National Library of Energy BETA

Sample records for university dry hole

  1. Will black holes eventually engulf the universe?

    E-Print Network [OSTI]

    Prado Martin-Moruno; Jose A. Jimenez Madrid; Pedro F. Gonzalez-Diaz

    2006-03-28

    The Babichev-Dokuchaev-Eroshenko model for the accretion of dark energy onto black holes has been extended to deal with black holes with non-static metrics. The possibility that for an asymptotic observer a black hole with large mass will rapidly increase and eventually engulf the Universe at a finite time in the future has been studied by using reasonable values for astronomical parameters. It is concluded that such a phenomenon is forbidden for all black holes in quintessential cosmological models.

  2. Is the Universe a White-Hole?

    E-Print Network [OSTI]

    Marcelo Samuel Berman

    2008-08-06

    Pathria(1972) has shown, for a pressureless closed Universe, that it is inside a black (or white) hole. We show now, that the Universe with a cosmic pressure obeying Einstein's field equations, can be inside a white-hole. In the closed case, a positive cosmological constant does the job; for the flat and open cases, the condition we find is not verified for the very early Universe, but with the growth of the scale-factor, the condition will be certainly fulfilled for a positive cosmological constant, after some time. We associate the absolute temperature of the Universe, with the temperature of the corresponding white-hole.

  3. Can Superconducting Cosmic Strings Piercing Seed Black Holes Generate Supermassive Black Holes in the Early Universe?

    E-Print Network [OSTI]

    Lake, Matthew J

    2015-01-01

    The discovery of a large number of supermassive black holes at redshifts $z> 6$, when the Universe was only nine hundred million years old, has raised the fundamental question of how such massive compact objects could form in a (cosmologically) short time interval. Each of the proposed standard scenarios for black hole formation, involving rapid accretion of seed black holes, or black hole mergers, faces severe theoretical difficulties in explaining the short time formation of supermassive objects. In the present Letter, we propose an alternative scenario for the formation of supermassive black holes in the early Universe in which energy transfer from superconducting cosmic strings, piercing small seed black holes, is the main physical process leading to rapid mass increase. The increase in mass of a primordial seed black hole pierced by two antipodal strings is estimated and it is shown that this increases linearly in time. Due to the high energy transfer rate from the cosmic strings, we find that supermassi...

  4. Is the Universe the only existing Black Hole?

    E-Print Network [OSTI]

    Andrea Gregori

    2010-06-30

    We investigate the physics of black holes in the light of the quantum theoretical framework proposed in [1]. It is argued that black holes are completely non-local objects, and that the only one which really exists is the universe itself.

  5. Energy Distribution of a Schwarzschild Black Hole in a Magnetic Universe

    E-Print Network [OSTI]

    Irina Radinschi

    2000-10-25

    We obtain the energy distribution of a Schwarzschild black hole in a magnetic universe in the Tolman prescription.

  6. Mass transfer during drying of colloidal film beneath a patterned mask that contains a hexagonal array of holes

    E-Print Network [OSTI]

    Tarasevich, Yuri Yu

    2015-01-01

    We simulated an experiment in which a thin colloidal sessile droplet is allowed to dry out on a horizontal hydrophilic surface when a mask just above the droplet predominantly allows evaporation from the droplet free surface directly beneath the holes in the mask [Harris D J, Hu H, Conrad J C and Lewis J A 2007 \\textit{Phys. Rev. Lett.} \\textbf{98} 148301]. We considered one particular case when centre-to-centre spacing between the holes is much less than the drop diameter. In our model, advection, diffusion, and sedimentation were taken into account. FlexPDE was utilized to solve an advection-diffusion equation using the finite element method. The simulation demonstrated that the colloidal particles accumulate below the holes as the solvent evaporates. Diffusion can reduce this accumulation.

  7. WASHINGTON STATE UNIVERSITY -VANCOUVER Analysis of Hand Drying

    E-Print Network [OSTI]

    , electricity is both inexpensive and low in CO2 output. One dry releases .406 g CO2 at a cost of $.00116 to a zero footprint reality. Carbon dioxide is considered a greenhouse gas. Reduction in CO2 creation is a key metric for LEED certifications and is environmentally beneficial. CO2 has been shown to affect our

  8. Black Hole, Jet, and Disk: The Universal Engine

    E-Print Network [OSTI]

    Heino Falcke

    1995-12-14

    In this paper I review the results of our ongoing project to investigate the coupling between accretion disk and radio jet in galactic nuclei and stellar mass black holes. We find a good correlation between the UV bump luminosity and the radio luminosities of AGN, which improves upon the usual [OIII]/radio correlations. Taking mass and energy conservation in the jet/disk system into account we can successfully model the correlation for radio-loud and radio-weak quasars. We find that jets are comparable in power to the accretion disk luminosity, and the difference between radio-loud and radio-weak may correspond to two natural stages of the relativistic electron distribution -- assuming that radio weak quasars have jets as well. The distribution of flat- and steep-spectrum sources is explained by bulk Lorentz factors gamma_j ~ 5-10. The absence of radio-loud quasars below a critical optical luminosity coincides with the FR I/FR II break and could be explained by a powerdependent, ``closing'' torus. This points towards a different type of obscuring torus in radio-loud host galaxies which might be a consequence of past mergers (e.g. by the temporary formation of a binary black-hole). Interaction of the jet with the closing torus might in principle also help to make a jet radio-loud. Turning to stellar-mass black holes we find that galactic jet sources can be described with the same coupled jet/disk model as AGN which is suggestive of some kind of universal coupling between jet and accretion disk around compact objects.

  9. The Behavior of a Spherical Hole in an Infinite Uniform Universe

    E-Print Network [OSTI]

    Gilbert N. Lewis

    1994-05-31

    In this paper, the behavior of a spherical hole in an otherwise infinite and uniform universe is investigated. First, the Newtonian theory is developed. The concept of negative gravity, an outward gravitational force acting away from the center of the spherical hole, is presented, and the resulting expansion of the hole is investigated. Then, the same result is derived using the techniques of Einstein's theory of general relativity. The field equations are solved for an infinite uniform universe and then for an infinite universe in which matter is uniformly distributed except for a spherical hole. Negative pressure caused by negative gravity is utilized. The physical significance of the cosmological constant is explained, and a new physical concept, that of the gravitational potential of a hole, is discussed. The relationship between the Newtonian potential for a hole and the Schwarzschild solution of the field equations is explored. Finally, the geodesic equations are considered. It is shown that photons and particles are deflected away from the hole. An application of this idea is pursued, in which a new cosmology based upon expanding holes in a uniform universe is developed. The microwave background radiation and Hubble's Law, among others, are explained. Finally, current astronomical data are used to compute a remarkably accurate value of Hubble's constant, as well as estimates of the average mass density of the universe and the cosmological constant.

  10. The Black Hole Particle Accelerator as a Machine to make Baby Universes

    E-Print Network [OSTI]

    Hamilton, A J S

    2013-01-01

    General relativity predicts that the inner horizon of an astronomically realistic rotating black hole is subject to the mass inflation instability. The inflationary instability acts like a gravity-powered particle accelerator of extraordinary power, accelerating accreted streams of particles along the principal outgoing and ingoing null directions at the inner horizon to collision energies that would, if nothing intervened, typically exceed exponentially the Planck energy. The inflationary instability is fueled by ongoing accretion, and is occurring inevitably in essentially every black hole in our Universe. This extravagant machine, the Black Hole Particle Accelerator, has the hallmarks of a device to make baby universes. Since collisions are most numerous inside supermassive black holes, reproductive efficiency requires our Universe to make supermassive black holes efficiently, as is observed.

  11. The Black Hole Particle Accelerator as a Machine to make Baby Universes

    E-Print Network [OSTI]

    A. J. S. Hamilton

    2013-05-20

    General relativity predicts that the inner horizon of an astronomically realistic rotating black hole is subject to the mass inflation instability. The inflationary instability acts like a gravity-powered particle accelerator of extraordinary power, accelerating accreted streams of particles along the principal outgoing and ingoing null directions at the inner horizon to collision energies that would, if nothing intervened, typically exceed exponentially the Planck energy. The inflationary instability is fueled by ongoing accretion, and is occurring inevitably in essentially every black hole in our Universe. This extravagant machine, the Black Hole Particle Accelerator, has the hallmarks of a device to make baby universes. Since collisions are most numerous inside supermassive black holes, reproductive efficiency requires our Universe to make supermassive black holes efficiently, as is observed.

  12. Dynamical interactions and the black-hole merger rate of the Universe

    SciTech Connect (OSTI)

    O'Leary, Ryan M.; O'Shaughnessy, Richard; Rasio, Frederic A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Northwestern University, Department of Physics and Astronomy, 2132 Tech Drive, Evanston, Illinois 60208 (United States)

    2007-09-15

    Binary black holes can form efficiently in dense young stellar clusters, such as the progenitors of globular clusters, via a combination of gravitational segregation and cluster evaporation. We use simple analytic arguments supported by detailed N-body simulations to determine how frequently black holes born in a single stellar cluster should form binaries, be ejected from the cluster, and merge through the emission of gravitational radiation. We then convolve this 'transfer function' relating cluster formation to black-hole mergers with (i) the distribution of observed cluster masses and (ii) the star formation history of the Universe, assuming that a significant fraction g{sub cl} of star formation occurs in clusters and that a significant fraction g{sub evap} of clusters undergo this segregation and evaporation process. We predict future ground-based gravitational wave detectors could observe {approx}500(g{sub cl}/0.5)(g{sub evap}/0.1) double black-hole mergers per year, and the presently operating LIGO interferometer would have a chance (50%) at detecting a merger during its first full year of science data. More realistically, advanced LIGO and similar next-generation gravitational wave observatories provide unique opportunities to constrain otherwise inaccessible properties of clusters formed in the early Universe.

  13. The case for the Universe to be a quantum black hole

    E-Print Network [OSTI]

    Antonio Alfonso-Faus

    2009-12-05

    We present a necessary and sufficient condition for an object of any mass m to be a quantum black hole (q.b.h.): The product of the cosmological constant lambda and the Planck constant h, lambda and h corresponding to the scale defined by this q.b.h., must be of order one in a certain universal system of units. In this system the numerical values known for lambda are of order one in cosmology and about 10^122 for Planck scale. Proving that in this system the value of the cosmological h is of order one, while the value of h for the Planck scale is about 10^(-122), both scales satisfy the condition to be a q.b.h., i.e. lambda x h of order 1. In this sense the Universe is a q.b.h..We suggest that these objects, being q.b.h., give us the linkage between thermodynamics, quantum mechanics, electromagnetism and general relativity, at least for the scale of a closed Universe and for the Planck scale. A mathematical transformation may refer these scales as corresponding to infinity (our universe) and zero (Planck universe), in a scale relativity sense.

  14. Star formation and cosmic massive black hole formation, a universal process organized by angular momenta

    SciTech Connect (OSTI)

    Colgate, S. A.

    2004-01-01

    It is suggested that star formation is organized following the same principles as we have applied in a recent explanation of galaxy and massive black hole formation. In this scenario angular momentum is randomly distributed by tidal torquing among condensations, Lyman-{alpha} clouds or cores for star formation during the initial non-linear phase of collapse. This angular momentum is characterized by the parameter, {lambda}, the ratio of the angular momentum of the cloud to that of a Keplerian orbit with the same central mass and radius. This parameter is calculated in very many simulations of structure formation of the universe as well as core formation and appears to be universal and independent of any scale. The specific angular momentum during the collapse of every cloud is locally conserved and universally produces a near flat rotation curve M{sub hole, 10{sup 8} M{sub o}, ({sup -}10{sup -3} of the galactic disk mass) or 1 M{sub o} ({sup -}0.03 of the core or of the protostellar disk mass). The inviscid collapse of a protosteller core with the same average {lambda} = 0.05 leads to the formation of a flat rotation curve (protostellar) disk of mass M{sub dsk} {sup -}30 M{sub o} of radius R{sub dsk} {approx_equal} 1100 AU or 5.4 x 10{sup -3} pc. In such a disk {Sigma} {proportional_to} 1/R and reaches the RVI condition at R{sub crit} {approx_equal} 40 AU where M{sub

  15. Regular black hole remnants and graviatoms with de Sitter interior as heavy dark matter candidates probing inhomogeneity of early universe

    E-Print Network [OSTI]

    Dymnikova, Irina

    2015-01-01

    We address the question of regular primordial black holes with de Sitter interior, their remnants and gravitational vacuum solitons G-lumps as heavy dark matter candidates providing signatures for inhomogeneity of early universe, which is severely constrained by the condition that the contribution of these objects in the modern density does not exceed the total density of dark matter. Primordial black holes and their remnants seem to be most elusive among dark matter candidates. However, we reveal a nontrivial property of compact objects with de Sitter interior to induce proton decay or decay of neutrons in neutron stars. The point is that they can form graviatoms, binding electrically charged particles. Their observational signatures as dark matter candidates provide also signatures for inhomogeneity of the early universe. In graviatoms, the cross-section of the induced proton decay is strongly enhanced, what provides the possibility of their experimental searches. We predict proton decay paths induced by gr...

  16. Cryoconite Hole Ecosystems in Antarctic Glacier Ice Brent C. Christner, Montana State University, Department of Land

    E-Print Network [OSTI]

    Christner, Brent C.

    released from the melted glacial ice and attached to deposited airborne particulates provide the biological glacial melting. Cryoconite hole ecosystems exist and thrive under the harsh conditions associated, are warmed by the sun, and melt into the ice producing a cylindrical basin of liquid water. Organisms

  17. Universality of high-energy absorption cross sections for black holes

    SciTech Connect (OSTI)

    Decanini, Yves [Equipe Physique Theorique, SPE, UMR 6134 du CNRS et de l'Universite de Corse, Universite de Corse, Faculte des Sciences, B.P. 52, F-20250 Corte (France); Esposito-Farese, Gilles [GReCO, Institut d'Astrophysique de Paris, UMR 7095 du CNRS et de l'Universite Pierre et Marie Curie-Paris 6, 98bis boulevard Arago, F-75014 Paris (France); Folacci, Antoine [Equipe Physique Theorique, SPE, UMR 6134 du CNRS et de l'Universite de Corse, Universite de Corse, Faculte des Sciences, B.P. 52, F-20250 Corte (France); Centre de Physique Theorique, UMR 6207 du CNRS et des Universites Aix-Marseille 1 et 2 et de l'Universite du Sud Toulon-Var, CNRS-Luminy Case 907, F-13288 Marseille (France)

    2011-02-15

    We consider the absorption problem for a massless scalar field propagating in static and spherically symmetric black holes of arbitrary dimension endowed with a photon sphere. For this wide class of black holes, we show that the fluctuations of the high-energy absorption cross section are totally and very simply described from the properties (dispersion relation and damping) of the waves trapped near the photon sphere and therefore, in the eikonal regime, from the characteristics (orbital period and Lyapunov exponent) of the null unstable geodesics lying on the photon sphere. This is achieved by using Regge pole techniques. They permit us to make an elegant and powerful resummation of the absorption cross section and to extract then all the physical information encoded in the sum over the partial wave contributions. Our analysis induces moreover some consequences concerning Hawking radiation which we briefly report.

  18. UNIVERSAL BEHAVIOR OF X-RAY FLARES FROM BLACK HOLE SYSTEMS

    SciTech Connect (OSTI)

    Wang, F. Y.; Dai, Z. G.; Yi, S. X.; Xi, S. Q. E-mail: dzg@nju.edu.cn

    2015-01-01

    X-ray flares have been discovered in black hole systems such as gamma-ray bursts, the tidal disruption event Swift J1644+57, the supermassive black hole Sagittarius A* at the center of our Galaxy, and some active galactic nuclei. Occurrences of X-ray flares are always accompanied by relativistic jets. However, it is still unknown whether or not there is a physical analogy among such X-ray flares produced in black hole systems spanning nine orders of magnitude in mass. Here, we report observed data of X-ray flares and show that they have three statistical properties similar to solar flares, including power-law distributions of their energies, durations, and waiting times, which can be explained by a fractal-diffusive, self-organized criticality model. These statistical similarities, together with the fact that solar flares are triggered by a magnetic reconnection process, suggest that all of the X-ray flares are consistent with magnetic reconnection events, implying that their concomitant relativistic jets may be magnetically dominated.

  19. Black Holes In Astronomy Black Holes In Astronomy

    E-Print Network [OSTI]

    Wagner, Stephan

    Black Hole horizon static limit ergosphere radiation magnetic fields jet jet #12;Black-hole accretion with a central bulge. #12;Click to edit Master text styles Second level Third level Fourth level Fifth level Jets and lobes of Cygnus A Carilli et al. Supermassive black holes are the most powerful engines in the Universe

  20. Dry effluent

    SciTech Connect (OSTI)

    Brady, J.D. (Anderson, 2000 Inc., Peachtree City, GA (US))

    1988-01-01

    The available choices of pollution control systems depend on what is being burned and how stringent the regulations are. The common systems are gas cooling by a waste heat boiler or an air-air heat exchanger followed by fabric filtration or electrostatic precipitation for particulate removal; alkaline spray absorbers followed by fabric filters (dry scrubbers) for particulate and acid gas removal; wet scrubbers for simultaneous particulate and acid gas removal, and; the newest - spray evaporation, followed by wet scrubbing for particulate and acid gas removal. Each has advantages and each has disadvantages. This paper discusses the advantages and disadvantages of the spray evaporator and wet scrubber combination.

  1. Supermassive black holes with high accretion rates in active galactic nuclei. II. The most luminous standard candles in the universe

    SciTech Connect (OSTI)

    Wang, Jian-Min; Du, Pu; Hu, Chen; Qiu, Jie; Li, Yan-Rong [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Netzer, Hagai; Kaspi, Shai [Wise Observatory, School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Bai, Jin-Ming; Wang, Fang [Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011, Yunnan (China); Lu, Kai-Xing [Astronomy Department, Beijing Normal University, Beijing 100875 (China); Collaboration: SEAMBH collaboration

    2014-10-01

    This is the second in a series of papers reporting on a large reverberation mapping (RM) campaign to measure black hole (BH) mass in high accretion rate active galactic nuclei (AGNs). The goal is to identify super-Eddington accreting massive black holes (SEAMBHs) and to use their unique properties to construct a new method for measuring cosmological distances. Based on theoretical models, the saturated bolometric luminosity of such sources is proportional to the BH mass, which can be used to obtain their distance. Here we report on five new RM measurements and show that in four of the cases, we can measure the BH mass and three of these sources are SEAMBHs. Together with the three sources from our earlier work, we now have six new sources of this type. We use a novel method based on a minimal radiation efficiency to identify nine additional SEAMBHs from earlier RM-based mass measurements. We use a Bayesian analysis to determine the parameters of the new distance expression and the method uncertainties from the observed properties of the objects in the sample. The ratio of the newly measured distances to the standard cosmological ones has a mean scatter of 0.14 dex, indicating that SEAMBHs can be use as cosmological distance probes. With their high luminosity, long period of activity, and large numbers at high redshifts, SEAMBHs have a potential to extend the cosmic distance ladder beyond the range now explored by Type Ia supernovae.

  2. Primordial black holes with mass 10{sup 16}?10{sup 17} g and reionization of the Universe

    SciTech Connect (OSTI)

    Belotsky, K.M.; Kirillov, A.A. E-mail: kirillov-aa@yandex.ru

    2015-01-01

    Primordial black holes (PBHs) with mass 10{sup 16}?10{sup 17} g almost escape constraints from observations so could essentially contribute to dark matter density. Hawking evaporation of such PBHs produces with a steady rate ?- and e{sup ±}-radiations in MeV energy range, which can be absorbed by ordinary matter. Simplified estimates show that a small fraction of evaporated energy had to be absorbed by baryonic matter what can turn out to be enough to heat the matter so it is fully ionized at the redshift z? 5... 10. The result is found to be close to a borderline case where the effect appears, what makes it sensitive to the approximation used. In our approximation, degree of gas ionization reaches 50-100% by z? 5 for PBH mass (3...7)× 10{sup 16} g with their abundance corresponding to the upper limit.

  3. Quantum black hole inflation

    E-Print Network [OSTI]

    M. B. Altaie

    2001-05-07

    In this paper we follow a new approach for particle creation by a localized strong gravitational field. The approach is based on a definition of the physical vacuum drawn from Heisenberg uncertainty principle. Using the fact that the gravitational field red-shifts the frequency modes of the vacuum, a condition on the minimum stregth of the gravitational field required to achieve real particle creation is derived. Application of this requirement on a Schwartzchid black hole resulted in deducing an upper limit on the region, outside the event horizon, where real particles can be created. Using this regional upper limit, and considering particle creation by black holes as a consequence of the Casimir effect, with the assumption that the created quanta are to be added to the initial energy, we deduce a natural power law for the development of the event horizon, and consequently a logarithmic law for the area spectrum of an inflating black hole. Application of the results on a cosmological model shows that if we start with a Planck-dimensional black hole, then through the process of particle creation we end up with a universe having the presently estimated critical density. Such a universe will be in a state of eternal inflation.

  4. Cooking with Dry Beans 

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09

    This fact sheet describes the nutritonal value and safe storage of dry beans, a commodity food. It also offers food preparation ideas.

  5. Cooking with Dried Potatoes 

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09

    This fact sheet describes the nutritional value and safe storage of dried potatoes, a commodity food. It also offers food preparation ideas.

  6. Cooking with Dry Spaghetti 

    E-Print Network [OSTI]

    Anding, Jenna

    2008-12-09

    of mushroom soup 1 10.75-ounce can of tomato soup 4 cups cooked, hot spaghetti 1 teaspoon dried oregano (if you like) 1 teaspoon dried basil (if you like) How to make it 1. Wash your hands; make sure your cooking area...

  7. Black Holes: from Speculations to Observations

    E-Print Network [OSTI]

    Thomas W. Baumgarte

    2006-04-13

    This paper provides a brief review of the history of our understanding and knowledge of black holes. Starting with early speculations on ``dark stars'' I discuss the Schwarzschild "black hole" solution to Einstein's field equations and the development of its interpretation from "physically meaningless" to describing the perhaps most exotic and yet "most perfect" macroscopic object in the universe. I describe different astrophysical black hole populations and discuss some of their observational evidence. Finally I close by speculating about future observations of black holes with the new generation of gravitational wave detectors.

  8. Coronal Holes

    E-Print Network [OSTI]

    Cranmer, Steven R

    2009-01-01

    Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are establish...

  9. Freeze drying method

    DOE Patents [OSTI]

    Coppa, Nicholas V. (Malvern, PA); Stewart, Paul (Youngstown, NY); Renzi, Ernesto (Youngstown, NY)

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  10. The Revival of White Holes as Small Bangs

    E-Print Network [OSTI]

    Alon Retter; Shlomo Heller

    2011-07-17

    Black holes are extremely dense and compact objects from which light cannot escape. There is an overall consensus that black holes exist and many astronomical objects are identified with black holes. White holes were understood as the exact time reversal of black holes, therefore they should continuously throw away material. It is accepted, however, that a persistent ejection of mass leads to gravitational pressure, the formation of a black hole and thus to the "death of while holes". So far, no astronomical source has been successfully tagged a white hole. The only known white hole is the Big Bang which was instantaneous rather than continuous or long-lasting. We thus suggest that the emergence of a white hole, which we name a 'Small Bang', is spontaneous - all the matter is ejected at a single pulse. Unlike black holes, white holes cannot be continuously observed rather their effect can only be detected around the event itself. Gamma ray bursts are the most energetic explosions in the universe. Long gamma-ray bursts were connected with supernova eruptions. There is a new group of gamma-ray bursts, which are relatively close to Earth, but surprisingly lack any supernova emission. We propose identifying these bursts with white holes. White holes seem like the best explanation of gamma-ray bursts that appear in voids. We also predict the detection of rare gigantic gamma-ray bursts with energies much higher than typically observed.

  11. Quantum Criticality and Black Holes

    ScienceCinema (OSTI)

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2009-09-01

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  12. How fast can a black hole rotate?

    E-Print Network [OSTI]

    Herdeiro, Carlos A R

    2015-01-01

    Kerr black holes have their angular momentum, $J$, bounded by their mass, $M$: $Jc\\leqslant GM^2$. There are, however, known black hole solutions violating this Kerr bound. We propose a very simple universal bound on the rotation, rather than on the angular momentum, of four-dimensional, stationary and axisymmetric, asymptotically flat black holes, given in terms of an appropriately defined horizon linear velocity, $v_H$. The $v_H$ bound is simply that $v_H$ cannot exceed the velocity of light. We verify the $v_H$ bound for known black hole solutions, including some that violate the Kerr bound, and conjecture that only extremal Kerr black holes saturate the $v_H$ bound.

  13. Session: Hot Dry Rock

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  14. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  15. Drying of fiber webs

    DOE Patents [OSTI]

    Warren, David W. (9253 Glenoaks Blvd., Sun Valley, CA 91352)

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  16. Impingement drying of potato chips 

    E-Print Network [OSTI]

    Caixeta, Aline Teixeira

    2001-01-01

    ) on the drying rate of potato chips and on the product quality properties such as shrinkage, density, porosity, microstructure, color, texture, and nutrition loss was investigated. Furthermore, superheated steam impingement dried potato chips (130 and 145° C, h...

  17. The Role of Primordial Kicks on Black Hole Merger Rates

    E-Print Network [OSTI]

    Miroslav Micic; Tom Abel; Steinn Sigurdsson

    2006-09-06

    Primordial stars are likely to be very massive $\\geq30\\Msun$, form in isolation, and will likely leave black holes as remnants in the centers of their host dark matter halos in the mass range $10^{6}-10^{10}\\Ms$. Such early black holes, at redshifts z$\\gtsim10$, could be the seed black holes for the many supermassive black holes found in galaxies in the local universe. If they exist, their mergers with nearby supermassive black holes may be a prime signal for long wavelength gravitational wave detectors. We simulate formation of black holes in the center of high redshift dark matter halos and explore implications of initial natal kick velocities conjectured by some formation models. The central concentration of early black holes in present day galaxies is reduced if they are born even with moderate kicks of tens of km/s. The modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the lower mass black holes as compared to those still embedded in their parent halos. Therefore, merger rates may be reduced by more than an order of magnitude. Using analytical and illustrative cosmological N--body simulations we quantify the role of natal kicks of black holes formed from massive metal free stars on their merger rates with supermassive black holes in present day galaxies. Our results also apply to black holes ejected by the gravitational slingshot mechanism.

  18. Thermodynamic Relations for Kiselev and Dilaton Black Hole

    E-Print Network [OSTI]

    Bushra Majeed; Mubasher Jamil; Parthapratim Pradhan

    2015-08-24

    We investigate the thermodynamics and phase transition for Kiselev black hole and dilaton black hole. Speci?cally we consider Reissner Nordstrom black hole surrounded by radiation and dust, and Schwarzschild black hole surrounded by quintessence, as special cases of Kiselev solution. We have calculated the products relating the surface gravities, surface temperatures, Komar energies, areas, entropies, horizon radii and the irreducible masses at the Cauchy and the event horizons. It is observed that the product of surface gravities, surface temperature product and product of Komar energies at the horizons are not universal quantities for the Kiselev solutions while products of areas and entropies at both the horizons are independent of mass of the above mentioned black holes (except for Schwarzschild black hole surrounded by quintessence). For charged dilaton black hole, all the products vanish. First law of thermodynamics is also veri?ed for Kiselev solutions. Heat capacities are calculated and phase transitions are observed, under certain conditions.

  19. The Role of Primordial Kicks on Black Hole Merger Rates

    E-Print Network [OSTI]

    Miroslav Micic; Tom Abel; Steinn Sigurdsson

    2006-09-15

    Primordial stars are likely to be very massive >30 Msun, form in isolation, and will likely leave black holes as remnants in the centers of their host dark matter halos. We expect primordial stars to form in halos in the mass range 10^6-10^10 Msun. Some of these early black holes, formed at redshifts z>10, could be the seed black hole for a significant fraction of the supermassive black holes found in galaxies in the local universe. If the black hole descendants of the primordial stars exist, their mergers with nearby supermassive black holes may be a prime candidate for long wavelength gravitational wave detectors. We simulate formation and evolution of dark matter halos in LambdaCDM universe. We seed high-redshift dark matter halos with early black holes, and explore the merger history of the host halos and the implications of black hole's kick velocities arising from their coalescence. The central concentration of low mass early black holes in present day galaxies is reduced if they experience even moderate kicks of tens of km/s. Even such modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the low mass black holes that were ejected, compared to those still embedded in their parent halos. Therefore, merger rates with central supermassive black holes in the largest halos may be reduced by more than an order of magnitude. Using analytical and illustrative cosmological N-body simulations, we quantify the role of kicks on the merger rates of black holes formed from massive metal free stars with supermassive black holes in present day galaxies.

  20. Dry Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National

  1. Dry reforming of hydrocarbon feedstocks

    SciTech Connect (OSTI)

    Shah, Yatish T.; Gardner, Todd H.

    2014-09-25

    Developments in catalyst technology for the dry reforming of hydrocarbon feedstocks are reviewed for methane, higher hydrocarbons and alcohols. Thermodynamics, mechanisms and the kinetics of dry reforming are also reviewed. The literature on Ni catalysts, bi-metallic Ni catalysts and the role of promoters on Ni catalysts is critically evaluated. The use of noble and transitional metal catalysts for dry reforming is discussed. The application of solid oxide and metal carbide catalysts to dry reforming is also evaluated. Finally, various mechanisms for catalyst deactivation are assessed. This review also examines the various process related issues associated with dry reforming such as its application and heat optimization. Novel approaches such as supercritical dry reforming and microwave assisted dry reforming are briefly expanded upon.

  2. Supermassive Black Holes

    E-Print Network [OSTI]

    Laura Ferrarese; David Merritt

    2002-06-13

    After a brief historical introduction, we summarize current efforts and accomplishments in the study of supermassive black holes.

  3. Retail Shelf-life Characteristics of Dry-aged Beef 

    E-Print Network [OSTI]

    Ulbrich, Carson

    2010-07-14

    SCHOLAR A Senior Scholars Thesis by CARSON JOSEPH ULBRICH RETAIL SHELF-LIFE CHARACTERISTICS OF DRY-AGED BEEF Approved by: Research Advisors: Jeffrey W. Savell Davey B. Griffin Associate Dean for Undergraduate Research: Robert C. Webb... ULBRICH iii ABSTRACT Retail Shelf-Life Characteristics of Dry-Aged Beef. (April 2010) Carson Joseph Ulbrich Department of Animal Science Texas A&M University Research Advisors: Drs. Jeffrey W. Savell and Davey B. Griffin Department...

  4. GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN,

    E-Print Network [OSTI]

    Seamons, Kent E.

    GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN, SOUTHERN UASCSTCH H Q - W T A X H E i i - UT&H #12;BRIGHAM YOUNG UNIVERSITY RESEARCH STUDIES Geology Seri,es Vol. 3 No. 2 April, 1956 GEOLOGY OF THE NORTHERN Department of Gedogy Provo, Utah #12;GEOLOGY OF THE NORTHERN PART OF DRY MOUNTAIN, SOUTHERN WASATCH M O U N

  5. Thermodynamic Product Formula for Taub-NUT Black Hole

    E-Print Network [OSTI]

    Parthapratim Pradhan

    2015-08-20

    We derive various important thermodynamic relations of the inner and outer horizon in the background of Taub-NUT(Newman-Unti-Tamburino) black hole in four dimensional \\emph{Lorentzian geometry}. We compare these properties with the properties of Reissner Nordstr{\\o}m black hole. We compute \\emph{area product, area sum, area minus and area division} of black hole horizons. We show that they all are not universal quantities. Based on these relations, we compute the area bound of all horizons. From area bound, we derive entropy bound and irreducible mass bound for both the horizons. We further study the stability of such black hole by computing the specific heat for both the horizons. It is shown that due to negative specific heat the black hole is thermodynamically unstable. All these calculations might be helpful to understanding the nature of black hole entropy both \\emph{interior} and exterior at the microscopic level.

  6. Thermodynamic Product Formula for Taub-NUT Black Hole

    E-Print Network [OSTI]

    Pradhan, Parthapratim

    2015-01-01

    We derive various important thermodynamic relations of the inner and outer horizon in the background of Taub-NUT(Newman-Unti-Tamburino) black hole in four dimensional \\emph{Lorentzian geometry}. We compare these properties with the properties of Reissner Nordstr{\\o}m black hole. We compute \\emph{area product, area sum, area minus and area division} of black hole horizons. We show that they all are not universal quantities. Based on these relations, we compute the area bound of all horizons. From area bound, we derive entropy bound and irreducible mass bound for both the horizons. We further study the stability of such black hole by computing the specific heat for both the horizons. It is shown that due to negative specific heat the black hole is thermodynamically unstable. All these calculations might be helpful to understanding the nature of black hole entropy both \\emph{interior} and exterior at the microscopic level.

  7. Investigating Dark Energy with Black Hole Binaries

    E-Print Network [OSTI]

    Laura Mersini-Houghton; Adam Kelleher

    2009-06-08

    The accelerated expansion of the universe is ascribed to the existence of dark energy. Black holes accretion of dark energy induces a mass change proportional to the energy density and pressure of the background dark energy fluid. The time scale during which the mass of black holes changes considerably is too long relative to the age of the universe, thus beyond detection possibilities. We propose to take advantage of the modified black hole masses for exploring the equation of state $w[z]$ of dark energy, by investigating the evolution of supermassive black hole binaries on a dark energy background. Deriving the signatures of dark energy accretion on the evolution of binaries, we find that dark energy imprints on the emitted gravitational radiation and on the changes in the orbital radius of the binary can be within detection limits for certain supermassive black hole binaries. In this talk I describe how binaries can provide a useful tool in obtaining complementary information on the nature of dark energy, based on the work done with A.Kelleher.

  8. Accreting Black Holes

    E-Print Network [OSTI]

    Begelman, Mitchell C

    2014-01-01

    I outline the theory of accretion onto black holes, and its application to observed phenomena such as X-ray binaries, active galactic nuclei, tidal disruption events, and gamma-ray bursts. The dynamics as well as radiative signatures of black hole accretion depend on interactions between the relatively simple black-hole spacetime and complex radiation, plasma and magnetohydrodynamical processes in the surrounding gas. I will show how transient accretion processes could provide clues to these interactions. Larger global magnetohydrodynamic simulations as well as simulations incorporating plasma microphysics and full radiation hydrodynamics will be needed to unravel some of the current mysteries of black hole accretion.

  9. PHILADELPHIA UNIVERSITY PHILADELPHIA UNIVERSITY

    E-Print Network [OSTI]

    PHILADELPHIA UNIVERSITY . . . #12;PHILADELPHIA UNIVERSITY . . : : (132) . : . . . : . #12;PHILADELPHIA UNIVERSITY

  10. Thermal Gravitational Waves from Primordial Black Holes

    E-Print Network [OSTI]

    C. Sivaram; Kenath Arun

    2010-05-19

    Thermal gravitational waves can be generated in various sources such as, in the cores of stars, white dwarfs and neutron stars due to the fermion collisions in the dense degenerate Fermi gas. Such high frequency thermal gravitational waves can also be produced during the collisions in a gamma ray burst or during the final stages of the evaporation of primordial black holes. Here we estimate the thermal gravitational waves from primordial black holes and estimate the integrated energy of the gravitational wave emission over the entire volume of the universe and over Hubble time. We also estimate the gravitational wave flux from gamma ray bursts and jets.

  11. Thermal stability of radiant black holes

    E-Print Network [OSTI]

    Parthasarathi Majumdar

    2006-04-06

    Beginning with a brief sketch of the derivation of Hawking's theorem of horizon area increase, based on the Raychaudhuri equation, we go on to discuss the issue as to whether generic black holes, undergoing Hawking radiation, can ever remain in stable thermal equilibrium with that radiation. We derive a universal criterion for such a stability, which relates the black hole mass and microcanonical entropy, both of which are well-defined within the context of the Isolated Horizon, and in principle calculable within Loop Quantum Gravity. The criterion is argued to hold even when thermal fluctuations of electric charge are considered, within a {\\it grand} canonical ensemble.

  12. Black Hole Thermodynamics and Statistical Mechanics

    E-Print Network [OSTI]

    Steven Carlip

    2008-07-28

    We have known for more than thirty years that black holes behave as thermodynamic systems, radiating as black bodies with characteristic temperatures and entropies. This behavior is not only interesting in its own right; it could also, through a statistical mechanical description, cast light on some of the deep problems of quantizing gravity. In these lectures, I review what we currently know about black hole thermodynamics and statistical mechanics, suggest a rather speculative "universal" characterization of the underlying states, and describe some key open questions.

  13. Drying Fruits and Vegetables at Home. 

    E-Print Network [OSTI]

    Putnam, Peggy H.

    1981-01-01

    Methods Sun (solar) heaters and dehydrators. Or dryers some times are used to dry foods. They can be made fairly easily at various costs. SUD heatets are effective when drying foods requiring humidity or when drying s'mall lots of food. Dehydrators... ............. ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Drying Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Sun-Drying .................................................... 3 Oven...

  14. Drying Rough Rice in Storage. 

    E-Print Network [OSTI]

    Sorenson, J. W. Jr.; Crane, L. E.

    1960-01-01

    feet columna erating schedule is drying at a rate fast enou 7.2 8 1.80 to prevent mold development. Another importa : 10 3.00 consideration is simplicity of operating instrr : 9.0 8 2.50 tions requiring a minimumjof supervision of i ( 10 4....25 drying operation. Other desirable features in : 10.8 6 1.80 fan operating schedule are maximum drying eE : 8 3.25 ciency and use of minimum air flow rates. . 'Based on data presented by C. K. Shedd (2). The direction of air movement through ri a...

  15. Sediment transport by dry ravel Emmanuel J. Gabet

    E-Print Network [OSTI]

    Gabet, Emmanuel "Manny"

    Sediment transport by dry ravel Emmanuel J. Gabet Department of Geological Sciences, University, bouncing, and sliding of individual particles down a slope and is a dominant hillslope sediment transport of sediment wedges that have accumulated behind vegetation. On a daily basis, particles may be mobilized

  16. Rotating Hairy Black Holes

    E-Print Network [OSTI]

    B. Kleihaus; J. Kunz

    2000-12-20

    We construct stationary black holes in SU(2) Einstein-Yang-Mills theory, which carry angular momentum and electric charge. Possessing non-trivial non-abelian magnetic fields outside their regular event horizon, they represent non-perturbative rotating hairy black holes.

  17. "Hybrid" Black Holes

    E-Print Network [OSTI]

    Valeri P. Frolov; Andrei V. Frolov

    2014-12-30

    We discuss a solution of the Einstein equations, obtained by gluing the external Kerr metric and the internal Weyl metric, describing an axisymmetric static vacuum distorted black hole. These metrics are glued at the null surfaces representing their horizons. For this purpose we use the formalism of massive thin null shells. The corresponding solution is called a "hybrid" black hole. The massive null shell has an angular momentum which is the origin of the rotation of the external Kerr spacetime. At the same time, the shell distorts the geometry inside the horizon. The inner geometry of the "hybrid" black hole coincides with the geometry of the interior of a non-rotating Weyl-distorted black hole. Properties of the "hybrid" black holes are briefly discussed.

  18. Sustaining dry surfaces under water

    E-Print Network [OSTI]

    Paul R. Jones; Xiuqing Hao; Eduardo R. Cruz-Chu; Konrad Rykaczewski; Krishanu Nandy; Thomas M. Schutzius; Kripa K. Varanasi; Constantine M. Megaridis; Jens H. Walther; Petros Koumoutsakos; Horacio D. Espinosa; Neelesh A. Patankar

    2014-09-29

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  19. Textile Drying Via Wood Gasification 

    E-Print Network [OSTI]

    McGowan, T. F.; Jape, A. D.

    1983-01-01

    This project was carried out to investigate the possibility of using wood gas as a direct replacement for natural gas in textile drying. The Georgia Tech updraft gasifier was used for the experimental program. During preliminary tests, the 1 million...

  20. Report on Biomass Drying Technology

    SciTech Connect (OSTI)

    Amos, W. A.

    1999-01-12

    Using dry fuel provides significant benefits to combustion boilers, mainly increased boiler efficiency, lower air emissions, and improved boiler operation. The three main choices for drying biomass are rotary dryers, flash dryers, and superheated steam dryers. Which dryer is chosen for a particular application depends very much on the material characteristics of the biomass, the opportunities for integrating the process and dryer, and the environmental controls needed or already available.

  1. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Geothermal Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature...

  2. The Environmental Impact of Supermassive Black Holes

    E-Print Network [OSTI]

    Abraham Loeb

    2004-08-10

    The supermassive black holes observed at the centers of almost all present-day galaxies, had a profound impact on their environment. I highlight the principle of self-regulation, by which supermassive black holes grow until they release sufficient energy to unbind the gas that feeds them from their host galaxy. This principle explains several observed facts, including the correlation between the mass of a central black hole and the depth of the gravitational potential well of its host galaxy, and the abundance and clustering properties of bright quasars in the redshift interval of z~2-6. At lower redshifts, quasars might have limited the maximum mass of galaxies through the suppression of cooling flows in X-ray clusters. The seeds of supermassive black holes were likely planted in dwarf galaxies at redshifts z>10, through the collapse of massive or supermassive stars. The minimum seed mass can be identified observationally through the detection of gravitational waves from black hole binaries by Advanced LIGO or LISA. Aside from shaping their host galaxies, quasar outflows filled the intergalactic medium with magnetic fields and heavy elements. Beyond the reach of these outflows, the brightest quasars at z>6 have ionized exceedingly large volumes of gas (tens of comoving Mpc) prior to global reionization, and must have suppressed the faint end of the galaxy luminosity function in these volumes before the same occurred through the rest of the universe.

  3. Black Holes and Galaxy Evolution

    E-Print Network [OSTI]

    David Merritt

    1999-10-29

    Supermassive binary black holes and their influence on the structure and evolution of galaxies is reviewed.

  4. Time-periodic universes

    E-Print Network [OSTI]

    De-Xing Kong; Kefeng Liu; Ming Shen

    2008-08-30

    In this letter we construct a new time-periodic solution of the vacuum Einstein's field equations whose Riemann curvature norm takes the infinity at some points. We show that this solution is intrinsically time-periodic and describes a time-periodic universe with the "black hole". New physical phenomena are investigated and new singularities are analyzed for this universal model.

  5. Physical stability of spray dried solid dispersions of amorphous tolfenamic acid and polyvinylpyrolidone K30

    E-Print Network [OSTI]

    Thybo, Pia

    2006-10-25

    October 2006 Side 3 Pia Thybo The Danish University of Pharmaceutical Sciences Spray Drying ?Simple up-scaling. Unique ability to produce specific particle size and volatile content regardless of dryer capacity ?Continuous reliable operation. Powder... ? Controlled Release formulations ? Masking of a bad taste Polymorphism ? Solubility/dissolution GPEN October 2006 Side 7 Pia Thybo The Danish University of Pharmaceutical Sciences Key Elements in Spray Drying Atomization of liquid feed into a spray of droplets...

  6. Spectral Properties of Black Holes in Gamma Rays

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    2005-01-14

    Black holes are the most compact objects in the universe. Therefore, matter accreting onto is likely to radiate photons of energy comparable to very high gravitational potential energy. We discuss the nature of the emitted radiation in X-rays and gamma-rays from black hole candidates. We present theoretical solutions which comprise both Keplerian and sub-Keplerian components and suggest that shocks in accretion and outflows

  7. Thermodynamic Product Formula for Ho?ava Lifshitz Black Hole

    E-Print Network [OSTI]

    Parthapratim Pradhan

    2015-06-10

    We examine the thermodynamic properties of inner and outer horizons in the background of Ho\\v{r}ava Lifshitz black hole. We compute the \\emph{horizon radii product, the surface area product, the entropy product, the surface temperature product, the Komar energy product and the specific heat product} for both the horizons of said black hole. We show that surface area product, entropy product and irreducible mass product are \\emph{universal} quantities, whereas the surface temperature product, Komar energy product and specific heat product are \\emph{not universal} quantities because they all are depends on mass parameter. We also observe that the \\emph{First law} of black hole thermodynamics and \\emph {Smarr-Gibbs-Duhem } relations do not hold for this black hole. The underlying reason behind this failure due to the scale invariance of the coupling constant. We further derive the \\emph{Smarr mass formula} and \\emph{Christodolou-Ruffini mass formula} for such black hole spacetime. Moreover we study the stability of such black hole by computing the specific heat for both the horizons. It has been observed that under certain condition the black hole possesses second order phase transition.

  8. Dry cleaning of Turkish coal

    SciTech Connect (OSTI)

    Cicek, T. [Dokuz Eylul University, Izmir (Turkey). Faculty of Engineering

    2008-07-01

    This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

  9. Little Black Holes:Dark Matter And Ball Lightning

    E-Print Network [OSTI]

    Mario Rabinowitz

    2002-12-11

    Small,quiescent black holes can be considered as candidates for the missing dark matter of the universe,and as the core energy source of ball lightning.By means of gravitational tunneling,directed radiation is emitted from black holes in a process much attenuated from that of Hawking radiation,P SH, which has proven elusive to detect.Gravitational tunneling emission is similar to electric field emission of electronsfrom a metal in that a second body is involved which lowers the barrier and gives the barrier a finite rather than infinite width.Hawking deals with a single isolated black hole.

  10. Big Bang Nucleosynthesis and Primordial Black Holes

    E-Print Network [OSTI]

    C. Sivaram; Kenath Arun

    2010-06-28

    There are ongoing efforts in detecting Hawking radiation from primordial black holes (PBH) formed during the early universe. Here we put an upper limit on the PBH number density that could have been formed prior to the big bang nucleosynthesis era, based on the constraint that the PBH evaporation energy consisting of high energy radiation not affect the observed abundances' of elements, by disintegrating the nuclei.

  11. Analysis of spherically symmetric black holes in Braneworld models

    E-Print Network [OSTI]

    A. B. Pavan

    2010-05-25

    Research on black holes and their physical proprieties has been active on last 90 years. With the appearance of the String Theory and the Braneworld models as alternative descriptions of our Universe, the interest on black holes, in these context, increased. In this work we studied black holes in Braneworld models. A class of spherically symmetric black holes is investigaded as well its stability under general perturbations. Thermodynamic proprieties and quasi-normal modes are discussed. The black holes studied are the SM (zero mass) and CFM solutions, obtained by Casadio {\\it et al.} and Bronnikov {\\it et al.}. The geometry of bulk is unknown. However the Campbell-Magaard Theorem guarantees the existence of a 5-dimensional solution in the bulk whose projection on the brane is the class of black holes considered. They are stable under scalar perturbations. Quasi-normal modes were observed in both models. The tail behavior of the perturbations is the same. The entropy upper bound of a body absorved by the black holes studied was calculated. This limit turned out to be independent of the black hole parameters.

  12. Accretion onto the First Stellar Mass Black Holes

    E-Print Network [OSTI]

    Marcelo A. Alvarez; John H. Wise; Tom Abel

    2008-11-07

    The first stars in the universe, forming at redshifts z>15 in minihalos with masses of order 10^6 Msun, may leave behind black holes as their remnants. These objects could conceivably serve as "seeds" for much larger black holes observed at redshifts z~6. We study the growth of the remnant black holes through accretion including for the first time the emitted accretion radiation with adaptive mesh refinement cosmological radiation-hydrodynamical simulations. The effects of photo-ionization and heating dramatically affect the accretion flow from large scales, resulting in negligible mass growth of the black hole. We compare cases with the accretion luminosity included and neglected to show that the accretion radiation drastically changes the environment within 100 pc of the black hole, where gas temperatures are increased by an order of magnitude. The gas densities are reduced and further star formation in the same minihalo prevented for the two hundred million years of evolution we followed. These calculations show that even without the radiative feedback included most seed black holes do not gain mass as efficiently as has been hoped for in previous theories, implying that black hole remnants of Pop III stars that formed in minihalos are not likely to be the origin of miniquasars. Most importantly, however, these calculations demonstrate that if early stellar mass black holes are indeed accreting close to the Bondi-Hoyle rate with ten percent efficiency they have a dramatic local effect in regulating star formation in the first galaxies.

  13. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S.; Dakin, M. [New Zealand Forest Research Inst., Ltd., Rotorua (New Zealand). Mfg. Technologies Portfolio

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  14. Cool, Dry, Quiet Dehumidification with

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    dehumidification system as the best new HVAC dehumidification product for 2006. #12;Trane CDQTM (Cool Dry Quiet are optional. Size range is 1,000 - 70,000 cfm. Note: Under LEED, this unit may qualify for innovation points qualify for innovation points. Trane Climate ChangerTM air handler with CDQ dehumidification Trane Climate

  15. Does the mass of a black hole decrease due to the accretion of phantom energy?

    SciTech Connect (OSTI)

    Gao Changjun; Chen Xuelei; Faraoni, Valerio; Shen Yougen

    2008-07-15

    According to Babichev et al., the accretion of a phantom test fluid onto a Schwarzschild black hole will induce the mass of the black hole to decrease, however the backreaction was ignored in their calculation. Using new exact solutions describing black holes in a background Friedmann-Robertson-Walker universe, we find that the physical black hole mass may instead increase due to the accretion of phantom energy. If this is the case, and the future universe is dominated by phantom dark energy, the black hole apparent horizon and the cosmic apparent horizon will eventually coincide and, after that, the black hole singularity will become naked in finite comoving time before the big rip occurs, violating the cosmic censorship conjecture.

  16. Supermassive Black Holes and the Evolution of Galaxies

    E-Print Network [OSTI]

    D. Richstone; E. A. Ajhar; R. Bender; G. Bower; A. Dressler; S. M. Faber; A. V. Filippenko; K. Gebhardt; R. Green; L. C. Ho; J. Kormendy; T. Lauer; J. Magorrian; S. Tremaine

    1998-10-23

    Black holes, an extreme consequence of the mathematics of General Relativity, have long been suspected of being the prime movers of quasars, which emit more energy than any other objects in the Universe. Recent evidence indicates that supermassive black holes, which are probably quasar remnants, reside at the centers of most galaxies. As our knowledge of the demographics of these relics of a violent earlier Universe improve, we see tantalizing clues that they participated intimately in the formation of galaxies and have strongly influenced their present-day structure.

  17. Hydrofracture diagnosis in open-hole and steel-cased wells using borehole resistivity measurements David Pardo, University of the Basque Country UPV/EHU and IKERBASQUE and Carlos Torres-Verdin, The Uni-

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    Hydrofracture diagnosis in open-hole and steel-cased wells using borehole resistivity measurements are suitable for hydrofracture characterization in steel-cased wells. INTRODUCTION In 1949, the Halliburton Oil is used only dur- ing the stimulation phase of the fracture; occasionally, an ul- terior assessment may

  18. Holes in Spectral Lines

    E-Print Network [OSTI]

    Fontana, Peter R.; Srivastava, Rajendra P.

    1973-06-01

    at E = 0 is 2le I' Ib/(t)I = @~ R~R~~»nh'(IRlyt)e"'" (13)a ylal 0 5 '7 FIG. 3. Probabilities of photon emission as a function of time. The frequency corresponds to the energy differ- ence between the unperturbed degenerate excited states and the ground... states 6 is 0. 5 ey. For V= 0 the emission line is Lorentzian, but for V0 a "hole" appears at the frequency equal to the frequency difference between the excited nondecay- ing state and the ground state. The position of the "hole" is independent...

  19. Black Holes And Their Entropy 

    E-Print Network [OSTI]

    Mei, Jianwei

    2010-10-12

    . . . . . . . . . 21 1. Solutions in Four Dimensions . . . . . . . . . . . . . . 22 2. Solutions in Higher Dimensions . . . . . . . . . . . . . 27 C. Black Hole Solutions in Supergravity Theories . . . . . . . 30 D. Plebanski-Demianski Type Solutions in d = 5... is to discuss the construction of new black hole solutions and the calculation of the black hole entropy. In Chapter II, we shall re- port some new black hole solutions that we have found during the past few years [21, 22, 23] and we will discuss some...

  20. A batch fabricated biomimetic dry adhesive

    E-Print Network [OSTI]

    Northen, Michael T; Turner, K L

    2005-01-01

    nano-structures as dry adhesives J. Adhesion Sci. Technol.al 2003 Microfabricated adhesive mimicking gecko foot-hairfabricated biomimetic dry adhesive Michael T Northen 1,3 and

  1. Steam drying of products containing solvent mixtures

    SciTech Connect (OSTI)

    Pothmann, E.; Schluender, E.U. [Univ. Karlsruhe (Germany). Inst. fuer Thermische Verfahrenstechnik

    1995-12-31

    Drying experiments with single, porous spheres wetted with mixtures of 2-propanol and water were performed using superheated steam, air, or steam-air mixtures as drying agent. Both the drying rate and the moisture composition were determined experimentally for different temperatures and compositions of the drying agent and for different initial compositions of the moisture. It is shown that evaporation of 2-propanol is enhanced by using superheated steam as drying agent instead of air due to steam condensing on the sample. While the overall drying rate increases with rising steam temperature, the evaporation rate of 2-propanol is hardly affected. When drying samples containing mixtures of 2-propanol and water, internal boiling can occur depending on the vapor-liquid equilibrium. Vapor generated inside the sample may cause mechanical dewatering of the sample which greatly increases the drying rate.

  2. Varying fine structure 'constant' and charged black holes

    SciTech Connect (OSTI)

    Bekenstein, Jacob D.; Schiffer, Marcelo

    2009-12-15

    Speculation that the fine-structure constant {alpha} varies in spacetime has a long history. We derive, in 4-D general relativity and in isotropic coordinates, the solution for a charged spherical black hole according to the framework for dynamical {alpha} J. D. Bekenstein, Phys. Rev. D 25, 1527 (1982).. This solution coincides with a previously known one-parameter extension of the dilatonic black hole family. Among the notable properties of varying-{alpha} charged black holes are adherence to a 'no hair' principle, the absence of the inner (Cauchy) horizon of the Reissner-Nordstroem black holes, the nonexistence of precisely extremal black holes, and the appearance of naked singularities in an analytic extension of the relevant metric. The exteriors of almost extremal electrically (magnetically) charged black holes have simple structures which makes their influence on applied magnetic (electric) fields transparent. We rederive the thermodynamic functions of the modified black holes; the otherwise difficult calculation of the electric potential is done by a shortcut. We confirm that variability of {alpha} in the wake of expansion of the universe does not threaten the generalized second law.

  3. Gravitational wave production by rotating primordial black holes

    E-Print Network [OSTI]

    Dong, Ruifeng; Stojkovic, Dejan

    2015-01-01

    In this paper we analyze in detail a rarely discussed question of gravity waves production from evaporating black holes. Evaporating black holes emit gravitons which are at classical level registered as gravity waves. We use the latest constraints on the primordial black hole abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the total energy density which was occupied by black holes, the epoch in which the black holes are formed, and quantities like mass and angular momentum of evaporating black holes. We conclude that very small primordial black holes which evaporate before the nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as $10^{-5}$. On the other hand, primordial black ...

  4. Graphene and SWNT film as Hole Transport Layer and Electrode for Solar Cells Shigeo Maruyama

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Graphene and SWNT film as Hole Transport Layer and Electrode for Solar Cells Shigeo Maruyama], dry-deposited SWNTs-Si solar cell [4], graphene-Si solar cells, organic solar cell (OSC) and perovskite-type solar cells. Using millimeter-scale monocrystalline single-layer graphene and honeycomb

  5. Black Hole Demographics from the M(BH)-sigma Relation

    E-Print Network [OSTI]

    David Merritt; Laura Ferrarese

    2001-03-03

    We analyze a sample of 32 galaxies for which a dynamical estimate of the mass of the hot stellar component, M_bulge, is available. For each of these galaxies, we calculate the mass of the central black hole, M_BH, using the tight empirical correlation between M_BH and the bulge stellar velocity dispersion. The frequency function N(log M_BH/M_bulge) is reasonably well described as a Gaussian with ~ -2.90 and standard deviation 0.45; the implied mean ratio of black hole to bulge mass is a factor 5 smaller than generally quoted in the literature. We present marginal evidence for a lower, average black-hole mass fraction in more massive galaxies. The total mass density in black holes in the local Universe is estimated to be 5 x 10^5 solar masses per cubic megaparsec, consistent with that inferred from high redshift (z ~ 2) AGNs.

  6. Black Holes at Accelerators

    E-Print Network [OSTI]

    Bryan Webber

    2006-04-06

    In theories with large extra dimensions and TeV-scale gravity, black holes are copiously produced in particle collisions at energies well above the Planck scale. I briefly review some recent work on the phenomenology of this process, with emphasis on theoretical uncertainties and possible strategies for measuring the number of extra dimensions.

  7. Laser bottom hole assembly

    DOE Patents [OSTI]

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  8. Compton Dry-Cask Imaging System

    ScienceCinema (OSTI)

    None

    2013-05-28

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  9. Compton Dry-Cask Imaging System

    SciTech Connect (OSTI)

    None

    2011-01-01

    The Compton-Dry Cask Imaging Scanner is a system that verifies and documents the presence of spent nuclear fuel rods in dry-cask storage and determines their isotopic composition without moving or opening the cask. For more information about this project, visit http://www.inl.gov/rd100/2011/compton-dry-cask-imaging-system/

  10. Hovering Black Holes from Charged Defects

    E-Print Network [OSTI]

    Gary T. Horowitz; Nabil Iqbal; Jorge E. Santos; Benson Way

    2015-05-05

    We construct the holographic dual of an electrically charged, localised defect in a conformal field theory at strong coupling, by applying a spatially dependent chemical potential. We find that the IR behaviour of the spacetime depends on the spatial falloff of the potential. Moreover, for sufficiently localized defects with large amplitude, we find that a new gravitational phenomenon occurs: a spherical extremal charged black hole nucleates in the bulk: a hovering black hole. This is a second order quantum phase transition. We construct this new phase with several profiles for the chemical potential and study its properties. We find an apparently universal behaviour for the entropy of the defect as a function of its amplitude. We comment on the possible field theory implications of our results.

  11. Statistical Mechanics of Black Holes

    E-Print Network [OSTI]

    B. Harms; Y. Leblanc

    1992-05-11

    We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black hole decay and of quantum coherence are also addressed.

  12. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  13. Vapor Transport in Dry Soils

    SciTech Connect (OSTI)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-16

    Water-vapor movement in soils is a complex process, controlled by both diffusion and advection and influenced by pressure and thermal gradients acting across tortuous flow paths. Wide-ranging interest in water-vapor transport includes both theoretical and practical aspects. Just how pressure and thermal gradients enhance water-vapor flow is still not completely understood and subject to ongoing research. Practical aspects include dryland farming (surface mulching), water harvesting (aerial wells), fertilizer placement, and migration of contaminants at waste-sites. The following article describes the processes and practical applications of water-vapor transport, with emphasis on unsaturated (dry) soil systems.

  14. Dry-cleaning of graphene

    SciTech Connect (OSTI)

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  15. Microwave drying of ferric oxide pellets

    SciTech Connect (OSTI)

    Pickles, C.A.; Xia, D.K. [Queens` Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering

    1997-12-31

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  16. Black Hole Scan

    E-Print Network [OSTI]

    Juan Crisostomo; Ricardo Troncoso; Jorge Zanelli

    2000-09-22

    Gravitation theories selected by requiring that they have a unique anti-de Sitter vacuum with a fixed cosmological constant are studied. For a given dimension d, the Lagrangians under consideration are labeled by an integer k=1,2,...,[(d-1)/2]. Black holes for each d and k are found and are used to rank these theories. A minimum possible size for a localized electrically charged source is predicted in the whole set of theories, except General Relativity. It is found that the thermodynamic behavior falls into two classes: If d-2k=1, these solutions resemble the three dimensional black hole, otherwise, their behavior is similar to the Schwarzschild-AdS_4 geometry.

  17. Black holes at accelerators.

    E-Print Network [OSTI]

    Webber, Bryan R

    be presented and the effects of some of the uncertainties can be investigated. 3.1. Hawking Spectrum With the above assumptions, the spectrum of particles emitted during black hole decay takes the form dN dE ? ?E2 (eE/TH ? 1) T n+6H (8) where as usual... the trapped surface area [6, 7]. T030 02 4 6 8 10 0 0.2 0.4 0.6 0.8 1 1.2 n=0 n=1 n=2 n=6 E rS ?ˆ (0 ) ab s/ pi r2 S Figure 4: Grey-body factors for scalar emission on the brane from a (4 + n)D black hole. 0 2 4 6 8 10 0 0.2 0.4 0.6 0.8 1 1.2 n=0 n=1 n=2 n=6 E...

  18. Black Hole Demographics

    E-Print Network [OSTI]

    Laura Ferrarese

    2002-03-04

    The purpose of this contribution is to review the current status of black hole demographics in light of recent advances in the study of high redshift QSOs (section 2), local AGNs (section 3) and local quiescent galaxies (section 4). I will then outline the prospects for future progress (section 5), and discuss what I believe will be the challenges for the years to come [ABRIDGED].

  19. The effects of fastener hole defects 

    E-Print Network [OSTI]

    Andrews, Scot D.

    1991-01-01

    ) August 1991 ABSTRACT The Effects of Fastener Hole Defects. (August 1991) Scot D. Andrews, B. S. , Texas A8rM University Chair of Advisory Committee: Dr. Orden O. Ochoa The influence of drilling-induced defects, such as delamination, on the fatigue... ambient and elevated temperature wet conditions. Specimens were tested in a bearing tension frame to static failure in order to measure the failure load and to calculate pin bearing stress. From static test results, a fatigue load was selected as 66...

  20. The Gravitational Universe

    E-Print Network [OSTI]

    The eLISA Consortium; :; P. Amaro Seoane; S. Aoudia; H. Audley; G. Auger; S. Babak; J. Baker; E. Barausse; S. Barke; M. Bassan; V. Beckmann; M. Benacquista; P. L. Bender; E. Berti; P. Binétruy; J. Bogenstahl; C. Bonvin; D. Bortoluzzi; N. C. Brause; J. Brossard; S. Buchman; I. Bykov; J. Camp; C. Caprini; A. Cavalleri; M. Cerdonio; G. Ciani; M. Colpi; G. Congedo; J. Conklin; N. Cornish; K. Danzmann; G. de Vine; D. DeBra; M. Dewi Freitag; L. Di Fiore; M. Diaz Aguilo; I. Diepholz; R. Dolesi; M. Dotti; G. Fernández Barranco; L. Ferraioli; V. Ferroni; N. Finetti; E. Fitzsimons; J. Gair; F. Galeazzi; A. Garcia; O. Gerberding; L. Gesa; D. Giardini; F. Gibert; C. Grimani; P. Groot; F. Guzman Cervantes; Z. Haiman; H. Halloin; G. Heinzel; M. Hewitson; C. Hogan; D. Holz; A. Hornstrup; D. Hoyland; C. D. Hoyle; M. Hueller; S. Hughes; P. Jetzer; V. Kalogera; N. Karnesis; M. Kilic; C. Killow; W. Klipstein; E. Kochkina; N. Korsakova; A. Krolak; S. Larson; M. Lieser; T. Littenberg; J. Livas; I. Lloro; D. Mance; P. Madau; P. Maghami; C. Mahrdt; T. Marsh; I. Mateos; L. Mayer; D. McClelland; K. McKenzie; S. McWilliams; S. Merkowitz; C. Miller; S. Mitryk; J. Moerschell; S. Mohanty; A. Monsky; G. Mueller; V. Müller; G. Nelemans; D. Nicolodi; S. Nissanke; M. Nofrarias; K. Numata; F. Ohme; M. Otto; M. Perreur-Lloyd; A. Petiteau; E. S. Phinney; E. Plagnol; S. Pollack; E. Porter; P. Prat; A. Preston; T. Prince; J. Reiche; D. Richstone; D. Robertson; E. M. Rossi; S. Rosswog; L. Rubbo; A. Ruiter; J. Sanjuan; B. S. Sathyaprakash; S. Schlamminger; B. Schutz; D. Schütze; A. Sesana; D. Shaddock; S. Shah; B. Sheard; C. F. Sopuerta; A. Spector; R. Spero; R. Stanga; R. Stebbins; G. Stede; F. Steier; T. Sumner; K. -X. Sun; A. Sutton; T. Tanaka; D. Tanner; I. Thorpe; M. Tröbs; M. Tinto; H. -B. Tu; M. Vallisneri; D. Vetrugno; S. Vitale; M. Volonteri; V. Wand; Y. Wang; G. Wanner; H. Ward; B. Ware; P. Wass; W. J. Weber; Y. Yu; N. Yunes; P. Zweifel

    2013-05-24

    The last century has seen enormous progress in our understanding of the Universe. We know the life cycles of stars, the structure of galaxies, the remnants of the big bang, and have a general understanding of how the Universe evolved. We have come remarkably far using electromagnetic radiation as our tool for observing the Universe. However, gravity is the engine behind many of the processes in the Universe, and much of its action is dark. Opening a gravitational window on the Universe will let us go further than any alternative. Gravity has its own messenger: Gravitational waves, ripples in the fabric of spacetime. They travel essentially undisturbed and let us peer deep into the formation of the first seed black holes, exploring redshifts as large as z ~ 20, prior to the epoch of cosmic re-ionisation. Exquisite and unprecedented measurements of black hole masses and spins will make it possible to trace the history of black holes across all stages of galaxy evolution, and at the same time constrain any deviation from the Kerr metric of General Relativity. eLISA will be the first ever mission to study the entire Universe with gravitational waves. eLISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using gravitational waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the early processes at TeV energies, has guaranteed sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales around singularities and black holes, all the way to cosmological dimensions.

  1. The mass function of high redshift seed black holes

    E-Print Network [OSTI]

    Giuseppe Lodato; Priyamvada Natarajan

    2007-02-13

    In this paper we derive the mass function of seed black holes that result from the central mass concentrated via disc accretion in collapsed haloes at redshift $z\\approx 15$. Using standard arguments including stability, we show that these pre-galactic discs can assemble a significant mass concentration in the inner regions, providing fuel for the formation and initial growth of super-massive black holes. Assuming that these mass concentrations do result in central seed black holes, we determine the mass distribution of these seeds as a function of key halo properties. The seed mass distribution determined here turns out to be asymmetric and skewed to higher masses. Starting with these initial seeds, building up to $10^9$ solar masses by $z = 6$ to power the bright quasars is not a problem in the standard LCDM cosmogony. These seed black holes in gas rich environments are likely to grow into the supermassive black holes at later times via mergers and accretion. Gas accretion onto these seeds at high redshift will produce miniquasars that likely play an important role in the reionization of the Universe. Some of these seed black holes on the other hand could be wandering in galaxy haloes as a consequence of frequent mergers, powering the off-nuclear ultra-luminous X-ray sources detected in nearby galaxies.

  2. Probing Dark Energy with Black Hole Binaries

    E-Print Network [OSTI]

    Laura Mersini-Houghton; Adam Kelleher

    2008-08-25

    The equation of state (EoS) of dark energy $w$ remains elusive despite enormous experimental efforts to pin down its value and its time variation. Yet it is the single most important handle we have in our understanding of one of the most mysterious puzzle in nature, dark energy. This letter proposes a new method for measuring the EoS of dark energy by using the gravitational waves (GW) of black hole binaries. The method described here offers an alternative to the standard way of large scale surveys. It is well known that the mass of a black hole changes due to the accretion of dark energy but at an extremely slow rate. However, a binary of supermassive black holes (SBH) radiates gravitational waves with a power proportional to the masses of these accreting stars and thereby carries information on dark energy. These waves can propagate through the vastness of structure in the universe unimpeded. The orbital changes of the binary, induced by the energy loss from gravitational radiation, receive a large contribution from dark energy accretion. This contribution is directly proportional to $(1+w)$ and is dominant for SBH binaries with separation $R \\ge 1000$ parsec, thereby accelerating the merging process for $w > -1$ or ripping the stars apart for phantom dark energy with $w < -1$. Such orbital changes, therefore $w$, can be detected with LIGO and LISA near merging time, or with X-ray and radio measurements of Chandra and VLBA experiments.

  3. Identification of Astrophysical Black Holes

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    1998-03-19

    Black holes are by definition black, and therefore cannot be directly observed by using electromagnetic radiations. Convincing identification of black holes must necessarily depend on the identification of a very specially behaving matter and radiation which surround them. A major problem in this subject of black hole astrophysics is to quantify the behaviour of matter and radiation close to the horizon. In this review, the subject of black hole accretion and outflow is systematically developed. It is shown that both the stationary as well as the non-stationary properties of the observed spectra could be generally understood by these solutions. It is suggested that the solutions of radiative hydrodynamic equations may produce clear spectral signatures of black holes. Other circumstantial evidences of black holes, both in the galactic centers as well as in binary systems, are also presented.

  4. Black holes in general relativity

    E-Print Network [OSTI]

    Visser, Matt

    2009-01-01

    What is going on (as of August 2008) at the interface between theoretical general relativity, string-inspired models, and observational astrophysics? Quite a lot. In this mini-survey I will make a personal choice and focus on four specific questions: Do black holes "exist"? (For selected values of the word "exist".) Is black hole formation and evaporation unitary? Can one mimic a black hole to arbitrary accuracy? Can one detect the presence of a horizon using local physics?

  5. Wet/dry cooling tower and method

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  6. Quantum Mechanics and Black Holes

    E-Print Network [OSTI]

    Jose N. Pecina-Cruz

    2005-11-27

    This paper discusses the existence of black holes from the foundations of quantum mechanics. It is found that quantum mechanics rule out a possible gravitational collapse.

  7. Cold vacuum drying system conceptual design report

    SciTech Connect (OSTI)

    Bradshaw, F.W.

    1996-05-01

    This document summarizes the activities involved in the removal of the SNF from the leaking basins and to place it in stable dry storage.

  8. ,"New Mexico Dry Natural Gas Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301977" ,"Release Date:","11...

  9. Cold vacuum drying facility design requirements

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  10. FINAL REPORT: Transformational electrode drying process

    SciTech Connect (OSTI)

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  11. Thermal BEC black holes

    E-Print Network [OSTI]

    Roberto Casadio; Andrea Giugno; Octavian Micu; Alessio Orlandi

    2015-11-04

    We review some features of BEC models of black holes obtained by means of the HWF formalism. We consider the KG equation for a toy graviton field coupled to a static matter current in spherical symmetry. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with continuous occupation number. An attractive self-interaction is needed for bound states to form, so that (approximately) one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The HWF is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons), in agreement with semiclassical calculations and different from a single very massive particle. The spectrum contains a discrete ground state of energy $m$ (the bosons forming the black hole), and a continuous spectrum with energy $\\omega > m$ (representing the Hawking radiation and modelled with a Planckian distribution at the expected Hawking temperature). The $N$-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy $M = N m$ and a Planckian distribution for $E > M$ at the same Hawking temperature. The partition function is then found to yield the usual area law for the entropy, with a logarithmic correction related with the Hawking component. The backreaction of modes with $\\omega > m$ is also shown to reduce the Hawking flux and the evaporation properly stops for vanishing mass.

  12. Relativistic Viscous Fluid Description of Microscopic Black Hole Wind

    E-Print Network [OSTI]

    J. I. Kapusta

    2001-05-25

    Microscopic black holes explode with their temperature varying inversely as their mass. Such explosions would lead to the highest temperatures in the present universe, all the way to the Planck energy. Whether or not a quasi-stationary shell of matter undergoing radial hydrodynamic expansion surrounds such black holes is been controversial. In this paper relativistic viscous fluid equations are applied to the problem. It is shown that a self-consistent picture emerges of a fluid just marginally kept in local thermal equilibrium; viscosity is a crucial element of the dynamics.

  13. Anomalies, Chern-Simons Terms and Black Hole Entropy

    E-Print Network [OSTI]

    Tatsuo Azeyanagi; R. Loganayagam; Gim Seng Ng

    2015-05-11

    Recent derivations of Cardy-like formulae in higher dimensional field theories have opened up a way of computing, via AdS/CFT, universal contributions to black hole entropy from gravitational Chern-Simons terms. Based on the manifestly covariant formulation of the differential Noether charge for Chern-Simons terms proposed in arXiv:1407.6364, we compute the entropy and asymptotic charges for the rotating charged AdS black holes in higher dimensions at leading order of the fluid/gravity derivative expansion in the Einstein-Maxwell-Chern-Simons system. This gives a result that exactly matches the field theory predictions from Cardy-like formulae.

  14. Artificial ozone holes

    E-Print Network [OSTI]

    S. N. Dolya

    2014-10-18

    This article considers an opportunity of disinfecting a part of the Earth surface, occupying a large area of ten thousand square kilometers. The sunlight will cause dissociation of molecular bromine into atoms; each bromine atom kills thirty thousand molecules of ozone. Each bromine plate has a mass of forty milligrams grams and destroys ozone in the area of hundred square meters. Thus, to form the ozone hole over the area of ten thousand square kilometers, it is required to have the total mass of bromine equal to the following four tons.

  15. Holographic Black Hole Chemistry

    E-Print Network [OSTI]

    Andreas Karch; Brandon Robinson

    2015-11-02

    Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation. We show that this relation can easily be understood from the point of view of the dual holographic field theory. It amounts to the simple statement that the extensive thermodynamic quantities of a large $N$ gauge theory only depend on the number of colors, $N$, via an overall factor of $N^2$.

  16. Precipitation scavenging, dry deposition, and resuspension. Volume 2: dry deposition and resuspension

    SciTech Connect (OSTI)

    Pruppacher, H.R.; Semanin, R.G.; Slinn, W.G.N.

    1983-01-01

    Papers are presented under the headings: dry deposition of gases, dry deposition of particles, wind erosion, plutonium deposition and resuspension, air-sea exchange, tropical and polar, global scale, and future studies.

  17. Collisions with Black Holes and Deconfined Plasmas

    E-Print Network [OSTI]

    Amsel, Aaron J; Virmani, Amitabh

    2008-01-01

    We use AdS/CFT to investigate i) high energy collisions with balls of deconfined plasma surrounded by a confining phase and ii) the rapid localized heating of a deconfined plasma. Both of these processes are dual to collisions with black holes, where they result in the nucleation of a new "arm" of the horizon reaching out in the direction of the incident object. We study the resulting non-equilibrium dynamics in a universal limit of the gravitational physics which may indicate universal behavior of deconfined plasmas at large N_c. Process (i) produces "virtual" arms of the plasma ball, while process (ii) can nucleate surprisingly large bubbles of a higher temperature phase.

  18. Collisions with Black Holes and Deconfined Plasmas

    E-Print Network [OSTI]

    Aaron J. Amsel; Donald Marolf; Amitabh Virmani

    2007-12-13

    We use AdS/CFT to investigate i) high energy collisions with balls of deconfined plasma surrounded by a confining phase and ii) the rapid localized heating of a deconfined plasma. Both of these processes are dual to collisions with black holes, where they result in the nucleation of a new "arm" of the horizon reaching out in the direction of the incident object. We study the resulting non-equilibrium dynamics in a universal limit of the gravitational physics which may indicate universal behavior of deconfined plasmas at large N_c. Process (i) produces "virtual" arms of the plasma ball, while process (ii) can nucleate surprisingly large bubbles of a higher temperature phase.

  19. What is the state of the Early Universe?

    E-Print Network [OSTI]

    Samir D. Mathur

    2008-03-27

    As we follow our Universe to early times, we find that matter was crushed to high densities, somewhat similar to the behavior at a black hole singularity. String theory has made progress in explaining the internal structure of black holes, so we would like to extrapolate the ideas learnt from black holes to the early Universe. If we assume that we want the most probable state of the Universe at early times, then we should look at the kind of state that describes a generic black hole. This suggests a definite equation of state for the matter in the early Universe. Quantum effects can stretch across macroscopic distances in black holes, and these might be important in understanding the early Universe as well.

  20. Black Holes of Negative Mass

    E-Print Network [OSTI]

    R. B. Mann

    1997-05-06

    I demonstrate that, under certain circumstances, regions of negative energy density can undergo gravitational collapse into a black hole. The resultant exterior black hole spacetimes necessarily have negative mass and non-trivial topology. A full theory of quantum gravity, in which topology-changing processes take place, could give rise to such spacetimes.

  1. The Ozone Hole Some perspective

    E-Print Network [OSTI]

    Toohey, Darin W.

    The Ozone Hole · Some perspective · The British Antarctic Survey · The "Ozone Hole" · International of the predicted ozone losses! This was quite a controversy. Ultimately, ozone losses started appearing in the late 1980s (see Figure below), but by then, there was already a credibility issue for ozone scientists. #12

  2. Inspection of Used Fuel Dry Storage Casks

    SciTech Connect (OSTI)

    Dennis C. Kunerth; Tim McJunkin; Mark McKay; Sasan Bakhtiari

    2012-09-01

    ABSTRACT The U.S. Nuclear Regulatory Commission (NRC) regulates the storage of used nuclear fuel, which is now and will be increasingly placed in dry storage systems. Since a final disposition pathway is not defined, the fuel is expected to be maintained in dry storage well beyond the time frame originally intended. Due to knowledge gaps regarding the viability of current dry storage systems for long term use, efforts are underway to acquire the technical knowledge and tools required to understand the issues and verify the integrity of the dry storage system components. This report summarizes the initial efforts performed by researchers at Idaho National Laboratory and Argonne National Laboratory to identify and evaluate approaches to in-situ inspection dry storage casks. This task is complicated by the design of the current storage systems that severely restrict access to the casks.

  3. Thermodynamics of de Sitter Black Holes: Thermal Cosmological Constant

    E-Print Network [OSTI]

    Yuichi Sekiwa

    2006-04-10

    We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes.

  4. Single-Walled Carbon Nanotubes and Graphene as Hole Transport Layer & Electrode for Solar Cells Shigeo Maruyama

    E-Print Network [OSTI]

    Maruyama, Shigeo

    Single-Walled Carbon Nanotubes and Graphene as Hole Transport Layer & Electrode for Solar Cells-Si solar cell [1], dry-deposited SWNTs-Si solar cell [2], graphene-Si solar cells, organic solar cell (OSC) [3] and perovskite-type solar cells [4]. Using millimeter-scale monocrystalline single-layer graphene

  5. May 24 -28, 2015 (Invited) Single-Walled Carbon Nanotubes and Graphene As Highly Efficient Hole Collecting and

    E-Print Network [OSTI]

    Maruyama, Shigeo

    cell [1], dry-deposited SWNTs-Si solar cell [2], graphene-Si solar cells, organic solar cell [3) of 11.6% before any intentional doping process. For organic solar cells (OSC), the SWNT Efficient Hole Collecting and Transport Layer for Solar Cells Wednesday, 27 May 2015: 14:00 Lake Huron

  6. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  7. UNIVERSITY AVE UNIVERSITY AVE

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    P UNIVERSITY AVE UNIVERSITY AVE UNIVERSITY AVE UNIVERSITY AVE PATTESON DR VANVOORHISRDVANVOORHISR STKREPPS AVE BROAD ST ELM ST DOGWOOD ST UNIVERSITY AVE MONONGAHELABLVD US HWY 19 41 48 Patient 48 53 78 58 Complex Pierpont Apartments UNIVERSITY PARK Erickson Alumni Center Fieldcrest Hall University Services

  8. On geodesic dynamics in deformed black-hole fields

    E-Print Network [OSTI]

    Old?ich Semerák; Petra Suková

    2015-09-28

    "Almost all" seems to be known about isolated stationary black holes in asymptotically flat space-times and about the behaviour of {\\em test} matter and fields in their backgrounds. The black holes likely present in galactic nuclei and in some X-ray binaries are commonly being represented by the Kerr metric, but actually they are not isolated (they are detected only thanks to a strong interaction with the surroundings), they are not stationary (black-hole sources are rather strongly variable) and they also probably do not live in an asymptotically flat universe. Such "perturbations" may query the classical black-hole theorems (how robust are the latter against them?) and certainly affect particles and fields around, which can have observational consequences. In the present contribution we examine how the geodesic structure of the static and axially symmetric black-hole space-time responds to the presence of an additional matter in the form of a thin disc or ring. We use several different methods to show that geodesic motion may become chaotic, to reveal the strength and type of this irregularity and its dependence on parameters. The relevance of such an analysis for galactic nuclei is briefly commented on.

  9. Colliding Axion-Dilaton Plane Waves from Black Holes

    E-Print Network [OSTI]

    Patricia Schwarz

    1997-08-01

    The colliding plane wave metric discovered by Ferrari and Iba\\~{n}ez to be locally isometric to the interior of a Schwarzschild black hole is extended to the case of general axion-dilaton black holes. Because the transformation maps either black hole horizon to the focal plane of the colliding waves, this entire class of colliding plane wave spacetimes only suffers from the formation of spacetime singularities in the limits where the inner horizon itself is singular, which occur in the Schwarzschild and dilaton black hole limits. The supersymmetric limit corresponding to the extreme axion-dilaton black hole yields the Bertotti-Robinson metric with the axion and dilaton fields flowing to fixed constant values. The maximal analytic extension of this metric across the Cauchy horizon yields a spacetime in which two sandwich waves in a cylindrical universe collide to produce a semi-infinite chain of Reissner-Nordstrom-like wormholes. The focussing of particle and string geodesics in this spacetime is explored.

  10. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  11. A connection between plasma conditions near black hole event horizons and outflow properties

    E-Print Network [OSTI]

    Koljonen, K I I; Ontiveros, J A Fernández; Markoff, S; Russell, T D; Miller-Jones, J C A; van der Horst, A J; Bernardini, F; Casella, P; Curran, P A; Gandhi, P; Soria, R

    2015-01-01

    Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the Universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. In these sources the emission of the plasma near the black hole is characterized by a power law at X-ray energies during times when the jets are produced. We find that the photon index of this power law, which gives information on the underlying particle distribution, correlates with the characteristic break frequency in the jet spectrum, which is dependent on magnetohydrodynamical processes in the outflow. The observed range in break frequencies varies by five orders of magnitude, i...

  12. Entropy Product Formula for spinning BTZ Black Hole

    E-Print Network [OSTI]

    Pradhan, Parthapratim

    2015-01-01

    We investigate the thermodynamic properties of inner and outer horizons in the background of spinning BTZ(Ba\\~{n}ados,Teitelboim and Zanelli) black hole. We compute the \\emph{horizon radii product, the entropy product, the surface temperature product, the Komar energy product and the specific heat product} for both the horizons. We observe that the entropy product is \\emph{universal}(mass-independent), whereas the surface temperature product, Komar energy product and specific heat product are \\emph{not universal} because they all depends on mass parameter. We also show that the \\emph{First law} of black hole thermodynamics and \\emph {Smarr-Gibbs-Duhem } relations hold for inner horizon as well as outer horizon. The Christodoulou-Ruffini mass formula is derived for both the horizons. We further study the \\emph{stability} of such black hole by computing the specific heat for both the horizons. It has been observed that under certain condition the black hole possesses \\emph{second order phase transition}.

  13. Entropy Product Formula for spinning BTZ Black Hole

    E-Print Network [OSTI]

    Parthapratim Pradhan

    2015-09-02

    We investigate the thermodynamic properties of inner and outer horizons in the background of spinning BTZ(Ba\\~{n}ados,Teitelboim and Zanelli) black hole. We compute the \\emph{horizon radii product, the entropy product, the surface temperature product, the Komar energy product and the specific heat product} for both the horizons. We observe that the entropy product is \\emph{universal}(mass-independent), whereas the surface temperature product, Komar energy product and specific heat product are \\emph{not universal} because they all depends on mass parameter. We also show that the \\emph{First law} of black hole thermodynamics and \\emph {Smarr-Gibbs-Duhem } relations hold for inner horizon as well as outer horizon. The Christodoulou-Ruffini mass formula is derived for both the horizons. We further study the \\emph{stability} of such black hole by computing the specific heat for both the horizons. It has been observed that under certain condition the black hole possesses \\emph{second order phase transition}.

  14. Airless drying -- Developments since IDS'94

    SciTech Connect (OSTI)

    Stubbing, T.J.

    1999-09-01

    Since its introduction to IDS'94 delegates, significant progress has been made with the development of airless drying technology. The ceramic industry internationally is beginning to benefit from both the energy use and drying time reductions it achieves, while on the basis of further theoretical work carried out since 1993 other industries, including the bioenergy sector, should also soon begin to exploit its advantages. As global warming becomes a reality and oil reserves decline, superheated steam drying and gasification of biomass will contribute to the mitigation of those problems.

  15. Strings, higher curvature corrections, and black holes

    E-Print Network [OSTI]

    Thomas Mohaupt

    2005-12-05

    We review old and recent results on subleading contributions to black hole entropy in string theory.

  16. The Woods Hole Laboratory, 1885-1985

    E-Print Network [OSTI]

    The Woods Hole Laboratory, 1885-1985: A Century of Service Woods Hole Laboratory Northeast, Lectures, and Rededication of the Woods Hole Laboratory Contents Foreword and Acknowledgments Committees and Contributions of the Woods Hole Fisheries Laboratory Centennial Lecture II: The MBL and the Fisheries-A Century

  17. Movements of Palearctic and Afrotropical bird species during the dry season (NovemberFebruary) within Nigeria

    E-Print Network [OSTI]

    de Villiers, Marienne

    ­February) within Nigeria WILL CRESSWELL1, MARK BOYD2 & MATT STEVENS1 1AP Leventis Ornithological Research Institute, Jos, Nigeria & School of Biology, University of St Andrews, Fife, Scotland. wrlc@st-and.ac.uk 2Afrotropical bird species during the dry season (November­February) within Nigeria. pp. 18­28. In: Harebottle, D

  18. IDENTIFYING DIFFERENCES IN WET AND DRY ROAD CRASHES USING DATA MINING Emerson D a

    E-Print Network [OSTI]

    Liang, Huizhi "Elly"

    ]. These criteria aim to develop roads that sustain set maximum traffic volumes at certain traffic speeds with low1 IDENTIFYING DIFFERENCES IN WET AND DRY ROAD CRASHES USING DATA MINING Emerson D a , Nayak R, Queensland University of Technology, Brisbane, Queensland, Australia. b. Road Asset Management Branch

  19. ` New Mexico State University Administration and Finance

    E-Print Network [OSTI]

    Johnson, Eric E.

    ` New Mexico State University Administration and Finance A&F Weekly Report ­ Week Ending 5-Dry were the presenters. The session was very informative and it provided the New Mexico State University Administration and Finance A&F Weekly Report ­ Week Ending 6/12/2015 #12;` New Mexico State University

  20. Resuspension and dry deposition research needs

    SciTech Connect (OSTI)

    Sehmel, G.A.

    1983-01-01

    The author concludes that better predictive models are needed for the signifcant health, ecological, and economic impacts of resuspended particles and their subsequent dry deposition. Both chemical and radioactive aerosols are discussed. (PSB)

  1. Advanced wet-dry cooling tower concept

    E-Print Network [OSTI]

    Snyder, Troxell Kimmel

    The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

  2. Infrared Dry-peeling Technology for Tomatoes

    E-Print Network [OSTI]

    This research will use infrared heating technology for peeling tomatoes. Infrared dry peeling, a device District: 8 Senate District: 5 Application: Nationwide Amount: $324,250 Term: November 1, 2010

  3. High strength air-dried aerogels

    DOE Patents [OSTI]

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  4. Wall Drying in Hot and Humid Climates 

    E-Print Network [OSTI]

    Boone, K.; Weston, T.; Pascual, X.

    2004-01-01

    's ability to dry is not considered during the design or material selection process. No cladding system or installation is perfect, therefore wall systems should be designed with the assumption that some moisture will enter and then consider the effects...

  5. Dry Cask Storage Study Feb 1989

    Broader source: Energy.gov [DOE]

    This report on the use of dry-cask-storage technologies at the sites of civilian nuclear power reactors has been prepared by the U.S. Department of Energy (DOE} in response to the requirements of...

  6. Black hole horizons Eric Gourgoulhon

    E-Print Network [OSTI]

    Gourgoulhon, Eric

    on a black hole: up to 42% of the mass-energy mc2 of accreted matter ! NB: thermonuclear reactions release: a very deep gravitational potential well Release of potential gravitational energy by accretion

  7. Thermodynamics of regular black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2008-09-21

    We investigate thermodynamics for a magnetically charged regular black hole (MCRBH), which comes from the action of general relativity and nonlinear electromagnetics, comparing with the Reissner-Norstr\\"om (RN) black hole in both four and two dimensions after dimensional reduction. We find that there is no thermodynamic difference between the regular and RN black holes for a fixed charge $Q$ in both dimensions. This means that the condition for either singularity or regularity at the origin of coordinate does not affect the thermodynamics of black hole. Furthermore, we describe the near-horizon AdS$_2$ thermodynamics of the MCRBH with the connection of the Jackiw-Teitelboim theory. We also identify the near-horizon entropy as the statistical entropy by using the AdS$_2$/CFT$_1$ correspondence.

  8. Black Holes and Nuclear Dynamics

    E-Print Network [OSTI]

    David Merritt

    2006-02-17

    Supermassive black holes inhabit galactic nuclei, and their presence influences in crucial ways the evolution of the stellar distribution. The low-density cores observed in bright galaxies are probably a result of black hole infall, while steep density cusps like those at the Galactic center are a result of energy exchange between stars moving in the gravitational field of the single black hole. Loss-cone dynamics are substantially more complex in galactic nuclei than in collisionally-relaxed systems like globular clusters due to the wider variety of possible geometries and orbital populations. The rate of star-black hole interactions has begun to be constrained through observations of energetic events associated with stellar tidal disruptions.

  9. Primordial Black Holes: Observational Characteristics of The Final Evaporation

    E-Print Network [OSTI]

    Ukwatta, T N; Linnemann, J T; MacGibbon, J H; Marinelli, S S; Yapici, T; Tollefson, K

    2015-01-01

    Many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to $10^5$ solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. The final moments of this evaporation phase should be explosive and its description dependent on the particle physics model. In this work we investigate the final few seconds of BH evaporation using the Standard Model of particle physics incorporating the most recent LHC results and calculate energy dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures relevant to very high energy gamma-ray observatories.

  10. CP Violation and Baryogenesis in the Presence of Black Holes

    E-Print Network [OSTI]

    Tom Banks; Willy Fischler

    2015-05-16

    In a recent paper[1] Kundu and one of the present authors showed that there were transient but observable CP violating effects in the decay of classical currents on the horizon of a black hole, if the Lagrangian of the Maxwell field contained a CP violating angle {\\theta}. In this paper we demonstrate that a similar effect can be seen in the quantum mechanics of QED: a non-trivial Berry phase in the QED wave function is produced by in-falling electric charges. We also investigate whether CP violation, of this or any other type, might be used to produce the baryon asymmetry of the universe, in models where primordial black hole decay contributes to the matter content of the present universe. This can happen both in a variety of hybrid inflation models, and in the Holographic Space-time (HST) model of inflation[2].

  11. U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProved Reserves (Billion Cubic Feet)Estimated Production fromSales (BillionDrilled

  12. U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProved Reserves (Billion Cubic Feet)Estimated Production fromSales (BillionDrilledExploratory

  13. You Cannot Press Out the Black Hole

    E-Print Network [OSTI]

    Daisuke Ida; Takahiro Okamoto

    2012-01-03

    It is shown that a ball-shaped black hole region homeomorphic with D**n cannot be pressed out, along whichever axis penetrating the black hole region, into a black ring with a doughnut-shaped black hole region homeomorphic with S**1 x D**(n-1). A more general prohibition law for the change of the topology of black holes, including a version of no-bifurcation theorems for black holes, is given.

  14. Analysis of the Sultana-Dyer cosmological black hole solution of the Einstein equations

    SciTech Connect (OSTI)

    Faraoni, Valerio

    2009-08-15

    The Sultana-Dyer solution of general relativity representing a black hole embedded in a special cosmological background is analyzed. We find an expanding (weak) spacetime singularity instead of the reported conformal Killing horizon, which is covered by an expanding black hole apparent horizon (internal to a cosmological apparent horizon) for most of the history of the Universe. This singularity was naked early on. The global structure of the solution is studied as well.

  15. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  16. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  17. Ehrenfest scheme for $P-V$ criticality of higher dimensional charged black holes, rotating black holes and Gauss-Bonnet AdS black holes

    E-Print Network [OSTI]

    Mo, Jie-Xiong

    2014-01-01

    To provide an analytic verification of the nature of phase transition at the critical point of $P-V$ criticality, the original expressions of Ehrenfest equations have been introduced directly. By treating the cosmological constant and its conjugate quantity as thermodynamic pressure and volume respectively, we carry out analytical check of classical Ehrenfest equations. To show that our approach is universal, we investigate not only higher-dimensional charged AdS black holes, but also rotating AdS black holes. Not only are the examples of Einstein gravity shown, but also the example of modified gravity is presented for Gauss-Bonnet AdS black holes. The specific heat at constant pressure $C_P$, the volume expansion coefficient $\\alpha$ and the isothermal compressibility coefficient $\\kappa_T$ are found to diverge exactly at the critical point. It has been verified that both Ehrenfest equations hold at the critical point of $P-V$ criticality in the extended phase spaces of AdS black holes. So the nature of the ...

  18. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific American: "Tall Trees Sucked Dry by Global Warming" June 7, 2015 Scientific American: "Tall Trees Sucked Dry by Global Warming" A well-known scientific principle...

  19. Scientific American: "Tall Trees Sucked Dry by Global Warming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dry by Global Warming" Scientific American: "Tall Trees Sucked Dry by Global Warming" Climate change will challenge tall trees like California's redwoods. June 7, 2015...

  20. High Burnup Dry Storage Cask Research and Development Project...

    Energy Savers [EERE]

    High Burnup Dry Storage Cask Research and Development Project: Final Test Plan High Burnup Dry Storage Cask Research and Development Project: Final Test Plan The potential need to...

  1. Fishing in Black Holes

    E-Print Network [OSTI]

    A. Brotas

    2006-09-01

    The coordinate system $(\\bar{x},\\bar{t})$ defined by $r = 2m + K\\bar{x}- c K \\bar{t}$ and $t=\\bar{x}/cK - 1 /cK \\int_{r_a}^r (1- 2m/r + K^2)^{1/2} (1 - 2m/r)^{-1}dr$ allow us to write the Schwarzschild metric in the form: \\[ds^2=c^2 d\\bar{t}^2 + (W^2/K^2 - 2W/K) d\\bar{x}^2 + 2c (1 + W/K) d\\bar{x}d\\bar{t} - r^2 (d\\theta^2 + cos^2\\theta d\\phi^2)\\] with $W=(1 - 2m/r + K^2)^{1/2}$, in which the coefficients' pathologies are moved to $r_K = 2m/(1+K^2)$. This new coordinate system is used to study the entrance into a black hole of a rigid line (a line in which the shock waves propagate with velocity c).

  2. Heat Transfer Performance of a Dry and Wet / Dry Advanced Cooling Tower Condenser 

    E-Print Network [OSTI]

    Fricke, H. D.; Webster, D. J.; McIlroy, K.; Bartz, J. A.

    1981-01-01

    PERFORMANCE OF A DRY AND WET/DRY ADVANCED COOLING TOWER CONDENSER Hans D. Fricke, David J. Webster, Kenneth McIlroy Union carbide Corporation - Linde Division, Tonawanda, New York John A. Bartz Electric Power Research Institute, Palo Alto, california... cooling in creases siting flexibility, particularly for locations in arid Western coal fields. However, dry cooling requires considerable capital investment for the cooling towers. Hence, the development of effitient (low cost) heat transfer surfaces...

  3. Preliminary results and status report of the Hawaiian Scientific Observation Hole program

    SciTech Connect (OSTI)

    Olson, Harry J.; Deymonaz, John E.

    1992-01-01

    The Hawaii Natural Energy Institute (HNEI), an institute within the School of Ocean and Earth Science and Technology, at the University of Hawaii at Manoa has drilled three Scientific Observation Holes (SOH) in the Kilauea East Rift Zone to assess the geothermal potential of the Big Island of Hawaii, and to stimulate private development of the resource. The first hole drilled, SOH-4, reached a depth of 2,000 meters and recorded a bottom hole temperature of 306 C. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole, SOH- 1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C and effectively defined the northern limit of the Hawaii Geothermal Project-Abbott--Puna Geothermal Venture (HGP-A/PGV) reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C and has sufficient indicated permeability to be designated as a potential ''discovery''. The SOH program was also highly successful in developing slim hole drilling techniques and establishing subsurface geological conditions.

  4. Two-hole bound states from a systematic low-energy effective field theory for magnons and holes in an antiferromagnet

    SciTech Connect (OSTI)

    Bruegger, C.; Kaempfer, F.; Moser, M.; Wiese, U.-J.; Pepe, M.

    2006-12-01

    Identifying the correct low-energy effective theory for magnons and holes in an antiferromagnet has remained an open problem for a long time. In analogy to the effective theory for pions and nucleons in QCD, based on a symmetry analysis of Hubbard and t-J-type models, we construct a systematic low-energy effective field theory for magnons and holes located inside pockets centered at lattice momenta ({+-}({pi}/2a),{+-}({pi}/2a)). The effective theory is based on a nonlinear realization of the spontaneously broken spin symmetry and makes model-independent universal predictions for the entire class of lightly doped antiferromagnetic precursors of high-temperature superconductors. The predictions of the effective theory are exact, order by order in a systematic low-energy expansion. We derive the one-magnon exchange potentials between two holes in an otherwise undoped system. Remarkably, in some cases the corresponding two-hole Schroedinger equations can even be solved analytically. The resulting bound states have d-wave characteristics. The ground state wave function of two holes residing in different hole pockets has a d{sub x{sup 2}-y{sup 2}}-like symmetry, while for two holes in the same pocket the symmetry resembles d{sub xy}.

  5. The economic effects of liberalized U.S.-Mexico dry onion trade 

    E-Print Network [OSTI]

    Gillis, Melanie

    1993-01-01

    +AN ', q~~ ~x qsio, v~ ~P /~fjp ~/CM:~ y: . ~/~~~: . "~c'r, THE ECONOMIC EFFECTS OF LIBERALIZED U. S. -MEXICO DRY ONION TRADE A Thesis by MELANIE GILLIS Submitted to the Office of Graduate Studies of Texas A8r M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1993 Major Subject: Agricultural Economics THE ECONOMIC EFFECTS OF LIBERALIZED U. S. -MEXICO DRY ONION TRADE A Thesis by MELANIE GILLIS r ed as to style and content by: I g...

  6. Eddy conductivity in and near dry cold fronts in the layer, 70 to 1270 feet 

    E-Print Network [OSTI]

    Conlan, Edward Francis

    1965-01-01

    EDDY CONDUCTIVITY IN AND NEAR DRY COLD FRONTS IN THE LAYER, 70 TO 1270 FEET A Thesis By EDWARD FRANCIS CONLAN Captain, USAF Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE January 1965 Major Subject: METEOROLOGY EDDY CONDUCTIVITY IN AND NEAR DRY COLD FRONTS IN THE LAYER) 70 TO 1270 FEET A Thesis By EDWARD FRANCIS CONLAN Captain, USAF Approved as to style and content by: i J 8~. . c6~h arrmanf o...

  7. Evaluation of heat transfer processes in the lower 1420 feet of dry cold frontal zones 

    E-Print Network [OSTI]

    Ryan, Bill Chatten

    1964-01-01

    EVALUATION OF HEAT TRANSFER PROCESSES IN THE IlNER 1420 FEET OF DRY COID FRONTAL ZONES A Thesis By BILL CHATTEN RYAN Captain U. S. A. F. Submitted to the Graduate College of the Texas ASM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1964 Ma]or Sub]ect: Meteorology EVALUATION OF HEAT TRANSFER PROCESSES IN THE LOWER 1420 FEET OF DRY COID FRONTAL ZONES A Thesis By BILL CHATTEN RYAN Captain U. S. A. F. Approved as to style and content by: (C...

  8. Factors affecting the recovery of bacteria in freeze-dried model systems 

    E-Print Network [OSTI]

    Custer, Carl Steven

    1970-01-01

    FACTORS AFFECTING THE RECOVERY OF BACTERIA IN FREEZE-DRIED NODEL SYSTENS A Thesis by CARL STEVEN CUSTER Submitted to the Graduate College of Texas A&N University in partial fulfillment of the requirement for tbe degree of MASTER OF SCIENCE... December 1970' Najor Subject: Food Technology FACTORS AFFECTING THE RECOVERY OF BACTERIA IN FREEZE-DRIED MODEL SYSTEMS A Thesis CARL STEVEN CUSTER Approved as to sty1e and content by: Chairman of Com tee) Head of Departme (Member) (Member) (Member...

  9. Method and apparatus for drying web

    DOE Patents [OSTI]

    Orloff, David I. (Atlanta, GA); Kloth, Gerald R. (Kennesaw, GA); Rudemiller, Gary R. (Paducah, KY)

    1992-01-01

    The present invention is directed to a method and apparatus for drying a web of paper utilizing impulse drying techniques. In the method of the invention for drying a paper web, the paper web is transported through a pair of rolls wherein at least one of the rolls has been heated to an elevated temperature. The heated roll is provided with a surface having a low thermal diffusivity of less than about 1.times.10.sup.-6 m.sup.2 /s. The surface material of the roll is preferably prepared from a material selected from the group consisting of ceramics, polymers, glass, inorganic plastics, composite materials and cermets. The heated roll may be constructed entirely from the material having a low thermal diffusivity or the roll may be formed from metal, such as steel or aluminum, or other suitable material which is provided with a surface layer of a material having a low thermal diffusivity.

  10. Sensitivity of HAWC to Primordial Black Hole Bursts

    E-Print Network [OSTI]

    Ukwatta, T N; MacGibbon, D Stump J H; Marinelli, S S; Yapici, T; Tollefson, K

    2015-01-01

    Primordial Black Holes (PBHs) are black holes that may have been created in the early Universe and could be as large as supermassive black holes or as small as the Planck scale. It is believed that a black hole has a temperature inversely proportional to its mass and will thermally emit all species of fundamental particles. PBHs with initial masses of 5.0 x 10^14 g should be expiring today with bursts of high-energy gamma radiation in the GeV/TeV energy range. The High Altitude Water Cherenkov (HAWC) observatory is sensitive to the high end of the PBH gamma-ray burst spectrum. Due to its large field of view, duty cycle above 90% and sensitivity up to 100 TeV, the HAWC observatory is well suited to perform a search for PBH bursts. We report that if the PBH explodes within 0.25 light years from Earth and within 26 degrees of zenith, HAWC will have a 95% probability of detecting the PBH burst at the 5 sigma level. Conversely, a null detection from a 2 year or longer HAWC search will set PBH upper limits which ar...

  11. Energy on black hole spacetimes

    E-Print Network [OSTI]

    Alejandro Corichi

    2012-07-18

    We consider the issue of defining energy for test particles on a background black hole spacetime. We revisit the different notions of energy as defined by different observers. The existence of a time-like isometry allows for the notion of a total conserved energy to be well defined, and subsequently the notion of a gravitational potential energy is also meaningful. We then consider the situation in which the test particle is adsorbed by the black hole, and analyze the energetics in detail. In particular, we show that the notion of horizon energy es defined by the isolated horizons formalism provides a satisfactory notion of energy compatible with the particle's conserved energy. As another example, we comment a recent proposal to define energy of the black hole as seen by an observer at rest. This account is intended to be pedagogical and is aimed at the level of and as a complement to the standard textbooks on the subject.

  12. Heat Engine of black holes

    E-Print Network [OSTI]

    J. Sadeghi; Kh. Jafarzade

    2015-06-23

    As we know, the cosmological constant in different theories of gravity acts as a thermodynamics variable. The cosmological constant exists in different actions of gravity and also appears in the solution of such theories. These lead to use the black hole as a heat engines. Also, there are two values for the cosmological constant as positive and negative values. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. In this paper, we are going to define heat engines for two different black holes as Dyonic BH and Kerr BH. And also, we calculate maximum efficiency for two black holes.

  13. Geothermal reservoir assessment based on slim hole drilling. Volume 2: Application in Hawaii: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was planned, funded, and initiated in 1988 by the Hawaii Natural Energy Institute, an institute within the School of Ocean and Earth Science and Technology, at the University of Hawaii at Manoa. Initial funding for the SOH program was $3.25 million supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a/bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project-Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential discovery.

  14. Dry etching method for compound semiconductors

    DOE Patents [OSTI]

    Shul, R.J.; Constantine, C.

    1997-04-29

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  15. Annotated Bibliography for Drying Nuclear Fuel

    SciTech Connect (OSTI)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  16. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T. Tazwell (Livermore, CA); Keller, Jay O. (Oakland, CA)

    1989-01-01

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  17. Black Holes and Galaxy Dynamics

    E-Print Network [OSTI]

    David Merritt

    1999-06-02

    The consequences of nuclear black holes for the structure and dynamics of stellar spheroids are reviewed. Slow growth of a black hole in a pre-existing core produces a steep power-law density profile similar to the cusps seen in faint elliptical galaxies. The weaker cusps in bright ellipticals may result from ejection of stars by a coalescing black-hole binary; there is marginal kinematical evidence for such a process having occurred in M87. Stellar orbits in a triaxial nucleus are mostly regular at radii where the gravitational force is dominated by the black hole; however the orbital shapes are not conducive to reinforcing the triaxial figure, hence nuclei are likely to be approximately axisymmetric. In triaxial potentials, a ``zone of chaos'' extends outward to a radius where the enclosed stellar mass is roughly 100 times the mass of the black hole; in this chaotic zone, no regular, box-like orbits exist. At larger radii, the phase space in triaxial potentials is complex, consisting of stochastic orbits as well as regular orbits associated with stable resonances. Figure rotation tends to increase the degree of stochasticity. Both test-particle integrations and N-body simulations suggest that a triaxial galaxy responds globally to the presence of a central mass concentration by evolving toward more axisymmetric shapes; the evolution occurs rapidly when the mass of the central object exceeds roughly 2% of the mass in stars. The lack of significant triaxiality in most early-type galaxies may be a consequence of orbital evolution induced by nuclear black holes.

  18. Introduction to Black Hole Evaporation

    E-Print Network [OSTI]

    Pierre-Henry Lambert

    2014-01-16

    These lecture notes are an elementary and pedagogical introduction to the black hole evaporation, based on a lecture given by the author at the Ninth Modave Summer School in Mathematical Physics and are intended for PhD students. First, quantum field theory in curved spacetime is studied and tools needed for the remaining of the course are introduced. Then, quantum field theory in Rindler spacetime in 1+1 dimensions and in the spacetime of a spherically collapsing star are considered, leading to Unruh and Hawking effects, respectively. Finally, some consequences such as thermodynamics of black holes and information loss paradox are discussed.

  19. Does phantom energy produce black hole?

    E-Print Network [OSTI]

    F. Rahaman; A. Ghosh; M. Kalam

    2006-12-23

    We have found an exact solution of spherically symmetrical Einstein equations describing a black hole with a special type phantom energy source. It is surprising to note that our solution is analogous to Reissner-Nordstr\\"{o}m black hole.

  20. Dragging of inertial frames in the composed black-hole-ring system

    E-Print Network [OSTI]

    Shahar Hod

    2015-11-10

    A well-established phenomenon in general relativity is the dragging of inertial frames by a spinning object. In particular, due to the dragging of inertial frames by a ring orbiting a central black hole, the angular-velocity of the black-hole horizon in the composed black-hole-ring system is no longer related to the black-hole angular-momentum by the simple Kerr-like (vacuum) relation $\\Omega^{\\text{Kerr}}_{\\text{H}}(J_{\\text{H}})=J_{\\text{H}}/2M^2R_{\\text{H}}$. Will has performed a perturbative treatment of the composed black-hole-ring system in the regime of slowly rotating black holes and found the explicit relation $\\Omega^{\\text{BH-ring}}_{\\text{H}}(J_{\\text{H}}=0,J_{\\text{R}},R)=2J_{\\text{R}}/R^3$ for the angular-velocity of a central black hole with zero angular-momentum. Analyzing a sequence of black-hole-ring configurations with adiabatically varying (decreasing) circumferential radii, we show that the expression found by Will implies a smooth transition of the central black-hole angular-velocity from its asymptotic near-horizon value $\\Omega^{\\text{BH-ring}}_{\\text{H}}(J_{\\text{H}}=0,J_{\\text{R}},R\\to R^{+}_{\\text{H}})$ to its final Kerr (vacuum) value $\\Omega^{\\text{Kerr}}_{\\text{H}}(J^{\\text{new}}_{\\text{H}})$. We use this important observation in order to generalize the result of Will to the regime of black-hole-ring configurations in which the central black holes possess non-zero angular momenta. Remarkably, we find the simple universal relation $\\Delta\\Omega_{\\text{H}}\\equiv\\Omega^{\\text{BH-ring}}_{\\text{H}}(J_{\\text{H}},J_{\\text{R}},R\\to R^{+}_{\\text{H}})-\\Omega^{\\text{Kerr}}_{\\text{H}}(J_{\\text{H}})={{J_{\\text{R}}}/{4M^3}}$ for the asymptotic deviation of the black-hole angular-velocity in the composed black-hole-ring system from the corresponding angular-velocity of the unperturbed (vacuum) Kerr black hole with the same angular-momentum.

  1. University Faculty - 107 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    of Different Sorghum Cultivars. (August 1980) Uzoma Chike Akoma, B. S. , University of Houston Chairman of Advisory Committee: Dr, L. V. Rooney Twenty-five sorghum samples were evaluated bv popping with dry heated air. The sorghums included waxy and non...-waxy hybzids represen- tative of current and future commerical sorghum hybrids grown in Texas. Popping conditions such as moisture content, time and tempera- ture were optimized. All samples were popped using 17/ moisture which was optimum for popping...

  2. Underpinning the universe: its scales, holography and fractality

    E-Print Network [OSTI]

    Antonio Alfonso-Faus; Marius Josep Fullana i Alfonso

    2012-01-23

    We expand on the general concept of a universe. We identify physics as a unit applied to a universe. Then we generalize the concept of a quantum black hole, and apply it to the unit of a universe. We find that only one parameter, the Pin, is needed to define all its physical properties. Here we present three significant quantum black holes, three scales: Planck's, sub- Planck and our own universe as a whole. Then we revise the holographic and fractal properties, and propose a sequential growing process to explain the evolution and the basic structure of our universe.

  3. Classical and thermodynamic stability of black holes

    E-Print Network [OSTI]

    Ricardo Monteiro

    2010-06-28

    We consider the stability of black holes within both classical general relativity and the semiclassical thermodynamic description. In particular, we study linearised perturbations and their contribution to the gravitational partition function, addressing technical issues for charged (Reissner-Nordstrom) and rotating (Kerr-AdS) black holes. Exploring the connection between classical and thermodynamic stability, we find classical instabilities of Myers-Perry black holes and bifurcations to new black hole families.

  4. Hawking Emission and Black Hole Thermodynamics

    E-Print Network [OSTI]

    Don N. Page

    2006-12-18

    A brief review of Hawking radiation and black hole thermodynamics is given, based largely upon hep-th/0409024.

  5. Undesired drying of concrete and cement paste

    E-Print Network [OSTI]

    Langendoen, Koen

    Undesired drying of concrete and cement paste is a nightmare for any construction engineer of the concrete or cement paste surface. Inspired by the art of molecular cooking a team of TU Delft scientists for instance sodium alginates. When sprayed on the surface of concrete or cement paste, a rapid chemical

  6. Galaxy formation from dry and hydro simulations

    E-Print Network [OSTI]

    Ciotti, L

    2009-01-01

    The effects of dry and wet merging on the Scaling Laws (SLs) of elliptical galaxies (Es) are discussed. It is found that the galaxy SLs, possibly established at high redshift by the fast collapse of gas-rich and clumpy stellar distributions in preexisting dark matter halos following the cosmological SLs, are compatible with a (small) number of galaxy mergers at lower redshift.

  7. Nanostructured Block Copolymer Dry Electrolyte Ayan Ghosha,

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Nanostructured Block Copolymer Dry Electrolyte Ayan Ghosha, * and Peter Kofinasb,z a Department, College Park, Maryland 20742, USA We report on the synthesis and characterization of a solid-state polymer electrolyte with enhanced lithium transport based on a self-assembled diblock copolymer. The diblock copolymer

  8. Dry aging beef for the retail channel 

    E-Print Network [OSTI]

    Smith, Robert David

    2007-09-17

    USDA Choice (n=48) and Select (n=48) paired Beef Loin, Short Loins, Short Cut (IMPS #174) were separated randomly into one of two treatments, dry or wet aging, and were aged for 14, 21, 28, or 35 d. At the end of each aging period, short loins were...

  9. Hog Fuel Drying Using Vapour Recompression 

    E-Print Network [OSTI]

    Azarniouch, M. K.; MacEachen, I.

    1984-01-01

    A continuous hog fuel drying pilot plant based on the principle of mixing hog fuel with a hot oil (e.g., crude tall oil) as the heat transfer medium, and recirculating the suspension through a steam heated exchanger was designed, built...

  10. Scattering by regular black holes: Planar massless scalar waves impinging upon a Bardeen black hole

    E-Print Network [OSTI]

    Macedo, Caio F B; Crispino, Luís C B

    2015-01-01

    Singularities are common features of general relativity black holes. However, within general relativity, one can construct black holes that present no singularities. These regular black hole solutions can be achieved by, for instance, relaxing one of the energy conditions on the stress energy tensor sourcing the black hole. Some regular black hole solutions were found in the context of non-linear electrodynamics, the Bardeen black hole being the first one proposed. In this paper, we consider a planar massless scalar wave scattered by a Bardeen black hole. We compare the scattering cross section computed using a partial-wave description with the classical geodesic scattering of a stream of null geodesics, as well as with the semi-classical glory approximation. We obtain that, for some values of the corresponding black hole charge, the scattering cross section of a Bardeen black hole has a similar interference pattern of a Reissner-Nordstr\\"om black hole.

  11. Scattering by regular black holes: Planar massless scalar waves impinging upon a Bardeen black hole

    E-Print Network [OSTI]

    Caio F. B. Macedo; Ednilton S. de Oliveira; Luís C. B. Crispino

    2015-06-26

    Singularities are common features of general relativity black holes. However, within general relativity, one can construct black holes that present no singularities. These regular black hole solutions can be achieved by, for instance, relaxing one of the energy conditions on the stress energy tensor sourcing the black hole. Some regular black hole solutions were found in the context of non-linear electrodynamics, the Bardeen black hole being the first one proposed. In this paper, we consider a planar massless scalar wave scattered by a Bardeen black hole. We compare the scattering cross section computed using a partial-wave description with the classical geodesic scattering of a stream of null geodesics, as well as with the semi-classical glory approximation. We obtain that, for some values of the corresponding black hole charge, the scattering cross section of a Bardeen black hole has a similar interference pattern of a Reissner-Nordstr\\"om black hole.

  12. New approaches to black holes Eric Gourgoulhon

    E-Print Network [OSTI]

    Gourgoulhon, Eric

    References Eric Gourgoulhon (LUTH) New approaches to black holes Okinawa Nat. Col. Tech., 17 Aug 2008 2 / 36 Gourgoulhon (LUTH) New approaches to black holes Okinawa Nat. Col. Tech., 17 Aug 2008 3 / 36 #12;Local (2006)] Eric Gourgoulhon (LUTH) New approaches to black holes Okinawa Nat. Col. Tech., 17 Aug 2008 4

  13. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  14. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  15. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  16. Thermodynamics and Gauge Gravity Correspondence for a Generalized Charged Rotating Black Hole

    E-Print Network [OSTI]

    Majeed, Bushra

    2015-01-01

    We investigate the thermodynamics of Kerr-Newman-Kasuya black hole on the inner and outer horizons. Products of surface gravities, surface temperatures, Komar energies, electromagnetic potentials, angular velocities, areas, entropies, horizon radii and the irreducible masses at the Cauchy and the Event horizons are calculated. It is observed that the product of surface gravities, surface temperature product and product of Komar energies, electromagnetic potentials and angular velocities at the horizons are not universal quantities for Kerr-Newman-Kasuya black hole. Products of areas and entropies at both the horizons are independent of mass of the black hole. Heat capacity is calculated and phase transition is observed, under certain conditions on r. Using the thermodynamics method with quantized charges (known as re?ned thermodynamics), the central charges and the holographic pictures (J-picture, Q-picture, and P-picture) of the dual CFT for Kerr-Newman-Kasuya black hole are determined.

  17. Thermodynamics and Gauge Gravity Correspondence for a Generalized Charged Rotating Black Hole

    E-Print Network [OSTI]

    Bushra Majeed; Mubasher Jamil

    2015-07-06

    We investigate the thermodynamics of Kerr-Newman-Kasuya black hole on the inner and outer horizons. Products of surface gravities, surface temperatures, Komar energies, electromagnetic potentials, angular velocities, areas, entropies, horizon radii and the irreducible masses at the Cauchy and the Event horizons are calculated. It is observed that the product of surface gravities, surface temperature product and product of Komar energies, electromagnetic potentials and angular velocities at the horizons are not universal quantities for Kerr-Newman-Kasuya black hole. Products of areas and entropies at both the horizons are independent of mass of the black hole. Heat capacity is calculated and phase transition is observed, under certain conditions on r. Using the thermodynamics method with quantized charges (known as re?ned thermodynamics), the central charges and the holographic pictures (J-picture, Q-picture, and P-picture) of the dual CFT for Kerr-Newman-Kasuya black hole are determined.

  18. Dark Matter Hawking Radiation? Dark Spinors Tunnelling in String Theory Black Holes

    E-Print Network [OSTI]

    Cavalcanti, R T

    2015-01-01

    The Hawking radiation spectrum of Kerr-Sen axion-dilaton black holes is derived, in the context of dark spinors tunnelling across the horizon. Since a black hole has a well defined temperature, it should radiate in principle all the standard model particles, similar to a black body at that temperature. We investigate the tunnelling of mass dimension one spin-1/2 dark fermions, that are beyond the standard model and are prime candidates to the dark matter. Their interactions with the standard model matter and gauge fields are suppressed by at least one power of unification scale, being restricted just to the Higgs field and to the graviton likewise. The tunnelling method for the emission and absorption of mass dimension one particles across the event horizon of Kerr-Sen axion-dilaton black holes is shown here to provide further evidence for the universality of black hole radiation, further encompassing particles beyond the standard model.

  19. Dark Matter Hawking Radiation? Dark Spinors Tunnelling in String Theory Black Holes

    E-Print Network [OSTI]

    R. T. Cavalcanti; Roldao da Rocha

    2015-07-14

    The Hawking radiation spectrum of Kerr-Sen axion-dilaton black holes is derived, in the context of dark spinors tunnelling across the horizon. Since a black hole has a well defined temperature, it should radiate in principle all the standard model particles, similar to a black body at that temperature. We investigate the tunnelling of mass dimension one spin-1/2 dark fermions, that are beyond the standard model and are prime candidates to the dark matter. Their interactions with the standard model matter and gauge fields are suppressed by at least one power of unification scale, being restricted just to the Higgs field and to the graviton likewise. The tunnelling method for the emission and absorption of mass dimension one particles across the event horizon of Kerr-Sen axion-dilaton black holes is shown here to provide further evidence for the universality of black hole radiation, further encompassing particles beyond the standard model.

  20. From Pinholes to Black Holes

    SciTech Connect (OSTI)

    Fenimore, Edward E.

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  1. Dilatonic wormholes: construction, operation, maintenance and collapse to black holes

    E-Print Network [OSTI]

    Sean A. Hayward; Sung-Won Kim; Hyunjoo Lee

    2001-10-18

    The CGHS two-dimensional dilaton gravity model is generalized to include a ghost Klein-Gordon field, i.e. with negative gravitational coupling. This exotic radiation supports the existence of static traversible wormhole solutions, analogous to Morris-Thorne wormholes. Since the field equations are explicitly integrable, concrete examples can be given of various dynamic wormhole processes, as follows. (i) Static wormholes are constructed by irradiating an initially static black hole with the ghost field. (ii) The operation of a wormhole to transport matter or radiation between the two universes is described, including the back-reaction on the wormhole, which is found to exhibit a type of neutral stability. (iii) It is shown how to maintain an operating wormhole in a static state, or return it to its original state, by turning up the ghost field. (iv) If the ghost field is turned off, either instantaneously or gradually, the wormhole collapses into a black hole.

  2. Short distance signatures in Cosmology: Why not in Black Holes?

    E-Print Network [OSTI]

    Roberto Casadio; Laura Mersini

    2002-08-07

    Current theoretical investigations seem to indicate the possibility of observing signatures of short distance physics in the Cosmic Microwave Background spectrum. We try to gain a deeper understanding on why all information about this regime is lost in the case of Black Hole radiation but not necessarily so in a cosmological setting by using the moving mirror as a toy model for both backgrounds. The different responses of the Hawking and Cosmic Microwave Background spectra to short distance physics are derived in the appropriate limit when the moving mirror mimics a Black Hole background or an expanding universe. The different sensitivities to new physics, displayed by both backgrounds, are clarified through an averaging prescription that accounts for the intrinsic uncertainty in their quantum fluctuations. We then proceed to interpret the physical significance of our findings for time-dependent backgrounds in the light of nonlocal string theory.

  3. Extremal Higher Spin Black Holes

    E-Print Network [OSTI]

    Máximo Bañados; Alejandra Castro; Alberto Faraggi; Juan I. Jottar

    2015-11-30

    The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require nor implies the existence of supersymmetry, we exemplify its consequences in the context of sl(3|2) + sl(3|2) Chern-Simons theory. Remarkably, while as usual not all extremal solutions preserve supersymmetries, we find that the higher spin setup allows for non-extremal supersymmetric black hole solutions as well. Furthermore, we discuss our results from the perspective of the holographic duality between sl(3|2) + sl(3|2) Chern-Simons theory and two-dimensional CFTs with W_{(3|2)} symmetry, the simplest higher spin extension of the N=2 super-Virasoro algebra. In particular, we compute W_{(3|2)} BPS bounds at the full quantum level, and relate their semiclassical limit to extremal black hole or conical defect solutions in the 3d bulk. Along the way, we discuss the role of the spectral flow automorphism and provide a conjecture for the form of the semiclassical BPS bounds in general N=2 two-dimensional CFTs with extended symmetry algebras.

  4. On coupling impedances of pumping holes

    SciTech Connect (OSTI)

    Kurennoy, S.

    1993-04-01

    Coupling impedances of a single small hole in vacuum-chamber walls have been calculated at low frequencies. To generalize these results for higher frequencies and/or larger holes one needs to solve coupled integral equations for the effective currents. These equations are solved for two specific hole shapes. The effects of many holes at high frequencies where the impedances are not additive are studied using a perturbation-theory method. The periodic versus random distributions of the pumping holes in the Superconducting Super Collider liner are compared.

  5. Causality and black holes in spacetimes with a preferred foliation

    E-Print Network [OSTI]

    Bhattacharyya, Jishnu; Sotiriou, Thomas P

    2015-01-01

    We develop a framework that facilitates the study of the causal structure of spacetimes with a causally preferred foliation. Such spacetimes may arise as solutions of Lorentz-violating theories, e.g. Horava gravity. Our framework allows us to rigorously define concepts such as black/white holes and to formalize the notion of a `universal horizon', that has been previously introduced in the simpler setting of static and spherically symmetric geometries. We also touch upon the issue of development and prove that universal horizons are Cauchy horizons when evolution depends on boundary data or asymptotic conditions. We establish a local characterisation of universal horizons in stationary configurations. Finally, under the additional assumption of axisymmetry, we examine under which conditions these horizons are cloaked by Killing horizons, which can act like usual event horizons for low-energy excitations.

  6. Dynamic Black Holes in a FRW background: Lemaitre transformations

    E-Print Network [OSTI]

    H. Moradpour; A. Dehghani; M. T. Mohammadi Sabet

    2015-04-28

    Since the conformal transformations of metric do not change its causal structure, we use these transformations to embed the Lemaitre metrics into the FRW background. In our approach, conformal transformation is in agreement with the universe expansion regimes. Indeed, we use the Lemaitre metrics because the horizon singularity is eliminated in these metrics. For our solutions, there is an event horizon while its physical radii is increasing as a function of the universe expansion provided suitable metrics for investigating the effects of the universe expansion on the Black Holes. In addition, the physical and mathematical properties of the introduced metrics have well-defined behavior on the event horizon. Moreover, some physical and mathematical properties of the introduced metrics have been addressed.

  7. Test versus predictions for rotordynamic coefficients and leakage rates of hole-pattern gas seals at two clearances in choked and unchoked conditions 

    E-Print Network [OSTI]

    Wade, Jonathan Leigh

    2004-09-30

    This thesis documents the results of high pressure testing of hole-pattern annular gas seals conducted at the Texas A&M University's Turbomachinery Laboratory. The testing conditions were aimed at determining the test seals ...

  8. Black hole mimickers: Regular versus singular behavior

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2008-07-15

    Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to be less difficult than one could think of it.

  9. Dry-Mass Sensing for Microfluidics

    E-Print Network [OSTI]

    Müller, T; Knowles, T P J

    2014-01-01

    We present an approach for interfacing an electromechanical sensor with a microfluidic device for the accurate quantification of the dry mass of analytes within microchannels. We show that depositing solutes onto the active surface of a quartz crystal microbalance by means of an on-chip microfluidic spray nozzle and subsequent solvent removal provides the basis for the real-time determination of dry solute mass. Moreover, this detection scheme does not suffer from the decrease in the sensor quality factor and the viscous drag present if the measurement is performed in a liquid environment, yet allows solutions to be analysed. We demonstrate the sensitivity and reliability of our approach by controlled deposition of nanogram levels of salt and protein from a micrometer-sized channel.

  10. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  11. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect (OSTI)

    Robert States

    2006-07-15

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  12. New Technology Successes for Paper Drying 

    E-Print Network [OSTI]

    Aue, J.; Pierce, S.; Grabner, K.

    2004-01-01

    high speed paper machine. 2. Stationary siphons with open drive gears on dryer drums: removing existing rotary siphons on individually controlled open-geared dryers and replacing them with newly designed stationary siphons and self... automated functionality during upset conditions, such as when the strip or sheet of paper being made, called the ?web?, breaks. During upsets, control of steam flow through the paper machine?s drying cylinders, called ?cans? or ?drums?, traditionally...

  13. Department of Pharmacognosy1 , Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt; Department of Pharma-

    E-Print Network [OSTI]

    Department of Pharmacognosy1 , Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt Ela, Pharmacognosy Department, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt of air-dried powdered roots of Artemisia monosperma growing in Egypt afforded two new compounds; 6

  14. Dry Processing of Used Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; M. F. Simpson

    2009-09-01

    Dry (non-aqueous) separations technologies have been used for treatment of used nuclear fuel since the 1960s, and they are still being developed and demonstrated in many countries. Dry technologies offer potential advantages compared to traditional aqueous separations including: compactness, resistance to radiation effects, criticality control benefits, compatibility with advanced fuel types, and ability to produce low purity products. Within the Department of Energy’s Advanced Fuel Cycle Initiative, an electrochemical process employing molten salts is being developed for recycle of fast reactor fuel and treatment of light water reactor oxide fuel to produce a feed for fast reactors. Much of the development of this technology is based on treatment of used Experimental Breeder Reactor II (EBR-II) fuel, which is metallic. Electrochemical treatment of the EBR-II fuel has been ongoing in the Fuel Conditioning Facility, located at the Materials and Fuel Complex of Idaho National Laboratory since 1996. More than 3.8 metric tons of heavy metal of metallic fast reactor fuel have been treated using this technology. This paper will summarize the status of electrochemical development and demonstration activities with used nuclear fuel, including high-level waste work. A historic perspective on the background of dry processing will also be provided.

  15. On the dry deposition of submicron particles

    SciTech Connect (OSTI)

    Wesely, M. L.

    1999-10-08

    The air-surface exchange of particles can have a strong role in determining the amount, size, and chemical composition of particles in the troposphere. Here the authors consider only dry processes (deposition processes not directly aided by precipitation) and mostly address particles less than about 2 {micro}m in diameter (often referred to as submicron particles because most of such particles are less than 1 {micro}m in diameter). The processes that control the dry exchange of particulate material between the atmosphere and the surface of the Earth are numerous, highly varied, and sometimes poorly understood. As a result, determining which of the surface processes to parameterize or simulate in modeling the tropospheric mass budget of a particulate substance can be a significant challenge. Dry deposition, for example, can be controlled by a combination of Brownian diffusion, impaction, interception, and gravitational settling, depending on the size of the particles, the roughness of the surface on both micrometeorological and microscopic scales, the geometrical structure of vegetative canopies, and other surface characteristics such as wetness. Particles can be added to the lower atmosphere by resuspension from land surfaces and sea spray. The roles of rapid gas-to-particle conversion and growth or shrinkage of particles as a result of water condensation or evaporation in the lower few meters of the atmosphere can also have a significant impact on particle concentrations in the lower atmosphere. Here, a few micrometeorological observations and inferences on particle air-surface exchange are briefly addressed.

  16. Transfer of hot dry rock technology

    SciTech Connect (OSTI)

    Smith, M.C.

    1985-11-01

    The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

  17. Managing Aging Effects on Dry Cask Storage Systems for Extended...

    Office of Environmental Management (EM)

    Managing Aging Effects on Dry Cask Storage Systems for Extended Long Term Storage and Transportation of Used Fuel Rev0 Managing Aging Effects on Dry Cask Storage Systems for...

  18. Detecting small holes in packages

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC); Cadieux, James R. (Aiken, SC)

    1996-01-01

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package.

  19. Detecting small holes in packages

    DOE Patents [OSTI]

    Kronberg, J.W.; Cadieux, J.R.

    1996-03-19

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package are disclosed. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package. 3 figs.

  20. Black Hole Thermodynamics and Electromagnetism

    E-Print Network [OSTI]

    Burra G. Sidharth

    2005-07-15

    We show a strong parallel between the Hawking, Beckenstein black hole Thermodynamics and electromagnetism: When the gravitational coupling constant transform into the electromagnetic coupling constant, the Schwarzchild radius, the Beckenstein temperature, the Beckenstein decay time and the Planck mass transform to respectively the Compton wavelength, the Hagedorn temperature, the Compton time and a typical elementary particle mass. The reasons underlying this parallalism are then discussed in detail.

  1. Quantum chaos inside Black Holes

    E-Print Network [OSTI]

    Addazi, Andrea

    2015-01-01

    We show how semiclassical black holes can be reinterpreted as an effective geometry, composed of a large ensamble of horizonless naked singularities (eventually smoothed at the Planck scale). We call this new items {\\it frizzyballs}, which can be rigorously defined by euclidean path integral approach. This has interesting implications regarding information paradoxes. We demonstrate that infalling information will chaotically propagate inside this system before going to the full quantum gravity regime (Planck scale).

  2. Quantum chaos inside Black Holes

    E-Print Network [OSTI]

    Andrea Addazi

    2015-08-30

    We show how semiclassical black holes can be reinterpreted as an effective geometry, composed of a large ensamble of horizonless naked singularities (eventually smoothed at the Planck scale). We call this new items {\\it frizzyballs}, which can be rigorously defined by euclidean path integral approach. This has interesting implications regarding information paradoxes. We demonstrate that infalling information will chaotically propagate inside this system before going to the full quantum gravity regime (Planck scale).

  3. Classical Black Holes Are Hot

    E-Print Network [OSTI]

    Erik Curiel

    2014-11-09

    In the early 1970s it is was realized that there is a striking formal analogy between the Laws of black-hole mechanics and the Laws of classical thermodynamics. Before the discovery of Hawking radiation, however, it was generally thought that the analogy was only formal, and did not reflect a deep connection between gravitational and thermodynamical phenomena. It is still commonly held that the surface gravity of a stationary black hole can be construed as a true physical temperature and its area as a true entropy only when quantum effects are taken into account; in the context of classical general relativity alone, one cannot cogently construe them so. Does the use of quantum field theory in curved spacetime offer the only hope for taking the analogy seriously? I think the answer is `no'. To attempt to justify that answer, I shall begin by arguing that the standard argument to the contrary is not physically well founded, and in any event begs the question. Looking at the various ways that the ideas of "temperature" and "entropy" enter classical thermodynamics then will suggest arguments that, I claim, show the analogy between classical black-hole mechanics and classical thermodynamics should be taken more seriously, without the need to rely on or invoke quantum mechanics. In particular, I construct an analogue of a Carnot cycle in which a black hole "couples" with an ordinary thermodynamical system in such a way that its surface gravity plays the role of temperature and its area that of entropy. Thus, the connection between classical general relativity and classical thermodynamics on their own is already deep and physically significant, independent of quantum mechanics.

  4. Down hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1989-01-01

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  5. PHILADELPHIA UNIVERSITY PHILADELPHIA UNIVERSITY

    E-Print Network [OSTI]

    PHILADELPHIA UNIVERSITY : 626 25/9/1991 137 28/10/2007 195164 626 25/9/1991 10/1/2010 --- 1062 : : #12;PHILADELPHIA UNIVERSITY : 2009/2010 11221245 16171952 1211730 2002 2003 2004 2005 2006 2007 2008 2009 2010 #12;PHILADELPHIA UNIVERSITY : : : #12

  6. Experimental investigation of the impact, spreading, and drying of picolitre droplets onto substrates with a broad range of wettabilities

    E-Print Network [OSTI]

    Berson, A.

    2011-10-02

    flows In this section, we present preliminary results concerning the development of advanced measurement techniques for the charac- terization of internal flows during the drying of inkjet droplets. Experimental Picolitre droplets of water are generated... ’s University in Kingston, ON, Canada, before joining Durham University, UK, in 2010 as a post-doctoral fellow. His interests include sustainable energy systems (thermoacoustic devices, fuel cells), the development of advanced flow diagnostic techniques...

  7. Submicron patterned metal hole etching

    DOE Patents [OSTI]

    McCarthy, Anthony M. (Menlo Park, CA); Contolini, Robert J. (Lake Oswego, OR); Liberman, Vladimir (Needham, MA); Morse, Jeffrey (Martinez, CA)

    2000-01-01

    A wet chemical process for etching submicron patterned holes in thin metal layers using electrochemical etching with the aid of a wetting agent. In this process, the processed wafer to be etched is immersed in a wetting agent, such as methanol, for a few seconds prior to inserting the processed wafer into an electrochemical etching setup, with the wafer maintained horizontal during transfer to maintain a film of methanol covering the patterned areas. The electrochemical etching setup includes a tube which seals the edges of the wafer preventing loss of the methanol. An electrolyte composed of 4:1 water: sulfuric is poured into the tube and the electrolyte replaces the wetting agent in the patterned holes. A working electrode is attached to a metal layer of the wafer, with reference and counter electrodes inserted in the electrolyte with all electrodes connected to a potentiostat. A single pulse on the counter electrode, such as a 100 ms pulse at +10.2 volts, is used to excite the electrochemical circuit and perform the etch. The process produces uniform etching of the patterned holes in the metal layers, such as chromium and molybdenum of the wafer without adversely effecting the patterned mask.

  8. DRI Model of the U.S. Economy -- Model Documentation:

    Reports and Publications (EIA)

    1993-01-01

    Provides documentation on Data Resources, Inc., DRI Model of the U.S. Economy and the DRI Personal Computer Input/Output Model. It also describes the theoretical basis, structure and functions of both DRI models; and contains brief descriptions of the models and their equations.

  9. Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the coal without chemical decomposition and pyrolysis converts dry coal into gas and coke [1]. The final1 Modeling of Coal Drying before Pyrolysis Damintode Kolani1, a , Eric Blond1, b , Alain Gasser1 Forbach, France a damintode.kolani@univ-orleans.fr, b eric.blond@univ-orleans.fr Keywords: coal, drying

  10. The gravitational wave symphony of the Universe

    E-Print Network [OSTI]

    B. S. Sathyaprakash

    2002-07-10

    The new millennium will see the upcoming of several ground-based interferometric gravitational wave antennas. Within the next decade a space-based antenna may also begin to observe the distant Universe. These gravitational wave detectors will together operate as a network taking data continuously for several years, watching the transient and continuous phenomena occurring in the deep cores of astronomical objects and dense environs of the early Universe where gravity was extremely strong and highly non-linear. The network will listen to the waves from rapidly spinning non-axisymmetric neutron stars, normal modes of black holes, binary black hole inspiral and merger, phase transitions in the early Universe, quantum fluctuations resulting in a characteristic background in the early Universe. The gravitational wave antennas will open a new window to observe the dark Universe unreachable via other channels of astronomical observations.

  11. Quantum Cooling Evaporation Process in Regular Black Holes

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2007-09-28

    We investigate a universal behavior of thermodynamics and evaporation process for the regular black holes. We newly observe an important point where the temperature is maximum, the heat capacity is changed from negative infinity to positive infinity, and the free energy is minimum. Furthermore, this point separates the evaporation process into the early stage with negative heat capacity and the late stage with positive heat capacity. The latter represents the quantum cooling evaporation process. As a result, the whole evaporation process could be regarded as the inverse Hawking-Page phase transition.

  12. Revisit emission spectrum and entropy quantum of the Reissner-Nordström black hole

    E-Print Network [OSTI]

    Qing-Quan Jiang

    2012-10-15

    Banerjee and Majhi's recent work shows that black hole's emission spectrum could be fully reproduced in the tunneling picture, where, as an intriguing technique, the Kruskal extension was introduced to connect the left and right modes inside and outside the horizon. Some attempt, as an extension, was focused on producing the Hawking emission spectrum of the (charged) Reissner-Nordstr\\"{o}m black hole in the Banerjee-Majhi's treatment. Unfortunately, the Kruskal extension in their observation was so badly defined that the ingoing mode was classically forbidden traveling towards the center of black hole, but could quantum tunnel across the horizon with the probability $\\Gamma=e^{-\\pi \\omega_0/\\kappa_+}$. This tunneling picture is unphysical. With this point as a central motivation, in this paper we first introduce such a suitable Kruskal extension for the (charged) Reissner-Nordstr\\"{o}m black hole that a perfect tunneling picture can be provided during the charged particle's emission. Then, under the new Kruskal extension, we revisit the Hawking emission spectrum and entropy spectroscopy as tunneling from the charged black hole. The result shows that the tunneling method is so universally robust that the Hawking blackbody emission spectrum from a charged black hole can be well reproduced in the tunneling mechanism, and its induced entropy quantum is a much better approximation for the forthcoming quantum gravity theory.

  13. Thermodynamic Product Formula for Ho\\v{r}ava Lifshitz Black Hole

    E-Print Network [OSTI]

    Pradhan, Parthapratim

    2015-01-01

    We examine the thermodynamic properties of inner and outer horizons in the background of Ho\\v{r}ava Lifshitz black hole. We compute the \\emph{horizon radii product, the surface area product, the entropy product, the surface temperature product, the Komar energy product and the specific heat product} for both the horizons of said black hole. We show that surface area product, entropy product and irreducible mass product are \\emph{universal} quantities, whereas the surface temperature product, Komar energy product and specific heat product are \\emph{not universal} quantities because they all are depends on mass parameter. We also observe that the \\emph{First law} of black hole thermodynamics and \\emph {Smarr-Gibbs-Duhem } relations do not hold for this black hole. The underlying reason behind this failure due to the scale invariance of the coupling constant. We further derive the \\emph{Smarr mass formula} and \\emph{Christodolou-Ruffini mass formula} for such black hole spacetime. Moreover we study the stability...

  14. Supersymmetric black holes and attractors in gauged supergravity with hypermultiplets

    E-Print Network [OSTI]

    Samuele Chimento; Dietmar Klemm; Nicolò Petri

    2015-04-13

    We consider four-dimensional $N=2$ supergravity coupled to vector- and hypermultiplets, where abelian isometries of the quaternionic K\\"ahler hypermultiplet scalar manifold are gauged. Using the recipe given by Meessen and Ort\\'{\\i}n in arXiv:1204.0493, we analytically construct a supersymmetric black hole solution for the case of just one vector multiplet with prepotential ${\\cal F}=-i\\chi^0\\chi^1$, and the universal hypermultiplet. This solution has a running dilaton, and it interpolates between $\\text{AdS}_2\\times\\text{H}^2$ at the horizon and a hyperscaling-violating type geometry at infinity, conformal to $\\text{AdS}_2\\times\\text{H}^2$. It carries two magnetic charges that are completely fixed in terms of the parameters that appear in the Killing vector used for the gauging. In the second part of the paper, we extend the work of Bellucci et al. on black hole attractors in gauged supergravity to the case where also hypermultiplets are present. The attractors are shown to be governed by an effective potential $V_{\\text{eff}}$, which is extremized on the horizon by all the scalar fields of the theory. Moreover, the entropy is given by the critical value of $V_{\\text{eff}}$. In the limit of vanishing scalar potential, $V_{\\text{eff}}$ reduces (up to a prefactor) to the usual black hole potential.

  15. Strong Gravitational Lensing in a Brane-World Black Hole

    E-Print Network [OSTI]

    GuoPing Li; Biao Cao; Zhongwen Feng; Xiaotao Zu

    2015-06-28

    Adopting the strong field limit approach, we investigated the strong gravitational lensing in a Brane-World black hole, which means that the strong field limit coefficients and the deflection angle in this gravitational field are obtained. With this result, it can be said with certainly that the strong gravitational lensing is related to the metric of gravitational fields closely, the cosmology parameter {\\alpha} and the dark matter parameter \\b{eta} come from the Brane-World black hole exerts a great influence on it. Comparing with the Schwarzschild-AdS spacetime and the Schwarzschild-XCMD spacetime, the parameters {\\alpha}, \\b{eta} of black holes have the similar effects on the gravitational lensing. In some way, we infer that the real gravitational fields in our universe can be described by this metric, so the results of the strong gravitational lensing in this spacetime will be more reasonable for us to observe. Finally, it has to be noticed that the influence which the parameters {\\alpha}, \\b{eta} exerted on the main observable quantities of this gravitational field is discussed.

  16. Formation and early evolution of massive black holes

    E-Print Network [OSTI]

    Madau, P

    2007-01-01

    The astrophysical processes that led to the formation of the first seed black holes and to their growth into the supermassive variety that powers bright quasars at redshift 6 are poorly understood. In standard LCDM hierarchical cosmologies, the earliest massive holes (MBHs) likely formed at redshift z~15 at the centers of low-mass (M>5e5 solar masses) dark matter ``minihalos'', and produced hard radiation by accretion. FUV/X-ray photons from such ``miniquasars'' may have permeated the universe more uniformly than EUV radiation, reduced gas clumping, and changed the chemistry of primordial gas. The role of accreting seed black holes in determining the thermal and ionization state of the intergalactic medium depends on the amount of cold and dense gas that forms and gets retained in protogalaxies after the formation of the first stars. The highest resolution N-body simulation to date of Galactic substructure shows that subhalos below the atomic cooling mass were very inefficient at forming stars.

  17. Formation and early evolution of massive black holes

    E-Print Network [OSTI]

    Piero Madau

    2007-01-12

    The astrophysical processes that led to the formation of the first seed black holes and to their growth into the supermassive variety that powers bright quasars at redshift 6 are poorly understood. In standard LCDM hierarchical cosmologies, the earliest massive holes (MBHs) likely formed at redshift z~15 at the centers of low-mass (M>5e5 solar masses) dark matter ``minihalos'', and produced hard radiation by accretion. FUV/X-ray photons from such ``miniquasars'' may have permeated the universe more uniformly than EUV radiation, reduced gas clumping, and changed the chemistry of primordial gas. The role of accreting seed black holes in determining the thermal and ionization state of the intergalactic medium depends on the amount of cold and dense gas that forms and gets retained in protogalaxies after the formation of the first stars. The highest resolution N-body simulation to date of Galactic substructure shows that subhalos below the atomic cooling mass were very inefficient at forming stars.

  18. Relationship of Black Holes to Bulges

    E-Print Network [OSTI]

    David Merritt; Laura Ferrarese

    2001-07-08

    Supermassive black holes appear to be uniquely associated with galactic bulges. The mean ratio of black hole mass to bulge mass was until recently very uncertain, with ground based, stellar kinematical data giving a value roughly an order of magnitude larger than other techniques. The discrepancy was resolved with the discovery of the M-sigma relation, which simultaneously established a tight corrrelation between black hole mass and bulge velocity dispersion, and confirmed that the stellar kinematical mass estimates were systematically too large due to failure to resolve the black hole's sphere of influence. There is now excellent agreement between the various techniques for estimating the mean black hole mass, including dynamical mass estimation in quiescent galaxies; reverberation mapping in active galaxies and quasars; and computation of the mean density of compact objects based on integrated quasar light. Implications of the M-sigma relation for the formation of black holes are discussed.

  19. Boson shells harboring charged black holes

    SciTech Connect (OSTI)

    Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike

    2010-11-15

    We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.

  20. Physics of Primordial Universe

    E-Print Network [OSTI]

    Maxim Yu. Khlopov

    2003-09-25

    The physical basis of the modern cosmological inflationary models with baryosynthesis and nonbaryonic dark matter and energy implies such predictions of particle theory, that, in turn, apply to cosmology for their test. It makes physics of early Universe ambiguous and particle model dependent. The study of modern cosmology is inevitably linked with the probe for the new physics, underlying it. The particle model dependent phenomena, such as unstable dark matter, primordial black holes, strong primordial inhomogeneities, can play important role in revealing the true physical cosmology. Such phenomena, having serious physical grounds and leading to new nontrivial cosmological scenarious, should be taken into account in the data analysis of observational cosmology.

  1. Galaxies nurtured by mature black holes

    E-Print Network [OSTI]

    Morikawa, Masahiro

    2015-01-01

    Supermassive black holes (SMBH) of size $10^{6-10}M_{\\odot}$ are common in the Universe and they define the center of the galaxies. A galaxy and the SMBH are generally thought to have co-evolved. However, the SMBH cannot evolve so fast as commonly observed even at redshift $z>6$. Therefore, we explore a natural hypothesis that the SMBH has been already formed mature at $z\\gtrapprox10$ before stars and galaxies. The SMBH forms energetic jets and outflows which trigger massive star formation in the ambient gas. They eventually construct globular clusters and classical bulge as well as the body of elliptical galaxies. We propose simple models which implement these processes. We point out that the globular clusters and classical bulges have a common origin but are in different phases. The same is true for the elliptical and spiral galaxies. Physics behind these phase division is the runaway star formation process with strong feedback to SMBH. This is similar to the forest-fire model that displays self-organized c...

  2. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect (OSTI)

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy features to the public.

  3. Dependence of polar hole density on magnetic and solar conditions

    SciTech Connect (OSTI)

    Hoegy, W.R.; Grebowsky, J.M. (NASA Goddard Space Flight Center, Greenbelt, MD (USA))

    1991-04-01

    The dependence of electron density in the polar F region ionization hole on solar activity, universal time (UT), magnetic activity, season, and hemisphere is studied using data from the Langmuir probes on Atmosphere Explorer C and Dynamics Explorer 2. The AE-C data were obtained during solar minimum when the 3-month average 10.7-cm solar flux index varied from 70 to 140; the DE 2 data were obtained near solar maximum when 10.7-cm solar flux index varied from 120 to 220. The polar hole is a region on the nightside of the polar cap where reduced ionization exists because of the long transport time of ionization from the dayside across the polar cap. The behavior of this region as a function of 10.7-cm solar flux (F10.7), UT, and Kp is statistically modeled for equinox, summer, and winter conditions for each hemisphere separately. The strongest dependencies are observed in F10.7 and UT; the Kp dependence is weak because it poorly represents the complexities of convection across the polar cap. A strong hemispherical difference due to the offset of the magnetic poles from the Earth's rotation axis is observed in the UT dependence of the ionization hole: there is a density minimum at about 20.3 hours UT in the south and at about 4.8 hours UT in the north; the minimum to maximum UT density variation is about a factor of 8.9 in the south and about a factor of 2.1 in the north. There is a seasonal variation in the dependence of ion density (N{sub i}) on solar flux (F10.7). Use of the relationship (N{sub i}{approximately}F10.7{sup D}) yields values of D of approximately unity (1.) in the summer polar hole and about 2.1 during equinox. There is an overall asymmetry in the density level between hemispheres; it was found that the winter hole density is about a factor of 10 greater in the north than in the south. The Utah State University time dependent ionosphere model gives similar UT behavior to that found in the AE-C and DE 2 data.

  4. University Library University of Saskatchewan

    E-Print Network [OSTI]

    Saskatchewan, University of

    University Library University of Saskatchewan Core Competencies for University of Saskatchewan Librarians This document defines the basic knowledge and skills librarians at the University of Saskatchewan in the Canadian academic research environment. The University Library Competencies Framework (Figure 1) maps

  5. Lithographic dry development using optical absorption

    DOE Patents [OSTI]

    Olynick, Deirdre; Schuck, P. James; Schmidt, Martin

    2013-08-20

    A novel approach to dry development of exposed photo resist is described in which a photo resist layer is exposed to a visible light source in order to remove the resist in the areas of exposure. The class of compounds used as the resist material, under the influence of the light source, undergoes a chemical/structural change such that the modified material becomes volatile and is thus removed from the resist surface. The exposure process is carried out for a time sufficient to ablate the exposed resist layer down to the layer below. A group of compounds found to be useful in this process includes aromatic calixarenes.

  6. Wet Sand flows better than dry sand

    E-Print Network [OSTI]

    Jorge E. Fiscina; Christian Wagner

    2007-11-19

    We investigated the yield stress and the apparent viscosity of sand with and without small amounts of liquid. By pushing the sand through a tube with an enforced Poiseuille like profile we minimize the effect of avalanches and shear localization. We find that the system starts to flow when a critical shear of the order of one particle diameter is exceeded. In contrast to common believe, we observe that the resistance against the flow of wet sand is much smaller than that of dry sand. For the dissipative flow we propose a non-equilibrium state equation for granular fluids.

  7. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  8. Dry Process Electrode Fabrication | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2 FederalEnergy Green:Dry Process Electrode

  9. Lower Dimensional Black Holes: Inside and Out

    E-Print Network [OSTI]

    R. B. Mann

    1995-01-27

    I survey the physics of black holes in two and three spacetime dimensions, with special attention given to an understanding of their exterior and interior properties.

  10. Rotating Black Holes and Coriolis Effect

    E-Print Network [OSTI]

    Wu, Xiaoning; Yuan, Pei-Hung; Cho, Chia-Jui

    2015-01-01

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the Petrov-like boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  11. Rotating Black Holes and Coriolis Effect

    E-Print Network [OSTI]

    Xiaoning Wu; Yi Yang; Pei-Hung Yuan; Chia-Jui Cho

    2015-11-27

    In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the Petrov-like boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.

  12. Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT massive gravity

    E-Print Network [OSTI]

    Julio Oliva; David Tempo; Ricardo Troncoso

    2009-07-03

    The theory of massive gravity in three dimensions recently proposed by Bergshoeff, Hohm and Townsend (BHT) is considered. At the special case when the theory admits a unique maximally symmetric solution, a conformally flat space that contains black holes and gravitational solitons for any value of the cosmological constant is found. For negative cosmological constant, the black hole is characterized in terms of the mass and the "gravitational hair" parameter, providing a lower bound for the mass. For negative mass parameter, the black hole acquires an inner horizon, and the entropy vanishes at the extremal case. Gravitational solitons and kinks, being regular everywhere, are obtained from a double Wick rotation of the black hole. A wormhole solution in vacuum that interpolates between two static universes of negative spatial curvature is obtained as a limiting case of the gravitational soliton with a suitable identification. The black hole and the gravitational soliton fit within a set of relaxed asymptotically AdS conditions as compared with the ones of Brown and Henneaux. In the case of positive cosmological constant the black hole possesses an event and a cosmological horizon, whose mass is bounded from above. Remarkably, the temperatures of the event and the cosmological horizons coincide, and at the extremal case one obtains the analogue of the Nariai solution, $dS_{2}\\times S^{1}$. A gravitational soliton is also obtained through a double Wick rotation of the black hole. The Euclidean continuation of these solutions describes instantons with vanishing Euclidean action. For vanishing cosmological constant the black hole and the gravitational soliton are asymptotically locally flat spacetimes. The rotating solutions can be obtained by boosting the previous ones in the $t-\\phi$ plane.

  13. Biomass drying technologies. Final report, September 1997--May 1998

    SciTech Connect (OSTI)

    Salomaa, E.

    1998-07-01

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the drying medium are discussed more closely, with comparison to the methods of drying using air or flue gas as the drying medium. Available types of steam dryers are described with reference to operating conditions, energy requirements, and types of biomass dried. Energy aspects are considered, as well as possibilities of steam utilization to recover the latent heat of vaporization. Thermal energy required for drying of biomass is calculated using tabulated values of steam properties. The amount of steam to provide the thermal energy needed for biomass drying, at different pressures and temperatures applicable in steam dryers, is calculated for both indirectly and directly heated steam dryers. The calculated heat requirement values of steam dryers have been compared with those reported in the literature. Further, anticipated emissions from flue gas and steam drying processes have been summarized.

  14. Core Holes | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformationOpen1988)|Holes Jump

  15. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W. (Los Alamos, NM)

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  16. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  17. Drying/self-assembly of nanoparticle suspensions.

    SciTech Connect (OSTI)

    Cheng, Shengfeng; Plimpton, Steven James; Lechman, Jeremy B.; Grest, Gary Stephen

    2010-10-01

    The most feasible way to disperse particles in a bulk material or control their packing at a substrate is through fluidization in a carrier that can be processed with well-known techniques such as spin, drip and spray coating, fiber drawing, and casting. The next stage in the processing is often solidification involving drying by solvent evaporation. While there has been significant progress in the past few years in developing discrete element numerical methods to model dense nanoparticle dispersion/suspension rheology which properly treat the hydrodynamic interactions of the solvent, these methods cannot at present account for the volume reduction of the suspension due to solvent evaporation. As part of LDRD project FY-101285 we have developed and implemented methods in the current suite of discrete element methods to remove solvent particles and volume, and hence solvent mass from the liquid/vapor interface of a suspension to account for volume reduction (solvent drying) effects. To validate the methods large scale molecular dynamics simulations have been carried out to follow the evaporation process at the microscopic scale.

  18. Effects of drinking water temperature on respiration rates, body temperatures, dry matter intake, and milk production in lactating Holstein cows in summer 

    E-Print Network [OSTI]

    Milam, Kyle Zohn

    1985-01-01

    EFFECTS OF DRINKING WATER TEMPERATURE ON RESPIRATION RATES, BODY TEMPERATURES, DRY MATTER INTAKE, AND MILK PRODUCTION IN LACTATING HOLSTEIN COWS IN SUMMER A Thesis by KYLE ZOHN MILAM Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Nutrition EFFECTS OF DRINKING WATER TEMPERATURE ON RESPIRATION RATES, BODY TEMPERATURES, DRY MATTER INTAKE, AND MILK PRODUCTION IN LACTATING HOLSTEIN...

  19. PHILADELPHIA UNIVERSITY -1 1191

    E-Print Network [OSTI]

    PHILADELPHIA UNIVERSITY :: -1 1191) . : : : . #12;PHILADELPHIA UNIVERSITY . . : . . . . #12;PHILADELPHIA UNIVERSITY

  20. Non-Linear Drying Diffusion and Viscoelastic Drying Shrinkage Modeling in Hardened Cement Pastes 

    E-Print Network [OSTI]

    Leung, Chin K.

    2010-07-14

    The present research seeks to study the decrease in diffusivity rate as relative humidity (RH) decreases and modeling drying shrinkage of hardened cement paste as a poroviscoelastic respose. Thin cement paste strips of 0.4 and 0.5 w/c at age 3 and 7...

  1. Black Holes and Thunderbolt Singularities with Lifshitz Scaling Terms

    E-Print Network [OSTI]

    Misonoh, Yosuke

    2015-01-01

    We study a static, spherically symmetric and asymptotic flat spacetime, assuming the hypersurface orthogonal Einstein-aether theory with an ultraviolet modification motivated by the Horava-Lifshitz theory, which is composed of the $z=2$ Lifshitz scaling terms such as scalar combinations of a three-Ricci curvature and the acceleration of the aether field. For the case with the quartic term of the acceleration of the aether field, we obtain a two-parameter family of black hole solutions, which possess a regular universal horizon. While, if three-Ricci curvature squared term is joined in ultraviolet modification, we find a solution with a thunderbolt singularity such that the universal horizon turns to be a spacelike singularity.

  2. Drying and burning wood waste using pulse combustion

    SciTech Connect (OSTI)

    Buckkowski, A.G.; Eng, P.; Kitchen, J.A. [Novadyne Ltd., Ontario (Canada)

    1995-11-01

    Development of an industrial dryer using pulse combustion as a heating source for drying wood waste has continued. Pulse combustion offers the advantage of high heat transfer, efficient combustion, low NOx emissions and a source of kinetic energy for providing a motive force for a drying system. In our experiments, the drying system consists of a pulse combustor and a vertical drying column. The wood waste is injected into the exhaust gases from the combustor where the turbulence created by the pulsations enhance the drying process by reducing the boundary layer thicknesses. The material is further dried in the vertical drying column, then separated from the conveying airstream using a cyclone. The paper discusses two aspects of the drying system. Firstly, the performance of the drying tests are reviewed. Tests with the 1,000,000 BTU/hr test rig have shown that a gas-fired pulse combustion dryer can dry materials such as sawdust and pulverized hog fuel from a moisture content of 50% down to a 30% in a single pass, or further with multiple passes, without scorching or burning. Preliminary figures show that the operating costs of the dryer are reduced due to the kinetic energy created by the pulse combustor which offsets the use of electricity. Secondly, it has been shown that a pulse combustor can be fired with wood waste and thereby providing the potential to displace natural gas or propane as a fuel. The development of the wood burning combustor is reviewed.

  3. Boston University Columbia University

    E-Print Network [OSTI]

    Bucci, David J.

    University CUNY Hunter College University of Massachusetts Amherst & Yestermorrow Design/Build School to consider the safety and security of the programs you are considering attending. Also Dartmouth's Dickey searching for program options by criteria: http://www.iiepassport.org/ http

  4. Class Transitions in Black Holes

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    2005-01-14

    A black hole spectrum is known to change from the hard state to the soft state when the energy spectral index $\\alpha$ ($F_E \\propto E^{-\\alpha}$) in, say, 2-20 keV range changes from $\\alpha \\sim 0.5$ to $\\sim 1.5$. However, this `classical' definition which characterizes black holes like Cyg X-1, becomes less useful for many objects such as GRS 1915+105 in which the spectral slope is seen to vary from one to the other in a matter of seconds and depending on whether or not winds form, the spectral slope also changes. The light curves and the colour-colour diagrams may look completely different on different days depending on the frequency and mode of switching from one spectral state to the other. Though RXTE observations have yielded wealth of information on such `variability classes' in GRS 1915+105, very rarely one has been able to observe how the object goes from one class to the other. In the present review, we discuss possible origins of the class transition and present several examples of such transitions. In this context, we use mostly the results of the Indian X-ray Astronomy Experiment (IXAE) which observed GRS 1915+105 more regularly.

  5. An electromagnetic black hole made of metamaterials

    E-Print Network [OSTI]

    Qiang Cheng; Tie Jun Cui; Wei Xiang Jiang; Ben Geng Cai

    2010-04-30

    Traditionally, a black hole is a region of space with huge gravitational field, which absorbs everything hitting it. In history, the black hole was first discussed by Laplace under the Newton mechanics, whose event horizon radius is the same as the Schwarzschild's solution of the Einstein's vacuum field equations. If all those objects having such an event horizon radius but different gravitational fields are called as black holes, then one can simulate certain properties of the black holes using electromagnetic fields and metamaterials due to the similar propagation behaviours of electromagnetic waves in curved space and in inhomogeneous metamaterials. In a recent theoretical work by Narimanov and Kildishev, an optical black hole has been proposed based on metamaterials, in which the theoretical analysis and numerical simulations showed that all electromagnetic waves hitting it are trapped and absorbed. Here we report the first experimental demonstration of such an electromagnetic black hole in the microwave frequencies. The proposed black hole is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields and the event horizon corresponding to the device boundary. It is shown that the absorption rate can reach 99% in the microwave frequencies. We expect that the electromagnetic black hole could be used as the thermal emitting source and to harvest the solar light.

  6. Black holes cannot support conformal scalar hair

    E-Print Network [OSTI]

    T. Zannias

    1994-09-14

    It is shown that the only static asymptotically flat non-extrema black hole solution of the Einstein-conformally invariant scalar field equations having the scalar field bounded on the horizon, is the Schwarzschild one. Thus black holes cannot be endowed with conformal scalar hair of finite length.

  7. Quantum Entropy of Charged Rotating Black Holes

    E-Print Network [OSTI]

    R. B. Mann

    1996-07-10

    I discuss a method for obtaining the one-loop quantum corrections to the tree-level entropy for a charged Kerr black hole. Divergences which appear can be removed by renormalization of couplings in the tree-level gravitational action in a manner similar to that for a static black hole.

  8. Topological Black Holes in Quantum Gravity

    E-Print Network [OSTI]

    J. Kowalski-Glikman; D. Nowak-Szczepaniak

    2000-07-31

    We derive the black hole solutions with horizons of non-trivial topology and investigate their properties in the framework of an approach to quantum gravity being an extension of Bohm's formulation of quantum mechanics. The solutions we found tend asymptotically (for large $r$) to topological black holes. We also analyze the thermodynamics of these space-times.

  9. Primordial black holes and asteroid danger

    E-Print Network [OSTI]

    Alexander Shatskiy

    2008-02-21

    Probability for a primordial black hole to invade the Kuiper belt was calculated. We showed that primordial black holes of certain masses can significantly change asteroids' orbits. These events may result in disasters, local for our solar system and global for the Earth (like the Tunguska meteorite). We also estimated how often such events occur.

  10. Canonical structure of 2D black holes

    E-Print Network [OSTI]

    Navarro-Salas, J; Talavera, C F

    1994-01-01

    We determine the canonical structure of two-dimensional black-hole solutions arising in $2D$ dilaton gravity. By choosing the Cauchy surface appropriately we find that the canonically conjugate variable to the black hole mass is given by the difference of local (Schwarzschild) time translations at right and left spatial infinities. This can be regarded as a generalization of Birkhoff's theorem.

  11. Fractal Statistics and Quantum Black Hole Entropy

    E-Print Network [OSTI]

    Wellington da Cruz

    2000-11-18

    Simple considerations about the fractal characteristic of the quantum-mechanical path give us the opportunity to derive the quantum black hole entropy in connection with the concept of fractal statistics. We show the geometrical origin of the numerical factor of four of the quantum black hole entropy expression and the statistics weight appears as a counting of the quanta of geometry.

  12. Thermal Gradient Holes At Northern Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Northern Basin & Range Region (Pritchett, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes...

  13. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue...

  14. Effective theories and black hole production in warped compactificatio...

    Office of Scientific and Technical Information (OSTI)

    Effective theories and black hole production in warped compactifications Citation Details In-Document Search Title: Effective theories and black hole production in warped...

  15. Thermal Gradient Holes At Upper Hot Creek Ranch Area (Benoit...

    Open Energy Info (EERE)

    gradient holes up to 500' deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five....

  16. Brookhaven National Laboratory - Sr90 - Chemical Holes | Department...

    Office of Environmental Management (EM)

    - Chemical Holes Brookhaven National Laboratory - Sr90 - Chemical Holes January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report...

  17. Nonthermal correction to black hole spectroscopy

    E-Print Network [OSTI]

    Wen-Yu Wen

    2014-11-14

    Area spectrum of black holes have been obtained via various methods such as quasinormal modes, adiabatic invariance and angular momentum. Among those methods, calculations were done by assuming black holes in thermal equilibrium. Nevertheless, black holes in the asymptotically flat space usually have negative specific heat and therefore tend to stay away from thermal equilibrium. Even for those black holes with positive specific heat, temperature may still not be well defined in the process of radiation, due to the back reaction of decreasing mass. Respect to these facts, it is very likely that Hawking radiation is nonthermal and the area spectrum is no longer equidistant. In this note, we would like to illustrate how the area spectrum of black holes is corrected by this nonthermal effect.

  18. Fourier Analysis of the BTZ Black Hole

    E-Print Network [OSTI]

    Ian M. Tolfree

    2009-11-11

    In this paper we extend our previous work regarding the role of the Fourier transformation in bulk to boundary mappings to include the BTZ black hole. We follow standard procedures for modifying Fourier Transformations to accommodate quotient spaces and arrive at a bulk to boundary mapping in a black hole background. We show that this mapping is consistent with known results and lends a new insight into the AdS/CFT duality. We find that the micro-states corresponding to the entropy of a bulk scalar field are the Fourier coefficients on the boundary, which transform under the principal series representation of $SL(2,R)$. Building upon this we present a toy model to analyze the implications of this for the origin of black hole entropy. We find that the black hole micro-states live on the boundary and correspond to the possible emission modes of the black hole

  19. Evidence for the Black Hole Event Horizon

    E-Print Network [OSTI]

    Ramesh Narayan

    2003-10-23

    Astronomers have discovered many candidate black holes in X-ray binaries and in the nuclei of galaxies. The candidate objects are too massive to be neutron stars, and for this reason they are considered to be black holes. While the evidence based on mass is certainly strong, there is no proof yet that any of the objects possesses the defining characteristic of a black hole, namely an event horizon. Type I X-ray bursts, which are the result of thermonuclear explosions when gas accretes onto the surface of a compact star, may provide important evidence in this regard. Type I bursts are commonly observed in accreting neutron stars, which have surfaces, but have never been seen in accreting black hole candidates. It is argued that the lack of bursts in black hole candidates is compelling evidence that these objects do not have surfaces. The objects must therefore possess event horizons.

  20. A dry electrophysiology electrode using CNT arrays

    E-Print Network [OSTI]

    Ruffini, G; Farres, E; Grau, C; Marco-Pallares, J; Mendoza, Eric; Ray, C; Silva, R; Dunne, Stephen; Farres, Esteve; Grau, Carles; Marco-Pallares, Josep; Mendoza, Ernest; Ray, Chris; Ruffini, Giulio; Silva, Ravi

    2006-01-01

    We describe the concept of a dry electrode sensor for biopotential measurement applications (ENOBIO) designed to eliminate the noise and inconvenience associated to the use of electrolytic gel. ENOBIO uses nanotechnology to remove gel-related noise, as well as maintaining a good contact impedance to minimise interference noise. The contact surface of the electrode will be covered with an array/forest of carbon nanotubes and will also be tested with an Ag/AgCl coating to provide ionic-electronic transduction. The nanotubes are to penetrate the outer layers of the skin, the Stratum Corneum, improving electrical contact. We discuss requirements, skin properties, nanotube penetration and transduction, noise sources, prototype design logic and biocompatibility. A future paper will report test results.

  1. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions

    E-Print Network [OSTI]

    A. Belhaj; M. Chabab; H. El Moumni; M. B. Sedra

    2012-09-23

    Considering the cosmological constant $\\Lambda$ as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume as proposed in Kubiznak and Mann (2012), we discuss the critical behavior of charged AdS black hole in arbitrary dimensions $d$. In particular, we present a comparative study in terms of the spacetime dimension $d$ and the displacement of critical points controlling the transition between the small and the large black holes. Such behaviors vary nicely in terms of $d$. Among our result in this context consists in showing that the equation of state for a charged RN-AdS black hole predicts an universal number given by $\\frac{2d-5}{4d-8}$. The three dimensional solution is also discussed.

  2. N = 4 Super-Yang-Mills on Conic Space as Hologram of STU Topological Black Hole

    E-Print Network [OSTI]

    Xing Huang; Yang Zhou

    2014-09-05

    We construct four-dimensional N=4 super-Yang-Mills theories on a conic sphere with various background R-symmetry gauge fields. We study free energy and supersymmetric Renyi entropy using heat kernel method as well as localization technique. We find that the universal contribution to the partition function in the free field limit is the same as that in the strong coupling limit, which implies that it may be protected by supersymmetry. Based on the fact that, the conic sphere can be conformally mapped to $S^1\\times H^3$ and the R-symmetry background fields can be supported by the R-charges of black hole, we propose that the holographic dual of these theories are five-dimensional, supersymmetric STU topological black holes. We demonstrate perfect agreement between N=4 super-Yang-Mills theories in the planar limit and the STU topological black holes.

  3. Vehicle Technologies Office Merit Review 2014: Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

  4. ,"Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981" ,"Release...

  5. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  6. Vehicle Technologies Office Merit Review 2015: Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

  7. ,"New Mexico Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  8. ,"New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  9. ,"New Mexico Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  10. ,"New Mexico Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

  11. ,"New Mexico Dry Natural Gas Reserves Extensions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  12. ,"New Mexico Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  13. ,"New Mexico Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

  14. ,"New Mexico Dry Natural Gas Reserves New Field Discoveries ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  15. ,"New Mexico Dry Natural Gas Production (Million Cubic Feet)...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  16. ,"New Mexico Dry Natural Gas Reserves Adjustments (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  17. Hydrogen storage materials and method of making by dry homogenation

    DOE Patents [OSTI]

    Jensen, Craig M. (Kailua, HI); Zidan, Ragaiy A. (Honolulu, HI)

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  18. ,"Texas Dry Natural Gas Reserves Acquisitions (Billion Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  19. ,"Texas Dry Natural Gas Reserves Adjustments (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  20. ,"Texas Dry Natural Gas Reserves Estimated Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)",1,"Annual",2013...

  1. ,"Texas Dry Natural Gas Reserves New Field Discoveries (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)",1,"Annual",2013...

  2. ,"Texas Dry Natural Gas Reserves Revision Increases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2013...

  3. ,"Texas Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Production (Million Cubic Feet)",1,"Annual",2014 ,"Release Date:","09...

  4. ,"Texas Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic...

  5. ,"Texas Dry Natural Gas Reserves Sales (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Sales (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  6. ,"Texas Dry Natural Gas Reserves Revision Decreases (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2013...

  7. ,"Texas Dry Natural Gas Reserves Extensions (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Dry Natural Gas Reserves Extensions (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

  8. A population of relic intermediate-mass black holes in the halo of the Milky Way

    SciTech Connect (OSTI)

    Rashkov, Valery; Madau, Piero

    2014-01-10

    If 'seed' central black holes were common in the subgalactic building blocks that merged to form present-day massive galaxies, then relic intermediate-mass black holes (IMBHs) should be present in the Galactic bulge and halo. We use a particle tagging technique to dynamically populate the N-body Via Lactea II high-resolution simulation with black holes, and assess the size, properties, and detectability of the leftover population. The method assigns a black hole to the most tightly bound central particle of each subhalo at infall according to an extrapolation of the M {sub BH}-?{sub *} relation, and self-consistently follows the accretion and disruption of Milky Way progenitor dwarfs and their holes in a cosmological 'live' host from high redshift to today. We show that, depending on the minimum stellar velocity dispersion, ? {sub m}, below which central black holes are assumed to be increasingly rare, as many as ?2000 (? {sub m} = 3 km s{sup –1}) or as few as ?70 (? {sub m} = 12 km s{sup –1}) IMBHs may be left wandering in the halo of the Milky Way today. The fraction of IMBHs forced from their hosts by gravitational recoil is ? 20%. We identify two main Galactic subpopulations, 'naked' IMBHs, whose host subhalos were totally destroyed after infall, and 'clothed' IMBHs residing in dark matter satellites that survived tidal stripping. Naked IMBHs typically constitute 40%-50% of the total and are more centrally concentrated. We show that, in the ? {sub m} = 12 km s{sup –1} scenario, the clusters of tightly bound stars that should accompany naked IMBHs would be fainter than m{sub V} = 16 mag, spatially resolvable, and have proper motions of 0.1-10 mas yr{sup –1}. Their detection may provide an observational tool to constrain the formation history of massive black holes in the early universe.

  9. Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes

    SciTech Connect (OSTI)

    Maeda, Hideki; Harada, Tomohiro; Carr, B. J.

    2008-01-15

    We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=({gamma}-1){mu} with 0<{gamma}<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they are not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all nontraversable because of the absence of a past null infinity.

  10. Guides and Case Studies for Hot-Dry and Mixed-Dry Climates | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting Oversight CommitteeandEnergy Dry and

  11. Symmetry and the arrow of time in theoretical black hole astrophysics

    E-Print Network [OSTI]

    David Garofalo

    2015-07-27

    While the basic laws of physics seem time-reversal invariant, our understanding of the apparent irreversibility of the macroscopic world is well grounded in the notion of entropy. Because astrophysics deals with the largest structures in the Universe, one expects evidence there for the most pronounced entropic arrow of time. However, in recent theoretical astrophysics work it appears possible to identify constructs with time-reversal symmetry, which is puzzling in the large-scale realm especially because it involves the engines of powerful outflows in active galactic nuclei which deal with macroscopic constituents such as accretion disks, magnetic fields, and black holes. Nonetheless, the underlying theoretical structure from which this accreting black hole framework emerges displays a time-symmetric harmonic behavior, a feature reminiscent of basic and simple laws of physics. While we may expect such behavior for classical black holes due to their simplicity, manifestations of such symmetry on the scale of galaxies, instead, surprise. In fact, we identify a parallel between the astrophysical tug-of-war between accretion disks and jets in this model and the time symmetry-breaking of a simple overdamped harmonic oscillator. The validity of these theoretical ideas in combination with this unexpected parallel suggests that black holes are more influential in astrophysics than currently recognized and that black hole astrophysics is a more fundamental discipline.

  12. On the Thermodynamic Geometry and Critical Phenomena of AdS Black Holes

    E-Print Network [OSTI]

    Anurag Sahay; Tapobrata Sarkar; Gautam Sengupta

    2010-04-21

    In this paper, we study various aspects of the equilibrium thermodynamic state space geometry of AdS black holes. We first examine the Reissner-Nordstrom-AdS (RN-AdS) and the Kerr-AdS black holes. In this context, the state space scalar curvature of these black holes is analysed in various regions of their thermodynamic parameter space. This provides important new insights into the structure and significance of the scalar curvature. We further investigate critical phenomena, and the behaviour of the scalar curvature near criticality, for KN-AdS black holes in two mixed ensembles, introduced and elucidated in our earlier work arXiv:1002.2538 [hep-th]. The critical exponents are identical to those in the RN-AdS and Kerr-AdS cases in the canonical ensemble. This suggests an universality in the scaling behaviour near critical points of AdS black holes. Our results further highlight qualitative differences in the thermodynamic state space geometry for electric charge and angular momentum fluctuations of these.

  13. Radion clouds around evaporating black holes

    E-Print Network [OSTI]

    J. R. Morris

    2009-09-03

    A Kaluza-Klein model, with a matter source associated with Hawking radiation from an evaporating black hole, is used to obtain a simple form for the radion effective potential. The environmental effect generally causes a matter-induced shift of the radion vacuum, resulting in the formation of a radion cloud around the hole. There is an albedo due to the radion cloud, with an energy dependent reflection coefficient that depends upon the size of the extra dimensions and the temperature of the hole.

  14. Testing black hole candidates with electromagnetic radiation

    E-Print Network [OSTI]

    Bambi, Cosimo

    2015-01-01

    Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity, but there is currently no direct observational evidence that the spacetime geometry around these objects is described by the Kerr solution. The study of the properties of the electromagnetic radiation emitted by gas or stars orbiting these objects can potentially test the Kerr black hole hypothesis. In this paper, I review the state of the art of this research field, describing the possible approaches to test the Kerr metric with current and future observational facilities and discussing current constraints.

  15. Quasinormal Modes of Dirty Black Holes

    E-Print Network [OSTI]

    P. T. Leung; Y. T. Liu; W. -M. Suen; C. Y. Tam; K. Young

    1999-03-08

    Quasinormal mode (QNM) gravitational radiation from black holes is expected to be observed in a few years. A perturbative formula is derived for the shifts in both the real and the imaginary part of the QNM frequencies away from those of an idealized isolated black hole. The formulation provides a tool for understanding how the astrophysical environment surrounding a black hole, e.g., a massive accretion disk, affects the QNM spectrum of gravitational waves. We show, in a simple model, that the perturbed QNM spectrum can have interesting features.

  16. Black hole microstates in AdS

    E-Print Network [OSTI]

    Shaghoulian, Edgar

    2015-01-01

    We extend a recently derived higher-dimensional Cardy formula to include angular momenta, which we use to obtain the Bekensten-Hawking entropy of AdS black branes, compactified rotating branes, and large Schwarzschild/Kerr black holes. This is the natural generalization of Strominger's microscopic derivation of the BTZ black hole entropy to higher dimensions. We propose an extension to include $U(1)$ charge, which agrees with the Bekenstein-Hawking entropy of large Reissner-Nordstrom/Kerr-Newman black holes at high temperature. We extend the results to arbitrary hyperscaling violation exponent (this captures the case of black D$p$-branes as a subclass) and reproduce logarithmic corrections.

  17. Some remarks on black hole thermodynamics

    E-Print Network [OSTI]

    R. Y. Chiao

    2011-02-04

    Two thermodynamic "paradoxes" of black hole physics are re-examined. The first is that there is a thermal instability involving two coupled blackbody cavities containing two black holes, and second is that a classical black hole can swallow up entropy in the form of ambient blackbody photons without increasing its mass. The resolution of the second paradox by Bekenstein and by Hawking is re-visited. The link between Hawking radiation and Wigner's superluminal tunneling time is discussed using two equivalent Feynman diagrams, and Feynman's re-interpretation principle.

  18. Thermodynamics of Dyonic Lifshitz Black Holes

    E-Print Network [OSTI]

    Tobias Zingg

    2011-07-15

    Black holes with asymptotic anisotropic scaling are conjectured to be gravity duals of condensed matter system close to quantum critical points with non-trivial dynamical exponent z at finite temperature. A holographic renormalization procedure is presented that allows thermodynamic potentials to be defined for objects with both electric and magnetic charge in such a way that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz spacetimes can exhibit paramagnetic behavior at low temperature limit for certain values of the critical exponent z, whereas the behavior of AdS black holes is always diamagnetic.

  19. Testing the Kerr black hole hypothesis

    E-Print Network [OSTI]

    Cosimo Bambi

    2011-10-13

    It is thought that the final product of the gravitational collapse is a Kerr black hole and astronomers have discovered several good astrophysical candidates. While there is some indirect evidence suggesting that the latter have an event horizon, and therefore that they are black holes, a proof that the space-time around these objects is described by the Kerr geometry is still lacking. Recently, there has been an increasing interest in the possibility of testing the Kerr black hole hypothesis with present and future experiments. In this paper, I briefly review the state of the art of the field, focussing on some recent results and work in progress.

  20. Scalar Perturbations of Charged Dilaton Black Holes

    E-Print Network [OSTI]

    Sharmanthie Fernando; Keith Arnold

    2015-08-01

    We have studied the scalar perturbation of static charged dilaton black holes in 3+1 dimensions. The black hole considered here is a solution to the low-energy string theory in 3+1 dimensions. The quasinormal modes for the scalar perturbations are calculated using the third order WKB method. The dilaton coupling constant has a considerable effect on the values of quasi normal modes. It is also observed that there is a linear relation between the quasi normal modes and the temperature for large black holes.

  1. RISO-M-2438 Dry deposition and resuspension of

    E-Print Network [OSTI]

    CO RISO-M-2438 2 S Dry deposition and resuspension of particulate matter in city environments N 1984 få #12;RISØ-M-2438 DRY DEPOSITION AND RESUSPENSION OF PARITUCLATE NATTER IN CITY ENVIRONMENTS N.O. Jensen Abstract. The report describes, mostly in qualitative terms, the deposition and resuspension

  2. STREAMLINING THE SUPPLY CHAIN: GREENHOUSE GAS EMISSIONSAND DRY MATTER LOSSES

    E-Print Network [OSTI]

    supply chains · Dry matter, lost energy and quality changes · Focusing on: · Wood chip storage and greenhouse gas emissions from wood chip storage? · Cap layer forms on outside · Mouldy and very dampSTREAMLINING THE SUPPLY CHAIN: GREENHOUSE GAS EMISSIONSAND DRY MATTER LOSSES FROM WOOD CHIP STACKS

  3. Energy conservation by partial recirculation of peanut drying air

    SciTech Connect (OSTI)

    Young, J.H.

    1983-06-01

    Conventional, recirculating, and intermittent type peanut dryers were compared in a three-year study. Comparisons indicate that partial recirculation of peanut drying air may reduce energy consumption per unit of water removed by approximately 25% while also reducing required drying time and maintaining high quality.

  4. Penetration rate prediction for percussive drilling via dry friction model

    E-Print Network [OSTI]

    Krivtsov, Anton M.

    Penetration rate prediction for percussive drilling via dry friction model Anton M. Krivtsov a of percussive drilling assuming a dry friction mechanism to explain the experimentally observed drop in pene in drilling research is a fall of pene- tration rate for higher static loads. This is known both

  5. Community Geothermal Technology Program: Experimental lumber drying kiln. Final report

    SciTech Connect (OSTI)

    Leaman, D.; Irwin, B.

    1989-10-01

    Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

  6. Energy of 4-Dimensional Black Hole, etc

    E-Print Network [OSTI]

    Dmitriy Palatnik

    2011-07-18

    In this letter I suggest possible redefinition of mass density, not depending on speed of the mass element, which leads to a more simple stress-energy for an object. I calculate energy of black hole.

  7. Horizon Operator Approach to Black Hole Quantization

    E-Print Network [OSTI]

    G. 't Hooft

    1994-02-21

    The $S$-matrix Ansatz for the construction of a quantum theory of black holes is further exploited. We first note that treating the metric tensor $g_{\\m\

  8. Radiation transport around Kerr black holes

    E-Print Network [OSTI]

    Schnittman, Jeremy David

    2005-01-01

    This Thesis describes the basic framework of a relativistic ray-tracing code for analyzing accretion processes around Kerr black holes. We begin in Chapter 1 with a brief historical summary of the major advances in black ...

  9. Topological Black Holes -- Outside Looking In

    E-Print Network [OSTI]

    R. B. Mann

    1997-09-15

    I describe the general mathematical construction and physical picture of topological black holes, which are black holes whose event horizons are surfaces of non-trivial topology. The construction is carried out in an arbitrary number of dimensions, and includes all known special cases which have appeared before in the literature. I describe the basic features of massive charged topological black holes in $(3+1)$ dimensions, from both an exterior and interior point of view. To investigate their interiors, it is necessary to understand the radiative falloff behaviour of a given massless field at late times in the background of a topological black hole. I describe the results of a numerical investigation of such behaviour for a conformally coupled scalar field. Significant differences emerge between spherical and higher genus topologies.

  10. Time-bin entangled photon holes

    E-Print Network [OSTI]

    J. Liang; J. D. Franson; T. B. Pittman

    2012-08-23

    The general concept of entangled photon holes is based on a correlated absence of photon pairs in an otherwise constant optical background. Here we consider the specialized case when this background is confined to two well-defined time bins, which allows the formation of time-bin entangled photon holes. We show that when the typical coherent state background is replaced by a true single-photon (Fock state) background, the basic time-bin entangled photon-hole state becomes equivalent to one of the time-bin entangled photon-pair states. We experimentally demonstrate these ideas using a parametric down-conversion photon-pair source, linear optics, and post-selection to violate a Bell inequality with time-bin entangled photon holes.

  11. Evidence for the Black Hole Event Horizon

    E-Print Network [OSTI]

    Ramesh Narayan; Jeremy S. Heyl

    2002-04-26

    Roughly a dozen X-ray binaries are presently known in which the compact accreting primary stars are too massive to be neutron stars. These primaries are identified as black holes, though there is as yet no definite proof that any of the candidate black holes actually possesses an event horizon. We discuss how Type I X-ray bursts may be used to verify the presence of the event horizon in these objects. Type I bursts are caused by thermonuclear explosions when gas accretes onto a compact star. The bursts are commonly seen in many neutron star X-ray binaries, but they have never been seen in any black hole X-ray binary. Our model calculations indicate that black hole candidates ought to burst frequently if they have surfaces. Based on this, we argue that the lack of bursts constitutes strong evidence for the presence of event horizons in these objects.

  12. Black Hole Thermodynamics in Modified Gravity

    E-Print Network [OSTI]

    Jonas R. Mureika; John W. Moffat; Mir Faizal

    2015-03-03

    We analyze the thermodynamics of a non-rotating and rotating black hole in a modified theory of gravity that includes scalar and vector modifications to general relativity, which results in a modified gravitational constant $G = G_N(1+\\alpha)$ and a new gravitational charge $Q = \\sqrt{\\alpha G_N}M$. The influence of the parameter $\\alpha$ alters the non-rotating black hole's lifetime, temperature and entropy profiles from the standard Schwarzschild case. The thermodynamics of a rotating black hole is analyzed and it is shown to possess stable, cold remnants. The thermodynamic properties of a vacuum solution regular at $r=0$ are investigated and the solution without a horizon called a "gray hole" is not expected to possess an information loss problem.

  13. CHARYBDIS: A Black hole event generator.

    E-Print Network [OSTI]

    Harris, Chris M.; Richardson, P.; Webber, Bryan R.

    CHARYBDIS is an event generator which simulates the production and decay of miniature black holes at hadronic colliders as might be possible in certain extra dimension models. It interfaces via the Les Houches accord to general purpose Monte...

  14. Spacetime constraints on accreting black holes

    SciTech Connect (OSTI)

    Garofalo, David [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California 91109 (United States)

    2009-06-15

    We study the spin dependence of accretion onto rotating Kerr black holes using analytic techniques. In its linear regime, angular momentum transport in MHD turbulent accretion flow involves the generation of radial magnetic field connecting plasma in a differentially rotating flow. We take a first principles approach, highlighting the constraint that limits the generation and amplification of radial magnetic fields, stemming from the transfer of energy from mechanical to magnetic form. Because the energy transferred in magnetic form is ultimately constrained by gravitational potential energy or Killing energy, the spin dependence of the latter allows us to derive spin-dependent constraints on the success of the accreting plasma to expel its angular momentum. We find an inverse relationship between this ability and black hole spin. If this radial magnetic field generation forms the basis for angular momentum transfer in accretion flows, accretion rates involving Kerr black holes are expected to be lower as the black hole spin increases in the prograde sense.

  15. Quantum entanglement of baby universes

    SciTech Connect (OSTI)

    Essman, Eric P.; Aganagic, Mina; Okuda, Takuya; Ooguri, Hirosi

    2006-12-07

    We study quantum entanglements of baby universes which appear in non-perturbative corrections to the OSV formula for the entropy of extremal black holes in type IIA string theory compactified on the local Calabi-Yau manifold defined as a rank 2 vector bundle over an arbitrary genus G Riemann surface. This generalizes the result for G=1 in hep-th/0504221. Non-perturbative terms can be organized into a sum over contributions from baby universes, and the total wave-function is their coherent superposition in the third quantized Hilbert space. We find that half of the universes preserve one set of supercharges while the other half preserve a different set, making the total universe stable but non-BPS. The parent universe generates baby universes by brane/anti-brane pair creation, and baby universes are correlated by conservation of non-normalizable D-brane charges under the process. There are no other source of entanglement of baby universes, and all possible states are superposed with the equal weight.

  16. Thermodynamics and evaporation of the noncommutative black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Yong-Wan Kim; Young-Jai Park

    2007-01-21

    We investigate the thermodynamics of the noncommutative black hole whose static picture is similar to that of the nonsingular black hole known as the de Sitter-Schwarzschild black hole. It turns out that the final remnant of extremal black hole is a thermodynamically stable object. We describe the evaporation process of this black hole by using the noncommutativity-corrected Vaidya metric. It is found that there exists a close relationship between thermodynamic approach and evaporation process.

  17. Classical and thermodynamic stability of black holes

    E-Print Network [OSTI]

    Monteiro, Ricardo

    2010-07-06

    Perturbations of the asymptotic charges . . . . . . . . . . . . . . . . 169 IV Conclusion 171 9 Conclusion and outlook 173 A Spectral numerical method 177 2 CONTENTS Part I Introduction 3 Chapter 1 Black holes Black holes are arguably the most interesting... to Newto- nian dynamics in the Solar system, and the indirect detection of gravitational waves from binary pulsars [1]. A crucial distinction from Newtonian gravity is that the “action-at-a-distance” is substituted by a built-in causality structure...

  18. Fractionated Branes and Black Hole Interiors

    E-Print Network [OSTI]

    Emil J. Martinec

    2015-05-20

    Combining a variety of results in string theory and general relativity, a picture of the black hole interior is developed wherein spacetime caps off at an inner horizon, and the inter-horizon region is occupied by a Hagedorn gas of a very low tension state of fractionated branes. This picture leads to natural resolutions of a variety of puzzles concerning quantum black holes. Gravity Research Foundation 2015 Fourth Prize Award for Essays on Gravitation.

  19. Solution for "geodesic" motion of a Schwarzschild black hole along a magnetic field in AdS2 x S2 space-time

    E-Print Network [OSTI]

    Alekseev, George A

    2015-01-01

    The exact solution of Einstein - Maxwell equations for a Schwarzschild black hole immersed in the static spatially homogeneous AdS${}^2\\times\\mathbb{S}^2$ space-time of Bertotti-Robinson magnetic universe is presented. In this solution, the black hole possesses a finite initial boost in the direction of the magnetic field and performs a "geodesic" oscillating motion interacting with the background gravitational and electromagnetic fields.

  20. Microcracks, residual strain, velocity, and elastic properties of igneous rocks from a geothermal test-hole at Fenton Hill, New Mexico 

    E-Print Network [OSTI]

    Ciampa, John David

    1980-01-01

    MICROCRACKS, RESIDUAL STRAIN, VELOCITY, AND ELASTIC PROPERTIES OF IGNEOUS ROCKS FRCM A GEOTHERMAL TEST-HOLE AT FENTON HILL, NEW MEXICO A Thesis JOHN DAVID CIAMPA Submitted to the Graduate College of Texas A8M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1980 Major Subject: Geophysics MICROCRACKS, RESIDUAL STRAIN, VELOCITY, AND ELASTIC PROPERTIES OF IGNEOUS ROCKS FROM A GEOTHERMAL TEST-HOLE AT FENTON HILL, NEW MEXICO A Thesis by JOHN DAVID CIAMPA...

  1. A FULLY DRY SELFA FULLY DRY SELF--ASSEMBLY PROCESS WITHASSEMBLY PROCESS WITH PROPER INPROPER IN--PLANE ORIENTATIONPLANE ORIENTATION

    E-Print Network [OSTI]

    A FULLY DRY SELFA FULLY DRY SELF--ASSEMBLY PROCESS WITHASSEMBLY PROCESS WITH PROPER INPROPER IN consumption byimprove the performance and reduce the power consumption by eliminating long horizontal wiring strategy with parallel self--assembly isassembly is necessary for high throughput.necessary for high

  2. Solar Wind Forecasting with Coronal Holes

    E-Print Network [OSTI]

    S. Robbins; C. J. Henney; J. W. Harvey

    2007-01-09

    An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

  3. Structural Sensitivity of Dry Storage Canisters

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Karri, Naveen K.; Adkins, Harold E.; Hanson, Brady D.

    2013-09-27

    This LS-DYNA modeling study evaluated a generic used nuclear fuel vertical dry storage cask system under tip-over, handling drop, and seismic load cases to determine the sensitivity of the canister containment boundary to these loads. The goal was to quantify the expected failure margins to gain insight into what material changes over the extended long-term storage lifetime could have the most influence on the security of the containment boundary. It was determined that the tip-over case offers a strong challenge to the containment boundary, and identifies one significant material knowledge gap, the behavior of welded stainless steel joints under high-strain-rate conditions. High strain rates are expected to increase the material’s effective yield strength and ultimate strength, and may decrease its ductility. Determining and accounting for this behavior could potentially reverse the model prediction of a containment boundary failure at the canister lid weld. It must be emphasized that this predicted containment failure is an artifact of the generic system modeled. Vendor specific designs analyze for cask tip-over and these analyses are reviewed and approved by the Nuclear Regulatory Commission. Another location of sensitivity of the containment boundary is the weld between the base plate and the canister shell. Peak stresses at this location predict plastic strains through the whole thickness of the welded material. This makes the base plate weld an important location for material study. This location is also susceptible to high strain rates, and accurately accounting for the material behavior under these conditions could have a significant effect on the predicted performance of the containment boundary. The handling drop case was largely benign to the containment boundary, with just localized plastic strains predicted on the outer surfaces of wall sections. It would take unusual changes in the handling drop scenario to harm the containment boundary, such as raising the drop height or changing the impact angle. The seismic load case was derived from the August 23, 2011 earthquake that affected the North Anna power station. The source of the data was a monitoring station near Charlottesville, Virginia, so the ground motion is not an exact match. Stresses on the containment boundary were so low, even from a fatigue standpoint, that the seismic load case is generally not a concern. Based on this study, it is recommended that high strain rate testing of welded stainless steel test samples be pursued to define the currently unknown material behavior. Additional modeling is recommended to evaluate specific dry storage cask system designs subjected to tip-over loads using a high level of model detail. Additional modeling of the canister interior components (basket, fuel assemblies, etc.) is also recommended, to evaluate the feasibility of fuel retrievability after a tip-over incident. Finally, additional modeling to determine how much degradation a system could undergo and still maintain the integrity of the confinement barrier should be performed.

  4. Constraints on the density perturbation spectrum from primordial black holes

    E-Print Network [OSTI]

    Anne M Green; Andrew R Liddle

    1997-04-25

    We re-examine the constraints on the density perturbation spectrum, including its spectral index $n$, from the production of primordial black holes. The standard cosmology, where the Universe is radiation dominated from the end of inflation up until the recent past, was studied by Carr, Gilbert and Lidsey; we correct two errors in their derivation and find a significantly stronger constraint than they did, $n \\lesssim 1.25$ rather than their 1.5. We then consider an alternative cosmology in which a second period of inflation, known as thermal inflation and designed to solve additional relic over-density problems, occurs at a lower energy scale than the main inflationary period. In that case, the constraint weakens to $n \\lesssim 1.3$, and thermal inflation also leads to a `missing mass' range, $10^{18} g \\lesssim M \\lesssim 10^{26} g$, in which primordial black holes cannot form. Finally, we discuss the effect of allowing for the expected non-gaussianity in the density perturbations predicted by Bullock and Primack, which can weaken the constraints further by up to 0.05.

  5. Supersymmetric black holes and attractors in gauged supergravity with hypermultiplets

    E-Print Network [OSTI]

    Chimento, Samuele; Petri, Nicolò

    2015-01-01

    We consider four-dimensional $N=2$ supergravity coupled to vector- and hypermultiplets, where abelian isometries of the quaternionic K\\"ahler hypermultiplet scalar manifold are gauged. Using the recipe given by Meessen and Ort\\'{\\i}n in arXiv:1204.0493, we analytically construct a supersymmetric black hole solution for the case of just one vector multiplet with prepotential ${\\cal F}=-i\\chi^0\\chi^1$, and the universal hypermultiplet. This solution has a running dilaton, and it interpolates between $\\text{AdS}_2\\times\\text{H}^2$ at the horizon and a hyperscaling-violating type geometry at infinity, conformal to $\\text{AdS}_2\\times\\text{H}^2$. It carries two magnetic charges that are completely fixed in terms of the parameters that appear in the Killing vector used for the gauging. In the second part of the paper, we extend the work of Bellucci et al. on black hole attractors in gauged supergravity to the case where also hypermultiplets are present. The attractors are shown to be governed by an effective potent...

  6. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    SciTech Connect (OSTI)

    JOSEPHSON, W S

    2003-09-04

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis refinements and/or relaxation of conservatisms. However, possible design improvements will be summarized for future application. All assumptions and related design features, while appropriate for conceptual designs, must be technically justified for the final design. The pertinent thermal design requirements and underlying assumptions are summarized in Section 1.3. The majority of the thermal analyses, as described in Sections 4.2 and 4.3, focus on an acceptable conceptual design arrived at by refinement of a preliminary but unacceptable design. The results of the subject thermal analyses, as presented in Section 4.0, satisfy items 3 and 4 above.

  7. Relic gravitational waves in the expanding Universe

    E-Print Network [OSTI]

    German Izquierdo

    2006-01-12

    In this thesis, we have reviewed how the expansion of the Universe amplifies the quantum vacuum fluctuations, and how the relic GWs spectrum is related with the scale factor. We have evaluated the spectrum in different scenarios: a model of expanding universe with an era dominated by mini black holes and radiation right after the inflation and a model with an era of accelerated expansion right after the radiation era. Next, we have applied the generalized second law of thermodynamics to the latter model. Finally, we have extended the GSL study to a single stage universe model dominated by dark energy (either phantom or not).

  8. Nanoparticle preparation of Mefenamic acid by electrospray drying

    SciTech Connect (OSTI)

    Zolkepali, Nurul Karimah, E-mail: fitrah@salam.uitm.edu.my; Bakar, Noor Fitrah Abu, E-mail: fitrah@salam.uitm.edu.my; Anuar, Nornizar [Faculty Of Chemical Engineering, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor (Malaysia); Naim, M. Nazli [Food and Process Department, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor (Malaysia); Bakar, Mohd Rushdi Abu [Kulliyyah of Pharmacy, International Islamic University Malaysia, P.O Box 141, 25710, Kuantan, Pahang (Malaysia)

    2014-02-24

    Nanoparticles preparation of Mefenamic acid (MA) by using an electrospray drying method was conducted in this study. Electrospray drying is a process that uses electrostatic force to disperse a conductive liquid stream into fine charged droplets through the coulomb fission of charges in the liquid and finally dry into fine particles. Electrospray drying modes operation usually in Taylor cone jet, and it was formed by controlling applied voltage and liquid flow rate. A conductive liquid (2.77–8.55?Scm{sup ?1}) which is MA solution was prepared by using acetone with concentration 0.041 and 0.055 M before pumping at a flow rate of 3–6ml/h. By applying the applied voltage at 1.3–1.5 kV, Taylor cone jet mode was formed prior to the electrospray. During electrospray drying process, solvent evaporation from the droplet was occurring that leads to coulomb disruption and may generate to nanoparticles. The dried nanoparticles were collected on a grounded substrate that was placed at varying distance from the electrospray. MA particle with size range of 100–400 nm were produced by electrospray drying process. Characterization of particles by using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) show that particles formed into polymorph I.

  9. New York University UNIVERSITY POLICIES

    E-Print Network [OSTI]

    Van Den Eijnden, Eric

    1 New York University UNIVERSITY POLICIES Title: Developing University Policies Effective Date President, Office of the President Responsible Officer: General Counsel Policy It is the policy of New York

  10. Ball Lightning Manifestation of Cosmic Little Black Holes

    E-Print Network [OSTI]

    Rabinowitz, M

    2001-01-01

    A case is made that in encounters with the earth's atmosphere, astrophysical little black holes (LBH) can manifest themselves as the core energy source of balllightning (BL). Relating the LBH incidence rate on earth to BL occurrence has the potential of shedding light on the distribution of LBH in the universe, and their velocities relative to the earth. Most BL features can be explained by a testable LBH model. Analyses are presented to support this model. LBH produce complex and many-faceted interactions in air directly and via their exhaust, resulting in excitation, ionization, and radiation due to processes such as gravitational and electrostatic tidal force, bremsstrahlung, pair production and annihilation, orbital electron near-capture by interaction with a charged LBH. Gravitational interaction of atmospheric atoms with LBH can result in an enhanced cross-section for polarization and ionization. An estimate for the power radiated by BL ~ Watts is in agreement with observation. An upper limit is found f...

  11. Improving hole injection efficiency by manipulating the hole transport mechanism through

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    -emitting diodes (LEDs) for elec- tron overflow suppression. However, a typical EBL also reduces the hole injection to be the key to enhancing the hole injection efficiency. InGaN/ GaN LEDs with the proposed p-type AlGaN/GaN/AlGaN EBL have demonstrated substantially higher optical output power and external quantum efficiency

  12. Rotating black hole thermodynamics with a particle probe

    SciTech Connect (OSTI)

    Gwak, Bogeun; Lee, Bum-Hoon

    2011-10-15

    The thermodynamics of Myers-Perry black holes in general dimensions are studied using a particle probe. When undergoing particle absorption, the changes of the entropy and irreducible mass are shown to be dependent on the particle radial momentum. The black hole thermodynamic behaviors are dependent on dimensionality for specific rotations. For a 4-dimensional Kerr black hole, its black hole properties are maintained for any particle absorption. 5-dimensional black holes can avoid a naked ring singularity by absorbing a particle in specific momenta ranges. Black holes over 6 dimensions become ultraspinning black holes through a specific form of particle absorption. The microscopical changes are interpreted in limited cases of Myers-Perry black holes using Kerr/CFT correspondence. We systematically describe the black hole properties changed by particle absorption in all dimensions.

  13. University Bookstore University Art Store

    E-Print Network [OSTI]

    Sorin, Eric J.

    & Pub* Nugget Express* Squeeze Me Starbucks* The Outpost Grill* University Student Union Carl's Jr El Ground Floor Coffee House Central Park Coffee House University Library Starbucks* DINING www

  14. InsideFood Symposium, 9-12 April 2013, Leuven, Belgium 1 | P a g e Multi-length scale structural imaging of freeze-dried carrots

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    InsideFood Symposium, 9-12 April 2013, Leuven, Belgium 1 | P a g e Multi-length scale structural, The Netherlands c Food Process Engineering, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands pre-treatments were applied to the samples before freeze- drying under vacuum (0.4 mbar) from -30o C

  15. Holographic superconductor in the exact hairy black hole

    E-Print Network [OSTI]

    Yun Soo Myung; Chanyong Park

    2011-09-13

    We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of analytic hairy black hole for holographic superconductor. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordstr\\"om-AdS (HRNAdS) black holes. However, this transition unlikely occur. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.

  16. Production of low-fat tortilla chips using alternative methods of drying before frying 

    E-Print Network [OSTI]

    Lujan Acosta, Francisco Javier

    1996-01-01

    . The effect of different drying conditions on the drying rate, texture, shrinkage profile and microstructure was analyzed. The results indicated that I drying rate was mostly affected by the air temperature, texture was crispier at higher air temperatures...

  17. The River Runs Dry: Examining Water Shortages in the Yellow River Basin

    E-Print Network [OSTI]

    Zusman, Eric

    2000-01-01

    in Transition Zusman/The River Runs Dry Wang Liurong.YRCC’sin Transition Zusman/The River Runs Dry not just importantin Transition Zusman/The River Runs Dry emerging market

  18. Technical and economical considerations of new DRI melting process

    SciTech Connect (OSTI)

    Ito, Shuzo; Tokuda, Koji; Sammt, F.; Gray, R.

    1997-12-31

    The new DRI melting process can effectively and economically produce high quality molten iron. This process utilizes hot charging of DRI directly from a reduction furnace into a dedicated new melting furnace. The molten iron from this DRI premelter can be charged into a steelmaking furnace, such as an electric arc furnace (EAF), where the molten iron, together with other iron sources, can be processed to produce steel. Alternatively the molten iron can be pigged or granulated for off-site merchant sales. Comprehensive research and development of the new process has been conducted including operational process simulation, melting tests using FASTMET DRI, slag technology development, and refractory corrosion testing. This paper describes the process concept, its operational characteristics and further applications of the process.

  19. Precipitation scavenging, dry deposition, and resuspension. Volume 2. Proceedings

    SciTech Connect (OSTI)

    Pruppacher, H.R.; Semonin, R.G.; Slinn, W.G.N.

    1983-01-01

    Volume 2 of these proceedings contains papers on dry deposition and resuspension of airborne pollutants. Items within the scope of EDB have been entered separately into the data base. (ACR)

  20. Supply chain management in the dry bulk shipping industry

    E-Print Network [OSTI]

    Nicholson, Bryan E. (Bryan Edward)

    2006-01-01

    This paper is intended to show the importance of supply chain management in the dry-bulk shipping industry. A hypothetical company, the Texas Grain and Bakery Corporation, was created. The values and calculations used are ...

  1. Disneyland’s Dry Cleaning Gets an Energy Efficient Upgrade

    Broader source: Energy.gov [DOE]

    As the provider of laundry and dry cleaning services for Disneyland Resort’s costumes and hospitality supply items, L&N Costume and Linen Service knows a little something about both quantity and quality.

  2. Drilling Complete on Australian Hot Dry Rock Project

    Broader source: Energy.gov [DOE]

    The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth.

  3. Mathematical modeling of impingement drying of corn tortillas 

    E-Print Network [OSTI]

    Braud, Louise Marie

    2000-01-01

    was driven according to Fourier's Law of conduction. Boundary conditions for drying in both air and superheated steam were developed for incorporation into the model. Convective heat transfer accounted for heat flow into the product at the surface. When...

  4. Electrically charged black hole with scalar hair

    E-Print Network [OSTI]

    Cristian Martinez; Ricardo Troncoso

    2006-06-16

    An electrically charged black hole solution with scalar hair in four dimensions is presented. The self-interacting scalar field is real and it is minimally coupled to gravity and electromagnetism. The event horizon is a surface of negative constant curvature and the asymptotic region is locally an AdS spacetime. The asymptotic fall-off of the fields is slower than the standard one. The scalar field is regular everywhere except at the origin, and is supported by the presence of electric charge which is bounded from above by the AdS radius. In turn, the presence of the real scalar field smooths the electromagnetic potential everywhere. Regardless the value of the electric charge, the black hole is massless and has a fixed temperature. The entropy follows the usual area law. It is shown that there is a nonvanishing probability for the decay of the hairy black hole into a charged black hole without scalar field. Furthermore, it is found that an extremal black hole without scalar field is likely to undergo a spontaneous dressing up with a nontrivial scalar field, provided the electric charge is below a critical value.

  5. BLACK HOLE FORAGING: FEEDBACK DRIVES FEEDING

    SciTech Connect (OSTI)

    Dehnen, Walter; King, Andrew, E-mail: wd11@leicester.ac.uk, E-mail: ark@astro.le.ac.uk [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)] [Theoretical Astrophysics Group, University of Leicester, Leicester LE1 7RH (United Kingdom)

    2013-11-10

    We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy, but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back toward the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (1) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (2) random orientations of successive accretion disk episodes; (3) the possibility of rapid SMBH growth; (4) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible flares and ejection of hypervelocity stars; (5) super-solar abundances of the matter accreting on to the SMBH; and (6) a lower central dark-matter density, and hence annihilation signal, than adiabatic SMBH growth implies. We also suggest a simple subgrid recipe for implementing this process in numerical simulations.

  6. Perturbative String Thermodynamics near Black Hole Horizons

    E-Print Network [OSTI]

    Thomas G. Mertens; Henri Verschelde; Valentin I. Zakharov

    2015-07-01

    We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work JHEP 1403 (2014) 086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of $\\alpha'$-corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large $k$ limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O'Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in $g_s$) to compute thermodynamical quantities in black hole spacetimes.

  7. Black Hole Spin in AGN and GBHCs

    E-Print Network [OSTI]

    Christopher S. Reynolds; Laura W. Brenneman; David Garofalo

    2004-10-05

    We discuss constraints on black hole spin and spin-related astrophysics as derived from X-ray spectroscopy. After a brief discussion about the robustness with which X-ray spectroscopy can be used to probe strong gravity, we summarize how these techniques can constrain black hole spin. In particular, we highlight XMM-Newton studies of the Seyfert galaxy MCG-6-30-15 and the stellar-mass black hole GX339-4. The broad X-ray iron line profile, together with reasonable and general astrophysical assumptions, allow a non-rotating black hole to be rejected in both of these sources. If we make the stronger assertion of no emission from within the innermost stable circular orbit, the MCG-6-30-15 data constrain the dimensionless spin parameter to be a>0.93. Furthermore, these XMM-Newton data are already providing evidence for exotic spin-related astrophysics in the central regions of this object. We conclude with a discussion of the impact that Constellation-X will have on the study of strong gravity and black hole spin.

  8. Dry scrubber reduces SO sub 2 in calciner flue gas

    SciTech Connect (OSTI)

    Brown, G.W. (Refining Consulting Services, Englewood, CO (US)); Roderick, D. (Western Slope Refining Co., Fruita, CO (US)); Nastri, A. (NATEC Resources Inc., Dallas, TX (US))

    1991-02-18

    This paper discusses the installation of a dry sulfur dioxide scrubber for an existing petroleum coke calciner at its Fruita, Colo., refinery. The dry scrubbing process was developed by the power industry to help cope with the acid rain problem. It is the first application of the process in an oil refinery. The process could also remove SO{sub 2} from the flue gas of a fluid catalytic cracker, fluid coker, or other refinery sources.

  9. Small drains, big problems: The impact of dry weather runoff on shoreline water quality at enclosed beaches

    E-Print Network [OSTI]

    2014-01-01

    fecal pollution during dry weather Research and Education (R. Characterizing Dry Weather Runo?, Sediment Resuspension,Problems: The Impact of Dry Weather Runo? on Shoreline Water

  10. UNIVERSITY OF ABERDEEN UNIVERSITY COURT

    E-Print Network [OSTI]

    Neri, Peter

    application for the refurbishment had been submitted to Aberdeen City Council. The University had also signed

  11. Neutrino Majorana Mass from Black Hole

    E-Print Network [OSTI]

    Yosuke Uehara

    2002-05-25

    We propose a new mechanism to generate the neutrino Majorana mass in TeV-scale gravity models. The black hole violates all non-gauged symmetries and can become the origin of lepton number violating processes. The fluctuation of higher-dimensional spacetime can result in the production of a black hole, which emits 2 neutrinos. If neutrinos are Majorana particles, this process is equivalent to the free propagation of a neutrino with the insertion of the black hole. From this fact, we derive the neutrino Majorana mass. The result is completely consistent with the recently observed evidence of neutrinoless double beta decay. And the obtained neutrino Majorana mass satisfies the constraint from the density of the neutrino dark matter, which affects the cosmic structure formation. Furthermore, we can explain the ultrahigh energy cosmic rays by the Z-burst scenario with it.

  12. Numerical Analysis of Black Hole Evaporation

    E-Print Network [OSTI]

    Tsvi Piran; Andrew Strominger

    1993-04-28

    Black hole formation/evaporation in two-dimensional dilaton gravity can be described, in the limit where the number $N$ of matter fields becomes large, by a set of second-order partial differential equations. In this paper we solve these equations numerically. It is shown that, contrary to some previous suggestions, black holes evaporate completely a finite time after formation. A boundary condition is required to evolve the system beyond the naked singularity at the evaporation endpoint. It is argued that this may be naturally chosen so as to restore the system to the vacuum. The analysis also applies to the low-energy scattering of $S$-wave fermions by four-dimensional extremal, magnetic, dilatonic black holes.

  13. No Supermassive Black Hole in M33?

    E-Print Network [OSTI]

    David Merritt; Laura Ferrarese; Charles L. Joseph

    2001-07-20

    We analyze optical long-slit spectroscopy of the nucleus of M33 obtained from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope. Rather than the steep rise expected within the radius of influence of a supermassive black hole, the velocity dispersion drops significantly within the inner parsec. Dynamical modelling yields an estimated upper limit of 3000 solar masses for the mass of a central compact object. This upper limit is however consistent within the uncertainties with the mass predicted by the M-sigma relation, which is between 2000 and 20,000 solar masses. We therefore can not conclude that the presence of a massive black hole in the nucleus of M33 would require a different formation mechanism from that of the black holes detected in galaxies with more luminous bulges.

  14. Interior of Black Holes and Information Recovery

    E-Print Network [OSTI]

    Hikaru Kawai; Yuki Yokokura

    2015-09-28

    We analyze time evolution of a collapsing matter from a point of view that black holes evaporate by nature. We first consider a spherical thin shell that falls in the metric of an evaporating Schwarzschild black hole whose radius $a(t)$ decreases as $\\frac{da(t)}{dt}=-\\frac{2\\sigma(a(t))}{a(t)^2}$. The shell can never reach $a(t)$, but it approaches $a(t)+\\frac{2\\sigma(a(t))}{a(t)}$ in the time scale $\\sim a(t)$. Then the radiation from the hole is extremely weakened because of the large redshift caused by the shell. This time, however, the shell itself starts to radiate and exhausts energy. After that, the hole starts to radiate again. We can repeat this argument recursively because the motion of a shell in a spherically symmetric system is independent of the outside. In this way we can analyze a spherically symmetric collapsing matter with a general continuous distribution, and find that it evaporates without forming a trapped region. If the theory has considerably more species of matter fields, the trans-Planckian problems are avoided. There is a clear boundary at $r=a+\\frac{2\\sigma}{a}$ as the surface of the object. Although the matter distribution inside the object depends on the initial data, from the outside it looks almost the same as a conventional black hole. A strong angular pressure is induced by the Hawking radiation, because of which the matter loses energy when it collapses. We then discuss how the information of the matter is recovered in this picture. Next we consider a black hole that is adiabatically grown from a small one in the heat bath, and obtain the interior metric. We show that it is the self-consistent solution of $G_{\\mu\

  15. CHARYBDIS: A Black Hole Event Generator

    E-Print Network [OSTI]

    C. M. Harris; P. Richardson; B. R. Webber

    2003-07-29

    CHARYBDIS is an event generator which simulates the production and decay of miniature black holes at hadronic colliders as might be possible in certain extra dimension models. It interfaces via the Les Houches accord to general purpose Monte Carlo programs like HERWIG and PYTHIA which then perform the parton evolution and hadronization. The event generator includes the extra-dimensional `grey-body' effects as well as the change in the temperature of the black hole as the decay progresses. Various options for modelling the Planck-scale terminal decay are provided.

  16. Virtual Black Holes in Hyperbolic Metamaterials

    E-Print Network [OSTI]

    Igor I. Smolyaninov

    2011-01-24

    Optical space in electromagnetic metamaterials may be engineered to emulate various exotic space-time geometries. However, these metamaterial models are limited in many respects. It is believed that real physical space-time strongly fluctuates on the Planck scale. These fluctuations are usually described as virtual black holes. Static metamaterial models introduced so far do not exhibit similar behavior. Here we demonstrate that thermal fluctuations of optical space in hyperbolic metamaterials lead to creation of virtual electromagnetic black holes. This effect is very large if the dielectric component of the metamaterial exhibits critical opalescence.

  17. Vacuum polarization for lukewarm black holes

    E-Print Network [OSTI]

    Elizabeth Winstanley; Phil M. Young

    2007-12-20

    We compute the renormalized expectation value of the square of a quantum scalar field on a Reissner-Nordstrom-de Sitter black hole in which the temperatures of the event and cosmological horizons are equal (`lukewarm' black hole). Our numerical calculations for a thermal state at the same temperature as the two horizons indicate that this renormalized expectation value is regular on both the event and cosmological horizons. We are able to show analytically, using an approximation for the field modes near the horizons, that this is indeed the case.

  18. Magnetized black hole as a gravitational lens

    E-Print Network [OSTI]

    R. A. Konoplya

    2006-11-19

    We use the Ernst-Schwarzschild solution for a black hole immersed in a uniform magnetic field to estimate corrections to the bending angle and time delay due-to presence of weak magnetic fields in galaxies and between galaxies, and also due-to influence of strong magnetic field near supermassive black holes. The magnetic field creates a kind of confinement in space, that leads to increasing of the bending angle and time delay for a ray of light propagating in the equatorial plane.

  19. Dynamics of galaxy cores and supermassive black holes

    E-Print Network [OSTI]

    David Merritt

    2006-05-02

    Recent work on the dynamical evolution of galactic nuclei containing supermassive black holes is reviewed. Topics include galaxy structural properties; collisionless and collisional equilibria; loss-cone dynamics; and dynamics of binary and multiple supermassive black holes.

  20. Black hole Meissner effect and Blandford-Znajek jets

    E-Print Network [OSTI]

    Penna, Robert

    Spinning black holes tend to expel magnetic fields. In this way they are similar to superconductors. It has been a persistent concern that this black hole “Meissner effect” could quench jet power at high spins. This would ...

  1. Entropy and Area of Black Holes in Loop Quantum Gravity

    E-Print Network [OSTI]

    I. B. Khriplovich

    2002-03-31

    Simple arguments related to the entropy of black holes strongly constrain the spectrum of the area operator for a Schwarzschild black hole in loop quantum gravity. In particular, this spectrum is fixed completely by the assumption that the black hole entropy is maximum. Within the approach discussed, one arrives in loop quantum gravity at a quantization rule with integer quantum numbers $n$ for the entropy and area of a black hole.

  2. SEARCH FOR SUPERMASSIVE BLACK HOLE BINARIES IN THE SLOAN DIGITAL...

    Office of Scientific and Technical Information (OSTI)

    ASTROPHYSICS; BLACK HOLES; COMPARATIVE EVALUATIONS; CORRELATIONS; COSMOLOGY; GALAXIES; GALAXY NUCLEI; NONLUMINOUS MATTER; OSCILLATIONS; QUASARS; VELOCITY Word Cloud More Like This...

  3. Ehrenfest Scheme of Higher Dimensional Topological AdS Black Holes in The Third Order Lovelock-Born-Infeld Gravity

    E-Print Network [OSTI]

    A. Belhaj; M. Chabab; H. EL Moumni; K. Masmar; M. B. Sedra

    2015-07-01

    Interpreting the cosmological constant as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume, we reconsider the investigation of P-V critical behaviors of (1+n)-dimensional topological AdS black holes in Lovelock-Born-Infeld gravity. In particular, we give an explicit expression of the universal number \\chi=\\frac{P_c v_c}{T_c} in terms of the space dimension $n$. Then, we examine the phase transitions at the critical points of such topological black holes for 6 \\leq n \\leq 11 as required by the physical condition of the thermodynamical quantities. More precisely, the Ehrenfest equations have been checked revealing that the black hole system undergoes a second phase transition at the critical points.

  4. MOTION OF ELECTRON-HOLE DROPS IN Ge

    E-Print Network [OSTI]

    Westervelt, R.M.

    2011-01-01

    MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.MOTION OF ELECTRON-HOLE DROPS IN Ge R. M. Westervelt, J. C.OF ELECTRON-HOLE DROPS IN Ge R M Westervelt, J C Culbertson

  5. ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes

    E-Print Network [OSTI]

    Macalady, Jenn

    ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes: initial discoveries from+Business Media B.V. 2011 Abstract Inland blue holes of the Bahamas are anchialine ecosystems with distinct fresh and geomicrobiology exploration of blue holes are providing a first glimpse of the geochemistry and microbial life

  6. Light in tiny holes & T. W. Ebbesen1

    E-Print Network [OSTI]

    Turro, Nicholas J.

    REVIEWS Light in tiny holes C. Genet1 & T. W. Ebbesen1 The presence of tiny holes in an opaque metal film, with sizes smaller than the wavelength of incident light, leads to a wide variety of unexpected optical properties such as strongly enhanced transmission of light through the holes

  7. Charged fermions tunneling from accelerating and rotating black holes

    SciTech Connect (OSTI)

    Rehman, Mudassar; Saifullah, K., E-mail: mudassir051@yahoo.com, E-mail: saifullah@qau.edu.pk [Department of Mathematics, Quaid-i-Azam University, Islamabad (Pakistan)

    2011-03-01

    We study Hawking radiation of charged fermions from accelerating and rotating black holes with electric and magnetic charges. We calculate the tunneling probabilities of incoming and outgoing fermionic particles and find the Hawking temperature of these black holes. We also provide an explicit expression of the classical action for the massive and massless particles in the background of these black holes.

  8. Fractal universe

    E-Print Network [OSTI]

    D. L. Khokhlov

    1999-01-15

    The model of the universe is considered in which background of the universe is not defined by the matter but is a priori specified as a homogenous and isotropic flat space. The scale factor of the universe follows the linear law. The scale of mass changes proportional to the scale factor. This leads to that the universe has the fractal structure with a power index of 2.

  9. PHILADELPHIA UNIVERSITY -1 1989

    E-Print Network [OSTI]

    PHILADELPHIA UNIVERSITY :: -1 1989 . . . -2 . . 3- : #12;PHILADELPHIA UNIVERSITY . (132) . #12;PHILADELPHIA UNIVERSITY

  10. Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells

    E-Print Network [OSTI]

    Cermak, Nathan

    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant ...

  11. Brick Walls for Black Holes in AdS/CFT

    E-Print Network [OSTI]

    Norihiro Iizuka; Seiji Terashima

    2015-01-01

    We study the 't Hooft's brick wall model for black holes in a holographic context. The brick wall model suggests that without an appropriate near horizon IR cut-off, the free energy of the probe fields show the divergence due to the large degenerate states near the horizons. After studying the universal nature of the divergence in various holographic setting in various dimensions, we interpret the nature of the divergence in a holographic context. The free energy divergence is due to the large degeneracy and continuity of the low energy spectrum in the boundary theory at the deconfinement phase. These divergence and continuity should be removed by finite N effects, which make the spectrum discrete even at the deconfinement phase. On the other hand, in the bulk, these degenerate states are localized near the horizon, and the universal divergence of these degenerate states implies that the naive counting of the degrees of freedom in bulk should be modified once we take into account the non-perturbative quantum gravity effects near the horizon. Depending on the microscopic degrees of freedom, the position, where the effective field theory description to count the states breaks down, has different Planck scale dependence. It also implies the difficulty to have an electron like gauge-singlet elementary field in the boundary theory Lagrangian. These singlet fields are at most composite fields, because they show divergent free energy, suggesting a positive power of N at the deconfinement phase.

  12. Global Warming Hole 31 March 2015

    E-Print Network [OSTI]

    Hansen, James E.

    Global Warming Hole 31 March 2015 James Hansen Sorry to have disappeared for two months. I-thirds of North America know that global warming is really happening. In fact, 2015 should be the year that stifles discussion of a warming hiatus. A substantial developing El Nino will add to the global warming

  13. Brief review on higher spin black holes

    E-Print Network [OSTI]

    Alfredo Perez; David Tempo; Ricardo Troncoso

    2014-05-12

    We review some relevant results in the context of higher spin black holes in three-dimensional spacetimes, focusing on their asymptotic behaviour and thermodynamic properties. For simplicity, we mainly discuss the case of gravity nonminimally coupled to spin-3 fields, being nonperturbatively described by a Chern-Simons theory of two independent sl(3,R) gauge fields. Since the analysis is particularly transparent in the Hamiltonian formalism, we provide a concise discussion of their basic aspects in this context; and as a warming up exercise, we briefly analyze the asymptotic behaviour of pure gravity, as well as the BTZ black hole and its thermodynamics, exclusively in terms of gauge fields. The discussion is then extended to the case of black holes endowed with higher spin fields, briefly signaling the agreements and discrepancies found through different approaches. We conclude explaining how the puzzles become resolved once the fall off of the fields is precisely specified and extended to include chemical potentials, in a way that it is compatible with the asymptotic symmetries. Hence, the global charges become completely identified in an unambiguous way, so that different sets of asymptotic conditions turn out to contain inequivalent classes of black hole solutions being characterized by a different set of global charges.

  14. Flip-flopping binary black holes

    E-Print Network [OSTI]

    Carlos O. Lousto; James Healy

    2015-03-14

    We study binary spinning black holes to display the long term individual spin dynamics. We perform a full numerical simulation starting at an initial proper separation of $d\\approx25M$ between equal mass holes and evolve them down to merger for nearly 48 orbits, 3 precession cycles, and half of a flip-flop cycle. The simulation lasts for $t=20000M$ and displays a total change in the orientation of the spin of one of the black holes from initially aligned with the orbital angular momentum to a complete anti-alignment after half of a flip-flop cycle. We compare this evolution with an integration of the 3.5 Post-Newtonian equations of motion and spin evolution to show that this process continuously flip-flops the spin during the lifetime of the binary until merger. We also provide lower order analytic expressions for the maximum flip-flop angle and frequency. We discuss the effects this dynamics may have on spin growth in accreting binaries and on the observational consequences for galactic and supermassive binary black holes.

  15. Scalar Hairy Black Holes in General Dimensions

    E-Print Network [OSTI]

    Xing-Hui Feng; H. Lu; Qiang Wen

    2014-01-13

    We obtain a class of asymptotic flat or (A)dS hairy black holes in D-dimensional Einstein gravity coupled to a scalar with certain scalar potential. For a given mass, the theory admits both the Schwarzschild-Tangherlini and the hairy black holes with different temperature and entropy, but satisfying the same first law of thermodynamics. For some appropriate choice of parameters, the scalar potential can be expressed in terms of a super-potential and it can arise in gauged supergravities. In this case, the solutions develop a naked curvature singularity and become the spherical domain walls. Uplifting the solutions to D=11 or 10, we obtain solutions that can be viewed as spherical M-branes or D3-branes. We also add electric charges to these hairy black holes. All these solutions contain no scalar charges in that the first law of thermodynamics are unmodified. We also try to construct new AdS black holes carrying scalar charges, with some moderate success in that the charges are pre-fixed in the theory instead of being some continuous integration constants.

  16. Scalar Hairy Black Holes in General Dimensions

    E-Print Network [OSTI]

    Feng, Xing-Hui; Wen, Qiang

    2013-01-01

    We obtain a class of asymptotic flat or (A)dS hairy black holes in D-dimensional Einstein gravity coupled to a scalar with certain scalar potential. For a given mass, the theory admits both the Schwarzschild-Tangherlini and the hairy black holes with different temperature and entropy, but satisfying the same first law of thermodynamics. For some appropriate choice of parameters, the scalar potential can be expressed in terms of a super-potential and it can arise in gauged supergravities. In this case, the solutions develop a naked curvature singularity and become the spherical domain walls. Uplifting the solutions to D=11 or 10, we obtain solutions that can be viewed as spherical M-branes or D3-branes. We also add electric charges to these hairy black holes. All these solutions contain no scalar charges in that the first law of thermodynamics are unmodified. We also try to construct new AdS black holes carrying scalar charges, with some moderate success in that the charges are pre-fixed in the theory instead ...

  17. Remote down-hole well telemetry

    DOE Patents [OSTI]

    Briles, Scott D. (Los Alamos, NM); Neagley, Daniel L. (Albuquerque, NM); Coates, Don M. (Santa Fe, NM); Freund, Samuel M. (Los Alamos, NM)

    2004-07-20

    The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

  18. Schwarzschild black hole in dark energy background

    E-Print Network [OSTI]

    Ngangbam Ishwarchandra; Ng. Ibohal; K. Yugindro Singh

    2014-09-27

    In this paper we present an exact solution of Einstein's field equations describing the Schwarzschild black hole in dark energy background. It is also regarded as an embedded solution that the Schwarzschild black hole is embedded into the dark energy space producing Schwarzschild-dark energy black hole. It is found that the space-time geometry of Schwarzschild-dark energy solution is non-vacuum Petrov type $D$ in the classification of space-times. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor of the Schwarzschild-dark energy solution. We also find that the energy-momentum tensor of the Schwarzschild-dark energy solution violates the strong energy condition due to the negative pressure leading to a repulsive gravitational force of the matter field in the space-time. It is shown that the time-like vector field for an observer in the Schwarzschild-dark energy space is expanding, accelerating, shearing and non-rotating. We investigate the surface gravity and the area of the horizons for the Schwarzschild-dark energy black hole.

  19. Lower-Dimensional Black Hole Chemistry

    E-Print Network [OSTI]

    Antonia M. Frassino; Robert B. Mann; Jonas R. Mureika

    2015-09-18

    The connection between black hole thermodynamics and chemistry is extended to the lower-dimensional regime by considering the rotating and charged BTZ metric in the $(2+1)$-D and a $(1+1)$-D limits of Einstein gravity. The Smarr relation is naturally upheld in both BTZ cases, where those with $Q \

  20. Strains and Jets in Black Hole Fields

    E-Print Network [OSTI]

    D. Bini; F. de Felice; A. Geralico

    2007-12-14

    We study the behaviour of an initially spherical bunch of particles emitted along trajectories parallel to the symmetry axis of a Kerr black hole. We show that, under suitable conditions, curvature and inertial strains compete to generate jet-like structures.

  1. Optical orientation of holes in strained nanostructures

    SciTech Connect (OSTI)

    Averkiev, N. S.; Sablina, N. I.

    2008-03-15

    A theory describing the optical orientation and Hanle effect for holes in quantum wells or quantum dots based on cubic semiconductors is developed. It is demonstrated that the presence of internal or external strain in quantum-confinement heterostructures leads to the dependence of the Hanle effect on the orientation of the magnetic field with respect to the heterostructure growth axis.

  2. Area products for black hole horizons

    E-Print Network [OSTI]

    Visser, Matt

    2013-01-01

    Area products for multi-horizon black holes often have intriguing properties, and are often independent of the mass of the black hole (depending only on various charges, angular momenta, and moduli). Such products are often formulated in terms of the areas of inner (Cauchy) horizons and event horizons, and often include the effects of unphysical "virtual'" horizons. For the Schwarzschild-de Sitter [Kottler] black hole in (3+1) dimensions it is shown by explicit exact calculation that the product of event horizon area and cosmological horizon area is not mass independent. (Including the effect of the third "virtual" horizon does not improve the situation.) Similarly, in the Reissner-Nordstrom-anti-de Sitter black hole in (3+1) dimensions the product of inner (Cauchy) horizon area and event horizon area is calculated (perturbatively), and is shown to be not mass independent. That is, the mass-independence of the product of physical horizon areas is not generic. In the generic situation, whenever the quasi-local...

  3. New Mexico State University University Accounts Receivable

    E-Print Network [OSTI]

    Johnson, Eric E.

    New Mexico State University University Accounts Receivable Petty Cash Reconciliation - Instructions, should be kept on file within the department. #12;New Mexico State University University Accounts

  4. Comment on "Cyclotron resonance study of the electron and hole velocity in graphene monolayers"

    E-Print Network [OSTI]

    S. C. Tiwari

    2007-05-26

    In this comment it is pointed out that the electron velocity of the same order as observed in graphene had been measured in GaAs submicron devices long ago. Particle- antiparticle asymmetry related with electron and hole effective masses in graphene seems puzzling as hole in a condensed matter system cannot be treated as anti-electron. It is argued that there should be a universal electrodynamics for QHE and superconductivity. In this context attention is drawn to the new approach based on massless electron and the interpretation that magnetic field represents angular momentum of the photon fluid. Measurement of electron velocity in graphene and GaAs in parallel is suggested for testing the massless electrodynamics.

  5. Observational Characteristics of the Final Stages of Evaporating Primordial Black Holes

    E-Print Network [OSTI]

    Ukwatta, T N; MacGibbon, J H; Linnemann, J T; Marinelli, S S; Yapici, T; Tollefson, K

    2015-01-01

    Many early universe theories predict the creation of Primordial Black Holes (PBHs). The PBHs could have masses ranging from the Planck mass to 10^5 solar masses or higher depending on the formation scenario. Hawking showed that any Black Hole (BH) has a temperature which is inversely proportional to its mass. Hence a sufficiently small BH will thermodynamically radiate particles at an ever-increasing rate, continually decreasing its mass and raising its temperature. The final moments of this evaporation phase should be explosive. In this work, we investigate the final few seconds of the BH burst using the Standard Model of particle physics and calculate the energy dependent burst time profiles in the GeV/TeV range. We use the HAWC (High Altitude Water Cherenkov) observatory as a case study and calculate PBH burst light curves which would be observed by HAWC.

  6. Searching for Gravitational Radiation from Binary Black Hole MACHOs in the Galactic Halo

    E-Print Network [OSTI]

    Duncan A. Brown

    2007-05-10

    The Laser Interferometer Gravitational Wave Observatory (LIGO) is one of a new generation of detectors of gravitational radiation. The existence of gravitational radiation was first predicted by Einstein in 1916, however gravitational waves have not yet been directly observed. One source of gravitation radiation is binary inspiral. Two compact bodies orbiting each other, such as a pair of black holes, lose energy to gravitational radiation. As the system loses energy the bodies spiral towards each other. This causes their orbital speed and the amount of gravitational radiation to increase, producing a characteristic ``chirp'' waveform in the LIGO sensitive band. In this thesis, matched filtering of LIGO science data is used to search for low mass binary systems in the halo of dark matter surrounding the Milky Way. Observations of gravitational microlensing events of stars in the Large Magellanic Cloud suggest that some fraction of the dark matter in the halo may be in the form of Massive Astrophysical Compact Halo Objects (MACHOs). It has been proposed that low mass black holes formed in the early universe may be a component of the MACHO population; some fraction of these black hole MACHOs will be in binary systems and detectable by LIGO. The inspiral from a MACHO binary composed of two 0.5 solar mass black holes enters the LIGO sensitive band around 40 Hz. The chirp signal increases in amplitude and frequency, sweeping through the sensitive band to 4400 Hz in 140 seconds. By using evidence from microlensing events and theoretical predictions of the population an upper limit is placed on the rate of black hole MACHO inspirals in the galactic halo.

  7. UNIVERSITY OF ABERDEEN UNIVERSITY COURT

    E-Print Network [OSTI]

    Neri, Peter

    Subsea Research Institute was to be based on the University campus. This was highly significant for the future development of the University's energy-related research and links with the oil and gas subsea

  8. Hot dry rock energy: Hot dry rock geothermal development program. Progress report. Fiscal year 1993

    SciTech Connect (OSTI)

    Salazar, J.; Brown, M. [eds.

    1995-03-01

    Extended flow testing at the Fenton Hill Hot Dry Rock (HDR) test facility concluded in Fiscal Year 1993 with the completion of Phase 2 of the long-term flow test (LTFT) program. As is reported in detail in this report, the second phase of the LTFT, although only 55 days in duration, confirmed in every way the encouraging test results of the 112-day Phase I LTFT carried out in Fiscal Year 1992. Interim flow testing was conducted early in FY 1993 during the period between the two LTFT segments. In addition, two brief tests involving operation of the reservoir on a cyclic schedule were run at the end of the Phase 2 LTFT. These interim and cyclic tests provided an opportunity to conduct evaluations and field demonstrations of several reservoir engineering concepts that can now be applied to significantly increase the productivity of HDR systems. The Fenton Hill HDR test facility was shut down and brought into standby status during the last part of FY 1993. Unfortunately, the world`s largest, deepest, and most productive HDR reservoir has gone essentially unused since that time.

  9. Dry matter content in silage maize; assessment of the role of growth and water loss

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Agronomie Dry matter content in silage maize; assessment of the role of growth and water loss JF variations in total dry matter content (MSt) as a function of growth in dry weight and loss of water by plant, as ripening proceeds. Beyond 25% dry matter content the major part of MSt increase was due to loss of water

  10. The Effects of Ionizing Irradiation on Liquid, Dried, and Absorbed DNA Extracts

    E-Print Network [OSTI]

    The Effects of Ionizing Irradiation on Liquid, Dried, and Absorbed DNA Extracts With and Without from FBI and national public health experts, began irradiating mail to kill potentially present anthrax Formation in Irradiated Tubes High dose X ray Low dose X ray pH indicator wet dry D-BM wet dry D-BM wet dry

  11. Sampling for Beryllium Surface Contamination using Wet, Dry and Alcohol Wipe Sampling

    SciTech Connect (OSTI)

    Kerr, Kent

    2004-12-17

    This research project was conducted at the National Nuclear Security Administration's Kansas City Plant, operated by Honeywell Federal Manufacturing and Technologies, in conjunction with the Safety Sciences Department of Central Missouri State University, to compare relative removal efficiencies of three wipe sampling techniques currently used at Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling with dry Whatman 42 filter paper, with water-moistened (Ghost Wipe) materials, and by methanol-moistened wipes. Test plates were prepared using 100 mm X 15 mm Pyrex Petri dishes with interior surfaces spray painted with a bond coat primer. To achieve uniform deposition over the test plate surface, 10 ml aliquots of solution containing 1 beryllium and 0.1 ml of metal working fluid were transferred to the test plates and subsequently evaporated. Metal working fluid was added to simulate the slight oiliness common on surfaces in metal working shops where fugitive oil mist accumulates over time. Sixteen test plates for each wipe method (dry, water, and methanol) were processed and sampled using a modification of wiping patterns recommended by OSHA Method 125G. Laboratory and statistical analysis showed that methanol-moistened wipe sampling removed significantly more (about twice as much) beryllium/oil-film surface contamination as water-moistened wipes (p< 0.001), which removed significantly more (about twice as much) residue as dry wipes (p <0.001). Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced residue removal efficiency.

  12. Trumpet-puncture initial data for black holes

    SciTech Connect (OSTI)

    Immerman, Jason D.; Baumgarte, Thomas W.

    2009-09-15

    We propose a new approach, based on the puncture method, to construct black hole initial data in the so-called trumpet geometry, i.e. on slices that asymptote to a limiting surface of nonzero areal radius. Our approach is easy to implement numerically and, at least for nonspinning black holes, does not require any internal boundary conditions. We present numerical results, obtained with a uniform-grid finite-difference code, for boosted black holes and binary black holes. We also comment on generalizations of this method for spinning black holes.

  13. Standard review plan for dry cask storage systems. Final report

    SciTech Connect (OSTI)

    NONE

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  14. Linear Extrusion 400 Tons/Day Dry Solids Pump

    SciTech Connect (OSTI)

    Kenneth Sprouse; David Matthews

    2008-04-30

    Pratt & Whitney Rocketdyne (PWR) has developed an innovative gasifier concept that uses rocket engine experience to significantly improve gasifier performance, life, and cost compared to current state-of-the-art systems. The PWR gasifier concept uses a compact and highly efficient (>50%) dry solids pump that has excellent availability (>99.5%). PWR is currently developing this dry solids pump under a U.S. Department of Energy (DOE) cooperative agreement. The conceptual design on two dry solids pumps were completed under this agreement and one pump concept was selected for preliminary design. A preliminary design review (PDR) of the selected pump was presented on September 20, 2007 to PWR management and numerous technical specialists. Feedback from the PDR review team has been factored into the design and a Delta-PDR was held on April 9, 2008.

  15. Assessment of superheated steam drying of wood waste

    SciTech Connect (OSTI)

    Woods, B.G.; Nguyen, Y.; Bruce, S.

    1994-12-31

    A 5 MW co-generation facility using wood waste is described which will supply power to Ontario Hydro, steam to the sawmill for process heating, and hot water for district heating customers in the town. The use of superheated steam for drying the wood was investigated to determine the impact on boiler performance, the environmental impact and the economic feasibility. The main benefit with superheated steam drying is the reduction in VOC emissions. The capital cost is currently higher with superheated steam drying, but further investigation is warranted to determine if the cost reductions which could be achieved by manufacturing the major components in North America are sufficient to make the technology cost competitive.

  16. UCC UNIVERSITIES CLIMATE UNIVERSITY CLIMATE

    E-Print Network [OSTI]

    Kidston, Joseph

    CONSORTIUM UCC UNIVERSITIES CLIMATE UNIVERSITY CLIMATE World-class excellence Internationally recognised Australia based www.monash.edu.au/climate-consortium CONSORTIUM An International Collaborative of the institutional leads within the UCC: The University Climate Consortium (UCC) comprises four research intensive

  17. Building America Residential System Research Results. Achieving 30% Whole House Energy Savings Level in Hot-Dry and Mixed-Dry Climates

    SciTech Connect (OSTI)

    Anderson, R.; Hendron, R.; Eastment, M.; Jalalzadeh-Azar, A.

    2006-01-01

    This report summarizes Building America research results for the 30% energy savings level and demonstrates that lead builders can successfully provide 30% homes in the Hot-Dry/Mixed-Dry Climate Region on a cost-neutral basis.

  18. Department of Physics University of Illinois at Urbana Champaign

    E-Print Network [OSTI]

    Lee, Tonghun

    Department of Physics University of Illinois at Urbana Champaign · Room 141 Loomis Laboratory of Physics 1110 W. Green Street, Urbana, IL 61801 FALL 2011 SCHEDULEFALL 2011 SCHEDULEFALL 2011 SCHEDULE Holes October 1, 2011 Professor Scott Willenbrock The Physics of Climate Change October 15, 2011

  19. Saving for dry days: Aquifer storage and recovery may help 

    E-Print Network [OSTI]

    Wythe, Kathy

    2008-01-01

    | pg. 2 Saving for dry days Story by Kathy Wythe tx H2O | pg. 3 Aquifer storage and recovery may help With reoccurring droughts and growing population, Texas will always be looking for better ways to save or use water. Some water suppliers... in Texas are turning to aquifer storage and recovery. During the dry summer of 2008, the San Antonio Water System (SAWS) had enough assets in its ?bank? (of water) to make with- drawals to meet the needs of its customers. The water bank is the utility...

  20. Dried Citrus Pulp in Beef Cattle Fattening Rations. 

    E-Print Network [OSTI]

    Jones, J. M. (John McKInley)

    1942-01-01

    EXPERIMENT STATION A. B. CONNER, DIRECTOR College Station, Texas BULLETIS NO. 613 JULY 1949 DRIED CITRUS PULP IN BEEF CATTLE FATTENING RATIONS J. H. JONES, R. A. HALL E. 31. NEAL, J. H. JONES Division of Range Animal Husbandry AGRICULTrRAL ,QND... MECHANICAL COLLEGE OF TEXAS T. 0. WALTON, President I rr+y-.-' -d - ." bg[j~~;Eura1 fJ,' , . ,* ,.. - '" re: SRt3$~;-P~~s" '+;+ [Blank Page in Original Bulletin] When dried citrus plp was fed to replace 25 percent of the daily al- lowance of ear...

  1. Nevada Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year Jan Feb Mar Apr-348,719 -17,009DryDry

  2. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

    2015-01-28

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  3. Quantization of black holes by analogy with hydrogen atoms

    E-Print Network [OSTI]

    Chang Liu; Yan-Gang Miao; Yu-Mei Wu; Yu-Hao Zhang

    2015-11-16

    We suggest a proposal of quantization for black holes that is based on an analogy between a black hole and a hydrogen atom. A self-regular Schwarzschild-AdS black hole is investigated, where the mass density of the extreme black hole is given by the probability density of the ground state of hydrogen atoms and the mass densities of non-extreme black holes are chosen to be the probability densities of excited states with no angular momenta. Consequently, it is logical to accept quantization of mean radii of hydrogen atoms as that of black hole horizons. In this way, quantization of total black hole masses is deduced. Furthermore, the quantum hoop conjecture and the Correspondence Principle are discussed.

  4. Quantization of black holes by analogy with hydrogen atoms

    E-Print Network [OSTI]

    Liu, Chang; Wu, Yu-Mei; Zhang, Yu-Hao

    2015-01-01

    We suggest a proposal of quantization for black holes that is based on an analogy between a black hole and a hydrogen atom. A self-regular Schwarzschild-AdS black hole is investigated, where the mass density of the extreme black hole is given by the probability density of the ground state of hydrogen atoms and the mass densities of non-extreme black holes are chosen to be the probability densities of excited states with no angular momenta. Consequently, it is logical to accept quantization of mean radii of hydrogen atoms as that of black hole horizons. In this way, quantization of total black hole masses is deduced. Furthermore, the quantum hoop conjecture and the Correspondence Principle are discussed.

  5. Quantization of black holes by analogy with hydrogen atoms

    E-Print Network [OSTI]

    Chang Liu; Yan-Gang Miao; Yu-Mei Wu; Yu-Hao Zhang

    2015-11-23

    We suggest a proposal of quantization for black holes that is based on an analogy between a black hole and a hydrogen atom. A self-regular Schwarzschild-AdS black hole is investigated, where the mass density of the extreme black hole is given by the probability density of the ground state of hydrogen atoms and the mass densities of non-extreme black holes are chosen to be the probability densities of excited states with no angular momenta. Consequently, it is logical to accept quantization of mean radii of hydrogen atoms as that of black hole horizons. In this way, quantization of total black hole masses is deduced. Furthermore, the quantum hoop conjecture and the Correspondence Principle are discussed.

  6. Energy Extraction from Spinning Black Holes via Relativistic Jets

    E-Print Network [OSTI]

    Ramesh Narayan; Jeffrey E. McClintock; Alexander Tchekhovskoy

    2013-03-12

    It has for long been an article of faith among astrophysicists that black hole spin energy is responsible for powering the relativistic jets seen in accreting black holes. Two recent advances have strengthened the case. First, numerical general relativistic magnetohydrodynamic simulations of accreting spinning black holes show that relativistic jets form spontaneously. In at least some cases, there is unambiguous evidence that much of the jet energy comes from the black hole, not the disk. Second, spin parameters of a number of accreting stellar-mass black holes have been measured. For ballistic jets from these systems, it is found that the radio luminosity of the jet correlates with the spin of the black hole. This suggests a causal relationship between black hole spin and jet power, presumably due to a generalized Penrose process.

  7. Rotating analogue black holes: Quasinormal modes and tails, superresonance, and sonic bombs and plants in the draining bathtub acoustic hole

    E-Print Network [OSTI]

    José P. S. Lemos

    2013-12-27

    The analogy between sound wave propagation and light waves led to the study of acoustic holes, the acoustic analogues of black holes. Many black hole features have their counterparts in acoustic holes. The Kerr metric, the rotating metric for black holes in general relativity, has as analogue the draining bathtub metric, a metric for a rotating acoustic hole. Here we report on the progress that has been made in the understanding of features, such as quasinormal modes and tails, superresonance, and instabilities when the hole is surrounded by a reflected mirror, in the draining bathtub metric. Given then the right settings one can build up from these instabilities an apparatus that stores energy in the form of amplified sound waves. This can be put to wicked purposes as in a bomb, or to good profit as in a sonic plant.

  8. The Return of the Phoenix Universe

    E-Print Network [OSTI]

    Jean-Luc Lehners; Paul J. Steinhardt; Neil Turok

    2009-10-05

    Georges Lemaitre introduced the term "phoenix universe" to describe an oscillatory cosmology with alternating periods of gravitational collapse and expansion. This model is ruled out observationally because it requires a supercritical mass density and cannot accommodate dark energy. However, a new cyclic theory of the universe has been proposed that evades these problems. In a recent elaboration of this picture, almost the entire universe observed today is fated to become entrapped inside black holes, but a tiny region will emerge from these ashes like a phoenix to form an even larger smooth, flat universe filled with galaxies, stars, planets, and, presumably, life. Survival depends crucially on dark energy and suggests a reason why its density is small and positive today.

  9. Machian Universe

    E-Print Network [OSTI]

    Burra G. Sidharth

    2006-10-26

    We give arguments from the point of view of Gravitation as well as Electromagnetism which indicate a Machian view for the universe.

  10. Radiation budget changes with dry forest clearing in temperate Argentina

    E-Print Network [OSTI]

    Nacional de San Luis, Universidad

    Radiation budget changes with dry forest clearing in temperate Argentina J A V I E R H O U S P A N, Argentina, Catedra de Climatologia Agricola, Facultad de Ciencias Agropecuarias, Universidad Nacional de Entre Rios, Oro Verde, Argentina Abstract Land cover changes may affect climate and the energy balance

  11. Concurrent multiscale computational modeling for dense dry granular materials interfacing

    E-Print Network [OSTI]

    Regueiro, Richard A.

    of interfacial mechanics between granular soil and tire, tool, or penetrometer, while properly representing far computational modeling of interfacial mechanics between granular materials and deformable solid bodies, agricultural grains (in silo flows), dry soils (sand, silt, gravel), and lunar and martian regolith (soil found

  12. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  13. Pattern formation in drying drops Robert D. Deegan*

    E-Print Network [OSTI]

    Deegan, Robert

    , Chicago, Illinois 60637 Received 24 November 1998 Ring formation in an evaporating sessile dropPattern formation in drying drops Robert D. Deegan* James Franck Institute, 5640 South Ellis Avenue. Here I show that the drop itself can generate one of the essential conditions for ring formation

  14. Optimization and neural modelling of pulse combustors for drying applications

    SciTech Connect (OSTI)

    Zbicinski, I.; Smucerowicz, I.; Strumillo, C.; Kasznia, J.; Stawczyk, J.; Murlikiewicz, K. [Technical Univ. of Lodz (Poland). Faculty of Process and Environmental Engineering

    1999-03-01

    Results of investigations of a valved pulse combustor to choose optimal geometry, which covered measurements of the flow rates of air and fuel, pressure oscillations, including pressure amplitude and frequency and flue gas composition are presented in the paper. Experimental studies comparing the operation of the pulse combustor coupled with a drying chamber and working separately are described. It was found that coupling of the pulse combustor with a drying chamber had no significant effect on the pulse combustion process. Smoother runs of pressure oscillations in the combustion chamber, lower noise level and slightly higher NO{sub x} emission were observed. The velocity flow field inside the drying chamber was measured by LDA technique. Results confirmed a complex character of pulsating flow in the chamber. A large experimental data set obtained from measurements enabled developing a neural model of pulse combustion process. Artificial neural networks were trained to predict amplitudes and frequencies of pressure oscillations, temperatures in the combustion chamber and emission of toxic substances. An excellent mapping performance of the developed neural models was obtained. Due to complex character of the pulse combustion process, the application of artificial neural networks seems to be the best way to predict inlet parameters of drying agent produced by the pulse combustor.

  15. Precipitation scavenging, dry deposition, and resuspension. Volume 1. Precipitation scavenging

    SciTech Connect (OSTI)

    Pruppacher, H.R.; Semonin, R.G.; Slinn, W.G.N. (eds.)

    1983-01-01

    These two volumes contain papers prepared for and presented at the Fourth International Conference on Precipitation Scavenging, Dry Deposition, and Resuspension (the Chamberlain Meeting) held during 29 November to 3 December, 1982 in Santa Monica, California. Papers presented are abstracted separately.

  16. Photocatalytic properties of titania pillared clays by different drying methods

    SciTech Connect (OSTI)

    Ding, Z.; Zhu, H.Y.; Lu, G.Q.; Greenfield, P.F.

    1999-01-01

    Photocatalysts based on titania pillared clays (TiO{sub 2} PILCs) have been prepared through a sol-gel method. Different drying methods, air drying (AD), air drying after ethanol extraction (EAD), and supercritical drying (SCD) have been employed and found to have significant effects on the photocatalytic efficiency of the resultant catalysts for the oxidation of phenol in water. Titania pillared clay (TiO{sub 2} PILC) obtained by SCD has the highest external and micropore surface area, largest amount and smallest crystallite size of anatase, and exhibited the highest photocatalytic activity. Furthermore, silica titania pillared clay (SiO{sub 2}-TiO{sub 2} PILC) after SCD, titania coated TiO{sub 2} PILC (SCD) and SiO{sub 2}-TiO{sub 2} PILC (SCD) were synthesized to study the key factors controlling the photocatalytic activity. It is concluded that the dispersion of nanometer-sized anatase on the surface of the PILC particles and the suspensibility of the particles are the most important factors for high photocatalytic efficiency.

  17. TECHNICAL POLLUTION PREVENTION GUIDE FOR DRY BULK TERMINALS

    E-Print Network [OSTI]

    #12;TECHNICAL POLLUTION PREVENTION GUIDE FOR DRY BULK TERMINALS IN THE LOWER FRASER BASIN DOE FRAP 1996-19 Prepared for: Enviromnent Canada Environmental Protection Fraser Pollution Abatement North's report was fùnded by Environment Canada under the Fraser River Action Plan through its Fraser Pollution

  18. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    JOHNSON, B.H.

    1999-08-19

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  19. Evaluation of the Technical Basis for Extended Dry Storage and

    E-Print Network [OSTI]

    .NWTRB.GOV ii #12;Extended Dry Storage and Transportation of Used Nuclear Fuel U.S. Nuclear Waste Technical Storage and Transportation of Used Nuclear Fuel -- Executive Summary Introduction The U.S. Nuclear Waste nuclear fuel and high-level radioactive waste. This report was prepared to inform DOE and Congress about

  20. ORIGINAL PAPER Twin-Screw Extrusion Processing of Distillers Dried

    E-Print Network [OSTI]

    ORIGINAL PAPER Twin-Screw Extrusion Processing of Distillers Dried Grains with Solubles (DDGS. Twin- screw extrusion studies were performed to investigate the production of nutritionally balanced amounts of fish meal, fish oil, whole wheat flour, corn gluten meal, and vitamin and mineral premixes

  1. Anionic Salt Programs for Close-Up Dry Cows 

    E-Print Network [OSTI]

    Stokes, Sandra R.

    1998-12-17

    Dairy farmers can improve long-term milk production by having a well-managed program for dry cows during the last 3 weeks before calving. This publication explains how an anionic salt program can help control subclinical hypocalcemia and "droopy cow...

  2. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOE Patents [OSTI]

    Nguyen, Quang A. (Chesterfield, MO); Keller, Fred A. (Lakewood, CO); Tucker, Melvin P. (Lakewood, CO)

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  3. Astrophysical black holes in screened modified gravity

    SciTech Connect (OSTI)

    Davis, Anne-Christine; Jha, Rahul; Muir, Jessica; Gregory, Ruth E-mail: r.a.w.gregory@durham.ac.uk E-mail: jlmuir@umich.edu

    2014-08-01

    Chameleon, environmentally dependent dilaton, and symmetron gravity are three models of modified gravity in which the effects of the additional scalar degree of freedom are screened in dense environments. They have been extensively studied in laboratory, cosmological, and astrophysical contexts. In this paper, we present a preliminary investigation into whether additional constraints can be provided by studying these scalar fields around black holes. By looking at the properties of a static, spherically symmetric black hole, we find that the presence of a non-uniform matter distribution induces a non-constant scalar profile in chameleon and dilaton, but not necessarily symmetron gravity. An order of magnitude estimate shows that the effects of these profiles on in-falling test particles will be sub-leading compared to gravitational waves and hence observationally challenging to detect.

  4. Laser stabilization using spectral hole burning

    E-Print Network [OSTI]

    L. Rippe; B. Julsgaard; A. Walther; S. Kröll

    2006-11-05

    We have frequency stabilized a Coherent CR699-21 dye laser to a transient spectral hole on the 606 nm transition in Pr^{+3}:Y_2SiO_5. A frequency stability of 1 kHz has been obtained on the 10 microsecond timescale together with a long-term frequency drift below 1 kHz/s. RF magnetic fields are used to repopulate the hyperfine levels allowing us to control the dynamics of the spectral hole. A detailed theory of the atomic response to laser frequency errors has been developed which allows us to design and optimize the laser stabilization feedback loop, and specifically we give a stability criterion that must be fulfilled in order to obtain very low drift rates. The laser stability is sufficient for performing quantum gate experiments in Pr^{+3}:Y_2SiO_5.

  5. Black Hole Portal into Hidden Valleys

    E-Print Network [OSTI]

    Sergei Dubovsky; Victor Gorbenko

    2010-12-13

    Superradiant instability turns rotating astrophysical black holes into unique probes of light axions. We consider what happens when a light axion is coupled to a strongly coupled hidden gauge sector. In this case superradiance results in an adiabatic increase of a hidden sector CP-violating $\\theta$-parameter in a near horizon region. This may trigger a first order phase transition in the gauge sector. As a result a significant fraction of a black hole mass is released as a cloud of hidden mesons and can be later converted into electromagnetic radiation. This results in a violent electromagnetic burst. The characteristic frequency of such bursts may range approximately from 100 eV to 100 MeV.

  6. Puncture Evolution of Schwarzschild Black Holes

    E-Print Network [OSTI]

    J. David Brown

    2008-01-15

    The moving puncture method is analyzed for a single, non-spinning black hole. It is shown that the puncture region is not resolved by current numerical codes. As a result, the geometry near the puncture appears to evolve to an infinitely long cylinder of finite areal radius. The puncture itself actually remains at spacelike infinity throughout the evolution. In the limit of infinite resolution the data never become stationary. However, at any reasonable finite resolution the grid points closest to the puncture are rapidly drawn into the black hole interior by the Gamma-driver shift condition. The data can then evolve to a stationary state. These results suggest that the moving puncture technique should be viewed as a type of "natural excision".

  7. The hydraulic jump as a white hole

    E-Print Network [OSTI]

    G. E. Volovik

    2005-10-21

    In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the white hole. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.

  8. Hybrid black-hole binary initial data

    E-Print Network [OSTI]

    Bruno C. Mundim; Bernard J. Kelly; Yosef Zlochower; Hiroyuki Nakano; Manuela Campanelli

    2010-12-04

    Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class.Quant.Grav.27:114005,2010], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculation was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features.

  9. Slant hole completion test. Final report

    SciTech Connect (OSTI)

    Mann, R.L.

    1993-07-01

    One of the Department of Energy`s (DOE) Strategies and Objectives in the Natural Gas Program is to conduct activities to transfer technology from R&D programs to potential users. The Slant Hole Completion Test has achieved exactly this objective. The Slant Hole site is essentially the same as the Multiwell site and is located in the southeastern portion of the Piceance Basin near Rifle, Colorado. The Piceance Basin is typical of the Western low permeability basins that contain thick sequences of sands, silts and coals deposited during the Cretaceous period. These sequences contain vast amounts of natural gas but have proven to be resistant to commercial production because of the low permeability of the host rocks. Using the knowledge gained from the DOE`s earlier Multiwell experiment, the SHCT-1 was drilled to demonstrate that by intersecting the natural fractures found in these ``tight rocks,`` commercial gas production can be obtained.

  10. Electromagnetic Jets from Stars and Black Holes

    E-Print Network [OSTI]

    Samuel E. Gralla; Alexandru Lupsasca; Maria J. Rodriguez

    2015-04-08

    We present analytic force-free solutions modeling rotating stars and black holes immersed in the magnetic field of a thin disk that terminates at an inner radius. The solutions are exact in flat spacetime and approximate in Kerr spacetime. The compact object produces a conical jet whose properties carry information about its nature. For example, the jet from a star is surrounded by a current sheet, while that of a black hole is smooth. We compute an effective resistance in each case and compare to the canonical values used in circuit models of energy extraction. These solutions illustrate all of the basic features of the Blandford-Znajek process for energy extraction and jet formation in a clean setting.

  11. Electromagnetic Jets from Stars and Black Holes

    E-Print Network [OSTI]

    Gralla, Samuel E; Rodriguez, Maria J

    2015-01-01

    We present analytic force-free solutions modeling rotating stars and black holes immersed in the magnetic field of a thin disk that terminates at an inner radius. The solutions are exact in flat spacetime and approximate in Kerr spacetime. The compact object produces a conical jet whose properties carry information about its nature. For example, the jet from a star is surrounded by a current sheet, while that of a black hole is smooth. We compute an effective resistance in each case and compare to the canonical values used in circuit models of energy extraction. These solutions illustrate all of the basic features of the Blandford-Znajek process for energy extraction and jet formation in a clean setting.

  12. Stable gravastars - an alternative to black holes?

    E-Print Network [OSTI]

    Matt Visser; David L. Wiltshire

    2003-12-04

    The "gravastar" picture developed by Mazur and Mottola is one of a very small number of serious challenges to our usual conception of a "black hole". In the gravastar picture there is effectively a phase transition at/ near where the event horizon would have been expected to form, and the interior of what would have been the black hole is replaced by a segment of de Sitter space. While Mazur and Mottola were able to argue for the thermodynamic stability of their configuration, the question of dynamic stability against spherically symmetric perturbations of the matter or gravity fields remains somewhat obscure. In this article we construct a model that shares the key features of the Mazur-Mottola scenario, and which is sufficiently simple for a full dynamical analysis. We find that there are some physically reasonable equations of state for the transition layer that lead to stability.

  13. Phase Structure of Higher Spin Black Holes

    E-Print Network [OSTI]

    Abhishek Chowdhury; Arunabha Saha

    2015-02-12

    We revisit the study of the phase structure of higher spin black holes carried out in arXiv$:1210.0284$ using the "canonical formalism". In particular we study the low as well as high temperature regimes. We show that the Hawking-Page transition takes place in the low temperature regime. The thermodynamically favoured phase changes from conical surplus to black holes and then again to conical surplus as we increase temperature. We then show that in the high temperature regime the diagonal embedding gives the appropriate description. We also give a map between the parameters of the theory near the IR and UV fixed points. This makes the "good" solutions near one end map to the "bad" solutions near the other end and vice versa.

  14. Comparing quantum black holes and naked singularities

    E-Print Network [OSTI]

    T. P. Singh

    2000-12-21

    There are models of gravitational collapse in classical general relativity which admit the formation of naked singularities as well as black holes. These include fluid models as well as models with scalar fields as matter. Even if fluid models were to be regarded as unphysical in their matter content, the remaining class of models (based on scalar fields) generically admit the formation of visible regions of finite but arbitrarily high curvature. Hence it is of interest to ask, from the point of view of astrophysics, as to what a stellar collapse leading to a naked singularity (or to a visible region of very high curvature) will look like, to a far away observer. The emission of energy during such a process may be divided into three phases - (i) the classical phase, during which matter and gravity can both be treated according to the laws of classical physics, (ii) the semiclassical phase, when gravity is treated classically but matter behaves as a quantum field, and (iii) the quantum gravitational phase. In this review, we first give a summary of the status of naked singularities in classical relativity, and then report some recent results comparing the semiclassical phase of black holes with the semiclassical phase of spherical collapse leading to a naked singularity. In particular, we ask how the quantum particle creation during the collapse leading to a naked singularity compares with the Hawking radiation from a star collapsing to form a black hole. It turns out that there is a fundamental difference between the two cases. A spherical naked star emits only about one Planck energy during its semiclassical phase, and the further evolution can only be determined by the laws of quantum gravity. This contrasts with the semiclassical evaporation of a black hole.

  15. Electromagnetic wave scattering by Schwarzschild black holes

    E-Print Network [OSTI]

    Luís C. B. Crispino; Sam R. Dolan; Ednilton S. Oliveira

    2009-05-20

    We analyze the scattering of a planar monochromatic electromagnetic wave incident upon a Schwarzschild black hole. We obtain accurate numerical results from the partial wave method for the electromagnetic scattering cross section, and show that they are in excellent agreement with analytical approximations. The scattering of electromagnetic waves is compared with the scattering of scalar, spinor and gravitational waves. We present a unified picture of the scattering of all massless fields for the first time.

  16. Charged Cylindrical Black Holes in Conformal Gravity

    E-Print Network [OSTI]

    Jackson Levi Said; Joseph Sultana; Kristian Zarb Adami

    2013-01-04

    Considering cylindrical topology we present the static solution for a charged black hole in conformal gravity. We show that unlike the general relativistic case there are two different solutions, both including a factor that when set to zero recovers the familiar static charged black string solution in Einstein's theory. This factor gives rise to a linear term in the potential that also features in the neutral case and may have significant ramifications for particle trajectories.

  17. Lagrangian perfect fluids and black hole mechanics

    E-Print Network [OSTI]

    Vivek Iyer

    1996-10-15

    The first law of black hole mechanics (in the form derived by Wald), is expressed in terms of integrals over surfaces, at the horizon and spatial infinity, of a stationary, axisymmetric black hole, in a diffeomorphism invariant Lagrangian theory of gravity. The original statement of the first law given by Bardeen, Carter and Hawking for an Einstein-perfect fluid system contained, in addition, volume integrals of the fluid fields, over a spacelike slice stretching between these two surfaces. When applied to the Einstein-perfect fluid system, however, Wald's methods yield restricted results. The reason is that the fluid fields in the Lagrangian of a gravitating perfect fluid are typically nonstationary. We therefore first derive a first law-like relation for an arbitrary Lagrangian metric theory of gravity coupled to arbitrary Lagrangian matter fields, requiring only that the metric field be stationary. This relation includes a volume integral of matter fields over a spacelike slice between the black hole horizon and spatial infinity, and reduces to the first law originally derived by Bardeen, Carter and Hawking when the theory is general relativity coupled to a perfect fluid. We also consider a specific Lagrangian formulation for an isentropic perfect fluid given by Carter, and directly apply Wald's analysis. The resulting first law contains only surface integrals at the black hole horizon and spatial infinity, but this relation is much more restrictive in its allowed fluid configurations and perturbations than that given by Bardeen, Carter and Hawking. In the Appendix, we use the symplectic structure of the Einstein-perfect fluid system to derive a conserved current for perturbations of this system: this current reduces to one derived ab initio for this system by Chandrasekhar and Ferrari.

  18. Thermodynamics and Luminosities of Rainbow Black Holes

    E-Print Network [OSTI]

    Benrong Mu; Peng Wang; Haitang Yang

    2015-07-14

    Doubly special relativity (DSR) is an effective model for encoding quantum gravity in flat spacetime. As a result of the nonlinearity of the Lorentz transformation, the energy-momentum dispersion relation is modified. One simple way to import DSR to curved spacetime is \\textquotedblleft Gravity's rainbow", where the spacetime background felt by a test particle would depend on its energy. Focusing on the \\textquotedblleft Amelino-Camelia dispersion relation" which is $E^{2}=m^{2}+p^{2}\\left[ 1-\\eta\\left( E/m_{p}\\right) ^{n}\\right] $ with $n>0$, we investigate the thermodynamical properties of a Schwarzschild black hole and a static uncharged black string for all possible values of $\\eta$ and $n$ in the framework of rainbow gravity. It shows that there are non-vanishing minimum masses for these two black holes in the cases with $\\eta<0$ and $n\\geq2$. Considering effects of rainbow gravity on both the Hawking temperature and radius of the event horizon, we use the geometric optics approximation to compute luminosities of a 2D black hole, a Schwarzschild one and a static uncharged black string. It is found that the luminosities can be significantly suppressed or boosted depending on the values of $\\eta$ and $n$.

  19. Rotating black hole solutions with quintessential energy

    E-Print Network [OSTI]

    Toshmatov, Bobir; Ahmedov, Bobomurat

    2015-01-01

    Quintessential dark energy with density $\\rho$ and pressure $p$ is governed by an equation of state of the form $p=-\\omega_{q}\\rho$ with the quintessential parameter $\\omega_q\\in(-1;-1/3)$. We derive the geometry of quintessential rotating black holes, generalizing thus the Kerr spacetimes. Then we study the quintessential rotating black hole spacetimes with the special value of $\\omega_q = -2/3$ when the resulting formulae are simple and easily tractable. We show that such special spacetimes can exist for dimensionless quintessential parameter $c<1/6$ and determine the critical rotational parameter $a_0$ separating the black hole and naked singularity spacetime in dependence on the quintessential parameter $c$. For the spacetimes with $\\omega_q = 2/3$ we present the integrated geodesic equations in separated form and study in details the circular geodetical orbits. We give radii and parameters of the photon circular orbits, marginally bound and marginally stable orbits. We stress that the outer boundary o...

  20. Adaptive Finite Elements and Colliding Black Holes

    E-Print Network [OSTI]

    Douglas N. Arnold; Arup Mukherjee; Luc Pouly

    1997-09-15

    According to the theory of general relativity, the relative acceleration of masses generates gravitational radiation. Although gravitational radiation has not yet been detected, it is believed that extremely violent cosmic events, such as the collision of black holes, should generate gravity waves of sufficient amplitude to detect on earth. The massive Laser Interferometer Gravitational-wave Observatory, or LIGO, is now being constructed to detect gravity waves. Consequently there is great interest in the computer simulation of black hole collisions and similar events, based on the numerical solution of the Einstein field equations. In this note we introduce the scientific, mathematical, and computational problems and discuss the development of a computer code to solve the initial data problem for colliding black holes, a nonlinear elliptic boundary value problem posed in an unbounded three dimensional domain which is a key step in solving the full field equations. The code is based on finite elements, adaptive meshes, and a multigrid solution process. Here we will particularly emphasize the mathematical and algorithmic issues arising in the generation of adaptive tetrahedral meshes.

  1. Some considerations in simulation of superheated steam drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S. [New Zealand Forest Research Inst., Rotorua (New Zealand). Wood Processing Div.

    1997-05-01

    A mathematical model for high-temperature drying of softwood lumber with moist air has been modified and extended to simulate wood drying with superheated steam. In the simulation, differences between the two types of drying are considered, these include: external heat and mass transfer processes and calculation of equilibrium moisture content. The external mass transfer coefficient in the superheated steam drying was found to be much higher than that in the moist air drying, however, the heat transfer coefficients for these two cases were of the same order. The predicted drying curves and wood temperatures from the superheated steam drying model were compared with experimental data and there was close agreement. Further studies will apply the model to development of commercial drying schedules for wood drying with superheated steam.

  2. Effects of lime rate, lime ECCE, and B rate on rose clover and coastal bermudagrass dry matter yields 

    E-Print Network [OSTI]

    Villavicencio Batres, Rodolfo

    1990-01-01

    that soil pH was only affected by lime rate at the soil surface after 5 months, indicates that CaCO3 andior the dissolution products of CaCO3 did not readily leach through the soil profile when the lime was surface applied. Lime ECCE Effects Soil pH (0...EFFECTS OF LIME RATE, LIME ECCE, AND B RATE ON ROSE CLOVER AND COASTAL BERMUDAGRASS DRY MATTER YIELDS A Thesis by RODOLFO VILLAVICENCIO BATRES Submitted to the Office of Graduate Studies of Texas A8 M University in partial fulfiliment...

  3. Sensitivity of the FERMI Detectors to Gamma-Ray Bursts from Evaporating Primordial Black Holes (PBHs)

    E-Print Network [OSTI]

    T. N. Ukwatta; Jane H. MacGibbon; W. C. Parke; K. S. Dhuga; S. Rhodes; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

    2010-03-23

    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. The Fermi Gamma-ray Space Telescope observatory offers increased sensitivity to the gamma-ray bursts produced by PBHs with an initial mass of $\\sim 5\\times 10^{14}$ g expiring today. PBHs are candidate progenitors of unidentified Gamma-Ray Bursts (GRBs) that lack X-ray afterglow. We propose spectral lag, which is the temporal delay between the high and low energy pulses, as an efficient method to identify PBH evaporation events with the Fermi Large Area Telescope (LAT).

  4. Spectral Lags of Gamma-Ray Bursts from Primordial Black Hole (PBH) Evaporations

    E-Print Network [OSTI]

    T. N. Ukwatta; J. H. MacGibbon; W. C. Parke; K. S. Dhuga; A. Eskandarian; N. Gehrels; L. Maximon; D. C. Morris

    2009-08-14

    Primordial Black Holes (PBHs), which may have been created in the early Universe, are predicted to be detectable by their Hawking radiation. PBHs with an initial mass of 5.0 * 10^14 g should be expiring today with a burst of high energy particles. Evaporating PBHs in the solar neighborhood are candidate Gamma-Ray Bursts (GRBs) progenitors. We propose spectral lag, which is the temporal delay between the high energy photon pulse and the low energy photon pulse, as a possible method to detect PBH evaporation events with the Fermi Gamma-ray Space Telescope Observatory.

  5. Accretion Processes On a Black Hole

    E-Print Network [OSTI]

    Sandip K. Chakrabarti

    1996-05-03

    We describe astrophysical processes around a black hole keeping primarily the physics of accretion in mind. In Section 1, we briefly discuss the formation, evolution and detection of black holes. We also discuss the difference of flow properties around a black hole and a Newtonian star. In Section 2, we present past and present developments in the study of spherically accreting flows. We study the properties of Bondi flow with and without radiative transfer. In the presence of significant angular momentum, which is especially true in a binary system, matter will be accreted as a thin Keplerian disk. In Section 3, we discuss a large number of models of these disks including the more popular standard disk model. We present magnetized disk models as well. Since the angular momentum is high in these systems, rotational motion is the most dominant component compared to the radial or the vertical velocity components. In Section 4, we study thick disk models which are of low angular momentum but still have no significant radial motion. The accretion rates could be very high causing the flow to become radiation dominated and the disk to be geometrically thick. For low accretion rates, ion pressure supported disks are formed. In Section 5, we extensively discuss the properties of transonic flows which has with sub-Keplerian angular momentum. In the absence of shock discontinuities, these sub-Keplerian flows are basically advecting, similar to Bondi flows, close to the black holes, though far away they match Keplerian or sub-Keplerian disks. In presence of shocks, the post-shock flow becomes rotation dominated similar to thick disks. In Section 6, we present results of important numerical simulations of accretion flows. Significant results from the studies of evolution of viscous transonic flows are reported. In Section 7, we discuss some observational evidences of the black hole accretion. We also present a detailed model of a generalized accretion disk and present its spectra and compare with observations. In Section 8, we summarize the review and make concluding remarks.

  6. Destroying Kerr-Sen black holes with test particles

    E-Print Network [OSTI]

    Haryanto M. Siahaan

    2015-12-05

    By neglecting the self-force, self-energy, and radiative effects, it has been shown that an extremal or near-extremal Kerr-Newman black hole can turn to a naked singularity when it captures charged massive test particles with angular momentum. A straightforward question then arises, do charged and rotating black holes in string theory possess the same property? In this paper we adopt the Wald's gedanken experiment in an effort to destroy a Kerr-Newman black hole's horizon to the case of (near)-extremal Kerr-Sen black holes. We find that feeding a test particle into a (near)-extremal Kerr-Sen black hole could lead to a violation of the extremal bound for such black hole.

  7. Articles which include chevron film cooling holes, and related processes

    DOE Patents [OSTI]

    Bunker, Ronald Scott; Lacy, Benjamin Paul

    2014-12-09

    An article is described, including an inner surface which can be exposed to a first fluid; an inlet; and an outer surface spaced from the inner surface, which can be exposed to a hotter second fluid. The article further includes at least one row or other pattern of passage holes. Each passage hole includes an inlet bore extending through the substrate from the inlet at the inner surface to a passage hole-exit proximate to the outer surface, with the inlet bore terminating in a chevron outlet adjacent the hole-exit. The chevron outlet includes a pair of wing troughs having a common surface region between them. The common surface region includes a valley which is adjacent the hole-exit; and a plateau adjacent the valley. The article can be an airfoil. Related methods for preparing the passage holes are also described.

  8. Thermodynamics of Charged Lovelock - AdS Black Holes

    E-Print Network [OSTI]

    Prasobh C. B.; Jishnu Suresh; V. C. Kuriakose

    2015-10-16

    We investigate the thermodynamic behavior of maximally symmetric charged, asymptotically AdS black hole solutions of Lovelock gravity. We explore the thermodynamic stability of such solutions by the ordinary method of calculating the specific heat of the black holes and investigating its divergences which signal second order phase transitions between black hole states. We then utilize the methods of thermodynamic geometry of black hole spacetimes in order to explain the origin of these points of divergence. We calculate the curvature scalar corresponding to a Legendre-invariant thermodynamic metric of these spacetimes and find that the divergences in the black hole specific heat correspond to singularities in the thermodynamic phase space. We also calculate the area spectrum for large black holes in the model by applying the Bohr-Sommerfeld quantization to the adiabatic invariant calculated for the spacetime.

  9. Galaxy bulges and their massive black holes: a review

    E-Print Network [OSTI]

    Alister W. Graham

    2015-02-17

    With references to both key and oft-forgotten pioneering works, this article starts by presenting a review into how we came to believe in the existence of massive black holes at the centres of galaxies. It then presents the historical development of the near-linear (black hole)-(host spheroid) mass relation, before explaining why this has recently been dramatically revised. Past disagreement over the slope of the (black hole)-(velocity dispersion) relation is also explained, and the discovery of sub-structure within the (black hole)-(velocity dispersion) diagram is discussed. As the search for the fundamental connection between massive black holes and their host galaxies continues, the competing array of additional black hole mass scaling relations for samples of predominantly inactive galaxies are presented.

  10. Method and apparatus of assessing down-hole drilling conditions

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

    2007-04-24

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  11. Universality of critical magnetic field in holographic superconductor

    E-Print Network [OSTI]

    D. Momeni; R. Myrzakulov

    2015-02-11

    In this letter we study aspects of the holographic superconductors analytically in the presence of a constant external magnetic field. We show that the critical temperature and critical magnetic field can be calculated at nonzero temperature. We detect the Meissner effect in such superconductors. A universal relation between black hole mass $ M$ and critical magnetic field $H_c$ is proposed as $\\frac{H_c}{M^{2/3}}\\leq 0.687365$. We discuss some aspects of phase transition in terms of black hole entropy and the Bekenstein's entropy to energy upper bound.

  12. Bloch states, universality in light transport through a perforated metal

    E-Print Network [OSTI]

    Gevorkian, Zh S; Cuevas, Emilio

    2015-01-01

    Light transport in a metal with hole arrays is considered.Analytical expressions for a normal incident lights transmission coefficient in a metallic system with periodic, isolated and disordered holes are obtained and analyzed. Special attention is paid to the phenomenon of an extraordinary transmittance. It was proven that a sufficient condition for such extraordinary behavior is a long-range order in the dielectric permittivity profile. Based on the extended Bloch states model a ladder structure and universal behavior for a transmission spectra is predicted. The resonance wavelength of a transmission spectra is found for the Kronig-Penney model. The role of surface plasmons is discussed.

  13. A Quantum Material Model of Static Schwarzschild Black Holes

    E-Print Network [OSTI]

    S. -T. Sung

    1997-03-16

    A quantum-mechanical prescription of static Einstein field equation is proposed in order to construct the matter-metric eigen-states in the interior of a static Schwarzschild black hole where the signature of space-time is chosen as (--++). The spectrum of the quantum states is identified to be the integral multiples of the surface gravity. A statistical explanation of black hole entropy is given and a quantisation rule for the masses of Schwarzschild black holes is proposed.

  14. Classical and Quantum Properties of Liouville Black Holes

    E-Print Network [OSTI]

    R. B. Mann

    1994-04-25

    Black hole spacetimes can arise when a Liouville field is coupled to two- dimensional gravity. Exact solutions are obtained both classically and when quantum corrections due to back reaction effects are included. The black hole temperature depends upon the mass and the thermodynamic limit breaks down before evaporation of the black hole is complete, indicating that higher-loop effects must be included for a full description of the process.

  15. A Variational Principle for Asymptotically Randall-Sundrum Black Holes

    E-Print Network [OSTI]

    Scott Fraser; Douglas M. Eardley

    2015-07-28

    We prove the following variational principle for asymptotically Randall-Sundrum (RS) black holes, based on the first law of black hole mechanics: Instantaneously static initial data that extremizes the mass yields a static black hole, for variations at fixed apparent horizon area, AdS curvature length, cosmological constant, brane tensions, and RS brane warp factors. This variational principle is valid with either two branes (RS1) or one brane (RS2), and is applicable to variational trial solutions.

  16. Optoelectronic device with nanoparticle embedded hole injection/transport layer

    SciTech Connect (OSTI)

    Wang, Qingwu; Li, Wenguang; Jiang, Hua

    2012-01-03

    An optoelectronic device is disclosed that can function as an emitter of optical radiation, such as a light-emitting diode (LED), or as a photovoltaic (PV) device that can be used to convert optical radiation into electrical current, such as a photovoltaic solar cell. The optoelectronic device comprises an anode, a hole injection/transport layer, an active layer, and a cathode, where the hole injection/transport layer includes transparent conductive nanoparticles in a hole transport material.

  17. Ball Lightning: Manifestation of Cosmic Little Black Holes

    E-Print Network [OSTI]

    Mario Rabinowitz

    2001-04-03

    A case is made that in encounters with the earth's atmosphere, astrophysical little black holes (LBH) can manifest themselves as the core energy source of balllightning (BL). Relating the LBH incidence rate on earth to BL occurrence has the potential of shedding light on the distribution of LBH in the universe, and their velocities relative to the earth. Most BL features can be explained by a testable LBH model. Analyses are presented to support this model. LBH produce complex and many-faceted interactions in air directly and via their exhaust, resulting in excitation, ionization, and radiation due to processes such as gravitational and electrostatic tidal force, bremsstrahlung, pair production and annihilation, orbital electron near-capture by interaction with a charged LBH. Gravitational interaction of atmospheric atoms with LBH can result in an enhanced cross-section for polarization and ionization. An estimate for the power radiated by BL ~ Watts is in agreement with observation. An upper limit is found for the largest masses that can produce ionization and polarization excitation. It is shown that the LBH high power exhaust radiation is not prominent and its effects are consistent with observations.

  18. PHILADELPHIA UNIVERSITY 1995

    E-Print Network [OSTI]

    PHILADELPHIA UNIVERSITY 1.: 1995 . (95/2002. . 2. : 1. #12;PHILADELPHIA UNIVERSITY . 2) 2005/2006 . #12;PHILADELPHIA UNIVERSITY 2007

  19. Charles Darwin University Press www.cdu.edu.au/cdupress About CDU Press2

    E-Print Network [OSTI]

    Dry Season 2009 Charles Darwin University Press www.cdu.edu.au/cdupress #12;About CDU Press2 Season 2009 Catalog CDU Press is the publishing house of Charles Darwin University. We publish books publicatons. The Press is a small but adventurous organisation and we have books that include subject matter

  20. Thermal Fluctuations in a Charged AdS Black Hole

    E-Print Network [OSTI]

    Pourhassan, B

    2015-01-01

    In this paper, we will analyze the effects of thermal fluctuations on a charged AdS black hole. This will be done by analyzing the corrections to black hole thermodynamics due to these thermal fluctuations. We will demonstrate that the entropy of this black hole get corrected by logarithmic term. We will also calculate other corrections to other important thermodynamic quantities for this black hole. Finally, we will use the corrected value of the specific heat to analyze the phase transition in this system.

  1. Thermal Fluctuations in a Charged AdS Black Hole

    E-Print Network [OSTI]

    B. Pourhassan; Mir Faizal

    2015-08-12

    In this paper, we will analyze the effects of thermal fluctuations on a charged AdS black hole. This will be done by analyzing the corrections to black hole thermodynamics due to these thermal fluctuations. We will demonstrate that the entropy of this black hole get corrected by logarithmic term. We will also calculate other corrections to other important thermodynamic quantities for this black hole. Finally, we will use the corrected value of the specific heat to analyze the phase transition in this system.

  2. Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Breitenbush Hot Springs Area (Ingebritsen, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  3. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  4. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  5. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Sorey, Et Al., 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  6. Moduli Vacuum Bubbles Produced by Evaporating Black Holes

    E-Print Network [OSTI]

    J. R. Morris

    2007-08-14

    We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4d effective potential with one-loop contributions due to the Casimir effect, along with a 5d cosmological constant. The forms of the effective potential at low and high temperatures indicates a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys. Rev. D74, 024004 (2006), arXiv:hep-th/0605047]. The black hole bubble can be highly opaque to lower energy particles and photons, and thereby entrap them within. For high temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I.G. Moss, Phys. Rev. D32,1333 (1985)], tending to reflect low energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.

  7. Compound and Elemental Analysis At Seven Mile Hole Area (Larson...

    Open Energy Info (EERE)

    Of Older Hot Spring Alteration In Sevenmile Hole, Grand Canyon Of The Yellowstone River, Yellowstone Caldera, Wyoming Additional References Retrieved from "http:en.openei.orgw...

  8. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  9. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date 1998 - 2002...

  10. Hydrodynamic model for electron-hole plasma in graphene

    E-Print Network [OSTI]

    D. Svintsov; V. Vyurkov; S. Yurchenko; T. Otsuji; V. Ryzhii

    2012-01-03

    We propose a hydrodynamic model describing steady-state and dynamic electron and hole transport properties of graphene structures which accounts for the features of the electron and hole spectra. It is intended for electron-hole plasma in graphene characterized by high rate of intercarrier scattering compared to external scattering (on phonons and impurities), i.e., for intrinsic or optically pumped (bipolar plasma), and gated graphene (virtually monopolar plasma). We demonstrate that the effect of strong interaction of electrons and holes on their transport can be treated as a viscous friction between the electron and hole components. We apply the developed model for the calculations of the graphene dc conductivity, in particular, the effect of mutual drag of electrons and holes is described. The spectra and damping of collective excitations in graphene in the bipolar and monopolar limits are found. It is shown that at high gate voltages and, hence, at high electron and low hole densities (or vice-versa), the excitations are associated with the self-consistent electric field and the hydrodynamic pressure (plasma waves). In intrinsic and optically pumped graphene, the waves constitute quasineutral perturbations of the electron and hole densities (electron-hole sound waves) with the velocity being dependent only on the fundamental graphene constants.

  11. Lovelock black hole thermodynamics in a string cloud model

    E-Print Network [OSTI]

    Lee, Tae-Hun; Maharaj, Sunil D; Baboolal, Dharmanand

    2015-01-01

    The Lovelock theory is an extension of general relativity to higher dimensions. We study the Lovelock black hole for a string cloud model in arbitrary dimensional spacetime, and in turn also analyze its thermodynamical properties. Indeed, we compute the mass, temperature and entropy of the black hole and also perform a thermodynamical stability analysis. The phase structure suggests that the Hawking-Page phase transition is achievable. It turns out that the presence of the Lovelock terms and/or background string cloud completely changes the black hole thermodynamics. Interestingly, the entropy of a black hole is unaffected due to a background string cloud, but has a correction term due to Lovelock gravity.

  12. Thermodynamics of rotating black holes in conformal gravity

    E-Print Network [OSTI]

    Kamvar, Negin; Soroushfar, Saheb

    2015-01-01

    In this paper we consider a metric of a rotating black hole in conformal gravity. We calculate the thermodynamical quantities for this rotating black hole including Hawking temperature and entropy in four dimensional space-time, as we obtain the effective value of Komar angular momentum. The result is valid on the event horizon of the black hole, and at any radial distance out of it. Also we verify that the first law of thermodynamics will be held for this type of black hole.

  13. Particle-Hole Optical Model: Fantasy or Reality?

    E-Print Network [OSTI]

    M. H. Urin

    2010-05-13

    An attempt to formulate the optical model of particle-hole-type excitations (including giant resonances) is undertaken. The model is based on the Bethe--Goldstone equation for the particle-hole Green function. This equation involves a specific energy-dependent particle-hole interaction that is due to virtual excitation of many-quasiparticle configurations and responsible for the spreading effect. After energy averaging, this interaction involves an imaginary part. The analogy between the single-quasiparticle and particle-hole optical models is outlined.

  14. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is essential for many diverse fields, from condensed matter physics to medicine to environmental science. An incoming photon with enough energy to produce a core hole in a...

  15. Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes

    E-Print Network [OSTI]

    Benrong Mu; Peng Wang; Haitang Yang

    2015-01-24

    In this paper, we investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole's mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.

  16. Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes

    E-Print Network [OSTI]

    Mu, Benrong; Yang, Haitang

    2015-01-01

    In this paper, we investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole's mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.

  17. Energy Distribution of a Charged Regular Black Hole

    E-Print Network [OSTI]

    Irina Radinschi

    2000-11-20

    We calculate the energy distribution of a charged regular black hole by using the energy-momentum complexes of Einstein and M{\\o}ller.

  18. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  19. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  20. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    holes drilled References R.A. Cunniff, R.L. Bowers (2003) Final Report: Enhanced Geothermal Systems Technology Phase II: Animas Valley, New Mexico Additional References...