Jakarta, Indonesia  

E-Print Network (OSTI)

Education College/University: University of Indonesia; Jakarta, Indonesia Highest degree: B, under revision First name: Meta Last name: Djojosubroto Date of birth: 21.11.1975 Country: Indonesia E

Manstein, Dietmar J.

309

The Universe Adventure - The Homogenous and Isotropic Universe  

NLE Websites -- All DOE Office Websites (Extended Search)

Our View of the Universe Our View of the Universe All observations that have been made using the most powerful telescopes show that the universe looks the same in all directions. The average density of galaxies is the same throughout the universe and does not change with distance or direction. This is called the Cosmological Principle. Distribution of Galaxies On average and at large scales, the distribution of galaxies is the same throughout the universe. Since the expansion of space occurs evenly at every point in the universe, galaxies are separating from each other at about the same pace, giving the universe a nearly uniform density and structure. As a result, the universe appears smooth at large distance scales. In scientific terms, it is said to be homogeneous and isotropic.

310

Microfabricated ion frequency standard  

DOE Patents (OSTI)

A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

Schwindt, Peter (Albuquerque, NM); Biedermann, Grant (Albuquerque, NM); Blain, Matthew G. (Albuquerque, NM); Stick, Daniel L. (Albuquerque, NM); Serkland, Darwin K. (Albuquerque, NM); Olsson, III, Roy H. (Albuquerque, NM)

2010-12-28T23:59:59.000Z

311

DOE - Office of Legacy Management -- Yale Heavy Ion Linear Accelerator - CT  

NLE Websites -- All DOE Office Websites (Extended Search)

Yale Heavy Ion Linear Accelerator - Yale Heavy Ion Linear Accelerator - CT 05 FUSRAP Considered Sites Site: Yale Heavy Ion Linear Accelerator (CT.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: New Haven , Connecticut CT.05-1 Evaluation Year: 1987 CT.05-3 Site Operations: Research and development with solvents. CT.05-1 Site Disposition: Eliminated - Potential for contamination remote based on limited amount of materials handled CT.05-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Radium CT.05-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to Yale Heavy Ion Linear Accelerator CT.05-1 - MED Memorandum; To the Files, Thru Ruhoff, et. al.;

312

Status of the ion sources developments for the Spiral2 project at GANIL  

SciTech Connect

The SPIRAL 2 facility is now under construction and will deliver either stable or radioactive ion beams. First tests of nickel beam production have been performed at GANIL with a new version of the large capacity oven, and a calcium beam has been produced on the heavy ion low energy beam transport line of SPIRAL 2, installed at LPSC Grenoble. For the production of radioactive beams, several target/ion-source systems (TISSs) are under development at GANIL as the 2.45 GHz electron cyclotron resonance ion source, the surface ionization source, and the oven prototype for heating the uranium carbide target up to 2000 deg. C. The existing test bench has been upgraded for these developments and a new one, dedicated for the validation of the TISS before mounting in the production module, is under design. Results and current status of these activities are presented.

Leherissier, P.; Bajeat, O.; Barue, C.; Canet, C.; Dubois, M.; Dupuis, M.; Flambard, J. L.; Frigot, R.; Jardin, P.; Leboucher, C.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Pacquet, J. Y.; Pichard, A. [GANIL, Grand Accelerateur National d'Ions Lourds, CEA-DSM/CNRS-IN2P3, Bvd H. Becquerel, BP 55027 14076 Caen Cedex 5 (France); Thuillier, T. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Grenoble (France); Peaucelle, C. [IPNL, Universite de Lyon, Universite de Lyon 1, CNRS/IN2P3, Villeurbanne (France)

2012-02-15T23:59:59.000Z

313

NEVADA UNIVERSITY TRANSPORTATION CENTER UNIVERSITY OF NEVADA, LAS VEGAS  

E-Print Network (OSTI)

of professionals and future leaders in the area of transportation systems. · Support of career growthNEVADA UNIVERSITY TRANSPORTATION CENTER UNIVERSITY OF NEVADA, LAS VEGAS 2011-2012 ANNUAL REPORT #12 University Transportation Center (NUTC) Vision: The NUTC will strive to become a nationally recognized center

Ahmad, Sajjad

314

Retrieval Of Final Stored Radioactive Waste Resumes  

NLE Websites -- All DOE Office Websites (Extended Search)

18, 2012 18, 2012 Media Contact: Danielle Miller, DOE-Idaho Operations, 208-526-5709, millerdc@id.doe.gov Rick Dale, Idaho Treatment Group, 208-557-6552, rick.dale@amwtp.inl.gov Retrieval Of Final Stored Radioactive Waste Resumes IDAHO FALLS, ID- Operations to retrieve the estimated 6,900 cubic meters of stored transuranic waste remaining at the Idaho site began this week at the U.S. Department of Energy�s Advanced Mixed Waste Treatment Project. Waste retrieval resumes at the Advanced Mixed Waste Treatment Project. The resumption of work comes after a nearly two-year stoppage of retrieval operations �A significant investment has been made in terms of time and dollars that will allow employees to safely retrieve the final radioactive waste that has been stored aboveground at the Idaho site for more than four

315

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Specific Activity Specific Activity Low Specific Activity (LSA) material means Class 7 (radioactive) material with limited specific activity which satisfies the descriptions and limits set forth below. Shielding materials surrounding the LSA material may not be considered in determining the estimated average specific activity of the package contents. LSA material must be in one of three groups: LSA-I (i) Ores containing only naturally occurring radionuclides (e.g., uranium, thorium) and uranium or thorium concentrates of such ores; or (ii) Solid unirradiated natural uranium or depleted uranium or natural thorium or their solid or liquid compounds or mixtures; or (iii) Class 7 (radioactive) material, other than fissile material, for which the A2 value is unlimited; or

316

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources of Radiation Biological Responses Other Effects History Gallery Glossary of Nuclear Terms [Majority from NRC] Contacts Comments & Questions Radiation is all around us, occurring naturally in the environment. We are always exposed to radiation from: radon in the air uranium, radium and thorium in the earth cosmic rays from outer space and the sun radioactive potassium in our food and water naturally occuring radioactive material within our own bodies. This is commonly called "naturally-occurring background radiation." TYPES OF IONIZING RADIATION Alpha Alpha particles can be shielded by a sheet of paper or by human skin. If alpha emitters are inhaled, ingested, or enter the body through a cut, they can cause cancer. Beta Beta radiation can be stopped by a shield like aluminum foil or wood. If beta emitters are inhaled, ingested, or enter the body through a cut, they can cause cancer.

317

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

How are they moved? What's their construction? Who uses them? Who makes rules? What are the requirements? Safety Record Packagings are used to safely transport radioactive materials across the United States in over 1.6 million shipments per year. [Weiner et. al., 1991, Risk Analysis, Vol. 11, No. 4, p. 663] Most shipments are destined for hospitals and medical facilities. Other destinations include industrial, research and manufacturing plants, nuclear power plants and national defense facilities. The last comprehensive survey showed that less than 1 percent of these shipments involve high-level radioactive material. [Javitz et. al., 1985, SAND84-7174, Tables 4 and 8] The types of materials transported include: Surface Contaminated Object (SCO) Low Specific Activity (LSA) materials, Low-Level Waste (LLW),

318

1969 AUDIT OF SRP RADIOACTIVE WASTE  

Office of Scientific and Technical Information (OSTI)

969 AUDIT OF SRP RADIOACTIVE WASTE 969 AUDIT OF SRP RADIOACTIVE WASTE bY C . Ashley A p r i l 1970 Radiological Sciences Division Savannah River Laboratory E. 1. du Pont de Nemours & Co. Aiken, South Carolina 29801 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best avaiiable original document. . . . CONTENTS Page I n t r o d u c t i o n . . . . . . . . . . . . . . . . . . . . . . . . 5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Releases t o t h e Atmosphere . . . . . . . . . . . . . . . . . 6 S e p a r a t i o n s Areas . . . . . . . . . . . . . . . . . . . . 6 TNX and Building 773-A . . . . . . . . . . . . . . . . . 8 Reactor Areas . . . . . . . . . . . . . . . . . . . . . . 7 Releases t o E f f l u e n t Streams . . . . . . . . . . . . . . . . 8 S e p a r a t i o n s Areas . . . . . . . . . . . . . . . . . . . . 8 DArea . . . . . . . . . . . . . . . . . . . . . . . . . 8 R e a c t o r A r e a s . . . . . . . . . . . . . . . . . . . . . . 9

319

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

320

Radioactive scrap metal decontamination technology assessment report  

SciTech Connect

Within the DOE complex there exists a tremendous quantity of radioactive scrap metal. As an example, it is estimated that within the gaseous diffusion plants there exists in excess of 700,000 tons of contaminated stainless steel. At present, valuable material is being disposed of when it could be converted into a high quality product. Liquid metal processing represents a true recycling opportunity for this material. By applying the primary production processes towards the material`s decontamination and re-use, the value of the strategic resource is maintained while drastically reducing the volume of material in need of burial. Potential processes for the liquid metal decontamination of radioactively contaminated metal are discussed and contrasted. Opportunities and technology development issues are identified and discussed. The processes compared are: surface decontamination; size reduction, packaging and burial; melting technologies; electric arc melting; plasma arc centrifugal treatment; air induction melting; vacuum induction melting; and vacuum induction melting and electroslag remelting.

Buckentin, J.M.; Damkroger, B.K.; Schlienger, M.E. [Sandia National Labs., Albuquerque, NM (United States). Liquid Metal Processing Lab.

1996-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ELECTRONIC ANALOG COMPUTER FOR DETERMINING RADIOACTIVE DISINTEGRATION  

DOE Patents (OSTI)

A computer is presented for determining growth and decay curves for elements in a radioactive disintegration series wherein one unstable element decays to form a second unstable element or isotope, which in turn forms a third element, etc. The growth and decay curves of radioactive elements are simulated by the charge and discharge curves of a resistance-capacitance network. Several such networks having readily adjustable values are connected in series with an amplifier between each successive pair. The time constant of each of the various networks is set proportional to the half-life of a corresponding element in the series represented and the charge and discharge curves of each of the networks simulates the element growth and decay curve.

Robinson, H.P.

1959-07-14T23:59:59.000Z

322

RADIOACTIVITY IN RAIN WATER IN BANGKOK  

SciTech Connect

In order to check the effect of nuclear explosions on the atmosphere over Bangkok, rain water was evaporated and the radioactivity of the residue obtained was counted by a G. M. counter. The result shows that the radioactivity in the rain water began to rise from the normal level since 26 September 1961, reached the maximum on 10 November 1961, and then slowly declined. Because the level of radiation remained above that of the Maximum Permissible Concentration (MPC) for only a short time, it did not constitute a health hazard. Analysis of the residue of rain water indicates that the increase in radiation is caused by the fall-out from the Russian tests of nuclear weapons in the air from September to October 1961. (auth)

Sundara-vicharana, Y.; Bhodigen, S.; Hayodom, V.

1961-12-01T23:59:59.000Z

323

Treatment of Radioactive Reactive Mixed Waste  

Science Conference Proceedings (OSTI)

PacificEcoSolutions, Inc. (PEcoS) has installed a plasma gasification system that was recently modified and used to destroy a trimethyl-aluminum mixed waste stream from Los Alamos National Laboratory (LANL.) The unique challenge in handling reactive wastes like trimethyl-aluminum is their propensity to flame instantly on contact with air and to react violently with water. To safely address this issue, PacificEcoSolutions has developed a new feed system to ensure the safe containment of these radioactive reactive wastes during transfer to the gasification unit. The plasma gasification system safely processed the radioactively contaminated trimethyl-metal compounds into metal oxides. The waste stream came from LANL research operations, and had been in storage for seven years, pending treatment options. (authors)

Colby, S.; Turner, Z.; Utley, D. [Pacific EcoSolutions, Inc., 2025 Battelle Boulevard, Richland, Washington 99354 (United States); Duy, C. [Los Alamos National Laboratory - LA-UR-05-8410, Post Office Box 1663 MS J595, Los Alamos, New Mexico 97545 (United States)

2006-07-01T23:59:59.000Z

324

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

325

Handbook of high-level radioactive waste transportation  

Science Conference Proceedings (OSTI)

The High-Level Radioactive Waste Transportation Handbook serves as a reference to which state officials and members of the general public may turn for information on radioactive waste transportation and on the federal government`s system for transporting this waste under the Civilian Radioactive Waste Management Program. The Handbook condenses and updates information contained in the Midwestern High-Level Radioactive Waste Transportation Primer. It is intended primarily to assist legislators who, in the future, may be called upon to enact legislation pertaining to the transportation of radioactive waste through their jurisdictions. The Handbook is divided into two sections. The first section places the federal government`s program for transporting radioactive waste in context. It provides background information on nuclear waste production in the United States and traces the emergence of federal policy for disposing of radioactive waste. The second section covers the history of radioactive waste transportation; summarizes major pieces of legislation pertaining to the transportation of radioactive waste; and provides an overview of the radioactive waste transportation program developed by the US Department of Energy (DOE). To supplement this information, a summary of pertinent federal and state legislation and a glossary of terms are included as appendices, as is a list of publications produced by the Midwestern Office of The Council of State Governments (CSG-MW) as part of the Midwestern High-Level Radioactive Waste Transportation Project.

Sattler, L.R.

1992-10-01T23:59:59.000Z

326

Office of Civilian Radioactive Waste Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RW-0583 RW-0583 QA:N/A Office of Civilian Radioactive Waste Management EVALUATION OF TECHNICAL IMPACT ON THE YUCCA MOUNTAIN PROJECT TECHNICAL BASIS RESULTING FROM ISSUES RAISED BY EMAILS OF FORMER PROJECT PARTICIPANTS February 2006 This page intentionally left blank. Table of Contents Executive Summary .............................................................................................................v 1. Introduction..............................................................................................................1 1.1 Background ....................................................................................................1 1.2 Role of the USGS in Yucca Mountain Work.................................................2

327

Radioactive Materials Transportation and Incident Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEMA 358, 05/10 FEMA 358, 05/10 Q A RADIOACTIVE MATERIALS Transportation Emergency Preparedness Program U.S. Department of Energy TRANSPORTATION AND INCIDENT RESPONSE Q&A About Incident Response Q Q Law Enforcement ____________________________________ Fire ___________________________________________ Medical ____________________________________________ State Radiological Assistance ___________________________ Local Government Official ______________________________ Local Emergency Management Agency ___________________ State Emergency Management Agency ___________________ HAZMAT Team ______________________________________ Water Pollution Control ________________________________ CHEMTEL (Toll-free US & Canada) 1-800-255-3924 _________ CHEMTREC (Toll-free US & Canada) 1-800-424-9300 _______

328

SRP radioactive waste releases. Startup through 1959  

SciTech Connect

This report summarizes and documents radioactive waste released to the environs of the Savannah River Plant from startup through 1959. During this period, the quantity of beta-emitting radioisotopes released was determined by a total or ``gross`` analysis. However, advanced instrumentation and technology now permit an economical determination of most individual radionuclides. Therefore, future waste audit reports, beginning with January 1960, will record the quantity of specific radioisotopes released rather than gross amounts.

Ashley, C.

1960-09-01T23:59:59.000Z

329

Hazards from radioactive waste in perspective  

SciTech Connect

This paper compares the hazards from wastes from a 1000-MW(e) nuclear power plant to these from wastes from a 1000-MW(e) coal fueled power plant. The latter hazard is much greater than the former. The toxicity and carcinogenity of the chemicals prodcued in coal burning is emphasized. Comparisions are also made with other toxic chemicals and with natural radioactivity. (DLC)

Cohen, B.L.

1979-02-27T23:59:59.000Z

330

Radioactive Colloid Removal by Optimizing Chemical Parameters  

Science Conference Proceedings (OSTI)

Engineering and operational differences between nuclear power plants cause large differences in the composition of liquid radioactive waste (LRW) streams. These differences effectively negate any standardized procedure for treatment of these streams before discharge to the environment. This report describes a method EPRI developed to characterize LRW streams and recommend optimum treatment strategies. The report illustrates the concept, demonstrates the application of the methodology, and provides a fram...

2003-04-22T23:59:59.000Z

331

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwestern Low-Level Radioactive Waste Disposal Compact (South Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Rural Electric Cooperative Fuel Distributor Program Info State South Dakota Program Type Siting and Permitting Provider Southwestern Low-Level Radioactive Waste Commission This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste. The Compact is administered by a commission, which can regulate and impose fees on in-state radioactive waste generators. The states of Arizona, California,

332

Experiment Hazard Class 8.1 - Radioactive Materials/Samples  

NLE Websites -- All DOE Office Websites (Extended Search)

1 - Radioactive Materials 1 - Radioactive Materials Applicability This hazard classification applies to all experiments involving radioactive materials as samples. The requirements of this hazard class also apply to sealed radioactive sources that are used as a sample (i.e. a target for x-ray radiation). Other hazard classifications and their associated hazard controls may also apply to experiments in this hazard class. The current requirements can be found in the APS Policy for Conducting Radioactive Sample Experiments in APS Experiment Enclosures. NOTE: The APS must be notified of shipment of any radioactive materials to the site well in advance of the proposed experiment. All radioactive materials must arrive through Argonne Receiving in Building 46 and the Argonne Materials Control & Accountability group (MC&A). Please contact

333

Radioactive Material Use at the EMSL Radiochemistry Annex  

NLE Websites -- All DOE Office Websites (Extended Search)

Material Use at the EMSL Radiochemistry Annex Material Use at the EMSL Radiochemistry Annex The EMSL Radiochemistry Annex, located in the 3410 Material Science and Technology Building, is authorized to work with small to moderate amounts of radioactive material. In order to work within 3410 facility radiological limits, potential users must provide detailed information about the type and quantity of radioactive material, the form and packaging of the material and the type of work that will be performed at the EMSL Radiochemistry Annex. Radioactive material includes both purchased radioactive material and samples that contain concentrations of radioactive material in excess of normal background levels. Please realize that some samples that may not be considered to be radioactive material at your institution will be managed as radioactive material at

334

Low-Level Radioactive Waste Disposal Act (Pennsylvania) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) Low-Level Radioactive Waste Disposal Act (Pennsylvania) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Municipal/Public Utility Local Government Rural Electric Cooperative Transportation Program Info State Pennsylvania Program Type Environmental Regulations Provider Pennsylvania Department of Environmental Protection This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and storage of low-level radioactive waste. Commercial incineration of radioactive wastes is prohibited. Licenses are required for low-level radioactive waste disposal facilities not licensed to accept low-level radioactive waste. Disposal at

335

Managing low-level radioactive wastes: a proposed approach  

SciTech Connect

In 1978, President Carter established the Interagency Review Group on Nuclear Waste Management (IRG) to review the nation's plans and progress in managing radioactive wastes. In its final report, issued in March 1979, the group recommended that the Department of Energy (DOE) assume responsibility for developing a national plan for the management of low-level wastes. Toward this end, DOE directed that a strategy be developed to guide federal and state officials in resolving issues critical to the safe management of low-level wastes. EG and G Idaho, Inc. was selected as the lead contractor for the Low-Level Waste Management Program and was given responsibility for developing the strategy. A 25 member task force was formed which included individuals from federal agencies, states, industry, universities, and public interest groups. The task force identified nineteen broad issues covering the generation, treatment, packaging, transportation, and disposal of low-level wastes. Alternatives for the resolution of each issue were proposed and recommendations were made which, taken together, form the draft strategy. These recommendations are summarized in this document.

Peel, J.W.; Levin, G.B.

1980-01-01T23:59:59.000Z

336

Fermilab Today | University of Arizona  

NLE Websites -- All DOE Office Websites (Extended Search)

A&M University Dec. 12, 2012 NAME: Texas A&M University HOME TOWN: College Station, Texas MASCOT: Reveille COLORS: Maroon and white COLLABORATING AT FERMILAB SINCE: Early 1980s....

337

Future radioactive liquid waste streams study  

SciTech Connect

This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

Rey, A.S.

1993-11-01T23:59:59.000Z

338

Geological problems in radioactive waste isolation  

SciTech Connect

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

339

Radioactive iodine therapy in cats with hyperthyroidism  

SciTech Connect

Eleven cats with hyperthyroidism were treated with radioactive iodine (/sup 131/I). Previous unsuccessful treatments for hyperthyroidism included hemithyroidectomy (2 cats) and an antithyroid drug (7 cats). Two cats had no prior treatment. Thyroid scans, using technetium 99m, showed enlargement and increased radionuclide accumulation in 1 thyroid lobe in 5 cats and in both lobes in 6 cats. Serum thyroxine concentrations were high and ranged from 4.7 to 18 micrograms/dl. Radioactive iodine tracer studies were used to determine peak radioactive iodine uptake (RAIU) and effective and biological half-lives. Activity of /sup 131/I administered was calculated from peak RAIU, effective half-life, and estimated thyroid gland weight. Activity of /sup 131/I administered ranged from 1.0 to 5.9 mCi. The treatment goal was to deliver 20,000 rad to hyperactive thyroid tissue. However, retrospective calculations based on peak RAIU and effective half-life obtained during the treatment period showed that radiation doses actually ranged from 7,100 to 64,900 rad. Complete ablation of the hyperfunctioning thyroid tissue and a return to euthyroidism were seen in 7 cats. Partial responses were seen in 2 cats, and 2 cats became hypothyroid. It was concluded that /sup 131/I ablation of thyroid tumors was a reasonable alternative in the treatment of hyperthyroidism in cats. The optimal method of dosimetry remains to be determined.

Turrel, J.M.; Feldman, E.C.; Hays, M.; Hornof, W.J.

1984-03-01T23:59:59.000Z

340

Radioactive effluent reduction from 200 Area facilities  

SciTech Connect

Results are reported from a comprehensive study of radioactive wastes discharged to the environment in the 200 Area (chemical processing area) of the Hanford Reservation. Guides for the emission of gaseous waste were being met for the discharge of /sup 131/I, /sup 90/Sr, mixed fission products, and /sup 239/Pu. Treat ment systems for reduction of NO/sub 2/ from several stacks were proposed, and a prototype system for the removal of UOs from stack gases was developed and tested. Significant reductions of radioactivity in soil were achieved during a three to four year period by changes in operating procedures and minor expenditure of funds for process and equipment improvements. Emphasis was placed on the treatment of liquid wastes for the removal of /sup 137/Cs, /sup 90/Sr, and /sup 239/P u, from those streams prior to discharge to the environs. Improved methods for the monitoring and cycling of radioactive wastes, cooling waters, and steam condensates from process vessels were also developed. (CH)

Hanson, G.L.

1971-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geological problems in radioactive waste isolation  

SciTech Connect

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

342

NE-24 Designation of Universal Cyclops, Inc., Titusville Plant  

Office of Legacy Management (LM)

Universal Cyclops, Inc., Titusville Plant Universal Cyclops, Inc., Titusville Plant Pennsylvania, for Remedial iiction under the Formerly Uti Remedial Action Program (FUSRAP) J. LaGrone, Manager Oak Ridge Operations Office Aliquippa, iized Sites pg!. " * 1 ' j---' R , 7. Based on the data in the attached report, it has been determined that the subject site is contaminated with radioactive residues as a result of Manhattan Engineer District/Atomic Energy Commission operations at the site. The contamination is in excess of acceptable guidelines and warrants designation for remedial action under the FUSRAP, Although the contamirta- tion levels exceed guidelines, the risk of exposure and associated health effects are low under current use and/or potential future use of the site; therefore, the site is designated as a low priority site for remedial -

343

2009 University Coal Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 University Coal Research Program 2009 University Coal Research Program Description The University Coal Research (UCR) Program provides grants to U.S. colleges and universities to support fundamental research and to develop efficient and environmentally responsible fossil energy technologies. Funded by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE), the program is carried out by DOE's National Energy Technology Laboratory (NETL).

344

1993 - CECM - Simon Fraser University  

E-Print Network (OSTI)

Feb 2, 2001... differentiability of convex functions on various Banach spaces,'' Regional Functional Analysis Conference, Miami University , Oxford, Ohio. 8.

345

Postscript - CECM - Simon Fraser University  

E-Print Network (OSTI)

NERSC/MSRI Workshop. on. Parallel Symbolic Computation. CECM. Centre for Experimental &. Constructive Mathematics. Simon Fraser University. Berkeley ...

346

Determining the density dependence of the nuclear symmetry energy using heavy-ion reactions  

E-Print Network (OSTI)

We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.

Lie-Wen Chen; Che Ming Ko; Bao-An Li; Gao-Chan Yong

2007-11-12T23:59:59.000Z

347

Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1  

SciTech Connect

The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

1991-07-01T23:59:59.000Z

348

CURRICULUM VITAE University of Idaho  

E-Print Network (OSTI)

CURRICULUM VITAE University of Idaho NAME: Scarnecchia, Dennis L. DATE: July 26, 2004 RANK OR TITLE of Idaho 1990-June 1998, Associate Professor, Department of Fish and Wildlife Resources, University of Idaho 1985-90, Assistant Professor, Department of Animal Ecology, Iowa State University 1986

349

University of Toronto Governing Council  

E-Print Network (OSTI)

In policies approved by the Governing Council, the University community has held that the essential purpose on any issue without reference to prescribed doctrine, as well as the right to criticize the University use of University facilities, in accordance with its policies as they are defined from time to time

Sun, Yu

350

Microfabricated Ion Traps  

E-Print Network (OSTI)

Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions within ion traps, which becomes an important factor in the miniaturization of ion traps.

Marcus D. Hughes; Bjoern Lekitsch; Jiddu A. Broersma; Winfried K. Hensinger

2011-01-17T23:59:59.000Z

351

DOE Solar Decathlon: Gallery of Kentucky/Indiana: University...  

NLE Websites -- All DOE Office Websites (Extended Search)

KentuckyIndiana: University of Louisville, Ball State University and University of Kentucky Photos of University of Louisville, Ball State University and University of Kentucky's...

352

The Future of University Nuclear Engineering Programs and University  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Future of University Nuclear Engineering Programs and The Future of University Nuclear Engineering Programs and University Research and Training Reactors The Future of University Nuclear Engineering Programs and University Research and Training Reactors Nuclear engineering programs and departments with an initial emphasis in fission were formed in the late 1950's and 1960's from interdisciplinary efforts in many of the top research universities, providing the manpower for this technical discipline. In the same time period, for many of these programs, university nuclear reactors were constructed and began their operation, providing some of the facilities needed for research and training of students engaged in this profession. However, over the last decade, the U.S. nuclear science and engineering educational structure has not only stagnated but has reached a state of

353

The Future of University Nuclear Engineering Programs and University  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Future of University Nuclear Engineering Programs and The Future of University Nuclear Engineering Programs and University Research and Training Reactors The Future of University Nuclear Engineering Programs and University Research and Training Reactors Nuclear engineering programs and departments with an initial emphasis in fission were formed in the late 1950's and 1960's from interdisciplinary efforts in many of the top research universities, providing the manpower for this technical discipline. In the same time period, for many of these programs, university nuclear reactors were constructed and began their operation, providing some of the facilities needed for research and training of students engaged in this profession. However, over the last decade, the U.S. nuclear science and engineering educational structure has not only stagnated but has reached a state of

354

PEROXIDE PROCESS FOR SEPARATION OF RADIOACTIVE MATERIALS  

DOE Patents (OSTI)

reduced state, from hexavalent uranium. It consists in treating an aqueous solution containing such uranium and plutonium ions with sulfate ions in order to form a soluble uranium sulfate complex and then treating the solution with a soluble thorium compound and a soluble peroxide compound in order to ferm a thorium peroxide carrier precipitate which carries down with it the plutonium peroxide present. During this treatment the pH of the solution must be maintained between 2 and 3.

Seaborg, G.T.; Perlman, I.

1958-09-16T23:59:59.000Z

355

Beneficial reuse `96: The fourth annual conference on the recycle and reuse of radioactive scrap metal  

SciTech Connect

From October 22-24, 1996 the University of Tennessee`s Energy, Environment and Resources Center and the Oak Ridge National Laboratory`s Center for Risk Management cosponsored Beneficial Reuse `96: The Fourth Annual Conference on the Recycle and Reuse of Radioactive Materials. Along with the traditional focus on radioactive scrap metals, this year`s conference included a wide range of topics pertaining to naturally occurring radioactive materials (NORM), and contaminated concrete reuse applications. As with previous Beneficial Reuse conferences, the primary goal of this year`s conference was to bring together stakeholder representatives for presentations, panel sessions and workshops on significant waste minimization issues surrounding the recycle and reuse of contaminated metals and other materials. A wide range of industry, government and public stakeholder groups participated in this year`s conference. An international presence from Canada, Germany and Korea helped to make Beneficial Reuse `96 a well-rounded affair. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

NONE

1997-02-01T23:59:59.000Z

356

Broad beam ion implanter  

DOE Patents (OSTI)

An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

Leung, Ka-Ngo (Hercules, CA)

1996-01-01T23:59:59.000Z

357

Medical University of South Carolina Environmental Hazards Assessment Program. Deliverables: Volume 3, Annual report, July 1, 1993--June 30, 1994  

SciTech Connect

This reference is concerned with the Crossroads of Humanity workshop which is part of the Environmental Hazards Assessment Program at the Medical University of South Carolina. This workshop was held during the month of June and July 1994. Topics discussed include: Perceived Risk Advisory Committee Meeting, surveys of public opinion about hazardous and radioactive materials, genetics,antibodies, and regulatory agencies.

Not Available

1994-08-18T23:59:59.000Z

358

Environmental Radioactivity in the Faroes in 1982  

E-Print Network (OSTI)

*, E. Holm*, H. Hansen, and J. Lippert ·University of Lund, Sweden Abstract. Measurements of fallout Descriptors [0] DIET, ENVIRONMENT, EXPERIMENTAL DATA, FAROE ISLANDS, FISHES, FOOD, FOOD CHAINS, GLOBAL FALLOUT

359

Dk$2>ooo31-Environmental Radioactivity  

E-Print Network (OSTI)

. Hallstadius*, E. Holm*, and J. Lippert ·University of Lund, Sweden Abstract. Measurements of fallout, FOOD, FOOD CHAINS, GLOBAL FALLOUT, MILK, PLANTS, RADIOACTIV- ITY, SEA WATER, SHEEP, TABLES [1

360

Radioactivity in Food and the Environment, 2004  

E-Print Network (OSTI)

of the university and its programs through 2015. The document is located at www.unomaha.edu/bnfl. This plan for Executive MBA program, which is the flagship program for the college · Lack of space to locate segments

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Collaborative University Research Education | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaborative University Research Collaborative University Research SHARE Collaborative University Research ORNL scientist Jonathan Mielenz works in an anaerobic chamber used to handle biomass-degrading microbes at the Joint Institute for Biological Sciences.Source: ORNL Flickr site With a strong commitment to education, ORNL maintains relationships with many educational institutions and organizations. Many student and faculty programs are administered through Oak Ridge Associated Universities (ORAU) and include opportunities for undergraduates, graduates, postgraduates, faculty, and some pre-college students. The lab also partners with the University of Tennessee in several joint research efforts and though programs aimed at training the next generation of interdisciplinary scientists. These collaborations include:

362

Novel Solvent for the Simultaneous recovery of Radioactive Nuclides from Liquid Radioactive Wastes  

DOE Patents (OSTI)

The present invention relates to solvents, and methods, for selectively extracting and recovering radionuclides, especially cesium and strontium, rare earths and actinides from liquid radioactive wastes. More specifically, the invention relates to extracting agent solvent compositions comprising complex organoboron compounds, substituted polyethylene glycols, and neutral organophosphorus compounds in a diluent. The preferred solvent comprises a chlorinated cobalt dicarbollide, diphenyl-dibutylmethylenecarbamoylphosphine oxide, PEG-400, and a diluent of phenylpolyfluoroalkyl sulfone. The invention also provides a method of using the invention extracting agents to recover cesium, strontium, rare earths and actinides from liquid radioactive waste.

Romanovskiy, Valeriy Nicholiavich; Smirnov, Lgor V.; Babain, Vasiliy A.; Todd, Terry A.; Brewer, Ken N.

1999-10-07T23:59:59.000Z

363

DEVELOPMENT OF A ROTARY MICROFILTER FOR RADIOACTIVE WASTE APPLICATIONS  

Science Conference Proceedings (OSTI)

The processing rate of Savannah River Site (SRS) high-level waste decontamination processes are limited by the flow rate of the solid-liquid separation. The baseline process, using a 0.1 micron cross-flow filter, produces {approx}0.02 gpm/sq. ft. of filtrate under expected operating conditions. Savannah River National Laboratory (SRNL) demonstrated significantly higher filter flux for actual waste samples using a small-scale rotary filter. With funding from the U. S. Department of Energy Office of Cleanup Technology, SRNL personnel are evaluating and developing the rotary microfilter for radioactive service at SRS. The authors improved the design for the disks and filter unit to make them suitable for high-level radioactive service. They procured two units using the new design, tested them with simulated SRS wastes, and evaluated the operation of the units. Work to date provides the following conclusions and program status: (1) The authors modified the design of the filter disks to remove epoxy and Ryton{reg_sign}. The new design includes welding both stainless steel and ceramic coated stainless steel filter media to a stainless steel support plate. The welded disks were tested in the full-scale unit. They showed good reliability and met filtrate quality requirements. (2) The authors modified the design of the unit, making installation and removal easier. The new design uses a modular, one-piece filter stack that is removed simply by disassembly of a flange on the upper (inlet) side of the filter housing. All seals and rotary unions are contained within the removable stack. (3) While it is extremely difficult to predict the life of the seal, the vendor representative indicates a minimum of one year in present service conditions is reasonable. Changing the seal face material from silicon-carbide to a graphite-impregnated silicon-carbide is expected to double the life of the seal. Replacement of the current seal with an air seal could increase the lifetime to 5 years and is undergoing testing in the current work. (4) The bottom bushing showed wear due to a misalignment during the manufacture of the filter tank. Replacing the graphite bushing with a more wear resistant material such as a carbide material will increase the lifetime of the bushing. This replacement requires a more wear resistant part or coating to prevent excessive wear of the shaft. The authors are currently conducting testing with the more wear resistant bushing. (5) The project team plans to use the rotary microfilter as a filter in advance of an ion exchange process under development for potential deployment in SRS waste tank risers.

Poirier, M; David Herman, D; Samuel Fink, S

2008-02-25T23:59:59.000Z

364

Computational Design of Metal Ion Sequestering Agents  

SciTech Connect

Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to generate large numbers of candidate ligand architectures for given sets of donor groups • screen candidates and identify ligand architectures that will exhibit enhanced metal ion recognition. These new capabilities are being applied to ligand systems identified under other DOEsponsored projects where studies have suggested that modifying existing architectures will lead to dramatic enhancements in metal ion binding affinity and selectivity. With this in mind, we are collaborating with Professors R. T. Paine (University of New Mexico), K. N. Raymond (University of California, Berkeley), and J. E. Hutchison (University of Oregon), and Dr. B. A. Moyer (Oak Ridge National Laboratory) to obtain experimental validation of the predicted new ligand structures. Successful completion of this study will yield molecular-level insight into the role that ligand architecture plays in controlling metal ion complexation and will provide a computational approach to ligand design.

Hay, Benjamin P.; Rapko, Brian M.

2005-06-15T23:59:59.000Z

365

University Coal Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful research...

366

Clean Cities: Clean Cities University Online Learning  

NLE Websites -- All DOE Office Websites (Extended Search)

University Online Learning to someone by E-mail Share Clean Cities: Clean Cities University Online Learning on Facebook Tweet about Clean Cities: Clean Cities University Online...

367

Superconducting microfabricated ion traps  

E-Print Network (OSTI)

We fabricate superconducting ion traps with niobium and niobium nitride and trap single [superscript 88]Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the ...

Wang, Shannon Xuanyue

368

Aluminum ION Battery  

•Lower cost because of abundant aluminum resources ... Li-ion battery (LiC 6 - Mn 2 O 4) 106 4.0 424 Al-ion battery (Al - Mn 2 O 4) 400 2.65 1,060

369

Relativistic Heavy Ion Collider  

NLE Websites -- All DOE Office Websites (Extended Search)

at the same time. Capable of accelerating 70 trillion protons with every pulse, and heavy ions such as gold and iron, the AGS receives protons and other ions from the AGS...

370

Negative ion generator  

DOE Patents (OSTI)

A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

Stinnett, R.W.

1984-05-08T23:59:59.000Z

371

Intense ion beam generator  

DOE Patents (OSTI)

Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

Humphries, Jr., Stanley (Ithaca, NY); Sudan, Ravindra N. (Ithaca, NY)

1977-08-30T23:59:59.000Z

372

Negative ion generator  

DOE Patents (OSTI)

A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

Stinnett, Regan W. (Albuquerque, NM)

1984-01-01T23:59:59.000Z

373

Florida International University | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Spotlight Archive Spotlight Archive Contact Florida International University Professors and Faculty of Interest Prof. Osama Mohammed receives IEEE Energy Conversion Award Prof. Osama Mohammed receives IEEE Energy Conversion Award Prof. Madhavan Nair's groundbreading research may lead to new hope in the battle Prof. Madhavan Nair's groundbreading research may lead to new hope in the battle against Neuro-AIDS Asst. Prof. Vagelis Hristidis awarded Google Research Award Asst. Prof. Vagelis Hristidis awarded Google Research Award Exceptional Students and Alumnus DOE Fellow Duriem Calderin on his way to DOE's Hanford Site DOE Fellow Duriem Calderin on his way to DOE's Hanford Site DOE Fellow, Rosa Ramirez hired by DOE's Environmental Management Professional De DOE Fellow, Rosa Ramirez hired by DOE's Environmental Management Professional Development Corps

374

The Universe Adventure - Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Links Cosmology and Space Cosmic Journey A site chronicling the history of scientific cosmology, presented by the American Institute of Physics. Hubble Ultra-Deep Field Skywalker Lets you explore the famous Hubble Deep Field photo, which is the deepest view (in the visible spectrum) into the sky to date. QuietBay Constellation Tutorial A fun and easy tutorial to familiarize yourself with the night sky. Astronomy Picture of the Day Astronomy Picture of the Day features a new image from the universe every day, with short explanations written by professional astronomers. The Solar System NASA site that includes images and profiles of the planets (plus Pluto). Earth Guide An Earth planetary science site created by the Japan Science and Technology Agency describing many of the features of Earth and its place in the

375

NANYANG TECHNOLOGICAL UNIVERSITY  

NLE Websites -- All DOE Office Websites (Extended Search)

Naing Naing Aung, Xingbo Liu Naing Naing Aung, Xingbo Liu 03-12-2012 Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring of Boiler Tubes WestVirginiaUniversity College of Engineering and Mineral Resources DoE Award No. DE- FE0005717 Project Objectives  To develop in-situ corrosion monitoring sensors for corrosion of USC boiler tubes in next generation coal-based power systems  To develop thermal-electric based energy harvesting and telecommunication devices for the self-powered wireless ready sensor system Current Milestones July to September 2011 Initiate preliminary high-temperature electrochemical corrosion rate (ECR) probe design October to December 2011 To complete the design and construction of (ECR)

376

The Universe Adventure - Atoms  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter and Atoms Matter and Atoms Richard Feynman "If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words? I believe it is that...all things are made of atoms." -Richard P. Feynman, winner of the 1965 Nobel Prize in Physics All is atoms Matter is made of atoms, and atoms are comprised of protons, neutrons, and electrons. Everything in the Universe is made of matter. Though matter exists in many different forms, each form is made out of the same basic constituents: small particles called atoms. Atoms themselves are made of smaller particles: protons, neutrons, and electrons. Protons and neutrons are composed of even smaller particles called quarks.

377

The University of Chicago,  

Office of Legacy Management (LM)

a?-&= a?-&= d -j-his document consists Of............--- -,...figures pages an_d...~.....~~.....--.-----~--~~es k --ye.. No ,.... &...ot /u cople:s, 3' . . . . . . . . . . . . SERVICE & supply SUBCONTRACT # 740~37-m 115 This subcontract entered into this 1st day of.Agril 1944 by and between The University of Chicago, a corporation not for pecuniary profit organized under the laws of the State of Illinois, of Chica,o, Yontractorfl and R. Krasberg & Sons ALif Illinois (hereinafter called the g. co. a corpration organized under the laws of the State 6f. llllnols , of Chicago, llllnols (hereinafter called the ltSubcorltractorlt. VW?REAS, the Contractor has heretofore entered into a contract with the United States of America (represented by its duly designated contracting officer) under

378

Universal RFP 11202k  

NLE Websites -- All DOE Office Websites (Extended Search)

AND OBJECTIVES AND OBJECTIVES UNIVERSAL MUSIC GROUP (UMG) is seeking proposals from qualified energy service providers (ESP) and generators interested in assisting us in an effort to protect the environment through the consumption of renewable electricity and to reliably meet the electrical needs of our facilities. We hope to reduce emissions and alleviate other negative environmental impacts of our energy consumption. Therefore UMG is seeking to purchase 100% green power for our facility in Santa Monica, CA. Our preference is to purchase a product with the greatest amount of new renewable generation. UMG is looking to spend the same amount it currently spends on electricity or as close to that as possible. UMG wants a fixed rate product that is not tied to the PX price. UMG will only switch electricity providers if

379

Nuclear Energy University Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Status 1 Status Presentation to Nuclear Energy Advisory Committee (NEAC) June 15, 2011 Michael Worley, NEUP Program Manager NEUP Funding is Program Driven Program Directed Funding Program Supported Funding Mission Supported Funding Natl. Labs Universities DOE-NE HQ Peer Review DOE NE Program Drivers 2 3 Summary of Improvements and New Programs for FY 2011 * Expand "Blue Sky" Research and Development (R&D) * Initiate Integrated Research Projects (IRP) * Expand and improve peer review data base * Evaluate adoption of NRC and NNSA Metrics as appropriate to NEUP * Conduct peer review at pre-application stage for R&D 2011 Proposed NEUP Budget - $61.8M * Program Directed Integrated Research Projects (IRP) - $12.0M (NEW)

380

Pennsylvania State University | .EDUconnections  

NLE Websites -- All DOE Office Websites (Extended Search)

Old Main, Credit: George Chriss Old Main, Credit: George Chriss Research Research at Penn State Capabilities and Projects Institutes of Energy and the Environment Huck Institutes of Life Sciences Materials Research Institute Eberly College of Science Alternative Energy Research Research Publications Faculty Expertise Database Research News DOE Research Results Penn State Commencement 2012 United States Secretary of Energy Dr. Steven Chu was the commencement speaker at Penn State's Eberly College of Science 2012 spring graduation ceremony held May 5 at the Bryce Jordan Center on the University Park campus. Read more. Search this site: Search Over the past ten years, more than 28,000 graduate degrees were conferred by Penn State, including over 6,300 doctoral degrees. Resources About Penn State

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Iowa State University | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Beardshear Hall Beardshear Hall Research Research & Economic Development Research Units ISU Technology Search Students & Research at ISU DOE ARPA-E Biofuel Project DOE Office of Science Funding ISU & Ames Lab Tech Marketing Summaries ISU research in Energy Citations Database ISU research in E-print Network Ames Laboratory is a DOE National Laboratory operated under contract by Iowa State University Physicist developing, improving designer optical materials Chemists discover proton mechanism used by flu virus to infect cells ISU, Ames Lab's Bryden & McCorkle win 2010 R&D 100 Award New tool for cell research may help unravel secrets of disease Search this site: Search ISU's vision is to lead the world in advancing the land-grant ideas of putting science, technology, and human creativity to work.

382

The Universe Adventure - Composition  

NLE Websites -- All DOE Office Websites (Extended Search)

Elemental Abundances Elemental Abundances Understanding Our History A Star is Born An accretion disk forms during the birth of a star. There are precise physical and chemical processes that govern the evolution of planets, stars, and galaxies. By analyzing the structure and chemical content of astronomical objects, scientists can garner valuable information about what the universe's conditions must have been like long ago in order to account for currently observed elemental ratios. Formation of a Galaxy A forming galaxy. The Composition of the Earth We can begin in our own backyard. Geologists have determined that the Earth is composed primarily of heavy elements (those containing many protons and neutrons). The crust and mantle are made up of compounds containing large traces of oxygen, nickel, aluminum, magnesium, iron, silicon, and sulfur.

383

The Universe Adventure - Feedback  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us First Name (optional): Simpson Last Name (optional): Homer E-Mail Address (if you would like to hear back from us): How can we contact you? Occupation (high school student, physics teacher, cosmologist, et cetera): What is your occupation? Type: Type of Feedback Organization/Format Content Fundamentals of Cosmology Evidence for the Big Bang Eras of the Cosmos The Final Frontier Glossary Other Comments and Feedback: We appreciate your comments! - The Universe Adventure Team submit reset [ top ] Site Content National Science Foundation Department of Energy S.D. Bechtel, Jr. Foundation [ Site Map ] optimized for Firefox [ UC Berkeley ] [ UC Berkeley Physics ] [ Particle Adventure! ] [ Contact Us ] Copyright © 2005 Lawrence Berkeley National Laboratory Physics Division |

384

Oak Ridge Associated Universities  

Office of Legacy Management (LM)

the the Office of Environmental Restoration U.S. Department of Energy RADIOLOGICAL SURVEY OF THE FORMER BLISS AND LAUGHLIN STEEL COMPANY FACILITY BUFFALO, NEW YORK J. D. BERGER Environmental Survey and Site Assessment Program Energy/Environment Systems Division DRAFT REPORT APRIL 1992 c -. ..". FlLS\COPY x_.. --. RADIOLOGICAL SURVEY OF THE FORMER BLISS AND LAUGHLIN STEEL COMPANY FACILITY 110 HOPKINS STREET BUFFALO, NEW YORK Prepared by J. D. Berger Environmental Survey and Site Assessment Program Energy/Environmental Systems Division Oak Ridge Associated Universities/Oak Ridge Institute for Science and Education Oak Ridge, Tennessee 37831-0117 Project Staff R. D. Condra D. A. Gibson M. J. Laudernan R. B. Slaten Prepared for Department of Energy

385

Efficient universal blind computation  

E-Print Network (OSTI)

We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(J log(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.

Vittorio Giovannetti; Lorenzo Maccone; Tomoyuki Morimae; Terry G. Rudolph

2013-06-12T23:59:59.000Z

386

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT This Fiscal Year 2008 Civilian Radioactive Waste Management Fee Adequacy Letter Report presents an evaluation of the adequacy of the one mill per kilowatt-hour fee paid by commercial nuclear power generators for the permanent disposal of their spent nuclear fuel by the Government. This evaluation recommends no fee change. CIVILIAN RADIOACTIVE WASTE MANAGEMENT 2008 FEE ADEQUACY ASSESSMENT LETTER REPORT More Documents & Publications FY 2007 Fee Adequacy, Pub 2008 Fiscal Year 2007 Civilian Radioactive Waste Management Fee Adequacy Assessment Report January 16, 2013 Secretarial Determination of the Adequacy of the Nuclear

387

Upgrading the Radioactive Waste Management Infrastructure in Azerbaijan  

Science Conference Proceedings (OSTI)

Radionuclide uses in Azerbaijan are limited to peaceful applications in the industry, medicine, agriculture and research. The Baku Radioactive Waste Site (BRWS) 'IZOTOP' is the State agency for radioactive waste management and radioactive materials transport. The radioactive waste processing, storage and disposal facility is operated by IZOTOP since 1963 being significantly upgraded from 1998 to be brought into line with international requirements. The BRWS 'IZOTOP' is currently equipped with state-of-art devices and equipment contributing to the upgrade the radioactive waste management infrastructure in Azerbaijan in line with current internationally accepted practices. The IAEA supports Azerbaijan specialists in preparing syllabus and methodological materials for the Training Centre that is currently being organized on the base of the Azerbaijan BRWS 'IZOTOPE' for education of specialists in the area of safety management of radioactive waste: collection, sorting, processing, conditioning, storage and transportation. (authors)

Huseynov, A. [Baku Radioactive Waste Site IZOTOP, Baku (Azerbaijan); Batyukhnova, O. [State Unitary Enterprise Scientific and Industrial Association Radon, Moscow (Russian Federation); Ojovan, M. [Sheffield Univ., Immobilisation Science Lab. (United Kingdom); Rowat, J. [International Atomic Energy Agency, Dept. of Nuclear Safety and Security, Vienna (Austria)

2007-07-01T23:59:59.000Z

388

Radioactive Mineral Occurences in Nevada | Open Energy Information  

Open Energy Info (EERE)

Radioactive Mineral Occurences in Nevada Radioactive Mineral Occurences in Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Radioactive Mineral Occurences in Nevada Abstract Abstract unavailable. Author Larry J. Garside Organization Nevada Bureau of Mines and Geology Published Nevada Bureau of Mines and Geology, 1973 Report Number Open File Report 94-2 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Radioactive Mineral Occurences in Nevada Citation Larry J. Garside (Nevada Bureau of Mines and Geology). 1973. Radioactive Mineral Occurences in Nevada. Reno, NV: Nevada Bureau of Mines and Geology. Report No.: Open File Report 94-2. Retrieved from "http://en.openei.org/w/index.php?title=Radioactive_Mineral_Occurences_in_Nevada&oldid=690513"

389

Low Level Radioactive Waste Authority (Michigan) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low Level Radioactive Waste Authority (Michigan) Low Level Radioactive Waste Authority (Michigan) Low Level Radioactive Waste Authority (Michigan) < Back Eligibility Utility Fed. Government Investor-Owned Utility Municipal/Public Utility Program Info State Michigan Program Type Safety and Operational Guidelines Provider Department of Environmental Quality Federal laws passed in 1980 and 1985 made each state responsible for the low-level radioactive waste produced within its borders. Act 204 of 1987 created the Low-Level Radioactive Waste Authority (LLRWA) to fulfill state responsibilities under federal law for managing and assuring disposal capacity for the low-level radioactive waste produced in Michigan. The LLRWA began a facility siting process in 1989 under the statutory limits of Act 204. The LLRWA eventually determined that it was impossible to find a

390

Instrumentation development for coupling ion/ion reactions and ion mobility in biological mass spectrometry.  

E-Print Network (OSTI)

??The development of mass spectrometry (MS) instrumentation for novel biological applications, specifically, the development of instrumentation that integrates ion/ion reaction capabilities in an ion trap… (more)

Soyk, Matthew William

2008-01-01T23:59:59.000Z

391

RW - Radioactive Waste - Energy Conservation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unconsciously Unconsciously Negative Behaviors Consciously Negative Behaviors Consciously Positive Behaviors Unconsciously Positive Behaviors Education Motivation Repetition Permanent Change Figure 1 - The Phases of Behavior Change Office of Civilian Radioactive Waste Management (OCRWM) Energy Conservation Plan Summary: Development and implementation of this plan is being treated as a project. This serves two purposes. First, it increases familiarity with the precepts of project management and DOE Order 413. Secondly, project management provides a great structure for organizing and implementing the activities that will facilitate energy savings through behavioral changes. A project structure also helps define how the effort will begin and what constitutes success at the

392

Midwestern Radioactive Materials Transportation Committee Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Council of State Governments Council of State Governments Midwestern Radioactive Materials Transportation Committee May 15, 2012 Knoxville, Tennessee Revised Agenda 9 - 9:45 am Welcome, Introductions, and Committee Reports Report from co-chairs Tim Runyon (Illinois) Project update Lisa Janairo, CSG Midwest Work group reports Integrated Spent Fuel Management Work Group Teri Engelhart (Wisconsin) NTSF-related reports Planning Committee Tim Runyon (Illinois) Communications Ad Hoc Working Group Jane Beetem (Missouri) WIPP Security Communications Protocol Major Lance Evans (Iowa) Ad Hoc Working Group Information and Communications Work Group Lisa Janairo 9:45 - 10:45 am Committee Discussion Blue Ribbon Commission final report: state reactions, next steps

393

System for handling and storing radioactive waste  

DOE Patents (OSTI)

A system and method are claimed for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, J.K.; Lindemann, P.E.

1982-07-19T23:59:59.000Z

394

Corrosion resistant storage container for radioactive material  

DOE Patents (OSTI)

A corrosion resistant long-term storage container for isolating high-level radioactive waste material in a repository is claimed. The container is formed of a plurality of sealed corrosion resistant canisters of different relative sizes, with the smaller canisters housed within the larger canisters, and with spacer means disposed between juxtaposed pairs of canisters to maintain a predetermined spacing between each of the canisters. The combination of the plural surfaces of the canisters and the associated spacer means is effective to make the container capable of resisting corrosion, and thereby of preventing waste material from leaking from the innermost canister into the ambient atmosphere.

Schweitzer, D.G.; Davis, M.S.

1984-08-30T23:59:59.000Z

395

Introduction to naturally occurring radioactive material  

SciTech Connect

Naturally occurring radioactive material (NORM) is everywhere; we are exposed to it every day. It is found in our bodies, the food we eat, the places where we live and work, and in products we use. We are also bathed in a sea of natural radiation coming from the sun and deep space. Living systems have adapted to these levels of radiation and radioactivity. But some industrial practices involving natural resources concentrate these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Other activities, such as flying at high altitudes, expose us to elevated levels of NORM. This session will concentrate on diffuse sources of technologically-enhanced (TE) NORM, which are generally large-volume, low-activity waste streams produced by industries such as mineral mining, ore benefication, production of phosphate Fertilizers, water treatment and purification, and oil and gas production. The majority of radionuclides in TENORM are found in the uranium and thorium decay chains. Radium and its subsequent decay products (radon) are the principal radionuclides used in characterizing the redistribution of TENORM in the environment by human activity. We will briefly review other radionuclides occurring in nature (potassium and rubidium) that contribute primarily to background doses. TENORM is found in many waste streams; for example, scrap metal, sludges, slags, fluids, and is being discovered in industries traditionally not thought of as affected by radionuclide contamination. Not only the forms and volumes, but the levels of radioactivity in TENORM vary. Current discussions about the validity of the linear no dose threshold theory are central to the TENORM issue. TENORM is not regulated by the Atomic Energy Act or other Federal regulations. Control and regulation of TENORM is not consistent from industry to industry nor from state to state. Proposed regulations are moving from concentration-based standards to dose-based standards. So when is TENORM a problem? Where is it a problem? That depends on when, where, and whom you talk to! We will start by reviewing background radioactivity, then we will proceed to the geology, mobility, and variability of these radionuclides. We will then review some of the industrial sectors affected by TENORM, followed by a brief discussion on regulatory aspects of the issue.

Egidi, P.

1997-08-01T23:59:59.000Z

396

System for disposing of radioactive water  

DOE Patents (OSTI)

A system for reducing radioactivity released to the biosphere in the course of producing natural gas from a reservoir stimulated by the detonation of nuclear explosives therein. Tritiated water produced with the gas is separated out and returned to a nuclear chimney through a string of tubing positioned within the well casing. The tubing string is positioned within the well casing in a manner which enhances separation of the water out of the gas and minimizes entrainment of water into the gas flowing out of the chimney.

Gotchy, Reginald L. (Bethesda, MD)

1976-01-13T23:59:59.000Z

397

BIOLOGICAL DECOMPOSITION OF RADIOACTIVE LAUNDRY WASTE  

SciTech Connect

A series of tests was conducted on a laundry waste containing radtoactive materials, using an activated sludge process, to determine whether the organic materials which would interfere with a process of flocculation and adsorption could be removed along with a substantial quantity of the radioactive material. A trickling filter was used to treat the waste over a long period of time. The filter removed nearly all of the activity and most of the organic compounds. However, sufficient residual activity remained in the effluent to require either two-stage operation or final processing by flocculation and adsorption. Recirculation was beneficial. A supplementary bacteria feed of ammonium nitrate was necessary. (auth)

Wiederhold, E.W.

1954-03-10T23:59:59.000Z

398

RECLAMATION OF RADIOACTIVE MATERIAL PACKAGING COMPONENTS  

SciTech Connect

Radioactive material packages are withdrawn from use for various reasons; loss of mission, decertification, damage, replacement, etc. While the packages themselves may be decertified, various components may still be able to perform to their required standards and find useful service. The Packaging Technology and Pressurized Systems group of the Savannah River National Laboratory has been reducing the cost of producing new Type B Packagings by reclaiming, refurbishing, and returning to service the containment vessels from older decertified packagings. The program and its benefits are presented.

Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

2011-06-06T23:59:59.000Z

399

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

400

Particle beam generator using a radioactive source  

DOE Patents (OSTI)

The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

Underwood, D.G.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ORNL Radioactive Beams for Stellar Explosion Studies  

Science Conference Proceedings (OSTI)

At ORNL, we are using unique radioactive beams to measure scattering, transfer, and capture reactions to help understand exploding stars such as novae, supernovae, and X-ray bursts. Recent results have been obtained with beams of {sup 26}Al, {sup 17}F, and {sup 130,132}Sn, utilizing gas targets, silicon strip detectors, and recoil separators. More exciting work is planned at the future FRIB facility. We are also using synergistic nuclear data evaluations and the Computational Infrastructure for Nuclear Astrophysics to investigate the astrophysical impact of our measurements.

Smith, Michael S. [Physics Division, Oak Ridge National Lab, Oak Ridge, Tennessee, 37831-6354 (United States)

2010-08-12T23:59:59.000Z

402

Particle beam generator using a radioactive source  

DOE Patents (OSTI)

The apparatus of the present invention selects from particles emitted by a radioactive source those particles having momentum within a desired range and focuses the selected particles in a beam having at least one narrow cross-dimension, and at the same time attenuates potentially disruptive gamma rays and low energy particles. Two major components of the present invention are an achromatic bending and focusing system, which includes sector magnets and quadrupole, and a quadrupole doublet final focus system. Permanent magnets utilized in the apparatus are constructed of a ceramic (ferrite) material which is inexpensive and easily machined.

Underwood, D.G.

1993-03-30T23:59:59.000Z

403

THE DESIGN OF A RADIOACTIVITY CONTAMINATION METER  

SciTech Connect

A description is given of the design and performance of a portable instrument for measurement of radiation from small quantities of radioactive contamination. The device weighs 4 lb 2 oz, operates on a single flashlight battery for 200 hr, and operates at low temperatures with the proper battery. The most novel feature is a clockworkdriven chopper for a-c. The circuit includes cold cathode tubes and a halogen-quenched G-M tube. Reliability was emphasized in the design. (T.R.H.)

Goulding, F.S.

1954-04-27T23:59:59.000Z

404

System for handling and storing radioactive waste  

DOE Patents (OSTI)

A system and method for handling and storing spent reactor fuel and other solid radioactive waste, including canisters to contain the elements of solid waste, storage racks to hold a plurality of such canisters, storage bays to store these racks in isolation by means of shielded doors in the bays. This system also includes means for remotely positioning the racks in the bays and an access tunnel within which the remotely operated means is located to position a rack in a selected bay. The modular type of these bays will facilitate the construction of additional bays and access tunnel extension.

Anderson, John K. (San Diego, CA); Lindemann, Paul E. (Escondido, CA)

1984-01-01T23:59:59.000Z

405

Ion trap simulation tools.  

Science Conference Proceedings (OSTI)

Ion traps present a potential architecture for future quantum computers. These computers are of interest due to their increased power over classical computers stemming from the superposition of states and the resulting capability to simultaneously perform many computations. This paper describes a software application used to prepare and visualize simulations of trapping and maneuvering ions in ion traps.

Hamlet, Benjamin Roger

2009-02-01T23:59:59.000Z

406

Improved charge breeding efficiency of light ions with an electron cyclotron resonance ion source  

SciTech Connect

The Californium Rare Isotope Breeder Upgrade is a new radioactive beam facility for the Argonne Tandem Linac Accelerator System (ATLAS). The facility utilizes a {sup 252}Cf fission source coupled with an electron cyclotron resonance ion source to provide radioactive beam species for the ATLAS experimental program. The californium fission fragment distribution provides nuclei in the mid-mass range which are difficult to extract from production targets using the isotope separation on line technique and are not well populated by low-energy fission of uranium. To date the charge breeding program has focused on optimizing these mid-mass beams, achieving high charge breeding efficiencies of both gaseous and solid species including 14.7% for the radioactive species {sup 143}Ba{sup 27+}. In an effort to better understand the charge breeding mechanism, we have recently focused on the low-mass species sodium and potassium which up to present have been difficult to charge breed efficiently. Unprecedented charge breeding efficiencies of 10.1% for {sup 23}Na{sup 7+} and 17.9% for {sup 39}K{sup 10+} were obtained injecting stable Na{sup +} and K{sup +} beams from a surface ionization source.

Vondrasek, R.; Kutsaev, Sergey [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Delahaye, P.; Maunoury, L. [Grand Accelerateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Blvd Henri Becquerel, 14076 Caen (France)

2012-11-15T23:59:59.000Z

407

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet)  

DOE Green Energy (OSTI)

Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO4) cathodes for lithium-ion batteries.

Not Available

2012-10-01T23:59:59.000Z

408

Radiation Awareness TrainingRadiation Awareness Training Radioactive Material &Radioactive Material &  

E-Print Network (OSTI)

;Regulatory Agencies · Radioactive Materials ­ Broad Scope License ­ Issued by GA Department of Natural Resources · X-Ray Machines ­ Units registered with the GA Department of Human Resources ­ They regulate x) · Sealed sources ­ Nickel-63 (Gas chromatograph) ­ Cesium-137 (Liquid Scintillation Counter) ­ Neutron

Löffler, Frank E.

409

Proceedings of the 10th international workshop on ECR ion sources  

SciTech Connect

This report contains papers on the following topics: Recent Developments and Future Projects on ECR Ion Sources; Operation of the New KVI ECR Ion Source at 10 GHz; Operational Experience and Status of the INS SF-ECR Ion Source; Results of the New ECR4'' 14.5 GHz ECRIS; Preliminary Performance of the AECR; Experimental Study of the Parallel and Perpendicular Particle Losses from an ECRIS Plasma; Plasma Instability in Electron Cyclotron Resonance Heated Ion Sources; The Hyperbolic Energy Analyzer; Status of ECR Source Development; The New 10 GHz CAPRICE Source; First Operation of the Texas A M ECR Ion Source; Recent Developments of the RIKEN ECR Ion Sources; The 14 GHz CAPRICE Source; Characteristics and Potential Applications of an ORNL Microwave ECR Multicusp Plasma Ion Source; ECRIPAC: The Production and Acceleration of Multiply Charged Ions Using an ECR Plasma; ECR Source for the HHIRF Tandem Accelerator; Feasibility Studies for an ECR-Generated Plasma Stripper; Production of Ion Beams by using the ECR Plasmas Cathode; A Single Stage ECR Source for Efficient Production of Radioactive Ion Beams; The Single Staged ECR Source at the TRIUMF Isotope Separator TISOL; The Continuous Wave, Optically Pumped H{sup {minus}} Source; The H{sup +} ECR Source for the LAMPF Optically Pumped Polarized Ion Source; Present Status of the Warsaw CUSP ECR Ion Source; An ECR Source for Negative Ion Production; GYRAC-D: A Device for a 200 keV ECR Plasma Production and Accumulation; Status Report of the 14.4 GHZ ECR in Legnaro; Status of JYFL-ECRIS; Report on the Uppsala ECRIS Facility and Its Planned Use for Atomic Physics; A 10 GHz ECR Ion Source for Ion-Electron and Ion-Atom Collision Studies; and Status of the ORNL ECR Source Facility for Multicharged Ion Collision Research.

Meyer, F W; Kirkpatrick, M I [eds.

1991-01-01T23:59:59.000Z

410

South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

411

Appalachian States Low-Level Radioactive Waste Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

412

Portsmouth Site Delivers First Radioactive Waste Shipment to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eckert, Anthony Howard and Chris Ashley. These drums containing radioactive waste from uranium enrichment operations were included in the Portsmouth site's first shipment to...

413

Cyclotrons to Make Neutrons & Radioactive Targets for SBSS at...  

Office of Science (SC) Website

to Make Neutrons & Radioactive Targets for SBSS at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications...

414

EA-0981: Solid Waste Retrieval Complex, Enhanced Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Retrieval Complex, Enhanced Radioactive and Mixed Waste Storage Facility, Infrastructure Upgrades, and Central Waste Support Complex, Hanford Site, Richland, Washington...

415

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

environmental and cost impacts of strategic managment alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result...

416

Applying Risk Communication to the Transportation of Radioactive...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to the Transportation of Radioactive Materials More Documents & Publications Status and Future of TRANSCOM Department of Energy Office of Science Transportation Overview NTSF...

417

Sandia technology used to remove radioactive material at Fukushima...  

National Nuclear Security Administration (NNSA)

technology used to remove radioactive material at Fukushima | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

418

UNITED STATES DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE...  

NLE Websites -- All DOE Office Websites (Extended Search)

UNITED STATES DEPARTMENT OF ENERGY OFFICE OF CIVILIAN RADIOACTIVE WASTE MANAGEMENT Annual Financial Report Years Ended September 30, 2009 and 2008 UNITED STATES DEPARTMENT OF...

419

DOE O 435.1 Chg 1, Radioactive Waste Management  

Directives, Delegations, and Requirements

The objective of this Order is to ensure that all Department of Energy (DOE) radioactive waste is managed in a manner that is protective of worker and public ...

1999-07-09T23:59:59.000Z

420

Photo of the Week: What Do Airborne Radioactive Particles Taste...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1:40pm Addthis At Sandia National Laboratories, researchers have developed pods that can survey and "taste" radioactive particles without exposing a human crew to nuclear hazards....

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Aerial survey finds no increase in radioactivity for Los Alamos...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Aerial survey finds no increase in radioactivity ... Aerial survey finds no increase in...

422

Nicole Darnall George Mason University  

E-Print Network (OSTI)

tetrachloride, denitrification 1. Introduction Groundwater contamination originates from a variety of sources, including synthetic organic chemicals, metal ions, petroleum products, volatile organic compounds

Darnall, Nicole

423

DOE Solar Decathlon: Norwich University  

NLE Websites -- All DOE Office Websites (Extended Search)

Norwich University Norwich University Team website: www.nusd2013.org Photo of members of the Norwich University Solar Decathlon 2013 team standing in front of a building on campus. Enlarge image The Norwich University Solar Decathlon 2013 team (Courtesy of the Norwich University Solar Decathlon 2013 team) he Norwich University audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings Menu and Recipes Neither the United States, nor the Department of Energy, nor the Alliance for Sustainable Energy LLC, nor any of their contractors, subcontractors, or their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or

424

Superconducting microfabricated ion traps  

E-Print Network (OSTI)

We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

Shannon X. Wang; Yufei Ge; Jaroslaw Labaziewicz; Eric Dauler; Karl Berggren; Isaac L. Chuang

2010-10-28T23:59:59.000Z

425

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this modeling activity is to predict dissolved concentrations or solubility limits for 14 elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) important to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are in the form of tabulated functions with pH and log (line integral) CO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. The output data from this report are fundamental inputs for Total System Performance Assessment for the License Application (TSPA-LA) to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for all of the actinides. These models cover broad ranges of environmental conditions so that they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

NA

2004-11-22T23:59:59.000Z

426

Crystallization of sodium nitrate from radioactive waste  

SciTech Connect

From the 1940s to the 1980s, the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) conducted research and development on processes to separate acetate and nitrate salts and acetic acid from radioactive wastes by crystallization. The research objective was to decrease waste volumes and produce the separated decontaminated materials for recycle. This report presents an account of the IPC/RAS experience in this field. Details on operating conditions, waste and product compositions, decontamination factors, and process equipment are described. The research and development was generally related to the management of intermediate-level radioactive wastes. The waste solutions resulted from recovery and processing of uranium, plutonium, and other products from irradiated nuclear fuel, neutralization of nuclear process solutions after extractant recovery, regeneration of process nitric acid, equipment decontamination, and other radiochemical processes. Waste components include nitric acid, metal nitrate and acetate salts, organic impurities, and surfactants. Waste management operations generally consist of two stages: volume reduction and processing of the concentrates for storage, solidification, and disposal. Filtration, coprecipitation, coagulation, evaporation, and sorption were used to reduce waste volume. 28 figs., 40 tabs.

Krapukhin, V.B.; Krasavina, E.P. Pikaev, A.K. [Russian Academy of Sciences, Moscow (Russian Federation). Institute of Physical Chemistry

1997-07-01T23:59:59.000Z

427

DOE Awards $3 Million Contract to Oak Ridge Associated Universities for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Million Contract to Oak Ridge Associated Universities Million Contract to Oak Ridge Associated Universities for Expert Review of Yucca Mountain Work DOE Awards $3 Million Contract to Oak Ridge Associated Universities for Expert Review of Yucca Mountain Work March 31, 2006 - 9:54am Addthis Funding is for remainder of 2006, with at least another $3 million in 2007 WASHINGTON, DC - The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) today announced the selection of Oak Ridge Associated Universities/Oak Ridge Institute for Science and Education (ORAU/ORISE) to provide independent expert reviews of scientific and technical work on the Yucca Mountain Project. "The Yucca Mountain Project will be based on sound science. By bringing in Oak Ridge for independent reviews to assess our technical work, we ensure

428

Preliminary Notice of Violation, University of California - EA-2006-01 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University of California - University of California - EA-2006-01 Preliminary Notice of Violation, University of California - EA-2006-01 February 23, 2006 Preliminary Notice of Violation issued to the University of California related to Radiological Uptakes, a Radioactive Material Spill, and Radiological Protection Program, Quality Assurance, and Safety Basis Deficiencies at the Lawrence Livermore National Laboratory This letter refers to the Department of Energy (DOE) Office of Price-Anderson Enforcement's (OE) investigation of the August 2004 MOVER radiological uptakes and the April 2005 Phosphorous Spill Event, as well as longstanding Radiological Protection Program, Quality Assurance, and Safety Basis deficiencies. An Investigation Summary Report describing the results of that review was issued to you on August 30, 2005. An Enforcement

429

Ion cyclotron resonance cell  

DOE Patents (OSTI)

An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

Weller, R.R.

1995-02-14T23:59:59.000Z

430

Ion Sources - Cyclotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Sources Sources The 88-Inch Cyclotron is fed by three Electron Cyclotron Resonance (ECR) high-charge-state ion sources, the ECR, the AECR, and VENUS, currently the most powerful ECR ion source in the world. Built to answer the demand for intense heavy ion beams, these high performance ion sources enable the 88-Inch Cyclotron to accelerate beams of ions from hydrogen to uranium. The ECR ion sources allow the efficient use of rare isotopes of stable elements, either from natural or enriched sources. A variety of metallic ion beams are routinely produced in our low temperature oven (up to 600°C) and our high temperature oven (up to 2100°C). Furthermore, the ability to produce "cocktails" (mixtures of beams) for the Berkeley Accelerator Space Effects (BASE) Facility adds tremendously to the flexibility of the 88-Inch Cyclotron.

431

Microfabricated Ion Traps  

E-Print Network (OSTI)

Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions with...

Hughes, Marcus D; Broersma, Jiddu A; Hensinger, Winfried K

2011-01-01T23:59:59.000Z

432

Chemical Ionization Mass Spectrometer (CIMS) Shanhu Lee, Kent State University (http://www.personal.kent.edu/~slee19/)  

E-Print Network (OSTI)

Chemical Ionization Mass Spectrometer (CIMS) Shanhu Lee, Kent State University (http ionization mass spectrometry (PTR-CIMS). A typical CIMS instrument can be constructed from an ion source, an ion molecular reactor, and a quadrupole mass spectrometer. Shown below is schematic diagram of a CIMS

Lee, Shan-Hu

433

REGULATIONS OF THE UNIVERSITY OF FLORIDA  

E-Print Network (OSTI)

, the University Police, the University's armored car vendor, and the staff of the Florida Museum of Natural

Roy, Subrata

434

UNIVERSITY STUDENT TITLE OF TALK OU  

Science Conference Proceedings (OSTI)

... EL University of Puerto Rico Rivera-Cotty, Norman Instrumentation of Geothermal Heat Pump Test System EL Loyola University ...

2012-12-17T23:59:59.000Z

435

Universal Lighting Technologies | Open Energy Information  

Open Energy Info (EERE)

Product Universal Lighting Technologies develops, manufactures and markets energy efficient lighting technologies including HID, CFLs and ballasts. References Universal...

436

University Partnerships / Academic Alliances | National Nuclear...  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > University Partnerships Academic Alliances University...

437

BNL | Physics of the Universe  

NLE Websites -- All DOE Office Websites (Extended Search)

Core Capabilities Facilities Physics of the Universe image Exploring the Frontiers of Energy, Intensity and the Cosmos Brookhaven leads high-energyparticle physics experiments...

438

1999 - CECM - Simon Fraser University  

E-Print Network (OSTI)

Jan 16, 2001 ... October 14th ``Doing Math in the Presence of Technology,'' Colloquium, Department of Mathematics and Statistics, Miami University of Ohio ...

439

Fermilab Today | Baylor University Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

the Run 2B Level 1 Tracking Trigger (XFT) PARTICLE PHYSICS RESEARCH FOCUS: Higgs boson, QCD, searches for new phenomena WHAT SETS PARTICLE PHYSICS AT BAYLOR UNIVERSITY...

440

Fermilab Today | University of Oklahoma  

NLE Websites -- All DOE Office Websites (Extended Search)

to emerge from the Large Hadron Collider. Our theory group also works on nonperturbative quantum field theory. WHAT SETS PARTICLE PHYSICS AT THE UNIVERSITY OF OKLAHOMA APART? OU...

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fermilab Today | Boston University Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

simulations of quantum chromodynamics, cosmology, and the application of mathematics to quantum field theory. WHAT SETS PARTICLE PHYSICS AT BOSTON UNIVERSITY APART? We have a...

442

Universe creation on a computer  

E-Print Network (OSTI)

The purpose of this paper is to provide an account of the epistemology and metaphysics of universe creation on a computer.

Gordon McCabe

2005-11-13T23:59:59.000Z

443

NETL: Onsite Research - University Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Onsite Research University Projects The National Energy Technology Laboratory (NETL) is helping to overcome a growing national problem of a diminishing number of new energy...

444

University Turbine Systems Research Program  

SciTech Connect

The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).

Leitner, Robert; Wenglarz, Richard

2010-12-31T23:59:59.000Z

445

Thesis - CECM - Simon Fraser University  

E-Print Network (OSTI)

Midwest Symposium on Circuit Theory, Colorado State University, pp. 13.0-13.10 . 1965. [31] R. McConnell. A Certifying Algorithm for the Consecutive Ones ...

446

ION-BY-ION COOLING EFFICIENCIES  

SciTech Connect

We present ion-by-ion cooling efficiencies for low-density gas. We use Cloudy (version 10.00) to estimate the cooling efficiencies for each ion of the first 30 elements (H-Zn) individually. We present results for gas temperatures between 10{sup 4} and 10{sup 8} K, assuming low densities and optically thin conditions. When nonequilibrium ionization plays a significant role the ionization states deviate from those that obtain in collisional ionization equilibrium (CIE), and the local cooling efficiency at any given temperature depends on specific nonequilibrium ion fractions. The results presented here allow for an efficient estimate of the total cooling efficiency for any ionic composition. We also list the elemental cooling efficiencies assuming CIE conditions. These can be used to construct CIE cooling efficiencies for non-solar abundance ratios or to estimate the cooling due to elements not included in any nonequilibrium computation. All the computational results are listed in convenient online tables.

Gnat, Orly [Theoretical Astrophysics, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States) and Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Ferland, Gary J., E-mail: orlyg@tapir.caltech.edu [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States)

2012-03-01T23:59:59.000Z

447

Infinite cloud model of electrification by the precipitation mechanism in the presence of high rates of ion generation  

SciTech Connect

We have extended a simple, infinite cloud, precipitation mechanism model of thundercloud electrification to include effects due to the presence of radioactive aerosol particles resulting from fresh debris from a nuclear explosion. These effects involve ion generation, currents due to motions of ions and charged aerosol particles, and collection of ions and aerosol particles by hydrometeors and cloud droplets. Our conclusion is that an ion pair generation rate G> or approx. =10/sup 12/m/sup -3/ s/sup -1/ will prevent significant electric field growth.

Spangler, J.D.; Rosenkilde, C.E.

1979-06-20T23:59:59.000Z

448

Infinite cloud model of electrification by the precipitation mechanism in the pressence of high rates of ion generation  

SciTech Connect

We have extended a simple, infinite-cloud, precipitation-mechanism model of thundercloud electrification to include effects due to the presence of radioactive aerosol particles. These effects involve ion generation, currents due to motions of ions and charged aerosol particles, and collection of ions and aerosol particles by hydrometeors and cloud droplets. Our conclusion is that an ion-pair generation rate G equal to or greater than 10/sup 12/m/sup -3/s/sup -1/ will prevent significant electric-field growth.

Spangler, J.D.; Rosenkilde, C.E.

1978-06-19T23:59:59.000Z

449

Identification of tetraphenylborate radiolysis products in a simulated feedstock for radioactive waste processing  

SciTech Connect

The first step towards immobilization of the soluble radioactive species in borosilicate glass is the addition of sodium tetraphenylborate (TPB) and sodium titanate to the radioactive aqueous solution. Initial studies of the TPB hydrolysis process have found that some component of the radiolysis mixture inactivates the Cu catalyst. The interaction of organic materials with the catalyst, and the subsequent interference with the hydrolysis process, would have presented problems with the use of the vitrification process. Prevention of the catalyst deactivation is obtained by washing the irradiated TPB precipitate in the Late Wash Facility prior to hydrolysis to remove the soluble radiolysis products. Identification of the organic radiolysis products, their distribution in the Late Wash Facility, and their interactions with the Cu catalyst has become an important analytical issue. To further investigate the reaction products of the TPB precipitation process, a simulated feedstock was created from compounds known to be present in the starting materials. This simulated feedstock was precipitated with sodium TPB and then exposed to Co-60 gamma radiation to simulate two years of additional storage time prior to the hydrolysis process. The irradiated product was divided into two parts, the filtered supernatant liquid and the precipitate slurry, which contains the TPB and the solid sodium titanate. Using gas chromatography/mass spectrometry, liquid secondary ion mass spectrometry, inductively coupled plasma/mass spectrometry, ion chromatography, and high performance liquid chromatography, over 50 organic and inorganic species have been identified in the aqueous portion of a simulated feedstock for TPB hydrolysis. The major organic species present are benzene, phenol, benzamide and a variety of substituted phenylphenols. The major inorganic species present are sodium, nitrite, and oxalate ions.

Eibling, R.E. [Westinghouse Savannah River Co., Aiken, SC (United States); Bartlett, M.G.; Carlson, R.E.; Testino, S.A. Jr.; Kunkel, G.J.; Browner, R.F.; Busch, K.L. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Chemistry and Biochemistry

1994-10-01T23:59:59.000Z

450

Microsoft Word - Nano-sized Ion Exchange Particles.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Ion Exchange Particles to Nano-Size Shows Big Potential Reducing Ion Exchange Particles to Nano-Size Shows Big Potential AIKEN, S.C. (January 30, 2012) - Sometimes bigger isn't better. Researchers at the U.S. Department of Energy's Savannah River National Laboratory have successfully shown that they can replace useful little particles of monosodium titanate (MST) with even tinier nano-sized particles, making them even more useful for a variety of applications. MST is an ion exchange material used to decontaminate radioactive and industrial wastewater solutions, and has been shown to be an effective way to deliver metals into living cells for some types of medical treatment. Typically, MST, and a modified form known as mMST developed by SRNL and Sandia National Laboratories, are in the form of fine powders, spherically-shaped particles about 1 to 10 microns in diameter

451

Method for aqueous radioactive waste treatment  

DOE Patents (OSTI)

Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

Bray, L.A.; Burger, L.L.

1994-03-29T23:59:59.000Z

452

Method for aqueous radioactive waste treatment  

DOE Patents (OSTI)

Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

Bray, Lane A. (Richland, WA); Burger, Leland L. (Richland, WA)

1994-01-01T23:59:59.000Z

453

University of Michigan space Physics  

E-Print Network (OSTI)

below). Light from selected regions of the atmosphere is collected by the telescopes, that are fiber-optically (TOF) System. As the ions are collected, they first pass through the ESA. The ESA acts as an energy filtered, but before they pass into the TOF system, they are accelerated through a carbon foil. As the ion

Eustice, Ryan

454

INEEL Radioactive Liquid Waste Reduction Program  

SciTech Connect

Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy–Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most promising alternatives were compared by applying weighting factors to each based on how well the alternative met the established criteria. From this information, an overall ranking of the various alternatives was obtained and a path forward recommended.

Tripp, Julia Lynn; Archibald, Kip Ernest; Argyle, Mark Don; Demmer, Ricky Lynn; Miller, Rose Anna; Lauerhass, Lance

1999-03-01T23:59:59.000Z

455

INEEL Radioactive Liquid Waste Reduction Program  

SciTech Connect

Reduction of radioactive liquid waste, much of which is Resource Conservation and Recovery Act (RCRA) listed, is a high priority at the Idaho National Technology and Engineering Center (INTEC). Major strides in the past five years have lead to significant decreases in generation and subsequent reduction in the overall cost of treatment of these wastes. In 1992, the INTEC, which is part of the Idaho National Environmental and Engineering Laboratory (INEEL), began a program to reduce the generation of radioactive liquid waste (both hazardous and non-hazardous). As part of this program, a Waste Minimization Plan was developed that detailed the various contributing waste streams, and identified methods to eliminate or reduce these waste streams. Reduction goals, which will reduce expected waste generation by 43%, were set for five years as part of this plan. The approval of the plan led to a Waste Minimization Incentive being put in place between the Department of Energy ? Idaho Office (DOE-ID) and the INEEL operating contractor, Lockheed Martin Idaho Technologies Company (LMITCO). This incentive is worth $5 million dollars from FY-98 through FY-02 if the waste reduction goals are met. In addition, a second plan was prepared to show a path forward to either totally eliminate all radioactive liquid waste generation at INTEC by 2005 or find alternative waste treatment paths. Historically, this waste has been sent to an evaporator system with the bottoms sent to the INTEC Tank Farm. However, this Tank Farm is not RCRA permitted for mixed wastes and a Notice of Non-compliance Consent Order gives dates of 2003 and 2012 for removal of this waste from these tanks. Therefore, alternative treatments are needed for the waste streams. This plan investigated waste elimination opportunities as well as treatment alternatives. The alternatives, and the criteria for ranking these alternatives, were identified through Value Engineering meetings with all of the waste generators. The most promising alternatives were compared by applying weighting factors to each based on how well the alternative met the established criteria. From this information, an overall ranking of the various alternatives was obtained and a path forward recommended.

C. B. Millet; J. L. Tripp; K. E. Archibald; L. Lauerhauss; M. D. Argyle; R. L. Demmer

1999-02-01T23:59:59.000Z

456

RADIOACTIVE DEMONSTRATION OF MINERALIZED WASTE FORMS MADE FROM HANFORD LOW ACTIVITY WASTE (TANK FARM BLEND) BY FLUIDIZED BED STEAM REFORMATION (FBSR)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Supplemental Treatment is likely to be required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP’s LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750°C) continuous method by which LAW can be processed irrespective of whether the waste contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be comparable to LAW glass, i.e. leaches Tc-99, Re and Na at 6 (the Hanford IDF criteria for Na) in the first few hours. The granular and monolithic waste forms also pass the EPA Toxicity Characteristic Leaching Procedure (TCLP) for all Resource Conservation and Recovery Act (RCRA) components at the Universal Treatment Standards (UTS). Two identical Benchscale Steam Reformers (BSR) were designed and constructed at SRNL, one to treat non-radioactive simulants and the other to treat actual radioactive wastes. The results from the non-radioactive BSR were used to determine the parameters needed to operate the radioactive BSR in order to confirm the findings of non-radioactive FBSR pilot scale and engineering scale tests and to qualify an FBSR LAW waste form for applications at Hanford. Radioactive testing commenced using SRS LAW from Tank 50 chemically trimmed to look like Hanford’s blended LAW known as the Rassat simulant as this simulant composition had been tested in the non-radioactive BSR, the non-radioactive pilot scale FBSR at the Science Applications International Corporation-Science and Technology Applications Research (SAIC-STAR) facility in Idaho Falls, ID and in the TTT Engineering Scale Technology Demonstration (ESTD) at Hazen Research Inc. (HRI) in Denver, CO. This provided a “tie back” between radioactive BSR testing and non-radioactive BSR, pilot scale, and engineering scale testing. Approximately six hundred grams of non-radioactive and radioactive BSR product were made for extensive testing and comparison to the non-radioactive pilot scale tests performed in 2004 at SAIC-STAR and the engineering scale test performed in 2008 at HRI with the Rassat simulant. The same mineral phases and off-gas species were found in the radioactive and non-radioactive testing. The granular ESTD and BSR products (radioactive and non-radioactive) were analyzed for to

Jantzen, C. M.; Crawford, C. L.; Bannochie, C. J.; Burket, P. R.; Cozzi, A. D.; Daniel, W. E.; Hall, H. K.; Miller, D. H.; Missimer, D. M.; Nash, C. A.; Williams, M. F.

2013-08-21T23:59:59.000Z

457

University Graduate School Academic Bulletin  

E-Print Network (OSTI)

Scholar of Psychological and Brain Sciences William Estes Oscar R. Ewing Professor of Philosophy J), Elliot R. Smith* (Psychological and Brain Sciences), Olaf Sporns* (Psychological and Brain Sciences144 University Graduate School 2009-2010 Academic Bulletin Cognitive Science University Graduate

Indiana University

458

CALIFORNIA STATE UNIVERSITY, RISK MANAGEMENT  

E-Print Network (OSTI)

performance within the CSU System. #12;2004 ­ 2005 Risk Management Annual Report Page 3 · Chaired the CSU-04 2004-05 Fullerton System-Wide #12;2004 ­ 2005 Risk Management Annual Report Page 10 University · International travel · Facilities use · Deferred maintenance Working with the University's Risk Management

de Lijser, Peter

459

CURRICULUM VITAE University of Idaho  

E-Print Network (OSTI)

CURRICULUM VITAE University of Idaho NAME: Wall, Richard Wayne DATE: August 25, 2006 RANK OR TITLE of Idaho, Moscow, Idaho, 1989, EE M.Engr., Electrical Engineering, University of Idaho, Moscow, Idaho, 1989, EE Certificates and Licenses: Professional Registration: State of Idaho Professional Engineer

Kyte, Michael

460

CURRICULUM VITAE University of Idaho  

E-Print Network (OSTI)

CURRICULUM VITAE University of Idaho NAME: Abdel-Rahim, Ahmed DATE: December 15, 2005 RANK OR TITLE) Certificates and Licenses: Professional Engineer (PE), State of Idaho EXPERIENCE: Teaching, Extension and Research Appointments: Assistant Professor, Civil Engineering Department, University of Idaho, Moscow

Kyte, Michael

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Council of University Transportation Centers  

E-Print Network (OSTI)

Council of University Transportation Centers 13th Anniversary CUTC Awards Banquet January 9, 2010 Omni Shoreham Hotel Washington, D.C. #12;Council of University Transportation Centers 13th Anniversary Awards Banquet Saturday, January 9, 2010 Welcome Stephen Albert, CUTCVice-President WesternTransportation

Nagurney, Anna

462

Universal: Order (2013-SE-26004)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Universal Lighting Technologies, Inc. to pay a $7,264 civil penalty after finding Universal had manufactured and distributed in commerce in the U.S. 454 units of model B140R277HP, a noncompliant fluorescent lamp ballast.

463

University IPv4 Deployment Status  

Science Conference Proceedings (OSTI)

... edu.usd. University of South Dakota, [3] 3/3/3 [I], [1] 2/2/2 [I], [1] 1/1/1 [I]. edu.sdstate. South Dakota State University, [3] 3/0/2 [I], [2] 2/2/2 [O], [1] 1/0/ ...

464

Universal service: A new definition?  

Science Conference Proceedings (OSTI)

The concept of ''universal service obligation'' (USO) has been around for decades; however, its definition continues to change. The notion that the last mile of fixed-line access should be subsidized has spread around the world, despite well reasoned ... Keywords: Auctions, Pricing policy, Subsidy, Universal service/access/connectivity

James Alleman; Paul Rappoport; Aniruddha Banerjee

2010-02-01T23:59:59.000Z

465

DECONTAMINATION DRESSDOWN AT A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Video User' s Guide Video User' s Guide DECONTAMINATION DRESSDOWN AT A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond

466

Radioactive Effluents from Nuclear Power Plants Annual Report 2008  

SciTech Connect

This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

2010-12-10T23:59:59.000Z

467

Radioactive Effluents from Nuclear Power Plants Annual Report 2007  

SciTech Connect

This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

2010-12-10T23:59:59.000Z

468

Die ^ o o \\3,S* Environmental Radioactivity in  

E-Print Network (OSTI)

. Measurements of fallout radioactivity in the Faroes in 1980 are presented. Strontium-90 (and 137cs in most DATA, FAROE ISLANDS, FISHES, FOOD, FOOD CHAINS, GLOBAL FALLOUT, GRAPHS, MILK, PLANTS, RADIOACTIVITY (P > 99.9%) #12;1. INTRODUCTION 1.1. The fallout programme for t-he Faroes, which was initiated

469

Geological challenges in radioactive waste isolation: Third worldwide review  

E-Print Network (OSTI)

Waste Disposal, Science and Technology in Hungary, Safety of Nuclear Energy,Disposal of Radioactive Waste and Spent Nuclear Fuel Po vilas Poskas Lithuanian EnergyNuclear Energy. ” Article 48, entitled “Storage or Disposal of Radioactive Wastes,” states that the disposal

Witherspoon editor, P.A.; Bodvarsson editor, G.S.

2001-01-01T23:59:59.000Z

470

Naturally Occurring Radioactive Materials in Cargo at US Borders  

Science Conference Proceedings (OSTI)

In the U.S. and other countries, large numbers of vehicles pass through border crossings each day. The illicit movement of radioactive sources is a concern that has resulted in the installation of radiation detection and identification instruments at border crossing points. This activity is judged to be necessary because of the possibility of an act of terrorism involving a radioactive source that may include any number of dangerous radionuclides. The problem of detecting, identifying, and interdicting illicit radioactive sources is complicated by the fact that many materials present in cargo are somewhat radioactive. Some cargo contains naturally occurring radioactive material or technologically-enhanced naturally occurring radioactive material that may trigger radiation portal monitor alarms. Man-made radioactive sources, especially medical isotopes, are also frequently observed and produce alarms. Such nuisance alarms can be an operational limiting factor for screening of cargo at border crossings. Information about the nature of the radioactive materials in cargo that can interfere with the detection of radionuclides of concern is necessary. This paper provides such information for North American cargo, but the information may also be of use to border control officials in other countries. (PIET-43741-TM-361)

Kouzes, Richard T.; Ely, James H.; Evans, John C.; Hensley, Walter K.; Lepel, Elwood A.; McDonald, Joseph C.; Schweppe, John E.; Siciliano, Edward R.; Strom, Daniel J.; Woodring, Mitchell L.

2006-01-01T23:59:59.000Z

471

Plan for the management of radioactive waste, Savannah River Plant  

SciTech Connect

The following areas are covered in the Savannah River Plant's radioactive waste management plan: program administration; description of waste generating processes; waste management facilities; radioactive wastes stored; plans and budget projections; and description of decontamination and decommissioning . (LK)

1975-07-01T23:59:59.000Z

472

RADIOACTIVITY 1997 BNL Site Environmental Report 4 -1  

E-Print Network (OSTI)

of potassium, thorium, actinium, and uranium. Internal Internal exposure occurs when radionuclides are ingestedRADIOACTIVITY 1997 BNL Site Environmental Report 4 - 1 Chapter 4 RADIOACTIVITY To define radiation in the form of radiation. Radiation is the emission of a charged particle or electromagnetic wave from

Homes, Christopher C.

473

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

What are full-scale tests? What are scale-model tests? What is computer analysis? What are examples of severe testing? How do the certification tests compare to real-life accidents? Demonstrating target hardness. A packaging is certified when it can survive a sequence of impact, crush, puncture, fire, and immersion tests designed to replicate transport accident conditions. Type B Packages must meet the testing requirements of: Compliance Testing, as defined in 10 CFR Part 71.85 and 10 CFR Part 71.87 Normal Conditions of Transport, Ten tests as defined in 10 CFR Part 71.71 Hypothetical Accident Conditions, Six tests as defined in 10 CFR Part 71.73 The ability of radioactive material packages to withstand testing environments can be demonstrated by full-scale testing, scale-model

474

DOE - Safety of Radioactive Material Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Effects History Gallery Glossary of Nuclear Terms [Majority from NRC] Contacts Comments & Questions Dose Rate Calculator Click to use calculator. This tool calculates a dose rate (DR) at 2 meters (about 6 ft) from the surface of a package containing radioactive material IF you know the dose rate at 1 meter (about 3 ft). It will also calculate the reverse; DR at 1 meter if you know the DR at 2 meters. These two distances are used by the Nuclear Regulatory Commission to define acceptable dose rates for packages. Dose (Rad) Biological Effect < 5 rad No immediate observable effects 5 - 50 rad Slight blood changes may be detected by medical evaluation 50 - 150 rad Slight blood changes will be noted and likely symptoms of nausea, fatigue, vomiting, etc.

475

Standard guide for sampling radioactive tank waste  

E-Print Network (OSTI)

1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

476

RADIOACTIVE MATERIAL PACKAGING TORQUE REQUIREMENTS COMPLIANCE  

Science Conference Proceedings (OSTI)

Shipping containers used to transport radioactive material (RAM) in commerce employ a variety of closure mechanisms. Often, these closure mechanisms require a specific amount of torque be applied to a bolt, nut or other threaded fastener. It is important that the required preload is achieved so that the package testing and analysis is not invalidated for the purpose of protecting the public. Torque compliance is a means of ensuring closure preload, is a major factor in accomplishing the package functions of confinement/containment, sub-criticality, and shielding. This paper will address the importance of applying proper torque to package closures, discuss torque value nomenclature, and present one methodology to ensure torque compliance is achieved.

Watkins, R.; Leduc, D.

2011-03-24T23:59:59.000Z

477

Radioactive Background Evaluation by Atom Counting  

SciTech Connect

We propose a new method of measuring 85Kr background levels by direct counting of impurity atoms. The beta-decay of 85Kr is a significant radioactive background for experiments that use liquified noble gases to search for dark matter and measure the low-energy solar neutrino flux. While there are several proposed methods for reducing Kr levels in these experiments, an independent technique is needed for measuring very low Kr levels. By selectively exciting Kr atoms to a metastable state, capturing them in a magneto-optical trap (MOT), and detecting fluorescence from the trapped atoms, individual Kr atoms can be counted with a high signal-to-noise ratio. This approach offers both higher sensitivity and shorter measurement times than more conventional techniques, with an estimated sensitivity of 3 x 10-14 in only 3 hours of integration.

Orzel, Chad [Department of Physics and Astronomy, Union College, Schenectady, NY 12308 (United States); McKinsey, Daniel [Yale University, New Haven, CT 06511 (United States)

2005-09-08T23:59:59.000Z

478

Submersible purification system for radioactive water  

DOE Patents (OSTI)

A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

Abbott, Michael L. (Fort Collins, CO); Lewis, Donald R. (Pocatello, ID)

1989-01-01T23:59:59.000Z

479

Fusion fuel cycle solid radioactive wastes  

SciTech Connect

Eight conceptual deuterium-tritium fueled fusion power plant designs have been analyzed to identify waste sources, materials and quantities. All plant designs include the entire D-T fuel cycle within each plant. Wastes identified include radiation-damaged structural, moderating, and fertile materials; getter materials for removing corrosion products and other impurities from coolants; absorbents for removing tritium from ventilation air; getter materials for tritium recovery from fertile materials; vacuum pump oil and mercury sludge; failed equipment; decontamination wastes; and laundry waste. Radioactivity in these materials results primarily from neutron activation and from tritium contamination. For the designs analyzed annual radwaste volume was estimated to be 150 to 600 m/sup 3//GWe. This may be compared to 500 to 1300 m/sup 3//GWe estimated for the LMFBR fuel cycle. Major waste sources are replaced reactor structures and decontamination waste.

Gore, B.F.; Kaser, J.D.; Kabele, T.J.

1978-06-01T23:59:59.000Z

480

Evaluation of radioactive scrap metal recycling  

SciTech Connect

This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "university radioactive ion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Room air monitor for radioactive aerosols  

DOE Patents (OSTI)

A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-pre The U.S. Government has rights in this invention pursuant to Contract No. DE-AC04-76DP03533 between the Department of Energy and Rockwell International Corporation.

Balmer, David K. (Broomfield, CO); Tyree, William H. (Boulder, CO)

1989-04-11T23:59:59.000Z

482

Room air monitor for radioactive aerosols  

DOE Patents (OSTI)

A housing assembly for use with a room air monitor for simultaneous collection and counting of suspended particles includes a casing containing a combination detector-preamplifier system at one end, a filter system at the other end, and an air flow system consisting of an air inlet formed in the casing between the detector-preamplifier system and the filter system and an air passageway extending from the air inlet through the casing and out the end opposite the detector-preamplifier combination. The filter system collects suspended particles transported directly through the housing by means of the air flow system, and these particles are detected and examined for radioactivity by the detector-preamplifier combination. 2 figs.

Balmer, D.K.; Tyree, W.H.

1987-03-23T23:59:59.000Z

483

Feasibility analysis of recycling radioactive scrap steel  

SciTech Connect

The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons of RSM per year from both DOE and the nuclear utilities; and (3) provide recommendations for implementation. For purposes of defining the project, it is divided into phases: economic feasibility and conceptual design; preliminary design; detail design; construction; and operation. This study comprises the bulk of Phase 1. It is divided into four sections. Section 1 provides the reader with a complete overview extracting pertinent data, recommendations and conclusions from the remainder of the report. Section 2 defines the variables that impact the design requirements. These data form the baseline to create a preliminary conceptual design that is technically sound, economically viable, and capitalizes on economies of scale. Priorities governing the design activities are: (1) minimizing worker exposure to radionuclide hazards, (2) maximizing worker safety, (3) minimizing environmental contamination, (4) minimizing secondary wastes, and (5) establishing engineering controls to insure that the plant will be granted a license in the state selected for operation. Section 3 provides details of the preliminary conceptual design that was selected. The cost of project construction is estimated and the personnel needed to support the steel-making operation and radiological and environmental control are identified. Section 4 identifies the operational costs and supports the economic feasibility analysis. A detailed discussion of the resulting conclusions and recommendations is included in this section.

Nichols, F. [Manufacturing Sciences Corp., Woodland, WA (United States); Balhiser, B. [MSE, Inc., Butte, MT (United States); Cignetti, N. [Cignetti Associates, North Canton, OH (United States)] [and others

1995-09-01T23:59:59.000Z

484

DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS  

Science Conference Proceedings (OSTI)

The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

P. Bernot

2005-07-13T23:59:59.000Z

485

Radioactive Materials at SSRL | Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Materials at SSRL Radioactive Materials at SSRL Contact Information SSRL Safety Officer (650) 926-3861 SSRL Radiation Protection Group (650) 926-4299 SSRLRadMat@SLAC.STANFORD.EDU Throughout the course of an SSRL Experimental Run, there are requests from users to transport and use small amounts of radioactive material in their experiments, either as stand alone samples or in a matrix of other materials. There is no minimum quantity for declaring the use of radioactive samples at SSRL. The purpose of this procedure is to enable Users, SSRL and SLAC staff to know what radiological controls will be implemented for these materials, based on the isotope, its toxicity risk and radiological controls. Radioactive materials at SSRL are classified into 4 classification Groups based on the radiotoxicity tables, see below.

486

Mission Plan for the Civilian Radioactive Waste Management Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Mission Plan for the Civilian Radioactive Waste Management Program Summary In response to the the requirement of the Nuclear Waste Policy Act of 1982, the Office of Civilian Radioactive Waste Management in the Department of Energy (DOE) has prepared this Mission Plan for the Civilian Radioactive Waste Management Program. The Mission Plan is divided into two parts. Part I describes the overall goals, objectives, and strategy for the disposal of spent nuclear fuel and high-level waste. It explains that, to meet the directives of the Nuclear Waste Policy Act, the DOE intends to site, design, construct., and start operating a mined geologic repository by January 31, 1998. The Act specifies that the costs of these

487

Enhancements to System for Tracking Radioactive Waste Shipments Benefit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhancements to System for Tracking Radioactive Waste Shipments Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users Enhancements to System for Tracking Radioactive Waste Shipments Benefit Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access transportation information on mobile devices. Transportation Tracking and Communication System users can now track shipments of radioactive materials and access transportation information on mobile devices. CARLSBAD, N.M. - EM's Carlsbad Field Office (CBFO) recently deployed a new version of the Transportation Tracking and Communication System (TRANSCOM) that is compatible with mobile devices, including smartphones. The recent enhancement, TRANSCOM version 3.0, improves the user interface

488

Security for Radioactive Sources: Fact Sheet | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

for Radioactive Sources: Fact Sheet | National Nuclear Security for Radioactive Sources: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Security for Radioactive Sources: Fact Sheet Fact Sheet Security for Radioactive Sources: Fact Sheet Mar 23, 2012 Radioactive materials are a critical and beneficial component of global

489

Atlantic Interstate Low-Level Radioactive Waste Management Compact (South  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atlantic Interstate Low-Level Radioactive Waste Management Compact Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) Atlantic Interstate Low-Level Radioactive Waste Management Compact (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Program Info Start Date 1986 State South Carolina Program Type Environmental Regulations Siting and Permitting Provider Atlantic Compact Commission The Atlantic (Northeast) Interstate Low-Level Radioactive Waste Management Compact is a cooperative effort to plan, regulate, and administer the disposal of low-level radioactive waste in the region. The states of Connecticut, New Jersey, and South Carolina are party to this compact

490

First of Hanford's Highly Radioactive Sludge Moved Away from River |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First of Hanford's Highly Radioactive Sludge Moved Away from First of Hanford's Highly Radioactive Sludge Moved Away from River First of Hanford's Highly Radioactive Sludge Moved Away from River July 13, 2012 - 12:00pm Addthis Media Contacts Geoff Tyree, DOE Geoffrey.Tyree@rl.doe.gov 509-376-4171 Dee Millikin, CH2M HILL Dee_Millikin@rl.doe.gov 509-376-1297 RICHLAND, Wash. - Workers have started moving highly radioactive material, called sludge, away from the Columbia River, marking a significant milestone in the U. S. Department of Energy (DOE)'s cleanup of the Hanford Site in Washington State. Today, DOE contractor CH2M HILL Plateau Remediation Company (CH2M HILL) safely transferred the first large container of highly radioactive sludge from a basin next to a former plutonium production reactor to dry storage in the center of the site. Today's transfer is the first of six shipments

491

RADIOACTIVITY IN SILT OF THE CLINCH AND TENNESSEE RIVERS  

SciTech Connect

Surveys of radioactivity in the Clinch and Tennessee rivers during 1954 through 1958 are summarized. It is concluded that no immediate hazard exists due to the reconcentration of radioactive materials in downstream bottom sediments, However, if the amount of radioactivity in the bottom sediment continues to increase for the next few years, it will be necessary to re-evaluate our present waste disposal policy in order to further restrict the release of ralioactive wastes to the Clinch River. The most probable effect of the radioactive sediment on industry would be an increased background counting rate if sand from the river bottom were used in making concrete for the construction of counting rooms of instrument laboratories. The problem ofthe radioactivity in solution in the river water would have to be considered before using the downstream water as process water in the manufacture of film emulsions or other photographic materials, (auth)

Cottrell, W.D.

1959-12-01T23:59:59.000Z

492

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

493

Construction of SAGA HIMAT for carbon ion cancer therapy  

SciTech Connect

SAGA HIMAT is now under construction in Tosu city, Saga prefecture, Kyushu island, Japan. It will open in 2013 and become the fourth carbon ion beam cancer therapy center in Japan. It is a collaborative project among the local governments, industries and universities in northern Kyushu area.

Kudo, Sho; Shioyama, Yoshiyuki; Endo, Masahiro; Kanazawa, Mitsutaka; Tsujii, Hirohiko; Totoki, Tadahide [Ion Beam Therapy Center , SAGA HIMAT Foundation, 1-802-3 Hondori-machi, Tosu, Saga 841-0033 (Japan)

2013-04-19T23:59:59.000Z

494

www.gtri.gatech.edu The GTRI MIssIon  

E-Print Network (OSTI)

length away from the buildings, the GTRI researchers plan to demonstrate that they can locate a receiver#12;www.gtri.gatech.edu The GTRI MIssIon: To serve the university, the state, the nation and challenging problems of society. #12; www.gtri.gatech.edu TABLe oF ConTenTs From the Director 6 Research

Bennett, Gisele

495

Ion photon emission microscope  

DOE Patents (OSTI)

An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

Doyle, Barney L. (Albuquerque, NM)

2003-04-22T23:59:59.000Z

496

HEAVY ION LINEAR ACCELERATOR  

DOE Patents (OSTI)

A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

Van Atta, C.M.; Beringer, R.; Smith, L.

1959-01-01T23:59:59.000Z

497

Ion Beam Materials Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with

498

NEUP Approved Universities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEUP Approved Universities NEUP Approved Universities NEUP Approved Universities U.S. universities and colleges must apply to the U.S. Department of Energy to administer NEUP scholarships and fellowships. That is done through a separate solicitation operated by the Department of Energy's Idaho field office. If your university is not listed below, contact NEUP@inl.gov. Approved Universities Auburn University Boise State University Clemson University College of Southern Maryland Colorado School of Mines Duke University Francis Marion University Georgia Institute of Technology Idaho State University Illinois Institute of Technology Kansas State University Lakeshore Community College Linn State Technical College Massachusetts Institute of Technology Miami Dade College Missouri University of Science & Technology

499

Ion exchange kinetics of cesium for various reaction designs using crystalline silicotitanate, UOP IONSIV IE-911  

E-Print Network (OSTI)

Through collaborative efforts at Texas A&M University and Sandia National Laboratories, a crystalline silicotitanate (CST), which shows extremely high selectivity for radioactive cesium removal in highly concentrated sodium solutions, was synthesized. The effect of hydrogen peroxide on a CST under cesium ion exchange conditions has been investigated. The experimental results with hydrogen peroxide showed that the distribution coefficient of cesium decreased and the tetragonal phase, the major component of CST, slowly dissolved at hydrogen peroxide concentrations greater than 1 M. A simple and novel experimental apparatus for a single-layer ion exchange column was developed to generate experimental data for estimation of the intraparticle effective diffusivity. A mathematical model is presented for estimation of effective diffusivities for a single-layer column of CST granules. The intraparticle effective diffusivity for Cs was estimated as a parameter in the analytical solution. By using the least square method, the effective diffusivities of 1.56 ± 0.14 x 10-11 m2/s and 0.68 ± 0.09x 10-11 m2/s, respectively, were obtained. The difference in the two values was due to the different viscosities of the solutions. A good fit of the experimental data was obtained which supports the use of the homogeneous model for this system. A counter-current ion exchange (CCIX) process was designed to treat nuclear waste at the Savannah River Site. A numerical method based on the orthogonal collocation method was used to simulate the concentration profile of cesium in the CCIX loaded with CST granules. To maximize cesium loading onto the CST and minimize the volume of CST, two design cases of a moving bed, where the fresh CST is pulsed into the column at certain periods or at certain concentration of cesium, were investigated. Simulation results showed that cesium removal behavior in the pilot-scale test of CCIX experiment, where the column length is 22 ft and the CST is pulsed 1 ft in every 24 hours, was well predicted by using the values of the effective diffusivities of 1.0 to 6.0 × 10-11 m2/s.

Kim, Sung Hyun

2003-12-01T23:59:59.000Z

500

Ion beam generating apparatus  

DOE Patents (OSTI)

An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)