Powered by Deep Web Technologies
Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Interacting polytropic gas model of phantom dark energy in non-flat universe  

E-Print Network [OSTI]

By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for even polytropic index by choosing $K>Ba^{\\frac{3}{n}}$, one can obtain $\\omega^{\\rm eff}_{\\Lambda}<-1$, which corresponds to a universe dominated by phantom dark energy.

K. Karami; S. Ghaffari; J. Fehri

2009-11-25T23:59:59.000Z

2

An Interacting Dark Energy Model for the Expansion History of the Universe  

E-Print Network [OSTI]

We explore a model of interacting dark energy where the dark energy density is related by the holographic principle to the Hubble parameter, and the decay of the dark energy into matter occurs at a rate comparable to the current value of the Hubble parameter. We find this gives a good fit to the observational data supporting an accelerating Universe, and the model represents a possible alternative interpretation of the expansion history of the Universe.

Micheal S. Berger; Hamed Shojaei

2006-08-16T23:59:59.000Z

3

Dark matter and dark energy production in quantum model of the universe  

E-Print Network [OSTI]

The quantum model of the homogeneous, isotropic, and spatially closed universe predicts an existence of two types of collective quantum states in the universe. The states of one type characterize a gravitational field, the others describe a matter (uniform scalar) field. In the first stage of the evolution of the universe a primordial scalar field evolves slowly into its vacuum-like state. In the second stage the scalar field oscillates about an equilibrium due to the quantum fluctuations. The universe is being filled with matter in the form of elementary quantum excitations of the vibrations of the scalar field. The separate quantum excitations are characterized by non-zero values of their energies (masses). Under the action of gravitational forces mainly these excitations decay into ordinary particles (baryons and leptons) and dark matter. The elementary quantum excitations of the vibrations of the scalar field which have not decayed up to now form dark energy. The numerical estimations lead to realistic va...

Kuzmichev, V E

2004-01-01T23:59:59.000Z

4

The Dark Energy Universe  

E-Print Network [OSTI]

Some seventy five years ago, the concept of dark matter was introduced by Zwicky to explain the anomaly of galactic rotation curves, though there is no clue to its identity or existence to date. In 1997, the author had introduced a model of the universe which went diametrically opposite to the existing paradigm which was a dark matter assisted decelarating universe. The new model introduces a dark energy driven accelarating universe though with a small cosmological constant. The very next year this new picture was confirmed by the Supernova observations of Perlmutter, Riess and Schmidt. These astronomers got the 2011 Nobel Prize for this dramatic observation. All this is discussed briefly, including the fact that dark energy may obviate the need for dark matter.

Burra G. Sidharth

2015-01-12T23:59:59.000Z

5

Dark matter and dark energy production in quantum model of the universe  

E-Print Network [OSTI]

The quantum model of the homogeneous, isotropic, and spatially closed universe predicts an existence of two types of collective quantum states in the universe. The states of one type characterize a gravitational field, the others describe a matter (uniform scalar) field. In the first stage of the evolution of the universe a primordial scalar field evolves slowly into its vacuum-like state. In the second stage the scalar field oscillates about an equilibrium due to the quantum fluctuations. The universe is being filled with matter in the form of elementary quantum excitations of the vibrations of the scalar field. The separate quantum excitations are characterized by non-zero values of their energies (masses). Under the action of gravitational forces mainly these excitations decay into ordinary particles (baryons and leptons) and dark matter. The elementary quantum excitations of the vibrations of the scalar field which have not decayed up to now form dark energy. The numerical estimations lead to realistic values of both the matter density \\Omega_{M} = 0.29 (with the contributions from dark matter, \\Omega_{DM} = 0.25, and optically bright baryons, \\Omega_{stars} = 0.0025) and the dark energy density \\Omega_{X} = 0.71 if one takes that the mean energy ~ 10 GeV is released in decay of dark energy quantum and fixes baryonic component \\Omega_{B} = 0.04 according to observational data. The energy (mass) of dark energy quantum is equal to ~ 17 GeV and the energy > 2 x 10^{10} GeV is needed in order to detect it. Dark matter particle has the mass ~ 6 GeV. The Jeans mass for dark matter which is considered as a gas of such massive particles is equal to M_{J} ~ 10^{5} M_{\\odot}.

V. E. Kuzmichev; V. V. Kuzmichev

2004-05-24T23:59:59.000Z

6

Interacting holographic dark energy model and generalized second law of thermodynamics in non-flat universe  

E-Print Network [OSTI]

In the present paper we consider the interacting holographic model of dark energy to investigate the validity of the generalized second laws of thermodynamics in non-flat (closed) universe enclosed by the event horizon measured from the sphere of the horizon named $L$. We show that for $L$ as the system's IR cut-off the generalized second law is respected for the special range of the deceleration parameter.

M. R. Setare

2007-01-26T23:59:59.000Z

7

Universal Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Name Universal Energy Place Nanjing, Jiangsu Province, China Sector Solar Product Universal Energy is a PV module and solar hot water systems manufacturer. Universal Energy has a manufacturing base in Nanjing, China. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

Residence Hall ROI: The Benefits of Energy Modeling for University Dormitories  

E-Print Network [OSTI]

Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Texas State University Stephen F. AustinUniversity of Houston 550,980 sf 10 floors 984 beds 190,830 sf 6 floors 612 beds 126,400 sf 4 floors 400 beds Traditional Metrics ESL-KT-13...-12-20 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Stephen F. AustinUniversity of Houston 560 sf floor area / bed 316 sf floor area / per bed 80 sf wall area / bed 45 sf wall area / bed 26 sf wall area / bed Roof...

Hodges, C.; Hernandez, A.

2013-01-01T23:59:59.000Z

9

Cosmological implications of interacting polytropic gas dark energy model in non-flat universe  

E-Print Network [OSTI]

The polytropic gas model is investigated as an interacting dark energy scenario. The cosmological implications of the model including the evolution of EoS parameter $w_{\\Lambda}$, energy density $\\Omega_{\\Lambda}$ and deceleration parameter $q$ are investigated. We show that, depending on the parameter of model, the interacting polytropic gas can behave as a quintessence or phantom dark energy. In this model, the phantom divide is crossed from below to up. The evolution of $q$ in the context of polytropic gas dark energy model represents the decelerated phase at the early time and accelerated phase later. The singularity of this model is also discussed. Eventually, we establish the correspondence between interacting polytropic gas model with tachyon, K-essence and dilaton scalar fields. The potential and the dynamics of these scalar field models are reconstructed according to the evolution of interacting polytropic gas.

M. Malekjani; A. Khodam-Mohammadi; M. Taji

2010-12-13T23:59:59.000Z

10

Occupancy Modeling and Prediction for Building Energy Management VARICK L. ERICKSON, University of California, Merced  

E-Print Network [OSTI]

(ASHRAE) comfort standards. Categories and Subject Descriptors: I.6.5 [Simulation and Modeling]: Model Additional Key Words and Phrases: Occupancy, HVAC, ventilation, energy savings, demand response, machine-conditioning (HVAC) systems [EIA 2010]. Studies suggest that 15% to 25% of HVAC energy can be saved by setting

Carreira-Perpiñán, Miguel Á.

11

Occupancy Modeling and Prediction for Building Energy Varick L. Erickson, University of California, Merced  

E-Print Network [OSTI]

) comfort standards. Categories and Subject Descriptors: I.6.5 [Simulation and Modeling]: Model Development, Measurement Additional Key Words and Phrases: Occupancy, HVAC, Ventilation, Energy savings, Demand Response-conditioning (HVAC) systems [EIA 2010]. Studies suggest that 15% to 25% of HVAC energy can be saved by setting

Cerpa, Alberto E.

12

10/14/09 2:35 PMMathematicians' Alternate Model of the Universe Explains Away the Need For Dark Energy | Popular Science Page 1 of 13http://www.popsci.com/military-aviation-amp-space/article/2009-09/mathematicians-seek-explain-away-dark-energy-universe  

E-Print Network [OSTI]

-09/mathematicians-seek-explain-away-dark-energy-universe Mathematicians' Alternate Model of the Universe Explains An alternative theory eliminates dark energy by placing Earth at the center of expansion Expanding Universe What;10/14/09 2:35 PMMathematicians' Alternate Model of the Universe Explains Away the Need For Dark Energy

Temple, Blake

13

Validity of the Generalized Second Law of Thermodynamics of the Universe Bounded by the Event Horizon in Holographic Dark Energy Model  

E-Print Network [OSTI]

In this letter, we investigate the validity of the generalized second law of thermodynamics of the universe bounded by the event horizon in the holographic dark energy model. The universe is chosen to be homogeneous and isotropic and the validity of the first law has been assumed here. The matter in the universe is taken in the form of non-interacting two fluid system- one component is the holographic dark energy model and the other component is in the form of dust.

Nairwita Mazumder; Subenoy Chakraborty

2010-05-19T23:59:59.000Z

14

Split University | Open Energy Information  

Open Energy Info (EERE)

Croatia-based electrical engineering faculty of Split University. Involved in developing small hydro and solar energy projects. References: Split University1 This article is a...

15

I - Matter, antimatter and geometry II - The twin universe model : a solution to the problem of negative energy particles III - The twin universe model plus electric charges and matter-antimatter symmetry  

E-Print Network [OSTI]

We introduce a new dynamical group whose coadjoint action on its momentum space takes account of matter-antimatter symmetry on pure geometrical grounds. According to this description the energy and the spin are unchanged under matter-antimatter symmetry. We recall that the antichron components of the Poincar\\'{e} group, ruling relativistic motions of a mass-point particle, generate negative energy particles. The model with two twin universes, inspired by Sakharov's one, solves the stability issue. Positive and negative energy particles motions hold in two distinct folds. The model is extended to charged particles. As a result, the matter-antimatter duality holds in both universes.

Frederic Henry-Couannier; Gilles D'Agostini; Jean-Pierre Petit

2005-02-20T23:59:59.000Z

16

Nuclear Energy University Program Documents | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy University Program » Nuclear Energy Nuclear Energy University Program » Nuclear Energy University Program Documents Nuclear Energy University Program Documents Documents Available for Download October 31, 2013 FY 2014 Consolidated Innovative Nuclear Research FOA This Funding Opportunity Announcement (FOA) addresses the competitive portion of NE's R&D portfolio as executed through the Nuclear Energy University Programs (NEUP) and Nuclear Energy Enabling Technologies Crosscutting Technology Development (NEET CTD). NEUP utilizes up to 20 percent of funds appropriated to NE's R&D program for university-based infrastructure support and R&D in key NE program-related areas: Fuel Cycle Research and Development (FCR&D), Reactor Concepts Research, Development and Demonstration (RCRD&D), and Nuclear Energy Advanced Modeling and

17

Nuclear Energy University Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy University Program Energy University Program Nuclear Energy University Program NEUP Award Recipients FY2009 to FY2013 Click on the icons to find out the values of the awards given to each school. The darker the icon, the more recent the award. Drag and zoom map to see more recipients. Investing in the next generation of nuclear energy leaders and advancing university-led nuclear innovation is vital to fulfilling the Office of Nuclear Energy's (NE) mission. This is accomplished primarily through NE's Nuclear Energy University Programs (NEUP), which was created in 2009 to consolidate university support under one initiative and better integrate university research within NE' technical programs. NEUP engages U.S. colleges and universities to conduct research and development (R&D), enhance infrastructure and support student education

18

Observations and Modeling of the Green Ocean Amazon (GoAmazon2014) PI: Scot T. Martin, Harvard University Funding Agency: Department of Energy  

E-Print Network [OSTI]

Observations and Modeling of the Green Ocean Amazon (GoAmazon2014) PI: Scot T. Martin, Harvard University Funding Agency: Department of Energy Main Deployment: 1 January 2014 through 31 December 2014

19

Universal formula for the energy--momentum tensor via a flow equation in the Gross--Neveu model  

E-Print Network [OSTI]

For the fermion field in the two-dimensional Gross--Neveu model, we introduce a flow equation that allows a simple $1/N$ expansion. By employing the $1/N$ expansion, we examine the validity of a universal formula for the energy--momentum tensor which is based on the small flow-time expansion. We confirm that the formula reproduces a correct normalization and the conservation law of the energy--momentum tensor by computing the translation Ward--Takahashi relation in the leading non-trivial order in the $1/N$ expansion. Also we confirm that the expectation value at finite temperature correctly reproduces thermodynamic quantities. These observations support the validity of a similar construction of the energy--momentum tensor via the gradient/Wilson flow in lattice gauge theory.

Suzuki, Hiroshi

2015-01-01T23:59:59.000Z

20

Correlation energy of finite two-dimensional systems: Toward nonempirical and universal modeling  

Science Journals Connector (OSTI)

The capability of density-functional theory to deal with the ground state of strongly correlated low-dimensional systems, such as semiconductor quantum dots, depends on the accuracy of functionals developed for the exchange and correlation energies. Here we extend a successful approximation for the correlation energy of the three-dimensional inhomogeneous electron gas, originally introduced by Becke [J. Chem. Phys. 88, 1053 (1988)], to the two-dimensional case. The approach is based on nonempirical modeling of the correlation-hole functions satisfying a set of exact properties. Furthermore, the electron current and spin are explicitly taken into account. As a result, good performance is obtained in comparison with numerically exact data for quantum dots with varying external magnetic field, and for the homogeneous two-dimensional electron gas, respectively.

S. Pittalis; E. Rsnen; C. R. Proetto; E. K. U. Gross

2009-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear Energy University Programs  

Broader source: Energy.gov (indexed) [DOE]

1 Status 1 Status Presentation to Nuclear Energy Advisory Committee (NEAC) June 15, 2011 Michael Worley, NEUP Program Manager NEUP Funding is Program Driven Program Directed Funding Program Supported Funding Mission Supported Funding Natl. Labs Universities DOE-NE HQ Peer Review DOE NE Program Drivers 2 3 Summary of Improvements and New Programs for FY 2011 * Expand "Blue Sky" Research and Development (R&D) * Initiate Integrated Research Projects (IRP) * Expand and improve peer review data base * Evaluate adoption of NRC and NNSA Metrics as appropriate to NEUP * Conduct peer review at pre-application stage for R&D 2011 Proposed NEUP Budget - $61.8M * Program Directed Integrated Research Projects (IRP) - $12.0M (NEW)

22

Designing Cyclic Universe Models  

E-Print Network [OSTI]

Recent advances in understanding the propagation of perturbations through the transition from big crunch to big bang (esp. Tolley et al. hep-th/0306109) make it possible for the first time to consider the full set of phenomenological constraints on the scalar field potential in cyclic models of the universe. We show that cyclic models require a comparable degree of tuning to that needed for inflationary models. The constraints are reduced to a set of simple design rules including "fast-roll" parameters analogous to the "slow-roll" parameters in inflation.

Justin Khoury; Paul J. Steinhardt; Neil Turok

2003-07-15T23:59:59.000Z

23

Vacuum quantum fluctuation energy in expanding universe and dark energy  

E-Print Network [OSTI]

This article is based on the Planckon densely piled vacuum model and the principle of cosmology. With the Planck era as initial conditions and including the early inflation, we have solved the Einstein-Friedmann equations to describe the evolution of the universe. The results are: 1) the ratio of the dark energy density to the vacuum quantum fluctuation energy density is $\\frac{{{\\rho }_{de}}}{{{\\rho }_{vac}}}\\sim{{(\\frac{{{t}_{P}}}{{{T}_{0}}})}^{2}}\\sim{{10}^{-122}} $; 2) at the inflation time ${{t}_{\\inf }}={{10}^{-35}}s$, the calculated universe radiation energy density is $\\rho ({{t}_{\\inf }})\\sim{{10}^{-16}}{{\\rho }_{vac}}$ and the corresponding temperature is ${{E}_{c}}\\sim{{10}^{15}}GeV$ consistent with the GUT phase transition temperature; 3) the expanding universe with vacuum as its environment is a non-equilibrium open system constantly exchanging energy with vacuum; during its expansion, the Planckons in the universe lose quantum fluctuation energy and create the cosmic expansion quanta-cosmons, the energy of cosmons is the lost part of the vacuum quantum fluctuation energy and contributes to the universe energy with the calculated value ${{E}_{\\cos mos}}={{10}^{22}}{{M}_{\\otimes }}{{c}^{2}}$ (where ${{M}_{\\otimes }}$ is solar mass); 4) the total energy of the universe, namely the negative gravity energy plus the positive universe energy is zero; 5) the negative gravity potential and the gravity acceleration related to the creation of cosmons are derived with the nature of outward repulsive force, indicating that the cosmon may be the candidate of the dark energy quantum; 6) both the initial Planck era solution and the infinite asymptotic solution of the Einstein-Friedman equations are unstable: the former tends to expand and the latter tends to shrink, so that the Einstein-Friedman universe will undergo a cyclic evolution of successive expansion and shrinking.

Shun-Jin Wang

2014-10-27T23:59:59.000Z

24

Challenges for Long-Term Energy Models: Modeling Energy Use and Energy Efficiency  

U.S. Energy Information Administration (EIA) Indexed Site

Long-Term Energy Models: Long-Term Energy Models: Modeling Energy Use and Energy Efficiency James Sweeney Stanford University Director, Precourt Institute for Energy Efficiency Professor, Management Science and Engineering Presentation to EIA 2008 Energy Conference 34 ! Years of Energy Information and Analysis Some Modeling History * Original Federal Energy Administration Demand Models in PIES and IEES (1974) - Residential, Industrial, Commercial Sectors * Econometric models * Dynamic specification * Allowed matrix of own-elasticities and cross- elasticities of demand for PIES and IEES - Electricity, Natural Gas, Oil, Coal - Designed to examine implications of changes in energy prices, taxes, price regulation - For analysis of "energy conservation" options, estimate of direct impacts used as reduction of

25

The Universe Adventure - Dark Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy Dark Energy An artist's conception of Dark Energy. Imagine you toss an apple straight up into the air. Due to gravity, one would expect the apple to come right back down to earth. But what if it doesn't? What if, due to some unseen force your apple continues going up, at an accelerated rate, no matter how much gravity pleads and begs for the apple to come back down. Could this really happen? Could there really be "anti-gravity?" On the scale of the Universe, there is; say "hello" to Dark Energy. In the most basic sense, Dark Energy is akin to negative gravity. Where gravity is attractive, Dark Energy is repulsive. Dark Energy causes the Universe to expand at an increasing rate. For example, to a viewer on earth, gravity would attract a distant galaxy towards Earth, but Dark

26

Universal thermochemical energy converter  

DOE Patents [OSTI]

Disclosed are methods and apparatus for a thermochemical closed cycle employing a polyatomic, chemically active working fluid for converting heat energy into useful work.

Labinov, Solomon Davidovich (Oak Ridge, TN); Sand, James R. (Oak Ridge, TN); Conklin, James C. (Knoxville, TN); VanCoevering, James (Oak Ridge, TN); Courville, George E. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

27

RAELRenewable and Appropriate Energy Laboratory University of California Berkeley  

E-Print Network [OSTI]

RAELRenewable and Appropriate Energy Laboratory University of California BerkeleyJon, and community outreach facility based at the University of California, BerkeleyJon of the Switch computaJonal model. With Switch (a loose acronym for Solar, Wind

Kammen, Daniel M.

28

Nuclear Energy University Programs  

Broader source: Energy.gov (indexed) [DOE]

NEUP FY2011 Process Presentation to NEAC December 9, 2010 Marsha Lambregts, NEUP-IO Manager FUNDED R&D PROPOSALS BY STATE 2010 * Awards/Full Submissions - 42/128 * Awards to PIs for first time - 29 * Awards to junior faculty - 20 * Awards that are experimental - 30 * Awards in materials and waste - 30 * Awards to Nuclear Engineering Faculty - 18 * Number of universities receiving awards - 26 * Number of awards with lab partners - 20 * Number of universities receiving awards for first time - 8 2 2010 INFRASTRUCTURE * Major Reactor: 4 awards for a total of $3.75 M * Minor Reactor: 12 awards for $1.95 M * General Scientific Infrastructure: 33 award for $7.47 M * Since 2009, $ 19.438 M has been awarded in General Scientific Infrastructure (did not issue Major or Minor Reactor calls in 2009).

29

MyEnergy's Universal Green Button | Open Energy Information  

Open Energy Info (EERE)

Button Jump to: navigation, search Tool Summary LAUNCH TOOL Name: MyEnergy's Universal Green Button AgencyCompany Organization: MyEnergy Sector: Energy Focus Area: Energy...

30

Chalmers University of Technology Henrik Thunman Department of Energy Conversion  

E-Print Network [OSTI]

Chalmers University of Technology Henrik Thunman Department of Energy Conversion ModellingSpecies #12;Chalmers University of Technology Henrik Thunman Department of Energy Conversion Continuity Department of Energy Conversion MomentumEquation Momentum the forces of movement g x p x u x u x u u t u µ

31

Chalmers University of Technology Henrik Thunman Department of Energy Conversion  

E-Print Network [OSTI]

Chalmers University of Technology Henrik Thunman Department of Energy Conversion Modelling Thunman Department of Energy Conversion Continuity equation 0= + x u t (Conservation of mass) 0 of the volume #12;Chalmers University of Technology Henrik Thunman Department of Energy Conversion Momentum

32

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network [OSTI]

Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

33

University Coal Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

University Coal Research University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful research proposals. Today approximately 16 percent of the Office of Fossil Energy's annual R&D funding goes to academic institutions. The University Coal Research Program Universities have traditionally fared well in the Energy Department's open competitions for federal research grants and contracts. In 1979, however, the Department took an additional step to encourage greater university participation in its fossil energy program. The agency set aside funding for a special university-only competition that required professors to conduct cutting-edge research alongside students who were pursuing advanced

34

Dark Energy and the Accelerating Universe  

E-Print Network [OSTI]

The discovery ten years ago that the expansion of the Universe is accelerating put in place the last major building block of the present cosmological model, in which the Universe is composed of 4% baryons, 20% dark matter, and 76% dark energy. At the same time, it posed one of the most profound mysteries in all of science, with deep connections to both astrophysics and particle physics. Cosmic acceleration could arise from the repulsive gravity of dark energy -- for example, the quantum energy of the vacuum -- or it may signal that General Relativity breaks down on cosmological scales and must be replaced. We review the present observational evidence for cosmic acceleration and what it has revealed about dark energy, discuss the various theoretical ideas that have been proposed to explain acceleration, and describe the key observational probes that will shed light on this enigma in the coming years.

Joshua Frieman; Michael Turner; Dragan Huterer

2008-03-07T23:59:59.000Z

35

Dark Energy and the Accelerating Universe  

E-Print Network [OSTI]

The discovery ten years ago that the expansion of the Universe is accelerating put in place the last major building block of the present cosmological model, in which the Universe is composed of 4% baryons, 20% dark matter, and 76% dark energy. At the same time, it posed one of the most profound mysteries in all of science, with deep connections to both astrophysics and particle physics. Cosmic acceleration could arise from the repulsive gravity of dark energy -- for example, the quantum energy of the vacuum -- or it may signal that General Relativity breaks down on cosmological scales and must be replaced. We review the present observational evidence for cosmic acceleration and what it has revealed about dark energy, discuss the various theoretical ideas that have been proposed to explain acceleration, and describe the key observational probes that will shed light on this enigma in the coming years.

Frieman, Joshua; Huterer, Dragan

2008-01-01T23:59:59.000Z

36

University, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

University, Florida: Energy Resources University, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.6435064°, -82.3506142° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.6435064,"lon":-82.3506142,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

37

Colleges and Universities | Department of Energy  

Energy Savers [EERE]

sustainability. CEES offers courses in the technology, economics, and policy of renewable energy, green building, and more. Delft University: Wind Energy Research Institute (The...

38

NEUP Approved Universities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

NEUP Approved Universities NEUP Approved Universities NEUP Approved Universities U.S. universities and colleges must apply to the U.S. Department of Energy to administer NEUP scholarships and fellowships. That is done through a separate solicitation operated by the Department of Energy's Idaho field office. If your university is not listed below, contact NEUP@inl.gov. Approved Universities Auburn University Boise State University Clemson University College of Southern Maryland Colorado School of Mines Duke University Francis Marion University Georgia Institute of Technology Idaho State University Illinois Institute of Technology Kansas State University Lakeshore Community College Linn State Technical College Massachusetts Institute of Technology Miami Dade College Missouri University of Science & Technology

39

Energy Department Announces Regional Winners of University Clean Energy  

Broader source: Energy.gov (indexed) [DOE]

Regional Winners of University Clean Regional Winners of University Clean Energy Business Competition Energy Department Announces Regional Winners of University Clean Energy Business Competition May 13, 2013 - 10:22am Addthis News Media Contact (202) 586-4940 WASHINGTON - Underscoring the Obama Administration's commitment to support the next generation of energy leaders, the U.S. Energy Department today announced the six regional winners of its National Clean Energy Business Plan Competition. The initiative inspires university teams across the country to create new businesses and commercialize promising energy technologies developed at U.S. universities and the National Laboratories. Today's regional finalists - Northwestern University, North Carolina A&T University, Purdue University, Brigham Young University, University of

40

NETL: News Release - Four Minority Universities Selected for Fossil Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 20, 2010 May 20, 2010 Four Minority Universities Selected for Fossil Energy Research Grants College Students to Focus on Computational Modeling, High-Temperature Materials and Components Washington, DC - Innovative fossil energy research projects will be investigated by students and faculty from four winning institutions in the Department of Energy's annual competition for fossil energy research ideas from the nation's Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). Students and faculty from the chosen universities - the University of Texas, El Paso; Southern University and A&M College; Tennessee State University; and the University of Texas, San Antonio - will investigate projects dealing with computational energy sciences, material sciences, and sensors and controls for use in fossil fuel power systems.

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Colorado: Energy Modeling Products Support Energy Efficiency...  

Office of Environmental Management (EM)

Colorado: Energy Modeling Products Support Energy Efficiency Projects Colorado: Energy Modeling Products Support Energy Efficiency Projects May 1, 2014 - 11:04am Addthis Xcel...

42

Energy Department Announces Regional Winners of University Clean Energy  

Broader source: Energy.gov (indexed) [DOE]

Regional Winners of University Clean Regional Winners of University Clean Energy Business Competitions Energy Department Announces Regional Winners of University Clean Energy Business Competitions May 4, 2012 - 11:00am Addthis WASHINGTON, D.C. - Underscoring the Obama Administration's commitments to keep college affordable for American families and students and support the next generation of energy leaders, the U.S. Energy Department today announced the regional winners of its National Clean Energy Business Plan Competition. The initiative inspires university teams across the country to create new businesses and commercialize promising energy technologies developed at U.S. universities and the National Laboratories. Today's regional finalists - Northwestern University, University of Utah, University of Central Florida, MIT, Stanford University and Columbia

43

Agegraphic Chaplygin gas model of dark energy  

E-Print Network [OSTI]

We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.

Ahmad Sheykhi

2010-02-07T23:59:59.000Z

44

Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe |  

Broader source: Energy.gov (indexed) [DOE]

Dark Energy Cam: Fermilab Expands Understanding of Expanding Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe March 12, 2012 - 12:06pm Addthis Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how dark energy works. | Photo by Reidar Hahn, Fermi National Lab Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how dark energy works. | Photo by Reidar Hahn, Fermi National Lab Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science

45

Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe |  

Broader source: Energy.gov (indexed) [DOE]

Dark Energy Cam: Fermilab Expands Understanding of Expanding Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe March 12, 2012 - 12:06pm Addthis Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how dark energy works. | Photo by Reidar Hahn, Fermi National Lab Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how dark energy works. | Photo by Reidar Hahn, Fermi National Lab Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science

46

Energy Positioning Statement Texas Tech University  

E-Print Network [OSTI]

Energy Positioning Statement Texas Tech University Whitacre College of Engineering The Whitacre sufficient and sustainable energy sources to power its future. The college is committed to conducting cutting edge research and providing educational programs related to traditional and unconventional energy

Zhang, Yuanlin

47

University of Minnesota and the Department of Energy Celebrate...  

Energy Savers [EERE]

University of Minnesota and the Department of Energy Celebrate New Wind Energy Research Station University of Minnesota and the Department of Energy Celebrate New Wind Energy...

48

Validity of Thermodynamical Laws in Dark Energy Filled Universe  

E-Print Network [OSTI]

We have considered the flat FRW model of the universe which is filled with only dark energy. The general descriptions of first and second laws of thermodynamics are investigated on the apparent horizon and event horizon of the universe. We have assumed the equation of state of three different types of dark energy models. We have examined the validity of first and second laws of thermodynamics on apparent and event horizons for these dark energies. For these dark energy models, it has been found that on the apparent horizon, first and second laws are always valid. On the event horizon, the laws are break down for dark energy models 1 and 2. For model 3, first law cannot be satisfied on the event horizon, but second law may be satisfied at the late stage of the evolution of the universe and so the validity of second law on the event horizon depends on the values of the parameters only.

Samarpita Bhattacharya; Ujjal Debnath

2010-12-26T23:59:59.000Z

49

Colleges and Universities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Colleges and Universities Colleges and Universities Colleges and Universities Here you'll find resources on higher education opportunities in energy, particularly those concerning energy efficiency and renewable energy. This list is a work in progress and is not intended to be all-inclusive or to assure individual program quality. You can also search for university programs in your state at the Interstate Renewable Energy Council's website. Alternative Energy Institute The Alternative Energy Institute was formed in 1977 at West Texas A&M University as an outgrowth of wind energy research begun in 1970. The institute's primary emphasis is wind energy, though certain research and education are also on solar energy. American School Search This online resource lists more than 6,600 colleges across the U.S.,

50

Modelling dark energy  

E-Print Network [OSTI]

One of the most pressing, modern cosmological mysteries is the cause of the accelerated expansion of the universe. The energy density required to cause this large scale opposition to gravity is known to be both far in ...

Jackson, Brendan Marc

2011-11-23T23:59:59.000Z

51

Building Energy Modeling Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling (BEM) Modeling (BEM) Library TDM - Amir Roth Ellen Franconi Rocky Mountain Institute Efranconi@rmi.org 303-567-8609 April 2, 2013 Photo by : Dennis Schroeder, NREL 23250 2 | Building Technologies Office eere.energy.gov Project Overview Building Energy Modeling (BEM) Library * Define and develop a best-practices BEM knowledge repository to improve modeling consistency and address training gaps * Raise energy modeling industry "techniques" to the same

52

Energy States of Universe and New Phantom Energy  

E-Print Network [OSTI]

Energy states of the universe is obtained when the scale factor is defined as a=At^n, and n varies as -1energy, which it`s energy density increases with time while w=-1/3 .

Mahgoub Salih

2009-06-20T23:59:59.000Z

53

Healthcare Energy: State University of New York Upstate Medical...  

Broader source: Energy.gov (indexed) [DOE]

State University of New York Upstate Medical University East Wing Healthcare Energy: State University of New York Upstate Medical University East Wing The Building Technologies...

54

Universal Lighting Technologies | Open Energy Information  

Open Energy Info (EERE)

Zip: 37214-3683 Product: Universal Lighting Technologies develops, manufactures and markets energy efficient lighting technologies including HID, CFLs and ballasts....

55

A Cosmological Model of Thermodynamic Open Universe  

E-Print Network [OSTI]

In this paper we have given a generalisation of the earlier work by Prigogine et al. who have constructed a phenomenological model of entropy production via particle creation in the very early universe generated out of the vacuum rather than from a singularity, by including radiation also as the energy source and tried to develop an alternative cosmological model in which particle creation prevents the big bang. We developed Radiation dominated model of the universe which shows a general tendency that (i) it originates from instability of vacuum rather than from a singularity. (ii) Up to a characteristic time cosmological quantities like density, pressure, Hubble constant and expansion parameter vary rapidly with time. (iii) After the characteristic time these quantities settles down and the models are turned into de-sitter type model with uniform matter, radiation, creation densities and Hubble's constant H. The de-sitter regime survives during a decay time then connects continuously to a usual adiabatic mat...

Goswami, G K

2012-01-01T23:59:59.000Z

56

Spotlighting Howard University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Spotlighting Howard University Spotlighting Howard University Spotlighting Howard University February 27, 2012 - 2:45pm Addthis Students at Howard University are helping to solve one of the biggest challenges facing renewable energy. | Photo by Jim Pleasant. Students at Howard University are helping to solve one of the biggest challenges facing renewable energy. | Photo by Jim Pleasant. Kate Bannan Communications and Outreach Specialist Students at Washington, D.C.'s Howard University are helping to solve one of the biggest challenges facing renewable energy: how to introduce renewable resource-integrated networks to the nation's electricity grid. Thanks in part to funding by the Energy Department's Minority University Research Associates (MURA) Program, the hands-on research of students at

57

Autotune Building Energy Models  

Broader source: Energy.gov (indexed) [DOE]

Autotune Building Energy Models Autotune Building Energy Models Joshua New Oak Ridge National Laboratory newjr@ornl.gov, 865-241-8783 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: * "All (building energy) models are wrong, but some are useful" - 22%-97% different from utility data for 3,349 buildings * More accurate models are more useful - Error from inputs and algorithms for practical reasons - Useful for cost-effective energy efficiency (EE) at speed and scale

58

Energy Department Announces New Investments in University-Led...  

Energy Savers [EERE]

Investments in University-Led Nuclear Energy Innovation Energy Department Announces New Investments in University-Led Nuclear Energy Innovation September 27, 2012 - 11:07am Addthis...

59

Department of Energy Announces $17 Million to Bolster University...  

Broader source: Energy.gov (indexed) [DOE]

7 Million to Bolster University-Led Nuclear Energy Research and Development Department of Energy Announces 17 Million to Bolster University-Led Nuclear Energy Research and...

60

Department of Energy Announces $39 Million to Strengthen University...  

Broader source: Energy.gov (indexed) [DOE]

39 Million to Strengthen University-Led Nuclear Energy Research and Development Department of Energy Announces 39 Million to Strengthen University-Led Nuclear Energy Research and...

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solar Decathlon Design Models 2009 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Design Models 2009 Design Models 2009 Solar Decathlon Design Models 2009 Addthis Florida International 1 of 20 Florida International Image: Energy Department Image Team New Jersey 2 of 20 Team New Jersey Image: Energy Department Image The University of Tennessee 3 of 20 The University of Tennessee Image: Energy Department Image University of Maryland 4 of 20 University of Maryland Image: Energy Department Image Team Florida 5 of 20 Team Florida Image: Energy Department Image Ohio State University 6 of 20 Ohio State University Image: Energy Department Image Team Belgium 7 of 20 Team Belgium Image: Energy Department Image University of Hawaii 8 of 20 University of Hawaii Image: Energy Department Image Cal Tech 9 of 20 Cal Tech Image: Energy Department Image Team Tidewater Virginia 10 of 20 Team Tidewater Virginia

62

Universal System Benefits Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Universal System Benefits Program Universal System Benefits Program Universal System Benefits Program < Back Eligibility Commercial General Public/Consumer Industrial Institutional Residential Utility Savings Category Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Solar Heating Water Heating Wind Program Info State Montana Program Type Public Benefits Fund Provider Montana Public Service Commission Montana established the Universal System Benefits Program (USBP) in 1997 as part of its restructuring legislation. The USBP supports cost-effective energy conservation, low-income customer weatherization, renewable-energy projects and applications, research and development programs related to energy conservation and renewables, market transformation designed to encourage competitive markets for public purpose programs, and low-income

63

University College Dublin Energy Policy and Strategy  

E-Print Network [OSTI]

in energy consumption and has set a target for the Belfield campus of 10% energy saving per square metre% energy saving by 2010-2012, with an interim goal of achieving 10% saving in selected buildings by 2006University College Dublin Energy Policy and Strategy 2008-2012 #12;Design: Media Services, UCD

64

University of Delaware Energy Institute Inauguration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

University of Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy Department - relies on our partners in academia, as well as in the private sector, to fulfill our critical missions. With its many contributions to the field of energy research, the University of Delaware is certainly one of our valued partners. With the launch of the Energy Institute here today, you are not only

65

A Cyclic Model of the Universe  

E-Print Network [OSTI]

We propose a cosmological model in which the universe undergoes an endless sequence of cosmic epochs each beginning with a `bang' and ending in a `crunch.' The temperature and density are finite at each transition from crunch to bang. Instead of having an inflationary epoch, each cycle includes a period of slow accelerated expansion (as recently observed) followed by slow contraction. The combination produces the homogeneity, flatness, density fluctuations and energy needed to begin the next cycle.

Paul J. Steinhardt; Neil Turok

2001-11-04T23:59:59.000Z

66

Case Western University (Vestas) | Open Energy Information  

Open Energy Info (EERE)

University (Vestas) University (Vestas) Jump to: navigation, search Name Case Western University (Vestas) Facility Case Western University (Vestas) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Case Western University Developer Case Western University Energy Purchaser Sopko & Sons - excess to First Energy Location Euclid OH Coordinates 41.60216607°, -81.49763346° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.60216607,"lon":-81.49763346,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Case Western University (Nordex) | Open Energy Information  

Open Energy Info (EERE)

University (Nordex) University (Nordex) Jump to: navigation, search Name Case Western University (Nordex) Facility Case Western University (Nordex) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Case Western University Developer Case Western University Energy Purchaser Stamco Inc - excess to First Energy Location Euclid OH Coordinates 41.60213398°, -81.49688244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.60213398,"lon":-81.49688244,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

68

Nuclear Energy University Programs (NEUP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE-NE Fosters Novel International Investments in U.S. Nuclear Energy Research October 14, 2014 Nuclear energy is an international industry, but nuclear research and development...

69

Sustainable Energy Policy University Facilities (UF)  

E-Print Network [OSTI]

as daylighting and other strategies for decreasing building energy consumption. Primary consideration shall. Conservation Goals It is the goal of Clemson University to reduce energy consumption per gross square foot schedules and temperatures, will reduce energy consumption, and will permit implementation of demand

Duchowski, Andrew T.

70

Radboud University Nijmegen Theoretical High Energy Physics  

E-Print Network [OSTI]

Radboud University Nijmegen Theoretical High Energy Physics Bachelor thesis The High Energy;CONTENTS CONTENTS Contents 1 Introduction and Research question 2 2 Theoretical Background 3 2.1 Gauge . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 High Energy Behaviour . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.1 Renormalization

van Suijlekom, Walter

71

Submetering Energy Use in Colleges and Universities | ENERGY STAR Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Submetering Energy Use in Colleges and Universities Submetering Energy Use in Colleges and Universities Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

72

University of Delaware Wind | Open Energy Information  

Open Energy Info (EERE)

University of Delaware Wind University of Delaware Wind Jump to: navigation, search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of Delaware Developer First Marine Wind Energy Purchaser University of Delaware Location Lewes DE Coordinates 38.783739°, -75.160654° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.783739,"lon":-75.160654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

73

West Virginia University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

West Virginia University West Virginia University West Virginia University July 7, 2005 - 2:04pm Addthis Remarks by Energy Secretary Samuel Bodman Thank you, President Hardesty. I visited West Virginia last year when I was with the Treasury Department, and I am glad to be back today. President Hardesty has had a pretty busy week hosting visitors from Washington. President Bush was here on Monday, and I imagine many of you were in the audience for that. So I thank you for showing up for another speech a few days later. It is my pleasure to announce today that the Department of Energy is awarding almost $3 million in research funding, as part of our University Coal Research Program, to 19 universities in 15 states. Now in its 26th year, the University Coal Research Program brings science students and

74

West Virginia University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

West Virginia University West Virginia University West Virginia University July 7, 2005 - 2:04pm Addthis Remarks by Energy Secretary Samuel Bodman Thank you, President Hardesty. I visited West Virginia last year when I was with the Treasury Department, and I am glad to be back today. President Hardesty has had a pretty busy week hosting visitors from Washington. President Bush was here on Monday, and I imagine many of you were in the audience for that. So I thank you for showing up for another speech a few days later. It is my pleasure to announce today that the Department of Energy is awarding almost $3 million in research funding, as part of our University Coal Research Program, to 19 universities in 15 states. Now in its 26th year, the University Coal Research Program brings science students and

75

Bishop's University Energy Efficiency Action Plan  

E-Print Network [OSTI]

. Continuous basis Action 9: Sustainable Development standards for existing buildings. Go green certification from BOMA for existing buildings Bishop's University Sustainable Development policy (ELU Committee January 2008 Government of Quebec, energy strategy, May 2006 Sustainable Development law, 2006 Letter

76

Universal Entech LLC | Open Energy Information  

Open Energy Info (EERE)

Entech, LLC Place: Phoenix, Arizona Zip: 85041 Product: Project developer focused on waste-to-energy References: Universal Entech, LLC1 This article is a stub. You can help...

77

Purdue University | Open Energy Information  

Open Energy Info (EERE)

Purdue University Purdue University Jump to: navigation, search Logo: Purdue University Name Purdue University Address West Lafayette, IN Zip 47907 Phone number (765) 494-4600 Website http://www.purdue.edu/ Coordinates 40.42747955036°, -86.920051574707° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.42747955036,"lon":-86.920051574707,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Hamdard University | Open Energy Information  

Open Energy Info (EERE)

Hamdard University Hamdard University Jump to: navigation, search Name Hamdard University Place Karachi, Pakistan Zip 74600 Sector Solar Product University setting up Pakistan's first solar lab. Coordinates 24.88978°, 67.028511° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.88978,"lon":67.028511,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

Energy Department And University of California Extend Management...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases Energy Department And University of California Extend ... Energy Department And University of...

80

NETL: News Release - Six Minority Universities Win Fossil Energy Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 24, 2000 May 24, 2000 Six Minority Universities Win Fossil Energy Research Grants to Advance Use of Oil, Coal, Gas Richardson, Browner Announce Government "Showcase" Project As part of the Department of Energy's continuing efforts to increase the involvement of the nation's minority institutions in energy research, Energy Secretary Bill Richardson today announced that six historically black universities and other minority institutions will share nearly $1 million in federal funding for fossil energy projects ranging from oil reservoir characterization to burner design for low-emission burners to pollution reduction from car engines. The winning schools are: Prairie View A&M University, Prairie View, TX, (2 projects): one for research into a new way of determining the geologic characteristics of complex oil reservoirs; the other for testing a new data analysis technique based on neural networks that could simplify modeling of the way fuel burns in a compression ignition engine, such as a diesel engine;

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

University of Delaware Energy Institute Inauguration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Delaware Energy Institute Inauguration Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy Department - relies on our partners in academia, as well as in the private sector, to fulfill our critical missions. With its many contributions to the field of energy research, the University of Delaware is certainly one of our valued partners. With the launch of the Energy Institute here today, you are not only

82

Bucknell University | Open Energy Information  

Open Energy Info (EERE)

University University Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Bucknell University Address Civil & Mechanical Engineering Departments, Hydraulic Flume, 701 Moore Avenue, Dana Engineering Building Place Lewisburg, PA Zip 17837 Sector Hydro Phone number (570) 577-3193 Website http://www.bucknell.edu/x16287 Coordinates 40.955691952072°, -76.88521027565° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.955691952072,"lon":-76.88521027565,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Case Western University | Open Energy Information  

Open Energy Info (EERE)

University University Facility Case Western University Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Case Western University Energy Purchaser Case Western University Location Cleveland OH Coordinates 41.50239055°, -81.60550386° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.50239055,"lon":-81.60550386,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Universal GeoPower | Open Energy Information  

Open Energy Info (EERE)

GeoPower GeoPower Jump to: navigation, search Name Universal GeoPower Place Houston, Texas Zip 77007 Sector Geothermal energy Product A Texas-based geothermal development company. References Universal GeoPower[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Universal GeoPower is a company located in Houston, Texas . References ↑ "Universal GeoPower" Retrieved from "http://en.openei.org/w/index.php?title=Universal_GeoPower&oldid=352539" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

85

Energy Modeling Software | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commercial Buildings » Energy Modeling Software Commercial Buildings » Energy Modeling Software Energy Modeling Software Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration Program (CBI) research and are used in modeling current CBI projects. Modeling helps architects and building designers quickly identify the most cost-effective and energy-saving measures. Graphic of the EnergyPlus software logo. EnergyPlus - An award-winning new-generation building energy simulation program from the creators of BLAST and DOE-2. EnergyPlus models heating, cooling, lighting, ventilating, water, and other energy flows in buildings. OpenStudio - A free plugin for the SketchUp 3D drawing program. The

86

University of South Florida | Open Energy Information  

Open Energy Info (EERE)

Florida Florida Jump to: navigation, search Name University of South Florida Place St. Petersburg, Florida Zip FL 33701 Product Educational and research university. References University of South Florida[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. University of South Florida is a company located in St. Petersburg, Florida . References ↑ "University of South Florida" Retrieved from "http://en.openei.org/w/index.php?title=University_of_South_Florida&oldid=352562" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

87

Energy Transition Model | Open Energy Information  

Open Energy Info (EERE)

Energy Transition Model Energy Transition Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Transition Model Agency/Company /Organization: Quintel Intelligence Sector: Energy Topics: Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Website Website: energytransitionmodel.com/ Country: Netherlands Web Application Link: energytransitionmodel.com/ Cost: Free OpenEI Keyword(s): International UN Region: Western Europe References: webservice-energy.org[1] MINES Energy Transition Model[2] Logo: Energy Transition Model The Energy Transition Model is an independent, comprehensive and fact-based energy model that is used by governments, corporations, NGOs and educators in various countries. It is backed by more than 20 partners. There are

88

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work 14, 2008 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst, MA

Massachusetts at Amherst, University of

89

Interacting Ghost Dark Energy in Non-Flat Universe  

E-Print Network [OSTI]

A new dark energy model called "ghost dark energy" was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, $\\rho_D=\\alpha H$, where $\\alpha$ is a constant of order $\\Lambda_{\\rm QCD}^3$ and $\\Lambda_{\\rm QCD}\\sim 100 MeV$ is QCD mass scale. In this paper, we extend the ghost dark energy model to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We study cosmological implications of this model in detail. In the absence of interaction the equation of state parameter of ghost dark energy is always $w_D > -1 $ and mimics a cosmological constant in the late time, while it is possible to have $w_D dark energy in flat universe are recovered. To check the observational consistency, we use Supernova type Ia (SNIa) Gold sample, shift parameter of Cosmic Microwave Background radiation (CMB) and the Baryonic Acoustic Oscillation peak from Sloan Digital Sky Survey (SDSS). The best fit values of free parameter at $1\\sigma$ confidence interval are: $\\Omega_m^0= 0.35^{+0.02}_{-0.03}$, $\\Omega_D^0=0.75_{-0.04}^{+0.01}$ and $b^2=0.08^{+0.03}_{-0.03}$. Consequently the total energy density of universe at present time in this model at 68% level equates to $\\Omega_{\\rm tot}^0=1.10^{+0.02}_{-0.05}$.

A. Sheykhi; M. Sadegh Movahed

2011-04-25T23:59:59.000Z

90

Kansas State University | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Kansas State University Facility Kansas State University Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Kansas State University Energy Purchaser Kansas State University Location Manhatten KS Coordinates 39.19053899°, -96.58392191° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.19053899,"lon":-96.58392191,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

91

Department of Energy Awards $2 Million for National University...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE's Acting Assistant Secretary for Energy Efficiency and Renewable Energy, Dr. Henry Kelly, at a clean energy jobs event at the University of Florida-Gainesville yesterday, the...

92

University of California Energy Institute Design Choices in the  

E-Print Network [OSTI]

University of California Energy Institute Design Choices in the Organization of Electricity Markets Electricity Market » Transmission pricing #12;University of California Energy Institute Restructuring Goals of California Energy Institute Organization of Firms · Public vs. Private Ownership ­ Restructuring

California at Berkeley. University of

93

Non-universality in Ising models with four spin interaction.  

E-Print Network [OSTI]

Non-universality in Ising models with four spin interaction. V. Mastropietro Dipartimento di consider two bidimensional classical Ising mod- els, coupled by a weak interaction bilinear in the energy is determined by critical indices which are continuous functions of the coupling. Key words Coupled Ising models

94

Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-01T23:59:59.000Z

95

DOE Virtual University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Services » Learning & Development » DOE Virtual University Services » Learning & Development » DOE Virtual University DOE Virtual University Learn more about DVU The Department of Energy Virtual University (DVU) is a central venue for executing, managing, partnering, and sharing corporate learning activities and programs. Read more Training Resources The Training Resources webpage has the links to the commonly used course catalogs and course schedules used by DOE employees. Course registration links can also be found here. Read more College of Science The College of Science's (CS) mission is to provide DOE employees with the information resources necessary to keep current in the field of science. Read more College of Health Safety & Security Through the National Training Center (NTC), the Office of Health, Safety

96

Energy Department Announces $4 Million for University Consortium...  

Energy Savers [EERE]

4 Million for University Consortium to Advance America's Water Power Industry Energy Department Announces 4 Million for University Consortium to Advance America's Water Power...

97

Nuclear Energy University Program: A Presentation to Vice Presidents...  

Office of Environmental Management (EM)

Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

98

University of Arizona Compressed Air Energy Storage  

SciTech Connect (OSTI)

Boiled down to its essentials, the grants purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z

99

Texas Tech University Energy Savings Program July 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through the Third energy demand upon the university buildings. Cogeneration steam, provided at no cost to the universityTexas Tech University Energy Savings Program July 2011 Update The Texas Tech Energy Savings Update

Zhuang, Yu

100

Modeling of thermal energy storage in groundwater aquifers  

E-Print Network [OSTI]

MODELING OF THERMAL ENERGY STORAGE IN GROUNDWATER AQUIFERS A Thesis by DAVID BRYAN REED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979... ABSTRACT Modeling of Thermal Energy Storage in Groundwater Aquifers. (December 1979) David Bryan Reed, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Donald L. Reddell Solar energy is a promising alternate energy source for space heat...

Reed, David Bryan

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Texas Tech University Energy Savings Program April 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through the SecondTexas Tech University Energy Savings Program April 2011 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. University Energy Use Energy units are converted to thousands of BTUs per

Gelfond, Michael

102

Texas Tech University Energy Savings Program October 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through fiscalTexas Tech University Energy Savings Program October 2011 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. University Energy Use Energy units are converted to thousands of BTUs

Zhuang, Yu

103

Dark Energy, Expansion History of the Universe, and SNAP  

E-Print Network [OSTI]

This talk presents a pedagogical discussion of how precision distance-redshift observations can map out the recent expansion history of the universe, including the present acceleration and the transition to matter dominated deceleration. The proposed Supernova/Acceleration Probe (SNAP) will carry out observations determining the components and equations of state of the energy density, providing insights into the cosmological model, the nature of the accelerating dark energy, and potentially clues to fundamental high energy physics theories and gravitation. This includes the ability to distinguish between various dynamical scalar field models for the dark energy, as well as higher dimension and alternate gravity theories. A new, advantageous parametrization for the study of dark energy to high redshift is also presented.

Eric V. Linder

2003-02-03T23:59:59.000Z

104

University of Wisconsin Energy Institute | Open Energy Information  

Open Energy Info (EERE)

Energy Institute Energy Institute Jump to: navigation, search Logo: University of Wisconsin Energy Institute Name University of Wisconsin Energy Institute Address 1500 Engineering Dr. Place Madison, Wisconsin Zip 53706 Coordinates 43.0722652°, -89.4117968° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0722652,"lon":-89.4117968,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Energy Department Announces Finalists for National University Geothermal Energy Competition  

Broader source: Energy.gov [DOE]

Underscoring President Obama's commitments to keep college affordable, expand opportunities for American families nationwide, and further education in the areas of science, technology, engineering, and math, the U.S. Energy Department announced that eight university teams have been selected to compete in the 2012 National Geothermal Student Competition.

106

Energy density fluctuations in early universe  

SciTech Connect (OSTI)

The primordial nucleosinthesys of the element can be influenced by the transitions of phase that take place after the Big Bang, such as the QCD transition. In order to study the effect of this phase transition, in this work we compute the time evolution of thermodynamical quantities of the early universe, focusing on temperature and energy density fluctuations, by solving the relevant equations of motion using as input the lattice QCD equation of state to describe the strongly interacting matter in the early universe plasma. We also study the effect of a primordial strong magnetic field by means of a phenomenological equation of state. Our results show that small inhomogeneities of strongly interacting matter in the early Universe are moderately damped during the crossover.

Guardo, G. L.; Ruggieri, M. [Department of Physics and Astronomy, University of Catania, Catania (Italy); Greco, V. [Department of Physics and Astronomy, University of Catania, Catania, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy)

2014-05-09T23:59:59.000Z

107

Energy density fluctuations in Early Universe  

E-Print Network [OSTI]

The primordial nucleosinthesys of the element can be influenced by the transitions of phase that take place after the Big Bang, such as the QCD transition. In order to study the effect of this phase transition, in this work we compute the time evolution of thermodynamical quantities of the early universe, focusing on temperature and energy density fluctuations, by solving the relevant equations of motion using as input the lattice QCD equation of state to describe the strongly interacting matter in the early universe plasma. We also study the effect of a primordial strong magnetic field by means of a phenomenological equation of state. Our results show that small inhomogeneities of strongly interacting matter in the early Universe are moderately damped during the crossover.

Guardo, G L; Ruggieri, M

2014-01-01T23:59:59.000Z

108

Nuclear Energy University Program: A Presentation to Vice Presidents of  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy University Program: A Presentation to Vice Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy An overview of the Office of Nuclear Energy's university programs Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear Energy More Documents & Publications Meeting Materials: December 18, 2009 Meeting Materials: June 9, 2009 June 2011, Report of the Fuel Cycle Subcommittee of NEAC

109

China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal...  

Open Energy Info (EERE)

China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name: China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing...

110

Department of Energy Announces $39 Million to Strengthen University...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Public Affairs Department of Energy Announces 39 Million to Strengthen University-Led Nuclear Energy Research and Development 51 Projects Aim to Cut Carbon Pollution, Create...

111

Tool Kit Framework: Small Town University Energy Program (STEP)  

Broader source: Energy.gov [DOE]

Tool Kit Framework: Small Town University Energy Program (STEP), as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

112

Opportunities for Achieving Significant Energy Reduction in Existing University Buildings  

E-Print Network [OSTI]

Opportunities for Achieving Significant Energy Reduction in Existing University Buildings Committee Larry Valles, Lab Manager, Biology #12;Building Energy Use by FuelCharles River Campus 20052007

Hutyra, Lucy R.

113

Southern Oregon University Highlighted by U.S. Energy Department...  

Office of Environmental Management (EM)

by Southern Oregon University (SOU). The school's investments in renewable energy, sustainability, and purchasing Renewable Energy Certificates (RECs) are benefiting residents and...

114

Dark energy camera to probe universe's biggest mysteries | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in physics: why the expansion of the universe is speeding up. Scientists on the Dark Energy Survey collaboration, including representatives from the U.S. Department of Energy's...

115

UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM  

SciTech Connect (OSTI)

The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

Rutherfoord, John P. [University of Arizona] [University of Arizona; Johns, Kenneth A. [University of Arizona] [University of Arizona; Shupe, Michael A. [University of Arizona] [University of Arizona; Cheu, Elliott C. [University of Arizona] [University of Arizona; Varnes, Erich W. [University of Arizona] [University of Arizona; Dienes, Keith [University of Arizona] [University of Arizona; Su, Shufang [University of Arizona] [University of Arizona; Toussaint, William Doug [University of Arizona] [University of Arizona; Sarcevic, Ina [University of Arizona] [University of Arizona

2013-07-29T23:59:59.000Z

116

Energy Department Announces New Investments in University-Led Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Announces New Investments in University-Led Energy Department Announces New Investments in University-Led Nuclear Energy Innovation Energy Department Announces New Investments in University-Led Nuclear Energy Innovation September 27, 2012 - 11:07am Addthis WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy to deploy every available source of American energy and ensure the U.S. remains competitive globally, the Energy Department announced today more than $13 million in new investments for university-led nuclear innovation projects. The three awards announced today under the Department's Nuclear Energy University Programs (NEUP) will support nuclear energy R&D and student investment at U.S. colleges and universities across the country, ensuring that secure, safe and efficient nuclear energy

117

Texas Tech University Energy Savings Program October 2012 Update  

E-Print Network [OSTI]

on energy consumption for the same time period from the previous year normalized to current energy costs,727 Cogeneration Steam 20.06 20.83 Up 3.8% NA Total 165.84 161.01 Down 2.9% $ 194,851 Texas Tech University EnergyTexas Tech University Energy Savings Program October 2012 Update The Texas Tech Energy Savings

Zhuang, Yu

118

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performingRenewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Report template version 1.3 #12;April 3, 2006 Renewable Energy Research Laboratory Page 1 University

Massachusetts at Amherst, University of

119

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performingRenewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive. Ellis February 28, 2008 #12;February 28, 2008 Renewable Energy Research Laboratory Page 1 University

Massachusetts at Amherst, University of

120

Energy poverty: how to make modern energy access universal? | Open Energy  

Open Energy Info (EERE)

Energy poverty: how to make modern energy access universal? Energy poverty: how to make modern energy access universal? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy poverty: how to make modern energy access universal? Agency/Company /Organization: International Energy Agency Partner: United Nations Development Programme (UNDP), United Nations Industrial Development Organization (UNIDO) Sector: Energy Focus Area: Renewable Energy Phase: Bring the Right People Together, Create a Vision, Evaluate Options, Develop Goals Topics: Co-benefits assessment, - Energy Access Resource Type: Technical report User Interface: Website Website: www.worldenergyoutlook.org/docs/weo2010/weo2010_poverty.pdf Cost: Free Language: English The focus of this report is on expanding access to modern energy services

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Building Energy Modeling  

Broader source: Energy.gov [DOE]

Building energy simulationphysics-based calculation of building energy consumptionis a multi-use tool for building energy efficiency.

122

Multi-Factor Energy Price Models Exotic Derivatives Pricing  

E-Print Network [OSTI]

of Statistics University of Toronto c Copyright by Samuel Hikspoors 2008 #12;Multi-Factor Energy Price Models of Toronto, May 2008 Abstract The high pace at which many of the world's energy markets have gradually beenMulti-Factor Energy Price Models and Exotic Derivatives Pricing by Samuel Hikspoors A thesis

Jaimungal, Sebastian

123

Modeling Energy Conservation in a Completely Integrable Boussinesq system  

E-Print Network [OSTI]

Modeling Energy Conservation in a Completely Integrable Boussinesq system Alfatih Ali and Henrik Kalisch Department of Mathematics, University of Bergen Postbox 7800, 5020 Bergen, Norway March 23, 2013 Abstract This work presents a derivation of the energy density and energy flux of surface waves modeled

Kalisch, Henrik

124

Texas Tech University Energy Savings Program April 2007 Update  

E-Print Network [OSTI]

in line to achieve its energy reduction goal. A. Energy Goals 1. Campus Energy Use Energy units 11.1 11.0 Page 2 of 4 January 07 Energy Report #12;B. Current Energy Reduction Plans 1. Campus Energy Management A. In FY2004 the Texas Tech University vehicle fleet consumed 201,186 gallons of fuel and traveled

Gelfond, Michael

125

Texas Tech University Energy Savings Program July 2007 Update  

E-Print Network [OSTI]

not achieve its energy reduction goal this fiscal year. A. Energy Goals 1. Campus Energy Use Energy units of 4 January 07 Energy Report #12;B. Current Energy Reduction Plans 1. Campus Energy Use Texas Tech Management A. n FY2004 the Texas Tech University vehicle fleet consumed 201,186 gallons of fuel and traveled

Gelfond, Michael

126

Energy Department Announces New Investments in University-Led Nuclear  

Broader source: Energy.gov (indexed) [DOE]

New Investments in University-Led New Investments in University-Led Nuclear Energy Innovation Energy Department Announces New Investments in University-Led Nuclear Energy Innovation September 27, 2012 - 11:07am Addthis WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy to deploy every available source of American energy and ensure the U.S. remains competitive globally, the Energy Department announced today more than $13 million in new investments for university-led nuclear innovation projects. The three awards announced today under the Department's Nuclear Energy University Programs (NEUP) will support nuclear energy R&D and student investment at U.S. colleges and universities across the country, ensuring that secure, safe and efficient nuclear energy

127

Secretary Chu Announces Nuclear Energy University Program Awards |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

128

Secretary Chu Announces Nuclear Energy University Program Awards |  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 1:43pm Addthis U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

129

Secretary Chu Announces Nuclear Energy University Program Awards |  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Energy University Program Awards Nuclear Energy University Program Awards Secretary Chu Announces Nuclear Energy University Program Awards June 16, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced nearly $9 million in awards to support the next generation of American nuclear energy development. Under the Nuclear Energy Universities Program, the Department of Energy will provide $2.9 million in scholarships and fellowships to 86 U.S. nuclear science and engineering (NS&E) students, and will offer more than $6 million in grants to 29 U.S. universities and colleges in 23 states. The Nuclear Energy University Program (NEUP) supports the country's nuclear energy research infrastructure at schools across the country, while attracting high-quality undergraduate and graduate students into nuclear

130

Washington State University Extension Energy Program | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Washington State University Extension Energy Program Jump to: navigation, search Name Washington State University Extension Energy Program Address 905 Plum Street SE Bldg No 3 Place Olympia, Washington Zip 98504 Region Pacific Northwest Area Coordinates 47.0410259°, -122.892209° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.0410259,"lon":-122.892209,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Energy Research at The State University of New York  

E-Print Network [OSTI]

Energy Research at The State University of New York Renewable & Alternative Fuels · Energy, energy production, and efficiency & conservation. The State University of New York #12;WHO WE, reduce dependence on foreign fuel, increase energy security, and boost economic development in New York

Suzuki, Masatsugu

132

University of California Energy Institute The California Electricity Market  

E-Print Network [OSTI]

University of California Energy Institute The California Electricity Market: What a long strange trip it's been #12;University of California Energy Institute Market Organization in California · ISO an `imbalance' energy (spot) market · Power Exchange (PX) runs day ahead and hour ahead energy markets · Other

California at Berkeley. University of

133

Casimir energies of cylinders: Universal function  

SciTech Connect (OSTI)

New exact results are given for the interior Casimir energies of infinitely long waveguides of triangular cross section (equilateral, hemiequilateral, and isosceles right triangles). Results for cylinders of rectangular cross section are rederived. In particular, results are obtained for interior modes belonging to Dirichlet and Neumann boundary conditions (TM and TE modes). These results are expressed in rapidly convergent series using the Chowla-Selberg formula, and in fact may be given in closed form, except for general rectangles. The energies are finite because only the first three heat-kernel coefficients can be nonzero for the case of polygonal boundaries. What appears to be a universal behavior of the Casimir energy as a function of the shape of the regular or quasiregular cross-sectional figure is presented. Furthermore, numerical calculations for arbitrary right triangular cross sections suggest that the universal behavior may be extended to waveguides of general polygonal cross sections. The new exact and numerical results are compared with the proximity force approximation (PFA).

Abalo, E. K.; Milton, K. A.; Kaplan, L. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States); Department of Physics, Tulane University, New Orleans, Louisiana 70118 (United States)

2010-12-15T23:59:59.000Z

134

Extended universality of the Ising model  

Science Journals Connector (OSTI)

An extension of the critical-phenomena universality hypothesis assumed previously to be valid for less singular terms is shown to be invalid. A reformulated extension of the universality hypothesis is found to be valid exactly for the spin-1/2 Ising model on the triangular, square, and honeycomb lattices, and, further support is supplied by high- and low-temperature expansions for the susceptibility. The extension fails however for the Ising model on the kagome? lattice and for the spherical model. At present there are insufficient data to test the extended principle for other models or for experimental systems.

D. S. Ritchie and D. D. Betts

1975-04-01T23:59:59.000Z

135

University of Cape Town | Open Energy Information  

Open Energy Info (EERE)

Town Jump to: navigation, search Name: University of Cape Town Place: South Africa Product: Teaching and research university. References: University of Cape Town1 This article is...

136

Phenomenologically varying $?$ and a toy model for the Universe  

E-Print Network [OSTI]

We consider a model of the Universe with variable G and {\\Lambda}. Subject of our interest is a phenomenological model for {\\Lambda} proposed and considered in this article first time (up to our knowledge). Modification based on an assumption that ghost dark energy exists and Universe will feel it through {\\Lambda}. In that case we would like to consider possibility that there exist some unusual connections between different components of the fluids existing in Universe. We would like to stress, that this is just an assumption and could be very far from the reality. We are interested by this model as a phenomenological and mathematical and unfortunately, we will not discuss about physical conditions and possibilities of having such modifications. To test our assumption and to observe behavior of the Universe, we will consider toy models filled by a barotropic fluid and modified Chaplyagin gas. To complete the logic of the research we will consider interaction between barotropic fluid or Chaplygin gas with ghost dark energy as a separate scenario. Statefinder diagnostic also provided with stability analysis of the models. All free parameters of the model fixed to satisfy generalized second law of thermodynamics.

M. Khurshudyan; J. Sadeghi; E. Chubaryan; H. Farahani

2014-03-11T23:59:59.000Z

137

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

138

Toronto University Innovation Foundation | Open Energy Information  

Open Energy Info (EERE)

Toronto University Innovation Foundation Jump to: navigation, search Name: Toronto University Innovation Foundation Place: Canada Sector: Services Product: General Financial &...

139

Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis -Western Cooling Efficiency Center  

E-Print Network [OSTI]

Modeling Ventilation in Multifamily Buildings John Markley, University of California, Davis outlines the results from energy models of several multifamily building configurations to improve airflow component of multifamily building design due to its effects on occupant health and comfort. Though

California at Davis, University of

140

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive;January 20, 2005 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive;January 16, 2007 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored

Massachusetts at Amherst, University of

142

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive 20, 2005 #12;January 20, 2005 Renewable Energy Research Laboratory Page 1 University of Massachusetts Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work

Massachusetts at Amherst, University of

143

Renewable-Based Energy Secure Communities (RESCOs) University of  

Open Energy Info (EERE)

Renewable-Based Energy Secure Communities (RESCOs) University of Renewable-Based Energy Secure Communities (RESCOs) University of California, Merced Jump to: navigation, search Name Renewable-Based Energy Secure Communities (RESCOs) University of California, Merced Agency/Company /Organization California Integrated Renewable Energy Systems Sector Energy Focus Area Buildings, Commercial, Residential, Energy Efficiency, Greenhouse Gas, Land Use, Renewable Energy, Biomass, Biomass - Waste To Energy Phase Create a Vision, Prepare a Plan, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Free - Publicly Available Publication Date 4/13/2010 Website http://cal-ires.ucdavis.edu/fi Locality University of California, Merced References Renewable-Based Energy Secure Communities (RESCOs) University of California, Merced[1]

144

Department of Energy Conference Emphasizes Universities' Role in Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Conference Emphasizes Universities' Role in Conference Emphasizes Universities' Role in Nuclear Energy Research Department of Energy Conference Emphasizes Universities' Role in Nuclear Energy Research August 14, 2009 - 1:35pm Addthis This Thursday and Friday, the U.S. Department of Energy hosted a workshop with professors from more than 40 U.S. universities to highlight the role universities can play in advancing the nation's nuclear energy research. U.S. Senator Bob Bennett, R-Utah, delivered closing remarks to the conference, emphasizing the importance of nuclear energy as a clean, carbon-free source of electricity. "The path to a clean energy future is through a balanced energy approach that includes nuclear energy, which provides electricity to one in five homes and businesses," said Bennett, ranking Republican on the Senate

145

Northwestern University Team Wins 2013 National Clean Energy Business Plan  

Broader source: Energy.gov (indexed) [DOE]

Northwestern University Team Wins 2013 National Clean Energy Northwestern University Team Wins 2013 National Clean Energy Business Plan Competition Northwestern University Team Wins 2013 National Clean Energy Business Plan Competition June 14, 2013 - 3:33pm Addthis Earlier this week, the Energy Department hosted the second annual National Clean Energy Business Plan Competition. From Northwestern University, SiNode Systems took home the top honors | Photo courtesy of Ken Shipp, Department of Energy. Earlier this week, the Energy Department hosted the second annual National Clean Energy Business Plan Competition. From Northwestern University, SiNode Systems took home the top honors | Photo courtesy of Ken Shipp, Department of Energy. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs

146

Northwestern University Team Wins Energy Department's National Clean  

Broader source: Energy.gov (indexed) [DOE]

Northwestern University Team Wins Energy Department's National Northwestern University Team Wins Energy Department's National Clean Energy Business Plan Competition Northwestern University Team Wins Energy Department's National Clean Energy Business Plan Competition June 14, 2012 - 1:38pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Startup America Initiative that works to encourage and accelerate high-growth entrepreneurship throughout the nation, the Energy Department today announced that NuMat Technologies from Northwestern University won the first-ever DOE National Clean Energy Business Plan Competition. The competition aims to inspire university teams across the country and promote entrepreneurship in clean energy technologies that will boost American competitiveness, bringing cutting-edge clean energy solutions to the market

147

Northwestern University Team Wins Energy Department's National Clean  

Broader source: Energy.gov (indexed) [DOE]

Northwestern University Team Wins Energy Department's National Northwestern University Team Wins Energy Department's National Clean Energy Business Plan Competition Northwestern University Team Wins Energy Department's National Clean Energy Business Plan Competition June 14, 2012 - 1:38pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Startup America Initiative that works to encourage and accelerate high-growth entrepreneurship throughout the nation, the Energy Department today announced that NuMat Technologies from Northwestern University won the first-ever DOE National Clean Energy Business Plan Competition. The competition aims to inspire university teams across the country and promote entrepreneurship in clean energy technologies that will boost American competitiveness, bringing cutting-edge clean energy solutions to the market

148

News Letter Institute of Advanced Energy, Kyoto University  

E-Print Network [OSTI]

Materials Science Workshop" Institute of Advanced Energy, Kyoto University #12; 25 1 22 ASEAN 5 ASEANNational University of SingaporeChulalongkorn UniversityASEAN University Network AUN Nantana Gajaseni Institut Teknologi Bandung Akhmaloka Gajaseni "Student Mobility and ASEAN Credit Transfer System" Agreement

Takada, Shoji

149

Texas Tech University Energy Savings Program April 2007 Update  

E-Print Network [OSTI]

a minimum of 1 detailed energy audit per month beginning with the largest consumers of energy. 2. FleetTexas Tech University Energy Savings Program April 2007 Update The Texas Tech Energy Savings Update Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Texas Tech is currently

Zhuang, Yu

150

News Letter Institute of Advanced Energy, Kyoto University  

E-Print Network [OSTI]

;"Energy Research Issue" The IAE has many groups researching various fields of energy related issues. Abstract definition of energy consists of two parts: Energy = Exergy +Anergy Exergy is a part of energyNews Letter Institute of Advanced Energy, Kyoto University ISSN 1342-3193 IAE-NL-2014 No.54 http

Takada, Shoji

151

Texas Tech University Energy Savings Program July 2006 Update  

E-Print Network [OSTI]

energy reduction goal. A. Energy Goals 1. Campus Energy Use Energy units are converted to mmbtu to allow.9 12.2 12.1 B. Current Energy Reduction Plans 1. Campus Energy Use Texas Tech is currently seeking 201,186 gallons of fuel and traveled 2,279,692 miles. In FY2005 the Texas Tech University reduced

Gelfond, Michael

152

Texas Tech University Energy Savings Program October 2006 Update  

E-Print Network [OSTI]

is currently in line to achieve its energy reduction goal. A. Energy Goals 1. Campus Energy Use Energy units. Current Energy Reduction Plans 1. Campus Energy Use Texas Tech is currently seeking funding from TPFA of fuel and traveled 2,279,692 miles. In FY2005 Texas Tech University consumed 196,059 gallons of fuel

Gelfond, Michael

153

Texas Tech University Energy Savings Program January 2010 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footageTexas Tech University Energy Savings Program January 2010 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands

Zhuang, Yu

154

Texas Tech University Energy Savings Program October 2009 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footageTexas Tech University Energy Savings Program October 2009 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands

Zhuang, Yu

155

Texas Tech University Energy Savings Program April 2010 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For first twoTexas Tech University Energy Savings Program April 2010 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Zhuang, Yu

156

Texas Tech University Energy Savings Program July 2009 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For the firstTexas Tech University Energy Savings Program July 2009 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Zhuang, Yu

157

Texas Tech University Energy Savings Program July 2010 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For first threeTexas Tech University Energy Savings Program July 2010 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Zhuang, Yu

158

N + 1 dimensional quantum mechanical model for a closed universe  

E-Print Network [OSTI]

A quantum mechanical model for an N + 1 dimensional universe arising from a quantum fluctuation is outlined. (3 + 1) dimensions are a closed infinitely-expanding universe and the remaining N - 3 dimensions are compact. The (3 + 1) non-compact dimensions are modeled by quantizing a canonical Hamiltonian description of a homogeneous isotropic universe. It is assumed gravity and the strong-electro-weak (SEW) forces had equal strength in the initial state. Inflation occurred when the compact N -3 dimensional space collapsed after a quantum transition from the initial state of the univers, during its evolution to the present state where gravity is much weaker than the SEW force. The model suggests the universe has no singularities and the large size of our present universe is determined by the relative strength of gravity and the SEW force today. A small cosmological constant, resulting from the zero point energy of the scalar field corresponding to the compact dimensions, makes the model universe expand forever.

T. R. Mongan

1999-02-10T23:59:59.000Z

159

University of Southern California-Energy Institute | Open Energy  

Open Energy Info (EERE)

California-Energy Institute California-Energy Institute Jump to: navigation, search Name University of Southern California-Energy Institute Place Los Angeles, California Zip 90089 Region Southern CA Area Coordinates 34.0202738°, -118.2884738° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0202738,"lon":-118.2884738,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

University of Massachusetts Clean Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Name University of Massachusetts Clean Energy Address 333 South Street, Suite 400 Place Shrewsbury, Massachusetts Zip 01545 Region Greater Boston Area Coordinates 42.274197°, -71.689911° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.274197,"lon":-71.689911,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

RICE UNIVERSITY Computational Modeling of Icon Search  

E-Print Network [OSTI]

1 RICE UNIVERSITY Computational Modeling of Icon Search by Michael D. Fleetwood A THESIS SUBMITTED HOUSTON, TEXAS DECEMBER, 2001 #12;3 DECEMBER, 2001 ABSTRACT Computational Modeling of Icon Search by Michael Fleetwood As the use of graphical user interfaces expands into new areas, icons are becoming

Byrne, Mike

162

Inventory of state energy models  

SciTech Connect (OSTI)

These models address a variety of purposes, such as supply or demand of energy or of certain types of energy, emergency management of energy, conservation in end uses of energy, and economic factors. Fifty-one models are briefly described as to: purpose; energy system; applications;status; validation; outputs by sector, energy type, economic and physical units, geographic area, and time frame; structure and modeling techniques; submodels; working assumptions; inputs; data sources; related models; costs; references; and contacts. Discussions in the report include: project purposes and methods of research, state energy modeling in general, model types and terminology, and Federal legislation to which state modeling is relevant. Also, a state-by-state listing of modeling efforts is provided and other model inventories are identified. The report includes a brief encylopedia of terms used in energy models. It is assumed that many readers of the report will not be experienced in the technical aspects of modeling. The project was accomplished by telephone conversations and document review by a team from the Colorado School of Mines Research Institute and the faculty of the Colorado School of Mines. A Technical Committee (listed in the report) provided advice during the course of the project.

Melcher, A.G.; Gist, R.L.; Underwood, R.G.; Weber, J.C.

1980-03-31T23:59:59.000Z

163

University of Nebraska-Lincoln and University of Florida (Building Energy  

Open Energy Info (EERE)

Nebraska-Lincoln and University of Florida (Building Energy Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) Jump to: navigation, search Name University of Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) Place Lincoln, NE Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections University of Nebraska-Lincoln and University of Florida (Building Energy Efficient Homes for America) is a research institution located in Lincoln, NE. References Retrieved from "http://en.openei.org/w/index.php?title=University_of_Nebraska-Lincoln_and_University_of_Florida_(Building_Energy_Efficient_Homes_for_America)&oldid=37933

164

Accelerating Energy Savings Performance Contracting Through Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Provides...

165

Energy Sustainability: Role of Makerere University inRole of Makerere University in  

E-Print Network [OSTI]

and capital intensiveintensive · Use of solar energy · Government's attempts to provide subsidies toEnergy Sustainability: Role of Makerere University inRole of Makerere University in Facing prestigious Universities in Africa and the region. · Offers both undergraduate and postgraduate courses

Ge, Zigang

166

University Research Reactor Task Force to the Nuclear Energy Research  

Broader source: Energy.gov (indexed) [DOE]

University Research Reactor Task Force to the Nuclear Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel," universities, and other sources pertaining to university reactors including their research and training capabilities, costs to operate, and operating data, and * Provide DOE with clear, near-term recommendations as to actions that should be taken by the Federal Government and a long-term strategy to assure the continued operation of vital university reactor facilities in

167

Four Minority Universities are 1999 Fossil Energy Grant Winners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 19, 1999 August 19, 1999 Students, Teachers at Four Minority Universities Are 1999 Winners of Fossil Energy Research Grants For students and professors at four minority universities, the upcoming school year will include not only time in the classroom but also work in the research laboratory, looking for answers to such energy problems as air pollution and declining domestic oil production. The four institutions were named today by Energy Secretary Bill Richardson as the 1999 winners in the Department of Energy's annual competition for fossil energy research ideas from the nation's Historically Black Colleges and Universities and Other Minority Institutions. Hampton University, Hampton, VA, took top honors with three proposals selected for funding. Other grants will go to Prairie View A&M University, Prairie View, TX; North Carolina A&T State University, Greensboro, NC; and Florida International University, Miami, FL.

168

University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE  

E-Print Network [OSTI]

at Manoa Solving Hawaii's Energy Challenges: The Hawaii Clean Energy Initiative Rick Rocheleau Director an integrated, comprehensive, & sustained system of Earth observation, research & education. >$85 million1HNEI University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE HNEI University of Hawaii

Firestone, Jeremy

169

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored by the Renewable Energy Trust (RET), as administered

Massachusetts at Amherst, University of

170

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored by the Massachusetts Department of Energy Resources (DOER

Massachusetts at Amherst, University of

171

Energy Department Recognizes University of Utah in Better Buildings Challenge  

Office of Energy Efficiency and Renewable Energy (EERE)

As part of President Obamas Better Buildings Challenge, the Energy Department recognized the University of Utah today for its leadership in energy efficiency and for reducing energy use by 40 percent in a historic campus building, saving the University $57,000 a year.

172

Energy Systems Modeling Symposium Co-Sponsored by  

E-Print Network [OSTI]

and Sustainability ­ State of Ohio Perspective Mark Shanahan Director, Ohio Air Quality Development Authority, Energy Sport? Systems Modeling for Energy Policy and Planning Fred Murphy Temple University Energy Policy Hitzhusen Agricultural, Environmental & Development Economics, OSU Challenges of Incorporating Social Costs

173

Universal Carbon Credits Limited | Open Energy Information  

Open Energy Info (EERE)

Universal Carbon Credits Limited Jump to: navigation, search Name: Universal Carbon Credits Limited Place: London, England, United Kingdom Zip: EC3A6DF Sector: Carbon Product:...

174

Property:CSC-University | Open Energy Information  

Open Energy Info (EERE)

+ Mt Princeton Hot Springs Geothermal Area + University of North Dakota + R Rye Patch Geothermal Area + University of North Dakota + W Waunita Hot Springs Geothermal Area +...

175

University Park Data Dashboard | Department of Energy  

Energy Savers [EERE]

Data Dashboard University Park Data Dashboard The data dashboard for University Park, Maryland, a partner in the Better Buildings Neighborhood Program. bbnpbban0003809pmcdashb...

176

University of Johannesburg | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: University of Johannesburg Place: Auckland Park, South Africa Zip: 2006 Sector: Solar Product: University with solar research activities....

177

University of California, Berkeley Fall 2003 Energy and Resources Group  

E-Print Network [OSTI]

the seminar will provide: - A history of ideas about energy and development. #12;Energy and Development Page 2University of California, Berkeley Fall 2003 Energy and Resources Group Advanced Graduate Seminar Public Policy 290 - Energy and Development Professor Daniel M. Kammen Energy and Resources Group

Kammen, Daniel M.

178

Texas Tech University Energy Savings Program February 2008 Update  

E-Print Network [OSTI]

consumption for the same time period from the previous year normalized to current energy costs and campusTexas Tech University Energy Savings Program February 2008 Update The Texas Tech Energy Savings by State Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Texas Tech

Gelfond, Michael

179

North Carolina State University | Open Energy Information  

Open Energy Info (EERE)

Place Raleigh, North Carolina Place Raleigh, North Carolina Zip 27695 Sector Biofuels, Biomass, Solar Product Public university in North Carolina, with research interests in biofuels, solar, and biomass-to-energy. Coordinates 37.760748°, -81.161183° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.760748,"lon":-81.161183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Four Minority Universities Selected for Fossil Energy Research Grants |  

Broader source: Energy.gov (indexed) [DOE]

Four Minority Universities Selected for Fossil Energy Research Four Minority Universities Selected for Fossil Energy Research Grants Four Minority Universities Selected for Fossil Energy Research Grants July 28, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy has selected four universities to receive grants under the department's annual competition for fossil energy research ideas from Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). "I want to congratulate the winners of this year's competition, and thank them for their hard work," said Charles McConnell, Chief Operating Officer of DOE's Office of Fossil Energy. "Identifying the next generation of leaders and innovators is one of the keys to strengthening our economy and creating the clean energy jobs of tomorrow."

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EA-1903: Kansas State University Zond Wind Energy Project, Manhattan,  

Broader source: Energy.gov (indexed) [DOE]

3: Kansas State University Zond Wind Energy Project, 3: Kansas State University Zond Wind Energy Project, Manhattan, Kansas EA-1903: Kansas State University Zond Wind Energy Project, Manhattan, Kansas SUMMARY This EA evaluates the potential environmental impacts of a proposal to use Congressional Directed funds to develop the Great Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 21, 2013 EA-1903: Notice of Extension Kansas State University Zond Wind Energy Project, Manhattan, Kansas September 11, 2013 EA-1903: Draft Environmental Assessment Kansas State University Zond Wind Energy Project, Manhattan, Kansas September 11, 2013

182

Acoustic Energy and Stellar Models  

Science Journals Connector (OSTI)

... the thermodynamic limitations of the generation of acoustic energy in stars. Quite recently, M. Schwarzschild and R. S. Richardson suggested that the transfer of energy in stars may, ... a heat engine, and this consideration does not support the views expressed by Richardson and Schwarzschild in dealing with the stellar model of red giants. In this model they suggest ...

1949-08-20T23:59:59.000Z

183

Tapping University Students for Energy Efficiency Business Solutions  

Broader source: Energy.gov [DOE]

Learn how university students are developing energy efficiency solutions that private-sector organizations and state and local governments can replicate.

184

Fusion Energy Greg Hammett & Russell Kulsred Princeton University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spitzer's 100th: Founding PPPL & Pioneering Work in Fusion Energy Greg Hammett & Russell Kulsred Princeton University Wednesday, Dec 4, 2013 - 4:15PM MBG AUDITORIUM Refreshments at...

185

Energy Department Announces New University-Led Projects to Create...  

Broader source: Energy.gov (indexed) [DOE]

Projects to Create More Efficient, Lower Cost Concentrating Solar Power Systems Energy Department Announces New University-Led Projects to Create More Efficient, Lower Cost...

186

Tribal Colleges and Universities | OSTI, US Dept of Energy, Office...  

Office of Scientific and Technical Information (OSTI)

Information Clearinghouse DOE Tribal College Student Summer Internships Resource Links White House Initiative on Tribal Colleges & Universities DOE Tribal Energy Program...

187

Universal asymptotic umbrella for hydraulic fracture modeling  

E-Print Network [OSTI]

The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

Linkov, Aleksandr M

2014-01-01T23:59:59.000Z

188

Energy Modeling Community Resources  

Broader source: Energy.gov [DOE]

Performers:-- National Renewable Energy Lab Golden, CO-- International Building Performance Simulation Association (IBPSA)-USA San Francisco, CA-- Rocky Mountain Institute Boulder, CO-- Big Ladder Software Denver, CO

189

Secretary Chu to Visit Morgan State University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chu to Visit Morgan State University Chu to Visit Morgan State University Secretary Chu to Visit Morgan State University March 9, 2011 - 12:00am Addthis Washington, DC - On Thursday, March 10 U.S. Energy Secretary Steven Chu will visit Morgan State University in Baltimore. Secretary Chu will tour the University's Center for Advanced Energy Systems and Environmental Control Technologies (CAESECT) and highlight Morgan State's commitment to helping the nation win the future through science, technology, engineering and mathematics (STEM) education. Morgan State University is part of a consortium that is leading the Department's Energy Innovation Hub focused on making buildings more energy efficient. Located at the Philadelphia Navy Yard Clean Energy campus, the Hub will bring together leading researchers from academia, two U.S.

190

Secretary Chu to Visit Morgan State University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Morgan State University Morgan State University Secretary Chu to Visit Morgan State University March 9, 2011 - 12:00am Addthis Washington, DC - On Thursday, March 10 U.S. Energy Secretary Steven Chu will visit Morgan State University in Baltimore. Secretary Chu will tour the University's Center for Advanced Energy Systems and Environmental Control Technologies (CAESECT) and highlight Morgan State's commitment to helping the nation win the future through science, technology, engineering and mathematics (STEM) education. Morgan State University is part of a consortium that is leading the Department's Energy Innovation Hub focused on making buildings more energy efficient. Located at the Philadelphia Navy Yard Clean Energy campus, the Hub will bring together leading researchers from academia, two U.S.

191

Conformal Higgs model: predicted dark energy density  

E-Print Network [OSTI]

Postulated universal Weyl conformal scaling symmetry provides an alternative to the $\\Lambda$CDM paradigm for cosmology. Recent applications to galactic rotation velocities, Hubble expansion, and a model of dark galactic halos explain qualitative phenomena and fit observed data without invoking dark matter. Significant revision of theory relevant to galactic collisions and clusters is implied, but not yet tested. Dark energy is found to be a consequence of conformal symmetry for the Higgs scalar field of electroweak physics. The present paper tests this implication. The conformal Higgs model acquires a gravitational effect described by a modified Friedmann cosmic evolution equation, shown to fit cosmological data going back to the cosmic microwave background epoch. The tachyonic mass parameter of the Higgs model becomes dark energy in the Friedmann equation. A dynamical model of this parameter, analogous to the Higgs mechanism for gauge boson mass, is derived and tested here. An approximate calculation yields a result consistent with the empirical magnitude inferred from Hubble expansion.

R. K. Nesbet

2014-11-03T23:59:59.000Z

192

Energy Demand Modeling  

Science Journals Connector (OSTI)

From the end of World War II until the early 1970s there was a strong and steady increase in the demand for energy. The abundant supplies of fossil and other ... an actual fall in the real price of energy of abou...

S. L. Schwartz

1980-01-01T23:59:59.000Z

193

DOE Selects 26 Universities to Assess Industrial Energy Efficiency |  

Broader source: Energy.gov (indexed) [DOE]

26 Universities to Assess Industrial Energy Efficiency 26 Universities to Assess Industrial Energy Efficiency DOE Selects 26 Universities to Assess Industrial Energy Efficiency July 24, 2006 - 4:32pm Addthis Smart use of energy key to America's industrial and manufacturing competitiveness WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the selection of 26 universities across the country for negotiation of award to set up and operate regional Industrial Assessment Centers (IAC). The centers will employ faculty and students to assist small-to-medium sized American manufacturing plants to use energy more efficiently. Based on DOE's Office of Energy Efficiency and Renewable Energy Industrial Technologies Program requirement, anticipated funding could be up to $6 million over the next two years (FY'07 and FY'08).

194

Unique University and Utility Team Reduces Energy and Pollutants  

E-Print Network [OSTI]

In 1992 the Center for Energy Systems Research of the College of Engineering and Applied Sciences and the Arizona State University (ASU) Facilities Management Department formed a unique Demand Side Management (DSM) team dedicated to reducing energy...

Smith, K. L.; Traill, D. A.; Sears, R. L.; Spielman, M.

195

Universities Across the United States Make Strides in Energy Education |  

Broader source: Energy.gov (indexed) [DOE]

Universities Across the United States Make Strides in Energy Universities Across the United States Make Strides in Energy Education Universities Across the United States Make Strides in Energy Education April 12, 2010 - 1:19pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy When I was in college, money wasn't exactly flying in the door. I ate enough frozen pizza to last a lifetime in the name of fiscal responsibility. But there were certainly better ways to save money than changing my diet, and now I know a few of them. Energized students on campuses across the United States are learning at a young age just how much money and energy they can save by taking some easy, energy-saving steps. A new video on EERE's Energy Empowers website highlights an inspiring energy-saving contest held by a group at the

196

Regions in Energy Market Models  

SciTech Connect (OSTI)

This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

Short, W.

2007-02-01T23:59:59.000Z

197

Four Minority Universities Selected for Fossil Energy Research Grants |  

Broader source: Energy.gov (indexed) [DOE]

May 20, 2010 - 1:00pm May 20, 2010 - 1:00pm Addthis Washington, DC - Innovative fossil energy research projects will be investigated by students and faculty from four winning institutions in the Department of Energy's annual competition for fossil energy research ideas from the nation's Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). Students and faculty from the chosen universities - the University of Texas, El Paso; Southern University and A&M College; Tennessee State University; and the University of Texas, San Antonio - will investigate projects dealing with computational energy sciences, material sciences, and sensors and controls for use in fossil fuel power systems. Established in 1984, the HBCU/OMI program was designed to encourage

198

National Energy Modeling System (NEMS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

199

Texas Tech University Energy Savings Program July 2009 Update  

E-Print Network [OSTI]

July 2009 Energy Report #12;B. Current Energy Reduction Plans 1. Campus Energy Use a. E&G Texas Tech Energy Report #12;3. Fleet Fuel Management Plan (Vehicles) In FY06, Governor Perry's Executive Order RP University established the following goals related to vehicles: Reduce fuel consumption by 5% per year

Gelfond, Michael

200

Texas Tech University Energy Savings Program July 2009 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For the first Program for four energy projects. 1) AHU VFD Project ­ Final cost of $558,904 with a payback of 5.2 yearsTexas Tech University Energy Savings Program July 2009 Update The Texas Tech Energy Savings Update

Zhuang, Yu

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Texas Tech University Energy Savings Program October 2010 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footage Total 15.1357 14.7573 15.5852 3.0% Page 2 of 6 October 2010 Energy Report #12;3. Fleet Fuel ManagementTexas Tech University Energy Savings Program October 2010 Update The Texas Tech Energy Savings

Zhuang, Yu

202

University of Geneva, Institute for Environmental Sciences, Energy Group  

E-Print Network [OSTI]

environment. Project and job description: Given the intermittency of many renewable energy sources (e.g. solarUniversity of Geneva, Institute for Environmental Sciences, Energy Group At the Institute of energy storage technologies. The successful applicant will become member of the Energy Group within

Halazonetis, Thanos

203

Texas Tech University Energy Savings Program January 2007 Update  

E-Print Network [OSTI]

is currently in line to achieve its energy reduction goal. A. Energy Goals 1. Campus Energy Use Energy units.3 11.9 FY 07 11.1 Page 2 of 4 January 07 Energy Report #12;B. Current Energy Reduction Plans The Texas of fuel and traveled 2,279,692 miles. In FY2005 Texas Tech University consumed 196,059 gallons of fuel

Gelfond, Michael

204

Policy modeling for industrial energy use  

SciTech Connect (OSTI)

The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

2003-03-01T23:59:59.000Z

205

Models of National Energy Systems -focusing on biomass energy  

E-Print Network [OSTI]

Models of National Energy Systems - focusing on biomass energy Poul Erik Grohnheit Systems Analysis models · International development of large energy models · Biomass energy · Upstream expansion of the Pan European model for biomass and crops · Basic elements in a crop model for Denmark· Basic elements

206

Energy Department Announces $5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced a $5 million investment to develop and demonstrate new residential energy efficiency solutions, and that will support building energy efficiency research at universities and colleges.

207

Energy Department and Catholic University Improve Safety of Nuclear Waste |  

Broader source: Energy.gov (indexed) [DOE]

Catholic University Improve Safety of Nuclear Catholic University Improve Safety of Nuclear Waste Energy Department and Catholic University Improve Safety of Nuclear Waste January 30, 2013 - 12:51pm Addthis Secretary of Energy Steven Chu participates in a tour of Catholic University's Vitreous State Laboratory. | Photo courtesy of the Office of Environmental Management. Secretary of Energy Steven Chu participates in a tour of Catholic University's Vitreous State Laboratory. | Photo courtesy of the Office of Environmental Management. David Sheeley David Sheeley Editor/Writer What does this project do? Hanford treats and immobilizes significant quantities of legacy nuclear waste left from the manufacture of plutonium during World War II and the Cold War. Secretary Steven Chu recently visited Catholic University's Vitreous

208

Energy Secretary Hails University of Maine's Wind Research | Department of  

Broader source: Energy.gov (indexed) [DOE]

Hails University of Maine's Wind Research Hails University of Maine's Wind Research Energy Secretary Hails University of Maine's Wind Research June 16, 2010 - 10:51am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Energy Secretary Steven Chu praised the University of Maine on Monday, calling the school's offshore wind technology program "truly impressive." Secretary Chu visited the university's Orono campus to learn more about its 10-year plan to design and deploy deepwater wind technology, an effort that could pave the way for the first floating commercial wind farm in the United States. "It's part of the leadership Maine has shown in going toward a sustainable economy," Chu told the university's newspaper. Invited by Maine Sen. Susan Collins, Chu was given a tour of the

209

From the Building to the Grid: An Energy Revolution and Modeling...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From the Building to the Grid: An Energy Revolution and Modeling Challenge June 6 and 7, 2012 University College Dublin, Electricity Research Centre Location: UCD, Engineering...

210

From the Building to the Grid: An Energy Revolution and Modeling...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Modeling Challenge Workshop Proceedings Benjamin Kroposki and Connie Komomua National Renewable Energy Laboratory Mark O'Malley University College Dublin Technical Report NREL...

211

Former Student Turns Thesis Into Energy Savings for Taylor University |  

Broader source: Energy.gov (indexed) [DOE]

Former Student Turns Thesis Into Energy Savings for Taylor Former Student Turns Thesis Into Energy Savings for Taylor University Former Student Turns Thesis Into Energy Savings for Taylor University October 18, 2010 - 10:00am Addthis Kevin Crosby, Taylor University’s first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Kevin Crosby, Taylor University's first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Maya Payne Smart Former Writer for Energy Empowers, EERE Not long ago Kevin Crosby was an engineering major and the president of Taylor University's student environmental club, Stewards of Creation.

212

Former Student Turns Thesis Into Energy Savings for Taylor University |  

Broader source: Energy.gov (indexed) [DOE]

Former Student Turns Thesis Into Energy Savings for Taylor Former Student Turns Thesis Into Energy Savings for Taylor University Former Student Turns Thesis Into Energy Savings for Taylor University October 18, 2010 - 10:00am Addthis Kevin Crosby, Taylor University’s first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Kevin Crosby, Taylor University's first coordinator of stewardship and sustainability, promotes environmental awareness among students, faculty and staff. | Photo courtesy of Andrew Ketchum, The Echo | Maya Payne Smart Former Writer for Energy Empowers, EERE Not long ago Kevin Crosby was an engineering major and the president of Taylor University's student environmental club, Stewards of Creation.

213

Comment on ''Interacting holographic dark energy model and generalized second law of thermodynamics in a non-flat universe{sup ,} by M.R. Setare (JCAP 01 (2007) 023)  

SciTech Connect (OSTI)

Author of ref. 1, M.R. Setare (JCAP 01 (2007) 023), by redefining the event horizon measured from the sphere of the horizon as the system's IR cut-off for an interacting holographic dark energy model in a non-flat universe, showed that the generalized second law of thermodynamics is satisfied for the special range of the deceleration parameter. His paper includes an erroneous calculation of the entropy of the cold dark matter. Also there are some missing terms and some misprints in the equations of his paper. Here we present that his conclusion is not true and the generalized second law is violated for the present time independently of the deceleration parameter.

Karami, K., E-mail: kkarami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

2010-01-01T23:59:59.000Z

214

California State University CSU | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: California State University (CSU) Place: Los Angeles, California Zip: 90802-4210 Sector: Solar Product: One of the largest higher education...

215

Colorado State University Technology Marketing Summaries - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

via incentive pricing. Also, a complementary visualization technique for assessing demand response plans and peak load shifts. Colorado State University 09262014 Industrial...

216

University of Maine | Open Energy Information  

Open Energy Info (EERE)

Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: University of Maine1 This article is a stub. You can help OpenEI by...

217

Modeling Solar Energy Technology Evolution breakout session ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modeling Solar Energy Technology Evolution breakout session Modeling Solar Energy Technology Evolution breakout session This presentation summarizes the information given on the...

218

Community Renewable Energy Deployment: University of California at at Davis  

Open Energy Info (EERE)

at at Davis at at Davis Project Jump to: navigation, search Name Community Renewable Energy Deployment: University of California at at Davis Project Agency/Company /Organization US Department of Energy Focus Area Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Other, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Hydrogen and Fuel Cells, - Solar Pv, Biomass - Waste To Energy Phase Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality University of California at Davis References Community Renewable Energy Deployment: University of California at at Davis Project[1] Contents

219

100% DD Energy Model Update  

SciTech Connect (OSTI)

The Miami Science Museum energy model has been used during DD to test the building??s potential for energy savings as measured by ASHRAE 90.1-2007 Appendix G. This standard compares the designed building??s yearly energy cost with that of a code-compliant building. The building is currently on track show 20% or better improvement over the ASHRAE 90.1-2007 Appendix G baseline; this performance would ensure minimum compliance with both LEED 2.2 and current Florida Energy Code, which both reference a less strict version of ASHRAE 90.1. In addition to being an exercise in energy code compliance, the energy model has been used as a design tool to show the relative performance benefit of individual energy conservation measures (ECMs). These ECMs are areas where the design team has improved upon code-minimum design paths to improve the energy performance of the building. By adding ECMs one a time to a code-compliant baseline building, the current analysis identifies which ECMs are most effective in helping the building meet its energy performance goals.

None

2011-06-30T23:59:59.000Z

220

Energy and momentum of Bianchi Type VI_h Universes  

E-Print Network [OSTI]

We obtain the energy and momentum of the Bianchi type VI_h universes using different prescriptions for the energy-momentum complexes in the framework of general relativity. The energy and momentum of the Bianchi VI_h universe are found to be zero for the parameter h = -1 of the metric. The vanishing of these results support the conjecture of Tryon that Universe must have a zero net value for all conserved quantities.This also supports the work of Nathan Rosen with the Robertson-Walker metric. Moreover, it raises an interesting question: "Why h=-1 case is so special?"

S. K. Tripathy; B. Mishra; G. K. Pandey; A. K. Singh; T. Kumar; S. S. Xulu

2015-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy and momentum of Bianchi Type VI_h Universes  

E-Print Network [OSTI]

We obtain the energy and momentum of the Bianchi type VI_h universes using different prescriptions for the energy-momentum complexes in the framework of general relativity. The energy and momentum of the Bianchi VI_h universe are found to be zero for the parameter h = -1 of the metric. The vanishing of these results support the conjecture of Tryon that Universe must have a zero net value for all conserved quantities.This also supports the work of Nathan Rosen with the Robertson-Walker metric. Moreover, it raises an interesting question: "Why h=-1 case is so special?"

Tripathy, S K; Pandey, G K; Singh, A K; Kumar, T; Xulu, S S

2015-01-01T23:59:59.000Z

222

Energy Saving Guidelines for Portland State University Heating and Ventilation  

E-Print Network [OSTI]

Energy Saving Guidelines for Portland State University Heating and Ventilation Conditioned spaces when a space is not being occupied and be selected with energy efficiency and safety as top priorities scheduling team to consolidate activities into energy efficient buildings on campus. Purchasing When

Caughman, John

223

Cardiff University Distinguished Lecture Symposium Advances in Solar Energy  

E-Print Network [OSTI]

Cardiff University Distinguished Lecture Symposium Advances in Solar Energy Thursday 22nd March prospects for inorganic thin film photovoltaic solar cells for large scale energy generation 2:55 Dr Emyr:50 Professor James Durrant (Imperial College London, England) Photochemical approaches to solar energy

Martin, Ralph R.

224

ENERGY STAR Jeopardy History Facts Universities Products Other  

E-Print Network [OSTI]

ENERGY STAR Jeopardy History Facts Universities Products Other 10 10 10 10 10 20 20 20 20 20 30 30 30 30 30 40 40 40 40 40 50 50 50 50 50 #12;In what year did ENERGY STAR start? A)2002 B)2008 C)1992 D)1999 #12;Answer: C) 1992! In 1992 the US Environmental Protection Agency (EPA) introduced ENERGY STAR

Brownstone, Rob

225

Interacting generalized Chaplygin gas model in non-flat universe  

E-Print Network [OSTI]

We employ the generalized Chaplygin gas of interacting dark energy to obtain the equation of state for the generalized Chaplygin gas energy density in non-flat universe. By choosing a negative value for $B$ we see that $w_{\\rm \\Lambda}^{eff}< -1$, that corresponds to a universe dominated by phantom dark energy.

M R Setare

2007-11-04T23:59:59.000Z

226

Capacity Building Project with Howard University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Capacity Building Project with Howard University Capacity Building Project with Howard University Capacity Building Project with Howard University The purpose of this initiative is to build community capacity for public participation in environmental and energy decision making. The target communities are those impacted by U.S. Department of Energy (DOE) facilities and in Washington, DC, the DOE Headquarters host community. The primary focus is on environmental justice communities-low-income and minority communities. Capacity Building Project with Howard University More Documents & Publications National Conference of Black Mayors, Inc. Capacity Building Project with Howard University The State of Environmental Justice in America 2010 Conference Environmental Justice at the U.S. Department of Energy - A Decade of

227

Energy: Nuclear Technology Status - Symposium at Northwestern University  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Symposium at Nuclear Energy Symposium at Northwestern University (Oct. 2011) Workshops Nuclear Energy Symposium @ Northwestern University Symposium Overview & Agenda About the Annual Technical Meeting Annual Technical Meeting Information Join us on Facebook Follow us on Twitter 48th Annual Technical Meeting of Society of Engineering Sciences Northwestern University, October 12-14, 2011 | http://ses2011.org/ Bookmark and Share Fluid, Thermal and Energy Track Symposium 2.6, "Energy: Nuclear Energy Technology" Chair: Roger Blomquist Session date: Thursday, Oct 13, 2011 Sixteen papers by world-leading experts in nuclear technology from Argonne National Laboratory will be presented on October 13 at the Annual Technical Meeting of the Society of Engineering Sciences to be held at Northwestern

228

Nuclear Energy Panel Discussion at University of Chicago  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Energy Panel Discussion at University of Chicago Nuclear Energy Panel Discussion at University of Chicago Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Nuclear Energy Panel Discussion at University of Chicago Did you miss this event? Watch recording of "Lessons from Fukushima" The event's webcast is over, but you can still watch and/or download the

229

University of California at Davis Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

University of California at Davis Project University of California at Davis Project University of California at Davis Project November 13, 2013 - 10:45am Addthis Through an innovative public-private partnership between the University of California at Davis (UC Davis) and the West Village Community Partnership, LLC, the West Village neighborhood will create numerous opportunities for more than 3,000 faculty, staff, and students to live locally and participate in the life of the campus through energy efficiency, renewable energy, and sustainability measures. The U.S. Department of Energy provided $2.5 million in funding for this Community Renewable Energy Deployment project. Students began moving into the community's Viridian and Ramble apartments in August 2011. Phase 2 of the Ramble Apartments opened in September 2012

230

University of California at Davis Project | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

University of California at Davis Project University of California at Davis Project University of California at Davis Project November 13, 2013 - 10:45am Addthis Through an innovative public-private partnership between the University of California at Davis (UC Davis) and the West Village Community Partnership, LLC, the West Village neighborhood will create numerous opportunities for more than 3,000 faculty, staff, and students to live locally and participate in the life of the campus through energy efficiency, renewable energy, and sustainability measures. The U.S. Department of Energy provided $2.5 million in funding for this Community Renewable Energy Deployment project. Students began moving into the community's Viridian and Ramble apartments in August 2011. Phase 2 of the Ramble Apartments opened in September 2012

231

University of Oxford Energy Toolkit2011/12  

E-Print Network [OSTI]

the University achieve its energy reduction targets ­ I hope it will prove essential reading for your department carbon footprint derived from grid electricity and on-site fossil fuel use was 80,615 tonnes CO2 . We

Melham, Tom

232

University of Central Florida Students' Energy Saving Work Showcased...  

Energy Savers [EERE]

a new video encouraging college students to help America save energy, save money and cut pollution. The video highlights the work of students at the University of Central Florida...

233

Universities Across the United States Make Strides in Energy...  

Broader source: Energy.gov (indexed) [DOE]

contest held by a group at the University of Central Florida called UCF Sustainability and Energy Management. The student-led group has held a contest for the last four...

234

EFRC Overview | University of Texas Energy Frontier Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the EFRC The Center for Nano- and Molecular Science and Technology (CNM) at The University of Texas at Austin is the site of an Energy Frontier Research Center (EFRC) funded...

235

Polytechnic University of Madrid | Open Energy Information  

Open Energy Info (EERE)

Polytechnic University of Madrid Polytechnic University of Madrid Jump to: navigation, search Name Polytechnic University of Madrid Place Madrid, Spain Sector Solar Product University piloting a 2.7MW solar concentrator photovoltaic plant. Coordinates 40.4203°, -3.705774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4203,"lon":-3.705774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Oregon State University | Open Energy Information  

Open Energy Info (EERE)

University University Name Oregon State University Address Oregon State University Corvallis, OR Zip 97331-4501 Year founded 1868 Phone number 541-737-1000 Website http://oregonstate.edu/ Coordinates 44.5628538°, -123.2789766° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5628538,"lon":-123.2789766,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

237

Page 1 of 5 October 2011 Energy Report Texas Tech University Energy Savings Program  

E-Print Network [OSTI]

on energy consumption for the same time period from the previous year normalized to current energy costsPage 1 of 5 October 2011 Energy Report Texas Tech University Energy Savings Program October 2011 Update The Texas Tech Energy Savings Update is being submitted in accordance with Governor's Executive

Gelfond, Michael

238

NETL: News Release - Four Minority Universities Selected for Fossil Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, 2006 9, 2006 Four Minority Universities Selected for Fossil Energy Research Grants Projects Advance Concepts in Fossil Fuel Conversion and Utilization WASHINGTON, DC - The Department of Energy (DOE) today awarded grants to four institutions for energy research through the Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI) program. "It is indeed gratifying to see the creativity and technical expertise of our HBCU/OMI college students applied to the resolution of critical energy issues," said Assistant Secretary for Fossil Energy Jeffrey Jarrett. "The bright minds and enthusiasm that the students bring to the program are essential to fossil energy research in the 21st century." The HBCU/OMI program is carried out under DOE's Office of Fossil Energy. The program gives minority students valuable hands-on experience in developing technologies to promote the efficient and environmentally safe use of coal, oil, and natural gas. The National Energy Technology Laboratory (NETL) will manage the projects.

239

NETL: News Release - Six Minority Universities Selected for Energy Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 28, 2005 November 28, 2005 Six Minority Universities Selected for Energy Research Grants Projects to Advance Methane Hydrate Research, Produce Hydrogen, and Improve Oil Recovery Among Selections Washington, DC - The Department of Energy has selected six institutions to receive grants for energy research through its Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI) program. Carried out under the Energy Department's Office of Fossil Energy, the program gives students hands-on experience in developing technologies to promote the efficient and environmentally safe use of coal, oil, and natural gas. "I'm pleased to see the strong interest of faculty in conducting this research and training a promising group of college students," said Mark Maddox, Principal Deputy Assistant Secretary for Fossil Energy. "Their activities promote our nation's energy security and the educational growth of future energy researchers."

240

Building a Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

During the period of Dec. 1 2006 Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ? First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ? Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ? Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

Carlson, Joe A. [Michigan State University; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dark Energy and an Accelerating Universe  

Science Journals Connector (OSTI)

Dark energy is an enigma. It could be one of the greatest discoveries of modern cosmology, or it might not ... collectively they can offer no explanation for what dark energy, if it is real, could be ... to data ...

Martin Beech

2010-01-01T23:59:59.000Z

242

The University of Winnipeg Energy Management Policy  

E-Print Network [OSTI]

of carbon emission off-sets from gross emissions. Non-renewable Energy ­ Fuels the supply of which is fixed's use of energy resources. 2. Work toward achieving zero net emissions of GHGs incurred from its use and faculty that require progressively less energy expenditure and environmental impact per passenger

Martin, Jeff

243

Autotune E+ Building Energy Models  

SciTech Connect (OSTI)

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

244

Systems Advisor Model | Department of Energy  

Energy Savers [EERE]

Systems Advisor Model Systems Advisor Model Systems Advisor Model (SAM) makes performance predictions and cost of energy estimates for grid-connected power projects based on...

245

Stability of the Einstein static universe in the presence of vacuum energy  

SciTech Connect (OSTI)

The Einstein static universe has played a central role in a number of emergent scenarios recently put forward to deal with the singular origin of the standard cosmological model. Here we study the existence and stability of the Einstein static solution in the presence of vacuum energy corresponding to conformally invariant fields. We show that the presence of vacuum energy stabilizes this solution by changing it to a center equilibrium point, which is cyclically stable. This allows nonsingular emergent cosmological models to be constructed in which initially the Universe oscillates indefinitely about an initial Einstein static solution and is thus past eternal.

Carneiro, Saulo [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Instituto de Fisica, Universidade Federal da Bahia, Salvador, BA, 40210-340 (Brazil); Tavakol, Reza [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

2009-08-15T23:59:59.000Z

246

Department of Energy Awards $2 Million for National University Clean Energy  

Broader source: Energy.gov (indexed) [DOE]

Awards $2 Million for National University Awards $2 Million for National University Clean Energy Business Challenge to Jump Start Young Entrepreneurship Department of Energy Awards $2 Million for National University Clean Energy Business Challenge to Jump Start Young Entrepreneurship September 27, 2011 - 3:26pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) recently announced $2 million over three years for six regional awardees to create and administer a network of student-focused business creation competitions and inspire young entrepreneurs to found innovative, clean energy companies. Announced by DOE's Acting Assistant Secretary for Energy Efficiency and Renewable Energy, Dr. Henry Kelly, at a clean energy jobs event at the University of Florida-Gainesville yesterday, the six regional competitions

247

Department of Energy Awards $2 Million for National University Clean Energy  

Broader source: Energy.gov (indexed) [DOE]

Awards $2 Million for National University Awards $2 Million for National University Clean Energy Business Challenge to Jump Start Young Entrepreneurship Department of Energy Awards $2 Million for National University Clean Energy Business Challenge to Jump Start Young Entrepreneurship September 27, 2011 - 3:26pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) recently announced $2 million over three years for six regional awardees to create and administer a network of student-focused business creation competitions and inspire young entrepreneurs to found innovative, clean energy companies. Announced by DOE's Acting Assistant Secretary for Energy Efficiency and Renewable Energy, Dr. Henry Kelly, at a clean energy jobs event at the University of Florida-Gainesville yesterday, the six regional competitions

248

Evaluation of Energy Conservation Measures by Model Simulation  

E-Print Network [OSTI]

Evaluation of Energy Conservation Measures by Model Simulation Tim Giebler. Mingsheng Liu, and David Claridge Energy Systems Laboratory Texas A&M University Abstract Numerous energy conservation measures are being implemented into the air..., leaving the cold deck set point constant. Hot and cold deck reset schedules optimized according to outside air temperature have been studied and documented by Liu et a1 [3,4]. Knowledge of outside air dew point temperature or relative humidity can...

Giebler, T.; Liu, M.; Claridge, D. E.

1998-01-01T23:59:59.000Z

249

Model Energy Efficiency Program Impact Evaluation Guide | Open Energy  

Open Energy Info (EERE)

Model Energy Efficiency Program Impact Evaluation Guide Model Energy Efficiency Program Impact Evaluation Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Model Energy Efficiency Program Impact Evaluation Guide Focus Area: Energy Efficiency Topics: Best Practices Website: www.epa.gov/cleanenergy/documents/suca/evaluation_guide.pdf Equivalent URI: cleanenergysolutions.org/content/model-energy-efficiency-program-impac Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation This document provides guidance on model approaches for calculating energy, demand and emissions savings resulting from energy efficiency programs. It

250

Healthcare Energy: State University of New York Upstate Medical University East Wing  

Broader source: Energy.gov [DOE]

The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two hospitals. This page contains highlights from monitoring at the the East Wing, a hospital building addition at the State University of New York Upstate Medical University.

251

Arizona State University | Open Energy Information  

Open Energy Info (EERE)

University University Jump to: navigation, search Name Arizona State University Place Tempe, Arizona Zip 85287 Coordinates 33.4183159°, -111.9311939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.4183159,"lon":-111.9311939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

University of New Hampshire | Open Energy Information  

Open Energy Info (EERE)

University of New Hampshire University of New Hampshire Place Durham, New Hampshire Zip NH 03824 Sector Marine and Hydrokinetic Product A public university. Website http://http://www.unh.edu/core Coordinates 45.396265°, -122.755099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.396265,"lon":-122.755099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

253

Pennsylvania State University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

State University Hydrodynamics State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Pennsylvania State University Address Applied Research Laboratory, Garfield Thomas Water Tunnel, PO Box 30 Place State College, Pennsylvania Zip 16804 Sector Hydro Phone number (814) 865-1741 Website http://www.arl.psu.edu/facilit Coordinates 40.7919761°, -77.8608811° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7919761,"lon":-77.8608811,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

University of Lisbon | Open Energy Information  

Open Energy Info (EERE)

University of Lisbon University of Lisbon Jump to: navigation, search Name University of Lisbon Address Alameda da Universidade 1600-214 Place Lisbon, Portugal Year founded 1911 Coordinates 38.7527914°, -9.1563038° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.7527914,"lon":-9.1563038,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

University of Colorado | Open Energy Information  

Open Energy Info (EERE)

Name University of Colorado Name University of Colorado Place Boulder, Colorado Zip 80309 Product A public university in Colorado. Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Oregon State University OSU | Open Energy Information  

Open Energy Info (EERE)

OSU OSU Jump to: navigation, search Name Oregon State University OSU Address 1148 Kelley Engineering Center Place Corvallis Zip 97331 Sector Marine and Hydrokinetic Phone number 541-737-2995 Website http://www.eecs.orst.edu/msrf Region United States LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: OSU Direct Drive Power Generation Buoys This company is involved in the following MHK Technologies: Oregon State University Columbia Power Technologies Direct Drive Point Absorber This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=Oregon_State_University_OSU&oldid=678417

257

Oregon State University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Oregon State University Hydrodynamics Oregon State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Oregon State University Address O.H. Hinsdale Wave Research Laboratory, 220 Owen Hall Place Corvallis, Oregon Zip 97331 Sector Hydro Phone number (541) 737-3631 Website http://wave.oregonstate.edu Coordinates 44.5642722°, -123.2785942° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.5642722,"lon":-123.2785942,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

The Nested Universal Relation Data Model MARK LEVENE  

E-Print Network [OSTI]

The Nested Universal Relation Data Model MARK LEVENE Department of Computer Science, University, London WC1E 7HX, U.K., email: george@cs.bbk.ac.uk #12; 2 The Nested UR Model #12; 3 List of Symbols letters to be italicized are clearly indicated in the text. #12; 4 The nested universal relation (UR

Levene, Mark

259

National Energy Modeling System (United States) | Open Energy Information  

Open Energy Info (EERE)

National Energy Modeling System (United States) National Energy Modeling System (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Energy Modeling System (United States) Focus Area: Biomass Topics: Policy, Deployment, & Program Impact Website: www.eia.gov/oiaf/aeo/overview/ Equivalent URI: cleanenergysolutions.org/content/national-energy-modeling-system-unite Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Utility/Electricity Service Costs The National Energy Modeling System (NEMS) is a computer-based, energy-economy modelling system of the United States through 2030. NEMS

260

DOE Taps Universities for Turbine Technology Science | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science July 16, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy announced the selection of three projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. University researchers will investigate the chemistry and physics of advanced turbines, with the goal of promoting clean and efficient operation when fueled with coal-derived synthesis gas (syngas) and hydrogen fuels. Development of high-efficiency, ultra-clean turbine systems requires significant advances in high temperature materials science, understanding of combustion phenomena, and innovative cooling techniques to maintain integrity of turbine components. Such necessary technology advancements are

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

University of Minnesota -- Morris Wind Farm | Open Energy Information  

Open Energy Info (EERE)

-- Morris Wind Farm -- Morris Wind Farm Jump to: navigation, search Name University of Minnesota -- Morris Wind Farm Facility University of Minnesota -- Morris Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of Minnesota -- Morris Developer University of Minnesota -- Morris Energy Purchaser University of Minnesota -- Morris Location Morris MN Coordinates 45.5861111°, -95.9138889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5861111,"lon":-95.9138889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

University Coal Research | Department of Energy  

Office of Environmental Management (EM)

research alongside students who were pursuing advanced degrees in engineering, chemistry and other technical disciplines. Not only did new discoveries in energy science and...

263

NETL: News Release - Six Minority Universities Win Fossil Energy Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 7, 1995 August 7, 1995 DOE Adds New Fossil Energy Projects to Historically Black Colleges and Universities Grant Program WASHINGTON, DC - As part of its efforts to encourage more participation by minority college students and teachers in its national energy program, the Department of Energy (DOE) has selected seven natural gas, oil, and coal research projects to be carried out by teacher-student teams at historically black colleges and universities. The institutions will receive Federal research grants, each totalling $100,000 to $200,000, for fundamental research in topics ranging from improved oil and gas recovery and to the environmentally cleaner use of coal. One university, Clark Atlanta University, will also receive a separate smaller grant for a 1-year exploratory effort in oil processing.

264

Boise State University, CAES Energy Efficiency Research Institute | Open  

Open Energy Info (EERE)

Boise State University, CAES Energy Efficiency Research Institute Boise State University, CAES Energy Efficiency Research Institute Jump to: navigation, search Name Boise State University, CAES Energy Efficiency Research Institute Address 1910 University Drive Place Boise, Idaho Zip 83725 Coordinates 43.6056603°, -116.2059975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6056603,"lon":-116.2059975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

265

Inhomogeneities in dusty universe - a possible alternative to dark energy?  

E-Print Network [OSTI]

There have been of late renewed debates on the role of inhomogeneities to explain the observed late acceleration of the universe. We have looked into the problem analytically with the help of the well known spherically symmetric but inhomogeneous Lemaitre-Tolman-Bondi(LTB) model generalised to higher dimensions. It is observed that in contrast to the claim made by Kolb et al the presence of inhomogeneities as well as extra dimensions can not reverse the signature of the deceleration parameter if the matter field obeys the energy conditions. The well known Raychaudhuri equation also points to the same result. Without solving the field equations explicitly it can, however, be shown that although the total deceleration is positive everywhere nevertheless it does not exclude the possibility of having radial acceleration, even in the pure dust universe, if the angular scale factor is decelerating fast enough and vice versa. Moreover it is found that introduction of extra dimensions can not reverse the scenario. To the contrary it actually helps the decelerating process.

S. Chatterjee

2011-01-28T23:59:59.000Z

266

Texas Tech University Energy Savings Program August 2008 Update  

E-Print Network [OSTI]

,007 12.3 B. Current Energy Reduction Plans 1. Campus Energy Use a. Texas Tech has received funding from.0384 3.9374 Yearly Total 15.5367 15.1483 11.6259 3. Fleet Fuel Management Plan (Vehicles) a. In FY06 of that order, Texas Tech University established the following goals related to vehicles: · Reduce fuel

Gelfond, Michael

267

Texas Tech University Energy Savings Program May 2008 Update  

E-Print Network [OSTI]

-2 546,135 42,657 12.8 B. Current Energy Reduction Plans 1. Campus Energy Use a. Texas Tech has received.9374 Yearly Total 15.5367 15.1483 7.8947 3. Fleet Fuel Management Plan (Vehicles) a. In FY06, Governor Perry Tech University established the following goals related to vehicles: · Reduce fuel consumption by 5

Gelfond, Michael

268

University looks to hit energy reduction goal early  

E-Print Network [OSTI]

2009. In 2009, President William Powers Jr.'s Sustainability Steering Committee initiated a University plan to reduce energy and water use by 20 percent in educational and general buildings on campus. On the technical side, Thiemer said facilities staff members are monitoring buildings for potential energy waste

Texas at Austin, University of

269

Hidden negative energies in strongly accelerated universes  

Science Journals Connector (OSTI)

We point out that theories of cosmological acceleration which have equation of state, w, such that 1+w is small but positive may still secretly violate the null energy condition. This violation implies the existence of observers for whom the background has infinitely negative energy densities, despite the fact that the perturbations are free of ghosts and gradient instabilities.

Ignacy Sawicki and Alexander Vikman

2013-03-01T23:59:59.000Z

270

Regge-calculus model for the Tolman universe  

Science Journals Connector (OSTI)

A model for the Tolman universe is constructed from 600 equilateral tetrahedrons, each containing blackbody radiation, and connected so as to form a closed space. The dynamics of this universe is studied using the techniques of Regge calculus.

P. A. Collins and Ruth M. Williams

1974-11-15T23:59:59.000Z

271

The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge  

E-Print Network [OSTI]

© The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 Penn State BioEnergy# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State · The BioEnergy BridgeTM will address the full spectrum of challenges to our national priority of reducing

Lee, Dongwon

272

Design Considerations for a Universal Smart Energy Module for Energy Harvesting in Wireless  

E-Print Network [OSTI]

size and type harvester energy modules. Handling this complexity, discussing the problems, and giving]. Their goal is a cheap and easy circuit design for harvesting solar energy and storing it in a rechargeable NiDesign Considerations for a Universal Smart Energy Module for Energy Harvesting in Wireless Sensor

Turau, Volker

273

Page 1 of 5 July 2011 Energy Report Texas Tech University Energy Savings Program  

E-Print Network [OSTI]

consumption for the same time period from the previous year normalized to current energy costs and campusPage 1 of 5 July 2011 Energy Report Texas Tech University Energy Savings Program July 2011 Update The Texas Tech Energy Savings Update is being submitted in accordance with Governor's Executive Order RP 49

Gelfond, Michael

274

Retrofit Energy Savings Estimation Model | Open Energy Information  

Open Energy Info (EERE)

Retrofit Energy Savings Estimation Model Retrofit Energy Savings Estimation Model Jump to: navigation, search Tool Summary Name: Retrofit Energy Savings Estimation Model Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: btech.lbl.gov/tools/resem/resem.htm Cost: Free Language: English References: Retrofit Energy Savings Estimation Model[1] Logo: Retrofit Energy Savings Estimation Model RESEM, the Retrofit Energy Savings Estimation Model, is a PC-based tool designed to allow Department of Energy (DOE) Institutional Conservation Program (ICP) staff and participants to reliably determine the energy savings directly caused by ICP-supported retrofit measures implemented in a

275

Energy Policy The university is committed to reducing its consumption of energy and promoting low carbon, energy  

E-Print Network [OSTI]

Energy Policy June 2009 The university is committed to reducing its consumption of energy and promoting low carbon, energy saving and energy efficiency initiatives as part of its Sustainable Development programme. Tackling climate change is one of our highest priorities and this reflects UK policy. Our Energy

Haase, Markus

276

NETL: News Release - Six Minority Universities Selected for Energy Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 21, 2005 June 21, 2005 Eight Minority Universities Selected for Fossil Energy Research Grants College Students to Focus on Projects for Clean, Efficient Use of Coal WASHINGTON, DC - The Department of Energy has awarded grants to eight institutions for energy research through the Historically Black Colleges and Universities and Other Minority Institutions (HBCU) program. "It is a pleasure to see strong interest and participation in the HBCU program by such a promising group of college students," said Mark Maddox, principal deputy assistant secretary for fossil energy. "These bright minds are the key to fossil energy research of the future. The opportunity to participate in the program will not only benefit the students' educational growth but will also help secure our Nation's energy future."

277

NETL: News Release - Seven Minority Universities Selected for Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 12, 2004 April 12, 2004 Seven Minority Universities Selected for Energy Research Grants Projects to Help Meet Climate Change Initiatives Among Selections WASHINGTON, DC - The Department of Energy (DOE) announced today that it has awarded grants to seven institutions for energy research through the Historically Black Colleges and Universities and Other Minority Institutions (HBCU) program. "I'm pleased to note the growing interest and participation by HBCU college students in 21st century fossil energy research because the people who will resolve the critical issues of the next century are in college today," said Secretary of Energy Spencer Abraham. "The opportunities we offer them through this program will not only benefit their educational progress but will help secure our country's energy future."

278

Renewable Energy Technologies Financial Model (RET Finance) | Open Energy  

Open Energy Info (EERE)

Renewable Energy Technologies Financial Model (RET Finance) Renewable Energy Technologies Financial Model (RET Finance) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Technologies Financial Model (RET Finance) Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: analysis.nrel.gov/retfinance/login.asp Equivalent URI: cleanenergysolutions.org/content/renewable-energy-technologies-financi Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The RET Finance model calculates levelized cost of energy of renewable electricity generation technologies including biomass, geothermal, solar, and wind. The model calculates project earnings, detailed cash flows, and debt payments and also computes a project's levelized cost of electricity,

279

Model Ordinance for Renewable Energy Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Model Ordinance for Renewable Energy Projects Model Ordinance for Renewable Energy Projects Model Ordinance for Renewable Energy Projects < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Bioenergy Biofuels Alternative Fuel Vehicles Commercial Heating & Cooling Manufacturing Buying & Making Electricity Solar Wind Program Info State Oregon Program Type Solar/Wind Permitting Standards Provider Oregon Department of Energy '''''NOTE: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for renewable energy projects. While it was developed by the Oregon Department of Energy, the model itself has no legal or regulatory authority.'''''

280

University of Kansas | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name University of Kansas Place Lawrence, Kansas Zip 66045 Product A public university in the state of Kansas. Coordinates 44.40581°, -88.127229° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.40581,"lon":-88.127229,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

University of Michigan Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Michigan Address 1085 South University Avenue Place Ann Arbor, Michigan Zip 48109 Sector Hydro Phone number (734) 764-9432 Website http://www.engin.umich.edu/dep Coordinates 42.2757556°, -83.7362041° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2757556,"lon":-83.7362041,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

University of Toledo | Open Energy Information  

Open Energy Info (EERE)

Toledo Toledo Jump to: navigation, search Name University of Toledo Place Toledo, Ohio Zip 43606-3390 Product A student-centered public metropolitan research university. Coordinates 46.440613°, -122.847838° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.440613,"lon":-122.847838,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

University of Washington | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name University of Washington Place Seattle, Washington Product Public research university with campuses in Seattle, Tacoma, and Bothell. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

University of Maryland | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Logo: University of Maryland Name University of Maryland Address College Park, MD Zip 20742 Website http://www.umd.edu/ Coordinates 38.980666°, -76.9369189° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.980666,"lon":-76.9369189,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

The George Washington University | Open Energy Information  

Open Energy Info (EERE)

The George Washington University The George Washington University Place Washington, District of Columbia Zip 20052 Coordinates 38.8991756°, -77.0470916° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8991756,"lon":-77.0470916,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

University of Delaware | Open Energy Information  

Open Energy Info (EERE)

Delaware Delaware Jump to: navigation, search Name University of Delaware Place Newark, Delaware Sector Solar Product University with a research department leading a solar cell development consortium. Coordinates 44.690435°, -71.951685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.690435,"lon":-71.951685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

University of California Davis | Open Energy Information  

Open Energy Info (EERE)

Davis Davis Jump to: navigation, search Name University of California, Davis Place Davis, California Zip 95616 Product University in California. Coordinates 39.12868°, -79.465714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.12868,"lon":-79.465714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Northern Arizona University | Open Energy Information  

Open Energy Info (EERE)

Northern Arizona University Northern Arizona University Place Flagstaff, AZ Zip 86011 Phone number 928-523-0715 Coordinates 35.1905403°, -111.653403° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1905403,"lon":-111.653403,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

University of Pittsburgh | Open Energy Information  

Open Energy Info (EERE)

Pittsburgh Pittsburgh Jump to: navigation, search Name University of Pittsburgh Place Pittsburgh, Pennsylvania Zip 15260 Product Founded in 1787, the University of Pittsburgh is one of the oldest institutions of higher education in the United States. Coordinates 40.438335°, -79.997459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.438335,"lon":-79.997459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

University of Minnesota | Open Energy Information  

Open Energy Info (EERE)

University of Minnesota University of Minnesota Place Minneapolis, Minnesota Product Higher education research institution. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

University of Tennessee | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Tennessee Address University of Tennessee Space Center, 411 B.H. Goethert Parkway Place Tullahoma, Tennessee Zip 37388 Sector Hydro Phone number (931) 393-7269 Website http://www.utsi.edu/research/F Coordinates 35.3620235°, -86.2094342° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.3620235,"lon":-86.2094342,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Cornell University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

University Hydrodynamics University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Cornell University Address DeFrees Hydraulics Laboratory, School of Civil and Environmental Engineering, 2B20 Hollister Place Ithaca, New York Zip 14853 Sector Hydro Phone number (607) 255-5140 Website http://www.cee.cornell.edu/abo Coordinates 42.4467049°, -76.4830579° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4467049,"lon":-76.4830579,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

SIMMODEL: A DOMAIN DATA MODEL FOR WHOLE BUILDING ENERGY SIMULATION  

E-Print Network [OSTI]

2010) Commercial Buildings Energy Modeling Guidelines andrequirements for modeling of building geometry for energy

O'Donnell, James

2013-01-01T23:59:59.000Z

294

COMMUTER Model | Open Energy Information  

Open Energy Info (EERE)

COMMUTER Model COMMUTER Model Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: COMMUTER Model Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Prepare a Plan Topics: Co-benefits assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.epa.gov/oms/stateresources/policy/pag_transp.htm Cost: Free References: http://www.epa.gov/oms/stateresources/policy/pag_transp.htm Related Tools Simplified Approach for Estimating Impacts of Electricity Generation (SIMPACTS)

295

State Energy Program: Kentucky Implementation Model Resources  

Broader source: Energy.gov [DOE]

Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

296

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University EnergyEnergy--Saving Control of Hydraulic SystemsSaving Control of Hydraulic Systems  

E-Print Network [OSTI]

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University EnergyEnergy--Saving Control of Hydraulic Principle Investigator: Bin Yao Research Assistant: Song Liu School of Mechanical Engineering Purdue

Yao, Bin

297

National Energy Modeling System (NEMS) | Open Energy Information  

Open Energy Info (EERE)

National Energy Modeling System (NEMS) National Energy Modeling System (NEMS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Energy Modeling System (NEMS) Agency/Company /Organization: Energy Information Administration Sector: Energy Focus Area: Economic Development Phase: Develop Goals Topics: Policies/deployment programs Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.eia.gov/oiaf/aeo/overview/index.html OpenEI Keyword(s): EERE tool, National Energy Modeling System, NEMS Language: English References: The National Energy Modeling System: An Overview[1] Project the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and

298

University of Colorado Wins 2005 Solar Decathlon | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Colorado Wins 2005 Solar Decathlon Colorado Wins 2005 Solar Decathlon University of Colorado Wins 2005 Solar Decathlon October 14, 2005 - 11:56am Addthis Solar Village to Remain Open to Public through Oct. 16 WASHINGTON, D.C. - U.S. Secretary of Energy Samuel W. Bodman today announced that the University of Colorado took overall honors in the 2005 Solar Decathlon on the National Mall. Cornell University placed second, and California Polytechnic State University finished third. The houses will remain open to the public from 9 a.m. to 6 p.m. through Sunday, Oct. 16. "We should all be proud of what these students have accomplished," Energy Secretary Bodman said. "Through their ingenuity, their knowledge of design and engineering, and an incredible amount of determination and hard

299

Research in High Energy Physics at Duke University  

SciTech Connect (OSTI)

This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, #12;ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22; ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water-#12;lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

Kotwal, Ashutosh V. [PI] [PI; Goshaw, Al [Co-PI] [Co-PI; Kruse, Mark [Co-PI] [Co-PI; Oh, Seog [Co-PI] [Co-PI; Scholberg, Kate [Co-PI] [Co-PI; Walter, Chris [Co-PI] [Co-PI

2013-07-29T23:59:59.000Z

300

Research in High Energy Physics at Duke University  

SciTech Connect (OSTI)

This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22;{mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

2013-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL: Energy Analysis - Energy Forecasting and Modeling Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Forecasting and Modeling Energy Forecasting and Modeling The following includes summary bios of staff expertise and interests in analysis relating to energy economics, energy system planning, risk and uncertainty modeling, and energy infrastructure planning. Team Lead: Nate Blair Administrative Support: Geraly Amador Clayton Barrows Greg Brinkman Brian W Bush Stuart Cohen Carolyn Davidson Paul Denholm Victor Diakov Aron Dobos Easan Drury Kelly Eurek Janine Freeman Marissa Hummon Jennie Jorganson Jordan Macknick Trieu Mai David Mulcahy David Palchak Ben Sigrin Daniel Steinberg Patrick Sullivan Aaron Townsend Laura Vimmerstedt Andrew Weekley Owen Zinaman Photo of Clayton Barrows. Clayton Barrows Postdoctoral Researcher Areas of expertise Power system modeling Primary research interests Power and energy systems

302

University Coal Research Program 2013 Selections | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

University Coal Research Program 2013 Selections University Coal Research Program 2013 Selections University Coal Research Program 2013 Selections Since the University Coal Research Program's inception in 1979, more than 728 research projects have been funded. With a combined value in excess of $132 million, these projects have provided new insights into coal's future use, and have given more than 1,800 students invaluable experience in understanding the science and technology of coal. Attached is the list of 2013 project selections under this program. UCR_Project_Selections_2013.pdf More Documents & Publications FACT SHEET: Clean Coal University Research Awards and Project Descriptions International Nuclear Energy Research Initiative: 2008 Annual Report 2013 Annual DOE-NE Materials Research Coordination Meeting

303

Universal Scientific Industrial USI Group | Open Energy Information  

Open Energy Info (EERE)

Scientific Industrial USI Group Scientific Industrial USI Group Jump to: navigation, search Name Universal Scientific Industrial (USI Group) Place Taiwan Sector Services Product USI Group is a design and manufacturing services company that is venturing into polysilicon production. References Universal Scientific Industrial (USI Group)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Universal Scientific Industrial (USI Group) is a company located in Taiwan . References ↑ "Universal Scientific Industrial (USI Group)" Retrieved from "http://en.openei.org/w/index.php?title=Universal_Scientific_Industrial_USI_Group&oldid=352541" Categories: Clean Energy Organizations Companies

304

University Scholarship Listing Energy Production and Infrastructure Center (EPIC) Engineering Scholarship  

E-Print Network [OSTI]

A1 University Scholarship Listing Energy Production and Infrastructure Center (EPIC) Engineering within the energy production and infrastructure curriculum and/or affiliated with the Energy Production

Xie,Jiang (Linda)

305

Interacting entropy-corrected agegraphic Chaplygin gas model of dark energy  

E-Print Network [OSTI]

In this work, we consider the interacting agegraphic dark energy models with entropy correction terms due to loop quantum gravity. We study the correspondence between the Chaplygin gas energy density with the interacting entropy-corrected agegraphic dark energy models in non-flat FRW universe. We reconstruct the potentials and the dynamics of the interacting entropy-corrected agegraphic scalar field models. This model is also extended to the interacting entropy-corrected agegraphic generalized Chaplygin gas dark energy.

M. Malekjani; A. Khodam-Mohammadi

2010-04-07T23:59:59.000Z

306

University of Rhode Island | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Rhode Island Address Department of Ocean Engineering, Sheets Building, Bay Campus Place Narragansett, Rhode Island Zip 02882 Sector Hydro Phone number (401) 874-6139 Website http://www.oce.uri.edu/baycamp Coordinates 41.3983403°, -71.4893013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.3983403,"lon":-71.4893013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Colorado State University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Colorado State University Address Daryl B. Simons Building, Engineering Research Center, 1320 Campus Delivery Place Fort Collins, Colorado Zip 80523 Phone number (970) 491-8394 Website http://www.hydraulicslab.engr. Coordinates 40.575727216126°, -105.0833302192° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.575727216126,"lon":-105.0833302192,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

University of California, Berkeley | Open Energy Information  

Open Energy Info (EERE)

Berkeley Berkeley Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of California, Berkeley Address 1301 S 46th Street Place Richmond, California Zip 94804 Sector Hydro Phone number (510) 642-5705 Website http://www.coe.berkeley.edu/Su Coordinates 37.9153639°, -122.334685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9153639,"lon":-122.334685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

University of Maine Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Maine Address 208 Boardman Hall Place Orono, Maine Zip 04469 Sector Hydro Phone number (207) 581-2129 Website http://gradcatalog.umaine.edu/ Coordinates 44.9024546°, -68.6638413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9024546,"lon":-68.6638413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

University of Iowa | Open Energy Information  

Open Energy Info (EERE)

Iowa Iowa Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Iowa Address IIHR, 100 C. Maxwell Stanley Hydraulics Laboratory, 300 South Riverside Drive Place Iowa City, Iowa Zip 52242 Sector Hydro Phone number (319) 335-5237 Website http://www.iihr.uiowa.edu/ Coordinates 41.657215°, -91.541503° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.657215,"lon":-91.541503,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

University of Minnesota Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

Hydrodynamics Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of Minnesota Address St. Anthony Falls Laboratory, 2 Third Avenue SE Place Minneapolis, MN Zip 55414 Sector Hydro Phone number (612) 624-4363 Website http://www.safl.umn.edu/ Coordinates 44.9824832°, -93.2550859° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9824832,"lon":-93.2550859,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

University of New Orleans | Open Energy Information  

Open Energy Info (EERE)

Orleans Orleans Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name University of New Orleans Address School of Naval Architecture, Engineering Bldg UNO Lakefront Campus, 2000 Lakeshore Drive Place New Orleans, Louisiana Zip 70148 Sector Hydro Phone number (504) 280-7180 Website http://www.name.uno.edu/towtan Coordinates 30.0275584°, -90.0670982° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.0275584,"lon":-90.0670982,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

An energy-economic oil production model  

Science Journals Connector (OSTI)

......for more advanced energy-economic models...efficient (less energy intensive) than...hand, Germany's GDP per capita is much larger than...assumption that 100% of energy supply stems from oil. When oil demand is inelastic, this......

Peter Berg; Paul Hanz; Ian Milton

2013-04-01T23:59:59.000Z

314

Energy 101: Promoting Energy Education in the Nations Colleges and Universities  

Office of Energy Efficiency and Renewable Energy (EERE)

Increasing opportunities for community college and university students to learn about energy and ensuring the nation maintains a strong technical workforce are key goals of our Energy 101 initiative. Tomorrow, we kick off our first webinar in a series of Energy101 dialogues. Learn more about Energy 101 and find out how to register for the webinar, which focuses on teaching energy in the classroom.

315

University of Cape Town-Energy Research Centre | Open Energy Information  

Open Energy Info (EERE)

Town-Energy Research Centre Town-Energy Research Centre Jump to: navigation, search Logo: University of Cape Town-Energy Research Centre Name University of Cape Town-Energy Research Centre Address Energy Research Centre Room 6.46 6th Floor Menzies Building (Via 5th floor) Upper Campus University of Cape Town Rondebosch Cape Town Place Cape Town, South Africa Website http://www.erc.uct.ac.za/index References http://www.erc.uct.ac.za/index.htm No information has been entered for this organization. Add Organization "The Centre is an African-based multi-disciplinary energy research centre which pursues excellence in technology, policy and sustainable development research, education and capacity building programmes at a local and international level. The organisation's core activity is energy. Under the umbrella of this

316

Department of Energy Awards $5.7 Million to U.S. Universities...  

Energy Savers [EERE]

7 Million to U.S. Universities for Nuclear Energy Research Department of Energy Awards 5.7 Million to U.S. Universities for Nuclear Energy Research February 2, 2007 - 10:15am...

317

Evolution of spherical overdensities in holographic dark energy models  

E-Print Network [OSTI]

In this work we investigate the spherical collapse model in flat FRW dark energy universes. We consider the Holographic Dark Energy (HDE) model as a dynamical dark energy scenario with a slowly time-varying equation-of-state (EoS) parameter $w_{\\rm de}$ in order to evaluate the effects of the dark energy component on structure formation in the universe. We first calculate the evolution of density perturbations in the linear regime for both phantom and quintessence behavior of the HDE model and compare the results with standard Einstein-de Sitter (EdS) and $\\Lambda$CDM models. We then calculate the evolution of two characterizing parameters in the spherical collapse model, i.e., the linear density threshold $\\delta_{\\rm c}$ and the virial overdensity parameter $\\Delta_{\\rm vir}$. We show that in HDE cosmologies the growth factor $g(a)$ and the linear overdensity parameter $\\delta_{\\rm c}$ fall behind the values for a $\\Lambda$CDM universe while the virial overdensity $\\Delta_{\\rm vir}$ is larger in HDE models ...

Naderi, Tayebe; Pace, Francesco

2014-01-01T23:59:59.000Z

318

Building Energy Modeling Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Scalable Support and Training Services Platform Center-Led Projects CERC: Human Behavior, Standards and Tools to Improve Design & Operation CBERD: Building Energy Simulation &...

319

About Building Energy Modeling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

mechanical systems, and dynamic building control for energy optimization or demand response. The design use cases can exploit prescriptive guidelines rather than simulation....

320

Building Energy Simulation & Modeling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

strategies in a building or test bed equipped with a low-energy heating, ventilation, and air conditioning system. Project Impact Products: Improved design analysis tools and data,...

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building Energy Software Tools Directory: Energy Demand Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Demand Modeling Energy Demand Modeling The software is intended to be used for Energy Demand Modeling. This can be utilized from regional to national level. A Graphical User Interface of the software takes the input from the user in a quite logical and sequential manner. These input leads to output in two distinct form, first, it develops a Reference Energy System, which depicts the flow of energy from the source to sink with all the losses incorporated and second, it gives a MATLAB script file for advance post processing like graphs, visualization and optimizations to develop and evaluate the right energy mix policy frame work for a intended region. Keywords Reference Energy System, Software, GUI, Planning, Energy Demand Model EDM, Energy Policy Planning Validation/Testing

322

Energy Department Awards Cooperative Agreement to Mississippi State University  

Broader source: Energy.gov [DOE]

Cincinnati The U.S. Department of Energy (DOE) today awarded a cooperative agreement to Mississippi State University, Institute for Clean Energy Technology (MSU-ICET), to continue research efforts in the evaluation of High-Efficiency Particulate Air Filters (HEPA) and other technologies to enhance nuclear safety in the defense waste complex. The total value of the cooperative agreement over five years is $5 million. The project period of the cooperative agreement will be from January 20, 2015 through January 19, 2020.

323

Evaluating Energy Efficiency Policies with Energy-Economy Models  

SciTech Connect (OSTI)

The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

2010-08-01T23:59:59.000Z

324

Modified holographic Ricci dark energy coupled to interacting relativistic and non-relativistic dark matter in the nonflat universe  

E-Print Network [OSTI]

The modified holographic Ricci dark energy coupled to interacting relativistic and non-relativistic dark matter is considered in the nonflat Friedmann-Robertson-Walker universe. Through examining the deceleration parameter, one can find that the transition time of the Universe from decelerating to accelerating phase in the interacting holographic Ricci dark energy model is close to that in the $\\Lambda$ cold dark matter model. The evolution of modified holographic Ricci dark energy's state parameter and the evolution of dark matter and dark energy's densities shows that the dark energy holds the dominant position from the near past to the future. By studying the statefinder diagnostic and the evolution of the total pressure, one can find that this model could explain the Universe's transition from the radiation to accelerating expansion stage through the dust stage. According to the $Om$ diagnostic, it is easy to find that when the interaction is weak and the proportion of relativistic dark matter in total da...

Li, En-Kun; Geng, Jin-Ling

2014-01-01T23:59:59.000Z

325

University of california | Open Energy Information  

Open Energy Info (EERE)

california california Jump to: navigation, search Name Energy Biosciences Institute Address 146 Calvin Laboratory Place Berkeley, California Zip 94720 Region Bay Area Number of employees 501-1000 Year founded 2007 Phone number 6103294450 Coordinates 37.871005°, -122.2539563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.871005,"lon":-122.2539563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Bioenergy Technologies Office Judges Washington State University Energy Competition  

Broader source: Energy.gov [DOE]

Washington State University is hosting the Imagine Tomorrow competition to challenge high school students to explore new ways to support the transition to alternative energy sources. The competition, held on May 30June 1, 2014, asks students to work together in teams to research topics related to biofuels, technology, behavior, or design.

327

Texas Tech University Energy Savings Program April 2010 Update  

E-Print Network [OSTI]

Quarter 12.0 12.6 4th Quarter 11.3 11.9 Yearly Average 11.6 12.2 B. Current Energy Reduction Plans 1.4994 -0.1% 3. Fleet Fuel Management Plan (Vehicles) In FY06, Governor Perry's Executive Order RP-49;that order, Texas Tech University established the following goals related to vehicles: Reduce fuel

Gelfond, Michael

328

Northern Arizona University Wind Project | Open Energy Information  

Open Energy Info (EERE)

University Wind Project University Wind Project Jump to: navigation, search Name Northern Arizona University Wind Project Facility Northern Arizona University Sector Wind energy Facility Type Community Wind Location AZ Coordinates 35.185944°, -111.65564° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.185944,"lon":-111.65564,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

SEEWEC Consortium lead partner Ghent University | Open Energy Information  

Open Energy Info (EERE)

SEEWEC Consortium lead partner Ghent University SEEWEC Consortium lead partner Ghent University Jump to: navigation, search Name SEEWEC Consortium lead partner Ghent University Address Sint Pietersnieuwstraat 41 Place Gent Zip 9000 Sector Marine and Hydrokinetic Website http://www.seewec.org Region Belgium LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This company is involved in the following MHK Projects: SEEWEC Consortium Brevik NO This company is involved in the following MHK Technologies: FO This article is a stub. You can help OpenEI by expanding it. Retrieved from "http://en.openei.org/w/index.php?title=SEEWEC_Consortium_lead_partner_Ghent_University&oldid=678456" Categories: Clean Energy Organizations

330

Western Illinois University Wind Project | Open Energy Information  

Open Energy Info (EERE)

Illinois University Wind Project Illinois University Wind Project Jump to: navigation, search Name Western Illinois University Wind Project Facility Western Illinois University Sector Wind energy Facility Type Community Wind Location IL Number of Units 1 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 120256 References Wind Powering America[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

331

Kansas State University Wind Project | Open Energy Information  

Open Energy Info (EERE)

State University Wind Project State University Wind Project Jump to: navigation, search Name Kansas State University Wind Project Facility Kansas State University Sector Wind energy Facility Type Community Wind Location KS Coordinates 39.199005°, -96.581673° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.199005,"lon":-96.581673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Cosmological supersymmetric model of dark energy  

Science Journals Connector (OSTI)

Recently, a supersymmetric model of dark energy coupled to cold dark matter, the supersymmetron, has been proposed. In the absence of cold dark matter, the supersymmetron field converges to a supersymmetric minimum with a vanishing cosmological constant. When cold dark matter is present, the supersymmetron evolves to a matter-dependent minimum where its energy density does not vanish and could lead to the present acceleration of the Universe. The supersymmetron generates a short-ranged fifth force which evades gravitational tests. It could lead to observable signatures on structure formation due to a very strong coupling to dark matter. We investigate the cosmological evolution of the field, focusing on the linear perturbations and the spherical collapse and find that observable modifications in structure formation can indeed exist. Unfortunately, we find that when the growth rate of perturbations is in agreement with observations, an additional cosmological constant is required to account for dark energy. In this case, effects on large-scale structures are still present at the nonlinear level which are investigated using the spherical collapse approach.

Philippe Brax; Anne-Christine Davis; Hans A. Winther

2012-04-18T23:59:59.000Z

333

U.S. Department of Energy Selects Michigan State University To...  

Broader source: Energy.gov (indexed) [DOE]

Michigan State University To Design and Establish Facility for Rare Isotope Beams U.S. Department of Energy Selects Michigan State University To Design and Establish Facility for...

334

Directory of Energy Information Administration models, 1990  

SciTech Connect (OSTI)

This directory revises and updates the Directory of Energy Information Administration Models, DOE/EIA-0293(89), Energy Information Administration (EIA), US Department of Energy, May 1989. The major changes are the inclusion of the Building Energy End-Use Model (BEEM-PC), Residential Energy End-Use Model (REEM-PC), the Refinery Yield Model Spreadsheet System (RYMSS-PC), and the Capital Stock Model (CAPSTOCK-PC). Also, the following models have been inactivated: Energy Disaggregated Input-Output Model (EDIO), Household Model of Energy (HOME3-PC), Commercial Sector Energy Model (CSEM-PC), Outer Continental Shelf Oil and Gas Supply Model (OCSM), and the Stock Module of the Intermediate Future Forecasting System (STOCK). This directory contains descriptions about each basic and auxiliary model, including the title, acronym, purpose, and type, followed by more detailed information on characteristics, uses, and requirements. For developing models, limited information is provided. Sources for additional information are identified. Included in this directory are 38 EIA models active as of March 1, 1990, as well as the PC-AEO Forecasting Model Overview and the three Subsystems for the Short-Term Integrated Forecasting System (STIFS) Model. Models that run on personal computers are identified by PC'' as part of the acronym.

Not Available

1990-06-04T23:59:59.000Z

335

Building Technologies Office: Energy Modeling Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling Software Modeling Software Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration Program (CBI) research and are used in modeling current CBI projects. Modeling helps architects and building designers quickly identify the most cost-effective and energy-saving measures. Graphic of the EnergyPlus software logo. EnergyPlus - An award-winning new-generation building energy simulation program from the creators of BLAST and DOE-2. EnergyPlus models heating, cooling, lighting, ventilating, water, and other energy flows in buildings. OpenStudio - A free plugin for the SketchUp 3D drawing program. The plugin makes it easy to create and edit the building geometry in your EnergyPlus input files.

336

Business Models for Energy Access | Open Energy Information  

Open Energy Info (EERE)

Business Models for Energy Access Business Models for Energy Access Jump to: navigation, search Tool Summary Name: Business Models for Energy Access Agency/Company /Organization: EASE-Enabling Access to Sustainable Energy Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Biomass, - Biomass Combustion, Grid Assessment and Integration Topics: Background analysis, Co-benefits assessment, - Energy Access Resource Type: Case studies/examples, Lessons learned/best practices, Publications Website: www.ease-web.org/wp-content/uploads/2010/11/EASE-Business-models-for-e Country: Bolivia, Tanzania, Cambodia, Uganda, Laos, Mali, Vietnam, Senegal Cost: Free South America, Eastern Africa, South-Eastern Asia, Eastern Africa, South-Eastern Asia, Western Africa, South-Eastern Asia, Western Africa

337

Webcast of the Renewable Energy Competency Model | Department...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Competency Model Webcast of the Renewable Energy Competency Model Addthis Description The Department of Energy held a webcast titled ""Renewable Energy Competency...

338

Quantum geometrodynamical description of the dark sector of the matter-energy content of the universe  

E-Print Network [OSTI]

The evolution of the universe is studied in exactly solvable dynamical quantum model with the Robertson-Walker metric. It is shown that the equation of motion which describes the expansion or contraction of the universe can be represented in the form of the law of conservation of zero total energy for a particle with arbitrary mass being an analogue of the universe. The analogue particle moves in the potential well under the action of the internal force produced by the curvature of space, matter, and pressures of classical and quantum gravitational sources. This force has two components: one performs the positive work on the universe which is equivalent to the work of the repulsive forces of dark energy, and the other component does the negative work analogous to the work of the attractive forces of dark matter. Their competition determines the regime of the expansion of the universe: whether the universe would be accelerating or decelerating. It is demonstrated that predictions of the quantum model do not co...

,

2014-01-01T23:59:59.000Z

339

NETL: News Release - Six Minority Universities Win Fossil Energy Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 3, 1996 August 3, 1996 Seven Historically Black Colleges Win Support for Fossil Energy R&D WASHINGTON, DC - As part of its efforts to encourage more participation by minority college students and teachers in its national energy program, the Department of Energy (DOE) has selected seven coal, natural gas, and oil research projects to be carried out by student-teacher teams at six Historically Black Colleges and Universities (HBCU). Six of the winning schools will partner with private sector companies and receive Federal research grants totaling $100,000 to $200,000 each. The industry-university partnerships will focus on environmental research in natural gas and oil exploration and production, advanced methods for cleaning sulfur and nitrogen pollutants from coal, and innovative coal use technologies.

340

Comparison of Building Energy Modeling Programs: Building Loads  

E-Print Network [OSTI]

Comparison of Building Energy Modeling Programs: BuildingComparison of Building Energy Modeling Programs: Buildingof comparing three Building Energy Modeling Programs (BEMPs)

Zhu, Dandan

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Comparison of Building Energy Modeling Programs: HVAC Systems  

E-Print Network [OSTI]

Comparison of Building Energy Modeling Programs: BuildingComparison of Building Energy Modeling Programs: HVACassumptions of three building energy modeling programs (

Zhou, Xin

2014-01-01T23:59:59.000Z

342

Testing and selecting dark energy models with lens redshift data  

Science Journals Connector (OSTI)

In this paper, we compare seven popular dark energy models under the assumption of a flat universe by using the latest observational data of gravitationally-lensed image separations observed in the Cosmic Lens All-Sky Survey (CLASS), the PMN-NVSS Extragalactic Lens Survey (PANELS), the Sloan Digital Sky Survey (SDSS) and other surveys, which are (nearly) complete for the image separation range 0??.3????7??. We combine the 29 lens redshift data with the cosmic microwave background (CMB) observation from the Wilkinson Microwave Anisotropy Probe (WMAP7) results, the baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey (SDSS) Data Release. The model comparison statistic, the Bayesian information criterion is also applied to assess the worth of the models. This statistic favors models that give a good fit with fewer parameters. Based on this analysis, we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data. For the other dynamical dark energy models, we find that some of them, such as the Ricci dark energy model, the Affine equation-of-state dark energy, and the generalized Chaplygin gas, can provide good fits to the current data. The Dvali-Gabadadze-Porrati model is the only one-parameter model that can give a rather good fit but also nest ? while the three-parameter model, namely, the interactive dark energy, is clearly disfavored by the data, as it is unable to provide a good fit.

Shuo Cao; Zong-Hong Zhu; Ren Zhao

2011-07-07T23:59:59.000Z

343

West University Place, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Place, Texas: Energy Resources Place, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 29.7180075°, -95.4338292° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.7180075,"lon":-95.4338292,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

344

$\\sigma$CDM coupled to radiation. Dark energy and Universe acceleration  

E-Print Network [OSTI]

Recently the Chiral Cosmological Model (CCM) coupled to cold dark matter (CDM) has been investigated as $\\sigma$CDM model to study the observed accelerated expansion of the Universe. Dark sector fields (as Dark Energy content) coupled to cosmic dust were considered as the source of Einstein gravity in Friedmann-Robertson-Walker (FRW) cosmology. Such model had a beginning at the matter-dominated era. The purposes of our present investigation are two folds: to extend > of the $\\sigma$CDM for earlier times to radiation-dominated era and to take into account variation of the exponential potential via variation of the interaction parameter $\\lambda $. We use Markov Chain Monte Carlo (MCMC) procedure to investigate possible values of initial conditions constrained by the measured amount of the dark matter, dark energy and radiation component today. Our analysis includes dark energy contribution to critical density, the ratio of the kinetic and potential energies, deceleration parameter, effective equation of state ...

Abbyazov, Renat R; Mller, Volker

2014-01-01T23:59:59.000Z

345

University of Minnesota Morris II - PES | Open Energy Information  

Open Energy Info (EERE)

Morris II - PES Morris II - PES Jump to: navigation, search Name University of Minnesota Morris II - PES Facility University of Minnesota Morris II - PES Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of Minnesota - Morris Developer University of Minnesota - Morris Energy Purchaser University of Minnesota - Morris / Otter Tail Power Location Morris MN Coordinates 45.5896944°, -95.87700963° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5896944,"lon":-95.87700963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

High Energy Colliders as Tools to Understand the Early Universe  

SciTech Connect (OSTI)

Cosmological observations have reached a new era of precision, and reveal many interesting and puzzling features of the Universe. I will briefly review two of the most exciting mysteries: the nature of the dark components of the Universe, and the origin of the asymmetry between matter and anti-matter. I will argue that our best hope of unraveling these questions will need to combine information from the heavens with measurements in the lab at high energy particle accelerators. The end of run II of the Tevatron, the up-coming Large Hadron Collider and proposed International Linear Collider all have great potential to help us answer these questions in the near future.

Tait, Tim (ANL) [ANL

2008-08-16T23:59:59.000Z

347

National Energy Modeling System: An Overview  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 The National Energy Modeling System: An Overview March 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. PREFACE The National Energy Modeling System: An Overview (Overview) provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2015 for the Annual Energy Outlook 1996 (AEO96), (DOE/EIA- 0383(96)), released in January

348

Is the universe inflating? Dark energy and the future of the universe  

Science Journals Connector (OSTI)

We consider the fate of the observable universe in the light of the discovery of a dark energy component to the cosmic energy budget. We extend results for a cosmological constant to a general dark energy component and examine the constraints on phenomena that may prevent the eternal acceleration of our patch of the universe. We find that the period of accelerated cosmic expansion has not lasted long enough for observations to confirm that we are undergoing inflation; such an observation will be possible when the dark energy density has risen to between 90% and 95% of the critical. The best we can do is make cosmological observations in order to verify the continued presence of dark energy to some high redshift. Having done that, the only possibility that could spoil the conclusion that we are inflating would be the existence of a disturbance (the surface of a true vacuum bubble, for example) that is moving toward us with sufficiently high velocity, but is too far away to be currently observable. Such a disturbance would have to move toward us with speed greater than about 0.8c in order to spoil the late-time inflation of our patch of the universe and yet avoid being detectable.

Dragan Huterer; Glenn D. Starkman; Mark Trodden

2002-08-16T23:59:59.000Z

349

Dark Energy Models and Laws of Thermodynamics in Bianchi I Model  

E-Print Network [OSTI]

This paper is devoted to check validity of the laws of thermodynamics for LRS Bianchi type I universe model which is filled with combination of dark matter and dark energy. We take two types of dark energy models, i.e., generalized holographic dark energy and generalized Ricci dark energy. It is proved that the first and generalized second law of thermodynamics are valid on the apparent horizon for both the models. Further, we take fixed radius $L$ of the apparent horizon with original holographic or Ricci dark energy. We conclude that the first and generalized second laws of thermodynamics do not hold on the horizon of fixed radius $L$ for both the models.

M. Sharif; Rabia Saleem

2013-02-20T23:59:59.000Z

350

NETL: News Release - Seven Minority Universities Selected for Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 22, 2003 July 22, 2003 Seven Minority Universities Selected for Energy Research Grants Projects to Lower Power Plant Emissions, Produce Hydrogen, and Improve Fuel Cells Among Selections WASHINGTON, DC - The Department of Energy has awarded research grants to seven Historically Black Colleges and Universities and Other Minority Institutions (HBCU) to support research projects that address technical issues regarding the use of fossil fuels for energy production. The HBCU grant research program, providing about $1 million annually, gives minority students valuable hands-on experience in developing technologies to promote the efficient and environmentally safe use of coal, oil, and natural gas. "I'm pleased to note the growing interest and participation by HBCU college students in 21st century fossil energy research because the people who will resolve the critical issues of the next century are in college today," Secretary of Energy Spencer Abraham said. "The opportunities we offer them through this program will not only benefit their educational progress but will help secure our country's energy future."

351

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network [OSTI]

The current world-wide increase of energy demand cannot be matched by energy production and power grid updateModeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators

Paris-Sud XI, Université de

352

Page 1 of 5 April 2009 Energy Report Texas Tech University Energy Savings Program  

E-Print Network [OSTI]

: Historical University Vehicle Fleet Data B. Current Energy Reduction Plans 1. Campus Energy Use E&G a. Texas Quarter 3.7516 3.6578 Yearly Total 15.3772 14.9928 7.6011 3. Fleet Fuel Management Plan (Vehicles) #12 related to vehicles: Reduce fuel consumption by 5% per year Average miles per gallon 12.4 In the second

Gelfond, Michael

353

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University Energy Saving Control of Hydraulic SystemsEnergy Saving Control of Hydraulic Systems  

E-Print Network [OSTI]

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University Energy Saving Control of Hydraulic Systems Principle Investigator: Bin Yao Research Assistant: Song Liu School of Mechanical Engineering Purdue

Yao, Bin

354

NUCLEAR ENERGY SYSTEM COST MODELING  

SciTech Connect (OSTI)

The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

355

Solar Resource Modelling for Energy Applications  

Science Journals Connector (OSTI)

Solar energy is the main driver of natural processes on the Earth surface. It is an important input parameter into environmental, ecological and risksimulation models as the energy budget at the land surface a...

Marcel ri; Thomas Huld; Ewan D. Dunlop; Jaroslav Hofierka

2007-01-01T23:59:59.000Z

356

A Universe with a generalized ghost dark energy and Van der Waals fluid interacting with a fluid  

E-Print Network [OSTI]

In this paper we consider an unusual connection between different fluids. Having established a research goal we would like to consider a toy model of the Universe and investigate its behavior, especially for later time evolution for well known facts. The main goal of the article is to consider a toy model of the Universe with generalized ghost dark energy, Van der Waals gas and a phenomenologically modified fluid. The origin of the last component can be understood as a result of interaction between some original fluid and some source of energy or matter in Universe. By unusual connection we mean an assumption that generalized ghost dark energy has its contribution to the model by an interaction term $Q$ and we suppose an interaction $Q=3Hb(\\rho_{\\small{tot}}-\\rho_{GDe})$ of the form. Graphical analysis is performed and the questions of validity of the generalized second law of thermodynamics and stability of the model also approached in this paper.

M. Khurshudyan; B. Pourhassan; E. Chubaryan

2014-02-22T23:59:59.000Z

357

Directory of Energy Information Administration models 1996  

SciTech Connect (OSTI)

This directory revises and updates the Directory of Energy Information Administration Models 1995, DOE/EIA-0293(95), Energy Information Administration (EIA), U.S. Department of Energy, July 1995. Four models have been deleted in this directory as they are no longer being used: (1) Market Penetration Model for Ground-Water Heat Pump Systems (MPGWHP); (2) Market Penetration Model for Residential Rooftop PV Systems (MPRESPV-PC); (3) Market Penetration Model for Active and Passive Solar Technologies (MPSOLARPC); and (4) Revenue Requirements Modeling System (RRMS).

NONE

1996-07-01T23:59:59.000Z

358

Hybrid Energy System Modeling in Modelica  

SciTech Connect (OSTI)

In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

2014-03-01T23:59:59.000Z

359

Department of Energy Awards $5.6 Million to U.S. Universities...  

Office of Environmental Management (EM)

Department of Energy Awards 5.6 Million to U.S. Universities for Nuclear Research Department of Energy Awards 5.6 Million to U.S. Universities for Nuclear Research March 5, 2007...

360

Department of Energy Selects U.S. University-led Teams for $30...  

Energy Savers [EERE]

Department of Energy Selects U.S. University-led Teams for 30.7 Million in Nuclear Research Grants Department of Energy Selects U.S. University-led Teams for 30.7 Million in...

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Directory of Energy Information Administration Models 1994  

SciTech Connect (OSTI)

This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994.

Not Available

1994-07-01T23:59:59.000Z

362

Puzzles of the dark energy in the universe - phantom  

E-Print Network [OSTI]

This paper is devoted to some simple approach based on general physics tools to describe the physical properties of a hypothetical particle which can be the source of dark energy in the Universe known as phantom. Phantom is characterized by the fact that it possesses negative momentum and kinetic energy and that it gives large negative pressure which acts as antigravity. We consider phantom harmonic oscillator in comparison to a standard harmonic oscillator. By using the first law of thermodynamics we explain why the energy density of the Universe grows when it is filled with phantom. We also show how the collision of phantom with a standard particle leads to exploration of energy from the former by the latter (i.e. from phantom to the standard) if their masses are different. The most striking of our conclusions is that the collision of phantom and standard particles of the same masses is impossible unless both of them are at rest and suddenly start moving with the opposite velocities and kinetic energies. This effect is a classic analogue of a quantum mechanical particle pair creation in a strong electric field or in physical vacuum.

Mariusz P. Dabrowski

2014-11-08T23:59:59.000Z

363

Dark Energy and Dark Matter Models  

E-Print Network [OSTI]

We revisit the problems of dark energy and dark matter and several models designed to explain them, in the light of some latest findings.

Burra G. Sidharth

2015-01-07T23:59:59.000Z

364

Accelerated Climate Modeling for Energy | Argonne Leadership...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Credit: Alan Scott and Mark Taylor, Sandia National Laboratories Accelerated Climate Modeling for Energy PI Name: Mark Taylor PI Email: mataylo@sandia.gov Institution: Sandia...

365

Advanced Electrolyte Model - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Energy Storage Find More Like This Return to Search Advanced Electrolyte Model Idaho National Laboratory Contact INL About This Technology Publications: PDF Document...

366

Universal software packages to model the distributed-parameter systems  

Science Journals Connector (OSTI)

Consideration was given to the universal software packages for modeling objects and distributed-parameter systems obeying the partial differential equations. The packages may serve as important tools for industrial automation because the majority of ... Keywords: 07.05.Tp

E. E. Dudnikov

2009-01-01T23:59:59.000Z

367

Analytical Modeling | Open Energy Information  

Open Energy Info (EERE)

Analytical Modeling Analytical Modeling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Analytical Modeling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Analytical Modeling: A mathematical modeling technique used for simulating, explaining, and making predictions about the mechanisms involved in complex physical processes. Other definitions:Wikipedia Reegle Introduction Analytical models are mathematical models that have a closed form solution. Or in other words the solution to the equations used to describe changes in

368

Energy Band Model Based on Effective Mass  

E-Print Network [OSTI]

In this work, we demonstrate an alternative method of deriving an isotropic energy band model using a one-dimensional definition of the effective mass and experimentally observed dependence of mass on energy. We extend the effective mass definition to anti-particles and particles with zero rest mass. We assume an often observed linear dependence of mass on energy and derive a generalized non-parabolic energy-momentum relation. The resulting non-parabolicity leads to velocity saturation at high particle energies. We apply the energy band model to free relativistic particles and carriers in solid state materials and obtain commonly used dispersion relations and experimentally confirmed effective masses. We apply the model to zero rest mass particles in graphene and propose using the effective mass for photons. Therefore, it appears that the new energy band model based on the effective mass can be applied to relativistic particles and carriers in solid state materials.

Viktor Ariel

2012-09-06T23:59:59.000Z

369

The China-in-Global Energy Model  

E-Print Network [OSTI]

The China-in-Global Energy Model (C-GEM) is a global Computable General Equilibrium (CGE) model that captures the interaction of production, consumption and trade among multiple global regions and sectors including five ...

Qi, T.

370

Dark energy model selection with current and future data  

E-Print Network [OSTI]

The main goal of the next generation of weak lensing probes is to constrain cosmological parameters by measuring the mass distribution and geometry of the low redshift Universe and thus to test the concordance model of cosmology. A future all-sky tomographic cosmic shear survey with design properties similar to Euclid has the potential to provide the statistical accuracy required to distinguish between different dark energy models. In order to assess the model selection capability of such a probe, we consider the dark energy equation-of-state parameter $w_0$. We forecast the Bayes factor of future observations, in the light of current information from Planck} by computing the predictive posterior odds distribution. We find that Euclid is unlikely to overturn current model selection results, and that the future data are likely to be compatible with a cosmological constant model. This result holds for a wide range of priors.

Debono, Ivan

2014-01-01T23:59:59.000Z

371

Modelling energy efficiency for computation  

E-Print Network [OSTI]

In the last decade, efficient use of energy has become a topic of global significance, touching almost every area of modern life, including computing. From mobile to desktop to server, energy efficiency concerns are now ubiquitous. However...

Reams, Charles

2012-11-13T23:59:59.000Z

372

Correlation-function asymptotic expansions: Universality of prefactors of the one-dimensional Hubbard model  

SciTech Connect (OSTI)

We show that the prefactors of all terms of the one-dimensional (1D) Hubbard model correlation-function asymptotic expansions have a universal form, as the corresponding critical exponents. In addition to calculating such prefactors, our study clarifies the relation of the low-energy Tomonaga-Luttinger-liquid behavior to the scattering mechanisms which control the spectral properties of the model at all energy scales. Our results are of general nature for many integrable interacting models and provide a broader understanding of the unusual properties of quasi-1D nanostructures, organic conductors, and optical lattices of fermionic atoms.

Carmelo, J. M. P. [Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); GCEP-Center of Physics, University of Minho, P-4710-057 Braga (Portugal); Penc, K. [Research Institute for Solid State Physics and Optics, H-1525 Budapest, P.O. Box 49 (Hungary)

2006-03-15T23:59:59.000Z

373

Quantum Yang-Mills Condensate Dark Energy Models  

E-Print Network [OSTI]

We review the quantum Yang-Mills condensate (YMC) dark energy models. As the effective Yang-Mills Lagrangian is completely determined by the quantum field theory, there is no adjustable parameter in the model except the energy scale. In this model, the equation-of-state (EOS) of the YMC dark energy, $w_y > -1$ and $w_y 0$ into $w_y < -1$, which is slightly suggested by the observations. At the same time, the total EOS in the attractor solution is $w_{tot} = -1$, the universe being the de Sitter expansion in the late stage, and the cosmic big rip is naturally avoided. These features are all independent of the interacting forms.

Zhao, W; Tong, M L

2009-01-01T23:59:59.000Z

374

Constraining Dark Matter and Dark Energy Models using Astrophysical Surveys  

E-Print Network [OSTI]

of current dark energy astrophysical surveys. Although manyMatter and Dark Energy Models using Astrophysical Surveys byMatter and Dark Energy Models using Astrophysical Surveys A

Cieplak, Agnieszka M.

375

Numerical Modeling | Open Energy Information  

Open Energy Info (EERE)

Numerical Modeling Numerical Modeling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Numerical Modeling Details Activities (8) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Stress fields and magnitudes Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids Thermal: Thermal conduction and convection patterns in the subsurface Dictionary.png Numerical Modeling: A computer model that is designed to simulate and reproduce the mechanisms of a particular system. Other definitions:Wikipedia Reegle

376

An Evaluation of Cooperation Transmission Considering Practical Energy Models and Passive  

E-Print Network [OSTI]

.e. fixed constellation). Since reception energy costs are significant in WSNs, another quantity that shouldAn Evaluation of Cooperation Transmission Considering Practical Energy Models and Passive Reception. of Microelectronic Engineering, National University of Ireland, Cork, Ireland Abstract--The total energy consumed

Ingram, Mary Ann

377

Curvature-based energy for simulation and variational modeling Denis Zorin  

E-Print Network [OSTI]

Curvature-based energy for simulation and variational modeling Denis Zorin New York University 719 Broadway, 12th floor New York, New York, 10012 dzorin@mrl.nyu.edu Abstract Curvature-based energy unanswered. We discuss the general principles for defining curvature- based energy on discrete surfaces based

Mohri, Mehryar

378

A long-term investment planning model for mixed energy infrastructure integrated with renewable  

E-Print Network [OSTI]

A long-term investment planning model for mixed energy infrastructure integrated with renewable energy Jinxu Ding and Arun Somani Department of Electrical and Computer Engineering Iowa State University Ames, IA 50011 Email: {jxding,arun}@iastate.edu Abstract--The current energy infrastructure heavily

379

Summerschool Modelling of Mass and Energy  

E-Print Network [OSTI]

Summerschool Modelling of Mass and Energy Transport #12;Black Box Analogy )(teRi dt di L i and Energy Transport Exercise Given a flux vector approaching an oblique oriented surface element (line .constc G S dsndg *)(2 . #12;Mass and Energy Balance Continued V S dsnvudV dt d V S dsnvdV t u

Kornhuber, Ralf

380

Retrofit Energy Savings Estimation Model Reference Manual  

E-Print Network [OSTI]

Retrofit Energy Savings Estimation Model Reference Manual #12;#12;Retrofit Energy Savings commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does from the Department of Energy. Any conclusions or opinions expressed in this manual represent solely

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Scripted Building Energy Modeling and Analysis (Presentation)  

SciTech Connect (OSTI)

Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

Macumber, D.

2012-10-01T23:59:59.000Z

382

Global Trade and Analysis Project (GTAP) Model | Open Energy Information  

Open Energy Info (EERE)

Global Trade and Analysis Project (GTAP) Model Global Trade and Analysis Project (GTAP) Model Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Global Trade Analysis Project (GTAP) Model Agency/Company /Organization: Purdue University Sector: Climate, Energy Topics: Baseline projection, - Macroeconomic, Market analysis, Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Complexity/Ease of Use: Moderate Website: www.gtap.agecon.purdue.edu/models/current.asp Cost: Free References: GTAP[1] Related Tools IGES GHG Calculator For Solid Waste ICCT Roadmap Model Applied Dynamic Analysis of the Global Economy (ADAGE) Model

383

Holographic \\Lambda(t)CDM model in a non-flat universe  

E-Print Network [OSTI]

The holographic $\\Lambda(t)$CDM model in a non-flat universe is studied in this paper. In this model, to keep the form of the stress-energy of the vacuum required from the general covariance, the holographic vacuum is enforced to exchange energy with dark matter. It is demonstrated that for the holographic model the best choice for the IR cutoff of the effective quantum field theory is the event horizon size of the universe. We derive the evolution equations of the holographic $\\Lambda(t)$CDM model in a non-flat universe. We constrain the model by using the current observational data, including the 557 Union2 type Ia supernovae data, the cosmic microwave background anisotropy data from the 7-yr WMAP, and the baryon acoustic oscillation data from the SDSS. Our fit results show that the holographic $\\Lambda(t)$CDM model tends to favor a spatially closed universe (the best-fit value of $\\Omega_{k0}$ is -0.042), and the 95% confidence level range for the spatial curvature is $-0.101<\\Omega_{k0}<0.040$. We s...

Zhang, Jing-Fei; Liu, Ying; Zou, Sheng; Zhang, Xin

2012-01-01T23:59:59.000Z

384

Dark energy: a quantum fossil from the inflationary Universe?  

E-Print Network [OSTI]

The discovery of dark energy (DE) as the physical cause for the accelerated expansion of the Universe is the most remarkable experimental finding of modern cosmology. However, it leads to insurmountable theoretical difficulties from the point of view of fundamental physics. Inflation, on the other hand, constitutes another crucial ingredient, which seems necessary to solve other cosmological conundrums and provides the primeval quantum seeds for structure formation. One may wonder if there is any deep relationship between these two paradigms. In this work, we suggest that the existence of the DE in the present Universe could be linked to the quantum field theoretical mechanism that may have triggered primordial inflation in the early Universe. This mechanism, based on quantum conformal symmetry, induces a logarithmic, asymptotically-free, running of the gravitational coupling. If this evolution persists in the present Universe, and if matter is conserved, the general covariance of Einstein's equations demands the existence of dynamical DE in the form of a running cosmological term whose variation follows a power law of the redshift.

Joan Sola

2008-02-06T23:59:59.000Z

385

Southern Oregon University Highlighted by U.S. Energy Department for its  

Broader source: Energy.gov (indexed) [DOE]

Southern Oregon University Highlighted by U.S. Energy Department Southern Oregon University Highlighted by U.S. Energy Department for its Investment in Clean Energy Southern Oregon University Highlighted by U.S. Energy Department for its Investment in Clean Energy November 16, 2012 - 3:22pm Addthis NEWS MEDIA CONTACT Department of Energy: (202) 586-4940 Southern Oregon University: (541) 552-6093 WASHINGTON - Today, the Energy Department released its fourth video in the "Clean Energy in Our Community" video series, highlighting clean energy investments by Southern Oregon University (SOU). The school's investments in renewable energy, sustainability, and purchasing Renewable Energy Certificates (RECs) are benefiting residents and workers across Ashland, a city of about 20,000 people. SOU is working to reduce its

386

Southern Oregon University Highlighted by U.S. Energy Department for its  

Broader source: Energy.gov (indexed) [DOE]

Southern Oregon University Highlighted by U.S. Energy Department Southern Oregon University Highlighted by U.S. Energy Department for its Investment in Clean Energy Southern Oregon University Highlighted by U.S. Energy Department for its Investment in Clean Energy November 16, 2012 - 3:22pm Addthis NEWS MEDIA CONTACT Department of Energy: (202) 586-4940 Southern Oregon University: (541) 552-6093 WASHINGTON - Today, the Energy Department released its fourth video in the "Clean Energy in Our Community" video series, highlighting clean energy investments by Southern Oregon University (SOU). The school's investments in renewable energy, sustainability, and purchasing Renewable Energy Certificates (RECs) are benefiting residents and workers across Ashland, a city of about 20,000 people. SOU is working to reduce its

387

Modelling of Integrated Renewable Energy System  

Science Journals Connector (OSTI)

Energy is supplied in the form of electricity heat or fuels and an energy supply system must guarantee sufficient production and distribution of energy. An energy supply system based on renewable energy can be utilized as integrated renewable energy system (IRES) which can satisfy the energy needs of an area in appropriate & sustainable manner. Given the key role of renewable energy in rural electrification of remote rural areas the IRES for a given area can be modeled & optimized for meeting the energy needs. In the present paper Jaunpur block of Uttaranchal state of India has been selected as remote area. Based upon the data collected the resource potential and energy demand has been calculated & presented. The model on the basis of unit cost of the energy has been optimized using LINDO software 6.10 version. The results indicated that the optimized model has been found to the best choice for meeting the energy needs of the area. The results further indicated that for the above area either an IRES consisting of the above sources can provide a feasible solution in terms of energy fulfillments in the range of EPDF from 1.0 to 0.75.

A. K. Akella; R. P. Saini; M. P. Sharma

2007-01-01T23:59:59.000Z

388

Conceptual Model | Open Energy Information  

Open Energy Info (EERE)

Conceptual Model Conceptual Model Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Conceptual Model Details Activities (17) Areas (4) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Hydrothermal fluid flow characteristics, up-flow patterns Thermal: Temperature and pressure extrapolation throughout reservoir, heat source characteristics Dictionary.png Conceptual Model:

389

Models and Tools for Evaluating Energy Efficiency and Renewable...  

Energy Savers [EERE]

and Tools for Evaluating Energy Efficiency and Renewable Energy Project Opportunities Models and Tools for Evaluating Energy Efficiency and Renewable Energy Project Opportunities...

390

NETL - CARBEN Model | Open Energy Information  

Open Energy Info (EERE)

NETL - CARBEN Model NETL - CARBEN Model Jump to: navigation, search Tool Summary Name: NETL - CARBEN Model Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too Cost: Free Language: English References: NETL - CARBEN Model[1] Logo: NETL - CARBEN Model CarBen is a tool for determining the reductions in greenhouse gas (GHG) emissions by sector based on user-supplied changes to the baseline such as electricity supply options, transportation sector fuel demand and fuel use, non-CO2 GHG emission abatement, carbon pricing, and international offsets. NETL - CARBEN Model CarBen is a tool for determining the reductions in greenhouse gas (GHG)

391

University Park Community Solar LLC | Open Energy Information  

Open Energy Info (EERE)

Park Community Solar LLC Park Community Solar LLC Jump to: navigation, search Name University Park Community Solar LLC Address 4313 Tuckerman St. Place University Park, Maryland Zip 20782 Sector Renewable Energy, Solar Product Solar generated electricity Year founded 2010 Website http://www.universityparksolar Coordinates 38.9674819°, -76.941939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9674819,"lon":-76.941939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Montana State University Wind Project | Open Energy Information  

Open Energy Info (EERE)

Wind Project Wind Project Jump to: navigation, search Name Montana State University Wind Project Facility Montana State University Sector Wind energy Facility Type Community Wind Location MT Coordinates 45.662834°, -111.044098° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.662834,"lon":-111.044098,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Department of Energy Issues Request for Pre-Applications to U.S. Universities for Nuclear Energy- Related Research and Development Proposals  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys Nuclear Energy University Programs (NEUP) is now accepting pre-applications from universities interested in conducting nuclear energy- related research and development (R&D) projects.

394

Department of Energy Issues Call for Proposals to U.S. Universities for Nuclear Energy-Related Integrated Research Project Proposals  

Broader source: Energy.gov [DOE]

The U.S. Department of Energys Nuclear Energy University Programs is now accepting applications from universities interested in conducting nuclear energy-related Integrated Research Projects.

395

Modeling and optimization of HVAC energy consumption  

Science Journals Connector (OSTI)

A data-driven approach for minimization of the energy to air condition a typical office-type facility is presented. Eight data-mining algorithms are applied to model the nonlinear relationship among energy consumption, control settings (supply air temperature and supply air static pressure), and a set of uncontrollable parameters. The multiple-linear perceptron (MLP) ensemble outperforms other models tested in this research, and therefore it is selected to model a chiller, a pump, a fan, and a reheat device. These four models are integrated into an energy optimization model with two decision variables, the setpoint of the supply air temperature and the static pressure in the air handling unit. The model is solved with a particle swarm optimization algorithm. The optimization results have demonstrated the total energy consumed by the heating, ventilation, and air-conditioning system is reduced by over 7%.

Andrew Kusiak; Mingyang Li; Fan Tang

2010-01-01T23:59:59.000Z

396

Matter Non-conservation in the Universe and Dynamical Dark Energy  

E-Print Network [OSTI]

In an expanding universe the vacuum energy density \\rho_{\\Lambda} is expected to be a dynamical quantity. In quantum field theory in curved space-time \\rho_{\\Lambda} should exhibit a slow evolution, determined by the expansion rate of the universe H. Recent measurements on the time variation of the fine structure constant and of the proton-electron mass ratio suggest that basic quantities of the Standard Model, such as the QCD scale parameter \\Lambda_{QCD}, may not be conserved in the course of the cosmological evolution. The masses of the nucleons m_N and of the atomic nuclei would also be affected. Matter is not conserved in such a universe. These measurements can be interpreted as a leakage of matter into vacuum or vice versa. We point out that the amount of leakage necessary to explain the measured value of \\dot{m}_N/m_N could be of the same order of magnitude as the observationally allowed value of \\dot{\\rho}_{\\Lambda}/\\rho_{\\Lambda}, with a possible contribution from the dark matter particles. The dark energy in our universe could be the dynamical vacuum energy in interaction with ordinary baryonic matter as well as with dark matter.

Harald Fritzsch; Joan Sola

2012-08-30T23:59:59.000Z

397

Exploring the Universe with Very High Energy Neutrinos  

E-Print Network [OSTI]

With the discovery of a high-energy neutrino flux in the 0.1 PeV to PeV range from beyond the Earth's atmosphere with the IceCube detector, neutrino astronomy has achieved a major breakthrough in the exploration of the high-energy universe. One of the main goals is the identification and investigation of the still mysterious sources of the cosmic rays which are observed at Earth with energies up to several $10^5$ PeV. In addition to being smoking-gun evidence for the presence of cosmic rays in a specific object, neutrinos escape even dense environments and can reach us from distant places in the universe, thereby providing us with a unique tool to explore cosmic accelerators. This article summarizes our knowledge about the observed astrophysical neutrino flux and current status of the search for individual cosmic neutrino sources. At the end, it gives an overview of plans for future neutrino telescope projects.

Kappes, A

2015-01-01T23:59:59.000Z

398

Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Modeling Techniques Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

399

Scaled Experimental Modeling of Geologic Structures Rutgers University  

E-Print Network [OSTI]

of uncertainty associated with hydrocarbon exploration and production. Furthermore, experimental models allow us in the Department of Geological Sciences at Rutgers University. She has thirty years of experience in the oil & gas experimental models provide valuable information about structural processes, especially those not observed

400

Agent based modeling of energy networks  

Science Journals Connector (OSTI)

Abstract Attempts to model any present or future power grid face a huge challenge because a power grid is a complex system, with feedback and multi-agent behaviors, integrated by generation, distribution, storage and consumption systems, using various control and automation computing systems to manage electricity flows. Our approach to modeling is to build upon an established model of the low voltage electricity network which is tested and proven, by extending it to a generalized energy model. But, in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the traditional electrical one, must be considered. Therefore a more powerful model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is being required. This article addresses the issue of modeling a local multi-carrier energy network. This problem can be considered as an extension of modeling a low voltage distribution network located at some urban or rural geographic area. But instead of using an external power flow analysis package to do the power flow calculations, as used in electric networks, in this work we integrate a multiagent algorithm to perform the task, in a concurrent way to the other simulation tasks, and not only for the electric fluid but also for a number of additional energy carriers. As the model is mainly focused in system operation, generation and load models are not developed.

Jos Mara Gonzalez de Durana; Oscar Barambones; Enrique Kremers; Liz Varga

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Texas Tech University Energy Savings Program November 2008 Update  

E-Print Network [OSTI]

-2 546,135 42,657 12.8 FY08-3 714,926 58,007 12.3 FY08-4 671,156 57,835 11.6 B. Current Energy Reduction.7516 -7.1% Yearly Total 15.5367 15.1483 15.3772 -1.0% 3. Fleet Fuel Management Plan (Vehicles) a. In FY06 of that order, Texas Tech University established the following goals related to vehicles: · Reduce fuel

Gelfond, Michael

402

Dynamical age of the universe as a constraint on the parametrization of the dark energy equation of state  

Science Journals Connector (OSTI)

The dynamical age of the universe depends upon the rate of the expansion of the universe, which explicitly involves the dark energy equation of state parameter w(z). Consequently, the evolution of w(z) has a direct imprint on the age of the universe. We have shown that the dynamical age of the universe as derived from CMB data can be used as an authentic criterion, being independent of the prior assumptions likethe present value of the Hubble constant H0 and the cosmological density parameter ?M0, to constrain the range of admissible values of w for quiessence models and to test the physically viable parametrizations of the equation of state w(z) in kinessence models. An upper bound on variation of dark energy density is derived and a relation between cosmological density parameters and the transition redshift is established.

V. B. Johri and P. K. Rath

2006-12-21T23:59:59.000Z

403

Dark Energy: Observational Evidence and Theoretical Models  

E-Print Network [OSTI]

The book elucidates the current state of the dark energy problem and presents the results of the authors, who work in this area. It describes the observational evidence for the existence of dark energy, the methods and results of constraining of its parameters, modeling of dark energy by scalar fields, the space-times with extra spatial dimensions, especially Kaluza---Klein models, the braneworld models with a single extra dimension as well as the problems of positive definition of gravitational energy in General Relativity, energy conditions and consequences of their violation in the presence of dark energy. This monograph is intended for science professionals, educators and graduate students, specializing in general relativity, cosmology, field theory and particle physics.

Novosyadlyj, B; Shtanov, Yu; Zhuk, A

2015-01-01T23:59:59.000Z

404

Category:Building Models | Open Energy Information  

Open Energy Info (EERE)

Models Models Jump to: navigation, search This category uses the form Buildings Model. Pages in category "Building Models" The following 12 pages are in this category, out of 12 total. G General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings General Merchandise 2009 TSD Chicago High Plug Load Baseline General Merchandise 2009 TSD Chicago Low Plug Load 50% Energy Savings General Merchandise 2009 TSD Chicago Low Plug Load Baseline G cont. General Merchandise 2009 TSD Miami High Plug Load 50% Energy Savings General Merchandise 2009 TSD Miami High Plug Load Baseline General Merchandise 2009 TSD Miami Low Plug Load 50% Energy Savings General Merchandise 2009 TSD Miami Low Plug Load Baseline G cont. Grocery 2009 TSD Chicago 50% Energy Savings Grocery 2009 TSD Chicago Baseline

405

The National Energy Modeling System: An overview  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

Not Available

1994-05-01T23:59:59.000Z

406

Renewable energy and smart grid principles integration into campus-wide energy strategy at the University of New Mexico  

Science Journals Connector (OSTI)

With a significant percentage of Renewable Energy resources already installed and operational, the University of New Mexico (UNM) campus is identified as an excellent candidate for the implementation of Demand-Response strategies integrated with a modern grid management system. An Energy Control and Management System makes it possible for UNM campus to respond to grid signals in a centrally managed manner, although individual building control systems still perform local energy management functions. This hierarchical response strategy is a model for future grid-interoperable entities of all sizes. We address the existing potential for the UNM campus to interoperate with the outside world and the possibility of altering the electricity use based on external requests from the grid. We also identify infrastructure and information technology improvements that would result in a substantially increased level of interoperability.

O. Lavrova; H. Barsun; R. Burnett; A. Mammoli

2012-01-01T23:59:59.000Z

407

Modeling of Uncertainty in Wind Energy Forecast  

E-Print Network [OSTI]

regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

408

Directory of Energy Information Administration Models 1993  

SciTech Connect (OSTI)

This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included in this directory are 35 EIA models active as of May 1, 1993. Models that run on personal computers are identified by ``PC`` as part of the acronym. EIA is developing new models, a National Energy Modeling System (NEMS), and is making changes to existing models to include new technologies, environmental issues, conservation, and renewables, as well as extend forecast horizon. Other parts of the Department are involved in this modeling effort. A fully operational model is planned which will integrate completed segments of NEMS for its first official application--preparation of EIA`s Annual Energy Outlook 1994. Abstracts for the new models will be included in next year`s version of this directory.

Not Available

1993-07-06T23:59:59.000Z

409

Directory of energy information administration models 1995  

SciTech Connect (OSTI)

This updated directory has been published annually; after this issue, it will be published only biennially. The Disruption Impact Simulator Model in use by EIA is included. Model descriptions have been updated according to revised documentation approved during the past year. This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included are 37 EIA models active as of February 1, 1995. The first group is the National Energy Modeling System (NEMS) models. The second group is all other EIA models that are not part of NEMS. Appendix A identifies major EIA modeling systems and the models within these systems. Appendix B is a summary of the `Annual Energy Outlook` Forecasting System.

NONE

1995-07-13T23:59:59.000Z

410

Request for Proposals for the Hulka Energy Research Fellowships managed by the University of Maryland Energy Research Center  

E-Print Network [OSTI]

energy, · ocean thermal or wave energy or geothermal energy conversion. The proposed research mustRequest for Proposals for the Hulka Energy Research Fellowships managed by the University of Maryland Energy Research Center Announcement Date: November 15, 2011 Proposal Due Date: December 12, 2011

Rubloff, Gary W.

411

High Energy Physics at the University of Illinois  

SciTech Connect (OSTI)

This is the final report for DOE award DE-FG02-91ER40677 (High Energy Physics at the University of Illinois), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

Liss, Tony M. [University of Illinois] [University of Illinois; Thaler, Jon J. [University of Illinois] [University of Illinois

2013-07-26T23:59:59.000Z

412

Reference Model 6 (RM6): Oscillating Wave Energy Converter.  

SciTech Connect (OSTI)

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

2014-10-01T23:59:59.000Z

413

Cosmic steps in modeling dark energy  

Science Journals Connector (OSTI)

Past and recent data analyses gave some hints of steps in dark energy. Considering dark energy as a dynamical scalar field, we investigate several models with various steps: a step in the scalar potential, a step in the kinetic term, a step in the energy density, and a step in the equation-of-state parameter w. These toy models provide a workable mechanism to generate steps and features of dark energy. Remarkably, a single real scalar can cross w=-1 dynamically with a step in the kinetic term.

Tower Wang

2009-11-17T23:59:59.000Z

414

Clustering properties of dynamical dark energy models  

SciTech Connect (OSTI)

We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is nonminimally coupled to dark matter.

Avelino, P. P.; Beca, L. M. G. [Centro de Fisica do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Departamento de Fisica da Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Martins, C. J. A. P. [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas s/n, 4150-762 Porto (Portugal); DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

2008-05-15T23:59:59.000Z

415

China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal  

Open Energy Info (EERE)

Tianpu Xianxing Group aka Beijing Universal Tianpu Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing Universal Antecedence) Place Beijing, Beijing Municipality, China Zip 102612 Sector Buildings, Solar Product Manufacturer of buildings and leisure centres with integrated solar passive heating and cooling. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

I Found My Energy Role Model | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

I Found My Energy Role Model I Found My Energy Role Model I Found My Energy Role Model August 24, 2009 - 5:00am Addthis Allison Casey Senior Communicator, NREL Last week, while home on a rare weekday afternoon, I happened to catch an episode of Oprah. One of her guests on this particular day was the actor Ed Begley, Jr. The episode caught my attention because it wasn't focused on his acting, but on his quest to make his home and life as environmentally friendly and energy efficient as possible. I had heard of Mr. Begley's efforts in this arena in the past (apparently he has a reality TV show), but I didn't know the details, so I tuned in. To be honest, I wasn't expecting to learn much or even be very impressed. After all, the guy is a famous actor and presumably has financial resources

417

I Found My Energy Role Model | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

I Found My Energy Role Model I Found My Energy Role Model I Found My Energy Role Model August 24, 2009 - 5:00am Addthis Allison Casey Senior Communicator, NREL Last week, while home on a rare weekday afternoon, I happened to catch an episode of Oprah. One of her guests on this particular day was the actor Ed Begley, Jr. The episode caught my attention because it wasn't focused on his acting, but on his quest to make his home and life as environmentally friendly and energy efficient as possible. I had heard of Mr. Begley's efforts in this arena in the past (apparently he has a reality TV show), but I didn't know the details, so I tuned in. To be honest, I wasn't expecting to learn much or even be very impressed. After all, the guy is a famous actor and presumably has financial resources

418

Department of Energy Announces $17 Million to Bolster University-Led  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Announces $17 Million to Bolster Department of Energy Announces $17 Million to Bolster University-Led Nuclear Energy Research and Development Department of Energy Announces $17 Million to Bolster University-Led Nuclear Energy Research and Development September 21, 2011 - 1:39pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that $17 million in research grants will be awarded to 23 university-led teams aimed at strengthening the robust research and development capabilities of American universities and colleges to develop the next generation of nuclear energy technologies and upgrade research reactors across the country. Supported through the Department's Nuclear Energy University Programs (NEUP), DOE is taking action to restart the U.S. nuclear industry as part of a broad approach to create new clean energy jobs and cut carbon

419

University of Minnesota Morris Clean Energy Investments Recognized by U.S.  

Broader source: Energy.gov (indexed) [DOE]

Morris Clean Energy Investments Recognized Morris Clean Energy Investments Recognized by U.S. Department of Energy University of Minnesota Morris Clean Energy Investments Recognized by U.S. Department of Energy August 16, 2012 - 12:30pm Addthis NEWS MEDIA CONTACT U.S. Department of Energy (202) 586-4940 University of Minnesota, Morris (320) 589-6398 WASHINGTON - Today, the U.S. Department of Energy released its second video in the "Clean Energy in Our Community" video series featuring investments by the University of Minnesota, Morris (UMN-Morris) in clean energy that are benefitting local residents and workers. UMN-Morris is working to reduce their energy waste and deploy clean, renewable energy projects throughout the community. "The University of Minnesota, Morris is a perfect example of how local

420

About Energy Savings Performance Contracting Model Documents  

Broader source: Energy.gov [DOE]

This page provides more information about the creation of the Energy Savings Performance Contracting (ESPC) Model Documents to be used when developing or updating procurement and contracting documents for ESPC projects and programs.

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

China End-Use Energy Demand Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

China End-Use Energy Demand Modeling China End-Use Energy Demand Modeling Speaker(s): Nan Zhou Date: October 8, 2009 (All day) Location: 90-3122 As a consequence of soaring energy demand due to the staggering pace of its economic growth, China overtook the United States in 2007 to become the world's biggest contributor to CO2 emissions (IEA, 2007). Since China is still in an early stage of industrialization and urbanization, economic development promises to keep China's energy demand growing strongly. Furthermore, China's reliance on fossil fuel is unlikely to change in the long term, and increased needs will only heighten concerns about energy security and climate change. In response, the Chinese government has developed a series of policies and targets aimed at improving energy efficiency, including both short-term targets and long-term strategic

422

General Equilibrium Modeling Package (GEMPACK) | Open Energy Information  

Open Energy Info (EERE)

General Equilibrium Modeling Package (GEMPACK) General Equilibrium Modeling Package (GEMPACK) Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: General Equilibrium Modeling Package (GEMPACK) Agency/Company /Organization: Centre of Policy Studies, Monash University Sector: Climate Topics: Analysis Tools Complexity/Ease of Use: Advanced Website: www.monash.edu.au/policy/gempack.htm Cost: Paid Related Tools Ex Ante Appraisal Carbon-Balance Tool (EX-ACT) MIT Emissions Prediction and Policy Analysis (EPPA) Model Energy Forecasting Framework and Emissions Consensus Tool (EFFECT) ... further results A system for computable general equilibrium economic modeling, produced and

423

Modified Chaplygin Gas as Scalar Field and Holographic Dark Energy Model  

E-Print Network [OSTI]

We study the correspondence between field theoretic and holographic dark energy density of the universe with the modified Chaplygin gas (MCG) respectively both in a flat and non-flat FRW universe. We present an equivalent representation of the MCG with a homogeneous minimally coupled scalar field by constructing the corresponding potential. A new scalar field potential is obtained here which is physically realistic and important for cosmological model building. In addition we also present holographic dark energy model described by the MCG. The dynamics of the corresponding holographic dark energy field is determined by reconstructing the potential in a non-flat universe. The stability of the holographic dark energy in this case in a non-flat universe is also discussed.

B. C. Paul; P. Thakur; A. Saha

2008-09-20T23:59:59.000Z

424

Nuclear curvature energy in relativistic models  

Science Journals Connector (OSTI)

The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement. 1996 The American Physical Society.

M. Centelles; X. Vias; P. Schuck

1996-02-01T23:59:59.000Z

425

Modelling Correlation in Carbon and Energy Markets  

E-Print Network [OSTI]

content. The crude oil price is included in the estimation in order to control for contemporaneous correlation with all other energy sources. This is this study does not take into account the lagged relationship between crude oil and natural gas, as a... Modelling Correlation in Carbon and Energy Markets Philipp Koenig February 2011 CWPE 1123 & EPRG 1107 www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract Modelling Correlation...

Koenig, Philipp

2011-02-10T23:59:59.000Z

426

Synthesised Constraint Models for Distributed Energy Management  

E-Print Network [OSTI]

for optimisation have been widely ignored ­ a gap we aim to close. As a by-product, we give a formulation of warmSynthesised Constraint Models for Distributed Energy Management Alexander Schiendorfer, Jan frequently encountered in energy management systems such as the coordination of power generators in a virtual

Reif, Wolfgang

427

SNAPSNAPSuperNova/Acceleration Probe Dark Energy and the Accelerating Universe  

E-Print Network [OSTI]

Nova/Acceleration Probe Dark Energy and the Accelerating Universe SNAP #12;he recent discovery that the expansionSNAPSNAPSuperNova/Acceleration Probe Dark Energy and the Accelerating Universe Super attraction alone, its rate of expansion would be slowing. Acceleration requires a strange "dark energy

Perlmutter, Saul

428

Principal-Agent Problems in Energy Efficient Computing in a University Setting  

E-Print Network [OSTI]

of buildings, energy efficiency is seen as the key element to achieve carbon neutrality. Furthermore, the McPrincipal-Agent Problems in Energy Efficient Computing in a University Setting Marco Pritoni, Siva G Gunda, Tracy Hsieh Energy Efficiency Center, University of California-Davis ABSTRACT About 10

California at Davis, University of

429

Universal growth law for knot energy of Faddeev type in general dimensions  

Science Journals Connector (OSTI)

...law for knot energy of Faddeev type...SciencesNew York University, New York, NY 10012...University, New York, NY 10033...relating knot energy and knot topology...2nd edn. New York, NY: MSRI...Wang1994Mobius energy of knots and...

2008-01-01T23:59:59.000Z

430

System Advisor Model (SAM) | Open Energy Information  

Open Energy Info (EERE)

System Advisor Model (SAM) System Advisor Model (SAM) (Redirected from Solar Advisor Model) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: System Advisor Model Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Geothermal, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Pathways analysis, Resource assessment Resource Type: Case studies/examples, Dataset, Guide/manual, Training materials, Software/modeling tools, Video User Interface: Desktop Application Website: sam.nrel.gov/ Web Application Link: sam.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured, EERE tool, System Advisor Model, SAM Language: English System Advisor Model Screenshot

431

System Advisor Model (SAM) | Open Energy Information  

Open Energy Info (EERE)

System Advisor Model (SAM) System Advisor Model (SAM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: System Advisor Model Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Geothermal, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Pathways analysis, Resource assessment Resource Type: Case studies/examples, Dataset, Guide/manual, Training materials, Software/modeling tools, Video User Interface: Desktop Application Website: sam.nrel.gov/ Web Application Link: sam.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured, EERE tool, System Advisor Model, SAM Language: English System Advisor Model Screenshot References: SAM[1] System Advisor Model [2]

432

System Advisor Model (SAM) | Open Energy Information  

Open Energy Info (EERE)

System Advisor Model (SAM) System Advisor Model (SAM) (Redirected from System Advisor Model) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: System Advisor Model Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Geothermal, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Pathways analysis, Resource assessment Resource Type: Case studies/examples, Dataset, Guide/manual, Training materials, Software/modeling tools, Video User Interface: Desktop Application Website: sam.nrel.gov/ Web Application Link: sam.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured, EERE tool, System Advisor Model, SAM Language: English System Advisor Model Screenshot

433

OpenStudio Enhancements for Whole-Building Daylighting, Airflow, and Energy Modeling Leveraging Interoperable Building Information Modeling Data- 2014 BTO Peer Review  

Broader source: Energy.gov [DOE]

Presenter: John Messner, the Pennsylvania State University Consortium for Building Energy Innovation Energy modeling often is inconsistently applied in the small- and medium-sized commercial building (SMSCB) market, in part because existing models are either too complex relative to the project size or because models are not interoperable with other retrofit design tools.

434

Evolution of the interacting viscous dark energy model in Einstein cosmology  

E-Print Network [OSTI]

In this paper we investigate the evolution of the viscous cosmology model which the dark energy interacting with the dark matter. Using the linearizing theory of dynamical system, we find, in our model, there exists a stable late time scaling solution which corresponds to the accelerating universe. But we also find the unstable solution under some appropriated parameters. In order to alleviate the coincidence problem some authors considered the effect of quantum correction due to the conform anomaly and the interacting dark energy model. But if we take into account the bulk viscosity of the cosmic fluid, the viscosity will soften the coincidence problem as the interacting dark energy cosmology model. That's to say both the non-perfect fluid model and the interacting models of the dark energy can alleviate or soften the singularity of the universe.

Chen, Juhua

2009-01-01T23:59:59.000Z

435

Holes in the static Einstein universe and a model of the cosmological voids  

SciTech Connect (OSTI)

A spherically symmetric, static model of the cosmological voids is constructed in the framework of the Tolman-Oppenheimer-Volkov equation with the cosmological constant. Extension of the Tooper result (dimensionless form of the TOV equation) is provided for nonzero {lambda}. Then, the equation is simplified in {alpha}{yields}0, {lambda}{yields}0, and {lambda}/{alpha}=const regime, suitable for largest structures in {lambda}-dominated universe. Voids are treated as underdensity regions in the static Einstein universe. Both overdensity and underdensity (relative to static universe) solutions exist. They are identified with standard astrophysical spherical objects and voids, respectively. The model is tested against observed properties (the radius - the central density relation) and density profiles of voids. Analytical formulas for radial density contrast profile and radii of the voids are derived. Some consequences for cosmological N-body simulations are suggested. Hints on the dark matter/dark energy EOS filling the voids are provided.

Odrzywolek, Andrzej [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

2009-11-15T23:59:59.000Z

436

EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project |  

Broader source: Energy.gov (indexed) [DOE]

82: University of Delaware Lewes Campus Onsite Wind Energy 82: University of Delaware Lewes Campus Onsite Wind Energy Project EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project SUMMARY The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware's Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been

437

Parameter estimation for energy balance models with memory  

Science Journals Connector (OSTI)

...model based on the energy balance of the Earth...climate dynamics. New York, NY: Springer...JA Coakley. 1981 Energy balance climate models...Climate sensitivity, energy balance models...Sciences, vol. 119. New York, NY: Springer...

2014-01-01T23:59:59.000Z

438

JEDI Models | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » JEDI Models Jump to: navigation, search The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation at the local and state levels.[1] Based on project-specific or default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area that could reasonably be supported by a power generation project. For example, JEDI estimates the number of in-state construction jobs from a new wind farm.[2] You can learn more about the JEDI model for wind and find reports based on

439

Model Wind Energy Facility Ordinance | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Facility Ordinance Energy Facility Ordinance Model Wind Energy Facility Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Solar/Wind Permitting Standards Provider Land Use Planning Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative effort involving several state agencies, the model itself has no legal or regulatory authority. In 2008, the Governor's Task Force on Wind Power Development issued its final report. One of the Task Force's recommendations was that the State

440

Staffing Model | Department of Energy  

Office of Environmental Management (EM)

fingmodel(v06)---2009-09-23.xls More Documents & Publications 2013-10-08 DOE G 413.3-19 staffing model v07 DOE G 413.3-12 PDRI v02 Microsoft Word - DOEStaffingStudyCover.doc...

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

MULTIPLE WELL VARIABLE RATE WELL TEST ANALYSIS OF DATA FROM THE AUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRAM  

E-Print Network [OSTI]

experimental Thermal energy storage in confined aquifers. lAUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRM1 Christineseries of aquifer thermal energy storage field experiments.

Doughty, Christine

2012-01-01T23:59:59.000Z

442

The University of Rochester | OSTI, US Dept of Energy, Office...  

Office of Scientific and Technical Information (OSTI)

Scientists Rate University of Rochester a Best Place to Work Department of Chemical Engineering President Joel Seligman University of Rochester Libraries Xi-Cheng Zhang,...

443

University Teams to Showcase Affordable, Energy Efficient Living...  

Broader source: Energy.gov (indexed) [DOE]

of Florida) Team Massachusetts (Massachusetts College of Art and Design and University of Massachusetts at Lowell) Team New Jersey (Rutgers - The State University of New Jersey and...

444

ICCT Roadmap Model | Open Energy Information  

Open Energy Info (EERE)

ICCT Roadmap Model ICCT Roadmap Model Jump to: navigation, search Tool Summary Name: ICCT Roadmap Model Agency/Company /Organization: International Council on Clean Transportation (ICCT) Sector: Climate, Energy User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.theicct.org/global-transportation-roadmap-model Cost: Free Related Tools Global Atmospheric Pollution Forum Air Pollutant Emission Inventory Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Threshold 21 Model ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS An Excel-based modeling tool intended to aid policy makers with identifying trends, evaluating emissions and energy efficiency with respect to various policy options, and generate strategies to reduce greenhouse gas emissions

445

System Advisor Model (SAM) | Open Energy Information  

Open Energy Info (EERE)

System Advisor Model (SAM) System Advisor Model (SAM) (Redirected from SAM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: System Advisor Model Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Geothermal, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Pathways analysis, Resource assessment Resource Type: Case studies/examples, Dataset, Guide/manual, Training materials, Software/modeling tools, Video User Interface: Desktop Application Website: sam.nrel.gov/ Web Application Link: sam.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured, EERE tool, System Advisor Model, SAM Language: English System Advisor Model Screenshot References: SAM[1]

446

Revolutions in energy through modeling and simulation  

SciTech Connect (OSTI)

The development and application of energy technologies for all aspects from generation to storage have improved dramatically with the advent of advanced computational tools, particularly modeling and simulation. Modeling and simulation are not new to energy technology development, and have been used extensively ever since the first commercial computers were available. However, recent advances in computing power and access have broadened the extent and use, and, through increased fidelity (i.e., accuracy) of the models due to greatly enhanced computing power, the increased reliance on modeling and simulation has shifted the balance point between modeling and experimentation. The complex nature of energy technologies has motivated researchers to use these tools to understand better performance, reliability and cost issues related to energy. The tools originated in sciences such as the strength of materials (nuclear reactor containment vessels); physics, heat transfer and fluid flow (oil production); chemistry, physics, and electronics (photovoltaics); and geosciences and fluid flow (oil exploration and reservoir storage). Other tools include mathematics, such as statistics, for assessing project risks. This paper describes a few advancements made possible by these tools and explores the benefits and costs of their use, particularly as they relate to the acceleration of energy technology development. The computational complexity ranges from basic spreadsheets to complex numerical simulations using hardware ranging from personal computers (PCs) to Cray computers. In all cases, the benefits of using modeling and simulation relate to lower risks, accelerated technology development, or lower cost projects.

Tatro, M.; Woodard, J.

1998-08-01T23:59:59.000Z

447

Model Policies | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Center Site Map Printable Version Development Adoption Compliance Regulations Resource Center FAQs Publications Resource Guides eLearning Model Policies Glossary Related Links ACE Learning Series Utility Savings Estimators Model Policies States and local jurisdictions across the nation have demonstrated leadership in developing programs and policies that both encourage and require compliance with energy codes, stretch codes (e.g., above-minimum codes) and green building techniques, energy-efficiency practices, and environmentally-friendly procedures. The laws and regulations behind these programs and policies can help states and jurisdictions establish unique policies to address their particular needs. Model policies for residential and commercial building construction have

448

Improved diagnostic model for estimating wind energy  

SciTech Connect (OSTI)

Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

Endlich, R.M.; Lee, J.D.

1983-03-01T23:59:59.000Z

449

Walking model with no energy cost  

Science Journals Connector (OSTI)

We have numerically found periodic collisionless motions of a walking model consisting of linked rigid objects. Unlike previous designs, this model can walk on level ground at noninfinitesimal speed with zero energy input. The model avoids collisional losses by using an internal mode of oscillation: swaying of the upper body coupled to the legs by springs. Appropriate synchronized internal oscillations set the foot-strike collision to zero velocity. The concept might be of use for energy-efficient robots and may also help to explain aspects of human and animal locomotion efficiency.

Mario Gomes and Andy Ruina

2011-03-08T23:59:59.000Z

450

Department of Energy Announces $17 Million to Bolster University-Led  

Broader source: Energy.gov (indexed) [DOE]

17 Million to Bolster 17 Million to Bolster University-Led Nuclear Energy Research and Development Department of Energy Announces $17 Million to Bolster University-Led Nuclear Energy Research and Development September 21, 2011 - 1:39pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that $17 million in research grants will be awarded to 23 university-led teams aimed at strengthening the robust research and development capabilities of American universities and colleges to develop the next generation of nuclear energy technologies and upgrade research reactors across the country. Supported through the Department's Nuclear Energy University Programs (NEUP), DOE is taking action to restart the U.S. nuclear industry as part of a broad approach to create new clean energy jobs and cut carbon

451

Department of Energy Awards $5.7 Million to U.S. Universities for Nuclear  

Broader source: Energy.gov (indexed) [DOE]

7 Million to U.S. Universities for 7 Million to U.S. Universities for Nuclear Energy Research Department of Energy Awards $5.7 Million to U.S. Universities for Nuclear Energy Research February 2, 2007 - 10:15am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will award $5.7 million to nine universities for research grants under the Nuclear Energy Research Initiative (NERI). These grants are designed to engage U.S. university professors and students in advanced nuclear energy research and development (R&D), in an effort to strengthen and focus DOE's research for the Generation IV Nuclear Energy Systems Initiative and the Nuclear Hydrogen Initiative. "These awards demonstrate our commitment to pursuing nuclear research, and we are eager for our next generation of scientists and engineers to

452

More Than 60 Georgetown University Energy Prize Communities Join the Residential Network  

Broader source: Energy.gov [DOE]

The Better Buildings Residential Network announced an agreement with the Georgetown University Energy Prize (GUEP) competition to welcome all participating communities as members, which brings the...

453

The National Energy Modeling System: An Overview 1998 - Appendix:  

Gasoline and Diesel Fuel Update (EIA)

APPENDIX: APPENDIX: BIBLIOGRAPHY The National Energy Modeling System is documented in a series of model documentation reports, available by contacting the National Energy Information Center (202/586-8800). Energy Information Administration, National Energy Modeling System Integrating Module Documentation Report, DOE/EIA-M057(97) (Washington, DC, May 1997). Energy Information Administration, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(97) (Washington, DC, December 1996). Energy Information Administration, Model Developer's Appendix to the Model Documentation Report: NEMS Macroeconomic Activity Module, DOE/EIA-M065A (Washington, DC, July 1994). Energy Information Administration, Documentation of the DRI Model of the

454

Bond Energies in Models of the Schrock Metathesis Catalyst. ...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energies in Models of the Schrock Metathesis Catalyst. Bond Energies in Models of the Schrock Metathesis Catalyst. Abstract: Heats of formation, adiabatic and diabatic bond...

455

Comparison of Real World Energy Consumption to Models and DOE...  

Broader source: Energy.gov (indexed) [DOE]

Comparison of Real World Energy Consumption to Models and DOE Test Procedures Comparison of Real World Energy Consumption to Models and DOE Test Procedures This study investigates...

456

High-energy radiation damage in zirconia: modeling results ....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy radiation damage in zirconia: modeling results . High-energy radiation damage in zirconia: modeling results . Abstract: Zirconia has been viewed as a material of exceptional...

457

Building Energy Modeling Library - 2013 BTO Peer Review | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Modeling Library - 2013 BTO Peer Review Building Energy Modeling Library - 2013 BTO Peer Review Commercial Buildings Integration Project for the 2013 Building Technologies...

458

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

Model Part I, Energy Technology Systems Analysis Programme,A Report of the Energy Technology Systems Analysis Project,Energy Efficiency Technologies in Integrated Assessment

Karali, Nihan

2014-01-01T23:59:59.000Z

459

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

RR-08-26 Modeling of Energy Production Decisions: An Alaskarapid or gradual energy production in the future? Doesnet social benefit from energy production and achieving a

Leighty, Wayne

2008-01-01T23:59:59.000Z

460

NREL: Energy Analysis - Models and Tools Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Models and Tools Archive Models and Tools Archive Through the years, NREL has developed and supported several models and tools to assess, analyze, and optimize renewable energy and energy efficiency technologies. Some of these have been transferred to the private market. This page lists tools we have supported, but that are no longer active. See current models and tools here. ADVISOR (ADvanced VehIcle SimulatOR) Simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. In 2003, ADVISOR was commercialized by AVL Powertrain Engineering, Inc. Hybrid2 Conduct detailed long-term performance and economic analysis on a wide variety of hybrid power systems. RET Finance Calculate the cost of energy of renewable electricity generation

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Advanced Modeling & Simulation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches alone. Modeling and simulation has a long history with researchers and scientists exploring nuclear energy technologies. In fact, the existing fleet of currently operating reactors was licensed with computational tools that were produced or initiated in the 1970s. Researchers and scientists in

462

SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology and Policy  

E-Print Network [OSTI]

and demands) and market decisions (how much energy should be 1 #12;produced by each source, how muchSMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology and Policy and Financial Engineering, Princeton University, Princeton, NJ 08544, USA, {powell

Powell, Warren B.

463

Energy Spot Price Models and Spread Options Pricing Samuel Hikspoors and Sebastian Jaimungal a  

E-Print Network [OSTI]

). The world wide energy commodities markets have created a need for a deeper quan- titative understandingEnergy Spot Price Models and Spread Options Pricing Samuel Hikspoors and Sebastian Jaimungal a a Department of Statistics and Mathematical Finance Program, University of Toronto, 100 St. George Street

Jaimungal, Sebastian

464

Energy 32 (2007) 406417 Modeling and control of a SOFC-GT-based autonomous power system  

E-Print Network [OSTI]

, Norway b SINTEF ICT, 7465 Trondheim, Norway c Department of Energy and Process Engineering, NorwegianEnergy 32 (2007) 406­417 Modeling and control of a SOFC-GT-based autonomous power system Rambabu University of Science and Technology, Trondheim, 7491, Norway Received 31 October 2005 Abstract

Foss, Bjarne A.

465

The National Energy Modeling System The  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 (AEO2000) are generated from the National Energy Modeling System (NEMS), developed and main- tained by the Office of Integrated Analysis and Fore- casting of the Energy Information Administration (EIA). In addition to its use in the development of the AEO projections, NEMS is also used in analytical studies for the U.S. Congress and other offices within the Department of Energy. The AEO forecasts are also used by analysts and planners in other govern- ment agencies and outside organizations. The projections in NEMS are developed with the use of a market-based approach to energy analysis. For each fuel and consuming sector, NEMS balances the energy supply and demand, accounting for the eco- nomic competition between the various energy fuels and sources. The time horizon of NEMS is the mid- term period, approximately 20 years in the future. In order to represent the regional differences

466

Falsifying Field-based Dark Energy Models  

E-Print Network [OSTI]

We survey the application of specific tools to distinguish amongst the wide variety of dark energy models that are nowadays under investigation. The first class of tools is more mathematical in character: the application of the theory of dynamical systems to select the better behaved models, with appropriate attractors in the past and future. The second class of tools is rather physical: the use of astrophysical observations to crack the degeneracy of classes of dark energy models. In this last case the observations related with structure formation are emphasized both in the linear and non-linear regimes. We exemplify several studies based on our research, such as quintom and quinstant dark energy ones. Quintom dark energy paradigm is a hybrid construction of quintessence and phantom fields, which does not suffer from fine-tuning problems associated to phantom field and additionally it preserves the scaling behavior of quintessence. Quintom dark energy is motivated on theoretical grounds as an explanation for the crossing of the phantom divide, i.e. the smooth crossing of the dark energy state equation parameter below the value -1. On the other hand, quinstant dark energy is considered to be formed by quintessence and a negative cosmological constant, the inclusion of this later component allows for a viable mechanism to halt acceleration. We comment that the quinstant dark energy scenario gives good predictions for structure formation in the linear regime, but fails to do that in the non-linear one, for redshifts larger than one. We comment that there might still be some degree of arbitrariness in the selection of the best dark energy models.

Genly Leon; Yoelsy Leyva; Emmanuel N. Saridakis; Osmel Martin; Rolando Cardenas

2009-12-02T23:59:59.000Z

467

Energy Efficient Radio Resource  

E-Print Network [OSTI]

Energy Efficient Radio Resource Management in a Coordinated Multi-Cell Distributed Antenna System Omer HALILOGLU Introduction System Model Performance Evaluation Conclusion References Energy Efficient Hacettepe University 5 September 2014 Omer HALILOGLU (Hacettepe University) Energy Efficient Radio Resource

Yanikomeroglu, Halim

468

Dynamical vacuum energy in the expanding Universe confronted with observations: a dedicated study  

E-Print Network [OSTI]

Despite the many efforts, our theoretical understanding of the ultimate nature of the dark energy component of the universe still lags well behind the astounding experimental evidence achieved from the increasingly sophisticated observational tools at our disposal. While the canonical possibility is a strict cosmological constant, or rigid vacuum energy density $\\rho_{\\Lambda}=$const., the exceeding simplicity of this possibility lies also at the root of its unconvincing theoretical status, as there is no explanation for the existence of such constant for the entire cosmic history. Herein we explore general models of the vacuum energy density slowly evolving with the Hubble function $H$ and/or its time derivative, $\\rho_{\\Lambda}(H,\\dot{H})$. Some of these models are actually well-motivated from the theoretical point of view and may provide a rich phenomenology that could be explored in future observations, whereas some others have more limitations. In this work, we put them to the test and elucidate which ones are still compatible with the present observations and which ones are already ruled out. We consider their implications on structure formation, in combination with data on type Ia supernovae, the Cosmic Microwave Background, the Baryonic Acoustic Oscillations, and the predicted redshift distribution of cluster-size collapsed structures. The relation of these vacuum models on possible evidence of dynamical dark energy recently pointed out in the literature is also briefly addressed.

Adria Gomez-Valent; Joan Sola; Spyros Basilakos

2014-11-27T23:59:59.000Z

469

CTG Sustainable Communities Model | Open Energy Information  

Open Energy Info (EERE)

CTG Sustainable Communities Model CTG Sustainable Communities Model Jump to: navigation, search Tool Summary Name: CTG Sustainable Communities Model Agency/Company /Organization: CTG Energetics Inc. Sector: Energy Focus Area: Buildings, Transportation Phase: Determine Baseline, Develop Goals Topics: Co-benefits assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.ctg-net.com/energetics/whatwedo/sustainableCommunities.aspx References: http://www.ctg-net.com/energetics/resources/newsDetails.aspx?id=17 "This model quantifies total CO2e emissions allowing communities the ability to optimize planning decisions that result in the greatest environmental benefit for the least cost. Total CO2e emissions are based on emissions from energy usage, water consumption and transportation. The

470

Energy Department Announces $4 Million for University Consortium to Advance Americas Water Power Industry  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $4 million to engage Americas research universities in the effort to accelerate the development of the emerging marine and hydrokinetic (MHK) energy industry in the United States.

471

UNIVERSITY OF CALIFORNIA, TeV Energy Spectra of the Crab Nebula, Mrk 421 and  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA, IRVINE TeV Energy Spectra of the Crab Nebula, Mrk 421 and the Cygnus . . . . . . . . . . . . . . . . . . . . 2 i Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ii The Search for the Origin with Milagro . . . . . . . . . . . . . . . . . . . . . 69 IVThe Milagro Energy Reconstruction Algorithm 73 I

California at Santa Cruz, University of

472

Government-University-Industrial Collaborations for Energy Efficiency and a Better Environment  

E-Print Network [OSTI]

The Energy Division of the North Carolina Department of Commerce, in collaboration with the state-supported engineering universities of North Carolina, conducts numerous projects to help business and industry save energy and reduce pollution...

Phillips, W. C.

473

Advanced Wind Energy Projects Test Facility Moving to Texas Tech University  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) Sandia National Laboratories (SNL) is moving its wind energy test facility to a new location near the campus of Texas Tech University in Lubbock, Texas.

474

Building Energy Model Development for Retrofit Homes  

SciTech Connect (OSTI)

Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This true up procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The trued post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the true up procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or incorporation into existing software tools would improve the efficiency of the process. Retrofit activity appears to be gaining market share, and this would be a potentially valuable capability with relevance to marketing, program management, and retrofit success metrics.

Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

2012-09-30T23:59:59.000Z

475

Energy Research at UC Santa Barbara Energy is one of the most important challenges of the century. Energy research at the University of  

E-Print Network [OSTI]

Energy Research at UC Santa Barbara Energy is one of the most important challenges of the century. Energy research at the University of California Santa Barbara (UC Santa Barbara) is largely focused on developing new technologies that increase energy efficiency, thereby reducing energy consumption. UC Santa

Akhmedov, Azer

476

Property:Buildings/Models | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Buildings/Models Jump to: navigation, search This is a property of type Page. It links to pages that use the form Buildings Publication. Pages using the property "Buildings/Models" Showing 2 pages using this property. G General Merchandise 50% Energy Savings Technical Support Document 2009 + General Merchandise 2009 TSD Chicago High Plug Load Baseline +, General Merchandise 2009 TSD Chicago High Plug Load 50% Energy Savings +, General Merchandise 2009 TSD Chicago Low Plug Load Baseline +, ... Grocery Store 50% Energy Savings Technical Support Document 2009 + Grocery 2009 TSD Chicago Baseline +, Grocery 2009 TSD Chicago 50% Energy Savings +, Grocery 2009 TSD Miami Baseline +, ...

477

Modeling of CO2 Reduction Impacts on Energy Prices with Modelica Philip Machanick1  

E-Print Network [OSTI]

, Peter Fritzson1,2 1 School ITEE, University of Queensland, Australia 2 PELAB, Department of ComputerModeling of CO2 Reduction Impacts on Energy Prices with Modelica Philip Machanick1 , Ariel Liebman1 at the ap- propriate rate. In this paper we present a Modelica model which explores the trade

Machanick, Philip

478

Sustainable energy for developing countries : modelling transitions to renewable and clean energy in rapidly developing countries.  

E-Print Network [OSTI]

??The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions (more)

Urban, Frauke

2009-01-01T23:59:59.000Z

479

Model warranty for solar energy contractors  

SciTech Connect (OSTI)

Model warranties are given for a solar collector and a pool cover. These model warranties are designed for use by solar equipment manufacturers in developing warranties that will comply with the warranty requirements contained in Section 2601(e) of the Solar Tax Credit Regulations promulgated by the California Energy Commission. A manufacturer's warranty which conforms substantially with this model warranty will qualify for the state solar tax credit. Significant aspects of the model warranty are explained for solar collector manufacturers, and the principal differences between the pool cover warranty and the solar collector warranty are enumerated. It is explained how to modify the solar collector warranty so that it may be applied to other solar and wind energy equipment. (WHK)

Not Available

1980-02-01T23:59:59.000Z

480

Department of Energy Announces $39 Million to Strengthen University-Led  

Broader source: Energy.gov (indexed) [DOE]

39 Million to Strengthen 39 Million to Strengthen University-Led Nuclear Energy Research and Development Department of Energy Announces $39 Million to Strengthen University-Led Nuclear Energy Research and Development August 9, 2011 - 3:17pm Addthis Washington, D.C. - The Department of Energy today announced that it has awarded up to $39 million in research grants aimed at developing cutting-edge nuclear energy technologies and training and educating the next generation of leaders in the U.S. nuclear industry. Speaking at the U.S. Department of Energy's annual Nuclear Energy University Programs (NEUP) workshop in Chicago, Assistant Secretary Peter Lyons said the grants would support up to 51 projects at colleges and universities around the country. Through NEUP, the Department is working to leverage the research and

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)  

SciTech Connect (OSTI)

The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.

Linder, Eric

2008-11-28T23:59:59.000Z

482

Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)  

ScienceCinema (OSTI)

The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.

Linder, Eric

2011-04-28T23:59:59.000Z

483

Multi-University Research to Advance Discovery Fusion Energy Science using a  

E-Print Network [OSTI]

Dept of Applied Physics and Applied Math, Columbia University, New York, NY Plasma Science and FusionMulti-University Research to Advance Discovery Fusion Energy Science using a Superconducting Center, MIT, Cambridge, MA Outline · Intermediate scale discovery fusion energy science needs support

484

Criticality and universality in a generalized earthquake model  

SciTech Connect (OSTI)

We propose that an appropriate prototype for modeling self-organized criticality in dissipative systems is a generalized version of the two-variable cellular automata model introduced by Hergarten and Neugebauer [Phys. Rev. E 61, 2382 (2000)]. We show that the model predicts exponents for the event size distribution which are consistent with physically observed results for dissipative phenomena such as earthquakes. In addition we provide evidence that the model is critical based on both scaling analyses and direct observation of the distribution and behavior of the two variables in the interior of the lattice. We further argue that for reasonably large lattices the results are universal for all dissipative choices of the model parameters.

Boulter, C.J.; Miller, G. [Department of Mathematics, School of Mathematical and Computer Sciences, Scott Russell Building, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

2005-01-01T23:59:59.000Z

485

Solar Energy Research at the Australian National University A.W. Blakers  

E-Print Network [OSTI]

Solar Energy Research at the Australian National University A.W. Blakers Centre for Sustainable in the areas of photovoltaics and solar thermal energy. 1. INTRODUCTION The Centre for Sustainable Energy in photovoltaics and solar thermal energy. The Centre currently has 33 staff and 8 PhD students and an annual

486

CLEMSON UNIVERSITY'S COMMITMENT TO GREEN ECONOMIC DEVELOPMENT WHITE PAPER ON CLEAN ENERGY  

E-Print Network [OSTI]

. A subsequent summit on renewable energy focused on South Carolina's "Job Opportunities in the Green EconomyCLEMSON UNIVERSITY'S COMMITMENT TO GREEN ECONOMIC DEVELOPMENT WHITE PAPER ON CLEAN ENERGY: Clemson of the 21st century for South Carolina and the nation -- energy. Energy is interwoven with the nation

Stuart, Steven J.

487

Department of Energy Announces $39 Million to Strengthen University-Led  

Broader source: Energy.gov (indexed) [DOE]

39 Million to Strengthen 39 Million to Strengthen University-Led Nuclear Energy Research and Development Department of Energy Announces $39 Million to Strengthen University-Led Nuclear Energy Research and Development August 9, 2011 - 11:51am Addthis 51 Projects Aim to Cut Carbon Pollution, Create Clean Energy Jobs and Strengthen America's Nuclear Energy Industry Washington, D.C. - The Department of Energy today announced that it has awarded up to $39 million in research grants aimed at developing cutting-edge nuclear energy technologies and training and educating the next generation of leaders in the U.S. nuclear industry. Speaking at the U.S. Department of Energy's annual Nuclear Energy University Programs (NEUP) workshop in Chicago, Assistant Secretary Peter Lyons said the grants

488

Department of Energy Announces $39 Million to Strengthen University-Led  

Broader source: Energy.gov (indexed) [DOE]

Announces $39 Million to Strengthen Announces $39 Million to Strengthen University-Led Nuclear Energy Research and Development Department of Energy Announces $39 Million to Strengthen University-Led Nuclear Energy Research and Development August 9, 2011 - 11:51am Addthis 51 Projects Aim to Cut Carbon Pollution, Create Clean Energy Jobs and Strengthen America's Nuclear Energy Industry Washington, D.C. - The Department of Energy today announced that it has awarded up to $39 million in research grants aimed at developing cutting-edge nuclear energy technologies and training and educating the next generation of leaders in the U.S. nuclear industry. Speaking at the U.S. Department of Energy's annual Nuclear Energy University Programs (NEUP) workshop in Chicago, Assistant Secretary Peter Lyons said the grants

489

Sandia National Laboratories: Analysis, Modeling, Cost of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramsAnalysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 The "20% Wind Energy by...

490

Regional Economic Models, Inc. (REMI) Model | Open Energy Information  

Open Energy Info (EERE)

Regional Economic Models, Inc. (REMI) Model Regional Economic Models, Inc. (REMI) Model Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: REMI Agency/Company /Organization: Regional Economic Models Inc. Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Develop Goals Topics: Baseline projection, GHG inventory, Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Complexity/Ease of Use: Moderate Website: www.remi.com/ Cost: Paid References: http://www.remi.com/index.php?page=overview&hl=en_US Related Tools Job and Economic Development Impact Models (JEDI) The Integrated Environmental Strategies Handbook: A Resource Guide for Air Quality Planning

491

NREL: Energy Storage - Modeling and Simulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modeling and Simulation Modeling and Simulation Two NREL researchers are silhouetted in front of computer screens displaying thermal model images. NREL modeling and simulation experts use an extensive portfolio of validated tools to assess ES solutions for advanced vehicles. Photo by Dennis Schroeder, NREL/PIX 22009 Multi-physics simulation of energy storage (ES) devices provides a less expensive, faster, and more controlled alternative to in-lab testing in the early stages of research and development (R&D)-which eventually leads to longer lasting, dependable and powerful batteries. NREL is a recognized leader in systems-level thermal design, performance, lifespan, reliability, and safety modeling and simulation. The lab's 1-D and 3-D steady-state and transient multi-physics models are used to examine heat transfer,

492

Experimental High Energy Physics Brandeis University Final Report  

SciTech Connect (OSTI)

During the past three years, the Brandeis experimental particle physics group was comprised of four faculty (Bensinger, Blocker, Sciolla, and Wellenstein), one research scientist, one post doc, and ten graduate stu