Powered by Deep Web Technologies
Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Interacting agegraphic dark energy models in non-flat universe  

E-Print Network [OSTI]

A so-called "agegraphic dark energy" was recently proposed to explain the dark energy-dominated universe. In this Letter, we generalize the agegraphic dark energy models to the universe with spatial curvature in the presence of interaction between dark matter and dark energy. We show that these models can accommodate $w_D = -1 $ crossing for the equation of state of dark energy. In the limiting case of a flat universe, i.e. $k = 0$, all previous results of agegraphic dark energy in flat universe are restored.

Ahmad Sheykhi

2009-09-12T23:59:59.000Z

2

Interacting holographic dark energy model in non-flat universe  

E-Print Network [OSTI]

We employ the holographic model of interacting dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named $L$.

M R Setare

2006-10-14T23:59:59.000Z

3

Occupancy Modeling and Prediction for Building Energy Varick L. Erickson, University of California, Merced  

E-Print Network [OSTI]

A Occupancy Modeling and Prediction for Building Energy Management Varick L. Erickson, University.Cerpa, University of California, Merced Heating, cooling and ventilation accounts for 35% energy usage in the United and Prediction for Building Energy Management and Auditing. ACM Trans. Sensor Netw. V, N, Article A (August 2012

Cerpa, Alberto E.

4

Interacting polytropic gas model of phantom dark energy in non-flat universe  

E-Print Network [OSTI]

By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for even polytropic index by choosing $K>Ba^{\\frac{3}{n}}$, one can obtain $\\omega^{\\rm eff}_{\\Lambda}<-1$, which corresponds to a universe dominated by phantom dark energy.

K. Karami; S. Ghaffari; J. Fehri

2009-11-25T23:59:59.000Z

5

An Interacting Dark Energy Model for the Expansion History of the Universe  

E-Print Network [OSTI]

We explore a model of interacting dark energy where the dark energy density is related by the holographic principle to the Hubble parameter, and the decay of the dark energy into matter occurs at a rate comparable to the current value of the Hubble parameter. We find this gives a good fit to the observational data supporting an accelerating Universe, and the model represents a possible alternative interpretation of the expansion history of the Universe.

Micheal S. Berger; Hamed Shojaei

2006-08-16T23:59:59.000Z

6

Occupancy Modeling and Prediction for Building Energy Management VARICK L. ERICKSON, University of California, Merced  

E-Print Network [OSTI]

42 Occupancy Modeling and Prediction for Building Energy Management VARICK L. ERICKSON, University, University of California, Merced Heating, cooling and ventilation accounts for 35% energy usage in the United into building conditioning system for usage-based demand control conditioning strategies. Using strategies based

Carreira-Perpiñán, Miguel Á.

7

Rip Singularity Scenario and Bouncing Universe in a Chaplygin Gas Dark Energy Model  

E-Print Network [OSTI]

We choose a modified Chaplygin Gas Dark energy model for considering some its cosmological behaviors. In this regards, we study different Rip singularity scenarios and bouncing model of the universe in context of this model. We show that by using suitable parameters can explain some cosmological aspects of the model.

S. Davood Sadatian

2013-09-28T23:59:59.000Z

8

University of Delaware | Catalysis Center for Energy Innovation | Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI

9

Dark matter and dark energy production in quantum model of the universe  

E-Print Network [OSTI]

The quantum model of the homogeneous, isotropic, and spatially closed universe predicts an existence of two types of collective quantum states in the universe. The states of one type characterize a gravitational field, the others describe a matter (uniform scalar) field. In the first stage of the evolution of the universe a primordial scalar field evolves slowly into its vacuum-like state. In the second stage the scalar field oscillates about an equilibrium due to the quantum fluctuations. The universe is being filled with matter in the form of elementary quantum excitations of the vibrations of the scalar field. The separate quantum excitations are characterized by non-zero values of their energies (masses). Under the action of gravitational forces mainly these excitations decay into ordinary particles (baryons and leptons) and dark matter. The elementary quantum excitations of the vibrations of the scalar field which have not decayed up to now form dark energy. The numerical estimations lead to realistic va...

Kuzmichev, V E

2004-01-01T23:59:59.000Z

10

Dark matter and dark energy production in quantum model of the universe  

E-Print Network [OSTI]

The quantum model of the homogeneous, isotropic, and spatially closed universe predicts an existence of two types of collective quantum states in the universe. The states of one type characterize a gravitational field, the others describe a matter (uniform scalar) field. In the first stage of the evolution of the universe a primordial scalar field evolves slowly into its vacuum-like state. In the second stage the scalar field oscillates about an equilibrium due to the quantum fluctuations. The universe is being filled with matter in the form of elementary quantum excitations of the vibrations of the scalar field. The separate quantum excitations are characterized by non-zero values of their energies (masses). Under the action of gravitational forces mainly these excitations decay into ordinary particles (baryons and leptons) and dark matter. The elementary quantum excitations of the vibrations of the scalar field which have not decayed up to now form dark energy. The numerical estimations lead to realistic values of both the matter density \\Omega_{M} = 0.29 (with the contributions from dark matter, \\Omega_{DM} = 0.25, and optically bright baryons, \\Omega_{stars} = 0.0025) and the dark energy density \\Omega_{X} = 0.71 if one takes that the mean energy ~ 10 GeV is released in decay of dark energy quantum and fixes baryonic component \\Omega_{B} = 0.04 according to observational data. The energy (mass) of dark energy quantum is equal to ~ 17 GeV and the energy > 2 x 10^{10} GeV is needed in order to detect it. Dark matter particle has the mass ~ 6 GeV. The Jeans mass for dark matter which is considered as a gas of such massive particles is equal to M_{J} ~ 10^{5} M_{\\odot}.

V. E. Kuzmichev; V. V. Kuzmichev

2004-05-24T23:59:59.000Z

11

The Dark Energy Universe  

E-Print Network [OSTI]

Some seventy five years ago, the concept of dark matter was introduced by Zwicky to explain the anomaly of galactic rotation curves, though there is no clue to its identity or existence to date. In 1997, the author had introduced a model of the universe which went diametrically opposite to the existing paradigm which was a dark matter assisted decelarating universe. The new model introduces a dark energy driven accelarating universe though with a small cosmological constant. The very next year this new picture was confirmed by the Supernova observations of Perlmutter, Riess and Schmidt. These astronomers got the 2011 Nobel Prize for this dramatic observation. All this is discussed briefly, including the fact that dark energy may obviate the need for dark matter.

Burra G. Sidharth

2015-01-12T23:59:59.000Z

12

Residence Hall ROI: The Benefits of Energy Modeling for University Dormitories  

E-Print Network [OSTI]

Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 2010 Case Studies University of Houston, Calhoun Lofts, Houston, TX Texas State University, North Campus Housing Complex San Marcos, TX Stephen F. Austin University Nacogdoches, TX ESL... Dec. 16-18 Stephen F. Austin University Nacogdoches, TX ESL-KT-13-12-20 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Stephen F. Austin University Nacogdoches, TX ESL-KT-13-12-20 CATEE 2013: Clean Air...

Hodges, C.; Hernandez, A.

2013-01-01T23:59:59.000Z

13

A Holographic Energy Model  

E-Print Network [OSTI]

We suggest a holographic energy model in which the energy coming from spatial curvature, matter and radiation can be obtained by using the particle horizon for the infrared cut-off. We show the consistency between the holographic dark-energy model and the holographic energy model proposed in this paper. Then, we give a holographic description of the universe.

P. Huang; Yong-Chang Huang

2012-12-30T23:59:59.000Z

14

Cosmological implications of interacting polytropic gas dark energy model in non-flat universe  

E-Print Network [OSTI]

The polytropic gas model is investigated as an interacting dark energy scenario. The cosmological implications of the model including the evolution of EoS parameter $w_{\\Lambda}$, energy density $\\Omega_{\\Lambda}$ and deceleration parameter $q$ are investigated. We show that, depending on the parameter of model, the interacting polytropic gas can behave as a quintessence or phantom dark energy. In this model, the phantom divide is crossed from below to up. The evolution of $q$ in the context of polytropic gas dark energy model represents the decelerated phase at the early time and accelerated phase later. The singularity of this model is also discussed. Eventually, we establish the correspondence between interacting polytropic gas model with tachyon, K-essence and dilaton scalar fields. The potential and the dynamics of these scalar field models are reconstructed according to the evolution of interacting polytropic gas.

M. Malekjani; A. Khodam-Mohammadi; M. Taji

2011-04-26T23:59:59.000Z

15

Notes on interacting holographic dark energy model in a closed universe  

E-Print Network [OSTI]

We consider interacting holographic dark energy model in Friedmann Robertson Walker space time with positive spatial curvature and investigate the behavior of curvature parameter and dark energy density in accelerated expanding epoch. We also derive some conditions needed to cross the phantom divide line in this model.

H. Mohseni Sadjadi; N. Vadood

2008-09-08T23:59:59.000Z

16

10/14/09 2:35 PMMathematicians' Alternate Model of the Universe Explains Away the Need For Dark Energy | Popular Science Page 1 of 13http://www.popsci.com/military-aviation-amp-space/article/2009-09/mathematicians-seek-explain-away-dark-energy-universe  

E-Print Network [OSTI]

-09/mathematicians-seek-explain-away-dark-energy-universe Mathematicians' Alternate Model of the Universe Explains An alternative theory eliminates dark energy by placing Earth at the center of expansion Expanding Universe What;10/14/09 2:35 PMMathematicians' Alternate Model of the Universe Explains Away the Need For Dark Energy

Temple, Blake

17

Validity of the Generalized Second Law of Thermodynamics of the Universe Bounded by the Event Horizon in Holographic Dark Energy Model  

E-Print Network [OSTI]

In this letter, we investigate the validity of the generalized second law of thermodynamics of the universe bounded by the event horizon in the holographic dark energy model. The universe is chosen to be homogeneous and isotropic and the validity of the first law has been assumed here. The matter in the universe is taken in the form of non-interacting two fluid system- one component is the holographic dark energy model and the other component is in the form of dust.

Nairwita Mazumder; Subenoy Chakraborty

2010-05-19T23:59:59.000Z

18

Life in an Energy Eigenstate: Decoherent Histories Analysis of a Model Timeless Universe  

E-Print Network [OSTI]

Inspired by quantum cosmology, in which the wave function of the universe is annihilated by the total Hamiltonian, we consider the internal dynamics of a simple particle system in an energy eigenstate. Such a system does not possess a uniquely defined time parameter and all physical questions about it must be posed without reference to time. We consider in particular the question, what is the probability that the system's trajectory passes through a set of regions of configuration space without reference to time? We first consider the classical case, where the answer has a variety of forms in terms of a phase space probability distribution function. We then consider the quantum case, and we analyze this question using the decoherent histories approach to quantum theory, adapted to questions which do not involve time. When the histories are decoherent, the probabilities approximately coincide with the classical case, with the phase space probability distribution replaced by the Wigner function of the quantum state. For some initial states, decoherence requires an environment, and we compute the required influence functional and examine some of its properties. Special attention is given to the inner product used in the construction (the induced or Rieffel inner product), the construction of class operators describing the histories, and the extent to which reparametrization invariance is respected. Our results indicate that simple systems without an explicit time parameter may be quantized using the decoherent histories approach, and the expected classical limit extracted. The results support, for simple models, the usual heuristic proposals for the probability distribution function associated with a semiclassical wave function satisfying the Wheeler-DeWitt equation.

J. J. Halliwell; J. Thorwart

2002-01-21T23:59:59.000Z

19

I - Matter, antimatter and geometry II - The twin universe model : a solution to the problem of negative energy particles III - The twin universe model plus electric charges and matter-antimatter symmetry  

E-Print Network [OSTI]

We introduce a new dynamical group whose coadjoint action on its momentum space takes account of matter-antimatter symmetry on pure geometrical grounds. According to this description the energy and the spin are unchanged under matter-antimatter symmetry. We recall that the antichron components of the Poincar\\'{e} group, ruling relativistic motions of a mass-point particle, generate negative energy particles. The model with two twin universes, inspired by Sakharov's one, solves the stability issue. Positive and negative energy particles motions hold in two distinct folds. The model is extended to charged particles. As a result, the matter-antimatter duality holds in both universes.

Frederic Henry-Couannier; Gilles D'Agostini; Jean-Pierre Petit

2005-03-09T23:59:59.000Z

20

Universal Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: Energy Resources Jump to:Universal

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy-consumption modelling  

SciTech Connect (OSTI)

A highly sophisticated and accurate approach is described to compute on an hourly or daily basis the energy consumption for space heating by individual buildings, urban sectors, and whole cities. The need for models and specifically weather-sensitive models, composite models, and space-heating models are discussed. Development of the Colorado State University Model, based on heat-transfer equations and on a heuristic, adaptive, self-organizing computation learning approach, is described. Results of modeling energy consumption by the city of Minneapolis and Cheyenne are given. Some data on energy consumption in individual buildings are included.

Reiter, E.R.

1980-01-01T23:59:59.000Z

22

Observations and Modeling of the Green Ocean Amazon (GoAmazon2014) PI: Scot T. Martin, Harvard University Funding Agency: Department of Energy  

E-Print Network [OSTI]

Observations and Modeling of the Green Ocean Amazon (GoAmazon2014) PI: Scot T. Martin, Harvard University Funding Agency: Department of Energy Main Deployment: 1 January 2014 through 31 December 2014

23

Universal formula for the energy--momentum tensor via a flow equation in the Gross--Neveu model  

E-Print Network [OSTI]

For the fermion field in the two-dimensional Gross--Neveu model, we introduce a flow equation that allows a simple $1/N$ expansion. By employing the $1/N$ expansion, we examine the validity of a universal formula for the energy--momentum tensor which is based on the small flow-time expansion. We confirm that the formula reproduces a correct normalization and the conservation law of the energy--momentum tensor by computing the translation Ward--Takahashi relation in the leading non-trivial order in the $1/N$ expansion. Also we confirm that the expectation value at finite temperature correctly reproduces thermodynamic quantities. These observations support the validity of a similar construction of the energy--momentum tensor via the gradient/Wilson flow in lattice gauge theory.

Suzuki, Hiroshi

2015-01-01T23:59:59.000Z

24

A Dark Energy Model with Generalized Uncertainty Principle in the Emergent, Intermediate and Logamediate Scenarios of the Universe  

E-Print Network [OSTI]

This work is motivated by the work of Kim et al (2008), which considered the equation of state parameter for the new agegraphic dark energy based on generalized uncertainty principle coexisting with dark matter without interaction. In this work, we have considered the same dark energy inter- acting with dark matter in emergent, intermediate and logamediate scenarios of the universe. Also, we have investigated the statefinder, kerk and lerk parameters in all three scenarios under this inter- action. The energy density and pressure for the new agegraphic dark energy based on generalized uncertainty principle have been calculated and their behaviors have been investigated. The evolu- tion of the equation of state parameter has been analyzed in the interacting and non-interacting situations in all the three scenarios. The graphical analysis shows that the dark energy behaves like quintessence era for logamediate expansion and phantom era for emergent and intermediate expansions of the universe.

Rahul Ghosh; Surajit Chattopadhyay; Ujjal Debnath

2011-10-22T23:59:59.000Z

25

Vacuum quantum fluctuation energy in expanding universe and dark energy  

E-Print Network [OSTI]

This article is based on the Planckon densely piled vacuum model and the principle of cosmology. With the Planck era as initial conditions and including the early inflation, we have solved the Einstein-Friedmann equations to describe the evolution of the universe. The results are: 1) the ratio of the dark energy density to the vacuum quantum fluctuation energy density is $\\frac{{{\\rho }_{de}}}{{{\\rho }_{vac}}}\\sim{{(\\frac{{{t}_{P}}}{{{T}_{0}}})}^{2}}\\sim{{10}^{-122}} $; 2) at the inflation time ${{t}_{\\inf }}={{10}^{-35}}s$, the calculated universe radiation energy density is $\\rho ({{t}_{\\inf }})\\sim{{10}^{-16}}{{\\rho }_{vac}}$ and the corresponding temperature is ${{E}_{c}}\\sim{{10}^{15}}GeV$ consistent with the GUT phase transition temperature; 3) the expanding universe with vacuum as its environment is a non-equilibrium open system constantly exchanging energy with vacuum; during its expansion, the Planckons in the universe lose quantum fluctuation energy and create the cosmic expansion quanta-cosmons, the energy of cosmons is the lost part of the vacuum quantum fluctuation energy and contributes to the universe energy with the calculated value ${{E}_{\\cos mos}}={{10}^{22}}{{M}_{\\otimes }}{{c}^{2}}$ (where ${{M}_{\\otimes }}$ is solar mass); 4) the total energy of the universe, namely the negative gravity energy plus the positive universe energy is zero; 5) the negative gravity potential and the gravity acceleration related to the creation of cosmons are derived with the nature of outward repulsive force, indicating that the cosmon may be the candidate of the dark energy quantum; 6) both the initial Planck era solution and the infinite asymptotic solution of the Einstein-Friedman equations are unstable: the former tends to expand and the latter tends to shrink, so that the Einstein-Friedman universe will undergo a cyclic evolution of successive expansion and shrinking.

Shun-Jin Wang

2014-10-27T23:59:59.000Z

26

From the Dark Matter Universe to the Dark Energy Universe  

E-Print Network [OSTI]

Till the late nineties the accepted cosmological model was that of a Universe that had originated in the Big Bang and was now decelerating under the influence of as yet undetected dark matter, so that it would come to a halt and eventually collapse. In 1997 however, the author had put forward a contra model wherein the Universe was driven by dark energy, essentially the quantum zero point field, and was accelerating with a small cosmological constant. There were other deductions too, all in total agreement with observation. All this got confirmation in 1998 and subsequent observations have reconfirmed the findings.

Burra G. Sidharth

2008-03-30T23:59:59.000Z

27

RAELRenewable and Appropriate Energy Laboratory University of California Berkeley  

E-Print Network [OSTI]

RAELRenewable and Appropriate Energy Laboratory University of California BerkeleyJon, and community outreach facility based at the University of California, BerkeleyJon of the Switch computaJonal model. With Switch (a loose acronym for Solar, Wind

Kammen, Daniel M.

28

Appalachian Energy Center Appalachian State University  

E-Print Network [OSTI]

technologies, conservation, and policy. HISTORY Appalachian Energy Center at Appalachian State UniversityAppalachian Energy Center Appalachian State University Annual Report, 2009 & 2010 December 2010 Appalachian Energy Center MISSION Appalachian Energy Center (AEC) is committed to research, development

Rose, Annkatrin

29

Universal thermochemical energy converter  

DOE Patents [OSTI]

Disclosed are methods and apparatus for a thermochemical closed cycle employing a polyatomic, chemically active working fluid for converting heat energy into useful work.

Labinov, Solomon Davidovich (Oak Ridge, TN); Sand, James R. (Oak Ridge, TN); Conklin, James C. (Knoxville, TN); VanCoevering, James (Oak Ridge, TN); Courville, George E. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

30

University of Delaware Energy Institute  

SciTech Connect (OSTI)

The main goal of this project funded through this DOE grant is to help in the establishment of the University of Delaware Energy Institute (UDEI) which is designed to be a long-term, on-going project. The broad mission of UDEI is to develop collaborative programs encouraging research activities in the new and emerging energy technologies and to partner with industry and government in meeting the challenges posed by the nationâ??s pressing energy needs.

Klein, Michael T

2012-09-30T23:59:59.000Z

31

Nuclear Energy University Programs  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy Second Quarter4, 2014 Dr.7446AugustJune

32

Simulation of the Post-Retrofit Thermal Energy Use for the University Teaching Center (UTC) Building with the Use of Simplified System Models  

E-Print Network [OSTI]

ESL-TR-91/12-03 ENERGY SYSTEMS LABORATORY TECHNICAL REPORT REPRINTED WITH PERMISSION Simulation of the Post-Retrofit Thermal Energy Use for the University Teaching Center (UTC) Building with the Use of Simplified System Models Srinivas Katipamula, P.... Texas 77843 (409) 845-6402. or (409) 845-3251 INTRODUCTION Several state owned buildings with dual-duct constant volume (DDCV) systems have been retrofitted with energy efficient variable air volume systems (VAV) as part of the Texas LoanSTAR Program...

Katipamula, S.; Claridge, D. E.

1991-01-01T23:59:59.000Z

33

The University of Maryland Energy Research Center  

E-Print Network [OSTI]

gap of In1-xGaxN to solar spectrum ENERGY EFFICIENCY The university's Center for Environmental EnergyThe University of Maryland Energy Research Center Join Us in Building a Sustainable Energy Future · Provide energy technology and policy leadership to the state, the nation, and the world. The University

Shapiro, Benjamin

34

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network [OSTI]

Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

35

On the Ricci dark energy model  

E-Print Network [OSTI]

We study the Ricci dark energy model (RDE) which was introduced as an alternative to the holographic dark energy model. We point out that an accelerating phase of the RDE is that of a constant dark energy model. This implies that the RDE may not be a new model of explaining the present accelerating universe.

Kyoung Yee Kim; Hyung Won Lee; Yun Soo Myung

2008-12-22T23:59:59.000Z

36

Hamdard University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a countyon State0933482°,Hamdard University Jump to:

37

Colorado: Energy Modeling Products Support Energy Efficiency...  

Office of Environmental Management (EM)

Colorado: Energy Modeling Products Support Energy Efficiency Projects Colorado: Energy Modeling Products Support Energy Efficiency Projects May 1, 2014 - 11:04am Addthis Xcel...

38

University of California Energy Institute The California Electricity Market  

E-Print Network [OSTI]

of California Energy Institute Transmission Pricing Models · Fixed cost pricing models (cost recovery » Decentralized (Wu and Varaiya) #12;University of California Energy Institute Point: PoolCo and the Nodal Pricing Framework · Energy prices are set by ISO at various locations (nodes or zones) · Transmission prices

California at Berkeley. University of

39

Agegraphic Chaplygin gas model of dark energy  

E-Print Network [OSTI]

We establish a connection between the agegraphic models of dark energy and Chaplygin gas energy density in non-flat universe. We reconstruct the potential of the agegraphic scalar field as well as the dynamics of the scalar field according to the evolution of the agegraphic dark energy. We also extend our study to the interacting agegraphic generalized Chaplygin gas dark energy model.

Ahmad Sheykhi

2010-02-07T23:59:59.000Z

40

University of Oklahoma - High Energy Physics  

SciTech Connect (OSTI)

The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest distances, or at the very highest energies. The outcomes of the group's combined experimental and theoretical research will be an improved understanding of nature, at the highest energies reachable, from which applications to technological innovation will surely result, as they always have from such studies in the past.

Skubic, Patrick L. [University of Oklahoma] [University of Oklahoma

2013-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Positioning Statement Texas Tech University  

E-Print Network [OSTI]

Energy Positioning Statement Texas Tech University Whitacre College of Engineering The Whitacre sufficient and sustainable energy sources to power its future. The college is committed to conducting cutting edge research and providing educational programs related to traditional and unconventional energy

Zhang, Yuanlin

42

University of Minnesota and the Department of Energy Celebrate...  

Energy Savers [EERE]

University of Minnesota and the Department of Energy Celebrate New Wind Energy Research Station University of Minnesota and the Department of Energy Celebrate New Wind Energy...

43

Modelling dark energy  

E-Print Network [OSTI]

One of the most pressing, modern cosmological mysteries is the cause of the accelerated expansion of the universe. The energy density required to cause this large scale opposition to gravity is known to be both far in ...

Jackson, Brendan Marc

2011-11-23T23:59:59.000Z

44

Instability of agegraphic dark energy models  

E-Print Network [OSTI]

We investigate the agegraphic dark energy models which were recently proposed to explain the dark energy-dominated universe. For this purpose, we calculate their equation of states and squared speeds of sound. We find that the squared speed for agegraphic dark energy is always negative. This means that the perfect fluid for agegraphic dark energy is classically unstable. Furthermore, it is shown that the new agegraphic dark energy model could describe the matter (radiation)-dominated universe in the far past only when the parameter $n$ is chosen to be $n>n_c$, where the critical values are determined to be $n_c=2.6878(2.5137752)$ numerically. It seems that the new agegraphic dark energy model is no better than the holographic dark energy model for the description of the dark energy-dominated universe, even though it resolves the causality problem.

Kyoung Yee Kim; Hyung Won Lee; Yun Soo Myung

2007-09-18T23:59:59.000Z

45

Healthcare Energy: State University of New York Upstate Medical...  

Broader source: Energy.gov (indexed) [DOE]

State University of New York Upstate Medical University East Wing Healthcare Energy: State University of New York Upstate Medical University East Wing The Building Technologies...

46

Energy States of Universe and New Phantom Energy  

E-Print Network [OSTI]

Energy states of the universe is obtained when the scale factor is defined as a=At^n, and n varies as -1energy, which it`s energy density increases with time while w=-1/3 .

Mahgoub Salih

2009-06-20T23:59:59.000Z

47

West Virginia University 1 Energy Systems Engineering  

E-Print Network [OSTI]

personnel with advanced training in specialized areas of energy systems and energy supply-chain management in the area of conversion Distribution/storage 3 Examples include: #12;2 Energy Systems Engineering EE 533West Virginia University 1 Energy Systems Engineering The Master of Science in Energy Systems

Mohaghegh, Shahab

48

Dynamics of Bianchi I Universe with Magnetized Anisotropic Dark Energy  

E-Print Network [OSTI]

We study Bianchi type $I$ cosmological model in the presence of magnetized anisotropic dark energy. The energy-momentum tensor consists of anisotropic fluid with anisotropic EoS $p=\\omega{\\rho}$ and a uniform magnetic field of energy density $\\rho_B$. We obtain exact solutions to the field equations using the condition that expansion is proportional to the shear scalar. The physical behavior of the model is discussed with and without magnetic field. We conclude that universe model as well as anisotropic fluid do not approach isotropy through the evolution of the universe.

M. Sharif; M. Zubair

2010-05-25T23:59:59.000Z

49

The University of Maryland Energy Research Center  

E-Print Network [OSTI]

The University of Maryland Energy Research Center Join Us in Building a Sustainable Energy Future ThE NEEd Our quality of life, standard of living and national security depend on energy. A strong, balanced together the research capabilities necessary to create a sustainable energy future, with faculty expertise

Rubloff, Gary W.

50

THE UNIVERSITY OF CALGARY One Size Does Not Fit All: Extending the Transtheoretical Model to Energy Feedback  

E-Print Network [OSTI]

of technologies that provide real-time, energy usage feedback. However, current technologies use a "one notions for designers of technology that motivates sustainable energy behaviour. Second, I show how to illustrate the application of the framework to inform energy feedback technology design. The first

Greenberg, Saul

51

Interacting agegraphic tachyon model of dark energy  

E-Print Network [OSTI]

Scalar-field dark energy models like tachyon are often regarded as an effective description of an underlying theory of dark energy. In this Letter, we implement the interacting agegraphic dark energy models with tachyon field. We demonstrate that the interacting agegraphic evolution of the universe can be described completely by a single tachyon scalar field. We thus reconstruct the potential as well as the dynamics of the tachyon field according to the evolutionary behavior of interacting agegraphic dark energy.

A. Sheykhi

2009-11-16T23:59:59.000Z

52

UCDavis University of California A California Energy  

E-Print Network [OSTI]

PEV drivers charge at home #12;Charging behavior ­ self reportedLarger sample ­About 50% sayUCDavis University of California A California Energy Commission Public Interest Energy Research · Fleet Operation · Energy Savings Battery studies · Benchmark Testing · 2nd use · End of life Spatial

California at Davis, University of

53

Bishop's University Energy Efficiency Action Plan  

E-Print Network [OSTI]

. Continuous basis Action 9: Sustainable Development standards for existing buildings. Go green certification from BOMA for existing buildings Bishop's University Sustainable Development policy (ELU Committee January 2008 Government of Quebec, energy strategy, May 2006 Sustainable Development law, 2006 Letter

54

Renewable-Based Energy Secure Communities (RESCOs) University...  

Open Energy Info (EERE)

Renewable-Based Energy Secure Communities (RESCOs) University of California, Merced Jump to: navigation, search Name Renewable-Based Energy Secure Communities (RESCOs) University...

55

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive version 1.1 #12;September 24, 2004 Renewable Energy Research Laboratory Page 1 University of Massachusetts

Massachusetts at Amherst, University of

56

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive. Rogers April 4, 2005 #12;April 4, 2005 Renewable Energy Research Laboratory Page 1 University

Massachusetts at Amherst, University of

57

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Anthony L. Rogers April 4, 2005 #12;April 4, 2005 Renewable Energy Research Laboratory Page 1 University

Massachusetts at Amherst, University of

58

Energy Department And University of California Extend Management...  

National Nuclear Security Administration (NNSA)

Apply for Our Jobs Our Jobs Working at NNSA Blog Home Media Room Press Releases Energy Department And University of California Extend ... Energy Department And University of...

59

More Than 60 Georgetown University Energy Prize Communities Join...  

Broader source: Energy.gov (indexed) [DOE]

More Than 60 Georgetown University Energy Prize Communities Join the Residential Network More Than 60 Georgetown University Energy Prize Communities Join the Residential Network...

60

Nonrelativistic Dark-Energy Fluid in a Baby Universe  

E-Print Network [OSTI]

We show that the dynamical realization of the acceleration-enlarged Galilean symmetry leads to nonrelativistic massless particles whose energy may be negative. We present a fluid mechanical generalisation of this observation and use it to contruct a nonrelativistic two-dimensional fluid model which possesses solutions with a negative energy density. Considering this model as describing dark energy in a baby universe (two space dimensions) we show that its negative energy density leads to a repulsive gravitational interaction of the fluid with any test body.

P. C. Stichel; W. J. Zakrzewski

2008-07-23T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nuclear Energy University Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak

62

Constraints on the interacting holographic dark energy model  

E-Print Network [OSTI]

We examined the interacting holographic dark energy model in a universe with spatial curvature. Using the near-flatness condition and requiring that the universe is experiencing an accelerated expansion, we have constrained the parameter space of the model and found that the model can accommodate a transition of the dark energy from $\\omega_D>-1$ to $\\omega_D<-1$.

Bin Wang; Chi-Yong Lin; Elcio Abdalla

2006-03-31T23:59:59.000Z

63

Holographic Dark Energy Model: State Finder Parameters  

E-Print Network [OSTI]

In this work, we have studied interacting holographic dark energy model in the background of FRW model of the universe. The interaction is chosen either in linear combination or in product form of the matter densities for dark matter and dark energy. The IR cut off for holographic dark energy is chosen as Ricci's length scale or radius of the future event horizon. The analysis is done using the state finder parameter and coincidence problem has been graphically presented. Finally, universal thermodynamics has been studied using state finder parameters.

Nairwita Mazumder; Ritabrata Biswas; Subenoy Chakraborty

2011-10-30T23:59:59.000Z

64

An Energy Complexity Model for Algorithms Swapnoneel Roy  

E-Print Network [OSTI]

An Energy Complexity Model for Algorithms Swapnoneel Roy Department of CSE University at Buffalo by the importance of energy and algorithmic complexity models do not capture the energy consumed by an algorithm. In this paper, we propose a new complexity model to ac- count for the energy used by an algorithm. Based

Rudra,, Atri

65

Origin of holographic dark energy models  

E-Print Network [OSTI]

We investigate the origin of holographic dark energy models which were recently proposed to explain the dark energy-dominated universe. For this purpose, we introduce the spacetime foam uncertainty of $\\delta l \\ge l_{\\rm p}^{\\alpha}l^{\\alpha-1}$. It was argued that the case of $\\alpha=2/3$ could describe the dark energy with infinite statistics, while the case of $\\alpha=1/2$ can describe the ordinary matter with Bose-Fermi statistics. However, two cases may lead to the holographic energy density if the latter recovers from the geometric mean of UV and IR scales. Hence the dark energy with infinite statistics based on the entropy bound is not an ingredient for deriving the holographic dark energy model. Furthermore, it is shown that the agegraphic dark energy models are the holographic dark energy model with different IR length scales.

Yun Soo Myung; Min-Gyun Seo

2009-01-06T23:59:59.000Z

66

Dark Energy in Global Brane Universe  

E-Print Network [OSTI]

We discuss the exact solutions of brane universes and the results indicate the Friedmann equations on the branes are modified with a new density term. Then, we assume the new term as the density of dark energy. Using Wetterich's parametrization equation of state (EOS) of dark energy, we obtain the new term varies with the red-shift z. Finally, the evolutions of the mass density parameter $\\Omega_2$, dark energy density parameter $\\Omega_x$ and deceleration parameter q_2 are studied.

Yongli Ping; Lixin Xu; Chengwu Zhang; Hongya Liu

2007-12-20T23:59:59.000Z

67

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work 14, 2008 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst, MA

Massachusetts at Amherst, University of

68

Accurate Modeling and Prediction of Energy Availability in Energy Harvesting Real-Time Embedded Systems  

E-Print Network [OSTI]

Binghamton University, State University of New York Binghamton, New York, USA {jlu5, sliu5, qwu, qqiuAccurate Modeling and Prediction of Energy Availability in Energy Harvesting Real-Time Embedded}@binghamton.edu Abstract -- Energy availability is the primary subject that drives the research innovations in energy

Qiu, Qinru

69

Purdue University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum County Place:PulteGroupPurdue University

70

Split University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551°FarmsSES JumpSpillSpire SolarUniversity

71

Hoechst Celanese Energy Model  

E-Print Network [OSTI]

day, this report documents the key operating variables for optimal operation of plant energy systems, such as boiler load, breakdowns, steam vents and turbo-generator stage flows. LINEAR PROGRAMMING APPROACH Linear programming is an optimization... and for ongoing plant optimization. The model optimizes variable utilities production costs using a linear programming approach. Every operating area provides input to the model for use in forecasting their utilities demand. All costs associated...

Fitzpatrick, B. A.; Gangadhar, K.

72

Department of Energy Awards $2 Million for National University...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE's Acting Assistant Secretary for Energy Efficiency and Renewable Energy, Dr. Henry Kelly, at a clean energy jobs event at the University of Florida-Gainesville yesterday, the...

73

Lancaster University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) Jump to:LamarJump to: navigation, search Name:

74

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive work sponsored by the Renewable Energy Trust (RET), as administered by the Massachusetts Technology 18, 2008 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst, MA

Massachusetts at Amherst, University of

75

University of California Energy Institute Design Choices in the  

E-Print Network [OSTI]

University of California Energy Institute Design Choices in the Organization of Electricity Markets Electricity Market » Transmission pricing #12;University of California Energy Institute Restructuring Goals of California Energy Institute Organization of Firms · Public vs. Private Ownership ­ Restructuring

California at Berkeley. University of

76

Competitive Energy Reduction (CER) Campaign at the University of Texas  

E-Print Network [OSTI]

1 Competitive Energy Reduction (CER) Campaign at the University of Texas Scientists and Engineers Reduction Campaign at the University of Texas Energy Reduced by Enlisting Volunteers and Promoting .................................................................................................................................................10 Appendix A ­ Lab Energy Audit Checklist

Hofmann, Hans A.

77

Auburn University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspen Aerogels05. ItJumpAtraverda Ltd°AuburnAuburn,

78

Bucknell University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village inBrownfieldBrussels,Buchtel,Buckingham

79

Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

An understanding of the properties of atomic nuclei is crucial for a complete nuclear theory, for element formation, for properties of stars, and for present and future energy and defense applications. During the period of Dec. 1 2006 Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. Until recently such an undertaking was hard to imagine, and even at the present time such an ambitious endeavor would be far beyond what a single researcher or a traditional research group could carry out.

Carlson, Joseph; Furnstahl, Richard; Horoi, Mihai; Lusk, Rusty; Nazarewicz, Witold; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-01T23:59:59.000Z

80

Energy Department Announces New University-Led Projects to Create...  

Office of Environmental Management (EM)

University-Led Projects to Create More Efficient, Lower Cost Concentrating Solar Power Systems Energy Department Announces New University-Led Projects to Create More Efficient,...

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear Energy University Program: A Presentation to Vice Presidents...  

Office of Environmental Management (EM)

Nuclear Energy University Program: A Presentation to Vice Presidents of Research and Development of Historically Black Colleges and Universities, given by the Office of Nuclear...

82

Energy Department Announces $4 Million for University Consortium...  

Energy Savers [EERE]

4 Million for University Consortium to Advance America's Water Power Industry Energy Department Announces 4 Million for University Consortium to Advance America's Water Power...

83

Modeling of thermal energy storage in groundwater aquifers  

E-Print Network [OSTI]

MODELING OF THERMAL ENERGY STORAGE IN GROUNDWATER AQUIFERS A Thesis by DAVID BRYAN REED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979... ABSTRACT Modeling of Thermal Energy Storage in Groundwater Aquifers. (December 1979) David Bryan Reed, B. S. , Texas A&M University Chairman of Advisory Committee: Dr. Donald L. Reddell Solar energy is a promising alternate energy source for space heat...

Reed, David Bryan

2012-06-07T23:59:59.000Z

84

University of Arizona Compressed Air Energy Storage  

SciTech Connect (OSTI)

Boiled down to its essentials, the grants purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z

85

Texas Tech University Energy Savings Program July 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through the Third energy demand upon the university buildings. Cogeneration steam, provided at no cost to the universityTexas Tech University Energy Savings Program July 2011 Update The Texas Tech Energy Savings Update

Zhuang, Yu

86

Texas Tech University Energy Savings Program April 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through the SecondTexas Tech University Energy Savings Program April 2011 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. University Energy Use Energy units are converted to thousands of BTUs per

Gelfond, Michael

87

Texas Tech University Energy Savings Program January 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For the firstTexas Tech University Energy Savings Program January 2011 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. University Energy Use Energy units are converted to thousands of BTUs

Gelfond, Michael

88

Texas Tech University Energy Savings Program October 2011 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. Through fiscalTexas Tech University Energy Savings Program October 2011 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. University Energy Use Energy units are converted to thousands of BTUs

Zhuang, Yu

89

The Energy of Bianchi Type I and II Universes in Teleparallel Gravity  

E-Print Network [OSTI]

For certain models, the energy of the universe which includes the energy of both the matter and the gravitational fields is obtained by using the quasilocal energy-momentum in teleparallel gravity. It is shown that in the case of the Bianchi type I and II universes, not only the total energy but also the quasilocal energy-momentum for any region vanishes independently of the three dimensionless coupling constants of teleparallel gravity.

Lau Loi So; T. Vargas

2006-11-02T23:59:59.000Z

90

Dark Energy, Expansion History of the Universe, and SNAP  

E-Print Network [OSTI]

This talk presents a pedagogical discussion of how precision distance-redshift observations can map out the recent expansion history of the universe, including the present acceleration and the transition to matter dominated deceleration. The proposed Supernova/Acceleration Probe (SNAP) will carry out observations determining the components and equations of state of the energy density, providing insights into the cosmological model, the nature of the accelerating dark energy, and potentially clues to fundamental high energy physics theories and gravitation. This includes the ability to distinguish between various dynamical scalar field models for the dark energy, as well as higher dimension and alternate gravity theories. A new, advantageous parametrization for the study of dark energy to high redshift is also presented.

Eric V. Linder

2003-02-03T23:59:59.000Z

91

New agegraphic dark energy model with generalized uncertainty principle  

E-Print Network [OSTI]

We investigate the new agegraphic dark energy models with generalized uncertainty principle (GUP). It turns out that although the GUP affects the early universe, it does not change the current and future dark energy-dominated universe significantly. Furthermore, this model could describe the matter-dominated universe in the past only when the parameter $n$ is chosen to be $n>n_c$, where the critical value determined to be $n_c=2.799531478$.

Yong-Wan Kim; Hyung Won Lee; Yun Soo Myung; Mu-In Park

2008-08-07T23:59:59.000Z

92

Energy density fluctuations in early universe  

SciTech Connect (OSTI)

The primordial nucleosinthesys of the element can be influenced by the transitions of phase that take place after the Big Bang, such as the QCD transition. In order to study the effect of this phase transition, in this work we compute the time evolution of thermodynamical quantities of the early universe, focusing on temperature and energy density fluctuations, by solving the relevant equations of motion using as input the lattice QCD equation of state to describe the strongly interacting matter in the early universe plasma. We also study the effect of a primordial strong magnetic field by means of a phenomenological equation of state. Our results show that small inhomogeneities of strongly interacting matter in the early Universe are moderately damped during the crossover.

Guardo, G. L.; Ruggieri, M. [Department of Physics and Astronomy, University of Catania, Catania (Italy); Greco, V. [Department of Physics and Astronomy, University of Catania, Catania, Italy and INFN - Laboratori Nazionali del Sud, Catania (Italy)

2014-05-09T23:59:59.000Z

93

A Decrumpling Model of the Universe  

E-Print Network [OSTI]

Assuming a cellular structure for the space-time, we propose a model in which the expansion of the universe is understood as a decrumpling process, much like the one we know from polymeric surfaces. The dimension of space is then a dynamical real variable. The generalized Friedmann equation, derived from a Lagrangian, and the generalized equation of continuity for the matter content of the universe, give the dynamics of our model universe. This leads to an oscillatory non-singular model with two turning points for the dimension of space.

M. Khorrami; M. Mansouri; M. Mohazzab

1996-07-23T23:59:59.000Z

94

UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM  

SciTech Connect (OSTI)

The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

Rutherfoord, John P. [University of Arizona] [University of Arizona; Johns, Kenneth A. [University of Arizona] [University of Arizona; Shupe, Michael A. [University of Arizona] [University of Arizona; Cheu, Elliott C. [University of Arizona] [University of Arizona; Varnes, Erich W. [University of Arizona] [University of Arizona; Dienes, Keith [University of Arizona] [University of Arizona; Su, Shufang [University of Arizona] [University of Arizona; Toussaint, William Doug [University of Arizona] [University of Arizona; Sarcevic, Ina [University of Arizona] [University of Arizona

2013-07-29T23:59:59.000Z

95

Tool Kit Framework: Small Town University Energy Program (STEP)  

Broader source: Energy.gov [DOE]

Tool Kit Framework: Small Town University Energy Program (STEP), as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

96

Southern Oregon University Highlighted by U.S. Energy Department...  

Office of Environmental Management (EM)

by Southern Oregon University (SOU). The school's investments in renewable energy, sustainability, and purchasing Renewable Energy Certificates (RECs) are benefiting residents and...

97

China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal...  

Open Energy Info (EERE)

China Solar Energy Ltd Tianpu Xianxing Group aka Beijing Universal Antecedence Jump to: navigation, search Name: China Solar Energy Ltd (Tianpu Xianxing Group, aka Beijing...

98

Cosmological bounds on oscillating dark energy models  

E-Print Network [OSTI]

We study some cosmological constraints on the two phenomenological models of oscillating dark energy. In these scenarios, the equation of state of dark energy varies periodically and may provide a way to unify the early acceleration (inflation) and the late time acceleration of the universe. These models give also an effective way to tackle the so-called cosmic coincidence problem. We examine observational constraints on this class of models from the latest observational data including the \\emph{gold} sample of 182 type Ia supernovae, the CMB shift parameter $R$ and the BAO measurements from the Sloan Digital Sky Survey.

Deepak Jain; Abha Dev; J. S. Alcaniz

2007-09-26T23:59:59.000Z

99

Texas Tech University Energy Savings Program October 2012 Update  

E-Print Network [OSTI]

on energy consumption for the same time period from the previous year normalized to current energy costs,727 Cogeneration Steam 20.06 20.83 Up 3.8% NA Total 165.84 161.01 Down 2.9% $ 194,851 Texas Tech University EnergyTexas Tech University Energy Savings Program October 2012 Update The Texas Tech Energy Savings

Zhuang, Yu

100

News Letter Institute of Advanced Energy, Kyoto University  

E-Print Network [OSTI]

. Abstract definition of energy consists of two parts: Energy = Exergy +Anergy Exergy is a part of energyNews Letter Institute of Advanced Energy, Kyoto University ISSN 1342-3193 IAE-NL-2014 No.54 http -- 2,709 2013 2013 Institute of Advanced Energy, Kyoto University #12; 25 25 11 20

Takada, Shoji

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst, MA 01003 NOTICE AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University

Massachusetts at Amherst, University of

102

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive. Ray January 5, 2005 #12;Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 AND ACKNOWLEDGMENTS This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University

Massachusetts at Amherst, University of

103

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive;10/28/2008 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst, MA 01003 NOTICE AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University

Massachusetts at Amherst, University of

104

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performingRenewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Report template version 1.3 #12;April 3, 2006 Renewable Energy Research Laboratory Page 1 University

Massachusetts at Amherst, University of

105

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performingRenewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive. Ellis February 28, 2008 #12;February 28, 2008 Renewable Energy Research Laboratory Page 1 University

Massachusetts at Amherst, University of

106

Multi-Factor Energy Price Models Exotic Derivatives Pricing  

E-Print Network [OSTI]

Multi-Factor Energy Price Models and Exotic Derivatives Pricing by Samuel Hikspoors A thesis of Statistics University of Toronto c Copyright by Samuel Hikspoors 2008 #12;Multi-Factor Energy Price Models and practitioners alike recently started to develop the tools of energy derivatives pricing

Jaimungal, Sebastian

107

HiResHiRes Mapping the HighMapping the High Energy UniverseEnergy Universe  

E-Print Network [OSTI]

HiResHiRes ­­ Mapping the HighMapping the High Energy UniverseEnergy Universe Stefan Westerhoff Columbia University HiRes Collaboration Fermilab Wine & Cheese Seminar 24 October 2003 #12;Particle-rays · Gamma-ray Astronomy ­ photons from MeV to TeV · Cosmic Rays ­ protons and heavier nuclei with energies

108

Constraints on oscillating dark energy models  

E-Print Network [OSTI]

The oscillating scenario of route to Lambda was recently proposed by us arXiv:0704.1651 as an alternative to a cosmological constant in a explanation of the current accelerating universe. In this scenario phantom scalar field conformally coupled to gravity drives the accelerating phase of the universe. In our model $\\Lambda$CDM appears as a global attractor in the phase space. In this paper we investigate observational constraints on this scenario from recent measurements of distant supernovae type Ia, CMB R shift, BAO and $H(z)$ observational data. The Bayesian methods of model selection are used in comparison the model with concordance $\\Lambda$CDM one as well as with model with dynamical dark energy parametrised by linear form. We conclude that $\\Lambda$CDM is favoured over FRW model with dynamical oscillating dark energy. Our analysis also demonstrate that FRW model with oscillating dark energy is favoured over FRW model with decaying dark energy parametrised in linear way.

Aleksandra Kurek; Orest Hrycyna; Marek Szydlowski

2007-11-23T23:59:59.000Z

109

Phenomenologically varying $?$ and a toy model for the Universe  

E-Print Network [OSTI]

We consider a model of the Universe with variable G and {\\Lambda}. Subject of our interest is a phenomenological model for {\\Lambda} proposed and considered in this article first time (up to our knowledge). Modification based on an assumption that ghost dark energy exists and Universe will feel it through {\\Lambda}. In that case we would like to consider possibility that there exist some unusual connections between different components of the fluids existing in Universe. We would like to stress, that this is just an assumption and could be very far from the reality. We are interested by this model as a phenomenological and mathematical and unfortunately, we will not discuss about physical conditions and possibilities of having such modifications. To test our assumption and to observe behavior of the Universe, we will consider toy models filled by a barotropic fluid and modified Chaplyagin gas. To complete the logic of the research we will consider interaction between barotropic fluid or Chaplygin gas with ghost dark energy as a separate scenario. Statefinder diagnostic also provided with stability analysis of the models. All free parameters of the model fixed to satisfy generalized second law of thermodynamics.

M. Khurshudyan; J. Sadeghi; E. Chubaryan; H. Farahani

2014-03-11T23:59:59.000Z

110

Model Building Energy Code  

Broader source: Energy.gov [DOE]

''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

111

Casimir energies of cylinders: Universal function  

SciTech Connect (OSTI)

New exact results are given for the interior Casimir energies of infinitely long waveguides of triangular cross section (equilateral, hemiequilateral, and isosceles right triangles). Results for cylinders of rectangular cross section are rederived. In particular, results are obtained for interior modes belonging to Dirichlet and Neumann boundary conditions (TM and TE modes). These results are expressed in rapidly convergent series using the Chowla-Selberg formula, and in fact may be given in closed form, except for general rectangles. The energies are finite because only the first three heat-kernel coefficients can be nonzero for the case of polygonal boundaries. What appears to be a universal behavior of the Casimir energy as a function of the shape of the regular or quasiregular cross-sectional figure is presented. Furthermore, numerical calculations for arbitrary right triangular cross sections suggest that the universal behavior may be extended to waveguides of general polygonal cross sections. The new exact and numerical results are compared with the proximity force approximation (PFA).

Abalo, E. K.; Milton, K. A.; Kaplan, L. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019 (United States); Department of Physics, Tulane University, New Orleans, Louisiana 70118 (United States)

2010-12-15T23:59:59.000Z

112

University of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE  

E-Print Network [OSTI]

Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii of Hawaii at Manoa HAWAII NATURAL ENERGY INSTITUTE Hawaii Natural Energy Institute School of Ocean and Earth

Firestone, Jeremy

113

N + 1 dimensional quantum mechanical model for a closed universe  

E-Print Network [OSTI]

A quantum mechanical model for an N + 1 dimensional universe arising from a quantum fluctuation is outlined. (3 + 1) dimensions are a closed infinitely-expanding universe and the remaining N - 3 dimensions are compact. The (3 + 1) non-compact dimensions are modeled by quantizing a canonical Hamiltonian description of a homogeneous isotropic universe. It is assumed gravity and the strong-electro-weak (SEW) forces had equal strength in the initial state. Inflation occurred when the compact N -3 dimensional space collapsed after a quantum transition from the initial state of the univers, during its evolution to the present state where gravity is much weaker than the SEW force. The model suggests the universe has no singularities and the large size of our present universe is determined by the relative strength of gravity and the SEW force today. A small cosmological constant, resulting from the zero point energy of the scalar field corresponding to the compact dimensions, makes the model universe expand forever.

T. R. Mongan

1999-02-10T23:59:59.000Z

114

Dark energy models through nonextensive Tsallis' statistics  

E-Print Network [OSTI]

The accelerated expansion of the Universe is one of the greatest challenges of modern physics. One candidate to explain this phenomenon is a new field called dark energy. In this work we have used the Tsallis nonextensive statistical formulation of the Friedmann equation to explore the Barboza-Alcaniz and Chevalier-Polarski-Linder parametric dark energy models and the Wang-Meng and Dalal vacuum decay models. After that, we have discussed the observational tests and the constraints concerning the Tsallis nonextensive parameter.

Rafael da C. Nunes; Edsio M. Barboza Jr.; Everton M. C. Abreu; Jorge Ananias Neto

2014-03-22T23:59:59.000Z

115

Universal Lighting Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: Energy Resources JumpUniversal Lighting

116

Case Western University (Vestas) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm Jump to:Case Western University

117

Case Western University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm Jump to:Case Western UniversityCase

118

University of Illinois | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump(EC-LEDS)Agriculture Name:AlbertaUniversity

119

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive. Manwell Anthony F. Ellis Anthony Rogers October 18, 2004 #12;October 18, 2004 Renewable Energy Research........................................................................................................................ 18 #12;October 18, 2004 Renewable Energy Resear

Massachusetts at Amherst, University of

120

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Anthony F. Ellis Anthony Rogers Kai Wu September 15, 2004 #12;September 15, 2004 Renewable Energy Research........................................................................................................................ 18 #12;September 15, 2004 Renewable Energy Re

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Inventory of state energy models  

SciTech Connect (OSTI)

These models address a variety of purposes, such as supply or demand of energy or of certain types of energy, emergency management of energy, conservation in end uses of energy, and economic factors. Fifty-one models are briefly described as to: purpose; energy system; applications;status; validation; outputs by sector, energy type, economic and physical units, geographic area, and time frame; structure and modeling techniques; submodels; working assumptions; inputs; data sources; related models; costs; references; and contacts. Discussions in the report include: project purposes and methods of research, state energy modeling in general, model types and terminology, and Federal legislation to which state modeling is relevant. Also, a state-by-state listing of modeling efforts is provided and other model inventories are identified. The report includes a brief encylopedia of terms used in energy models. It is assumed that many readers of the report will not be experienced in the technical aspects of modeling. The project was accomplished by telephone conversations and document review by a team from the Colorado School of Mines Research Institute and the faculty of the Colorado School of Mines. A Technical Committee (listed in the report) provided advice during the course of the project.

Melcher, A.G.; Gist, R.L.; Underwood, R.G.; Weber, J.C.

1980-03-31T23:59:59.000Z

122

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive;January 20, 2005 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored

Massachusetts at Amherst, University of

123

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive;January 16, 2007 Renewable Energy Research Laboratory Page 1 University of Massachusetts, Amherst Amherst Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored

Massachusetts at Amherst, University of

124

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive 20, 2005 #12;January 20, 2005 Renewable Energy Research Laboratory Page 1 University of Massachusetts Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work

Massachusetts at Amherst, University of

125

News Letter Institute of Advanced Energy, Kyoto University  

E-Print Network [OSTI]

Materials Science Workshop" Institute of Advanced Energy, Kyoto University #12; 25 1 22 ASEAN 5 ASEANNational University of SingaporeChulalongkorn UniversityASEAN University Network AUN Nantana Gajaseni Institut Teknologi Bandung Akhmaloka Gajaseni "Student Mobility and ASEAN Credit Transfer System" Agreement

Takada, Shoji

126

Accelerating Energy Savings Performance Contracting Through Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Accelerating Energy Savings Performance Contracting Through Model Statewide Programs Provides...

127

Holographic Dark Energy Model with Modified Generalized Chaplygin Gas  

E-Print Network [OSTI]

We present a holographic dark energy model of the universe considering modified generalized Chaplygin gas (GCG). The modified GCG behaves as an ordinary barotropic fluid in the early epoch when the universe was tiny but behaves subsequently as a $\\Lambda$CDM model at late epoch. An equivalent model with scalar field is obtained here by constructing the corresponding potential. The holographic dark energy is identified with the modified GCG and we determine the corresponding holographic dark energy field and its potential. The stability of the holographic dark energy in this case is also discussed.

B. C. Paul; P. Thakur; A. Saha

2007-11-21T23:59:59.000Z

128

Polytropic gas scalar field models of dark energy  

E-Print Network [OSTI]

In this work we investigate the polytropic gas dark energy model in the non flat universe. We first calculate the evolution of EoS parameter of the model as well as the cosmological evolution of Hubble parameter in the context of polytropic gas dark energy model. Then we reconstruct the dynamics and the potential of the tachyon and K-essence scalar field models according to the evolutionary behavior of polytropic gas model.

Mohammad Malekjani

2012-06-04T23:59:59.000Z

129

Texas Tech University Energy Savings Program January 2010 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footageTexas Tech University Energy Savings Program January 2010 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands

Zhuang, Yu

130

Texas Tech University Energy Savings Program October 2009 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footageTexas Tech University Energy Savings Program October 2009 Update The Texas Tech Energy Savings by State Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands

Gelfond, Michael

131

Texas Tech University Energy Savings Program April 2010 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For first twoTexas Tech University Energy Savings Program April 2010 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Zhuang, Yu

132

Texas Tech University Energy Savings Program July 2009 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For the firstTexas Tech University Energy Savings Program July 2009 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Gelfond, Michael

133

Texas Tech University Energy Savings Program July 2010 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For first threeTexas Tech University Energy Savings Program July 2010 Update The Texas Tech Energy Savings Update Agencies. A. Energy Goals 1. Campus Energy Use (E&G) Energy units are converted to thousands of BTUs per

Zhuang, Yu

134

Texas Tech University Energy Savings Program April 2007 Update  

E-Print Network [OSTI]

Texas Tech University Energy Savings Program April 2007 Update The Texas Tech Energy Savings Update detailed energy audit per month beginning with the largest consumers of energy. 2. Fleet Management Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Texas Tech is currently

Gelfond, Michael

135

Texas Tech University Energy Savings Program April 2007 Update  

E-Print Network [OSTI]

Texas Tech University Energy Savings Program April 2007 Update The Texas Tech Energy Savings Update a minimum of 1 detailed energy audit per month beginning with the largest consumers of energy. 2. Fleet Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Texas Tech is currently

Zhuang, Yu

136

Energy Modeling Software  

Broader source: Energy.gov [DOE]

Information from energy simulation software is critical in the design of energy-efficient commercial buildings. The tools listed on this page are the product of Commercial Buildings Integration...

137

Sensitivity of Building Energy Simulation with Building Occupancy for a University Building  

E-Print Network [OSTI]

of Texas A&M University. The energy model for the building was created using the DOE-2 engine and validated with actual energy consumption data. As constructed building characteristics and occupancy loading data were used in the DOE-2 model. Parametric runs...

Chhajed, Shreyans

2014-08-01T23:59:59.000Z

138

Columbia University Energy Options & Paths to Climate Stabilization  

E-Print Network [OSTI]

-lived radioactive components. Safe: no catastrophic accidents; Low-risk for nuclear materials proliferation WhyMike Mauel Columbia University Energy Options & Paths to Climate Stabilization Aspen, 9 July 2003 Fusion Energy: "Pipe Dream or Panacea" #12;Mike Mauel Columbia University Energy Options & Paths

Mauel, Michael E.

139

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive. Ellis August 21, 2008 Report template version 3.1 #12;August 21, 2008 Renewable Energy Research This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts

Massachusetts at Amherst, University of

140

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst contained, described, disclosed, or referred to in this report. July 24, 2009 Renewable Energy Research

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive April 13, 2006 Report template version 2.0 #12;April 13, 2006 Renewable Energy Research Laboratory Page was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst

Massachusetts at Amherst, University of

142

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored by the Renewable Energy Trust (RET), as administered by the Massachusetts

Massachusetts at Amherst, University of

143

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored by the Renewable Energy Trust (RET

Massachusetts at Amherst, University of

144

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course, disclosed, or referred to in this report. November 11, 2009 Renewable Energy Research Laboratory Page 1

Massachusetts at Amherst, University of

145

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Report template version 3.1.1 #12;November 20, 2007 Renewable Energy Research Laboratory Page 1 by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course

Massachusetts at Amherst, University of

146

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Anthony F. Ellis April 10, 2008 Report template version 3.1 #12;April 10, 2008 Renewable Energy Research This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts

Massachusetts at Amherst, University of

147

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course, disclosed, or referred to in this report. June 12, 2009 Renewable Energy Research Laboratory Page 1

Massachusetts at Amherst, University of

148

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive F. Ellis July 21, 2008 Report template version 3.1 #12;July 21, 2008 Renewable Energy Research This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts

Massachusetts at Amherst, University of

149

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course, disclosed, or referred to in this report. July 17, 2009 Renewable Energy Research Laboratory Page 1

Massachusetts at Amherst, University of

150

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive Abdulwahid Anthony F. Ellis July 18, 2008 Report template version 3.1 #12;July 18, 2008 Renewable Energy AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University

Massachusetts at Amherst, University of

151

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive This report was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored by the Renewable Energy Trust (RET), as administered

Massachusetts at Amherst, University of

152

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive was prepared by the Renewable Energy Research Laboratory (RERL) at the University of Massachusetts, Amherst in the course of performing work sponsored by the Massachusetts Department of Energy Resources (DOER

Massachusetts at Amherst, University of

153

Opportunities for Achieving Significant Energy Reduction in Existing University Buildings  

E-Print Network [OSTI]

Opportunities for Achieving Significant Energy Reduction in Existing University Buildings of Findings from GE 520/MN 500: "Energy Audit/Conservation Analysis of BU's Charles River Campus" 2010 #12 Footprint: Boston University Charles River Campus. Presentation to the BU Energy Club. Results of 2007

Hutyra, Lucy R.

154

UK Energy Research Centre Demand Reduction Theme, University of Oxford  

E-Print Network [OSTI]

UK Energy Research Centre Demand Reduction Theme, University of Oxford The Experience of Carbon Energy Research Centre ­ Demand Reduction Theme Environmental Change Institute Oxford University Centre for the Environment South Parks Road Oxford OX1 3QY www.eci.ox.ac.uk www.ukerc.ac.uk #12;UK Energy Research Centre 2 1

155

Holographic Dark Energy with Time Varying n^2 Parameter in Non-Flat Universe  

E-Print Network [OSTI]

We consider a holographic dark energy model, with a varying parameter, n, which evolves slowly with time. We obtain the differential equation describing evolution of the dark energy density parameter, $\\Omega_d$, for the flat and non-flat FRW universes. The equation of state parameter in this generalized version of holographic dark energy depends on n.

Bushra Majeed; Mubasher Jamil; Azad A. Siddiqui

2014-11-01T23:59:59.000Z

156

Universal asymptotic umbrella for hydraulic fracture modeling  

E-Print Network [OSTI]

The paper presents universal asymptotic solution needed for efficient modeling of hydraulic fractures. We show that when neglecting the lag, there is universal asymptotic equation for the near-front opening. It appears that apart from the mechanical properties of fluid and rock, the asymptotic opening depends merely on the local speed of fracture propagation. This implies that, on one hand, the global problem is ill-posed, when trying to solve it as a boundary value problem under a fixed position of the front. On the other hand, when properly used, the universal asymptotics drastically facilitates solving hydraulic fracture problems (both analytically and numerically). We derive simple universal asymptotics and comment on their employment for efficient numerical simulation of hydraulic fractures, in particular, by well-established Level Set and Fast Marching Methods.

Linkov, Aleksandr M

2014-01-01T23:59:59.000Z

157

A Walking Model with No Energy Cost M. W. Gomes  

E-Print Network [OSTI]

on a frictional surface. Can legged transport over level ground be similarly energy-cost free? NatureA Walking Model with No Energy Cost M. W. Gomes Mechanics, Cornell University; now at Mechanical these minor friction losses, is a zero- energy-cost walking mechanism possible? Consider walking mechanisms

Ruina, Andy L.

158

Holographic Dark Energy Model with Modified Variable Chaplygin Gas  

E-Print Network [OSTI]

In this letter we consider a correspondence between holographic dark energy and variable modified Chaplygin gas to obtain a holographic dark energy model of the universe. The corresponding potential of the scalar field has been reconstructed which describes the modified variable Chaplygin gas. The stability of the holographic dark energy in this case is also discussed.

B. C. Paul

2010-06-17T23:59:59.000Z

159

University Heights, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: Energy Resources JumpUniversal

160

University Park, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: Energy Resources JumpUniversal566945°,

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

University Park, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: Energy Resources8.9703884°,University

162

Conformal Higgs model: predicted dark energy density  

E-Print Network [OSTI]

Postulated universal Weyl conformal scaling symmetry provides an alternative to the $\\Lambda$CDM paradigm for cosmology. Recent applications to galactic rotation velocities, Hubble expansion, and a model of dark galactic halos explain qualitative phenomena and fit observed data without invoking dark matter. Significant revision of theory relevant to galactic collisions and clusters is implied, but not yet tested. Dark energy is found to be a consequence of conformal symmetry for the Higgs scalar field of electroweak physics. The present paper tests this implication. The conformal Higgs model acquires a gravitational effect described by a modified Friedmann cosmic evolution equation, shown to fit cosmological data going back to the cosmic microwave background epoch. The tachyonic mass parameter of the Higgs model becomes dark energy in the Friedmann equation. A dynamical model of this parameter, analogous to the Higgs mechanism for gauge boson mass, is derived and tested here. An approximate calculation yields a result consistent with the empirical magnitude inferred from Hubble expansion.

R. K. Nesbet

2014-11-03T23:59:59.000Z

163

Texas Tech University Energy Savings Program October 2012 Update Page 1 of 4 Texas Tech University Energy Savings Program  

E-Print Network [OSTI]

time period from the previous year normalized to current energy costs and campus square footage.06 20.83 Up 3.8% NA Total 165.84 161.01 Down 2.9% $ 194,851 #12;Texas Tech University Energy SavingsTexas Tech University Energy Savings Program ­ October 2012 Update Page 1 of 4 Texas Tech

Gelfond, Michael

164

Texas Tech University Energy Savings Program May 2008 Update  

E-Print Network [OSTI]

costs and campus square footage. Through the second quarter of FY08 the campus consumed 97.48 kbtu/sq ftTexas Tech University Energy Savings Program May 2008 Update The Texas Tech Energy Savings Update Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Energy consumption

Gelfond, Michael

165

Texas Tech University Energy Savings Program February 2008 Update  

E-Print Network [OSTI]

consumption for the same time period from the previous year normalized to current energy costs and campusTexas Tech University Energy Savings Program February 2008 Update The Texas Tech Energy Savings by State Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Texas Tech

Gelfond, Michael

166

Texas Tech University Energy Savings Program July 2007 Update  

E-Print Network [OSTI]

Texas Tech University Energy Savings Program July 2007 Update The Texas Tech Energy Savings Update Performance Contract - $560,000 with a 6 year payback. c. Perform a minimum of 1 detailed energy audit per Agencies. Energy numbers come from the Energy Report filed with SECO semi-annually. Texas Tech may

Gelfond, Michael

167

Regions in Energy Market Models  

SciTech Connect (OSTI)

This report explores the different options for spatial resolution of an energy market model--and the advantages and disadvantages of models with fine spatial resolution. It examines different options for capturing spatial variations, considers the tradeoffs between them, and presents a few examples from one particular model that has been run at different levels of spatial resolution.

Short, W.

2007-02-01T23:59:59.000Z

168

Unique University and Utility Team Reduces Energy and Pollutants  

E-Print Network [OSTI]

In 1992 the Center for Energy Systems Research of the College of Engineering and Applied Sciences and the Arizona State University (ASU) Facilities Management Department formed a unique Demand Side Management (DSM) team dedicated to reducing energy...

Smith, K. L.; Traill, D. A.; Sears, R. L.; Spielman, M.

169

National Energy Modeling System (NEMS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

170

Policy modeling for industrial energy use  

SciTech Connect (OSTI)

The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

2003-03-01T23:59:59.000Z

171

Update on DOEs Nuclear Energy University Program  

SciTech Connect (OSTI)

The Center for Advanced Energy Studies (CAES) Nuclear Energy University Program Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the TIOs/TDOs, a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two FOAs in the following areas: (1)Research and Development Grants, (2)Infrastructure improvement, and (3)Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R&D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Departments research needs to facilitate continued alignment of university R&D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

M. J. Lambregts

2009-04-01T23:59:59.000Z

172

Weak Gravity Conjecture and Holographic Dark Energy Model with Interaction and Spatial Curvature  

E-Print Network [OSTI]

In the paper, we apply the weak gravity conjecture to the holographic quintessence model of dark energy. Three different holographic dark energy models are considered: without the interaction in the non-flat universe; with interaction in the flat universe; with interaction in the non-flat universe. We find that only in the models with the spatial curvature and interaction term proportional to the energy density of matter, it is possible for the weak gravity conjecture to be satisfied.

Cheng-Yi Sun

2010-12-27T23:59:59.000Z

173

The University of Winnipeg Energy Management Policy  

E-Print Network [OSTI]

or disposal, and includes transportation and energy. Local Energy Source any energy source within 500 reduce overall energy demand, and where energy is required, to give preference to local, renewable energy of energy. 3. Encourage the development and use of modes of transportation by students, administration

Martin, Jeff

174

Models of National Energy Systems -focusing on biomass energy  

E-Print Network [OSTI]

Models of National Energy Systems - focusing on biomass energy Poul Erik Grohnheit Systems Analysis models · International development of large energy models · Biomass energy · Upstream expansion of the Pan European model for biomass and crops · Basic elements in a crop model for Denmark· Basic elements

175

**NEW UNIVERSITY-WIDE MINOR ** Minor in Sustainable Energy  

E-Print Network [OSTI]

**NEW UNIVERSITY-WIDE MINOR ** Minor in Sustainable Energy Energy is central. The Minor in Sustainable Energy allows a student in any four-year undergraduate School or College perspectives, as taught by faculty in those areas. The minor in Sustainable Energy is a collaborative effort

Goldberg, Bennett

176

Texas Tech University Energy Savings Program July 2009 Update  

E-Print Network [OSTI]

from the previous year normalized to current energy costs and campus square footage. For the first Program for four energy projects. 1) AHU VFD Project ­ Final cost of $558,904 with a payback of 5.2 yearsTexas Tech University Energy Savings Program July 2009 Update The Texas Tech Energy Savings Update

Zhuang, Yu

177

Texas Tech University Energy Savings Program August 2008 Update  

E-Print Network [OSTI]

consumption for the same time period from the previous year normalized to current energy costs and campus.7% $(217,100) Total 144.13 142.25 Down 1.3% $163,200 Page 1 of 5 July 2008 Energy Report #12;Since RP 49Texas Tech University Energy Savings Program August 2008 Update The Texas Tech Energy Savings

Gelfond, Michael

178

Texas Tech University Energy Savings Program October 2010 Update  

E-Print Network [OSTI]

for the same time period from the previous year normalized to current energy costs and campus square footage Total 15.1357 14.7573 15.5852 3.0% Page 2 of 6 October 2010 Energy Report #12;3. Fleet Fuel ManagementTexas Tech University Energy Savings Program October 2010 Update The Texas Tech Energy Savings

Zhuang, Yu

179

Texas Tech University Energy Savings Program October 2007 Update  

E-Print Network [OSTI]

Texas Tech University Energy Savings Program October 2007 Update The Texas Tech Energy Savings,000 with a 6 year payback. b. Perform a minimum of 1 detailed energy audit per month beginning with the largest consumers of energy. 1) To date we have completed 10 detailed audits. 2. Fleet Management a. The Texas Tech

Gelfond, Michael

180

Texas Tech University Energy Conservation Plan -Quarterly Update  

E-Print Network [OSTI]

Texas Tech University Energy Conservation Plan - Quarterly Update April 2006 Executive Order RP-49 from the Governor's Office requires each state agency to develop an energy conservation plan and set Plan, reporting to the State Energy Conservation Office (SECO) is the two-year energy reduction goal

Gelfond, Michael

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

University of Geneva, Institute for Environmental Sciences, Energy Group  

E-Print Network [OSTI]

environment. Project and job description: Given the intermittency of many renewable energy sources (e.g. solarUniversity of Geneva, Institute for Environmental Sciences, Energy Group At the Institute of energy storage technologies. The successful applicant will become member of the Energy Group within

Halazonetis, Thanos

182

University of California, Berkeley Fall 2003 Energy and Resources Group  

E-Print Network [OSTI]

and technologies over the past 40 years. A focus will be on rural and decentralized energy use, and the issuesUniversity of California, Berkeley Fall 2003 Energy and Resources Group Advanced Graduate Seminar Public Policy 290 - Energy and Development Professor Daniel M. Kammen Energy and Resources Group

Kammen, Daniel M.

183

Comment on ''Interacting holographic dark energy model and generalized second law of thermodynamics in a non-flat universe{sup ,} by M.R. Setare (JCAP 01 (2007) 023)  

SciTech Connect (OSTI)

Author of ref. 1, M.R. Setare (JCAP 01 (2007) 023), by redefining the event horizon measured from the sphere of the horizon as the system's IR cut-off for an interacting holographic dark energy model in a non-flat universe, showed that the generalized second law of thermodynamics is satisfied for the special range of the deceleration parameter. His paper includes an erroneous calculation of the entropy of the cold dark matter. Also there are some missing terms and some misprints in the equations of his paper. Here we present that his conclusion is not true and the generalized second law is violated for the present time independently of the deceleration parameter.

Karami, K., E-mail: kkarami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

2010-01-01T23:59:59.000Z

184

Nonlocal String Tachyon as a Model for Cosmological Dark Energy  

SciTech Connect (OSTI)

There are many different phenomenological models describing the cosmological dark energy and accelerating Universe by choosing adjustable functions. In this paper we consider a specific model of scalar tachyon field which is derived from the NSR string field theory and study its cosmological applications. We find that in the effective field theory approximation the equation of state parameter w < -1, i.e. one has a phantom Universe. It is shown that due to nonlocal effects there is no quantum instability that the usual phantom models suffer from. Moreover due to a flip effect of the potential the Universe does not enter to a future singularity.

Aref'eva, Irina Ya. [Steklov Mathematical Institute, Russian Academy of Sciences, Gubkin st. 8, Moscow, 119991 (Russian Federation)

2006-03-29T23:59:59.000Z

185

100% DD Energy Model Update  

SciTech Connect (OSTI)

The Miami Science Museum energy model has been used during DD to test the building??s potential for energy savings as measured by ASHRAE 90.1-2007 Appendix G. This standard compares the designed building??s yearly energy cost with that of a code-compliant building. The building is currently on track show 20% or better improvement over the ASHRAE 90.1-2007 Appendix G baseline; this performance would ensure minimum compliance with both LEED 2.2 and current Florida Energy Code, which both reference a less strict version of ASHRAE 90.1. In addition to being an exercise in energy code compliance, the energy model has been used as a design tool to show the relative performance benefit of individual energy conservation measures (ECMs). These ECMs are areas where the design team has improved upon code-minimum design paths to improve the energy performance of the building. By adding ECMs one a time to a code-compliant baseline building, the current analysis identifies which ECMs are most effective in helping the building meet its energy performance goals.

None

2011-06-30T23:59:59.000Z

186

Direct seismic energy modeling and application to the 1979 Imperial Valley earthquake  

E-Print Network [OSTI]

Direct seismic energy modeling and application to the 1979 Imperial Valley earthquake Pascal or miscellaneous. Citation: Favreau, P., and R. J. Archuleta, Direct seismic energy modeling and application models [see Peyrat et al., 2001]. 2. The Seismic Energy [3] To be universal, the seismic energy must

Archuleta, Ralph

187

Curvaton field and the intermediate inflationary universe model  

SciTech Connect (OSTI)

The curvaton in an intermediate inflationary universe model is studied. This study has allowed us to find some interesting constraints on different parameters that appear in the model.

Campo, Sergio del; Herrera, Ramon [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)

2007-11-15T23:59:59.000Z

188

University Park Data Dashboard | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

data dashboard for University Park, Maryland, a partner in the Better Buildings Neighborhood Program. bbnpbban0003809pmcdashboardy13-q3.xls More Documents & Publications...

189

Colleges and Universities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

this field. San Juan College: Renewable Energy Program The Renewable Energy Program gives students a solid foundation in the fundamental physics and designinstallation techniques...

190

Dark Energy: Taking SidesDark Energy: Taking SidesDark Energy: Taking Sides The University of Chicago  

E-Print Network [OSTI]

Dark Energy: Taking SidesDark Energy: Taking SidesDark Energy: Taking Sides Rocky Kolb Barocky The University of Chicago #12;#12; Cold Dark Matter: (CDM) 25% Dark Energy (): 70% Stars: 0.5% H & He: gas 4 For Dark EnergyEvidence For Dark EnergyEvidence For Dark Energy 3) Baryon acoustic oscillations 4) Weak

Yamamoto, Hirosuke

191

Energy and momentum of Bianchi Type VI_h Universes  

E-Print Network [OSTI]

We obtain the energy and momentum of the Bianchi type VI_h universes using different prescriptions for the energy-momentum complexes in the framework of general relativity. The energy and momentum of the Bianchi VI_h universe are found to be zero for the parameter h = -1 of the metric. The vanishing of these results support the conjecture of Tryon that Universe must have a zero net value for all conserved quantities.This also supports the work of Nathan Rosen with the Robertson-Walker metric. Moreover, it raises an interesting question: "Why h=-1 case is so special?"

S. K. Tripathy; B. Mishra; G. K. Pandey; A. K. Singh; T. Kumar; S. S. Xulu

2015-01-19T23:59:59.000Z

192

Energy and momentum of Bianchi Type VI_h Universes  

E-Print Network [OSTI]

We obtain the energy and momentum of the Bianchi type VI_h universes using different prescriptions for the energy-momentum complexes in the framework of general relativity. The energy and momentum of the Bianchi VI_h universe are found to be zero for the parameter h = -1 of the metric. The vanishing of these results support the conjecture of Tryon that Universe must have a zero net value for all conserved quantities.This also supports the work of Nathan Rosen with the Robertson-Walker metric. Moreover, it raises an interesting question: "Why h=-1 case is so special?"

Tripathy, S K; Pandey, G K; Singh, A K; Kumar, T; Xulu, S S

2015-01-01T23:59:59.000Z

193

Interacting generalized Chaplygin gas model in non-flat universe  

E-Print Network [OSTI]

We employ the generalized Chaplygin gas of interacting dark energy to obtain the equation of state for the generalized Chaplygin gas energy density in non-flat universe. By choosing a negative value for $B$ we see that $w_{\\rm \\Lambda}^{eff}< -1$, that corresponds to a universe dominated by phantom dark energy.

M R Setare

2007-11-04T23:59:59.000Z

194

Are CPL models compatible with the late inhomogeneous Universe?  

E-Print Network [OSTI]

We study the late-time evolution of the Universe where dark energy (DE) is presented by a barotropic fluid on top of cold dark matter (CDM). We also take into account the radiation content of the Universe. Here by the late stage of the evolution we refer to the epoch where CDM is already clustered into inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Under this condition the mechanical approach is an adequate tool to study the Universe deep inside the cell of uniformity. More precisely, we study scalar perturbations of the FLRW metric due to inhomogeneities of CDM as well as fluctuations of radiation and DE. For an arbitrary equation of state for DE we obtain a system of equations for the scalar perturbations within the mechanical approach. We apply this approach to different linear parametrizations of the DE equation of state, e.g., the Chevallier-Polarski-Linder (CPL) perfect fluid model. We reach the conclusion that all these models are incompatible with the theory of scalar perturbations in the late Universe.

Ozgur Akarsu; Mariam Bouhmadi-Lpez; Maxim Brilenkov; Ruslan Brilenkov; Maxim Eingorn; Alexander Zhuk

2015-02-16T23:59:59.000Z

195

ENERGY STAR Jeopardy History Facts Universities Products Other  

E-Print Network [OSTI]

ENERGY STAR Jeopardy History Facts Universities Products Other 10 10 10 10 10 20 20 20 20 20 30 30 30 30 30 40 40 40 40 40 50 50 50 50 50 #12;In what year did ENERGY STAR start? A)2002 B)2008 C)1992 D)1999 #12;Answer: C) 1992! In 1992 the US Environmental Protection Agency (EPA) introduced ENERGY STAR

Brownstone, Rob

196

Renewable Energy Research Laboratory University of Massachusetts, Amherst  

E-Print Network [OSTI]

Renewable Energy Research Laboratory University of Massachusetts, Amherst 160 Governors Drive template version 3.1.2 #12;NOTICE AND ACKNOWLEDGEMENTS This report was prepared by the Renewable Energy sponsored by the Renewable Energy Trust (RET), as administered by the Massachusetts Technology Collaborative

Massachusetts at Amherst, University of

197

Texas Tech University Energy Savings Program November 2008 Update  

E-Print Network [OSTI]

costs and campus square footage. For the fourth quarter of FY08 the campus consumed 42.36 kbtu/sq ft Program for four energy projects. 1) AHU VFD Project ­ Estimated cost of $600,000 with a payback of 2Texas Tech University Energy Savings Program November 2008 Update The Texas Tech Energy Savings

Gelfond, Michael

198

Cardiff University Distinguished Lecture Symposium Advances in Solar Energy  

E-Print Network [OSTI]

Cardiff University Distinguished Lecture Symposium Advances in Solar Energy Thursday 22nd March prospects for inorganic thin film photovoltaic solar cells for large scale energy generation 2:55 Dr Emyr:50 Professor James Durrant (Imperial College London, England) Photochemical approaches to solar energy

Martin, Ralph R.

199

EnergyPlus Model Appendix G -EnergyPlus Model  

E-Print Network [OSTI]

Home B) C_ela 55.66 51.51 ELA (in.2) 38.83 35.93 The heating, ventilation, and air conditioning (HVAC) system is modeled as a single-speed heat pump with a Seasonal Energy Efficiency Ratio (SEER) of 13 where internal gains, heat pump operation mode and zone thermostat set-points are varied. Two sets

200

Statefinder diagnosis and the interacting ghost model of dark energy  

E-Print Network [OSTI]

A new model of dark energy namely "ghost dark energy model" has recently been suggested to interpret the positive acceleration of cosmic expansion. The energy density of ghost dark energy is proportional to the hubble parameter. In this paper we perform the statefinder diagnostic tool for this model both in flat and non-flat universe. We discuss the dependency of the evolutionary trajectories in $s-r$ and $q-r$ planes on the interaction parameter between dark matter and dark energy as well as the spatial curvature parameter of the universe. Eventually, in the light of SNe+BAO+OHD+CMB observational data, we plot the evolutionary trajectories in $s-r$ and $q-r$ planes for the best fit values of the cosmological parameters and compare the interacting ghost model with other dynamical dark energy models. We show that the evolutionary trajectory of ghost dark energy in statefinder diagram is similar to holographic dark energy model. It has been shown that the statefinder location of $\\Lambda$CDM is in good agreement with observation and therefore the dark energy models whose current statefinder values are far from the $\\Lambda$CDM point can be ruled out.

M. Malekjani; A. Khodam-Mohammadi

2012-02-19T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Holographic tachyon model of dark energy  

E-Print Network [OSTI]

In this paper we consider a correspondence between the holographic dark energy density and tachyon energy density in FRW universe. Then we reconstruct the potential and the dynamics of the tachyon field which describe tachyon cosmology.

M R Setare

2007-09-11T23:59:59.000Z

202

Dark energy in some integrable and nonintegrable FRW cosmological models  

E-Print Network [OSTI]

One of the greatest challenges in cosmology today is to determine the nature of dark energy, the sourse of the observed present acceleration of the Universe. Besides the vacuum energy, various dark energy models have been suggested. The Friedmann - Robertson - Walker (FRW) spacetime plays an important role in modern cosmology. In particular, the most popular models of dark energy work in the FRW spacetime. In this work, a new class of integrable FRW cosmological models is presented. These models induced by the well-known Painlev$\\acute{e}$ equations. Some nonintegrable FRW models are also considered. These last models are constructed with the help of Pinney, Schr$\\ddot{o}$dinger and hypergeometric equations. Scalar field description and two-dimensional generalizations of some cosmological models are presented. Finally some integrable and nonintegrable $F(R)$ and $F(G)$ gravity models are constructed.

Kuralay Esmakhanova; Nurgissa Myrzakulov; Gulgasyl Nugmanova; Yerlan Myrzakulov; Leonid Chechin; Ratbay Myrzakulov

2011-09-14T23:59:59.000Z

203

Cosmological viability conditions for f(T) dark energy models  

SciTech Connect (OSTI)

Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.

Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

2012-11-01T23:59:59.000Z

204

Cosmological viability conditions for $f(T)$ dark energy models  

E-Print Network [OSTI]

Recently $f(T)$ modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of $f(T)$ dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of $f(T)$ dark energy models were proposed in the more literature, the viability conditions are investigated.

M. R. Setare; N. Mohammadipour

2012-11-06T23:59:59.000Z

205

University of Central Florida Students' Energy Saving Work Showcased...  

Energy Savers [EERE]

a new video encouraging college students to help America save energy, save money and cut pollution. The video highlights the work of students at the University of Central Florida...

206

Universities Across the United States Make Strides in Energy...  

Broader source: Energy.gov (indexed) [DOE]

contest held by a group at the University of Central Florida called UCF Sustainability and Energy Management. The student-led group has held a contest for the last four...

207

MINISTRY OF ENERGY AND MINES AND UNIVERSITY OF VICTORIA  

E-Print Network [OSTI]

MINISTRY OF ENERGY AND MINES AND UNIVERSITY OF VICTORIA Social Science and Science Partnerships Final Report August 2007 Environmental Impacts of air-gun surveys on Glass Sponges Principal Wimut (mjwilmut@uvic.ca) *Contact Department of Biology University of Victoria, PO Box 3020, Victoria BC

Yahel, Gitai

208

Autotune E+ Building Energy Models  

SciTech Connect (OSTI)

This paper introduces a novel Autotune methodology under development for calibrating building energy models (BEM). It is aimed at developing an automated BEM tuning methodology that enables models to reproduce measured data such as utility bills, sub-meter, and/or sensor data accurately and robustly by selecting best-match E+ input parameters in a systematic, automated, and repeatable fashion. The approach is applicable to a building retrofit scenario and aims to quantify the trade-offs between tuning accuracy and the minimal amount of ground truth data required to calibrate the model. Autotune will use a suite of machine-learning algorithms developed and run on supercomputers to generate calibration functions. Specifically, the project will begin with a de-tuned model and then perform Monte Carlo simulations on the model by perturbing the uncertain parameters within permitted ranges. Machine learning algorithms will then extract minimal perturbation combinations that result in modeled results that most closely track sensor data. A large database of parametric EnergyPlus (E+) simulations has been made publicly available. Autotune is currently being applied to a heavily instrumented residential building as well as three light commercial buildings in which a de-tuned model is autotuned using faux sensor data from the corresponding target E+ model.

New, Joshua Ryan [ORNL; Sanyal, Jibonananda [ORNL; Bhandari, Mahabir S [ORNL; Shrestha, Som S [ORNL

2012-01-01T23:59:59.000Z

209

The Nested Universal Relation Data Model MARK LEVENE  

E-Print Network [OSTI]

The Nested Universal Relation Data Model MARK LEVENE Department of Computer Science, University, London WC1E 7HX, U.K., email: george@cs.bbk.ac.uk #12; 2 The Nested UR Model #12; 3 List of Symbols letters to be italicized are clearly indicated in the text. #12; 4 The nested universal relation (UR

Levene, Mark

210

Building a Universal Nuclear Energy Density Functional  

SciTech Connect (OSTI)

During the period of Dec. 1 2006 Jun. 30, 2012, the UNEDF collaboration carried out a comprehensive study of all nuclei, based on the most accurate knowledge of the strong nuclear interaction, the most reliable theoretical approaches, the most advanced algorithms, and extensive computational resources, with a view towards scaling to the petaflop platforms and beyond. The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: ? First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties; ? Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data; ? Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

Carlson, Joe A. [Michigan State University; Furnstahl, Dick; Horoi, Mihai; Lust, Rusty; Nazaewicc, Witek; Ng, Esmond; Thompson, Ian; Vary, James

2012-12-30T23:59:59.000Z

211

Page 1 of 6 January 2010 Energy Report Texas Tech University Energy Savings Program  

E-Print Network [OSTI]

on energy consumption for the same time period from the previous year normalized to current energy costsPage 1 of 6 January 2010 Energy Report Texas Tech University Energy Savings Program January 2010 Update The Texas Tech Energy Savings Update is being submitted in accordance with Governor's Executive

Gelfond, Michael

212

Page 1 of 5 October 2011 Energy Report Texas Tech University Energy Savings Program  

E-Print Network [OSTI]

on energy consumption for the same time period from the previous year normalized to current energy costsPage 1 of 5 October 2011 Energy Report Texas Tech University Energy Savings Program October 2011 Update The Texas Tech Energy Savings Update is being submitted in accordance with Governor's Executive

Gelfond, Michael

213

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network [OSTI]

Analysis of How Different Energy Models Addressed a CommonSUBJECT TERMS energy system; energy models; energy modeling;Analysis of How Different Energy Models Addressed a Common

Blair, N.

2010-01-01T23:59:59.000Z

214

Sustainable Energy Policy University Facilities (UF)  

E-Print Network [OSTI]

. Alternative energy sources such as passive solar heating and heat recovery shall be considered, as well is in alignment with the requirements of SC House Bill 4766 (Energy Conservation Plans) which became effective of a LEED Silver certification, new buildings shall be designed and built to minimize energy use by earning

Duchowski, Andrew T.

215

Stability of the Einstein static universe in the presence of vacuum energy  

SciTech Connect (OSTI)

The Einstein static universe has played a central role in a number of emergent scenarios recently put forward to deal with the singular origin of the standard cosmological model. Here we study the existence and stability of the Einstein static solution in the presence of vacuum energy corresponding to conformally invariant fields. We show that the presence of vacuum energy stabilizes this solution by changing it to a center equilibrium point, which is cyclically stable. This allows nonsingular emergent cosmological models to be constructed in which initially the Universe oscillates indefinitely about an initial Einstein static solution and is thus past eternal.

Carneiro, Saulo [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Instituto de Fisica, Universidade Federal da Bahia, Salvador, BA, 40210-340 (Brazil); Tavakol, Reza [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

2009-08-15T23:59:59.000Z

216

On the Universal Generation of Mobility Models Alberto Medina  

E-Print Network [OSTI]

On the Universal Generation of Mobility Models Alberto Medina Raytheon BBN Technologies amedina@bbn.com Gonca Gursun Computer Science Dept. Boston University goncag@cs.bu.edu Prithwish Basu Raytheon BBN

217

DOE Virtual University | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S.D.C. - EnergyEnergy Learn more

218

Healthcare Energy: State University of New York Upstate Medical University  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013 many autoThisThe HawaiiNRELAdditional

219

Model Discovery for Energy-Aware Computing Systems: An Experimental Evaluation  

E-Print Network [OSTI]

Model Discovery for Energy-Aware Computing Systems: An Experimental Evaluation Zhichao Li, Radu Science, Stony Brook University Abstract-- We present a model-discovery methodology for energy-aware in the computing arena have led to the emergence of energy-aware computing systems, where energy, or power

Stoller, Scott

220

Model Discovery for Energy-Aware Computing Systems: An Experimental Evaluation  

E-Print Network [OSTI]

Model Discovery for Energy-Aware Computing Systems: An Experimental Evaluation Appears of Computer Science, Stony Brook University Abstract-- We present a model-discovery methodology for energy-aware in the computing arena have led to the emergence of energy-aware computing systems, where energy, or power

Zadok, Erez

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Model Discovery for EnergyAware Computing Systems: An Experimental Evaluation  

E-Print Network [OSTI]

Model Discovery for EnergyAware Computing Systems: An Experimental Evaluation Appears of Computer Science, Stony Brook University Abstract--- We present a modeldiscovery methodology for energyaware in the computing arena have led to the emergence of energyaware computing systems, where energy, or power

Zadok, Erez

222

A graphical model approach for predicting free energies of association for protein-protein  

E-Print Network [OSTI]

A graphical model approach for predicting free energies of association for protein University, Pittsburgh, PA 1 Corresponding Author: cjl@cs.cmu.edu #12;Keywords: Graphical Models, Free Energy in free energy, and the ability to predict binding free energies provides both better understanding

Langmead, Christopher James

223

University College Dublin Energy Policy and Strategy  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 #12;3 University Commitment 2 2.1 Development Plan The vision of a sustainable, healthy and living of delivering a sustainable and living campus.We publish our overall goal, subsidiary targets, and annual and the built environ- ment. It is critical that the founda- tions for a sustainable campus are established now

224

University Coal Research | Department of Energy  

Office of Environmental Management (EM)

research alongside students who were pursuing advanced degrees in engineering, chemistry and other technical disciplines. Not only did new discoveries in energy science and...

225

Inhomogeneities in dusty universe - a possible alternative to dark energy?  

E-Print Network [OSTI]

There have been of late renewed debates on the role of inhomogeneities to explain the observed late acceleration of the universe. We have looked into the problem analytically with the help of the well known spherically symmetric but inhomogeneous Lemaitre-Tolman-Bondi(LTB) model generalised to higher dimensions. It is observed that in contrast to the claim made by Kolb et al the presence of inhomogeneities as well as extra dimensions can not reverse the signature of the deceleration parameter if the matter field obeys the energy conditions. The well known Raychaudhuri equation also points to the same result. Without solving the field equations explicitly it can, however, be shown that although the total deceleration is positive everywhere nevertheless it does not exclude the possibility of having radial acceleration, even in the pure dust universe, if the angular scale factor is decelerating fast enough and vice versa. Moreover it is found that introduction of extra dimensions can not reverse the scenario. To the contrary it actually helps the decelerating process.

S. Chatterjee

2011-01-28T23:59:59.000Z

226

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network [OSTI]

photovoltaics renewable energy renewable energy certificate Regional Energy Deployment System model Renewable Energy and Efficiency

Blair, N.

2010-01-01T23:59:59.000Z

227

Are CPL models compatible with the late inhomogeneous Universe?  

E-Print Network [OSTI]

We study the late-time evolution of the Universe where dark energy (DE) is presented by a barotropic fluid on top of cold dark matter (CDM). We also take into account the radiation content of the Universe. Here by the late stage of the evolution we refer to the epoch where CDM is already clustered into inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Under this condition the mechanical approach is an adequate tool to study the Universe deep inside the cell of uniformity. More precisely, we study scalar perturbations of the FLRW metric due to inhomogeneities of CDM as well as fluctuations of radiation and DE. For an arbitrary equation of state for DE we obtain a system of equations for the scalar perturbations within the mechanical approach. We apply this approach to different linear parametrizations of the DE equation of state, e.g., the Chevallier-Polarski-Linder (CPL) perfect fluid model. We reach the conclusion that all these models are incompatible with the theo...

Akarsu, Ozgur; Brilenkov, Maxim; Brilenkov, Ruslan; Eingorn, Maxim; Zhuk, Alexander

2015-01-01T23:59:59.000Z

228

Automatic Calibration of a Building Energy Simulation Model Using a Global Optimization Program  

E-Print Network [OSTI]

AUTOMATIC CALIBRATION OF A BUILDING ENERGY SIMULATION MODEL USING A GLOBAL OPTIMIZATION PROGRAM Seung Uk Lee Research Associate Texas A&M University Energy Systems Laboratory College Station, TX David E. Claridge, Ph.D., P....E. Professor Texas A&M University Energy Systems Laboratory College Station, TX ABSTRACT A simulation model used to analyze the energy performance of an existing building should be calibrated to measured consumption data from...

Lee, S. U.; Claridge, D.

2002-01-01T23:59:59.000Z

229

University looks to hit energy reduction goal early  

E-Print Network [OSTI]

2009. In 2009, President William Powers Jr.'s Sustainability Steering Committee initiated a University plan to reduce energy and water use by 20 percent in educational and general buildings on campus. On the technical side, Thiemer said facilities staff members are monitoring buildings for potential energy waste

Texas at Austin, University of

230

Participation in High Energy Physics at the University of Chicago  

SciTech Connect (OSTI)

This report covers research at the University of Chicago in theoretical high energy physics and its connections to cosmology, over the period Nov. 1, 2009 to April 30, 2013. This research is divided broadly into two tasks: Task A, which covers a broad array of topics in high energy physics; and task C, primarily concerned with cosmology.

Martinec, Emil J. [University of Chicago

2013-06-27T23:59:59.000Z

231

A Dark Energy model combining DGP gravity and Chaplygin gas  

E-Print Network [OSTI]

The expansion of the Universe is accelerating, as testified by observations of supernovae of type Ia as a function of redshift. Explanations are of two types: modifications of Einstein gravity or new forms of energy, coined dark energy.The accelerated expansion is explained here by a combination of Dvali-Gabadadze-Porrati (DGP) model gravity and Chaplygin gas dark energy. Both models are characterized by a length scale L which may be the same. The continuity equation for the combined model is derived in flat geometry, and solved by numerical methods. The solution is shown to have the expected properties: at very small scales (aenergy density behaves as pressureless dust, at very large scales (a>>L) as a cosmological constant. The modifications to the DGP model and the Chaplygin gas model occur for values of a L. The results show an increase in the present dark energy density relative to the plain DGP model.

Matts Roos

2007-04-06T23:59:59.000Z

232

Force and Momentum in an Evolving Axisymmetric Universe Model  

E-Print Network [OSTI]

We take an axisymmetric rotating universe model by crossing with a time dependent factor and evaluate its force and momentum in this evolving universe. It is concluded that it behaves exactly like a Friedmann model. We also extend this conclusion to the most general cosmological model.

M. Sharif

2004-01-16T23:59:59.000Z

233

Design Considerations for a Universal Smart Energy Module for Energy Harvesting in Wireless  

E-Print Network [OSTI]

size and type harvester energy modules. Handling this complexity, discussing the problems, and giving]. Their goal is a cheap and easy circuit design for harvesting solar energy and storing it in a rechargeable NiDesign Considerations for a Universal Smart Energy Module for Energy Harvesting in Wireless Sensor

Turau, Volker

234

The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 BioEnergy Bridge  

E-Print Network [OSTI]

© The Pennsylvania State University www.BioEnergyBridge.psu.edu 1 Penn State BioEnergy# trichard@psu.edu rtw103@psu.edu www.bioenergy.psu.edu Biomass Energy Center #12;© The Pennsylvania State · The BioEnergy BridgeTM will address the full spectrum of challenges to our national priority of reducing

Lee, Dongwon

235

Page 1 of 5 July 2011 Energy Report Texas Tech University Energy Savings Program  

E-Print Network [OSTI]

consumption for the same time period from the previous year normalized to current energy costs and campusPage 1 of 5 July 2011 Energy Report Texas Tech University Energy Savings Program July 2011 Update The Texas Tech Energy Savings Update is being submitted in accordance with Governor's Executive Order RP 49

Gelfond, Michael

236

Page 1 of 5 April 2009 Energy Report Texas Tech University Energy Savings Program  

E-Print Network [OSTI]

consumption for the same time period from the previous year normalized to current energy costs and campus,600 Total 97.48 88.98 Down 8.7% $ 710,800 #12;Page 2 of 5 April 2009 Energy Report Since RP 49 first wentPage 1 of 5 April 2009 Energy Report Texas Tech University Energy Savings Program April 2009 Update

Gelfond, Michael

237

The dynamics of universe for exponential decaying dark energy  

E-Print Network [OSTI]

In this study we consider an exponential decaying form for dark energy as EoS parameter in order to discuss the dynamics of the universe. Firstly, assuming that universe is filled with an ideal fluid which consists of exponential decaying dark energy we obtain time dependent behavior of several physical quantities such as energy density, pressure and others for dark energy, dark energy-matter coupling and non-coupling cases. Secondly, using scalar field instead of an ideal fluid we obtain these physical quantities in terms of scalar potential and kinetic term for the same cases in scalar-tensor formalism. Finally we show that ideal fluid and scalar-tensor description of dark energy give mathematically equivalent results for this EoS parameter.

Bostan, Nilay

2015-01-01T23:59:59.000Z

238

State Energy Program: Kentucky Implementation Model Resources  

Broader source: Energy.gov [DOE]

Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

239

University Coal Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment ofEnergy, OfficeDepartment of Energy

240

University Partners Panel | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26The Confederated Tribes7325.8Assessmentofofof

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Policy The university is committed to reducing its consumption of energy and promoting low carbon, energy  

E-Print Network [OSTI]

Energy Policy June 2009 The university is committed to reducing its consumption of energy and promoting low carbon, energy saving and energy efficiency initiatives as part of its Sustainable Development programme. Tackling climate change is one of our highest priorities and this reflects UK policy. Our Energy

Haase, Markus

242

Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications  

E-Print Network [OSTI]

Oy Ab support funding (apurahoitus) 2003 Helsinki University of Technology Energy Engineering Ab support funding (apurahoitus) 2003. Espoo, June 2004 #12;Helsinki University of Technology reportHelsinki University of Technology Department of Mechanical Engineering Energy Engineering

Zevenhoven, Ron

243

Spotlighting Howard University | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview * Analyzer I nstrumentProgram Reach

244

Texas Tech University Energy Savings Program October 2013 Update Page 1 of 4 Texas Tech University Energy Savings Program  

E-Print Network [OSTI]

time period from the previous year normalized to current energy costs and campus square footage. During Gallons Consumed Percent Change 1st Quarter 68,022 64,621 60,885 Down 10.5% 2nd Quarter 51,763 49,175 50Texas Tech University Energy Savings Program ­ October 2013 Update Page 1 of 4 Texas Tech

Gelfond, Michael

245

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University EnergyEnergy--Saving Control of Hydraulic SystemsSaving Control of Hydraulic Systems  

E-Print Network [OSTI]

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University EnergyEnergy--Saving Control of Hydraulic Principle Investigator: Bin Yao Research Assistant: Song Liu School of Mechanical Engineering Purdue

Yao, Bin

246

University of Manchester | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States:Delaware Jump to:University of

247

University of Maryland | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States:Delaware Jump to:University

248

Probing the Fundamental Symmetries of the Early Universe: The Low Energy Frontier  

E-Print Network [OSTI]

Searching for the fundamental symmetries that characterize the particle physics of the early universe lies at the forefront of particle physics, nuclear physics, and cosmology. In this talk, I review low energy probes of these symmetries and discuss what they may teach us about what lies beyond the fundamental symmetries of the Standard Model.

M. J. Ramsey-Musolf

2006-03-02T23:59:59.000Z

249

Research in High Energy Physics at Duke University  

SciTech Connect (OSTI)

This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, #12;ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22; ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water-#12;lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

Kotwal, Ashutosh V. [PI] [PI; Goshaw, Al [Co-PI] [Co-PI; Kruse, Mark [Co-PI] [Co-PI; Oh, Seog [Co-PI] [Co-PI; Scholberg, Kate [Co-PI] [Co-PI; Walter, Chris [Co-PI] [Co-PI

2013-07-29T23:59:59.000Z

250

Research in High Energy Physics at Duke University  

SciTech Connect (OSTI)

This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22;{mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

2013-07-29T23:59:59.000Z

251

Performance and Energy Modeling for Live Migration of Virtual Machines  

E-Print Network [OSTI]

Performance and Energy Modeling for Live Migration of Virtual Machines Haikun Liu , Cheng-Zhong Xu , Hai Jin , Jiayu Gong , Xiaofei Liao School of Computer Science and Technology Huazhong University of Science and Technology Wuhan, 430074, China {hjin, xfliao}@hust.edu.cn Department of Electrical

Xu, Cheng-Zhong

252

Oregon State University OSU | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: EnergyOpenBarterVirginia.Land orFacilitiesOregonOSU Jump

253

University of Iowa | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: EnergyTown-Energy ResearchJump to:

254

University of Johannesburg | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: EnergyTown-Energy ResearchJump

255

University of Kansas | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: EnergyTown-Energy ResearchJumpKansas

256

University of Maine | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: EnergyTown-Energy

257

University of Michigan | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: EnergyTown-EnergyMichigan Place: Ann

258

University of Minnesota | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: EnergyTown-EnergyMichigan Place:

259

University of North Carolina | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: EnergyTown-EnergyMichigan Place:North

260

University of South Florida | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: EnergyTown-EnergyMichigan

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

University of Washington | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: EnergyTown-EnergyMichiganWashington

262

Australian National University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: EnergyAustin Energy Place: Texas Service Territory:and Ore Reserves

263

Building a Universal Nuclear Energy Density Functional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, and technology forBudgetThis

264

California State University CSU | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: CrystallineOpen EnergyCalifornia PublicRoadmappingCSU

265

Interacting entropy-corrected agegraphic Chaplygin gas model of dark energy  

E-Print Network [OSTI]

In this work, we consider the interacting agegraphic dark energy models with entropy correction terms due to loop quantum gravity. We study the correspondence between the Chaplygin gas energy density with the interacting entropy-corrected agegraphic dark energy models in non-flat FRW universe. We reconstruct the potentials and the dynamics of the interacting entropy-corrected agegraphic scalar field models. This model is also extended to the interacting entropy-corrected agegraphic generalized Chaplygin gas dark energy.

M. Malekjani; A. Khodam-Mohammadi

2010-04-07T23:59:59.000Z

266

New holographic Chaplygin gas model of dark energy  

E-Print Network [OSTI]

In this work, we investigate the holographic dark energy model with new infrared cut-off (new HDE model) proposed by Granda and Oliveros. Using this new definition for infrared cut-off, we establish the correspondence between new HDE model and standard Chaplygin gas (SCG), generalized Chaplygin gas (GCG) and modified Chaplygin gas (MCG) scalar field models in non-flat universe. The potential and dynamics for these scalar field models, which describe the accelerated expansion of the universe are reconstructed. According to the evolutionary behavior of new HDE model, we derive the same form of dynamics and potential for different SCG, GCG and MCG models. We also calculate the squared sound speed of new HDE model as well as for SCG, GCG and MCG models and investigate the new HDE Chaplygin gas models from the viewpoint of linear perturbation theory. All results in non-flat universe are also discussed in the limiting case of flat universe, i.e. $k=0$.

M. Malekjani; A. Khodam-Mohammadi

2010-11-20T23:59:59.000Z

267

University Scholarship Listing Energy Production and Infrastructure Center (EPIC) Engineering Scholarship  

E-Print Network [OSTI]

A1 University Scholarship Listing Energy Production and Infrastructure Center (EPIC) Engineering within the energy production and infrastructure curriculum and/or affiliated with the Energy Production

Xie,Jiang (Linda)

268

Directory of Energy Information Administration models 1992  

SciTech Connect (OSTI)

This directory revises and updates the ``Directory of Energy Information Administration Models,`` DOE/EIA-0293(91), Energy Information Administration (EIA), US Department of Energy, July 1991. This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. For developing models, limited information is provided. Sources for additional information are identified.

Not Available

1992-06-01T23:59:59.000Z

269

25.07.03.M3 Energy Risk Management Program Page 1 of 2 UNIVERSITY RULE  

E-Print Network [OSTI]

25.07.03.M3 Energy Risk Management Program Page 1 of 2 UNIVERSITY RULE 25.07.03.M3 Energy Risk and administer an Energy Risk Management Program (ERMP) in order to minimize energy costs, mitigate financial to Texas A&M University at Galveston or Texas A&M University at Qatar. Definitions Energy Risk Management

270

Pennsylvania State University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLCPascoag UtilityPennsylvania Electric CoState

271

Universal Entech LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States: Energy

272

Case Western University (Nordex) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm Jump to:

273

Colorado State University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaft River 5

274

Arizona State University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass FacilityArdica Technologies JumpArizonaOil

275

University of Lisbon | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump(EC-LEDS)Agriculture

276

University of Michigan Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump(EC-LEDS)AgricultureHydrodynamics

277

University of Minnesota Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now

278

University of Rhode Island | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire Address Chase Ocean

279

Colorado State University Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan,Information FeedColombia: Energy

280

Energy Associated with Schwarzschild Black Hole in a Magnetic Universe  

E-Print Network [OSTI]

In this paper we obtain the energy distribution associated with the Ernst space-time (geometry describing Schwarzschild black hole in Melvin's magnetic universe) in Einstein's prescription. The first term is the rest-mass energy of the Schwarzschild black hole, the second term is the classical value for the energy of the uniform magnetic field and the remaining terms in the expression are due to the general relativistic effect. The presence of the magnetic field is found to increase the energy of the system.

S. S. Xulu

2000-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Department of Energy Awards $5.7 Million to U.S. Universities...  

Energy Savers [EERE]

7 Million to U.S. Universities for Nuclear Energy Research Department of Energy Awards 5.7 Million to U.S. Universities for Nuclear Energy Research February 2, 2007 - 10:15am...

282

A universal electromagnetic energy conversion adapter based on a metamaterial absorber  

E-Print Network [OSTI]

On the heels of metamaterial absorbers (MAs) which produce near perfect electromagnetic (EM) absorption and emission, we propose a universal electromagnetic energy conversion adapter (UEECA) based on MA. By choosing the appropriate energy converting sensors, the UEECA is able to achieve near 100% signal transfer ratio between EM energy and various forms of energy such as thermal, DC electric, or higher harmonic EM energy. The inherited subwavelength dimension and the EM field intensity enhancement can further empower UEECA in many critical applications such as energy harvesting, solar cell, and nonlinear optics. The principle of UEECA is understood with a transmission line model, which further provides a design strategy that can incorporate a variety of energy conversion devices. The concept is experimentally validated at a microwave frequency with a signal transfer ratio of 96% by choosing an RF diode as the energy converting sensor.

Xie, Yunsong; Wilson, Jeffrey D; Simons, Rainee N; Chen, Yunpeng; Xiao, John Q

2013-01-01T23:59:59.000Z

283

Evaluating Energy Efficiency Policies with Energy-Economy Models  

SciTech Connect (OSTI)

The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

2010-08-01T23:59:59.000Z

284

Energy Department Announces Regional Winners of University Clean Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department of EnergyStakeholdersEnergyDevelopAnnouncement

285

Universal Fluid Droplet Ejector - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23,DiversityFeet) Year

286

Universal Carbon Credits Limited | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: Energy Resources Jump to:

287

Universal GeoPower | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: Energy Resources Jump

288

University of California Davis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: Energy

289

The University of Wisconsin | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:the NatureOpen Energy

290

University of Cape Town | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States: EnergyInstitutionalNew

291

University of Colorado | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States: EnergyInstitutionalNewJump to:

292

University of Toledo | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States:Delaware JumpNewfor Energy

293

Michigan State University | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources Jump to: navigation, searchBlasnickEast Lansing,

294

University of Alberta | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump(EC-LEDS)Agriculture Name:Alberta Jump to:

295

University of California, Berkeley | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump(EC-LEDS)Agriculture Name:Alberta Jump

296

University of Maine Hydrodynamics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump(EC-LEDS)AgricultureHydrodynamics Jump to:

297

University of New Orleans | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire Address Chase Ocean EngineeringOrleans

298

University of Tennessee | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy NowNew Hampshire Address Chase OceanTennessee Address

299

Colorado State University Technology Marketing Summaries - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic(SNfactory) |Innovation Portal

300

Toronto University Innovation Foundation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperations JumpTooele County, Utah: EnergyTopTopsunToronto

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nuclear Energy University Program Documents | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014

302

MyEnergy's Universal Green Button | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmelAlum|Texas: EnergyMyCarma Jump

303

Causality and universality in low-energy quantum scattering  

E-Print Network [OSTI]

We generalize Wigner's causality bounds and Bethe's integral formula for the effective range to arbitrary dimension and arbitrary angular momentum. Moreover, we discuss the impact of these constraints on the separation of low- and high-momentum scales and universality in low-energy quantum scattering.

H. -W. Hammer; Dean Lee

2010-02-25T23:59:59.000Z

304

U.S. Department of Energy Selects Michigan State University To...  

Broader source: Energy.gov (indexed) [DOE]

Michigan State University To Design and Establish Facility for Rare Isotope Beams U.S. Department of Energy Selects Michigan State University To Design and Establish Facility for...

305

Modeling Decomposing Objects under Combustion Texas A&M University  

E-Print Network [OSTI]

the heat distribution and fuel gas mo- tion required by the model. The heat produced by combustion afModeling Decomposing Objects under Combustion Zeki Melek Texas A&M University Computer Science effective method for modeling of object decomposition under combustion. A separate simulation models

Keyser, John

306

University of Delaware Energy Institute Inauguration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment ofEnergy, OfficeDepartment ofDepartment

307

Webcast of the Renewable Energy Competency Model | Department...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Competency Model Webcast of the Renewable Energy Competency Model Addthis Description The Department of Energy held a webcast titled ""Renewable Energy Competency...

308

Multiscale modeling of spatially variable water and energy balance processes  

E-Print Network [OSTI]

MULTISCALE WATER AND ENERGY BALANCE MODELING Wood, E. F. ,spatially variable water and energy balance processes J. S.modeling. Water and energy balance models are developed at

Famiglietti, J. S; Wood, E. F

1994-01-01T23:59:59.000Z

309

Statefinder Parameters for Tachyon Dark Energy Model  

E-Print Network [OSTI]

In this paper we study the statefinder parameters for the tachyon dark energy model. There are two kinds of stable attractor solutions in this model. The statefinder diagrams characterize the properties of the tachyon dark energy model. Our results show that the evolving trajectories of the attractor solutions lie in the total region and pass through the LCDM fixed point, which is different from other dark energy model.

Ying Shao; Yuanxing Gui

2007-03-22T23:59:59.000Z

310

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network [OSTI]

and Renewable Energy (Office of) Energy Information Administration Energy Modeling Forum Environmental Protection Agency Federal

Blair, N.

2010-01-01T23:59:59.000Z

311

University of Massachusetts Clean Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump(EC-LEDS)AgricultureHydrodynamics Jump

312

Dark Energy Models and Laws of Thermodynamics in Bianchi I Model  

E-Print Network [OSTI]

This paper is devoted to check validity of the laws of thermodynamics for LRS Bianchi type I universe model which is filled with combination of dark matter and dark energy. We take two types of dark energy models, i.e., generalized holographic dark energy and generalized Ricci dark energy. It is proved that the first and generalized second law of thermodynamics are valid on the apparent horizon for both the models. Further, we take fixed radius $L$ of the apparent horizon with original holographic or Ricci dark energy. We conclude that the first and generalized second laws of thermodynamics do not hold on the horizon of fixed radius $L$ for both the models.

M. Sharif; Rabia Saleem

2013-02-20T23:59:59.000Z

313

Comparing holographic dark energy models with statefinder  

E-Print Network [OSTI]

We apply the statefinder diagnostic to the holographic dark energy models, including the original holographic dark energy (HDE) model, the new holographic dark energy model, the new agegraphic dark energy (NADE) model, and the Ricci dark energy model. In the low-redshift region the holographic dark energy models are degenerate with each other and with the $\\Lambda$CDM model in the $H(z)$ and $q(z)$ evolutions. In particular, the HDE model is highly degenerate with the $\\Lambda$CDM model, and in the HDE model the cases with different parameter values are also in strong degeneracy. Since the observational data are mainly within the low-redshift region, it is very important to break this low-redshift degeneracy in the $H(z)$ and $q(z)$ diagnostics by using some quantities with higher order derivatives of the scale factor. It is shown that the statefinder diagnostic $r(z)$ is very useful in breaking the low-redshift degeneracies. By employing the statefinder diagnostic the holographic dark energy models can be differentiated efficiently in the low-redshift region. The degeneracy between the holographic dark energy models and the $\\Lambda$CDM model can also be broken by this method. Especially for the HDE model, all the previous strong degeneracies appearing in the $H(z)$ and $q(z)$ diagnostics are broken effectively. But for the NADE model, the degeneracy between the cases with different parameter values cannot be broken, even though the statefinder diagnostic is used. A direct comparison of the holographic dark energy models in the $r$--$s$ plane is also made, in which the separations between the models (including the $\\Lambda$CDM model) can be directly measured in the light of the current values $\\{r_0,s_0\\}$ of the models.

Jing-Lei Cui; Jing-Fei Zhang

2014-04-20T23:59:59.000Z

314

High Energy Colliders as Tools to Understand the Early Universe  

SciTech Connect (OSTI)

Cosmological observations have reached a new era of precision, and reveal many interesting and puzzling features of the Universe. I will briefly review two of the most exciting mysteries: the nature of the dark components of the Universe, and the origin of the asymmetry between matter and anti-matter. I will argue that our best hope of unraveling these questions will need to combine information from the heavens with measurements in the lab at high energy particle accelerators. The end of run II of the Tevatron, the up-coming Large Hadron Collider and proposed International Linear Collider all have great potential to help us answer these questions in the near future.

Tait, Tim (ANL) [ANL

2008-08-16T23:59:59.000Z

315

NUCLEAR ENERGY SYSTEM COST MODELING  

SciTech Connect (OSTI)

The U.S. Department of Energys Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative Island approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this islands used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an islands cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

316

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network [OSTI]

Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

Paris-Sud XI, Université de

317

The Quintom Model of Dark Energy  

E-Print Network [OSTI]

In this paper I give a brief review on the recently proposed new scenario of dark energy model dubbed $Quintom$. Quintom describes the dynamical dark energy models where the equation of state getting across the cosmological constant boundary during evolutions. I discuss some aspects on the quintom model buildings and the observational consequences.

Bo Feng

2006-02-07T23:59:59.000Z

318

Energy Flow Models for the Steel Industry  

E-Print Network [OSTI]

each step is calibrated against Commerce Dept. data. Third, a detailed energy flow model is presented for coke ovens and blast furnaces, two very energy-intensive steps in our seven step model of steelmaking. This process-step model is calibrated...

Hyman, B.; Andersen, J. P.

319

Energy Department Announces Regional Winners of University Clean Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr. StevenSolar PowerHanford'sSystemsBusiness

320

University Park, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: Energy Resources

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

University Park, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: Energy Resources8.9703884°,

322

University Park, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States: EnergyInstitutionalNew Mexico:

323

University of Delaware Institute of Energy Conversion | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States: EnergyInstitutionalNewJump

324

West University Place, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation, search Name:Perrine,WestUnion, Ohio: EnergyPlace,

325

Effects of Electromagnetic Field on the Dynamics of Bianchi type $VI_0$ Universe with Anisotropic Dark Energy  

E-Print Network [OSTI]

Spatially homogeneous and anisotropic Bianchi type $VI_0$ cosmological models with cosmological constant are investigated in the presence of anisotropic dark energy. We examine the effects of electromagnetic field on the dynamics of the universe and anisotropic behavior of dark energy. The law of variation of the mean Hubble parameter is used to find exact solutions of the Einstein field equations. We find that electromagnetic field promotes anisotropic behavior of dark energy which becomes isotropic for future evolution. It is concluded that the isotropic behavior of the universe model is seen even in the presence of electromagnetic field and anisotropic fluid.

M. Sharif; M. Zubair

2010-08-04T23:59:59.000Z

326

Building Energy Modeling | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies » Building Energy

327

Directory of Energy Information Administration models 1996  

SciTech Connect (OSTI)

This directory revises and updates the Directory of Energy Information Administration Models 1995, DOE/EIA-0293(95), Energy Information Administration (EIA), U.S. Department of Energy, July 1995. Four models have been deleted in this directory as they are no longer being used: (1) Market Penetration Model for Ground-Water Heat Pump Systems (MPGWHP); (2) Market Penetration Model for Residential Rooftop PV Systems (MPRESPV-PC); (3) Market Penetration Model for Active and Passive Solar Technologies (MPSOLARPC); and (4) Revenue Requirements Modeling System (RRMS).

NONE

1996-07-01T23:59:59.000Z

328

Directory of Energy Information Administration Models 1994  

SciTech Connect (OSTI)

This directory revises and updates the 1993 directory and includes 15 models of the National Energy Modeling System (NEMS). Three other new models in use by the Energy Information Administration (EIA) have also been included: the Motor Gasoline Market Model (MGMM), Distillate Market Model (DMM), and the Propane Market Model (PPMM). This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses and requirements. Sources for additional information are identified. Included in this directory are 37 EIA models active as of February 1, 1994.

Not Available

1994-07-01T23:59:59.000Z

329

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University Energy Saving Control of Hydraulic SystemsEnergy Saving Control of Hydraulic Systems  

E-Print Network [OSTI]

School of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue UniversitySchool of Mechanical Engineering, Purdue University Energy Saving Control of Hydraulic Systems Principle Investigator: Bin Yao Research Assistant: Song Liu School of Mechanical Engineering Purdue

Yao, Bin

330

Hybrid Energy System Modeling in Modelica  

SciTech Connect (OSTI)

In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

2014-03-01T23:59:59.000Z

331

A Universe with a generalized ghost dark energy and Van der Waals fluid interacting with a fluid  

E-Print Network [OSTI]

In this paper we consider an unusual connection between different fluids. Having established a research goal we would like to consider a toy model of the Universe and investigate its behavior, especially for later time evolution for well known facts. The main goal of the article is to consider a toy model of the Universe with generalized ghost dark energy, Van der Waals gas and a phenomenologically modified fluid. The origin of the last component can be understood as a result of interaction between some original fluid and some source of energy or matter in Universe. By unusual connection we mean an assumption that generalized ghost dark energy has its contribution to the model by an interaction term $Q$ and we suppose an interaction $Q=3Hb(\\rho_{\\small{tot}}-\\rho_{GDe})$ of the form. Graphical analysis is performed and the questions of validity of the generalized second law of thermodynamics and stability of the model also approached in this paper.

M. Khurshudyan; B. Pourhassan; E. Chubaryan

2014-02-22T23:59:59.000Z

332

Cosmic Constraint on Ricci Dark Energy Model  

E-Print Network [OSTI]

In this paper, a holographic dark energy model, dubbed Ricci dark energy, is confronted with cosmological observational data from type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO) and cosmic microwave background (CMB). By using maximum likelihood method, it is found out that Ricci dark energy model is a viable candidate of dark energy model with the best fit parameters: $\\Omega_{m0}=0.34\\pm 0.04$, $\\alpha=0.38\\pm 0.03$ with $1\\sigma$ error. Here, $\\alpha$ is a dimensionless parameter related with Ricci dark energy $\\rho_{R}$ and Ricci scalar $R$, i.e., $\\rho_{R}\\propto \\alpha R$.

Lixin Xu; Wenbo Li; Jianbo Lu; Baorong Chang

2009-06-10T23:59:59.000Z

333

About Building Energy Modeling | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut) | Department ofproject from a

334

Energy Modeling Community Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sitesEERE Technologiesdocument assistsJulyIn

335

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network [OSTI]

COVERED (From - To) Renewable Energy and Efficiency Modelingphotovoltaics renewable energy renewable energy certificatecoordinated by the Renewable Energy and Efficiency Modeling

Blair, N.

2010-01-01T23:59:59.000Z

336

Is space expanding in the Friedmann universe models?  

E-Print Network [OSTI]

The interpretation of the expanding universe as an expansion of space has recently been challenged. From the geodesic equation in Friedmann universe models and the empty Milne model, we argue that a Newtonian or special relativistic analysis is not applicable on large scales, and the general relativistic interpretation in terms of expanding space has the advantage of being globally consistent. We also show that the cosmic redshift, interpreted as an expansion effect, containts both the Doppler effect and the gravitational frequency shift.

Oyvind Gron; Oystein Elgaroy

2006-09-18T23:59:59.000Z

337

Dark Energy and Dark Matter Models  

E-Print Network [OSTI]

We revisit the problems of dark energy and dark matter and several models designed to explain them, in the light of some latest findings.

Burra G. Sidharth

2015-01-07T23:59:59.000Z

338

Energy modeling IV--planning for energy disruptions  

SciTech Connect (OSTI)

On May 10-12, 1982, the Institute of Gas Technology held the symposium ''Energy Modeling IV: Planning for Energy Disruptions,'' the fourth in a series of energy modeling symposia. Although all four of the energy modeling symposia presented by IGT emphasized new modeling techniques, each had a specific theme. This symposium addressed the role of modeling in dealing with the problems of disruptions in the supply and price of energy. The symposium brought together modelers and planners from federal and state governmental agencies, utilities, management and consulting organizations, and academic institutions. The participants discussed the complex planning problems presented by both gradual and sudden fluctuations in energy supply or price, whether caused by political, physical, economic, or natural events, and the resultant threats to the stability of businesses and the security of nations. A separate abstract was pepared for each paper for the Energy Data Base (EDB); on paper is included in Energy Research Abstracts (ERA) and 22 for Energy Abstracts for Policy Analysis (EAPA).

Feingold, B.W.; Courtney, L. (eds.)

1982-01-01T23:59:59.000Z

339

Modeling Renewable Energy Readiness: The UAE Context  

E-Print Network [OSTI]

Modeling technology policy is becoming an increasingly important capability to steer states and societies toward sustainability. This paper presents a simulation-modeling approach to evaluate renewable energy readiness, ...

Choucri, Nazli

340

The China-in-Global Energy Model  

E-Print Network [OSTI]

The China-in-Global Energy Model (C-GEM) is a global Computable General Equilibrium (CGE) model that captures the interaction of production, consumption and trade among multiple global regions and sectors including five ...

Qi, T.

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Band Model Based on Effective Mass  

E-Print Network [OSTI]

In this work, we demonstrate an alternative method of deriving an isotropic energy band model using a one-dimensional definition of the effective mass and experimentally observed dependence of mass on energy. We extend the effective mass definition to anti-particles and particles with zero rest mass. We assume an often observed linear dependence of mass on energy and derive a generalized non-parabolic energy-momentum relation. The resulting non-parabolicity leads to velocity saturation at high particle energies. We apply the energy band model to free relativistic particles and carriers in solid state materials and obtain commonly used dispersion relations and experimentally confirmed effective masses. We apply the model to zero rest mass particles in graphene and propose using the effective mass for photons. Therefore, it appears that the new energy band model based on the effective mass can be applied to relativistic particles and carriers in solid state materials.

Viktor Ariel

2012-09-06T23:59:59.000Z

342

Puzzles of the dark energy in the universe - phantom  

E-Print Network [OSTI]

This paper is devoted to some simple approach based on general physics tools to describe the physical properties of a hypothetical particle which can be the source of dark energy in the Universe known as phantom. Phantom is characterized by the fact that it possesses negative momentum and kinetic energy and that it gives large negative pressure which acts as antigravity. We consider phantom harmonic oscillator in comparison to a standard harmonic oscillator. By using the first law of thermodynamics we explain why the energy density of the Universe grows when it is filled with phantom. We also show how the collision of phantom with a standard particle leads to exploration of energy from the former by the latter (i.e. from phantom to the standard) if their masses are different. The most striking of our conclusions is that the collision of phantom and standard particles of the same masses is impossible unless both of them are at rest and suddenly start moving with the opposite velocities and kinetic energies. This effect is a classic analogue of a quantum mechanical particle pair creation in a strong electric field or in physical vacuum.

Mariusz P. Dabrowski

2014-12-30T23:59:59.000Z

343

Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story  

Broader source: Energy.gov [DOE]

Following an Energy Savings Assessment conducted by the University of Delaware's Industrial Assessment Center, Chrome Deposit Corporation's Newark, DE plant is seeing significant energy savings.

344

Modelling energy efficiency for computation  

E-Print Network [OSTI]

In the last decade, efficient use of energy has become a topic of global significance, touching almost every area of modern life, including computing. From mobile to desktop to server, energy efficiency concerns are now ubiquitous. However...

Reams, Charles

2012-11-13T23:59:59.000Z

345

Statefinder parameters in two dark energy models  

E-Print Network [OSTI]

The statefinder parameters ($r,s$) in two dark energy models are studied. In the first, we discuss in four-dimensional General Relativity a two fluid model, in which dark energy and dark matter are allowed to interact with each other. In the second model, we consider the DGP brane model generalized by taking a possible energy exchange between the brane and the bulk into account. We determine the values of the statefinder parameters that correspond to the unique attractor of the system at hand. Furthermore, we produce plots in which we show $s,r$ as functions of red-shift, and the ($s-r$) plane for each model.

Grigoris Panotopoulos

2007-12-07T23:59:59.000Z

346

G-corrected holographic dark energy model  

E-Print Network [OSTI]

Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant,$G$, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of $G$, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of $G$. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of $G$- corrected deceleration parameter for holographic dark energy model and show that the dependency of $G$ on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for $G$- corrected holographic model and show that this model has a shorter distance from the observational point in $s-r$ plane compare with original holographic dark energy model.

M. Malekjani; M. Honari-Jafarpour

2013-05-01T23:59:59.000Z

347

Modeling of battery energy storage in the National Energy Modeling System  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) developed by the U.S. Department of Energy`s Energy Information Administration is a well-recognized model that is used to project the potential impact of new electric generation technologies. The NEMS model does not presently have the capability to model energy storage on the national grid. The scope of this study was to assess the feasibility of, and make recommendations for, the modeling of battery energy storage systems in the Electricity Market of the NEMS. Incorporating storage within the NEMS will allow the national benefits of storage technologies to be evaluated.

Swaminathan, S.; Flynn, W.T.; Sen, R.K. [Sentech, Inc., Bethesda, MD (United States)

1997-12-01T23:59:59.000Z

348

Entropy-Corrected New Agegraphic Dark Energy Model in Horava-Lifshitz Gravity  

E-Print Network [OSTI]

In this work, we have considered the entropy-corrected new agegraphic dark energy (ECNADE) model in Horava-Lifshitz gravity in FRW universe. We have discussed the correspondence between ECNADE and other dark energy models such as DBI-essence,Yang-Mills dark energy, Chameleon field, Non-linear electrodynamics field and hessence dark energy in the context of Horava-Lifshitz gravity and reconstructed the potentials and the dynamics of the scalar field theory which describe the ECNADE.

Piyali Bagchi Khatua; Shuvendu Chakraborty; Ujjal Debnath

2011-05-08T23:59:59.000Z

349

UNCOVERING BASIC WANTS USING THE ROTTERDAM AND AIDS MODELS: THE US HOUSEHOLD ENERGY CONSUMPTION CASE  

E-Print Network [OSTI]

UNCOVERING BASIC WANTS USING THE ROTTERDAM AND AIDS MODELS: THE US HOUSEHOLD ENERGY CONSUMPTION CASE By 2013 IBRAHIMA DIALLO Submitted to the graduate degree program in Economics and the Graduate Faculty of the University of Kansas... version of the following dissertation: UNCOVERING BASIC WANTS USING THE ROTTERDAM AND AIDS MODELS: THE US HOUSEHOLD ENERGY CONSUMPTION CASE ________________________________ (Chairperson) William A. Barnett Date...

Diallo, Ibrahima

2013-05-31T23:59:59.000Z

350

Identifying and quantifying nonconservative energy production/destruction terms in hydrostatic Boussinesq primitive equation models  

E-Print Network [OSTI]

Identifying and quantifying nonconservative energy production/destruction terms in hydrostatic Boussinesq primitive equation models R´emi Tailleux Department of Meteorology, University of Reading, Earley/destruction terms in the local total energy balance equation in numerical ocean general circulation models (OGCMs

Tailleux, Remi

351

Decision Models for Bulk Energy Transportation Networks  

E-Print Network [OSTI]

-mouth generation at Powder River Basin How much impact would 25% wind penetration have on price ? 2 What is modeled spatial & temporal energy flows nodal prices (fuel & elec) SO2, allowance price1 Decision Models for Bulk Energy Transportation Networks Electrical Engineering Professor Jim Mc

Tesfatsion, Leigh

352

Curvature-based energy for simulation and variational modeling Denis Zorin  

E-Print Network [OSTI]

Curvature-based energy for simulation and variational modeling Denis Zorin New York University 719 Broadway, 12th floor New York, New York, 10012 dzorin@mrl.nyu.edu Abstract Curvature-based energy unanswered. We discuss the general principles for defining curvature- based energy on discrete surfaces based

Mohri, Mehryar

353

Discrimination of Near-Native Protein Structures From Misfolded Models by Empirical Free Energy Functions  

E-Print Network [OSTI]

Discrimination of Near-Native Protein Structures From Misfolded Models by Empirical Free Energy University, Boston, Massachusetts ABSTRACT Free energy potentials, combining molecular mechanics of discrimination that in- clude the correlation coefficient between RMSD and free energy, and a new measure labeled

Vajda, Sandor

354

New infrared cut-off for the holographic scalar fields models of dark energy  

E-Print Network [OSTI]

Introducing a new infrared cut-off for the holographic dark-energy, we study the correspondence between the quintessence, tachyon, K-essence and dilaton energy density with this holographic dark energy density in the flat FRW universe. This correspondence allows to reconstruct the potentials and the dynamics for the scalar fields models, which describe accelerated expansion.

L. N. Granda; A. Oliveros

2008-10-23T23:59:59.000Z

355

A long-term investment planning model for mixed energy infrastructure integrated with renewable  

E-Print Network [OSTI]

A long-term investment planning model for mixed energy infrastructure integrated with renewable energy Jinxu Ding and Arun Somani Department of Electrical and Computer Engineering Iowa State University Ames, IA 50011 Email: {jxding,arun}@iastate.edu Abstract--The current energy infrastructure heavily

356

Model Acquisition Language for Energy-Efficient Product Contracts...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Energy-Efficient Products Model Acquisition Language for Energy-Efficient Product Contracts Model Acquisition Language for Energy-Efficient Product Contracts...

357

Scripted Building Energy Modeling and Analysis (Presentation)  

SciTech Connect (OSTI)

Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

Macumber, D.

2012-10-01T23:59:59.000Z

358

Retrofit Energy Savings Estimation Model Reference Manual  

E-Print Network [OSTI]

Retrofit Energy Savings Estimation Model Reference Manual #12;#12;Retrofit Energy Savings commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does from the Department of Energy. Any conclusions or opinions expressed in this manual represent solely

359

Summerschool Modelling of Mass and Energy  

E-Print Network [OSTI]

Summerschool Modelling of Mass and Energy Transport #12;Black Box Analogy )(teRi dt di L i and Energy Transport Exercise Given a flux vector approaching an oblique oriented surface element (line .constc G S dsndg *)(2 . #12;Mass and Energy Balance Continued V S dsnvudV dt d V S dsnvdV t u

Kornhuber, Ralf

360

Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:Energy Information23.Energy DemandSalton

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Scaled Experimental Modeling of Geologic Structures Rutgers University  

E-Print Network [OSTI]

of uncertainty associated with hydrocarbon exploration and production. Furthermore, experimental models allow us in the Department of Geological Sciences at Rutgers University. She has thirty years of experience in the oil & gas experimental models provide valuable information about structural processes, especially those not observed

362

Dark energy: a quantum fossil from the inflationary Universe?  

E-Print Network [OSTI]

The discovery of dark energy (DE) as the physical cause for the accelerated expansion of the Universe is the most remarkable experimental finding of modern cosmology. However, it leads to insurmountable theoretical difficulties from the point of view of fundamental physics. Inflation, on the other hand, constitutes another crucial ingredient, which seems necessary to solve other cosmological conundrums and provides the primeval quantum seeds for structure formation. One may wonder if there is any deep relationship between these two paradigms. In this work, we suggest that the existence of the DE in the present Universe could be linked to the quantum field theoretical mechanism that may have triggered primordial inflation in the early Universe. This mechanism, based on quantum conformal symmetry, induces a logarithmic, asymptotically-free, running of the gravitational coupling. If this evolution persists in the present Universe, and if matter is conserved, the general covariance of Einstein's equations demands the existence of dynamical DE in the form of a running cosmological term whose variation follows a power law of the redshift.

Joan Sola

2008-02-06T23:59:59.000Z

363

Modeling of Customer Adoption of Distributed Energy Resources  

E-Print Network [OSTI]

Modeling of Customer Adoption of Distributed Energy Resources CALIFORNIA ENERGY COMMISSION Reliability Technology Solutions Modeling of Customer Adoption of Distributed Energy Resources Prepared the consequences. #12;#12;Modeling of Customer Adoption of Distributed Energy Resources iii Table of Contents

364

Expand the Modeling Capabilities of DOE's EnergyPlus Building Energy Simulation Program  

SciTech Connect (OSTI)

EnergyPlus{trademark} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOE's Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. Version 1.0 of EnergyPlus was released in April 2001, followed by semiannual updated versions over the ensuing seven-year period. This report summarizes work performed by the University of Central Florida's Florida Solar Energy Center (UCF/FSEC) to expand the modeling capabilities of EnergyPlus. The project tasks involved implementing, testing, and documenting the following new features or enhancement of existing features: (1) A model for packaged terminal heat pumps; (2) A model for gas engine-driven heat pumps with waste heat recovery; (3) Proper modeling of window screens; (4) Integrating and streamlining EnergyPlus air flow modeling capabilities; (5) Comfort-based controls for cooling and heating systems; and (6) An improved model for microturbine power generation with heat recovery. UCF/FSEC located existing mathematical models or generated new model for these features and incorporated them into EnergyPlus. The existing or new models were (re)written using Fortran 90/95 programming language and were integrated within EnergyPlus in accordance with the EnergyPlus Programming Standard and Module Developer's Guide. Each model/feature was thoroughly tested and identified errors were repaired. Upon completion of each model implementation, the existing EnergyPlus documentation (e.g., Input Output Reference and Engineering Document) was updated with information describing the new or enhanced feature. Reference data sets were generated for several of the features to aid program users in selecting proper model inputs. An example input data file, suitable for distribution to EnergyPlus users, was created for each new or improved feature to illustrate the input requirements for the model.

Don Shirey

2008-02-28T23:59:59.000Z

365

Integrated energy and water conservation modeling  

SciTech Connect (OSTI)

Under the Energy Policy Act of 1992, the Federal Energy Management Program (FEMP) is required to provide federal facility managers with a clear determination of the impact of water conservation practices on energy consumption. This paper introduces the WATERGY model, which is a spreadsheet model to analyze total energy savings associated with water conservation efforts. The contribution of this effort is the development of a synergistic model based on engineering algorithms as opposed to lumped parameter estimates. The model explicitly details the relationships between direct and indirect water and energy savings. Irrigation, plumbing fixture, appliance, and boiler blowdown savings comprise the direct water component of the model. Reduction in leakage and unaccounted-for water in the distribution system are calculated as indirect water savings. Direct energy savings are calculated for hot water production. Indirect energy savings associated with distribution and collection, electric line losses, and unaccounted-for gas are determined by the model. Data sources, algorithms, and engineering assumptions used in the development of the model are detailed. The model capabilities are demonstrated for a hypothetical federal facility.

Monsabert, S. de; Liner, B.L. [George Mason Univ., Fairfax, VA (United States)

1998-04-01T23:59:59.000Z

366

Models and Tools for Evaluating Energy Efficiency and Renewable...  

Office of Environmental Management (EM)

and Tools for Evaluating Energy Efficiency and Renewable Energy Project Opportunities Models and Tools for Evaluating Energy Efficiency and Renewable Energy Project Opportunities...

367

Matter Non-conservation in the Universe and Dynamical Dark Energy  

E-Print Network [OSTI]

In an expanding universe the vacuum energy density \\rho_{\\Lambda} is expected to be a dynamical quantity. In quantum field theory in curved space-time \\rho_{\\Lambda} should exhibit a slow evolution, determined by the expansion rate of the universe H. Recent measurements on the time variation of the fine structure constant and of the proton-electron mass ratio suggest that basic quantities of the Standard Model, such as the QCD scale parameter \\Lambda_{QCD}, may not be conserved in the course of the cosmological evolution. The masses of the nucleons m_N and of the atomic nuclei would also be affected. Matter is not conserved in such a universe. These measurements can be interpreted as a leakage of matter into vacuum or vice versa. We point out that the amount of leakage necessary to explain the measured value of \\dot{m}_N/m_N could be of the same order of magnitude as the observationally allowed value of \\dot{\\rho}_{\\Lambda}/\\rho_{\\Lambda}, with a possible contribution from the dark matter particles. The dark energy in our universe could be the dynamical vacuum energy in interaction with ordinary baryonic matter as well as with dark matter.

Harald Fritzsch; Joan Sola

2012-08-30T23:59:59.000Z

368

Exploring the Universe with Very High Energy Neutrinos  

E-Print Network [OSTI]

With the discovery of a high-energy neutrino flux in the 0.1 PeV to PeV range from beyond the Earth's atmosphere with the IceCube detector, neutrino astronomy has achieved a major breakthrough in the exploration of the high-energy universe. One of the main goals is the identification and investigation of the still mysterious sources of the cosmic rays which are observed at Earth with energies up to several $10^5$ PeV. In addition to being smoking-gun evidence for the presence of cosmic rays in a specific object, neutrinos escape even dense environments and can reach us from distant places in the universe, thereby providing us with a unique tool to explore cosmic accelerators. This article summarizes our knowledge about the observed astrophysical neutrino flux and current status of the search for individual cosmic neutrino sources. At the end, it gives an overview of plans for future neutrino telescope projects.

Kappes, A

2015-01-01T23:59:59.000Z

369

Dark Energy: Observational Evidence and Theoretical Models  

E-Print Network [OSTI]

The book elucidates the current state of the dark energy problem and presents the results of the authors, who work in this area. It describes the observational evidence for the existence of dark energy, the methods and results of constraining of its parameters, modeling of dark energy by scalar fields, the space-times with extra spatial dimensions, especially Kaluza---Klein models, the braneworld models with a single extra dimension as well as the problems of positive definition of gravitational energy in General Relativity, energy conditions and consequences of their violation in the presence of dark energy. This monograph is intended for science professionals, educators and graduate students, specializing in general relativity, cosmology, field theory and particle physics.

Novosyadlyj, B; Shtanov, Yu; Zhuk, A

2015-01-01T23:59:59.000Z

370

Comparison of Building Energy Modeling Programs: Building Loads  

E-Print Network [OSTI]

Energy, the U.S.-China Clean Energy Research Center for Building Energy Efficiency, of the U National Laboratory, USA and Tsinghua University, China Under the U.S.-China Clean Energy Research Center the US-China Clean Energy Research Center on Building Energy Efficiency (CERC-BEE). Energy Foundation

371

Modeling of Uncertainty in Wind Energy Forecast  

E-Print Network [OSTI]

regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

372

Directory of Energy Information Administration Models 1993  

SciTech Connect (OSTI)

This directory contains descriptions about each model, including the title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included in this directory are 35 EIA models active as of May 1, 1993. Models that run on personal computers are identified by ``PC`` as part of the acronym. EIA is developing new models, a National Energy Modeling System (NEMS), and is making changes to existing models to include new technologies, environmental issues, conservation, and renewables, as well as extend forecast horizon. Other parts of the Department are involved in this modeling effort. A fully operational model is planned which will integrate completed segments of NEMS for its first official application--preparation of EIA`s Annual Energy Outlook 1994. Abstracts for the new models will be included in next year`s version of this directory.

Not Available

1993-07-06T23:59:59.000Z

373

Directory of energy information administration models 1995  

SciTech Connect (OSTI)

This updated directory has been published annually; after this issue, it will be published only biennially. The Disruption Impact Simulator Model in use by EIA is included. Model descriptions have been updated according to revised documentation approved during the past year. This directory contains descriptions about each model, including title, acronym, purpose, followed by more detailed information on characteristics, uses, and requirements. Sources for additional information are identified. Included are 37 EIA models active as of February 1, 1995. The first group is the National Energy Modeling System (NEMS) models. The second group is all other EIA models that are not part of NEMS. Appendix A identifies major EIA modeling systems and the models within these systems. Appendix B is a summary of the `Annual Energy Outlook` Forecasting System.

NONE

1995-07-13T23:59:59.000Z

374

The National Energy Modeling System: An overview  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

Not Available

1994-05-01T23:59:59.000Z

375

Universality of cutoff for the Ising model  

E-Print Network [OSTI]

On any locally-finite geometry, the stochastic Ising model is known to be contractive when the inverse-temperature $\\beta$ is small enough, via classical results of Dobrushin and of Holley in the 1970's. By a general principle proposed by Peres, the dynamics is then expected to exhibit cutoff. However, so far cutoff for the Ising model has been confirmed mainly for lattices, heavily relying on amenability and log Sobolev inequalities. Without these, cutoff was unknown at any fixed $\\beta>0$, no matter how small, even in basic examples such as the Ising model on a binary tree or a random regular graph. We use the new framework of information percolation to show that, in any geometry, there is cutoff for the Ising model at high enough temperatures. Precisely, on any sequence of graphs with maximum degree $d$, the Ising model has cutoff provided that $\\beta<\\kappa/d$ for some absolute constant $\\kappa$ (a result which, up to the value of $\\kappa$, is best possible). Moreover, the cutoff location is established as the time at which the sum of squared magnetizations drops to 1, and the cutoff window is $O(1)$, just as when $\\beta=0$. Finally, the mixing time from almost every initial state is not more than a factor of $1+\\epsilon_\\beta$ faster then the worst one (with $\\epsilon_\\beta\\to0$ as $\\beta\\to 0$), whereas the uniform starting state is at least $2-\\epsilon_\\beta$ times faster.

Eyal Lubetzky; Allan Sly

2014-07-28T23:59:59.000Z

376

Reference Model 6 (RM6): Oscillating Wave Energy Converter.  

SciTech Connect (OSTI)

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

2014-10-01T23:59:59.000Z

377

Clustering Properties of Dynamical Dark Energy Models  

E-Print Network [OSTI]

We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is coupled to dark matter.

P. P. Avelino; L. M. G. Beca; C. J. A. P. Martins

2008-02-01T23:59:59.000Z

378

Opportunities for University Students and Professors | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Engines |OpenEnergyIndustrialUniversity

379

University of Dayton Research Institute | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump(EC-LEDS)Agriculture Name:AlbertaUniversity of

380

Universal low-energy behavior in three-body systems  

E-Print Network [OSTI]

We consider a pairwise interacting quantum 3-body system in 3-dimensional space with finite masses and the interaction term $V_{12} + \\lambda(V_{13} + V_{23})$, where all pair potentials are assumed to be nonpositive. The pair interaction of the particles $\\{1,2\\}$ is tuned to make them have a zero energy resonance and no negative energy bound states. The coupling constant $\\lambda >0$ is allowed to take the values for which the particle pairs $\\{1,3\\}$ and $\\{2,3\\}$ have no bound states with negative energy. Let $\\lambda_{cr}$ denote the critical value of the coupling constant such that $E(\\lambda) \\to -0$ for $\\lambda \\to \\lambda_{cr}$, where $E(\\lambda)$ is the ground state energy of the 3-body system. We prove the theorem, which states that near $\\lambda_{cr}$ one has $E(\\lambda) = C (\\lambda-\\lambda_{cr})[\\ln (\\lambda-\\lambda_{cr})]^{-1}+$h.t., where $C$ is a constant and h.t. stands for "higher terms". This behavior of the ground state energy is universal (up to the value of the constant $C$), meaning that it is independent of the form of pair interactions.

Dmitry K. Gridnev

2015-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Holographic Dark Energy Models and Higher Order Generalizations in Dynamical Chern-Simons Modified Gravity  

E-Print Network [OSTI]

Dark Energy models are here investigated and studied in the framework of the Chern-Simons modified gravity model. We bring into focus the Holographic Dark Energy (HDE) model with Granda-Oliveros cut-off, the Modified Holographic Ricci Dark Energy (MHRDE) model and, moreover, a model with higher derivatives of the Hubble parameter as well. The relevant expressions of the scale factor a(t) for a Friedmann-Robertson-Walker Universe are derived and studied, and in this context, the evolution of the scale factor is shown to be similar to that one displayed by the modified Chaplygin gas in two of the above models.

Antonio Pasqua; Roldao da Rocha; Surajit Chattopadhyay

2014-12-29T23:59:59.000Z

382

UNIVERSITY OF CALIFORNIA, BERKELEY ENERGY AND RESOURCES GROUP DANIEL M. KAMMEN  

E-Print Network [OSTI]

that this scenario includes all the likely available energy from local renewable resources UNIVERSITY OF CALIFORNIA, BERKELEY ENERGY AND RESOURCES GROUP DANIEL M OF CALIFORNIA PROFESSOR IN THE ENERGY AND RESOURCES GROUP BERKELEY, CA 94720

Kammen, Daniel M.

383

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network [OSTI]

C.F. , 1980, "Aquifer Thermal Energy - Parameter Study" (infrom the Auburn University Thermal Energy Storage , LBL No.studies in aquifer thermal energy , Presented at the ~~~~~~~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

384

On the internal consistency of holographic dark energy models  

SciTech Connect (OSTI)

Holographic dark energy (HDE) models, underpinned by an effective quantum field theory (QFT) with a manifest UV/IR connection, have become convincing candidates for providing an explanation of the dark energy in the universe. On the other hand, the maximum number of quantum states that a conventional QFT for a box of size L is capable of describing relates to those boxes which are on the brink of experiencing a sudden collapse to a black hole. Another restriction on the underlying QFT is that the UV cut-off, which cannot be chosen independently of the IR cut-off and therefore becomes a function of time in a cosmological setting, should stay the largest energy scale even in the standard cosmological epochs preceding a dark energy dominated one. We show that, irrespective of whether one deals with the saturated form of HDE or takes a certain degree of non-saturation in the past, the above restrictions cannot be met in a radiation dominated universe, an epoch in the history of the universe which is expected to be perfectly describable within conventional QFT.

Horvat, R, E-mail: horvat@lei3.irb.hr [Rudjer Boskovic Institute, POB 180, 10002 Zagreb (Croatia)] [Rudjer Boskovic Institute, POB 180, 10002 Zagreb (Croatia)

2008-10-15T23:59:59.000Z

385

Two Component Model of Dark Energy  

E-Print Network [OSTI]

We consider the possibility that the dark energy is made up of two or more independent components, each having a different equation of state. We fit the model with supernova and gamma-ray burst (GRB) data from resent observations, and use the Markov Chain Monte Carlo (MCMC) technique to estimate the allowed parameter regions. We also use various model selection criteria to compare the two component model with the LCDM, one component dark energy model with static or variable w(XCDM), and with other multi-component models. We find that the two component models can give reasonably good fit to the current data. For some data sets, and depending somewhat on the model selection criteria, the two component model can give better fit to the data than XCDM with static w and XCDM with variable w parameterized by w = w_0 + w_az/(1+z).

Yan Gong; Xuelei Chen

2007-10-18T23:59:59.000Z

386

High Energy Physics at the University of Illinois  

SciTech Connect (OSTI)

This is the final report for DOE award DE-FG02-91ER40677 (High Energy Physics at the University of Illinois), covering the award period November 1, 2009 through April 30, 2013. During this period, our research involved particle physics at Fermilab and CERN, particle physics related cosmology at Fermilab and SLAC, and theoretical particle physics. Here is a list of the activities described in the final report: * The CDF Collaboration at the Fermilab Tevatron * Search For Lepton Flavor Violation in the Mu2e Experiment At Fermilab * The ATLAS Collaboration at the CERN Large Hadron Collider * the Study of Dark Matter and Dark Energy: DES and LSST * Lattice QCD * String Theory and Field Theory * Collider Phenomenology

Liss, Tony M. [University of Illinois] [University of Illinois; Thaler, Jon J. [University of Illinois] [University of Illinois

2013-07-26T23:59:59.000Z

387

Staffing Model | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable EnergySouthwest4, 2010

388

Building Energy Modeling (BEM) Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev nextInvestigation |Mark LessansEnergyEnergy

389

Request for Proposals for the Hulka Energy Research Fellowships managed by the University of Maryland Energy Research Center  

E-Print Network [OSTI]

energy, · ocean thermal or wave energy or geothermal energy conversion. The proposed research mustRequest for Proposals for the Hulka Energy Research Fellowships managed by the University of Maryland Energy Research Center Announcement Date: November 15, 2011 Proposal Due Date: December 12, 2011

Rubloff, Gary W.

390

Model Wind Energy Facility Ordinance  

Broader source: Energy.gov [DOE]

Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

391

Model Ordinance for Renewable Energy Projects  

Broader source: Energy.gov [DOE]

'''''NOTE: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for renewable energy projects. While it was developed by the Oregon...

392

Modified Chaplygin Gas as Scalar Field and Holographic Dark Energy Model  

E-Print Network [OSTI]

We study the correspondence between field theoretic and holographic dark energy density of the universe with the modified Chaplygin gas (MCG) respectively both in a flat and non-flat FRW universe. We present an equivalent representation of the MCG with a homogeneous minimally coupled scalar field by constructing the corresponding potential. A new scalar field potential is obtained here which is physically realistic and important for cosmological model building. In addition we also present holographic dark energy model described by the MCG. The dynamics of the corresponding holographic dark energy field is determined by reconstructing the potential in a non-flat universe. The stability of the holographic dark energy in this case in a non-flat universe is also discussed.

B. C. Paul; P. Thakur; A. Saha

2008-09-20T23:59:59.000Z

393

Statefinder Parameters for Different Dark Energy Models with Variable G Correction in Kaluza-Klein Cosmology  

E-Print Network [OSTI]

In this work, we have calculated the deceleration parameter, statefinder parameters and EoS parameters for different dark energy models with variable $G$ correction in homogeneous, isotropic and non-flat universe for Kaluza-Klein Cosmology. The statefinder parameters have been obtained in terms of some observable parameters like dimensionless density parameter, EoS parameter and Hubble parameter for holographic dark energy, new agegraphic dark energy and generalized Chaplygin gas models.

Shuvendu Chakraborty; Ujjal Debnath; Mubasher Jamil; Ratbay Myrzakulov

2012-02-18T23:59:59.000Z

394

Low-energy holographic models for QCD  

E-Print Network [OSTI]

We consider the bottom-up holographic models for QCD which contain the ultraviolet (UV) cutoff. Such models are supposed to describe exclusively the low-energy sector of QCD. The introduction of UV cutoff in the soft wall model is shown to result in a model with qualitatively different predictions. The ensuing model seems to be able to incorporate the constituent quark mass. It is also demonstrated that in order to reproduce the results of the usual soft wall model for the vector and higher spin mesons in the presence of the UV cutoff one can consider the flat bulk space with a modified dilaton background.

S. S. Afonin

2011-04-09T23:59:59.000Z

395

World Energy Projection System model documentation  

SciTech Connect (OSTI)

The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

Hutzler, M.J.; Anderson, A.T.

1997-09-01T23:59:59.000Z

396

Synthesised Constraint Models for Distributed Energy Management  

E-Print Network [OSTI]

generation [1], demand-side manage- ment, or building control software. In a producer-based view, supplySynthesised Constraint Models for Distributed Energy Management Alexander Schiendorfer, Jan frequently encountered in energy management systems such as the coordination of power generators in a virtual

Reif, Wolfgang

397

Holes in the static Einstein universe and a model of the cosmological voids  

SciTech Connect (OSTI)

A spherically symmetric, static model of the cosmological voids is constructed in the framework of the Tolman-Oppenheimer-Volkov equation with the cosmological constant. Extension of the Tooper result (dimensionless form of the TOV equation) is provided for nonzero {lambda}. Then, the equation is simplified in {alpha}{yields}0, {lambda}{yields}0, and {lambda}/{alpha}=const regime, suitable for largest structures in {lambda}-dominated universe. Voids are treated as underdensity regions in the static Einstein universe. Both overdensity and underdensity (relative to static universe) solutions exist. They are identified with standard astrophysical spherical objects and voids, respectively. The model is tested against observed properties (the radius - the central density relation) and density profiles of voids. Analytical formulas for radial density contrast profile and radii of the voids are derived. Some consequences for cosmological N-body simulations are suggested. Hints on the dark matter/dark energy EOS filling the voids are provided.

Odrzywolek, Andrzej [M. Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

2009-11-15T23:59:59.000Z

398

AIC, BIC, Bayesian evidence against the interacting dark energy model  

E-Print Network [OSTI]

Recent astronomical observations have indicated that the Universe is in the phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting $\\Lambda$CDM model where the interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative---the $\\Lambda$CDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: SNIa (Union2.1), $h(z)$, BAO, Alcock--Paczynski test and CMB we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting $\\Lambda$CDM model when compared to the $\\Lambda$CDM model, while those based on the BIC indicated that there is the strong evidence against it in favor the $\\Lambda$CDM model. Given the weak or almost none support for the interacting $\\Lambda$CDM model and bearing in mind Occam's razor we are inclined to reject this model.

Marek Szydlowski; Adam Krawiec; Aleksandra Kurek; Michal Kamionka

2014-12-03T23:59:59.000Z

399

Evolution of the interacting viscous dark energy model in Einstein cosmology  

E-Print Network [OSTI]

In this paper we investigate the evolution of the viscous dark energy (DE) interacting with the dark matter (DM) in the Einstein cosmology model. Using the linearizing theory of the dynamical system, we find, in our model, there exists a stable late time scaling solution which corresponds to the accelerating universe, and we also find the unstable solution under some appropriate parameters. In order to alleviate the coincidence problem, some authors considered the effect of quantum correction due to the conform anomaly and the interacting dark energy model. But if we take into account the bulk viscosity of the cosmic fluid, the coincidence problem will be softened just like the interacting dark energy cosmology model. That's to say, both the non-perfect fluid model and the interacting models of the dark energy can alleviate or soften the singularity of the universe.

Juhua Chen; Yongjiu Wang

2009-09-05T23:59:59.000Z

400

Acceleration of the Universe in f(R) Gravity Models  

E-Print Network [OSTI]

A general formalism for the investigation of the late time dynamics of the universe for any analytic f(R) gravity model, along with a cold dark matter, has been discussed in the present work. The formalism is then elucidated with two examples. The values of the parameters of the models are chosen in such a way that they are consistent with the basic observational requirement.

Ankan Mukherjee; Narayan Banerjee

2014-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MARQUETTE UNIVERSITY Auditory Model-based Bionic Wavelet Transform  

E-Print Network [OSTI]

MARQUETTE UNIVERSITY Auditory Model-based Bionic Wavelet Transform For Speech Enhancement A THESIS. Therefore applying this method to speech enhancement may lead to a promising future in this field. Spectral subtraction methods have been widely used in speech enhancement, but all are notorious for unexpected music

Johnson, Michael T.

402

STAT 472: Actuarial Models; Fall 2006 Purdue University  

E-Print Network [OSTI]

STAT 472: Actuarial Models; Fall 2006 Purdue University General Information Instructor: Prof. This course, together with its sequel, STAT 473, provides most of the background for Course 3 (Exam M of Actuaries list of exam topics, speci...cally page 36 Option A: http://www.soa.org/ccm/cms-service/stream/asset/?asset_id

Viens, Frederi G.

403

Analytical Modeling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:Operations atAnaconda,ParkAnalytical

404

LEDCOM Model | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhen IAjani Stewartand UsageZip file containing

405

Stringy Model of Cosmological Dark Energy  

E-Print Network [OSTI]

A string field theory(SFT) nonlocal model of the cosmological dark energy providing w<-1 is briefly surveyed. We summarize recent developments and open problems, as well as point out some theoretical issues related with others applications of the SFT nonlocal models in cosmology, in particular, in inflation and cosmological singularity.

Irina Ya. Aref'eva

2007-10-16T23:59:59.000Z

406

Scalar-Tensor Dark Energy Models  

E-Print Network [OSTI]

We present here some recent results concerning scalar-tensor Dark Energy models. These models are very interesting in many respects: they allow for a consistent phantom phase, the growth of matter perturbations is modified. Using a systematic expansion of the theory at low redshifts, we relate the possibility to have phantom like DE to solar system constraints.

R. Gannouji; D. Polarski; A. Ranquet; A. A. Starobinsky

2007-01-23T23:59:59.000Z

407

Principal-Agent Problems in Energy Efficient Computing in a University Setting  

E-Print Network [OSTI]

of buildings, energy efficiency is seen as the key element to achieve carbon neutrality. Furthermore, the McPrincipal-Agent Problems in Energy Efficient Computing in a University Setting Marco Pritoni, Siva G Gunda, Tracy Hsieh Energy Efficiency Center, University of California-Davis ABSTRACT About 10

California at Davis, University of

408

Industrial Research Chair in Energy Systems for Smart Cities SIMON FRASER UNIVERSITY, CANADA  

E-Print Network [OSTI]

Industrial Research Chair in Energy Systems for Smart Cities SIMON FRASER UNIVERSITY, CANADA energy, as well as any other renewable energy sources and related technology in alignment The Faculty of Applied Sciences at Simon Fraser University, British Columbia, Canada, invites applications

409

Viva Energa! Energy Department Partners with the University of Puerto Rico  

Broader source: Energy.gov [DOE]

As one of the leading research institutions in Puerto Rico, the University of Puerto Rico has the largest and most diverse academic offerings on the Carribean island. And now -- thanks to funding from the Recovery Act -- the university is undertaking several energy conservation and renewable energy projects that will reduce the school's energy costs by $230,000 a year.

410

Dark matter, dark energy and the time evolution of masses in the Universe  

E-Print Network [OSTI]

The traditional "explanation" for the observed acceleration of the universe is the existence of a positive cosmological constant. However, this can hardly be a truly convincing explanation, as an expanding universe is not expected to have a static vacuum energy density. So, it must be an approximation. This reminds us of the so-called fundamental "constants" of nature. Recent and past measurements of the fine structure constant and of the proton-electron mass ratio suggest that basic quantities of the standard model, such as the QCD scale parameter $\\Lambda_{QCD}$, might not be conserved in the course of the cosmological evolution. The masses of the nucleons and of the atomic nuclei would be time-evolving. This can be consistent with General Relativity provided the vacuum energy itself is a dynamical quantity. Another framework realizing this possibility is QHD (Quantum Haplodynamics), a fundamental theory of bound states. If one assumes that its running couplings unify at the Planck scale and that such scale changes slowly with cosmic time, the masses of the nucleons and of the DM particles, including the cosmological term, will evolve with time. This could explain the dark energy of the universe.

Joan Sola

2014-09-03T23:59:59.000Z

411

Uncalibrated Building Energy Simulation Modeling Results  

E-Print Network [OSTI]

for the Level 1 and Level 2 models with measured data for WERC (2004 post-commissioning data). ESL-PA-06-10-01 VOLUME 12, NUMBER 4, OCTOBER 2006 1151 Figure 6. Comparison of simulated daily total energy consumption for the Level 1 and Level 2 models with 1999...,450 m2]), the simulation using 1999 data underestimates the energy use in all categories except the whole building electrical usage. Table 3 identifies the magnitude of these discrepancies for a full years consumption. The Level 1 model actually per...

Ahmad, M.; Culp, C.H.

412

Revolutions in energy through modeling and simulation  

SciTech Connect (OSTI)

The development and application of energy technologies for all aspects from generation to storage have improved dramatically with the advent of advanced computational tools, particularly modeling and simulation. Modeling and simulation are not new to energy technology development, and have been used extensively ever since the first commercial computers were available. However, recent advances in computing power and access have broadened the extent and use, and, through increased fidelity (i.e., accuracy) of the models due to greatly enhanced computing power, the increased reliance on modeling and simulation has shifted the balance point between modeling and experimentation. The complex nature of energy technologies has motivated researchers to use these tools to understand better performance, reliability and cost issues related to energy. The tools originated in sciences such as the strength of materials (nuclear reactor containment vessels); physics, heat transfer and fluid flow (oil production); chemistry, physics, and electronics (photovoltaics); and geosciences and fluid flow (oil exploration and reservoir storage). Other tools include mathematics, such as statistics, for assessing project risks. This paper describes a few advancements made possible by these tools and explores the benefits and costs of their use, particularly as they relate to the acceleration of energy technology development. The computational complexity ranges from basic spreadsheets to complex numerical simulations using hardware ranging from personal computers (PCs) to Cray computers. In all cases, the benefits of using modeling and simulation relate to lower risks, accelerated technology development, or lower cost projects.

Tatro, M.; Woodard, J.

1998-08-01T23:59:59.000Z

413

Modeling Building Energy Use and HVAC Efficiency Improvements in Extreme Hot and Humid Regions  

E-Print Network [OSTI]

An energy analysis was performed on the Texas A & M University at Qatar building in Doha, Qatar. The building and its HVAC systems were modeled using EnergyPlus. Building chilled water and electrical data were collected to validate the computer...

Bible, Mitchell

2011-10-21T23:59:59.000Z

414

An energy-diagnostics intercomparison of coupled ice-ocean Arctic models  

E-Print Network [OSTI]

An energy-diagnostics intercomparison of coupled ice-ocean Arctic models Petteri Uotila a,*, David. Understanding the Arctic Ocean energy balance is important because it can strengthen our understanding for Atmosphere-Ocean Science, Courant Institute of Mathematical Sciences, New York University, NYU, 200 Water

Zhang, Jinlun

415

University Park Summary of Reported Data | Department of Energy  

Energy Savers [EERE]

Summary of Reported Data University Park Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Town of University Park, Maryland....

416

Comparison of Real World Energy Consumption to Models and DOE...  

Broader source: Energy.gov (indexed) [DOE]

Comparison of Real World Energy Consumption to Models and DOE Test Procedures Comparison of Real World Energy Consumption to Models and DOE Test Procedures This study investigates...

417

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network [OSTI]

Model Part I, Energy Technology Systems Analysis Programme,A Report of the Energy Technology Systems Analysis Project,Energy Efficiency Technologies in Integrated Assessment

Karali, Nihan

2014-01-01T23:59:59.000Z

418

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

RR-08-26 Modeling of Energy Production Decisions: An Alaskarapid or gradual energy production in the future? Doesnet social benefit from energy production and achieving a

Leighty, Wayne

2008-01-01T23:59:59.000Z

419

Department of Energy Conference Emphasizes Universities' Role in Nuclear  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared1217Next GenerationEnergy Research | Department

420

MULTIPLE WELL VARIABLE RATE WELL TEST ANALYSIS OF DATA FROM THE AUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRAM  

E-Print Network [OSTI]

experimental Thermal energy storage in confined aquifers. lAUBURN UNIVERSITY THERMAL ENERGY STORAGE PROGRM1 Christineseries of aquifer thermal energy storage field experiments.

Doughty, Christine

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Former Student Turns Thesis Into Energy Savings for Taylor University  

Broader source: Energy.gov [DOE]

Not long ago Kevin Crosby was an engineering major and the president of Taylor Universitys student environmental club, Stewards of Creation. Now with recommendations from his thesis in hand, the Environmental Science Masters degree candidate is the Upland, Indiana, universitys first Coordinator of Stewardship and Sustainability.

422

Building Energy Model Development for Retrofit Homes  

SciTech Connect (OSTI)

Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This true up procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The trued post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the true up procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or incorporation into existing software tools would improve the efficiency of the process. Retrofit activity appears to be gaining market share, and this would be a potentially valuable capability with relevance to marketing, program management, and retrofit success metrics.

Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

2012-09-30T23:59:59.000Z

423

Energy Efficient Radio Resource  

E-Print Network [OSTI]

Energy Efficient Radio Resource Management in a Coordinated Multi-Cell Distributed Antenna System Omer HALILOGLU Introduction System Model Performance Evaluation Conclusion References Energy Efficient Hacettepe University 5 September 2014 Omer HALILOGLU (Hacettepe University) Energy Efficient Radio Resource

Yanikomeroglu, Halim

424

Energy policy modeling: United States and Canadian experiences. Volume I. Specialized energy policy models  

SciTech Connect (OSTI)

The Canadian Energy Policy Modeling Conference held in North Vancouver, May 18-20, 1978, was organized to assess the state of the art in energy modeling in North America. A major aim of the conference was to determine the extent to which energy modeling had and could make a contribution to the energy-policy decision-making process. Two volumes contain revised and updated versions of the major papers presented at the conference plus edited transcripts of the panel discussions and several additional papers aimed at particular topics deemed worthy of further study. This volume, Vol. I, is concerned with specialized models and contains the following sections: (a) Energy Demand Modeling (7 papers); (b) Energy Supply Modeling (5 papers); (c) Coal and Transportation Modeling (6 papers); and (d) Problems and Interactions of Energy, Environment, and Conservation (4 papers). A separate abstract was prepared for each of the 22 papers for Energy Abstracts for Policy Analysis (EAPA); 5 abstracts will appear in Energy Research Abstracts (ERA).

Ziemba, W.T.; Schwartz, S.L.; Koenigsberg, E. (eds.)

1980-01-01T23:59:59.000Z

425

A model of accelerating dark energy in decelerating gravity  

E-Print Network [OSTI]

The expansion of the Universe is accelerated as testified by observations of SNeIa at varying redshifts. Explanations of this acceleration are of two kinds: modifications of Einstein gravity or new forms of energy. An example of modified gravity is the braneworld Dvali-Gabadadze-Porrati (DGP) model, an example of dark energy is Chaplygin gas. Both are characterized by a cross-over length scale $r_c$ which marks the transition between physics occurring on our four-dimensional brane, and in a five-dimensional bulk space. Assuming that the scales $r_c$ in the two models are the same, we study Chaplygin gas dark energy in flat DGP geometries. The self-accelerating branch does not give a viable model, it causes too much acceleration. We derive the Hubble function and the luminosity distance for the self-decelerating branch, and then fit a compilation of 192 SNeIa magnitudes and redshifts in the space of the three parameters of the model. Our model with the self-decelerating branch fits the supernova data as successfully as does the $\\Lambda CDM$ model, and with only one additional parameter. In contrast to the $\\Lambda CDM$ model, this model needs no fine-tuning, and it can explain the coincidence problem. It is unique in the sense that it cannot be reduced to a cosmological constant model in any other limit of the parameter space than in the distant future. If later tests with other cosmological data are successful, we have here a first indication that we live in a five-dimensional braneworld.

M. Roos

2007-07-13T23:59:59.000Z

426

Avoiding Boltzmann Brain domination in holographic dark energy models  

E-Print Network [OSTI]

In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter) regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB). It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a parameter $c$, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural $c = 1$ line, the theory is rendered BB-safe. In the later case, the bound on $c$ is exponentially stronger, and seemingly at odds with those bounds on $c$ obtained from various observational tests.

R. Horvat

2015-02-23T23:59:59.000Z

427

Avoiding Boltzmann Brain domination in holographic dark energy models  

E-Print Network [OSTI]

In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter) regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB). It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a parameter $c$, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural $c = 1$ line, the theory is rendered BB-safe. In the later case, the bound on $c$ is exponentially stronger, and seemingly at odds with those bounds on $c$ obtained from various observational tests.

Horvat, R

2015-01-01T23:59:59.000Z

428

Characterizing emerging industrial technologies in energy models  

SciTech Connect (OSTI)

Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

Laitner, John A. (Skip); Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-07-29T23:59:59.000Z

429

Brophy Occurrence Models | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHISBrickyard EnergyBrockwayBrophy Occurrence Models

430

Dynamical vacuum energy in the expanding Universe confronted with observations: a dedicated study  

E-Print Network [OSTI]

Despite the many efforts, our theoretical understanding of the ultimate nature of the dark energy component of the universe still lags well behind the astounding experimental evidence achieved from the increasingly sophisticated observational tools at our disposal. While the canonical possibility is a strict cosmological constant, or rigid vacuum energy density $\\rho_{\\Lambda}=$const., the exceeding simplicity of this possibility lies also at the root of its unconvincing theoretical status, as there is no explanation for the existence of such constant for the entire cosmic history. Herein we explore general models of the vacuum energy density slowly evolving with the Hubble function $H$ and/or its time derivative, $\\rho_{\\Lambda}(H,\\dot{H})$. Some of these models are actually well-motivated from the theoretical point of view and may provide a rich phenomenology that could be explored in future observations, whereas some others have more limitations. In this work, we put them to the test and elucidate which ones are still compatible with the present observations and which ones are already ruled out. We consider their implications on structure formation, in combination with data on type Ia supernovae, the Cosmic Microwave Background, the Baryonic Acoustic Oscillations, and the predicted redshift distribution of cluster-size collapsed structures. The relation of these vacuum models on possible evidence of dynamical dark energy recently pointed out in the literature is also briefly addressed.

Adria Gomez-Valent; Joan Sola; Spyros Basilakos

2014-11-27T23:59:59.000Z

431

Reconstruction of $f(G)$ Gravity with New Agegraphic Dark Energy Model  

E-Print Network [OSTI]

In this work, we consider the reconstruction scenario of new agegraphic dark energy (NADE) model and $f(G)$ theory of gravity with $G$ representing the Gauss-Bonnet invariant in the flat FRW spacetime. In this context, we assume a solution of the scale factor in power-law form and study the correspondence scenario. A new agegraphic $f(G)$ model is constructed and discussed graphically for the evolution of the universe. Using this model, we investigate the different eras of the expanding universe and stability with the help of the equation of state (EoS) parameter $\\omega_{eff}$ and squared speed of sound $v_s^2$, respectively. It is mentioned here that the reconstructed model represents the quintessence era of the accelerated expansion of the universe with instability. Moreover, the statefinder trajectories are studied and we find out that the model is not capable of reaching the $\\Lambda$CDM phase of the universe.

Abdul Jawad; Surajit Chattopadhyay; Antonio Pasqua

2014-04-28T23:59:59.000Z

432

UNIVERSITY OF CALIFORNIA, TeV Energy Spectra of the Crab Nebula, Mrk 421 and  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA, IRVINE TeV Energy Spectra of the Crab Nebula, Mrk 421 and the Cygnus . . . . . . . . . . . . . . . . . . . . 2 i Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 ii The Search for the Origin with Milagro . . . . . . . . . . . . . . . . . . . . . 69 IVThe Milagro Energy Reconstruction Algorithm 73 I

California at Santa Cruz, University of

433

UNIVERSITY OF CALIFORNIA, SAN DIEGO Configurable Energy-efficient Co-processors to Scale the  

E-Print Network [OSTI]

UNIVERSITY OF CALIFORNIA, SAN DIEGO Configurable Energy-efficient Co-processors to Scale . . . . . . . . . . . . . . . . 18 Chapter 3 Patchable Conservation Cores: Energy-efficient circuits with processor-like lifetimes

434

New Models of Public Ownership in Energy  

E-Print Network [OSTI]

in Energy1 Aoife Brophy Haney and Michael G. Pollitt ESRC Electricity Policy Research Group and Judge Business School University of Cambridge 24 September 2010 1. Background and current challenges facing the power sector This paper discusses... of successful reform (e.g. UK, Nordic countries, Chile and Argentina)3 but there are notable reforms which have stalled (e.g. in many US states, including California, and in South Africa, Turkey and Ukraine) and many others of slow progress (e.g. in most...

Haney, Aoife Brophy; Pollitt, Michael G.

435

Energy Research at UC Santa Barbara Energy is one of the most important challenges of the century. Energy research at the University of  

E-Print Network [OSTI]

Energy Research at UC Santa Barbara Energy is one of the most important challenges of the century. Energy research at the University of California Santa Barbara (UC Santa Barbara) is largely focused on developing new technologies that increase energy efficiency, thereby reducing energy consumption. UC Santa

Akhmedov, Azer

436

Gauss Bonnet dark energy Chaplygin Gas Model  

E-Print Network [OSTI]

In this work we incorporate GB dark energy density and its modification, MGB, with Chaplygin gas component. We show that, presence of Chaplygin gas provides us a feature to obtain an exact solution for scalar field and potential of scalar field. Investigation on squared of sound speed provides a lower limit for constant parameters of MGB model. Also, we could find some bounds for free parameters of model.

Karimkhani, Elahe; Khodam-Mohammadi, Abdolhossein

2015-01-01T23:59:59.000Z

437

A MINIMAL MODEL OF ENERGY MANAGEMENT IN THE BRAIN  

E-Print Network [OSTI]

a minimal model of energy management inside a single cortical area, featuring local energy storage a simple model for energy man- agement within a single cortical area. By energy management, we mean a setA MINIMAL MODEL OF ENERGY MANAGEMENT IN THE BRAIN Florian A. Dehmelt, Christian K. Machens Group

Paris-Sud XI, Universit de

438

Sandia National Laboratories: Analysis, Modeling, Cost of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramsAnalysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 The "20% Wind Energy by...

439

Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)  

ScienceCinema (OSTI)

The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.

Linder, Eric

2011-04-28T23:59:59.000Z

440

Multi-University Research to Advance Discovery Fusion Energy Science using a  

E-Print Network [OSTI]

Dept of Applied Physics and Applied Math, Columbia University, New York, NY Plasma Science and FusionMulti-University Research to Advance Discovery Fusion Energy Science using a Superconducting Center, MIT, Cambridge, MA Outline · Intermediate scale discovery fusion energy science needs support

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Quantification of model mismatch errors of the dynamic energy distribution in a stirred-tank reactor  

E-Print Network [OSTI]

QUANTIFICATION OF MODEL MISMATCH ERRORS OF THE DYNAMIC ENERGY DISTRIBUTION IN A STIRRED- TANK REACTOR A Thesis by MARK RAYMOND KIMMICH Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 198i Major Subject: Chemical Engineering QUANTIFICATION OF MODEL MISMATCH ERRORS OF THE DYNAMIC ENERGY DISTRIBUTION IN A STIRRED-TANK REACTOR A Thesis by MARK RAYMOND KIMMICH Approved as to style and content by...

Kimmich, Mark Raymond

1987-01-01T23:59:59.000Z

442

Approximations to the Distributed Activation Energy Model  

E-Print Network [OSTI]

), used for the pyrolysis of a range of materials (including coal, biomass, residual oils and kerogen applies to the pyrolysis of other materials, including biomass, residual oils, resin chars [1Approximations to the Distributed Activation Energy Model for Pyrolysis C.P. Please, 1 M.J. Mc

McGuinness, Mark

443

Energy policy modeling: United States and Canadian experiences. Volume II. Integrative energy policy models  

SciTech Connect (OSTI)

The Canadian Energy Policy Modeling Conference, held in North Vancouver, May 18-20, 1978, was organized to assess the state of the art in energy modeling in North America. A major aim of the conference was to determine the extent to which energy modeling had and could make a contribution to the energy-policy decision-making process. Two volumes contain revised and updated versions of the major papers presented at the conference plus edited transcripts of the panel discussions and several additional papers aimed at particular topics deemed worthy of further study. For this volume, Vol. II, a separate abstract was prepared for each of 17 papers, 2 panel discussions, and three session-introduction commentaries for Energy Abstracts for Policy Analysis (EAPA); 7 abstracts will appear in Energy Research Abstracts (ERA).

Ziemba, W.T.; Schwartz, S.L. (eds.)

1980-01-01T23:59:59.000Z

444

Viscous FRW model with particle creation in the early universe  

E-Print Network [OSTI]

We discuss the dynamical effects of bulk viscosity and particle creation on the early evolution of the Friedmann -Robertson -Walker model in the framework of open thermodynamical systems. We consider bulk viscosity and Particle creation as separate irreversible processes. Exact solutions of the Einstein field equations are obtained by using the "gamma-law" equation of state $p=(\\gamma -1)\\rho$, where the adiabatic parameter $\\gamma$ varies with scale factor of the metric. We consider the cosmological model to study the early phases of the evolution of the universe as it goes from an inflationary phase to a radiation -dominated era in the presence of bulk viscosity and particle creation. Analytical solutions are obtained for particle number density and entropy for all models. It is seen that, by choosing appropriate functions for particle creation rate and bulk viscous coefficient, the models exhibit singular and non-singular beginnings.

C. P. Singh

2012-04-09T23:59:59.000Z

445

Towards a Model of Systemic Change in University STEM Education  

E-Print Network [OSTI]

Despite numerous calls for the transformation of undergraduate STEM education, there is still a lack of successful models for creating large-scale, systemic cultural changes in STEM departments. To date, change efforts have generally focused on one of three areas: developing reflective teachers, disseminating curricula and pedagogy, or enacting institutional policy. These efforts illustrate many of the challenges of departmental change; in particular, they highlight the need for a holistic approach that integrates across all three of these levels: individual faculty, whole departments, and university policymakers. To address these challenges, as part of our campus-wide AAU-sponsored effort in STEM education transformation, we import and integrate models of change from multiple perspectives. We draw from models in organizational change, from departmental and disciplinary change in STEM education, and from efforts to support individual efforts such as the development and dissemination model. As a result, our de...

Reinholz, Daniel L; Dancy, Melissa H; Finkelstein, Noah; Deetz, Stanley

2014-01-01T23:59:59.000Z

446

Modelling the Nonlinear Gravitational Clustering in the Expanding Universe  

E-Print Network [OSTI]

The gravitational clustering of collisionless particles in an expanding universe is modelled using some simple physical ideas. I show that it is indeed possible to understand the nonlinear clustering in terms of three well defined regimes: (1) linear regime (2) quasilinear regime which is dominated by scale-invariant radial infall and (3) nonlinear regime dominated by nonradial motions and mergers. Modelling each of these regimes separately I show how the nonlinear two point correlation function can be related to the linear correlation function in heirarchical models. This analysis leads to results which are in good agreement with numerical simulations thereby providing an explanation for numerical results. The ideas presented here will also serve as a powerful anlytical tool to investigate nonlinear clustering in different models. Several implications of the result are discussed.

T. Padmanabhan

1995-08-26T23:59:59.000Z

447

Renewable Energy in Central & Eastern Europe Vienna University of Technology I Energiepark Bruck/Leitha  

E-Print Network [OSTI]

Renewable Energy in Central & Eastern Europe CONTINUING EDUCATION CENTER Vienna University on the consumption of energy. However, this system is currently not sustainable. Renewable energy sources as well. The objective of the postgraduate MSc Program "Renewable Energy in Central & Eastern Europe" is, to contribute

Szmolyan, Peter

448

Solar Energy Research at the Australian National University A.W. Blakers  

E-Print Network [OSTI]

Solar Energy Research at the Australian National University A.W. Blakers Centre for Sustainable in the areas of photovoltaics and solar thermal energy. 1. INTRODUCTION The Centre for Sustainable Energy in photovoltaics and solar thermal energy. The Centre currently has 33 staff and 8 PhD students and an annual

449

ReseaRch at the University of Maryland Innovating Energy Storage at the Nanoscale  

E-Print Network [OSTI]

ReseaRch at the University of Maryland Innovating Energy Storage at the Nanoscale Growing demands for energy, particularly renewable energy, require not only new sources but new methods of storage tests newly created nanostructures for their energy storage capacities. His work in micro

Hill, Wendell T.

450

CLEMSON UNIVERSITY'S COMMITMENT TO GREEN ECONOMIC DEVELOPMENT WHITE PAPER ON CLEAN ENERGY  

E-Print Network [OSTI]

. A subsequent summit on renewable energy focused on South Carolina's "Job Opportunities in the Green EconomyCLEMSON UNIVERSITY'S COMMITMENT TO GREEN ECONOMIC DEVELOPMENT WHITE PAPER ON CLEAN ENERGY: Clemson of the 21st century for South Carolina and the nation -- energy. Energy is interwoven with the nation

Stuart, Steven J.

451

Center for Energy Sustainability The San Diego State University Center for Energy Sustainability, located in the heart of  

E-Print Network [OSTI]

1 Center for Energy Sustainability Mission The San Diego State University Center for Energy Sustainability, located in the heart of California's Imperial Valley, America's epicenter, and to seize this opportunity, we are establishing the Center for Energy Sustainability (CES) on SDSU's Brawley

Ponce, V. Miguel

452

Department of Energy Announces $39 Million to Strengthen University...  

Broader source: Energy.gov (indexed) [DOE]

51 Projects Aim to Cut Carbon Pollution, Create Clean Energy Jobs and Strengthen America's Nuclear Energy Industry Washington, D.C. - The Department of Energy today announced that...

453

Experimental High Energy Physics Brandeis University Final Report  

SciTech Connect (OSTI)

During the past three years, the Brandeis experimental particle physics group was comprised of four faculty (Bensinger, Blocker, Sciolla, and Wellenstein), one research scientist, one post doc, and ten graduate students. The group focused on the ATLAS experiment at LHC. In 2011, the LHC delivered 5/fb of pp colliding beam data at a center-of-mass energy of 7 TeV. In 2012, the center-of-mass energy was increased to 8 TeV, and 20/fb were delivered. The Brandeis group focused on two aspects of the ATLAS experiment -- the muon detection system and physics analysis. Since data taking began at the LHC in 2009, our group actively worked on ATLAS physics analysis, with an emphasis on exploiting the new energy regime of the LHC to search for indications of physics beyond the Standard Model. The topics investigated were Z' -> ll, Higgs -> ZZ* -. 4l, lepton flavor violation, muon compositeness, left-right symmetric theories, and a search for Higgs -> ee. The Brandeis group has for many years been a leader in the endcap muon system, making important contributions to every aspect of its design and production. During the past three years, the group continued to work on commissioning the muon detector and alignment system, development of alignment software, and installation of remaining chambers.

Blocker, Craig A. [Brandeis University] [Brandeis University; Bensinger, James [Brandeis University] [Brandeis University; Sciolla, Gabriella [Brandeis University] [Brandeis University; Wellenstein, Hermann [Brandeis University] [Brandeis University

2013-07-26T23:59:59.000Z

454

Overview of the Duke University Bass Connections Program in Industrial Energy Efficiency  

E-Print Network [OSTI]

Overview of the Duke University Bass Connections Program in Industrial Energy Efficiency Gale Boyd, Duke University Presented to the IETC May 21st, 2014 New Orleans, LA ESL-IE-14-05-03 Proceedings of the Thrity-Sixth Industrial Energy Technology... related to the economy, the environment, and security. ESL-IE-14-05-03 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 AY13-14 Project Team List ? The University as an Energy Laboratory: Design...

Boyd, G.

2014-01-01T23:59:59.000Z

455

Universal iso-density polarizable continuum model for molecular solvents  

E-Print Network [OSTI]

Implicit electron-density solvation models based on joint density-functional theory offer a computationally efficient solution to the problem of calculating thermodynamic quantities of solvated systems from first-principles quantum mechanics. However, despite much recent interest in such models, to date the applicability of such models to non-aqueous solvents has been limited because the determination of the model parameters requires fitting to a large database of experimental solvation energies for each new solvent considered. This work presents an alternate approach which allows development of new solvation models for a large class of protic and aprotic solvents from only simple, single-molecule ab initio calculations and readily available bulk thermodynamic data. We find that this model is accurate to nearly 1.7 kcal/mol even for solvents outside our development set.

Gunceler, Deniz

2014-01-01T23:59:59.000Z

456

Modeling supermarket refrigeration energy use and demand  

SciTech Connect (OSTI)

A computer model has been developed that can predict the performance of supermarket refrigeration equipment to within 3% of field test measurements. The Supermarket Refrigeration Energy Use and Demand Model has been used to simulate currently available refrigerants R-12, R-502 and R-22, and is being further developed to address alternative refrigerants. This paper reports that the model is expected to be important in the design, selection and operation of cost-effective, high-efficiency refrigeration systems. It can profile the operation and performance of different types of compressors, condensors, refrigerants and display cases. It can also simulate the effects of store humidity and temperature on display cases; the efficiency of various floating head pressure setpoints, defrost alternatives and subcooling methods; the efficiency and amount of heat reclaim from refrigeration systems; and the influence of other variables such as store lighting and building design. It can also be used to evaluate operational strategies such as variable-speed drive or cylinder unloading for capacity control. Development of the model began in 1986 as part of a major effort, sponsored by the U.S. electric utility industry, to evaluate energy performance of then conventional single compressor and state-of-the-art multiplex refrigeration systems, and to characterize the contribution of a variety of technology enhancement features on system energy use and demand.

Blatt, M.H.; Khattar, M.K. (Electric Power Research Inst., Palo Alto, CA (US)); Walker, D.H. (Foster Miller Inc., Waltham, MA (US))

1991-07-01T23:59:59.000Z

457

Vehicle Model Validation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilities | DepartmentReactive Barrierof|Model

458

A Ten-Year, $7 Million Energy Initiative Marching on: Texas A&M University Campus Energy Systems CC  

E-Print Network [OSTI]

The $35 million in measured savings for the ten-year, $7 million continuous commissioning (CC) program at the Texas A&M University (TAMU) makes the decision to continue easy. In today's energy environment and with the volatilities...

Deng, S.; Claridge, D. E.; Turner, W. D.; Bruner, H. L.; Williams, L.; Riley, J. G.

2006-01-01T23:59:59.000Z

459

Observing and modeling Earths energy flows  

SciTech Connect (OSTI)

This article reviews, from the authors perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within {+-}2 W m{sup -2}. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute importantly to this adjustment and thus contribute both to uncertainty in estimates of radiative forcing and to uncertainty in the response. Models are indispensable to calculation of the adjustment of the system to a compositional change but are known to be flawed in their representation of clouds. Advances in tracking Earth's energy flows and compositional changes on daily through decadal timescales are shown to provide both a critical and constructive framework for advancing model development and evaluation.

Stevens B.; Schwartz S.

2012-05-11T23:59:59.000Z

460

Data Warehouse Model to Support Optimized Operation and Energy Savings in Buildings  

E-Print Network [OSTI]

University College Cork (Ireland) Department of Civil and Environmental Engineering Data Warehouse Model to support Optimized Operation and Energy Savings in Buildings Paul Stack, Brian Cahill, Farhan Manzoor, Prof. Karsten Menzel 20... October 2011 page 1ICEBO 2011 Session 10 - Brian Cahill University College Cork (Ireland) Department of Civil and Environmental Engineering ICT for Optimised Building Operation (ITOBO) 20 October 2011 ICEBO 2011 Session 10 - Brian Cahill page 2...

Stack, P.; Cahill, B.; Manzoor, F.; Menzel, K.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Minimum cost model energy code envelope requirements  

SciTech Connect (OSTI)

This paper describes the analysis underlying development of the U.S. Department of Energy`s proposed revisions of the Council of American Building Officials (CABO) 1993 Model Energy Code (MEC) building thermal envelope requirements for single-family and low-rise multifamily residences. This analysis resulted in revised MEC envelope conservation levels based on an objective methodology that determined the minimum-cost combination of energy efficiency measures (EEMs) for residences in different locations around the United States. The proposed MEC revision resulted from a cost-benefit analysis from the consumer`s perspective. In this analysis, the costs of the EEMs were balanced against the benefit of energy savings. Detailed construction, financial, economic, and fuel cost data were compiled, described in a technical support document, and incorporated in the analysis. A cost minimization analysis was used to compare the present value of the total long-nm costs for several alternative EEMs and to select the EEMs that achieved the lowest cost for each location studied. This cost minimization was performed for 881 cities in the United States, and the results were put into the format used by the MEC. This paper describes the methodology for determining minimum-cost energy efficiency measures for ceilings, walls, windows, and floors and presents the results in the form of proposed revisions to the MEC. The proposed MEC revisions would, on average, increase the stringency of the MEC by about 10%.

Connor, C.C.; Lucas, R.G.; Turchen, S.J.

1994-08-01T23:59:59.000Z

462

The Sustainable Energy Utility (SEU) Model for Energy Service Delivery  

E-Print Network [OSTI]

-oriented focus. Conventional energy suppliers are very capable of marketing and delivering energy products

Delaware, University of

463

Clark Atlanta Universities (CAU) Energy Related Research Capabilities...  

Office of Environmental Management (EM)

Outlook Conference Ronald Reagan Building and International Trade Center HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES GATE Center for Automotive...

464

BUILDING A UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL (UNEDF)  

SciTech Connect (OSTI)

The long-term vision initiated with UNEDF is to arrive at a comprehensive, quantitative, and unified description of nuclei and their reactions, grounded in the fundamental interactions between the constituent nucleons. We seek to replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that delivers maximum predictive power with well-quantified uncertainties. Specifically, the mission of this project has been three-fold: First, to find an optimal energy density functional (EDF) using all our knowledge of the nucleonic Hamiltonian and basic nuclear properties. Second, to apply the EDF theory and its extensions to validate the functional using all the available relevant nuclear structure and reaction data. Third, to apply the validated theory to properties of interest that cannot be measured, in particular the properties needed for reaction theory.

Nazarewicz, Witold

2012-07-01T23:59:59.000Z

465

Scripted Building Energy Modeling and Analysis: Preprint  

SciTech Connect (OSTI)

Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

2012-08-01T23:59:59.000Z

466

Regional Dynamics Model (REDYN) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue Ridge And Piedmont Provinces | Open EnergyDynamics Model

467

High Energy Physics Program at Texas A and M University  

SciTech Connect (OSTI)

The high energy physics program has continued its experimental activities over. In CDF, the Texas A M group has led an effort to design an upgrade for the silicon vertex detector, and is currently working with the rest of the collaboration on the next major data taking run. In MACRO, work was done on the development of the final version of the wave form digitizing system being implemented for the entire scintillator system. This work is nearing completion, and the system is expected to be up and running on the detector by summer 1993. Work was done within the SDC group to develop gas microstrip chambers for use in precision tracking at the SSC, and in the GEM group, toward the development of a suitable forward calorimeter design. The theoretical high energy physics program has continued the study of a very successful string-derived model that unifies all known interactions: flipped SU(5), which is the leading candidate for a TOE. Work has also continued on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two-dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity and W-string theory.

Not Available

1992-11-01T23:59:59.000Z

468

Panel 2, Modeling the Financial and System Benefits of Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems Patrick Balducci, Senior Economist, Pacific NW National Laboratory Hydrogen Energy...

469

Bianchi type-VI anisotropic dark energy model with varying EoS parameter  

E-Print Network [OSTI]

Within the scope of an anisotropic Bianchi type-VI cosmological model we have studied the evolution of the universe filled with perfect fluid and dark energy. To get the deterministic model of Universe, we assume that the shear scalar $(\\sigma)$ in the model is proportional to expansion scalar $(\\vartheta)$. This assumption allows only isotropic distribution of fluid. Exact solution to the corresponding equations are obtained. The EoS parameter for dark energy as well as deceleration parameter is found to be the time varying functions. Using the observational data qualitative picture of the evolution of the universe corresponding to different of its stages is given. The stability of the solutions obtained is also studied.

Bijan Saha

2012-09-26T23:59:59.000Z

470

Evaluating Texas State University Energy Consumption According to Productivity  

E-Print Network [OSTI]

The Energy Utilization Index, energy consumption per square foot of floor area, is the most commonly used index of building energy consumption. However, a building or facility exists solely to support the activities of its occupants. Floor area...

Carnes, D.; Hunn, B. D.; Jones, J. W.

1998-01-01T23:59:59.000Z

471

Nebraska Center for Energy Sciences Research | University of Nebraska Lincoln (402) 4726082 | FAX (402) 4729277 | http://ncesr.unl.edu  

E-Print Network [OSTI]

Kahrobaee Optimum Planning and Operation of Compressed Air Energy Storage with Wind Energy Integration Nebraska Center for Energy Sciences Research | University of Nebraska ­ Lincoln (402 Frameworks for Energy Related Applications Chemistry Andrea Watson Methane Production via Anaerobic

Farritor, Shane

472

Webcast of the Renewable Energy Competency Model: An Aid to Build a Renewable Energy Skilled Workforce  

Broader source: Energy.gov [DOE]

The Department of Energy held a webcast titled "Renewable Energy Competency Model: An Aid to Build a Renewable Energy Skilled Workforce" on Monday, October 22, 2012. The Renewable Energy Competency...

473

Dependence of maximum realizable convective energy on horizontal scale in a one-dimensional entraining jet model  

E-Print Network [OSTI]

DEPENDENCE OF MAXIMUM REALIZABLE CONVECTIVE ENERGY ON HORIZONTAL SCALE IN A ONE ? DIMENSIONAL ENTRAINING JET MODEL A Thesis by DAVID BILLINGS WOLFF Submitted to the Graduate College of Twas A&M University in partial fulfillment... on Horizontal Scale in a One ? Dimensional Entraining Jet Model. (May 1988) David Billings Wolff, B. S. , Texas AkM University Chairman of Advisory Committe: Phanindramohan Das A one dimensional numerical model of convective clouds was implemented in which...

Wolff, David Billings

1988-01-01T23:59:59.000Z

474

Northwestern University Team Wins 2013 National Clean Energy...  

Broader source: Energy.gov (indexed) [DOE]

Announcing the Clean Energy Trust Semifinalists SiNode Systems - Advanced silicon graphene batteries. | Photo courtesy of Sinode Systems. Startup Success: Energy Department...

475

University of Colorado at Boulder Renewable and Sustainable Energy...  

Open Energy Info (EERE)

at Boulder Renewable and Sustainable Energy Institute Jump to: navigation, search Logo: CU-Boulder Renewable and Sustainable Energy Institute Name: CU-Boulder Renewable and...

476

Constraining the gravitational wave energy density of the Universe using Earth's ring  

E-Print Network [OSTI]

The search for gravitational waves is one of today's major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earth's free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earth's structure. Making use of our detailed understanding of Earth's normal modes, numerical models are employed for the first time to accurately calculate Earth's gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density of gravitational waves to values in the range 0.035 - 0.15 normalized by the critical energy density of the Universe at frequencies between 0.3mHz and 5mHz, using 10 years of data from the gravimeter network of the Global Geodynamics Project that continuously monitors Earth's oscillations. This work is the first step towards a systematic investigation of the sensitivity of gravimeter networks to gravitational waves. Further advance in gravimeter technology could improve sensitivity of these networks and possibly lead to gravitational-wave detection.

Michael Coughlin; Jan Harms

2014-06-04T23:59:59.000Z

477

EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project  

Broader source: Energy.gov [DOE]

The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delawares Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been constructed.

478

Energy Dependence of Energy Partition in Products of Direct Reactions: Crossed?Beam Studies and a New Model  

E-Print Network [OSTI]

and R. E. Merrifield (unpublished). Energy Dependence of Energy Partition in Products of Direct Reactions: Crossed Beam Studies and aNew Model P. HIERL, Z. HERMAN,* J. KERSTETTER, AND R. WOLFGANG Department of Chemistry, Yale University, New Haven.... (If position of maximum intensity in c.m. system were plotted, a somewhat higher intercept Qo would result.) modes of the products, and on the dependence of this on initial kinetic energy. Results on the systems Ar++D~ArD++D, and Ar...

Hierl, Peter M.; Herman, Z.; Kerstetter, J.; Wolfgang, R.

1968-01-01T23:59:59.000Z

479

UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Energy Storage Technologies For the University of  

E-Print Network [OSTI]

Into Energy Storage Technologies For the University of British Columbia's New Student Union Building Travis of a project/report". #12;AN INVESTIGATION INTO ENERGY STORAGE TECHNOLOGIES FOR THE UNIVERSITY OF BRITISH #12;ii ABSTRACT "An Investigation into Energy Storage Technologies for the University of British

480

Solar Energy in Inland Southern California: The Future is Now The University of California, Riverside  

E-Print Network [OSTI]

Agenda Solar Energy in Inland Southern California: The Future is Now The University of California Southern California Research Initiative for Solar Energy February 6th 2014, 7:30 am - 6:00 pm and the general public to learn about the state of solar energy by discussing the latest technology, public policy

California at Riverside, University of

Note: This page contains sample records for the topic "university energy modeling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Zero Net Energy Myths and Modes of Thought Nicholas B. Rajkovich, University of Michigan  

E-Print Network [OSTI]

commissions (such as in California, Oregon, and Washington) and energy offices (such as the New York StateZero Net Energy Myths and Modes of Thought Nicholas B. Rajkovich, University of Michigan Rick Diamond, Lawrence Berkeley National Laboratory and Bill Burke1 ABSTRACT The U.S. Department of Energy (DOE

Diamond, Richard

482

STYRIAN ACADEMY for Sustainable Energies | http://styrianacademy.eu Graz University of Technology  

E-Print Network [OSTI]

STYRIAN ACADEMY for Sustainable Energies | http://styrianacademy.eu Graz University of Technology sustainable energy systems. The STYRIAN ACADEMY taps into the know how of top-class scientists and entrepreneurs from the European Sustainable Energy Innovation Alliance (eseia) (www.eseia.eu). The 2011 STYRIAN

483

University of Hawai`i Watt Watcher: Energy Consumption Data Analysis  

E-Print Network [OSTI]

University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Interim Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under of the United States Government. Neither the United States Government nor any agency thereof, nor any

484

University of Hawai`i Watt Watcher: Energy Consumption Data Analysis  

E-Print Network [OSTI]

University of Hawai`i Watt Watcher: Energy Consumption Data Analysis Phase I Final Report Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Award No. DE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither

485

Geothermal Energy and the Academic Environment University of British Columbia Okanagan  

E-Print Network [OSTI]

Geothermal Energy and the Academic Environment University of British Columbia Okanagan Undertaken itself and the benefits and negative impacts associated with it. The contribution of geothermal energy with geothermal energy, it has rapidly become the technology of choice for schools when seeking to decrease

486

Mobile Processors for Energy-Efficient Web Search VIJAY JANAPA REDDI, University of Texas at Austin  

E-Print Network [OSTI]

9 Mobile Processors for Energy-Efficient Web Search VIJAY JANAPA REDDI, University of Texas computational intensity. While mobile processors are energy-efficient, they exact a price for that efficiency. The Atom is 5 more energy-efficient than the Xeon when comparing queries per Joule. However, search

Lee, Benjamin C.

487

University of California, Berkeley Fall 2012 Energy and Resources Group (ERG) & Goldman School of Public Policy  

E-Print Network [OSTI]

energy mix? · Could fuel cells or the hydrogen economy cause a revolution in the automotive industryUniversity of California, Berkeley Fall 2012 Energy and Resources Group (ERG) & Goldman School of Public Policy ER 100 / 200 and Pub Pol C184 / C284 Energy and Society Professor Daniel Kammen 326 Barrows

Kammen, Daniel M.

488

University of California, Berkeley Fall 2014 Energy and Resources Group (ERG) & Goldman School of Public Policy  

E-Print Network [OSTI]

is the role of nuclear power in our present and future energy mix? · Could fuel cells or the hydrogen economyUniversity of California, Berkeley Fall 2014 Energy and Resources Group (ERG) & Goldman School of Public Policy ER 100 / 200 and Pub Pol C184 / C284 Energy and Society Professor Daniel Kammen 326 Barrows

Kammen, Daniel M.

489

University of California, Berkeley Fall 2013 Energy and Resources Group (ERG) & Goldman School of Public Policy  

E-Print Network [OSTI]

present and future energy mix? · Could hydrogen fuel cells or electric vehicles cause a revolutionUniversity of California, Berkeley Fall 2013 Energy and Resources Group (ERG) & Goldman School of Public Policy ER 100 / 200 and Pub Pol C184 / C284 Energy and Society Professor Daniel Kammen 326 Barrows

Kammen, Daniel M.

490

Center for Energy Commerce Rawls College of Business -Texas Tech University  

E-Print Network [OSTI]

Curriculum Center for Energy Commerce Rawls College of Business - Texas Tech University Box 42101 REQUIRED COURSES Energy Industry Fundamentals Petroleum Land Management Oil & Gas Agreements Natural Gas Transportation & Marketing Oil & Gas Law I Oil & Gas Law II U.S. Energy Policy & Regulation Survey

Westfall, Peter H.

491

University of Maryland NSF-MRSEC Highlight: Coaxial Nanostructures for Energy Storage  

E-Print Network [OSTI]

University of Maryland NSF-MRSEC Highlight: Coaxial Nanostructures for Energy Storage P. Banerjee deposition storage than the best of today's devices, meeting the growing need for storing energy derived from generation Mn in MnO2 of devices for storing electrical energy that function as supercapacitors and batteries

Rubloff, Gary W.

492

Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications  

E-Print Network [OSTI]

Helsinki University of Technology Department of Mechanical Engineering Energy Engineering (CD) WASTE: OPTIONS FOR RECOVERY OF MATERIALS AND ENERGY Final report for study funded by Ekokem Oy Ab (CD) waste: options for recovery of materials and energy Ron Zevenhoven, Loay Saeed Final report

Zevenhoven, Ron

493

U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2011 NEW ZEALAND VICTORIA UNIVERSITY OF WELLINGTON  

E-Print Network [OSTI]

U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2011 NEW ZEALAND ­ VICTORIA UNIVERSITY OF WELLINGTON #12 of Energy Solar Decathlon. Led by students from the School of Architecture, our team comprises students from into the mountains. #12;4 5 SOLAR CONTROL DESIGN FEATURES The First Light house is a net zero energy dwelling

Frean, Marcus

494

Characterizing emerging industrial technologies in energy models  

E-Print Network [OSTI]

EIA), 2001. Annual Energy Outlook 2002, Energy Informationas forecasted in the Annual Energy Outlook 2002, we estimateQuads based on the Annual Energy Outlook 2002 (AEO 2002) (

Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-01-01T23:59:59.000Z

495

Reconstructing generalized ghost condensate model with dynamical dark energy parametrizations and observational datasets  

E-Print Network [OSTI]

Observations of high-redshift supernovae indicate that the universe is accelerating at the present stage, and we refer to the cause for this cosmic acceleration as ``dark energy''. In particular, the analysis of current data of type Ia supernovae (SNIa), cosmic large-scale structure (LSS), and the cosmic microwave background (CMB) anisotropy implies that, with some possibility, the equation-of-state parameter of dark energy may cross the cosmological-constant boundary ($w=-1$) during the recent evolution stage. The model of ``quintom'' has been proposed to describe this $w=-1$ crossing behavior for dark energy. As a single-real-scalar-field model of dark energy, the generalized ghost condensate model provides us with a successful mechanism for realizing the quintom-like behavior. In this paper, we reconstruct the generalized ghost condensate model in the light of three forms of parametrization for dynamical dark energy, with the best-fit results of up-to-date observational data.

Jingfei Zhang; Xin Zhang; Hongya Liu

2007-03-21T23:59:59.000Z

496

Conference on Transportation, Economics, Energy and the Environment (TE3 Hosted by the University of Michigan Energy Institute (UMEI)  

E-Print Network [OSTI]

) Gabriel E. Lade (UC Davis), C.-Y. Cynthia Lin (UC Davis), and Aaron Smith (UC Davis) "The Effect of PolicyConference on Transportation, Economics, Energy and the Environment (TE3 ) Hosted by the University of Michigan Energy Institute (UMEI) Rackham Amphitheatre, Ann Arbor, Michigan -- Friday, 3 October 2014 8

Daly, Samantha

497

Review of Wind Energy Forecasting Methods for Modeling Ramping Events  

SciTech Connect (OSTI)

Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

2011-03-28T23:59:59.000Z

498

NREL's System Advisor Model Simplifies Complex Energy Analysis...  

Office of Scientific and Technical Information (OSTI)

NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet) Re-direct Destination: NREL has developed a tool -- the System Advisor Model (SAM) -- that can help...

499

High energy physics program at Texas A and M University  

SciTech Connect (OSTI)

The Texas A M experimental high energy physics program continued to reach significant milestones in each of its research initiatives during the course of the past year. We are participating in two major operating experiments, CDF and MACRO. In CDF, the Texas A M group has spearheaded the test beam program to recalibrate the Forward Hadron Calorimeter for the upcoming CDF data run, as well as contributing to the ongoing analysis work on jets and b-quarks. In MACRO, we have assisted in the development of the final version of the wave form digitizing system being implemented for the entire scintillator system. The construction of the first six supermodules of the detector has been completed and all six are currently taking data with streamer chambers while four have the completed scintillator counter system up and running. We have built and tested prototypes of a liquid-scintillator fiber calorimeter system, in which internally reflecting channels are imbedded in a lead matrix and filled with liquid scintillator. This approach combines the performance features of fiber calorimetry and the radiation hardness of liquid scintillator, and is being developed for forward calorimetry at the SSC. The microstrip chamber is a new technology for precision track chambers that offers the performance required for future hadron colliders. The theoretical high energy physics program has continued to develop during the past funding cycle. We have continued the study of their very successful string-derived model that unifies all known interactions; flipped SU(5), which is the leading candidate for a TOE. Work has continued on some generalizations of the symmetries of string theory, known as W algebras. These are expected to have applications in two-dimensional conformal field theory, two-dimensional extensions of gravity and topological gravity and W-string theory.

Not Available

1991-10-01T23:59:59.000Z

500

Line--energy Ginzburg--Landau models: zero--energy states  

E-Print Network [OSTI]

Line--energy Ginzburg--Landau models: zero--energy states Pierre­Emmanuel Jabin*, email: jabin; 1 Introduction Line--energy Ginzburg--Landau models arise in many physical situations like smectic (see F. B'ethuel, H. Br'ezis and F. H'elein [3]). 1.1 The models Two examples of line--energy Ginzburg

Otto, Felix