National Library of Energy BETA

Sample records for university coal research

  1. University Coal Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University Coal Research University Coal Research Universities frequently win Fossil Energy research competitions or join with private companies to submit successful research proposals. Today approximately 16 percent of the Office of Fossil Energy's annual R&D funding goes to academic institutions. The University Coal Research Program Universities have traditionally fared well in the Energy Department's open competitions for federal research grants and contracts. In 1979, however, the

  2. University Coal Research Program 2013 Selections

    Office of Energy Efficiency and Renewable Energy (EERE)

    Since the University Coal Research Program's inception in 1979, more than 728 research projects have been funded. With a combined value in excess of $132 million, these projects have provided new...

  3. FACT SHEET: Clean Coal University Research Awards and Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACT SHEET: Clean Coal University Research Awards and Project Descriptions FACT SHEET: Clean Coal University Research Awards and Project Descriptions As part of President Obama's ...

  4. Six University Coal Research Projects Selected to Boost Advanced...

    Office of Environmental Management (EM)

    Six University Coal Research Projects Selected to Boost Advanced Energy Production Six University Coal Research Projects Selected to Boost Advanced Energy Production September 9, ...

  5. DOE Selects Six University Coal Research Projects for Funding | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Six University Coal Research Projects for Funding DOE Selects Six University Coal Research Projects for Funding August 17, 2015 - 2:31pm Addthis The U.S Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected six projects to receive funding through NETL's University Coal Research Program, administered by the Crosscutting Research Technology Program. The University Coal Research Program funds research and development at U.S. colleges and universities

  6. Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program

    Broader source: Energy.gov [DOE]

    DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

  7. Abstracts and research accomplishments of university coal research projects

    SciTech Connect (OSTI)

    Not Available

    1991-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

  8. Abstract and research accomplishments of University Coal Research Projects

    SciTech Connect (OSTI)

    1995-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their respective projects in time for distribution at a conference on June 13--14, 1995 at Tennessee State University in Nashville, Tennessee. This book is a compilation of the material received in response to that request. For convenience, the 70 grants reported in this book are stored into eight technical areas, Coal Science, Coal Surface Science, Reaction Chemistry, Advanced Process Concepts, Engineering Fundamentals and Thermodynamics, Environmental Science, high Temperature Phenomena, and Special topics. Indexes are provided for locating projects by subject, principal investigators, and contracting organizations. Each extended abstract describes project objectives, work accomplished, significance to the Fossil Energy Program, and plans for the next year.

  9. University Coal Research | Department of Energy

    Office of Environmental Management (EM)

    that required professors to conduct cutting-edge research alongside students who were pursuing advanced degrees in engineering, chemistry and other technical disciplines. ...

  10. Six University Coal Research Projects Selected to Boost Advanced Energy Production

    Broader source: Energy.gov [DOE]

    The DOE selected six new projects under the University Coal Research Program that seek long-term solutions for the clean and efficient use of our nation’s abundant coal resources.

  11. FACT SHEET: Clean Coal University Research Awards and Project...

    Broader source: Energy.gov (indexed) [DOE]

    (AUSC) coal-fired power plants improve generation efficiency, use less coal and ... Compared with current thermal barrier coatings, pyrochlore oxides have ...

  12. FACT SHEET: Clean Coal University Research Awards and Project Descriptions

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of President Obama’s all-of-the-above approach to American energy, the Energy Department announced on June 6, 2012, that nine universities have won awards for research projects that will...

  13. DOE Announces Winners of Annual University Coal Research Grants...

    Energy Savers [EERE]

    ... viable option to reduce NOx and manage carbon in new and existing coal-fired power plants. ... and will explore the potential for NOx to cause corrosion in plant boilers. ...

  14. Uncovering Coal’s Secrets Through the University Coal Research Program

    Broader source: Energy.gov [DOE]

    The challenges confronting the environmentally sound use of our country’s fossil energy resources are best addressed through collaborative research and development. That’s why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy’s University Coal Research Program.

  15. Low-rank coal research

    SciTech Connect (OSTI)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  16. Obama Administration Announces Clean Coal Research Awards for Universities Across the Country

    Office of Energy Efficiency and Renewable Energy (EERE)

    Awards Latest Step by Administration to Leverage a Broad Range of Domestic Resources, Advancing Cheaper Technologies for Coal-Fired Energy Plants and Training the Next Generation of Clean Coal Scientists and Engineers

  17. PNNL Coal Gasification Research

    SciTech Connect (OSTI)

    Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

    2010-07-28

    This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

  18. Coal combustion research

    SciTech Connect (OSTI)

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  19. Cooperative research program in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  20. On-Site Coal Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Research Advanced Energy Systems Advanced Energy Systems research conceives, analyzes, and develops energy technologies that can minimize the environmental impact of fossil ...

  1. Exploratory Research on Novel Coal

    SciTech Connect (OSTI)

    Winschel, R.A.; Brandes, S.D.

    1998-05-01

    The report presents the findings of work performed under DOE Contract No. DE-AC22 -95PC95050, Task 3 - Flow Sheet Development. A novel direct coal liquefaction technology was investigated in a program being conducted by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Parameters were established for a low-cost, low-severity first-stage reaction system. A hydride ion reagent system was used to effect high coal conversions of Black Thunder Mine Wyoming subbituminous coal. An integrated first-stage and filtration step was successfully demonstrated and used to produce product filtrates with extremely low solids contents. High filtration rates previously measured off-line in Task 2 studies were obtained in the integrated system. Resid conversions of first-stage products in the second stage were found to be consistently greater than for conventional two-stage liquefaction resids. In Task 5, elementally balanced material balance data were derived from experimental results and an integrated liquefaction system balance was completed. The economic analysis indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies. However, several approaches to reduce costs for the conceptual commercial plant were recommended. These approaches will be investigated in the next task (Task 4) of the program.

  2. Coal Research FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    According to IEA, removing CCS from the list of options ... and storage (CCS) with coal-fired power generation at commercial ... new fossil-fueled power plants by increasing overall ...

  3. Clean Coal Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

  4. Clean Coal Research | Department of Energy

    Office of Environmental Management (EM)

    plant efficiencies and reduce both the energy and capital costs of CO2 capture and storage from new, advanced coal ... NETL Clean Coal Research Tracking New Coal-fired Power ...

  5. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    SciTech Connect (OSTI)

    Placido, Andrew; Liu, Kunlei; Challman, Don; Andrews, Rodney; Jacques, David

    2015-10-30

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will produce research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in

  6. Clean Coal Program Research Activities

    SciTech Connect (OSTI)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  7. Cooperative research in coal liquefaction

    SciTech Connect (OSTI)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  8. Evaluation of West Virginia University`s iron catalyst impregnated on coal

    SciTech Connect (OSTI)

    Stohl, F.V.; Diegert, K.V.; Goodnow, D.C.

    1995-07-01

    The objectives to evaluate and compare the activities/selectivities of fine-particle size catalysts being developed in the DOE/PETC Advanced Research (AR) Coal Liquefaction program by using standard coal liquefaction activity test procedures. Previously reported results have described the standard test procedure developed at Sandia to evaluate fine-particle size iron catalysts being developed in DOE/PETC`s AR Coal Liquefaction Program and described the evaluation of several catalysts (commercially available pyrite, University of Pittsburgh`s catalyst, Pacific Northwest Laboratories` catalyst) using these procedures. The test uses DECS-17 Blind Canyon Coal, phenanthrene as the reaction solvent, and a factorial experimental design that enables evaluation of a catalyst over ranges of temperature (350 to 400{degree}C), time (20 to 60 minutes), and catalyst loading (0 to 1 wt % on an as-received coal basis). Recent work has focused on the evaluation of West Virginia University`s iron catalyst that WVU impregnated on DECS-17 Blind Canyon coal. Results showed good activity for this catalyst including the highest amount of 9,10-dihydrophenanthrene (13.2%) observed in a reaction product and a small but significant catalytic effect for heptane conversion (0.5%). Additional experiments are being performed to enable comparison with previously tested catalysts. Tetrahydrofuran insolubles from selected reactions have been sent to the University of Kentucky for Mossbauer characterization of the iron phases present.

  9. NETL: University Turbine Systems Research Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Turbine Systems Research The University Turbine Systems Research (UTSR) Program addresses scientific research to develop and transition advanced turbines and turbine-based systems that will operate cleanly and efficiently when fueled with coal-derived synthesis gas (syngas) and hydrogen fuels. This research focuses on the areas of combustion, aerodynamics/heat transfer, and materials, in support of the Department of Energy (DOE) Office of Fossil Energy's Advanced Turbine Program

  10. University Research Summaries

    Broader source: Energy.gov [DOE]

    The Idaho National Laboratory published the U.S. Department of Energy's (DOE) Geothermal Technologies Office 2001 University Research Summaries. 

  11. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    SciTech Connect (OSTI)

    Brandes, S.D.; Winschel, R.A.

    1998-11-30

    The report presents a summary the work performed under DOE Contract No. DE-AC22-95PC95050. Investigations performed under Task 4--Integrated Flow Sheet Testing are detailed. In this program, a novel direct coal liquefaction technology was investigated by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Approaches to reduce costs for a conceptual commercial plant were recommended at the conclusion of Task 3. These approaches were investigated in Task 4. The economic analysis of the process as it was defined at the conclusion of Task 4, indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies.

  12. Clean Coal Technology - From Research to Reality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Technology - From Research to Reality Clean Coal Technology - From Research to Reality Clean Coal Technology: From Research to Reality (940.28 KB) More Documents & Publications Fact Sheet: Clean Coal Technology Ushers In New Era in Energy Fact Sheet: Clean Coal Technology Ushers In New Era in Energy

  13. Health effects of coal technologies: research needs

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  14. Low-rank coal research semiannual report, January 1992--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This semiannual report is a compilation of seventeen reports on ongoing coal research at the University of North Dakota. The following research areas are covered: control technology and coal preparation; advanced research and technology development; combustion; liquefaction and gasification. Individual papers have been processed separately for inclusion in the Energy Science and Technology Database.

  15. DOE's Advanced Coal Research, Development, and Demonstration Program to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop Low-carbon Emission Coal Technologies | Department of Energy Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies DOE's Advanced Coal Research, Development, and Demonstration Program to Develop Low-carbon Emission Coal Technologies March 11, 2009 - 3:18pm Addthis Statement of Victor K. Der, Acting Assistant Secretary, Office of Fossil Energy before the Subcommittee on Energy and Environment, Committee on Science and

  16. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    SciTech Connect (OSTI)

    Huffman, G.P.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  17. University Turbine Systems Research Program

    SciTech Connect (OSTI)

    Leitner, Robert; Wenglarz, Richard

    2010-12-31

    The primary areas of university research were combustion, aerodynamics/heat transfer, and materials, with a few projects in the area of instrumentation, sensors and life (ISL).

  18. Cooperative Research Program in coal liquefaction. Technical report, May 1, 1994--October 31, 1994

    SciTech Connect (OSTI)

    1994-12-31

    Progress reports are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts.

  19. Early Days of Coal Research | Department of Energy

    Energy Savers [EERE]

    Early Days of Coal Research Wartime Needs Spur Interest in Coal-to-Oil Processes In 1944 ... Oil was in tight supply in the United States during the war years. As demand for petroleum ...

  20. EPRI's coal combustion product use research

    SciTech Connect (OSTI)

    Ladwig, K.

    2008-07-01

    For more than 20 years, EPRI's Coal Combustion Product Use Program has been a leader in providing research to demonstrate the value of using coal combustion products (CCPs) in construction and manufacturing. Work is concentrated on large-volume uses, increasing use in traditional applications, uses in light of changes in CCP quality resulting form increased and new air emissions controls for nitrogen oxides, sulfur oxides and mercury. Currently, EPRI is investigating opportunities for using higher volumes of Class C ash in concrete; approaches for ensuring that mercury controls do not adversely affect the use of CCPs; agricultural uses for products from flue gas desulfurization; possible markets for spray dryer absorber byproducts; and issues involved with the presence of ammonia in ash. Some recent results and future work is described in this article. 4 photos.

  1. Coal Ash Contaminants in Wetlands | SREL Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal-fired facilities have been in operation on the SRS since the early 1950s. After ... The D-Area coal plant operated until early 2012, when it was replaced by a biofuels ...

  2. Cooperative investigation by Auburn University and Cities Service Research and Development Company of combined coal and heavy resid processing. Quarterly report, October 15, 1983-January 15, 1984. [Use of petroleum residual fuels as organic solvents

    SciTech Connect (OSTI)

    Curtis, C.W.; Guin, J.A.; Tarrer, A.R.

    1984-01-01

    The objective of this research is to determine the feasibility of using heavy petroleum crudes and residua as solvents in coal liquefaction. Petroleum residuum is a hydrogen-rich material and coal is hydrogen deficient. In coprocessing, the fundamental concept being evaluated is to determine if petroleum residua can transfer hydrogen directly to coal at specified reaction conditions. The reaction parameters for such a transfer must be determined and optimized. Secondly, the idea of modifying the petroleum residua to produce more effective solvents for transferring hydrogen to coal during liquefaction is being evaluated. The goal of the coprocessing is to increase the net yield and improve the quality of liquid product compared to that originally present in the petroleum residuum. The parametric evaluation has shown that optimal conditions for combined processing are: Reaction Tempperature - 425/sup 0/C; Hydrogen Pressure - above 500 psia initial hydrogen pressure; Time - 90 minutes; and Catalyst - powdered hydrogenation catalyst. Coal conversion and oil production from combined catalytic (powdered) processing compare favorably with that from tetralin with a powdered catalyst. An added benefit of combined processing is the upgrading of the petroleum crude which is obtained during processing. Comparison of the final oil yields to the initial charge shows that combined processing yields a net increase of 23.3% for 90 minute reaction time while tetralin provides a net increase of 17.7% for 30 minutes of reaction. 3 figures, 20 tables.

  3. Secretary of Energy and Rep. Chabot Highlight Clean Coal and Hydrogen Research and Tout America's Economic Growth in Ohio

    Broader source: Energy.gov [DOE]

    CINCINNATI, OH - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today joined Rep. Steve Chabot (OH-1st) to tour the hydrogen and clean coal research laboratory at the University of...

  4. JV Task 120 - Coal Ash Resources Research Consortium Research

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett; Bruce Dockter; Kurt Eylands; Tera Buckley; Erick Zacher

    2009-03-28

    The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special

  5. Determining the research needs of the surface coal mining industry

    SciTech Connect (OSTI)

    Zell, L.M.

    1982-12-01

    This paper reveals avenues open to the coal industry to help gain technology and research information needed to meet the requirements of the Surface Mining Control and Reclamation Act of 1977. It discusses projects of the Department of Energy's (DOE) Office of Coal Mining and the Mining and Reclamation Council of America (MARC) to help meet the environmental needs as well as the coal industry needs.

  6. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  7. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    SciTech Connect (OSTI)

    Not Available

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  8. Multidisciplinary University Research Initiative: High Operating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temperature Fluids | Department of Energy Multidisciplinary University Research Initiative: High Operating Temperature Fluids Multidisciplinary University Research Initiative: High Operating Temperature Fluids Multidisciplinary University Research Initiative: High Operating Temperature Fluids In August 2012, DOE announced two awards under the Multidisciplinary University Research Initiative (MURI) to develop high-operating temperature heat-transfer fluids for concentrating solar power (CSP)

  9. Ohio Coal Research Consortium fourth year final summary report, September 1, 1993--August 31, 1994

    SciTech Connect (OSTI)

    1995-05-01

    As a part of its efforts to improve the use of high-sulfur Ohio coal within environmental limits, the Ohio Coal Development Office, an entity within the Ohio Department of Development (OCDO/ODOD), in late 1988 established a consortium of four Ohio universities. The purpose of the Ohio Coal Research Consortium is to conduct a multi-year fundamental research program focused on (1) the enhancement or development of dry sorption processes for the economical removal of high levels of SO{sub 2} and other pollutants and (2) an increased understanding of methods for reduction in air toxics emissions from combustion gases produced by burning high-sulfur Ohio coal. This report contains summaries of twelve studies in these areas.

  10. Ohio Coal Research Consortium fifth year final reports summary, September 1, 1994--February 29, 1996

    SciTech Connect (OSTI)

    1996-12-01

    As part of its efforts to improve the use of high-sulfur Ohio coal within environmental limits, the Ohio Coal Development Office, an entity within the Ohio Department of Development (OCDO/ODOD), in late 1988 established a consortium of four Ohio universities. The purpose of the Ohio Coal Research Consortium is to conduct a multi-year fundamental research programs focused on: (1) the enhancement or development of dry sorption processes for the economical removal of high levels of SO{sub 2} and other pollutants, and (2) an increased understanding of methods for reduction in air toxics emissions from combustion gases produced by burning high-sulfur Ohio coal. This report contains summaries of eleven studies in these areas.

  11. Fundamental bioprocessing research for coal applications

    SciTech Connect (OSTI)

    Kaufman, E.N.

    1996-06-01

    The purpose of this program is to gain a fundamental understanding and sound scientific technical basis for evaluating the potential roles of innovative bioprocessing concepts for the utilization and conversion of coal. The aim is to explore the numerous ways in which advanced biological processes and techniques can open new opportunities for coal utilization or can replace more conventional techniques by use of milder conditions with less energy consumption or loss. There are several roles where biotechnology is likely to be important in coal utilization and conversion. These include potential bioprocessing systems such.

  12. Coal combustion aerothermochemistry research. Final report

    SciTech Connect (OSTI)

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  13. Research universities for the 21st century

    SciTech Connect (OSTI)

    Gover, J.; Huray, P.G.

    1998-05-01

    The `public outcomes` from research universities are educated students and research that extends the frontiers of knowledge. Measures of these `public outcomes` are inadequate to permit either research or education consumers to select research universities based on quantitative performance data. Research universities annually spend over $20 billion on research; 60% of these funds are provided by Federal sources. Federal funding for university research has recently grown at an annual rate near 6% during a time period when other performers of Federal research have experienced real funding cuts. Ten universities receive about 25% of the Federal funds spent on university research. Numerous studies of US research universities are reporting storm clouds. Concerns include balancing research and teaching, the narrow focus of engineering education, college costs, continuing education, and public funding of foreign student education. The absence of research on the `public outcomes` from university research results in opinion, politics, and mythology forming the basis of too many decisions. Therefore, the authors recommend studies of other nations` research universities, studies of various economic models of university research, analysis of the peer review process and how well it identifies the most capable research practitioners and at what cost, and studies of research university ownership of intellectual property that can lead to increased `public outcomes` from publicly-funded research performed by research universities. They advocate two practices that could increase the `public outcomes` from university research. These are the development of science roadmaps that link science research to `public outcomes` and `public outcome` metrics. Changes in the university research culture and expanded use of the Internet could also lead to increased `public outcomes`. They recommend the use of tax incentives to encourage companies to develop research partnerships with research

  14. Low-rank coal research: Volume 3, Combustion research: Final report. [Great Plains

    SciTech Connect (OSTI)

    Mann, M. D.; Hajicek, D. R.; Zobeck, B. J.; Kalmanovitch, D. P.; Potas, T. A.; Maas, D. J.; Malterer, T. J.; DeWall, R. A.; Miller, B. G.; Johnson, M. D.

    1987-04-01

    Volume III, Combustion Research, contains articles on fluidized bed combustion, advanced processes for low-rank coal slurry production, low-rank coal slurry combustion, heat engine utilization of low-rank coals, and Great Plains Gasification Plant. These articles have been entered individually into EDB and ERA. (LTN)

  15. ccpi-multi-product-coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Utilization By-Product Processing Plant - Project Brief PDF-78KB University of Kentucky Research Foundation, Ghent, Kentucky PROJECT FACT SHEET Advanced Multi-Product Coal ...

  16. The gasification of coal-peat and coal-wood chip mixtures in the University of Minnesota, two-stage coal gasifier: Final report

    SciTech Connect (OSTI)

    Lewis, R.P.

    1986-12-01

    The technical feasibility of gasifying coal-peat and coal-wood chip mixtures with the University of Minnesota, Duluth Campus commercially technology two-stage coal gasifier was demonstrated during a series of experimental tests. Three types of processed peat products were mixed with coal and gasified. The three peat products were: peat briquettes, peat pellets and sod peat. The best peat product for gasification and handling was found to be peat pellets with a diameter of 7/8 inch and a length of .75 to 2 inches. A mixture of 65% coal and 35% peat pellets was found to cause no loss in gasifier efficiency and no operational problems. However, there was found to be no economic advantage in using coal-peat mixtures. The very limited testing performed with coal-wood chip mixtures indicated that the wood chips would be difficult to handle with the coal handling-equipment and there would be no economic advantage in using wood chips. 3 refs., 4 figs., 6 tabs.

  17. DOE Selects Projects To Enhance Its Research into Recovery of Rare Earth Elements from Coal and Coal Byproducts

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has selected 10 projects to receive funding for research in support of the lab’s program on Recovery of Rare Earth Elements from Coal and Coal Byproducts. The selected research projects will further program goals by focusing on the development of cost-effective and environmentally benign approaches for the recovery of rare earth elements (REEs) from domestic coal and coal byproducts.

  18. EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

  19. Nine Universities Begin Critical Turbine Systems Research

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy announced the selection of ten projects at nine universities under the Office of Fossil Energy’s University Turbine Systems Research Program.

  20. University Research Reactor Task Force to the Nuclear Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advisory Committee | Department of Energy University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee University Research Reactor Task Force to the Nuclear Energy Research Advisory Committee In mid-February, 2001 The University Research Reactor (URR) Task Force (TF), a sub-group of the Department of Energy (DOE) Nuclear Energy Research Advisory Committee (NERAC), was asked to: * Analyze information collected by DOE, the NERAC "Blue Ribbon Panel,"

  1. Duke University Research Associate Awarded 2014 Prize to Support Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Jefferson Lab | Jefferson Lab Duke University Research Associate Awarded 2014 Prize to Support Research Work with Jefferson Lab Duke University Research Associate Awarded 2014 Prize to Support Research Work with Jefferson Lab Zhihong Ye Zhihong Ye NEWPORT NEWS, VA, June 6, 2014 - Not many people have designed an entirely new detector system for use in high-precision physics experiments, but Zhihong Ye, a research associate at Duke University, can add his name to that list. In

  2. Applications from Universities and Other Research Institutions...

    Office of Science (SC) Website

    Policies EFRCs FOA Applications from Universities and Other Research Institutions Construction Review EPSCoR DOE Office of Science Graduate Fellowship (DOE SCGF) External link ...

  3. 2015 University Turbine Systems Research Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Turbine Systems Research Workshop November 3-5, 2015 Accommodations Georgian Terrace Hotel 659 Peachtree Street, NE Atlanta, GA 30308 The Georgian Terrace Hotel will be...

  4. Multidisciplinary University Research Initiative: High Operating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In August 2012, DOE announced two awards under the Multidisciplinary University Research Initiative (MURI) to develop high-operating temperature heat-transfer fluids for ...

  5. Low-rank coal research. Quarterly report, January--March 1990

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  6. Exploratory Research on Novel Coal Liquefaction Concept - Task 2: Evaluation of Process Steps.

    SciTech Connect (OSTI)

    Brandes, S.D.; Winschel, R.A.

    1997-05-01

    A novel direct coal liquefaction technology is being investigated in a program being conducted by CONSOL Inc. with the University of Kentucky, Center for Applied Energy Research and LDP Associates under DOE Contract DE-AC22-95PC95050. The novel concept consists of a new approach to coal liquefaction chemistry which avoids some of the inherent limitations of current high-temperature thermal liquefaction processes. The chemistry employed is based on hydride ion donation to solubilize coal at temperatures (350-400{degrees}C) significantly lower than those typically used in conventional coal liquefaction. The process concept being explored consists of two reaction stages. In the first stage, the coal is solubilized by hydride ion donation. In the second, the products are catalytically upgraded to acceptable refinery feedstocks. The program explores not only the initial solubilization step, but integration of the subsequent processing steps, including an interstage solids-separation step, to produce distillate products. A unique feature of the process concept is that many of the individual reaction steps can be decoupled, because little recycle around the liquefaction system is expected. This allows for considerable latitude in the process design. Furthermore, this has allowed for each key element in the process to be explored independently in laboratory work conducted under Task 2 of the program.

  7. University Research Consortium annual review meeting program

    SciTech Connect (OSTI)

    1996-07-01

    This brochure presents the program for the first annual review meeting of the University Research Consortium (URC) of the Idaho National Engineering Laboratory (INEL). INEL is a multiprogram laboratory with a distinctive role in applied engineering. It also conducts basic science research and development, and complex facility operations. The URC program consists of a portfolio of research projects funded by INEL and conducted at universities in the United States. In this program, summaries and participant lists for each project are presented as received from the principal investigators.

  8. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    SciTech Connect (OSTI)

    Hoffman, G.P.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  9. RESEARCH ON CARBON PRODUCTS FROM COAL USING AN EXTRACTIVE PROCESS

    SciTech Connect (OSTI)

    Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo; Chong Chen; Brian Bland; David Fenton

    2002-03-31

    This report presents the results of a one-year effort directed at the exploration of the use of coal as a feedstock for a variety of industrially-relevant carbon products. The work was basically divided into three focus areas. The first area dealt with the acquisition of laboratory equipment to aid in the analysis and characterization of both the raw coal and the coal-derived feedstocks. Improvements were also made on the coal-extraction pilot plant which will now allow larger quantities of feedstock to be produced. Mass and energy balances were also performed on the pilot plant in an attempt to evaluate the scale-up potential of the process. The second focus area dealt with exploring hydrogenation conditions specifically aimed at testing several less-expensive candidate hydrogen-donor solvents. Through a process of filtration and vacuum distillation, viable pitch products were produced and evaluated. Moreover, a recycle solvent was also isolated so that the overall solvent balance in the system could be maintained. The effect of variables such as gas pressure and gas atmosphere were evaluated. The pitch product was analyzed and showed low ash content, reasonable yield, good coking value and a coke with anisotropic optical texture. A unique plot of coke yield vs. pitch softening point was discovered to be independent of reaction conditions or hydrogen-donor solvent. The third area of research centered on the investigation of alternate extraction solvents and processing conditions for the solvent extraction step. A wide variety of solvents, co-solvents and enhancement additives were tested with varying degrees of success. For the extraction of raw coal, the efficacy of the alternate solvents when compared to the benchmark solvent, N-methyl pyrrolidone, was not good. However when the same coal was partially hydrogenated prior to solvent extraction, all solvents showed excellent results even for extractions performed at room temperature. Standard analyses of the

  10. University Research | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Research Universities Universities Home Interactive Grants Map SC In Your State University Science Highlights University Research News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 University Research Print Text Size: A A A Subscribe FeedbackShare Page GO 09.02.16University Research Subatomic Microscopy Key to Building New Classes of Materials External link Researchers at Penn State and the Molecular

  11. SNL-University of Guadalajara Research and Development MOU |...

    Open Energy Info (EERE)

    SNL-University of Guadalajara Research and Development MOU Jump to: navigation, search Name SNL-University of Guadalajara Research and Development MOU AgencyCompany Organization...

  12. The Building Research Council at the University of Illinois ...

    Open Energy Info (EERE)

    Research Council at the University of Illinois Jump to: navigation, search Name: The Building Research Council at the University of Illinois Place: Champaign, IL Information About...

  13. Boise State University, CAES Energy Efficiency Research Institute...

    Open Energy Info (EERE)

    State University, CAES Energy Efficiency Research Institute Jump to: navigation, search Name: Boise State University, CAES Energy Efficiency Research Institute Address: 1910...

  14. Coal

    Broader source: Energy.gov [DOE]

    Coal is the largest domestically produced source of energy in America and is used to generate a significant amount of our nation’s electricity.

  15. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  16. Obama Administration Announces Clean Coal Research Awards for...

    Broader source: Energy.gov (indexed) [DOE]

    innovative technologies that help make coal-fired energy cleaner and more cost-competitive, ... low-carbon power from a commercial-scale coal-based power plant with carbon capture. ...

  17. Cooperative Research Program in Coal-Waste Liquefaction

    SciTech Connect (OSTI)

    Gerald Huffman

    2000-03-31

    The results of a feasibility study for a demonstration plant for the liquefaction of waste plastic and tires and the coprocessing of these waste polymers with coal are presented. The study was conducted by a committee that included nine representatives from the CFFS, six from the U.S. Department of Energy - Federal Energy Technology Center (FETC), and four from Burns and Roe, Inc. The study included: (1) An assessment of current recycling practices, particularly feedstock recycling in Germany; (2) A review of pertinent research, and a survey of feedstock availability for various types of waste polymers; and (3) A conceptual design for a demonstration plant was developed and an economic analysis for various feedstock mixes. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case with oil priced at $20 per barrel, the return on investment (ROI) was found to range from 9% to 20%, using tipping fees for waste plastic and tires typical of those existing in the U.S. The most profitable feedstock appeared to waste plastic alone, with a plant processing 300 t/d of plastic yielding ROI's from 13 to 27 %, depending on the tipping fees for waste plastic. Feedstock recycling of tires was highly dependent on the price that could be obtained for recovered carbon. Addition of even relatively small amounts (20 t/d) of coal to waste plastic and/or coal feeds lowered the ROI's substantially. It should also be noted that increasing the size of the plant significantly improved all ROI's. For example, increasing plant size from 300 t/d to1200 t/d approximately doubles the estimated ROI's for a waste plastic feedstock.

  18. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  19. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  20. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    SciTech Connect (OSTI)

    Huffman, G.P.

    1994-10-01

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  1. Shanghai Maple Tongji University hybrid automobile research partnershi...

    Open Energy Info (EERE)

    An agreement between Shanghai Maple and Tongji University to produce hybrid cars for marketing by 2008. References: Shanghai Maple - Tongji University hybrid automobile research...

  2. Fixed-bed gasification research using US coals. Volume 15. Gasification of ''fresh'' Rosebud subbituminous coal

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-09-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the fifteenth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Rosebud subbituminous coal, from June 17, 1985 to June 24, 1985. 4 refs., 20 figs., 15 tabs.

  3. Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies

    SciTech Connect (OSTI)

    Penner, S.S.

    1980-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

  4. Research and Services at the Alabama A&M University Research...

    Office of Environmental Management (EM)

    Research and Services at the Alabama A&M University Research Institute Research and Services at the Alabama A&M University Research Institute An overview of services and research...

  5. Research Reactor at University of Florida Has Been Converted...

    National Nuclear Security Administration (NNSA)

    Research Reactor at University of Florida Has Been Converted October 18, 2006 By End of ... has successfully converted a research reactor at the University of Florida from the use ...

  6. Clark Atlanta Universities (CAU) Energy Related Research Capabilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Clark Atlanta Universities (CAU) Energy Related Research Capabilities Clark Atlanta Universities (CAU) Energy Related Research Capabilities How energy related research has helped Clark Atlanta University. Clark Atlanta Universities (CAU) Energy Related Research Capabilities (1.62 MB) More Documents & Publications 2008-2009 Winter Fuels Outlook Conference Ronald Reagan Building and International Trade Center HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE

  7. Off Site University Research (OSUR) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outreach Efforts Graduate Programs Off Site University Research (OSUR) Purpose PPPL Scientific and Engineering Capabilities Examples of OSUR Assisted Projects Contact OSUR Program Organization Contact Us Science Education Outreach Efforts Graduate Programs Off Site University Research (OSUR) Purpose PPPL Scientific and Engineering Capabilities Examples of OSUR Assisted Projects Contact OSUR Program Off Site University Research (OSUR) The PPPL Off-Site University Research (OSUR) Program provides

  8. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    SciTech Connect (OSTI)

    Sendlein, L.V.A.

    1987-06-29

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  9. Status of health and environmental research relative to coal gasification 1976 to the present

    SciTech Connect (OSTI)

    Wilzbach, K.E.; Reilly, C.A. Jr.

    1982-10-01

    Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

  10. Research Without Borders: NETL Pens MOU with Brazilian Coal Association

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy’s National Energy Technology Laboratory and the Brazilian Coal Association signed a Memorandum of Understanding on carbon capture and storage (CCS) in Florianópolis, Brazil. By signing the MOU, both parties agreed to work together over the next 5 years to assess the potential of CCS in fossil fuel–based systems, as well as the development of clean coal technologies applicable to Brazilian coals. The memorandum also covers the development of other technologies to reduce the environmental impact of fossil fuel production and use.

  11. University of Dayton Research Institute | Open Energy Information

    Open Energy Info (EERE)

    Research Institute Jump to: navigation, search Name: University of Dayton Research Institute Address: 300 College Park Place: Dayton, Ohio Zip: 45469-0101 Website:...

  12. University of Nevada Las Vegas Research Foundation UNLVRF | Open...

    Open Energy Info (EERE)

    Vegas Research Foundation UNLVRF Jump to: navigation, search Name: University of Nevada Las Vegas Research Foundation (UNLVRF) Place: Nevada Zip: 89154 2036 Product: Non-profit...

  13. Polytechnic Institute of New York University Researchers Represented...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E-print Network ResearcherResearch Institution Web page Aronov, Boris - Department of Computer Science and Engineering, Polytechnic Institute of New York University http:...

  14. DOE's Coal Research and Development | Department of Energy

    Office of Environmental Management (EM)

    ... The NCCC is a one of a kind, world class facility which offers an opportunity to validate capture technologies on actual gas from a coal-fired power plant or gasification facility. ...

  15. NETL Launches a University Coalition for Fossil Energy Research at Pennsylvania State University

    Broader source: Energy.gov [DOE]

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has selected Pennsylvania State University as the lead institution to establish the University Coalition for Fossil Energy Research. The Coalition will bring together a multi-disciplinary team of researchers from participating universities to address the fundamental research challenges that impede advancement of fossil energy-based technologies.

  16. Fixed-bed gasification research using US coals. Volume 2. Gasification of Jetson bituminous coal

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-03-31

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report describes the gasification testing of Jetson bituminous coal. This Western Kentucky coal was gasified during an initial 8-day and subsequent 5-day period. Material flows and compositions are reported along with material and energy balances. Operational experience is also described. 4 refs., 24 figs., 17 tabs.

  17. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    SciTech Connect (OSTI)

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  18. Low-rank coal research. Quarterly technical progress report, April-June 1984

    SciTech Connect (OSTI)

    Not Available

    1984-08-01

    Papers in the quarterly technical progress report for the period April-June, 1984, of the Low-Rank Coal Research project have been entered individually into EDB and ERA (17 items). (LTN)

  19. Fixed-bed gasification research using US coals. Volume 1. Program and facility description

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Poole, A.R.; Pui, D.; Liu, B.; Kittleson, D.

    1984-10-01

    The United States Department of Interior, Bureau of Mines, Twin Cities Research Center, Minneapolis, Minnesota is the site of a 6.5 foot diameter Wellman-Galusha gasifier, installed in 1977-1978. This gasifier, combustor/incinerator, and flue gas scrubber system in the past had been operated jointly by Bureau of Mines personnel, personnel from member companies of the Mining and Industrial Fuel Gas Group, and United States Department of Energy personnel-consultants. Numerous tests using a variety of coals have to date been performed. In May of 1982, Black, Sivalls and Bryson, Incorporated (BS and B) was awarded the contract to plan, execute, and report gasification test performance data from this small industrial fixed-bed gasification test facility. BS and B is responsible for program administration, test planning, test execution, and all documentation of program activities and test reports. The University of Minnesota, Particle Technology Laboratory (UMPTL) is subcontractor to BS and B to monitor process parameters, and provide analysis for material inputs and outputs. This report is the initial volume in a series of reports describing the fixed-bed gasification of US coals at the Bureau of Mines, Twin Cities Research Center. A history of the program is given in Section 1 and a thorough description of the facility in Section 2. The operation of the facility is described in Section 3. Monitoring systems and procedures are described in Sections 4 and 5. Data reduction tools are outlined in Section 6. There is no executive summary or conclusions as this volume serves only to describe the research program. Subsequent volumes will detail each gasification test and other pertinent results of the gasification program. 32 references, 23 figures, 15 tables.

  20. Biodegradation of naphthalene from coal tar. Research progress report

    SciTech Connect (OSTI)

    Ghoshal, S.; Ramaswami, A.; Luthy, R.G.

    1994-02-07

    Biodegradation experiments were conducted to evaluate the mineralization of naphthalene released from coal tar entrapped in microporous silica media. Tests were performed with two coal tars recovered from former manufactured gas plant sites. Results from these tests showed that the degradation end point for naphthalene was significantly lower than the total amount of naphthalene present in coal tar. The role of physico-chemical and biological processes on the rate of biotransformation of naphthalene was evaluated. Mass transfer rates for dissolution of naphthalene from entrapped coal tar were measured in batch, flow-through systems. The rate of naphthalene mass transfer from the coal tar was found to be significantly greater than the rate of naphthalene biomineralization in batch slurry reactors. This implied that the rate acting factor for the biodegradation process was related to biokinetic phenomena rather than mass transfer processes. Further tests indicated that conditions inhibitory to bacteria limited the biodegradation of naphthalene, and in some cases the inhibition was reversible upon dilution of the reactor contents.

  1. Exploratory research on solvent refined coal liquefaction. Quarterly technical progress report, April 1-June 30, 1979

    SciTech Connect (OSTI)

    1980-07-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburgh and Midway Coal Mining Company's Merriam Laboratory for the period April 1, 1979 through June 30, 1979. Experimental work included a number of short residence time runs, but discussion of that work has been delayed until a later report. Experimental work reported focuses on an investigation of the decline in solvent quality experienced by the Wilsonville Pilot Plant during runs in support of the SRC I Demonstration Plant. A four run series was initiated with Wilsonville solvent; both the coal used at Wilsonville (Kentucky 6/11 - Pyro Mine) and Kentucky 9/14 coal from the Colonial Mine were used. The effect of pyrite addition to the Pyro Mine coal was investigated. No solvent quality or coking problems were experienced in the Merriam runs. Significant changes in solvent composition were apparent and equilibrated solvent samples were returned to Wilsonville for solvent quality testing.

  2. Paleogeographical aspects of research of Carboniferous coal basins (Ukraine)

    SciTech Connect (OSTI)

    Skovorodnikova, E.A.; Lazarenko, E.E.

    1993-04-01

    Essential problems of formation of Lower and Middle Carboniferous deposits (Mississippian) of Ukraine in connection with prognostication of coal fields are considered. Paleogeographic model of coal basin has been established on the base of L'viv-Volynsk structure (a part of Paleozoic L'viv depression on the south-west of East-European platform). Detailed subdivision and correlation of sections were provided using the criteria of physical and chemical alterations of quartz, feldspars, zircon, apatite and other accessories. According to stratigraphical and lithological study paleogeographical mapping was conducted. The deltaic nature of carbonaceous series was identified on the character of rhythmic cycle of subaqueous and shallow-water sediments and upward coarsening of sequence. Typomorphism of siderite has been studied indicating peculiarities of marsh sedimentation of the deltaic plain. Regime, morphology, climate and evolution of paleodelta are discussed. The potential sites of coal accumulations have been singled out.

  3. Energy Secretary Hails University of Maine's Wind Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hails University of Maine's Wind Research Energy Secretary Hails University of Maine's Wind Research June 16, 2010 - 10:51am Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Energy Secretary Steven Chu praised the University of Maine on Monday, calling the school's offshore wind technology program "truly impressive." Secretary Chu visited the university's Orono campus to learn more about its 10-year plan to design and deploy deepwater wind

  4. Four Minority Universities Selected for Fossil Energy Research Grants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy May 20, 2010 - 1:00pm Addthis Washington, DC - Innovative fossil energy research projects will be investigated by students and faculty from four winning institutions in the Department of Energy's annual competition for fossil energy research ideas from the nation's Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). Students and faculty from the chosen universities - the University of Texas, El Paso; Southern University and A&M

  5. Status of health and environmental research relative to direct coal liquefaction: 1976 to the present

    SciTech Connect (OSTI)

    Gray, R.H.; Cowser, K.E.

    1982-06-01

    This document describes the status of health and environmental research efforts, supported by the US Department of Energy (DOE), to assist in the development of environmentally acceptable coal liquefaction processes. Four major direct coal liquefaction processes are currently in (or have been investigated at) the pilot plant stage of development. Two solvent refined coal processes (SRC-I and -II), H-coal (a catalytic liquefaction process) and Exxon donor solvent (EDS). The Pacific Northwest Laboratory was assigned responsibility for evaluating SRC process materials and prepared comprehensive health and environmental effects research program plans for SRC-I and -II. A similar program plan was prepared for H-coal process materials by the Oak Ridge National Laboratory. A program has been developed for EDS process materials by Exxon Research and Engineering Co. The program includes short-term screening of coal-derived materials for potential health and ecological effects. Longer-term assays are used to evaluate materials considered most representative of potential commercial practice and with greatest potential for human exposure or release to the environment. Effects of process modification, control technologies and changing operational conditions on potential health and ecological effects are also being evaluated. These assessments are being conducted to assist in formulating cost-effective environmental research programs and to estimate health and environmental risks associated with a large-scale coal liquefaction industry. Significant results of DOE's health and environmental research efforts relative to coal liquefaction include the following: chemical characterization, health effects, ecological fate and effects, amelioration and risk assessment.

  6. EERE Success Story-University of Colorado-Boulder Researches...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The conversion of solar radiation into chemical fuel, such as hydrogen, is an engineering challenge; however, ... industry partners, universities, research labs, and other entities. ...

  7. 2015 University Turbine Systems Research Workshop | netl.doe...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Proceedings 2015 University Turbine Systems Research Workshop The 2015 UTSR ... Energy's Advanced Turbines Program by NETL Turbine Technology Manager Richard Dennis. ...

  8. LWZ-0023- In the Matter of Universities Research Association, Inc.

    Broader source: Energy.gov [DOE]

    Universities Research Association, Inc. (URA) is the management and operating contractor for the Department of Energy's (the DOE) Superconducting Super Collider Laboratory (the Laboratory) in...

  9. University Teams Lead Innovative Solar Research Projects | Department...

    Office of Environmental Management (EM)

    University Teams Lead Innovative Solar Research Projects August 28, 2012 - 2:55pm Addthis A concentrating solar power system in Albuquerque, New Mexico. | Photo by Randy Montoya...

  10. LWA-0003- In the Matter of Universities Research Association, Inc.

    Broader source: Energy.gov [DOE]

    Universities Research Association, Inc. (URA) manages and operates the Department of Energy's Superconducting Super Collider Laboratory (the Laboratory) in Waxahachie, Texas. On October 27, 1992,...

  11. Photosynthetic Antenna Research Center | Washington University...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    All Hands 2015 Our sixth annual meeting at Washington University in St. Louis PARC: Harvesting Solar Energy for the Future In this video, we detail the vision and goals of PARC's ...

  12. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  13. Low-rank coal research under the UND/DOE cooperative agreement. Quarterly technical progress report, April 1983-June 1983

    SciTech Connect (OSTI)

    Wiltsee, Jr., G. A.

    1983-01-01

    Progress reports are presented for the following tasks: (1) gasification wastewater treatment and reuse; (2) fine coal cleaning; (3) coal-water slurry preparation; (4) low-rank coal liquefaction; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization; (8) combustion research and ash fowling; (9) fluidized-bed combustion of low-rank coals; (10) ash and slag characterization; (11) organic structure of coal; (12) distribution of inorganics in low-rank coals; (13) physical properties and moisture of low-rank coals; (14) supercritical solvent extraction; and (15) pyrolysis and devolatilization.

  14. Stirling engine research at national and university laboratories in Japan

    SciTech Connect (OSTI)

    Hane, G.J.; Hutchinson, R.A.

    1987-09-01

    Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

  15. Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993

    SciTech Connect (OSTI)

    Huffman, G.P.

    1996-03-01

    Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

  16. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    SciTech Connect (OSTI)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O'Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving 2

  17. Antonios Kelarakis > Sr. Researcher - University of Central Lancashire >

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Alumni > The Energy Materials Center at Cornell Antonios Kelarakis Sr. Researcher - University of Central Lancashire antonios.kelarakis@gmail.com Dr. Kelarakis worked with the Giannelis Group while at Cornell. He has since joined the University of Central Lancashire, where he is a Senior Researcher/Guild Research Fellow with School of Forensic and Investigative Sciences. Antonio's research interests include colloids, biomaterials, smart coatings and nanostructured materials for

  18. DOE-NREL Minority University Research Associates Program

    SciTech Connect (OSTI)

    Posey Eddy, F.

    2005-01-01

    The DOE-NREL Minority University Research Associates Program (MURA) encourages minority students to pursue careers in science and technology. In this program, undergraduate students work with principal investigators at their universities to perform research projects on solar technology. Then, students are awarded summer internships in industry or at national laboratories, such as NREL, during the summer. Because of its success, the program has been expanded to include additional minority-serving colleges and universities and all solar energy technologies.

  19. University of Delaware | CCEI Students & Postdoctoral Researchers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Students and Postdoctoral Researchers Click column headings to sort Name Institution Title Advisor Name Institution Title Advisor BACK TO TOP

  20. Fundamental research on novel process alternatives for coal gasification: Final report

    SciTech Connect (OSTI)

    Hill, A H; Knight, R A; Anderson, G L; Feldkirchner, H L; Babu, S P

    1986-10-01

    The Institute of Gas Technology has conducted a fundamental research program to determine the technical feasibility of and to prepare preliminary process evaluations for two new approaches to coal gasification. These two concepts were assessed under two major project tasks: Task 1. CO/sub 2/-Coal Gasification Process Concept; Task 2. Internal Recirculation Catalysts Coal Gasification Process Concept. The first process concept involves CO/sub 2/-O/sub 2/ gasification of coal followed by CO/sub 2/ removal from the hot product gas by a solid MgO-containing sorbent. The sorbent is regenerated by either a thermal- or a pressure-swing step and the CO/sub 2/ released is recycled back to the gasifier. The product is a medium-Btu gas. The second process concept involves the use of novel ''semivolatile'' materials as internal recirculating catalysts for coal gasification. These materials remain in the gasifier because their vapor pressure-temperature behavior is such that they will be in the vapor state at the hotter, char exit part of the reactor and will condense in the colder, coal-inlet part of the reactor. 21 refs., 43 figs., 43 tabs.

  1. University of Delaware | CCEI Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights Discovering New Catalytic Technologies Click on the links below to learn about our exciting new discoveries impacting the scientific community. (beginning with ...

  2. EERE Success Story-University of Colorado-Boulder Researches

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar-Thermochemical Hydrogen Production | Department of Energy Colorado-Boulder Researches Solar-Thermochemical Hydrogen Production EERE Success Story-University of Colorado-Boulder Researches Solar-Thermochemical Hydrogen Production July 26, 2013 - 12:00am Addthis EERE funds research at the University of Colorado-Boulder for a hydrogen production technology that uses solar energy to produce hydrogen from water. The thermochemical process being used has minimal water requirements, in

  3. DOE - Office of Legacy Management -- Brown University - Metcalf Research

    Office of Legacy Management (LM)

    Lab - RI 01 Brown University - Metcalf Research Lab - RI 01 FUSRAP Considered Sites Site: Brown University (Metcalf Research Lab.) (RI.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Providence , Rhode Island RI.01-1 Evaluation Year: 1987 RI.01-1 Site Operations: Research/Development on the preparation of pure halides of heavy metals, Bench Scale Process, and Sample & Analysis. RI.01-1 Site Disposition: Eliminated -

  4. UNIVERSITY TURBINE SYSTEMS RESEARCH PROGRAM SUMMARY AND DIRECTORY

    SciTech Connect (OSTI)

    Lawrence P. Golan; Richard A. Wenglarz

    2004-07-01

    The South Carolina Institute for Energy Studies (SCIES), administratively housed at Clemson University, has participated in the advancement of combustion turbine technology for over a decade. The University Turbine Systems Research Program, previously referred to as the Advanced Gas Turbine Systems Research (AGTSR) program, has been administered by SCIES for the U.S. DOE during the 1992-2003 timeframe. The structure of the program is based on a concept presented to the DOE by Clemson University. Under the supervision of the DOE National Energy Technology Laboratory (NETL), the UTSR consortium brings together the engineering departments at leading U.S. universities and U.S. combustion turbine developers to provide a solid base of knowledge for the future generations of land-based gas turbines. In the UTSR program, an Industrial Review Board (IRB) (Appendix C) of gas turbine companies and related organizations defines needed gas turbine research. SCIES prepares yearly requests for university proposals to address the research needs identified by the IRB organizations. IRB technical representatives evaluate the university proposals and review progress reports from the awarded university projects. To accelerate technology transfer technical workshops are held to provide opportunities for university, industry and government officials to share comments and improve quality and relevancy of the research. To provide educational growth at the Universities, in addition to sponsored research, the UTSR provides faculty and student fellowships. The basis for all activities--research, technology transfer, and education--is the DOE Turbine Program Plan and identification, through UTSR consortium group processes, technology needed to meet Program Goals that can be appropriately researched at Performing Member Universities.

  5. National Coal Quality Inventory (NACQI)

    SciTech Connect (OSTI)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  6. Princeton University High Energy Physics Research

    SciTech Connect (OSTI)

    Marlow, Daniel R.

    2015-06-30

    This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement of $\\sin^22\\theta_{13}$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.

  7. Low-rank coal research: Volume 2, Advanced research and technology development: Final report

    SciTech Connect (OSTI)

    Mann, M.D.; Swanson, M.L.; Benson, S.A.; Radonovich, L.; Steadman, E.N.; Sweeny, P.G.; McCollor, D.P.; Kleesattel, D.; Grow, D.; Falcone, S.K.

    1987-04-01

    Volume II contains articles on advanced combustion phenomena, combustion inorganic transformation; coal/char reactivity; liquefaction reactivity of low-rank coals, gasification ash and slag characterization, and fine particulate emissions. These articles have been entered individually into EDB and ERA. (LTN)

  8. Coal Ash Resources Research Consortium. Annual report and selected publications, 1 July 1992--30 June 1993

    SciTech Connect (OSTI)

    Pflughoeft-Hassett, D.F.; Dockter, B.A.; Eylands, K.E.; Hassett, D.J.; O`Leary, E.M.

    1994-04-01

    The Coal Ash Resources Research Consortium (CARRC, pronounced cars), formerly the Western Fly Ash Research, Development, and Data Center (WFARDDC), has continued fundamental and applied scientific and engineering research focused on promoting environmentally safe, economical use of coal combustion fly ash. The research tasks selected for the year included: (1) Coal Ash Properties Database Maintenance and Expansion, (2) Investigation of the High-Volume Use of Fly Ash for Flowable Backfill Applications, (3) Investigation of Hydrated Mineralogical Phases in Coal Combustion By-Products, (4) Comparison of Department of Transportation Specifications for Coal Ash Utilization, (5) Comparative Leaching Study of Coal Combustion By-Products and Competing Construction Materials, (6) Application of CCSEM for Coal Ash Characterization, (7) Determination of Types and Causes of Efflorescence in Regional Concrete Products, and (8) Sulfate Resistance of Fly Ash Concrete: A Literature Review and Evaluation of Research Priorities. The assembly of a database of information on coal fly ash has been a focus area for CARRC since its beginning in 1985. This year, CARRC members received an updated run time version of the Coal Ash Properties Database (CAPD) on computer disk for their use. The new, user-friendly database management format was developed over the year to facilitate the use of CAPD by members as well as CARRC researchers. It is anticipated that this direct access to CAPD by members as well as CARRC researchers. It is anticipated that this direct access to CAPD by members will be beneficial to each company`s utilization efforts, to CARRC, and to the coal ash industry in general. Many additions and improvements were made to CAPD during the year, and a three-year plan for computer database and modeling related to coal ash utilization was developed to guide both the database effort and the research effort.

  9. University of Regina researchers complete milestone in major international

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physics project at JLab (University of Regina) | Jefferson Lab researchers complete milestone in major international physics project at JLab (University of Regina) External Link: http://www.uregina.ca/external/communications/releases/current/nr-03232012.html By jlab_admin on Fri, 2012-03-23

  10. EM's Laboratory Partners with University for Excellence in Research |

    Office of Environmental Management (EM)

    Department of Energy Partners with University for Excellence in Research EM's Laboratory Partners with University for Excellence in Research January 27, 2016 - 12:10pm Addthis Pictured left to right, Fluor Government Group President Bruce Stanski, SRNL Deputy Director Sharon Marra, Clemson President Dr. James P. Clements, Clemson Provost Dr. Bob Jones, and SRNL Laboratory Director Dr. Terry Michalske. Pictured left to right, Fluor Government Group President Bruce Stanski, SRNL Deputy

  11. University of Maine Researching Floating Technologies for Deepwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind | Department of Energy Maine Researching Floating Technologies for Deepwater Offshore Wind University of Maine Researching Floating Technologies for Deepwater Offshore Wind October 1, 2012 - 12:57pm Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. In 2010, the University of Maine's (UMaine) Advanced Structures and Composites Center received funding from the U.S. Department of Energy (DOE) and the National Science Foundation

  12. University Crystalline Silicon Photovoltaics Research and Development

    SciTech Connect (OSTI)

    Ajeet Rohatgi; Vijay Yelundur; Abasifreke Ebong; Dong Seop Kim

    2008-08-18

    The overall goal of the program is to advance the current state of crystalline silicon solar cell technology to make photovoltaics more competitive with conventional energy sources. This program emphasizes fundamental and applied research that results in low-cost, high-efficiency cells on commercial silicon substrates with strong involvement of the PV industry, and support a very strong photovoltaics education program in the US based on classroom education and hands-on training in the laboratory.

  13. Research | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Research NEES Mission NEES EFRC Research Overview NEES EFRC Research Overview To reveal scientific insights and design principles that enable a next-generation electrical energy storage technology based on dense mesoscale architectures of multifunctional nanostructures. The Challenge As demand for electrical energy storage (EES) reaches a critical point with increasing applications in transportation, grid storage and usage of renewable sources, energy research community seeks to

  14. The Future of University Nuclear Engineering Programs and University Research and Training Reactors

    Broader source: Energy.gov [DOE]

    Nuclear engineering programs and departments with an initial emphasis in fission were formed in the late 1950’s and 1960’s from interdisciplinary efforts in many of the top research universities,...

  15. Western Kentucky University Research Foundation Biodiesel Project

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Cao, Yan

    2013-03-15

    production and combustion of ethanol and 41 % by bio-diesel. Bio-diesel also releases less air pollutants per net energy gain than ethanol. Bio-diesel has advantages over ethanol due to its lower agricultural inputs and more efficient conversion. Thus, to be a viable alternative, a bio-fuel firstly should be producible in large quantities without reducing food supplies. In this aspect, larger quantity supplies of cellulose biomass are likely viable alternatives. U. S. Congress has introduced an initiative and subsequently rolled into the basic energy package, which encourages the production of fuel from purely renewable resources, biomass. Secondly, a bio-fuel should also provide a net energy gain, have environmental benefits and be economically competitive. In this aspect, bio-diesel has advantages over ethanol. The commonwealth of Kentucky is fortunate to have a diverse and abundant supply of renewable energy resources. Both Kentucky Governor Beshear in the energy plan for Kentucky "Intelligent Energy Choices for Kentucky's Future", and Kentucky Renewable Energy Consortium, outlined strategies on developing energy in renewable, sustainable and efficient ways. Smart utilization of diversified renewable energy resources using advanced technologies developed by Kentucky public universities, and promotion of these technologies to the market place by collaboration between universities and private industry, are specially encouraged. Thus, the initially question answering Governor's strategic plan is if there is any economical way to make utilization of larger quantities of cellulose and hemicellulose for production of bio-fuels, especially bio-diesel. There are some possible options of commercially available technologies to convert cellulose based biomass energy to bio-fuels. Cellulose based biomass can be firstly gasified to obtain synthesis gas (a mixture of CO and H{sub 2}), which is followed up by being converted into liquid hydrocarbon fuels or oxygenate hydrocarbon fuel

  16. 1993 application preparation URI Guide: University Research Instrumentation Program

    SciTech Connect (OSTI)

    Not Available

    1992-10-05

    The primary objective of the URI Program is to assist university and college scientists in strengthening their capabilities to conduct long-range experimental scientific research (both basic and applied) in specific energy areas of direct interest to DOE through the acquisition of specialized research instrumentation costing $100,000 or more.

  17. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  18. News Story | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Invalid Story ID No article found for this site Current Headlines Wood Windows are Cooler than Glass Gary Rubloff named Distinguished University Professor EFRC NEES 2016 Collaboration Travel Grant Awards Ingenious method enables sharper flat-panel displays at lower energy costs NEES project shows hybrid battery/capacitor with off-the-charts cycling capacity Hu and Munday Win Young Investigator Award UMD has Largest University Showing at 2016 ARPA-E Summit CREB Kicks Off its Research

  19. Four Minority Universities Selected for Fossil Energy Research Grants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy July 28, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy has selected four universities to receive grants under the department's annual competition for fossil energy research ideas from Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI). "I want to congratulate the winners of this year's competition, and thank them for their hard work," said Charles McConnell, Chief Operating Officer of DOE's Office of Fossil

  20. DOE - Office of Legacy Management -- University of Denver Research

    Office of Legacy Management (LM)

    Institute - CO 13 Denver Research Institute - CO 13 FUSRAP Considered Sites Site: UNIVERSITY OF DENVER RESEARCH INSTITUTE (CO.13 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Denver , Colorado CO.13-1 Evaluation Year: 1995 CO.13-1 Site Operations: Performed research utilizing test quantities of radioactive metal - circa 1965. CO.13-2 Site Disposition: Eliminated - No Authority - NRC licensed CO.13-1 Radioactive Materials Handled:

  1. The Government-University-Industry Research Roundtable 1996 annual report

    SciTech Connect (OSTI)

    1996-12-31

    The Government-University-Industry Research Roundtable was created just over a decade ago to provide a unique forum for dialogue among top government, university, and industry leaders in the national science and technology enterprise. The purpose is to facilitate personal working relationships and exchange of ideas about issues, problems, and promising opportunities facing those charged with developing and deploying science and technology resources. In 1996, Council meetings focused on the following: (1) the impact of information technology on the structure of research and educational organizations; (2) ways to improve communication between the science and engineering community and the public; and (3) new approaches both to measuring the results of research investments, and to communicating those metrics to non-technical decision-makers and to the public. Significant milestones were also achieved in four major projects, representing, impart, follow-up activity from previous Council Meeting discussions: (1) facilitating the Federal Demonstration Partnership, designed to maximize the efficiency of the federal research support system; (2) compiling results of a regional workshop on experiences in industry-university collaborative organization; (3) publishing the results of a study comparing the cost structures for research performed in the industrial, academic, and government laboratory sector; and (4) catalyzing, and participating in, a series of campus-based convocations on stresses being experienced in the research university environment.

  2. The Government-University-Industry Research Roundtable 1995 annual report

    SciTech Connect (OSTI)

    1995-12-31

    The Government-University-Industry Research Roundtable was created just over a decade ago to provide a unique forum for dialogue among top government, university, and industry leaders of the national science and technology enterprise. The purpose is to facilitate personal working relationships and exchange of ideas about issues, problems, and promising opportunities that are facing those charged with developing and deploying science and technology resources. The open dialogue and informal exchange of ideas preclude a process of making formal recommendations or offering specific advice. Instead, the Roundtable seeks to stimulate new approaches by dissemination of its discussions, and pro-active contacts with organizations that may want to build on the idea base it establishes. After introductory material on the structure and operation of the Roundtable, accomplishments on current projects are described. Projects include: Stresses on research and education at colleges and universities; Formulating US research policies within an international context; The Federal Demonstration project, designed to improve the management of federally-funded research; Analysis of the costs of research in industrial, academic, and federal labs; Industry-university research collaborations; and Public stakeholding in America`s investment in science and technology.

  3. Cooperative research in coal liquefaction. Final report, May 1, 1991--April 30, 1992

    SciTech Connect (OSTI)

    Huffman, G.P.

    1996-03-01

    Extensive research continued on catalysts based on novel anion-treated (mainly sulfated) oxides and oxyhydroxides of iron [Fe{sub x}O{sub y}/SO{sub 4}]. In addition, sulfated oxides of tin as well as molybdenum promoted iron oxides were used. Incorporation of small amounts of sulfate, molybdate, or tungstate anions by wet precipitation/impregnation methods was found to increase the surface acidic character of iron oxides; more importantly, it reduced the grain sizes significantly with corresponding increases in specific surface areas. These anion-treated iron and tin oxides were more active for direct coal liquefaction and coal-heavy oil coprocessing than their untreated counterparts. With these catalyst systems, higher conversion levels are obtained as compared to the soluble precursors of iron and molybdenum at the same catalyst metalloading (3500 ppm iron and 50 ppm molybdenum with respect to coal). Sulfated iron oxides and oxyhydroxides were equally active as coal liquefaction catalysts. The sulfate, molybdate, and tungstate anions were found to have similar promotional effects on the properties and activities of iron oxides. One step in the synthesis of anion-treated iron and tin oxides is precipitation as hydroxides using either urea or ammonium hydroxide. The catalysts prepared using urea as a precipitation agent were more reproducible than those using ammonium, hydroxide in terms of activities and properties. These catalysts/catalyst precursors were characterized by several techniques to determine their physical (size and structure related) and chemical (acidity) properties. Sulfated and molybdated iron oxides were found to have grain sizes as small as 10-20 nm. An attempt was made to correlate the physicochemical properties of these catalysts with their activity for coal liquefaction.

  4. Interest in coal chemistry intensifies

    SciTech Connect (OSTI)

    Haggin, J.

    1982-08-09

    Research on coal structure has increased greatly in recent years as the future role of coal as a source of gaseous and liquid fuels, as well as chemicals, becomes more apparent. This paper reviews in some detail work being carried out in the US, particularly in the laboratories of Mobil and Exxon, and in the universities. New ideas on the chemical and physical structure of coal are put forward, and a proposal for a new classification system based on the fundamental properties of the vitrinite macerals is introduced.

  5. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect (OSTI)

    Marks, Tobin Jay

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  6. Energy-Efficiency & Water Institute Research Facility, Purdue University, (IN)

    SciTech Connect (OSTI)

    Nnanna, Agbai

    2015-01-30

    The renovation of the Schneider Avenue Building to construct two research laboratories within the building is complete. The research laboratories are for the Purdue Calumet Water Institute and the Energy Efficiency and Reliability Center. The Water Institute occupies approximately 1000+ SF of research space plus supporting offices. The Energy-Efficiency Center occupies approximately 1000+ SF that houses the research space. The labs will enhance the Water & Energy Institute’s research capabilities necessary to tackle these issues through the development of practical approaches critical to local government and industry. The addition of these research laboratories to the Purdue University Calumet campus is in both direct support of the University’s Strategic Plan as well as the 2008 Campus Master Plan that identifies a 20% shortage of research space.

  7. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    2007-07-01

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  8. Unimpossible Missions: The University Edition | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Can you do the impossible? Enter our Unimpossible Missions: The University Edition challenge Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Can you do the impossible? Enter our Unimpossible Missions: The University Edition challenge Earlier this year, three teams of GE Global Research

  9. DOE - Office of Legacy Management -- University of Utah Medical Research

    Office of Legacy Management (LM)

    Center - UT 02 Utah Medical Research Center - UT 02 FUSRAP Considered Sites Site: UNIVERSITY OF UTAH, MEDICAL RESEARCH CENTER (UT.02) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Salt Lake City , Utah UT.02-2 Evaluation Year: 1987 UT.02-1 Site Operations: Research and development on animal inhalation of uranium dust during the 1950s. UT.02-2 Site Disposition: Eliminated - Radiation levels below criteria UT.02-1 UT.02-2 Radioactive

  10. Environmental research program for slagging fixed-bed coal gasification. Status report, November 1981

    SciTech Connect (OSTI)

    Wilzbach, K. E.; Stetter, J. R.; Reilly, Jr., C. A.; Willson, W. G.

    1982-02-01

    A collaborative environmental research program to provide information needed to assess the health and environmental effects associated with large-scale coal gasification technology is being conducted by Argonne National Laboratory (ANL) and the Grand Forks Energy Technology Center (GFETC). The objectives are to: investigate the toxicology and chemical composition of coal gasification by-products as a function of process variables and coal feed; compare the characteristics of isokinetic side-stream samples with those of process stream samples; identify the types of compounds responsible for toxicity; evaluate the chemical and toxicological effectiveness of various wastewater treatment operations; refine methodology for the collection and measurement of organic vapors and particulates in workplace air; and obtain preliminary data on workplace air quality. So far the toxicities of a set of process stream samples (tar, oil, and gas liquor) and side-stream condensates from the GFETC gasifier have been measured in a battery of cellular screening tests for mutagenicity and cytotoxicity. Preliminary data on the effects of acute and chronic exposures of laboratory animals to process tar have been obtained. The process tar has been chemically fractionated and the distribution of mutagenicity and compound types among the fractions has been determined. Organic vapors and particulates collected at various times and locations in the gasifier building have been characterized.

  11. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect (OSTI)

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  12. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Curtis Jawdy

    2000-10-09

    The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal or coal refuse, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Corporation, Foster Wheeler Development Corporation, and Cofiring Alternatives. The major emphasis of work during this reporting period was to assess the types and quantities of potential feedstocks and collect samples of them for analysis. Approximately twenty different biomass, animal waste, and other wastes were collected and analyzed.

  13. International perspectives on coal preparation

    SciTech Connect (OSTI)

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  14. Coal liquefaction: A research and development needs assessment: Final report, Volume II

    SciTech Connect (OSTI)

    Schindler, H.D.; Burke, F.P.; Chao, K.C.; Davis, B.H.; Gorbaty, M.L.; Klier, K.; Kruse, C.W.; Larsen, J.W.; Lumpkin, R.E.; McIlwain, M.E.; Wender, I.; Stewart, N.

    1989-03-01

    Volume II of this report on an assessment of research needs for coal liquefaction contains reviews of the five liquefaction technologies---direct, indirect, pyrolysis, coprocessing, and bioconversion. These reviews are not meant to be encyclopedic; several outstanding reviews of liquefaction have appeared in recent years and the reader is referred to these whenever applicable. Instead, these chapters contain reviews of selected topics that serve to support the panel's recommendations or to illustrate recent accomplishments, work in progress, or areas of major research interest. At the beginning of each of these chapters is a brief introduction and a summary of the most important research recommendations brought out during the panel discussions and supported by the material presented in the review. A review of liquefaction developments outside the US is included. 594 refs., 100 figs., 60 tabs.

  15. Research and development to prepare and characterize robust coal/biomass mixtures for direct co-feeding into gasification systems

    SciTech Connect (OSTI)

    Felix, Larry; Farthing, William; Hoekman, S. Kent

    2014-12-31

    This project was initiated on October 1, 2010 and utilizes equipment and research supported by the Department of Energy, National Energy Technology Laboratory, under Award Number DE- FE0005349. It is also based upon previous work supported by the Department of Energy, National Energy Technology Laboratory, under Award Numbers DOE-DE-FG36-01GOl1082, DE-FG36-02G012011 or DE-EE0000272. The overall goal of the work performed was to demonstrate and assess the economic viability of fast hydrothermal carbonization (HTC) for transforming lignocellulosic biomass into a densified, friable fuel to gasify like coal that can be easily blended with ground coal and coal fines and then be formed into robust, weather-resistant pellets and briquettes. The specific objectives of the project include: • Demonstration of the continuous production of a uniform densified and formed feedstock from loblolly pine (a lignocellulosic, short rotation woody crop) in a hydrothermal carbonization (HTC) process development unit (PDU). • Demonstration that finely divided bituminous coal and HTC loblolly pine can be blended to form 90/10 and 70/30 weight-percent mixtures of coal and HTC biomass for further processing by pelletization and briquetting equipment to form robust weather resistant pellets and/or briquettes suitable for transportation and long term storage. • Characterization of the coal-biomass pellets and briquettes to quantify their physical properties (e.g. flow properties, homogeneity, moisture content, particle size and shape), bulk physical properties (e.g. compressibility, heat transfer and friability) and assess their suitability for use as fuels for commercially-available coal gasifiers. • Perform economic analyses using Aspen-based process simulations to determine the costs for deploying and operating HTC processing facilities for the production of robust coal/biomass fuels suitable for fueling commercially-available coal-fired gasifiers. This Final Project Scientific

  16. ccpi-multi-product-coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Advanced Multi-Product Coal Utilization By-Product Processing Plant - Project Brief [PDF-78KB] University of Kentucky Research Foundation, Ghent, Kentucky PROJECT FACT SHEET Advanced Multi-Product Coal Utilization By-Product Processing Plant [PDF-447KB] (Oct 2008) PROGRAM PUBLICATIONS Final Report Advanced Multi-Product Coal Utilization By-Product Processing Plant, Final Report [PDF-750KB] (Apr 2007) CCT Reports: Project Performance Summaries, Post-Project Assessments, & Topical Reports

  17. Low-rank coal research annual report, July 1, 1989--June 30, 1990 including quarterly report, April--June 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    Research programs in the following areas are presented: control technology and coal preparation; advance research and technology development; combustion; liquefaction; and gasification. Sixteen projects are included. Selected items have been processed separately for inclusion in the Energy Science and Technology Database.

  18. FE-Supported Research Looks to Coal as a Source for Rare Earth Elements

    Office of Energy Efficiency and Renewable Energy (EERE)

    FE, through the National Energy Technology Laboratory (NETL), is looking at ways to use coal and its byproducts (like coal ash from power plants, for instance) to develop new sources of critical rare earth elements, or REEs.

  19. Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Run 261 with Illinois No. 6 Burning Star Mine coal

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report presents the results of Run 261 performed at the Advanced Coal Liquefaction R & D Facility in Wilsonville, Alabama. The run started on January 12, 1991 and continued until May 31, 1991, operating in the Close-Coupled Integrated Two-Stage Liquefaction mode processing Illinois No. 6 seam bituminous coal (from Burning star No. 2 mine). In the first part of Run 261, a new bimodal catalyst, EXP-AO-60, was tested for its performance and attrition characteristics in the catalytic/catalytic mode of the CC-ITSL process. The main objective of this part of the run was to obtain good process performance in the low/high temperature mode of operation along with well-defined distillation product end boiling points. In the second part of Run 261, Criterion (Shell) 324 catalyst was tested. The objective of this test was to evaluate the operational stability and catalyst and process performance while processing the high ash Illinois No. 6 coal. Increasing viscosity and preasphaltenes made it difficult to operate at conditions similar to EXP-AO-60 catalyst operation, especially at lower catalyst replacement rates.

  20. University Research National Labs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    About » University Research & National Labs » University Research National Labs Alpha Listing High Energy Physics (HEP) HEP Home About Organization Chart .pdf file (106KB) Staff HEP Budget HEP Committees of Visitors Directions Jobs University Research & National Labs University Research National Labs Alpha Listing Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department

  1. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    SciTech Connect (OSTI)

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  2. Consortium for coal log pipeline research and development. Final technical progress report, August 10, 1993--August 9, 1996

    SciTech Connect (OSTI)

    Marrero, T.R.

    1996-10-01

    The main objective of this project was to conduct intensive research and development of the Coal Log Pipeline (CLP). Specifically, the R & D was to concentrate on previously neglected and insufficiently studied aspects of CLP which were deemed significant. With improvements in these areas, CLP could be implemented for commercial use within five years. CLP technology is capable of transporting coal logs for long distances. The many potential advantages of CLP over truck and railroad transportation include: lower freight costs, less energy consumption, less air pollution, decreased environmental problems, increased safety, and improved reliability. Previous studies have shown that CLP is advantageous over slurry pipeline technology. First, CLP uses one-third the water required by a coal slurry pipeline. Second, CLP provides easier coal dewatering. Third, the CLP conveying capacity of coal is twice as much as a slurry transport line of equal diameter. In many situations, the cost for transporting each ton of coal is expected to be less expensive by CLP as compared to other competing modes of transportation such as: truck, unit train and slurry pipeline.

  3. Status of coal liquefaction in the United States and related research and development at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Salmon, R.; Cochran, H.D. Jr.; McNeese, L.E.

    1982-10-05

    We divide coal liquefaction processes into four categories: (1) indirect liquefaction, such as Fischer-Tropsch and methanol synthesis, in which coal is fist gasified to produce a synthesis gas which is then recombined to produce liquids; (2) direct liquefaction processes, typified by H-Coal, Exxon Donor Solvent (EDS), and SRC-I and II, in which a slurry of coal and solvent is subjected to high severity liquefaction conditions, either with or without added catalyst; (3) two-stage liquefaction, such as Conoco's CSF process, in which an initial dissolution at mild conditions is followed by a more severe catalytic hydrogenation-hydrocracking step; or the short contact time two-stage liquefaction processes being developed currently by groups which include Chevron, Electric Power Research Institute (EPRI), Department of Energy/Fossil Energy (DOE/FE); and (4) pyrolysis and hydropyrolysis processes, such as COED and Cities Service-Rockewell, in which coal is carbonized to produce liquids, gases, and char. Pilot plant experience with the various processes is reviewed (including equipment problems, corrosion and abrasion, refractory life, heat recovery, coke deposits, reactor kinetics, scale-up problems, health hazards, environmental impacts, upgrading products, economics, etc.). Commercialization possibilities are discussed somewhat pessimistically in the light of reduction of US Oil imports, weakening oil prices, conversion to coal, smaller automobiles, economics and finally, some uncertainty about SFC goals and policies. (LTN)

  4. Two U.S. University Research Reactors to be Converted From Highly...

    Office of Environmental Management (EM)

    U.S. University Research Reactors to be Converted From Highly Enriched Uranium to Low-Enriched Uranium Two U.S. University Research Reactors to be Converted From Highly Enriched ...

  5. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke; Joseph J. Battista

    2001-03-31

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute and the Office of Physical Plant, Foster Wheeler Energy Services, Inc., and Cofiring Alternatives.

  6. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-10-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels.

  7. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-07-12

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed (CFB) boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. Penn State currently operates an aging stoker-fired steam plant at its University Park campus and has spent considerable resources over the last ten to fifteen years investigating boiler replacements and performing life extension studies. This effort, in combination with a variety of agricultural and other wastes generated at the agricultural-based university and the surrounding rural community, has led Penn State to assemble a team of fluidized bed and cofiring experts to assess the feasibility of installing a CFB boiler for cofiring biomass and other wastes along with coal-based fuels. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives.

  8. Unimpossible Missions: The University Edition | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Can you do the impossible? Enter our Unimpossible Missions: The University ... Can you do the impossible? Enter our Unimpossible Missions: The University Edition ...

  9. Support of Hampton University Center for Fusion Research and Training. Final technical report

    SciTech Connect (OSTI)

    Punjabi, Alkesh

    1999-07-01

    The Final Technical Report on research, education, training, and outreach activities of the Hampton University Center for Fusion Research and Training.

  10. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Tom Steitz

    2002-10-14

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, the final technical design and cost estimate were submitted to Penn State by Foster Wheeler. In addition, Penn State initiated the internal site selection process to finalize the site for the boiler plant.

  11. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; Douglas Donovan; John Gaudlip; Matthew Lapinsky; William Serencsits; Neil Raskin; Dale Lamke

    2001-07-13

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.

  12. Extended life aluminide fuel for university research reactors

    SciTech Connect (OSTI)

    Miller, L.G.; Brown, K.R.; Beeston, J.M.; McGinty, D.M.

    1983-01-01

    A test program is being conducted to determine if the fuel loading and burnup limits for fuel elements in university research reactors can be safely increased beyond the limits presently allowed by reactor licensing restrictions. For the tests, 30 fuel plates were constructed to a maximum fuel loading which could be produced on a commercial basis and to contain a maximum boron content as used in the Advanced Test Reactor to reduce initial reactor reactivity. A UAl/sub 2/ fuel matrix was used to gain higher uranium content. The test program planned for the fuel plates to be irradiated to a 3.3 x 10/sup 21/ fissions/cm/sup 3/ average burnup (45% of U-235 for the 50 vol% fuel plate cores). This would be twice the burnup presently allowed in the university reactors. Irradiation performance of the heavy loaded fuel plates has been good at burnups exceeding 2.3 x 10/sup 21/ fissions/cm/sup 3/, with one fuel plate reaching a peak burnup of about 3 x 10/sup 21/ fissions/cm/sup 3/. Three fuel plates failed, however, during the irradiation, and are undergoing destructive analysis. Corrosion pitting occurred in cladding of both UAl/sub 2/ and UAl/sub 3/ fuel plates. Some plates appear to be more resistant to corrosion pitting than others. Localized swelling in high fuel loaded plates also is being investigated as a possible failure mode.

  13. Extended life aluminide fuel for university research reactors

    SciTech Connect (OSTI)

    Miller, L.G.; Brown, K.R.; Beeston, J.M.; McGinty, D.M.

    1983-12-01

    A test program is being conducted to determine if the fuel loading and burnup limits for fuel elements in university research reactors can be safely increased beyond the limits presently allowed by reactor licensing restrictions. For the tests, 30 fuel plates were constructed to a maximum fuel loading which could be produced on a commercial basis and to contain a maximum boron content as used in the INEL Advanced Test Reactor to reduce initial reactor reactivity. A UAl/sub 2/ fuel matrix was used to gain higher uranium content. The test program planned for the fuel plates to be irradiated to a 3.3 x 10/sup 21/ fissions/cm/sup 3/ average burnup (45% of U-235 for the 50 vol% fuel plate cores), twice the burnup presently allowed in the university reactors. Irradiation performance of the heavy loaded fuel plates has been good at burnups exceeding 2.3 x 10/sup 21/ fissions/cm/sup 3/, with one fuel plate reaching a peak burnup of about 3 x 10/sup 21/ fissions/cm/sup 3/. Three fuel plates failed, however, during the irradiation, and are undergoing destructive analysis. Corrosion pitting occurred in cladding of both UAl/sub 2/ and UAl/sub 3/ fuel plates. Some plates appear to be more resistant to corrosion pitting than others. Localized swelling in high fuel loaded plates also is being investigated as a possible failure mode.

  14. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  15. Fuel Cell Research at the University of South Carolina

    SciTech Connect (OSTI)

    Van Zee, John W.

    2006-09-25

    Five projects are proposed, in an effort to supplement the efforts of fuel cell research at the University of South Carolina and to contribute to the Technical Plan for Fuel Cells of the Department of Energy. These efforts include significant interaction with the industrial community through DOE funded projects and through the National Science Foundations Industry/University Cooperative Research Center for Fuel Cells. The allocation of projects described below leverage all of these sources of funding without overlap and redundancy. The first project Novel Non-Precious Metal Catalyst For PEMFCs, (Dr. Branko Popov) continues DOE award DE-FC36-03GO13108 for which funding was delayed by DOE due to budget constraints. The purpose of this project is to develop an understanding of the feasibility and limitations of metal-free catalysts. The second project, Non Carbon Supported Catalysts (Dr. John Weidner), is focused on improved catalysts and seeks to develop novel materials, which are more corrosion resistant. This corrosion behavior is critical during transient operation and during start-up and shutdown. This second project will be leveraged with recent, peer-reviewed, supplemental funding from NSF for use in the National Science Foundation Industry/University Cooperative Research Center for Fuel Cells (CFC) at USC. The third project, Hydrogen Quality, (Dr. Jean St-Pierre) will support the cross-program effort on H2 quality and focus on supporting subteam 1. We assume this task because of we have performed experiments and developed models that describe performance losses associated with CO, NH3, H2S contaminants in the hydrogen fuel feed to laboratory-scale single cells. That work has been focused on reformate fed to a stationary PEMFC and relatively high concentrations of these contaminants, this project will seek to apply that knowledge to the issue of hydrogen fuel quality as it relates to transportation needs. As part of this project USC and Oak Ridge

  16. Cancer Research Center Indiana University School of Medicine

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Department of Energy (DOE) proposes to authorize the Indiana School of Medicine to proceed with the detailed design, construction and equipping of the proposed Cancer Research Center (CRC). A grant was executed with the University on April 21, 1992. A four-story building with basement would be constructed on the proposed site over a 24-month period. The proposed project would bring together, in one building, three existing hematology/oncology basic research programs, with improved cost-effectiveness through the sharing of common resources. The proposed site is currently covered with asphaltic pavement and is used as a campus parking lot. The surrounding area is developed campus, characterized by buildings, walkways, with minimal lawns and plantings. The proposed site has no history of prior structures and no evidence of potential sources of prior contamination of the soil. Environmental impacts of construction would be limited to minor increases in traffic, and the typical noises associated with standard building construction. The proposed CRC project operation would involve the use radionuclides and various hazardous materials in conducting clinical studies. Storage, removal and disposal of hazardous wastes would be managed under existing University programs that comply with federal and state requirements. Radiological safety programs would be governed by Nuclear Regulatory Commission (NRC) license and applicable Environmental Protection Agency (EPA) regulations. There are no other NEPA reviews currently active which are in relationship to this proposed site. The proposed project is part of a Medical Campus master plan and is consistent with applicable local zoning and land use requirements.

  17. Combustion research related to utilization of coal as a gas turbine fuel

    SciTech Connect (OSTI)

    Davis-Waltermine, D.M.; Anderson, R.J.

    1984-06-01

    A nominal 293 kw (1 MBtu/hr) atmospheric pressure, refractory-lined combustor has been used to investigate the effects of a number of combustor and fuel dependent variables on combustion efficiency and flue gas characteristics for minimally cleaned, coal-derived gas (MCG) and coal water mixtures. The variables which have been evaluated include: percent excess air, air distribution, combustion air preheat temperature, swirl number, fuel feedrate, coal particle size, coal loading in slurry, and slurry viscosity. Characterization of the flue gas included major/minor gas species, alkali levels, and particulate loading, size, and composition. These atmospheric pressure combustion studies accompanied by data from planned pressurized studies on coal-water slurries and hot, minimally cleaned, coal-derived gas will aid in the determination of the potential of these fuels for use in gas turbines.

  18. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    SciTech Connect (OSTI)

    Speight, J.G.

    1992-12-31

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  19. NEAMS-Funded University Research in Support of TREAT Modeling and Simulation, FY15

    SciTech Connect (OSTI)

    Dehart, Mark; Mausolff, Zander; Goluoglu, Sedat; Prince, Zach; Ragusa, Jean; Haugen, Carl; Ellis, Matt; Forget, Benoit; Smith, Kord; Alberti, Anthony; Palmer, Todd

    2015-09-01

    This report summarizes university research activities performed in support of TREAT modeling and simulation research. It is a compilation of annual research reports from four universities: University of Florida, Texas A&M University, Massachusetts Institute of Technology and Oregon State University. The general research topics are, respectively, (1) 3-D time-dependent transport with TDKENO/KENO-VI, (2) implementation of the Improved Quasi-Static method in Rattlesnake/MOOSE for time-dependent radiation transport approximations, (3) improved treatment of neutron physics representations within TREAT using OpenMC, and (4) steady state modeling of the minimum critical core of the Transient Reactor Test Facility (TREAT).

  20. Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization

    SciTech Connect (OSTI)

    Henghu Sun; Yuan Yao

    2012-06-29

    Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

  1. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Kotwal, Ashutosh V.; Goshaw, Al; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, #12;ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22; ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water-#12;lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  2. Research in High Energy Physics at Duke University

    SciTech Connect (OSTI)

    Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark; Oh, Seog; Scholberg, Kate; Walter, Chris

    2013-07-29

    This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM) and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the #22;{mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.

  3. Argonne-Northwestern University Solar Energy Research Center (ANSER) | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Argonne-Northwestern University Solar Energy Research Center (ANSER) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Argonne-Northwestern University Solar Energy Research Center (ANSER) Print Text Size: A A A FeedbackShare Page ANSER Header Director Michael Wasielewski Lead Institution Northwestern University Year Established 2009 Mission

  4. Secretary Chu Announces Funding for 71 University-Led Nuclear Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Projects | Department of Energy 71 University-Led Nuclear Research and Development Projects Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects May 6, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced the selection of 71 university research project awards as part of the Department of Energy's investments in cutting-edge nuclear energy research and development (R&D). Under the Nuclear Energy

  5. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  6. News | NEES - EFRC | University of Maryland Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    View Story Wood Windows are Cooler than Glass A study by engineers at the University of Maryland shows that natural microstructures in transparent wood are the key to lighting & insulation advantages. More» View Story Gary Rubloff named Distinguished University Professor Rubloff receives highest academic honor conferred by the University of Maryland. More» View Story EFRC NEES 2016 Collaboration Travel Grant Awards For Active Exchange of Science Ideas and Cooperative Learning of Best

  7. Howard University Researchers Represented in the E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ww.biology.howard.edu FacultyFacultyBiosEckberg.htm Hindman, Neil - Department of Mathematics, Howard University http:mysite.verizon.netnhindman Sitaraman, Sankar -...

  8. NETL Launches a University Coalition for Fossil Energy Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 11, 2016 - 9:00am Addthis The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected Pennsylvania State University as the lead ...

  9. NREL: Wind Research - NREL and Clemson University Put Wind Turbine...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL and Clemson University Put Wind Turbine Drivetrains to the Test A photo of a large dynamometer at the National Wind Technology Center. NREL's 5-megawatt dynamometer test...

  10. Researchers model birth of universe in one of largest cosmological...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These kinds of simulations help scientists understand dark energy, a form of energy that affects the expansion rate of the universe, including the distribution of galaxies, ...

  11. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Topical report No. 14. Catalyst activity trends in two-stage coal liquefaction

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    The Two Stage Coal Liquefaction process became operational at Wilsonville in May 1981, with the inclusion of an H-OIL ebullated-bed catalytic reactor. The two stage process was initially operated in a nonintegrated mode and has recently been reconfigurated to fully integrate the thermal and the catalytic stages. This report focuses on catalyst activity trends observed in both modes of operation. A literature review of relevant catalyst screening studies in bench-scale and PDU units is presented. Existing kinetic and deactivation models were used to analyze process data over an extensive data base. Based on the analysis, three separate, application studies have been conducted. The first study seeks to elucidate the dependence of catalyst deactivation rate on type of coal feedstock used. A second study focuses on the significance of catalyst type and integration mode on SRC hydrotreatment. The third study presents characteristic deactivation trends observed in integrated operation with different first-stage thermal severities. In-depth analytical work was conducted at different research laboratories on aged catalyst samples from Run 242. Model hydrogenation and denitrogenation activity trends are compared with process activity trends and with changes observed in catalyst porosimetric properties. The accumulation of metals and coke deposits with increasing catalyst age, as well as their distribution across a pellet cross-section, are discussed. The effect of catalyst age and reactor temperature on the chemical composition of flashed bottoms product is addressed. Results from regenerating spent catalysts are also presented. 35 references, 31 figures, 18 tables.

  12. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  13. Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Development Projects | Department of Energy 8 Million for 42 University-Led Nuclear Research and Development Projects Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research and Development Projects May 20, 2010 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu today announced the selection of 42 university-led research and development projects for awards totaling $38 million. These projects, funded over three to four years through the

  14. DOE Announces up to $4 Million for University Research into Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Conversion | Department of Energy up to $4 Million for University Research into Advanced Biomass Conversion DOE Announces up to $4 Million for University Research into Advanced Biomass Conversion April 11, 2008 - 10:50am Addthis FONTANA, Calif. - U.S. Department of Energy (DOE) Under Secretary Clarence "Bud" Albright today announced up to $4 million in funding available to U.S. universities for research and development of cost-effective, environmentally friendly biomass

  15. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect (OSTI)

    Not Available

    1990-05-01

    The investigation of various Two-Stage Liquefaction (TSL) process configurations was conducted at the Wilsonville Advanced Coal Liquefaction R D Facility between July 1982 and September 1986. The facility combines three process units. There are the liquefaction unit, either thermal (TLU) or catalytic, for the dissolution of coal, the Critical Solvent Deashing unit (CSD) for the separation of ash and undissolved coal, and a catalytic hydrogenation unit (HTR) for product upgrading and recycle process solvent replenishment. The various TSL process configurations were created by changing the process sequence of these three units and by recycling hydrotreated solvents between the units. This report presents a description of the TSL configurations investigated and an analysis of the operating and performance data from the period of study. Illinois No. 6 Burning Star Mine coal Wyodak Clovis Point Mine coal were processed. Cobalt-molybdenum and disposable iron-oxide catalysts were used to improve coal liquefaction reactions and nickel-molybdenum catalysts were used in the hydrotreater. 28 refs., 31 figs., 13 tabs.

  16. Final Site-Specific Decommissioning Inspection Report for the University of Washington Research and Test Reactor

    SciTech Connect (OSTI)

    Sarah Roberts

    2006-10-18

    Report of site-specific decommissioning in-process inspection activities at the University of Washington Research and Test Reactor Facility.

  17. Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research and Development Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Secretary of Energy Steven Chu today announced the selection of 42 university-led research and development projects for awards totaling $38 million.

  18. FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

    SciTech Connect (OSTI)

    Bruce G. Miller; Sharon Falcone Miller; Robert Cooper; John Gaudlip; Matthew Lapinsky; Rhett McLaren; William Serencsits; Neil Raskin; Tom Steitz; Joseph J. Battista

    2003-03-26

    The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.

  19. NREL: Wind Research - Boise State University Wins Collegiate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boise State University Wins Collegiate Wind Competition 2015 A group of five men wearing blue shirts hold up their first place trophy in the center of the photo. Collegiate Wind...

  20. Pelletization of fine coals

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1991-09-01

    The present research project attempts to provide a basis to determine the pelletizability of fine coals, to ascertain the role of additives and binders and to establish a basis for binder selection. Currently, there are no established techniques for determining the quality of coal pellets. Our research is intended to develop a series of tests on coal pellets to measure their storage characteristics, transportability, ease of gasification and rate of combustion. Information developed from this research should be valuable for making knowledgeable decisions for on-time plant design, occasional binder selection and frequent process control during the pelletization of coal fines. During the last quarter, we continued the batch pelletization studies on Upper Freeport coal. The results as presented in that last quarterly report (April 1991) indicated that the surface conditions on the coal particle influenced the pelletizing growth rates. For example, a fresh (run of mine) sample of coal will display different pelletizing growth kinetics than a weathered sample of the same coal. Since coal is a heterogeneous material, the oxidized product of coal is equally variable. We found it to be logistically difficult to consistently produce large quantities of artificially oxidized coal for experimental purposes and as such we have used a naturally weathered coal. We have plans to oxidize coals under controlled oxidizing conditions and be able to establish their pelletizing behavior. The next phase of experiments were directed to study the effect of surface modification, introduced during the coal cleaning steps, on pelletizing kinetics. Accordingly, we initiated studies with two additives commonly used during the flotation of coal: dextrin (coal depressant) and dodecane (coal collector).

  1. Secretary Chu Announces Funding for 71 University-Led Nuclear Research and Development Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Energy Secretary Steven Chu today announced the selection of 71 university research project awards as part of the Department of Energy's investments in cutting-edge nuclear energy research and development (R&D).

  2. Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Development Projects Secretary Chu Announces $38 Million for 42 University-Led Nuclear Research and Development Projects Washington, D.C. - U.S. Secretary of Energy Steven Chu today announced the selection of 42 university-led research and development projects for awards totaling $38 million. These projects, funded over three to four years through the Department's Nuclear Energy University Program, will help advance nuclear education and develop the next generation of nuclear

  3. CARLSBAD ENVIRONMENTAL MONITORING & RESEARCH CENTER NEW MEXICO STATE UNIVERSITY TELEPHONE (575) 887-2759

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENVIRONMENTAL MONITORING & RESEARCH CENTER NEW MEXICO STATE UNIVERSITY TELEPHONE (575) 887-2759 1400 UNIVERSITY DRIVE, CARLSBAD, NEW MEXICO 88220 FAX NUMBER (575) 887-3051 An Update on CEMRC radiological results from air and surface water sampling activities following the February 14 th , 2014 radiation detection event The Carlsbad Environmental Monitoring and Research Center (CEMRC), an entity of New Mexico State University, continues to conduct radiological separation and analyses on a

  4. NETL-Regional University Alliance Researcher to Receive Nation’s Highest Award for Young Scientists

    Broader source: Energy.gov [DOE]

    Dr. Brian Anderson, a research fellow of the NETL-Regional University Alliance and associate professor of chemical engineering at West Virginia University, was recognized during a special event at U.S. Department of Energy Headquarters April 14 for receiving the highest honor the U.S. government can bestow on an outstanding scientist in the early stages of his research career.

  5. Low-rank coal research: Volume 1, Control technology, liquefaction, and gasification: Final report

    SciTech Connect (OSTI)

    Weber, G.F.; Collings, M.E.; Schelkoph, G.L.; Steadman, E.N.; Moretti, C.J.; Henke, K.R.; Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1987-04-01

    Volume I contains articles on SO/sub x//NO/sub x/ control, waste management, low-rank direct liquefaction, hydrogen production from low-rank coals, and advanced wastewater treatment. These articles have been entered individually into EDB and ERA. (LTN)

  6. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  7. Advanced coal liquefaction research. Quarterly technical progress report, July 1, 1983-September 30, 1983

    SciTech Connect (OSTI)

    1984-04-01

    Work this quarter focused on staged liquefaction. The effect of residence time on conversion in single pass experiments was found to be quite different for the subbituminous Belle Ayr Mine and bituminous Illinois No. 6 coals studied. With bituminous coal, conversion to soluble material is quite high and the limit of conversion is approached in only a few minutes. With a subbituminous coal, however, conversion is much lower and the limit of conversion is approached much more slowly. Short contact time (SCT) dissolution of Belle Ayr coal was studied as a possible first stage in a two-stage process. Conversion, hydrocarbon gas yield and hydrogen consumption were increased as residence time or temperature were increased. Conversion was also significantly increased by partial slurry recycle. Pyrite was found to be the most effective slurry catalyst for increasing conversion, followed by ammonium molybdate emulsion and finally nickel-molybdenum on alumina. Illinois No. 6 coal was liquefied in two stages. Conditions in the first stage dissolution were varied to determine the effect on upgradability in the second stage. An SCT (6 minute) coal dissolution stage is preferred over one at 30 minutes because hydrocarbon gas yield was much lower while overall oil yields for the combined dissolution and upgrading stages were nearly the same. Use of a NiMo/Al/sub 2/O/sub 3/ catalyst in a trickle-bed second stage resulted in a higher oil yield and lower product heteroatom content than use of the same catalyst in the slurry phase. The total oil yield was lower with a pyrite slurry catalyst than with a NiMo/Al/sub 2/O/sub 3/ slurry catalyst. With Belle Ayr coal and added pyrite, there was no change in total oil yield, conversion or product quality brought about by adding an 8-minute first stage at 450/sup 0/C (842/sup 0/F) to a 2-hour second stage operated at 420/sup 0/C (788/sup 0/F). 39 figures, 12 tables.

  8. NETL-Regional University Alliance Researcher to Receive Nation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    His energy research specialties "run hot and cold" because his work demonstrating the potential of engineered geothermal systems - heat from beneath the earth's surface - contrasts ...

  9. Clean and Secure Energy from Coal

    SciTech Connect (OSTI)

    Smith, Philip; Davies, Lincoln; Kelly, Kerry; Lighty, JoAnn; Reitze, Arnold; Silcox, Geoffrey; Uchitel, Kirsten; Wendt, Jost; Whitty, Kevin

    2014-08-31

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues. The project included the following tasks: • Oxy-Coal Combustion – To ultimately produce predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. • High-Pressure, Entrained-Flow Coal Gasification – To ultimately provide a simulation tool for industrial entrained-flow integrated gasification combined cycle (IGCC) gasifier with quantified uncertainty. • Chemical Looping Combustion (CLC) – To develop a new carbon-capture technology for coal through CLC and to transfer this technology to industry through a numerical simulation tool with quantified uncertainty bounds. • Underground Coal Thermal Treatment – To explore the potential for creating new in-situ technologies for production of synthetic natural gas (SNG) from deep coal deposits and to demonstrate this in a new laboratory-scale reactor. • Mercury Control – To understand the effect of oxy-firing on the fate of mercury. • Environmental, Legal, and Policy Issues – To address the legal and policy issues associated with carbon management strategies in order to assess the appropriate role of these technologies in our evolving national energy portfolio. • Validation/Uncertainty Quantification for Large Eddy Simulations of the Heat Flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility – To produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers.

  10. Applications from Universities and Other Research Institutions | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Applications from Universities and Other Research Institutions Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Closed Funding Opportunity Announcements (FOAs) Closed Lab Announcements Award Search / Public Abstracts Additional Requirements and Guidance for Digital Data Management Peer Review Policies EFRCs FOA Applications from Universities and Other Research Institutions Construction Review EPSCoR

  11. University contracts summary book

    SciTech Connect (OSTI)

    1980-08-01

    The principal objectives of the Fossil Energy Program are to seek new ideas, new data, fundamental knowledge that will support the ongoing programs, and new processes to better utilize the nation's fossil energy resources with greater efficiency and environmental acceptability. Toward this end, the Department of Energy supports research projects conducted by universities and colleges to: Ensure a foundation for innovative technology through the use of the capabilities and talents in our academic institutions; provide an effective, two-way channel of communication between the Department of Energy and the academic community; and ensure that trained technical manpower is developed to carry out basic and applied research in support of DOE's mission. Fossil Energy's university activities emphasize the type of research that universities can do best - research to explore the potential of novel process concepts, develop innovative methods and materials for improving existing processes, and obtain fundamental information on the structure of coal and mechanisms of reactions of coal, shale oil, and other fossil energy sources. University programs are managed by different Fossil Energy technical groups; the individual projects are described in greater detail in this book. It is clear that a number of research areas related to the DOE Fossil Energy Program have been appropriate for university involvement, and that, with support from DOE, university scientific and technical expertise can be expected to continue to play a significant role in the advancement of fossil energy technology in the years to come.

  12. NEESConnect | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center NEESConnect What is NEESConnect? NEESConnect is a community network consisting of young scientists in NEES who share common interests and expertise in both basic and applied research in precision multicomponent nanostructures, dense architectures and designs, battery electrochemistry, and the new science where all these intercept. Goals The far-reaching goal is to provide a sustainable conduit of future energy research work force in all aspects of today's complicated energy landscape

  13. The fight to save the university research reactors

    SciTech Connect (OSTI)

    Bobeck, L.M.; Perez, P.B.

    1993-10-01

    This article looks at impacts of Nuclear Regulatory Commission actions on nonprofit educational reactors. In mid-July the NRC issued a ruling on fee policy, which eliminated the historical fee exemeption for nonprofit research reactors. The ensuing regulatory fees placed an economic burden on these facilities which was likely to close many of them. On September 13, the NRC agreed to reconsider this rule. In part this reflects that this rule had an impact on a larger user base than just research reactors. The article summarizes this problem, and tries to put it in perspective for the reader.

  14. DOE Taps Universities for Turbine Technology Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science July 16, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy announced the selection of three projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. University researchers will investigate the chemistry and physics of advanced turbines, with the goal of promoting clean and efficient operation when fueled with coal-derived synthesis gas

  15. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    SciTech Connect (OSTI)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  16. Scientists Pass Solid Particles Through Rock in DOE-Sponsored Research at Stanford University

    Broader source: Energy.gov [DOE]

    DOE-sponsored research at Stanford University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth.

  17. LWA-0003- Deputy Secretary Decision- In the Matter of Universities Research Association, Inc.

    Broader source: Energy.gov [DOE]

    This is an appeal by respondent Universities Research Association ("URA"), from the Initial Agency Decision by the Office of Hearings and Appeals ("OHA") finding that the complainant, Dr. Naresh C....

  18. Energy Department Announces $5 Million for Residential Building Energy Efficiency Research and University-Industry Partnerships

    Broader source: Energy.gov [DOE]

    The Energy Department today announced a $5 million investment to develop and demonstrate new residential energy efficiency solutions, and that will support building energy efficiency research at universities and colleges.

  19. NREL to Partner with University of Delaware on Offshore Wind Research -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL to Partner with University of Delaware on Offshore Wind Research June 15, 2010 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and the University of Delaware (UD) today announced they will work to facilitate the potential establishment of a test site for commercial wind turbines off the Delaware coast. Under a Cooperative Research and Development Agreement (CRADA) worth $500,000 over the next five years, UD will work with federal and

  20. Bethune-Cookman University STEM Research Lab. DOE Renovation Project

    SciTech Connect (OSTI)

    Thompson, Herbert W.

    2012-03-31

    DOE funding was used to renovate 4,500 square feet of aging laboratories and classrooms that support science, engineering, and mathematics disciplines (specifically environmental science, and computer engineering). The expansion of the labs was needed to support robotics and environmental science research, and to better accommodate a wide variety of teaching situations. The renovated space includes a robotics laboratory, two multi-use labs, safe spaces for the storage of instrumentation, modern ventilation equipment, and other “smart” learning venues. The renovated areas feature technologies that are environmentally friendly with reduced energy costs. A campus showcase, the laboratories are a reflection of the University’s commitment to the environment and research as a tool for teaching. As anticipated, the labs facilitate the exploration of emerging technologies that are compatible with local and regional economic plans.

  1. research-education | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE is partnering with the University of Cincinnati to conduct research and training on separating CO2 from post-combustion coal-fired power plant flue gases using regenerable ...

  2. Coal combustion products (CCPs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an

  3. Decommissioning Small Research and Training Reactors; Experience on Three Recent University Projects - 12455

    SciTech Connect (OSTI)

    Gilmore, Thomas; DeWitt, Corey; Miller, Dustin; Colborn, Kurt

    2012-07-01

    Decommissioning small reactors within the confines of an active University environment presents unique challenges. These range from the radiological protection of the nearby University population and grounds, to the logistical challenges of working in limited space without benefit of the established controlled, protected, and vital areas common to commercial facilities. These challenges, and others, are discussed in brief project histories of three recent (calendar year 2011) decommissioning activities at three University training and research reactors. These facilities include three separate Universities in three states. The work at each of the facilities addresses multiple phases of the decommissioning process, from initial characterization and pre-decommissioning waste removal, to core component removal and safe storage, through to complete structural dismantlement and site release. The results of the efforts at each University are presented, along with the challenges that were either anticipated or discovered during the decommissioning efforts, and results and lessons learned from each of the projects. (authors)

  4. Secretary of Energy and Rep. Chabot Highlight Clean Coal and...

    Energy Savers [EERE]

    Chabot Highlight Clean Coal and Hydrogen Research and Tout America's Economic Growth in Ohio Secretary of Energy and Rep. Chabot Highlight Clean Coal and Hydrogen Research and Tout ...

  5. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  6. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Glossary FAQS Overview Data Coal Data Browser (interactive query tool with charting and mapping) Summary Prices Reserves Consumption Production Stocks Imports, exports ...

  7. UNIVERSITY TURBINE SYSTEMS RESEARCH-HIGH EFFICIENCY ENGINES AND TURBINES (UTSR-HEET)

    SciTech Connect (OSTI)

    Lawrence P. Golan; Richard A. Wenglarz; William H. Day

    2003-03-01

    In 2002, the U S Department of Energy established a cooperative agreement for a program now designated as the University Turbine Systems (UTSR) Program. As stated in the cooperative agreement, the objective of the program is to support and facilitate development of advanced energy systems incorporating turbines through a university research environment. This document is the first annual, technical progress report for the UTSR Program. The Executive Summary describes activities for the year of the South Carolina Institute for Energy Studies (SCIES), which administers the UTSR Program. Included are descriptions of: Outline of program administrative activities; Award of the first 10 university research projects resulting from a year 2001 RFP; Year 2002 solicitation and proposal selection for awards in 2003; Three UTSR Workshops in Combustion, Aero/Heat Transfer, and Materials; SCIES participation in workshops and meetings to provide input on technical direction for the DOE HEET Program; Eight Industrial Internships awarded to higher level university students; Increased membership of Performing Member Universities to 105 institutions in 40 states; Summary of outreach activities; and a Summary table describing the ten newly awarded UTSR research projects. Attachment A gives more detail on SCIES activities by providing the monthly exceptions reports sent to the DOE during the year. Attachment B provides additional information on outreach activities for 2002. The remainder of this report describes in detail the technical approach, results, and conclusions to date for the UTSR university projects.

  8. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct...

    Office of Scientific and Technical Information (OSTI)

    from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid ...

  9. Coal. [Great Plains Project

    SciTech Connect (OSTI)

    Not Available

    1981-03-01

    The status of various research projects related to coal is considered: gasification (approximately 30 processes) and in-situ gasification. Methanol production, retrofitting internal combustion engines to stratified charge engines, methanation (Conoco), direct reduction of iron ores, water resources, etc. Approximately 200 specific projects related to coal are considered with respect to present status. (LTN)

  10. Proceedings of Office of Surface Mining Coal Combustion By-product Government/Regulatory Panel: University of Kentucky international ash utilization symposium

    SciTech Connect (OSTI)

    Vories, K.C.

    2003-07-01

    Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal mine sites (K.C. Vories). The questions and answers are also included.

  11. Energy and environmental research emphasizing low-rank coal. Semi-annual report, January--June 1994

    SciTech Connect (OSTI)

    1994-09-01

    Summaries of progress on the following tasks are presented: Mixed waste treatment; Hot water extraction of nonpolar organic pollutant from soils; Aqueous phase thermal oxidation wastewater treatment; Review of results from comprehensive characterization of air toxic emissions from coal-fired power plants; Air toxic fine particulate control; Effectiveness of sorbents for trace elements; Catalyst for utilization of methane in selective catalytic reduction of NOx; Fuel utilization properties; Hot gas cleaning; PFBC; catalytic tar cracking; sulfur forms in coal; resid and bitumen desulfurization; biodesulfurization; diesel fuel desulfurization; stability issues; Sorbent carbon development; Evaluation of carbon products; Stable and supercritical chars; Briquette binders; Carbon molecular sieves; Coal char fuel evaporation canister sorbent; Development of a coal by-product classification protocol for utilization; Use of coal ash in recycled plastics and composite materials; Corrosion of advanced structural materials; Joining of advanced structural materials; Resource data evaluation; and the Usti and Labem (Czech Republic) coal-upgrading program.

  12. Two U.S. University Research Reactors to be Converted From Highly Enriched

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uranium to Low-Enriched Uranium | Department of Energy U.S. University Research Reactors to be Converted From Highly Enriched Uranium to Low-Enriched Uranium Two U.S. University Research Reactors to be Converted From Highly Enriched Uranium to Low-Enriched Uranium April 11, 2005 - 11:34am Addthis WASHINGTON, D.C. - As part of the Bush administration's aggressive effort to reduce the amount of weapons-grade nuclear material worldwide, Secretary of Energy Samuel W. Bodman announced today that

  13. Engineering development of advanced physical fine coal cleaning for premium fuel applications. Task 6 -- Selective agglomeration laboratory research and engineering development for premium fuels

    SciTech Connect (OSTI)

    Moro, N.; Jha, M.C.

    1997-06-27

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and benchscale testing on six coals to optimize these processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report represents the findings of Subtask 6.5 Selective Agglomeration Bench-Scale Testing and Process Scale-up. During this work, six project coals, namely Winifrede, Elkhorn No. 3, Sunnyside, Taggart, Indiana VII, and Hiawatha were processed in a 25 lb/hr continuous selective agglomeration bench-scale test unit.

  14. Clean coal

    SciTech Connect (OSTI)

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  15. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  16. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  17. DOE-NREL Minority University Research Associates Program FY 2005 Accomplishments

    SciTech Connect (OSTI)

    Eddy, F. P.

    2005-11-01

    The DOE-NREL Minority University Research Associates (MURA) Program encourages minority students to pursue careers in science and technology. In 2003, eight minority-serving institutions were awarded 3-year subcontracts that began in the summer/fall of FY 2004. This paper lists accomplishments made in the project's first phase.

  18. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  19. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  20. Performance Engineering Research Institute SciDAC-2 Enabling Technologies Institute: Final Report for the University of North Carolina

    SciTech Connect (OSTI)

    Fowler, Robert J

    2014-06-30

    This is the final technical report for the University of North Carolina activities under SciDAC-2 Performance Engineering Research Institute.

  1. New laser technology helps reduce coal-slagging headaches

    SciTech Connect (OSTI)

    Neville, A.

    2009-02-15

    Laser-induced breakdown spectroscopy (LIBS) is starting to light the way for power plant operators who want to reduce coal ash deposition in their boilers. The method was developed by Lehigh University's Energy Research Centre and the Energy Research Co. The LIBS system analyzes the chemical properties of coal using a pulsating laser with two frequencies, one infrared and one visible light. The laser vaporizes a sample, resulting in a distinct elemental signature. From these data, a newly developed software package containing artificial neural network (ANN) models estimates ash fusion temperature and predicts coal slagging potential. LIBS is the size of a table top, safe to use and provides instantaneous data without interrupting the process. The performance of the LIBS system was verified in lab experiments and then the system was set up at Dominion's Brayton Point Power Station, a 1,150-MW coal-fired power plant in Somerset, MA. The project demonstrated the merit of the LIBS system that produces coal elemental analysis and estimated fusion temperatures. Further development is needed to equip a LIBS system with an automatic online coal-sampling attachment and to achieve higher accuracy and repeatability. The researchers have been awarded a second DOE grant to fund development of a commercial prototype of the LIBS system. 2 figs., 2 photos.

  2. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    SciTech Connect (OSTI)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1994-12-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program.

  3. Toxic substances from coal combustion -- A comprehensive assessment

    SciTech Connect (OSTI)

    Senior, C.L.; Panagiotou, T.; Huggins, F.E.; Huffman, G.P.; Yap, N.; Wendt, J.O.L.; Seames, W.; Ames, M.R.; Sarofim, A.F.; Lighty, J.; Kolker, A.; Finkelman, R.; Palmer, C.A.; Mroczkowsky, S.J.; Helble, J.J.; Mamani-Paco, R.

    1999-07-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the period from 1 April 1999 to 30 June 1999. During this quarter low temperature ashing and elemental analysis of the three Phase II coals were completed. Results from MIT and USGS are comparable. Plans were made for measurements of loss of trace elements during devolatilization and for single particle combustion studies at the University of Utah. The iodated charcoal trap was tested on coal combustion flue gas and was shown to collect both Hg and Se in from the vapor phase with 100% efficiency. Data from the University of Arizona self-sustained combustor were analyzed from the combustion of three coals: Ohio, Wyodak and Illinois No. 6. Ash size distributions and enrichment factors for selected trace elements were calculated. The correlation between the concentration of the more volatile trace elements in the ash and the

  4. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    ScienceCinema (OSTI)

    Simon Swordy

    2010-01-08

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI is also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.

  5. Environmental development plan: coal liquefaction

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    This Environmental Development plan (EDP) examines environmental concerns that are being evaluated for the technologies in DOE's Coal Liquefaction Program. It identifies the actions that are planned or underway to resolve these concerns while the technologies are being developed. Research is scheduled on the evaluation and mitigation of potential environmental impacts. This EDP updates the FY 1977 Coal Liquefaction Program EDP. Chapter II describes the DOE Coal Liquefaction Program and focuses on the Solvent Refined Coal (SRC), H-Coal, and Exxon donor solvent (EDS) processes because of their relatively advanced R and D stages. The major unresolved environmental concerns associated with the coal liquefaction subactivities and projects are summarized. The concerns were identified in the 1977 EDP's and research was scheduled to lead to the resolution of the concerns. Much of this research is currently underway. The status of ongoing and planned research is shown in Table 4-1.

  6. Department of Energy Awards $5.7 Million to U.S. Universities for Nuclear Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will award $5.7 million to nine universities for research grants under the Nuclear Energy Research Initiative (NERI).  These...

  7. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion This research, which is relevant to the ...

  8. $18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce

    Broader source: Energy.gov [DOE]

    The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

  9. Coal pump

    DOE Patents [OSTI]

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  10. Joint Sandia/University of Texas-Austin Research Featured on the Cover of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Journal of Physical Chemistry C Sandia/University of Texas-Austin Research Featured on the Cover of Journal of Physical Chemistry C - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power

  11. Development of an Advanced Fine Coal Suspension Dewatering Process

    SciTech Connect (OSTI)

    B. K. Parekh; D. P. Patil

    2008-04-30

    With the advancement in fine coal cleaning technology, recovery of fine coal (minus 28 mesh) has become an attractive route for the U.S. coal industry. The clean coal recovered using the advanced flotation technology i.e. column flotation, contains on average 20% solids and 80% water, with an average particle size of 35 microns. Fine coal slurry is usually dewatered using a vacuum dewatering technique, providing a material with about 25 to 30 percent moisture. The process developed in this project will improve dewatering of fine (0.6mm) coal slurry to less than 20 percent moisture. Thus, thermal drying of dewatered wet coal will be eliminated. This will provide significant energy savings for the coal industry along with some environmental benefits. A 1% increase in recovery of coal and producing a filter cake material of less than 20 % moisture will amount to energy savings of 1900 trillion Btu/yr/unit. In terms of the amount of coal it will be about 0.8% of the total coal being used in the USA for electric power generation. It is difficult to dewater the fine clean coal slurry to about 20% moisture level using the conventional dewatering techniques. The finer the particle, the larger the surface area and thus, it retains large amounts of moisture on the surface. The coal industry has shown some reluctance in using the advanced coal recovery techniques, because of unavailability of an economical dewatering technique which can provide a product containing less than 20% moisture. The U.S.DOE and Industry has identified the dewatering of coal fines as a high priority problem. The goal of the proposed program is to develop and evaluate a novel two stage dewatering process developed at the University of Kentucky, which involves utilization of two forces, namely, vacuum and pressure for dewatering of fine coal slurries. It has been observed that a fine coal filter cake formed under vacuum has a porous structure with water trapped in the capillaries. When this porous cake

  12. Development of a 5 kW Prototype Coal-Based Fuel Cell

    SciTech Connect (OSTI)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageable carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.

  13. University Research National Labs | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Alabama University of Alabama External link University of South Alabama External link Arizona University of Arizona External link California California Institute of Technology ...

  14. Coal fueled diesel system for stationary power applications-technology development

    SciTech Connect (OSTI)

    1995-08-01

    The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

  15. Coal Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    Coal Markets | Archive Coal Markets Weekly production Dollars per short ton Dollars per mmbtu Average weekly coal commodity spot prices dollars per short ton Week ending Week ago change Central Appalachia 12,500 Btu, 1.2 SO2 Northern Appalachia 13,000 Btu, < 3.0 SO2 Illinois Basin 11,800 Btu, 5.0 SO2 Powder River Basin 8,800 Btu, 0.8 SO2 Uinta Basin 11,700 Btu, 0.8 SO2 Source: With permission, SNL Energy Note: Coal prices shown reflect those of relatively high-Btu coal selected in each region

  16. EIA - Coal Distribution

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal ...

  17. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect (OSTI)

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  18. Toxic substances from coal combustion -- A comprehensive assessment. Quarterly report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Bool, L.E. III; Senior, C.L.; Huggins, F.; Huffman, G.P.; Shah, N.

    1997-01-31

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UKy), the University of Connecticut, and Princeton University to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI`s existing Engineering Model for Ash Formation (EMAF). During the past quarter the final program coal, from the Wyodak seam in the Powder River Basin, was acquired and distributed. Extensive coal characterization and laboratory work is underway to develop and test new sub-models. Coal characterization in the past quarter included direct identification of the modes of occurrence of various trace inorganic species in coal and ash using unique analytical techniques such as XAFS analysis and selective leaching. Combustion testing of the bituminous coals continued and additional data were obtained on trace element vaporization in the combustion zone. Studies of post-combustion trace element transformations, such as mercury speciation in the flue gas, were also begun in the last quarter.

  19. Lignin-assisted coal depolymerization

    SciTech Connect (OSTI)

    Lalvani, S.B.

    1991-01-01

    Previous research has shown that addition of lignin-derived liquids to coal stirred in tetralin under mild reaction conditions (375{degree}C and 300--500 psig) results in a marked enhancement in the rate of coal depolymerization. A mathematical model was developed to study the kinetics of coal depolymerization in the presence of liquid-derived liquids. In the present study, a reaction pathway was formulated to explain the enhancement in coal depolymerization due to lignin (solid) addition. The model postulated assumes that the products of lignin obtained during thermolysis interact with the reactive moieties present in coal while simultaneous depolymerization of coal occurs. A good fit between the experimental data and the kinetic model was found. The results show that in addition to the enhancement in the rate of coal depolymerization, lignin also reacts (and enhances the extent of depolymerization of coal) with those reaction sites in coal that are not susceptible to depolymerization when coal alone is reacted in tetralin under identical reaction conditions. Additional work is being carried out to determine a thorough materials balance on the lignin-assisted coal depolymerization process. A number of liquid samples have been obtained which are being studied for their stability in various environments. 5 refs., 4 figs., 1 tab.

  20. Environmentally conscious coal combustion

    SciTech Connect (OSTI)

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  1. Fixed-bed gasification research using US coals. Volume 11. Gasification of Minnesota peat. [Peat pellets and peat sods

    SciTech Connect (OSTI)

    Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

    1985-05-01

    A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a coooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the eleventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of peat pellets and peat sods during 3 different test periods. 2 refs., 20 figs., 13 tabs.

  2. Appalachian Clean Coal Technology Consortium. Final report, October 10, 1994--March 31, 1997

    SciTech Connect (OSTI)

    Yoon, R.H.; Parekh, B.K.; Meloy, T.

    1997-12-31

    The Appalachian Clean Coal Technology Consortium is a group comprised of representatives from the Virginia Polytechnic Institute and State University, West Virginia University, and the University of Kentucky Center for Applied Energy Research, that was formed to pursue research in areas related to the treatment and processing of fine coal. Each member performed research in their respective areas of expertise and the report contained herein encompasses the results that were obtained for the three major tasks that the Consortium undertook from October, 1994 through March, 1997. In the first task, conducted by Virginia Polytechnic Institute, novel methods (both mechanical and chemical) for dewatering fine coal were examined. In the second task, the Center for Applied Energy Research examined novel approaches for destabilization of [highly stable] flotation froths. And in the third task, West Virginia University developed physical and mathematical models for fine coal spirals. The Final Report is written in three distinctive chapters, each reflecting the individual member`s task report. Recommendations for further research in those areas investigated, as well as new lines of pursuit, are suggested.

  3. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  4. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal In response to concerns of climate change, the United States is contemplating a complete and rapid transformation of the way it both produces and consumes energy to significantly reduce its carbon emissions. The integrated Coal Program focuses on retaining the benefits of continuing to use coal to produce electric power. This strategy can help us depend less on foreign sources of energy, respond to the world's growing climate concerns, and compete economically. It also will ensure that our

  5. Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report

    SciTech Connect (OSTI)

    Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L.

    1989-08-28

    This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

  6. Coal Combustion Products Extension Program

    SciTech Connect (OSTI)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be

  7. TOXIC SUBSTANCES FROM COAL COMBUSTION: A COMPREHENSIVE ASSESSMENT

    SciTech Connect (OSTI)

    C.L. Senior; T. Panagiotou; J.O.L. Wendt; W. Seames; F.E. Huggins; G.P Huffman; N. Yap; M.R. Ames; I.Olmez; T. Zeng; A.F. Sarofim; A. Kolker; R. Finkelman; J.J. Helble

    1998-07-16

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, the Massachusetts Institute of Technology (MIT), the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (W) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO{sub x} combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from the submission of the draft Phase 1 Final Report through the end of June, 1998. During this period two of the three Phase 2 coals were procured and pulverized samples were distributed to team members. Analysis of Phase 1 X-Ray Absorption Fine Structure (XAFS) data, particularly of mercury in sorbent samples, continued. An improved method for identifying mercury compounds on sorbents was developed, leading to a clearer understanding of forms of mercury in char and sorbents exposed to flue gas. Additional analysis of Phase 1 large scale combustion data was performed to investigate mechanistic information related to the fate of the radionuclides Cs, Th, and Co. Modeling work for this period was focused on building and testing a sub-model for vaporization

  8. Government-University-Industry-Research Roundtable. Annual report, June 14, 1991--June 14, 1992

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The major accomplishment of the past year in the Roundtable`s continuing work on issues of concern to the academic enterprise is the preparation of two documents - Science and Technology in the Academic Enterprise: Status, Trends, and Issues and Perspectives on Financing Academic Research Facilities: A Resource for Policy Formulation. The significance of these two publications is that they both organize a large amount of complex and often controversial material in a way that is useful for further discussions and, in some cases, action by the government and higher education communities. The test for the Roundtable now is whether it can stimulate these follow-on activities. The model in this regard is the Federal Demonstration Project, where the Roundtable stimulated specific government-university joint actions in streamlining research grant administration. All of these activities are described below in greater detail.

  9. Research and Education of CO{sub 2} Separation from Coal Combustion Flue Gases with Regenerable Magnesium Solutions

    SciTech Connect (OSTI)

    Lee, Joo-Youp

    2013-09-30

    A novel method using environment-friendly chemical magnesium hydroxide (Mg(OH){sub 2}) solution to capture carbon dioxide from coal-fired power plants flue gas has been studied under this project in the post-combustion control area. The project utilizes the chemistry underlying the CO{sub 2}-Mg(OH){sub 2} system and proven and well-studied mass transfer devices for high levels of CO{sub 2} removal. The major goals of this research were to select and design an appropriate absorber which can absorb greater than 90% CO{sub 2} gas with low energy costs, and to find and optimize the operating conditions for the regeneration step. During the project period, we studied the physical and chemical characteristics of the scrubbing agent, the reaction taking place in the system, development and evaluation of CO{sub 2} gas absorber, desorption mechanism, and operation and optimization of continuous operation. Both batch and continuous operations were performed to examine the effects of various parameters including liquid-to-gas ratio, residence time, lean solvent concentration, pressure drop, bed height, CO{sub 2} partial pressure, bubble size, pH, and temperature on the absorption. The dissolution of Mg(OH){sub 2} particles, formation of magnesium carbonate (MgCO{sub 3}), and vapor-liquid-solid equilibrium (VLSE) of the system were also studied. The dissolution of Mg(OH){sub 2} particles and the steady release of magnesium ions into the solution was a crucial step to maintain a level of alkalinity in the CO{sub 2} absorption process. The dissolution process was modeled using a shrinking core model, and the dissolution reaction between proton ions and Mg(OH){sub 2} particles was found to be a rate-controlling step. The intrinsic surface reaction kinetics was found to be a strong function of temperature, and its kinetic expression was obtained. The kinetics of MgCO{sub 3} formation was also studied in terms of different pH values and temperatures, and was enhanced under high p

  10. The role of universities in energy and environmental R & D: An extended outline

    SciTech Connect (OSTI)

    Drucker, H.

    1995-12-31

    Issues related to university research and development roles in energy and environmental areas are very briefly outlined in the paper. Fundamental issues discussed include basic versus applied science, and applied science versus technology development. Some specific issues appropriate for university research are identified, such as desulfurizing coal and managing mixed wastes in groundwater. The Plant Biotechnology consortium is described as a model that builds on university strengths in basic and applied technology.

  11. UNIVERSITY RESEARCH PROGRAM IN ROBOTICS, Final Technical Annual Report, Project Period: 9/1/04 - 8/31/05

    SciTech Connect (OSTI)

    James S. Tulenko; Carl D. Crane III

    2006-02-15

    The University Research Program in Robotics (URPR) Implementation Plan is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities of robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  12. Summary of coal export project

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Through the international coal project and related activities, SSEB has called attention to the problems and potential of the US coal industry. The program has provided an excellent format for frank discussions on the problems facing US coal exports. Every effort must be made to promote coal and its role in the southern economy. Coal is enjoying its best years in the domestic market. While the export market is holding its own, there is increased competition in the world market from Australia, Columbia, China and, to a lesser extent, Russia. This is coming at a time when the US has enacted legislation and plans are underway to deepen ports. In addition there is concern that increased US coal and electricity imports are having a negative impact on coal production. These limiting factors suggest the US will remain the swing supplier of coal on the world market in the near future. This presents a challenge to the US coal and related industry to maintain the present market and seek new markets as well as devote research to new ways to use coal more cleanly and efficiently.

  13. Department of Energy Conference Emphasizes Universities' Role in Nuclear Energy Research

    Broader source: Energy.gov [DOE]

    More than 40 universities were represented at the FY 2010 Nuclear Energy University Programs (NEUP) workshop held Aug. 13-14 in Salt Lake City.

  14. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 31, 1992

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-12-31

    During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

  15. Coal repository. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-11-01

    The Coal Repository Project was initiated in 1980 by the Department of Energy/Pittsburgh Energy Technology Center to provide a centralized system for the collection of well characterized coal samples, and distribution to organizations involved in the chemical beneficiation of coal and related research. TRW Energy Development Group, together with its subcontractor Commercial Testing and Engineering Company, established the Coal Repository at the TRW Capistrano Chemical Facility, which is the location of the DOE-owned Multi-Use Fuel and Energy Processes Test Plant (MEP). Twenty tons each of three coals (Illinois No. 6, Kentucky No. 11 (West), and Pittsburgh No. 8 (from an Ohio mine)) were collected, characterized, and stored under a nitrogen atmosphere. Ten tons of each coal are 3/8-inch x 0, five tons of each are 14-mesh x 0, and five tons of each are 100-mesh x 0. Although TRW was within budget and on schedule, Department of Energy funding priorities in this area were altered such that the project was terminated prior to completion of the original scope of work. 9 figures, 3 tables.

  16. Exploratory research on solvent-refined coal liquefaction. Quarterly technical progress report, July 1-September 30, 1980

    SciTech Connect (OSTI)

    1981-02-01

    Work continued on the study of disposable catalysts and the effect of specific additives in both the SRC I and SRC II processing modes. At 450/sup 0/C, 2250 psig and 1.0 hour residence time with Loveridge coal in the SRC II mode, yields and hydrogen consumptions were essentially the same for runs with 5 wt % added pyrite or 3.3 wt % added ferric oxide. When Loveridge coal was impregnated with 0.7 wt % molybdenum, slightly higher oil yields and slightly lower hydrocarbon gas, SRC and IOM yields were obtained than with the iron compounds above. When Loveridge coal was processed in the SRC I mode at 450/sup 0/C, 1900 psig and 26 minutes residence time, there was a 3.7% increase in total oil yield with a corresponding decrease in SRC yield when pyrite was added to the feed slurry. There was a smaller effect with a FeS/sub 2//Fe/sub 2/O/sub 3/ combination and little or no effect when ferric oxide alone was added.

  17. Research Portfolio Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Portfolio Map Welcome to the Strategic Center for Coal Project Portfolio Web Map assembled by NETL. The web map includes projects across all Coal & Power Systems ...

  18. University Center of Excellence for Photovoltaics Research and Education: Annual report

    SciTech Connect (OSTI)

    Rohatgi, A.; Crotty, G.; Cai, L.; Sana, P.; Doolittle, A.; Ropp, M.; Krygowski, T.; Narasimha, S.

    1995-09-01

    This is a second annual report since the University Center of Excellence for Photovoltaics Research and Education was established at Georgia Tech. The major focus of the center is crystalline silicon, and the mission of the Center is to improve the fundamental understanding of the science and technology of advanced photovoltaic devices and materials, to fabricate high-efficiency cells, and develop low-cost processes, to provide training and enrich the equational experience of students in this field, and to increase US competitiveness by providing guidelines to industry and DOE to achieve cost-effective and high-efficiency photovoltaic devices. This report outlines the work of the Center from July 1993--June 1994.

  19. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  20. Flotation and flocculation chemistry of coal and oxidized coals

    SciTech Connect (OSTI)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  1. DOE-Supported Researcher Is Co-Winner of 2006 Nobel Prize in Physics | U.S.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led

  2. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    Processing Coal Plants and Commercial and Institutional Coal Users" and Form EIA-7A, "Coal Production and Preparation Report." Appendix A Assigning Missing Data to EIA-923...

  3. Coal industry annual 1994

    SciTech Connect (OSTI)

    1995-10-01

    This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

  4. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    power generation, industrial steam generation, coal-to-liquids production, coal coke manufacturing, residentialcommercial consumption, and coal exports) within the CMM. By...

  5. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-01-01

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  6. Our Research Achievements | Department of Energy

    Energy Savers [EERE]

    Benefits of Research Our Research Achievements Our Research Achievements April 2, 2013 Coal Combustion Products Coal combustion products (CCPs) are solid materials produced when ...

  7. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  8. Final Report for Research in High Energy Physics (University of Hawaii)

    SciTech Connect (OSTI)

    Browder, Thomas E.

    2013-08-31

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at the LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).

  9. A characterization and evaluation of coal liquefaction process streams. The kinetics of coal liquefaction distillation resid conversion

    SciTech Connect (OSTI)

    Klein, M.T.; Calkins, W.H.; Huang, H.; Wang, S.; Campbell, D.

    1998-03-01

    Under subcontract from CONSOL Inc., the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. The program at Delaware was conducted between August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivity toward hydrocracking of coal-derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An introduction and Summary of the project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here.

  10. Pelletization of fine coals. Final report

    SciTech Connect (OSTI)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  11. Department of Energy Issues Call for Proposals to U.S. Universities for Nuclear Energy-Related Integrated Research Project Proposals

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Nuclear Energy University Programs is now accepting applications from universities interested in conducting nuclear energy-related Integrated Research Projects.

  12. Department of Energy Issues Call for Proposals to U.S. Universities for Nuclear Energy-Related Integrated Research Project Proposals

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Nuclear Energy University Programs is now accepting applications from universities interested in conducting nuclear energy-related Integrated Research Projects.

  13. Department of Energy Issues FY 2012 Request for Pre-Applications from U.S. Universities for Nuclear Energy Research and Development Proposals

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced that its Nuclear Energy University Programs is now accepting pre-applications from universities interested in conducting nuclear energy research and development projects.

  14. Department of Energy Issues Request for Pre-Applications to U.S. Universities for Nuclear Energy- Related Research and Development Proposals

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Nuclear Energy University Programs (NEUP) is now accepting pre-applications from universities interested in conducting nuclear energy- related research and development (R&D) projects.

  15. Keystone coal industry manual

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The 1994 Keystone Coal Industry Manual is presented. Keystone has served as the one industry reference authority for the many diverse organizations concerned with the supply and utilization of coal in the USA and Canada. Through the continuing efforts of coal producers, buyers, users, sellers, and equipment designers and manufacturers, the coal industry supplies an abundant and economical fuel that is indispensable in meeting the expanding energy needs of North America. The manual is divided into the following sections: coal sales companies, coal export, transportation of coal, consumer directories, coal associations and groups, consulting and financial firms, buyers guide, industry statistics and ownership, coal preparation, coal mine directory, and coal seams.

  16. Coal and Coal-Biomass to Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Coal-Biomass to Liquids Turning coal into liquid fuels like gasoline, diesel and jet fuel, with biomass to reduce carbon dioxide emissions, is the main goal of the Coal and ...

  17. By Coal Origin State

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report 2010 U.S. Energy Information Administration | Annual Coal Distribution Report 2010 Alabama ...

  18. DOE Science Showcase - Clean Coal | OSTI, US Dept of Energy Office...

    Office of Scientific and Technical Information (OSTI)

    Carbon Capture CO2 Storage Technology Crosscutting Research Major Clean Coal Technology Demonstration Projects Fossil Energy Study Guide: Coal Energy Secretary Moniz Visits Clean ...

  19. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Caner Yurteri

    2001-08-20

    The proposed research is directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This fundamental research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow furnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The furnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NO{sub x} burner geometry's.

  20. Crosscutting Technology Research Review Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Session 11 - Functional Materials Novel Functional-Gradient Thermal Barrier Coatings in Coal-Fired Power Plant Turbines Indiana University-Purdue University Indianapolis, Jing ...

  1. Eleventh annual international Pittsburgh coal conference proceedings: Volume 2

    SciTech Connect (OSTI)

    Chiang, S.H.

    1994-12-31

    The conference presented over 300 papers in 39 separate sessions. These presentations are grouped into five topical areas: the technologies in pre- and post-utilization of coal; research and development in coal conversion; advanced coal combustion; environmental control technologies, and environmental policy issues related to coal use. The program has expanded its coverage in non-fuel use of coal. This is reflected in the three sessions on use of coal in the steel industry, and a sessions on carbon products and non-fuel coal applications. Volume 2 includes the following topics: Environmental systems and technologies/Environmental policy; Coal drying, dewatering and reconstitution; Coal cleaning technology; Slurry bed technology; Coal syngas, methanol, DME, olefins and oxygenates; Environmental issues in energy conversion technology; Applied coal geology; Use of coal in the steel industry; Recent developments in coal preparation; International coal gasification projects; Progress on Clean Coal projects; Retrofit air quality control technologies;Fluidized bed combustion; Commercialization of coal preparation technologies; Integrated gasification combined cycle program; the US Department of Energy`s Combustion 2000 program; and Environmental issues in coal utilization. All papers have been processed separately for inclusion on the data base.

  2. Hydrogen from Coal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal to Liquids » Hydrogen from Coal Hydrogen from Coal Technicians make adjustments to equipment in the hydrogen membrane testing unit at FE's National Energy Technology Laboratory. NETL researchers in the Research Innovation Center are testing different types of materials that might be used to separate hydrogen from other gases. Photo courtesy of NETL. Technicians make adjustments to equipment in the hydrogen membrane testing unit at FE's National Energy Technology Laboratory. NETL

  3. Final Site Specific Decommissioning Inspection Report #2 for the University of Washington Research and Test Reactor, Seattle, Washington

    SciTech Connect (OSTI)

    S.J. Roberts

    2007-03-20

    During the period of August through November 2006, ORISE performed a comprehensive IV at the University of Washington Research and Test Reactor Facility. The objective of the ORISE IV was to validate the licensee’s final status survey processes and data, and to assure the requirements of the DP and FSSP were met.

  4. DOE Announces Restructured FutureGen Approach to Demonstrate CCS Technology at Multiple Clean Coal Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Affirms Commitment to Clean Coal Technology Investments; Requests $648 Million for Coal Research, Development and Deployment for FY09 Budget - Largest Coal Budget Request in more than 25 years...

  5. Nuclear physics research at the University of Richmond. Progress report, November 1, 1994--October 31, 1995

    SciTech Connect (OSTI)

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1995-12-31

    Summarized in this report is the progress achieved during the period from November 1, 1994 to October 31, 1995. The experimental work described in this report is in electromagnetic and heavy-ion nuclear physics. The effort in electromagnetic nuclear physics is in preparation for the research program at the Continuous Electron Beam Accelerator Facility (CEBAF) and is focused on the construction and use of the CEBAF Large Acceptance Spectrometer (CLAS). The heavy-ion experiments were performed at the Argonne National Laboratory ATLAS facility and SUNY, Stony Brook. The physics interests driving these efforts at CEBAF are in the study of the structure, interactions, and nuclear-medium modifications of mesons and baryons. This year, an extension of the experiment to measure the magnetic form factor of the neutron was approved by the CEBAF Program Advisory Committee Nine (PAC9) for beam at 6 GeV. The authors also submitted updates to PAC9 on the experiments to measure inclusive {eta} photoproduction in nuclei and electroproduction of the {Lambda}, {Lambda}*(1520), and f{sub 0}(975). In addition to these experiments, the authors collaborated on a proposal to measure rare radiative decays of the {phi} meson which was also approved by PAC9. Their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the Hall B gas shed was constructed and the installation of the gas system components built at the University of Richmond has begun. Over the last six years, the efforts in low-energy heavy-ion physics have decreased due to the change in focus to electromagnetic nuclear physics at CEBAF. Most of the heavy-ion work is completed and there are now new experiments planned. Included in this report are two papers resulting from collaborations on heavy-ion experiments.

  6. Oxy-coal Combustion Studies

    SciTech Connect (OSTI)

    Wendt, J.; Eddings, E.; Lighty, J.; Ring, T.; Smith, P.; Thornock, J.; Y Jia, W. Morris; Pedel, J.; Rezeai, D.; Wang, L.; Zhang, J.; Kelly, K.

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  7. OPTIMIZATION OF COAL PARTICLE FLOW PATTERNS IN LOW NOX BURNERS

    SciTech Connect (OSTI)

    Jost O.L. Wendt; Gregory E. Ogden; Jennifer Sinclair; Stephanus Budilarto

    2001-09-04

    It is well understood that the stability of axial diffusion flames is dependent on the mixing behavior of the fuel and combustion air streams. Combustion aerodynamic texts typically describe flame stability and transitions from laminar diffusion flames to fully developed turbulent flames as a function of increasing jet velocity. Turbulent diffusion flame stability is greatly influenced by recirculation eddies that transport hot combustion gases back to the burner nozzle. This recirculation enhances mixing and heats the incoming gas streams. Models describing these recirculation eddies utilize conservation of momentum and mass assumptions. Increasing the mass flow rate of either fuel or combustion air increases both the jet velocity and momentum for a fixed burner configuration. Thus, differentiating between gas velocity and momentum is important when evaluating flame stability under various operating conditions. The research efforts described herein are part of an ongoing project directed at evaluating the effect of flame aerodynamics on NO{sub x} emissions from coal fired burners in a systematic manner. This research includes both experimental and modeling efforts being performed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NO{sub x} burners. Experimental studies include both cold-and hot-flow evaluations of the following parameters: primary and secondary inlet air velocity, coal concentration in the primary air, coal particle size distribution and flame holder geometry. Hot-flow experiments will also evaluate the effect of wall temperature on burner performance.

  8. AOI 1— COMPUTATIONAL ENERGY SCIENCES:MULTIPHASE FLOW RESEARCH High-fidelity multi-phase radiation module for modern coal combustion systems

    SciTech Connect (OSTI)

    Modest, Michael

    2013-11-15

    The effects of radiation in particle-laden flows were the object of the present research. The presence of particles increases optical thickness substantially, making the use of the “optically thin” approximation in most cases a very poor assumption. However, since radiation fluxes peak at intermediate optical thicknesses, overall radiative effects may not necessarily be stronger than in gas combustion. Also, the spectral behavior of particle radiation properties is much more benign, making spectral models simpler (and making the assumption of a gray radiator halfway acceptable, at least for fluidized beds when gas radiation is not large). On the other hand, particles scatter radiation, making the radiative transfer equation (RTE) much more di fficult to solve. The research carried out in this project encompassed three general areas: (i) assessment of relevant radiation properties of particle clouds encountered in fluidized bed and pulverized coal combustors, (ii) development of proper spectral models for gas–particulate mixtures for various types of two-phase combustion flows, and (iii) development of a Radiative Transfer Equation (RTE) solution module for such applications. The resulting models were validated against artificial cases since open literature experimental data were not available. The final models are in modular form tailored toward maximum portability, and were incorporated into two research codes: (i) the open-source CFD code OpenFOAM, which we have extensively used in our previous work, and (ii) the open-source multi-phase flow code MFIX, which is maintained by NETL.

  9. NETL: Aligned Gasification Research Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to coal use. For this purpose, NETL's Clean Coal Research Program (CCRP) is developing a portfolio of innovative technologies, including those for carbon capture and storage (CCS). ...

  10. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    SciTech Connect (OSTI)

    Chuang, Steven S. C.

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  11. Department of Energy Awards $5.6 Million to U.S. Universities for Nuclear Research

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC. - The U.S. Department of Energy (DOE) today announced it will award $5.6 million over three years (FY'07-'09), subject to appropriate from Congress, to U.S. universities in 12...

  12. EIA -Quarterly Coal Distribution

    U.S. Energy Information Administration (EIA) Indexed Site

    - Coal Distribution Quarterly Coal Distribution Archives Release Date: August 17, 2016 Next Release Date: December 22, 2016 The Quarterly Coal Distribution Report (QCDR) provides detailed quarterly data on U.S. domestic coal distribution by coal origin, coal destination, mode of transportation and consuming sector. All data are preliminary and superseded by the final Coal Distribution - Annual Report. Year/Quarters By origin State By destination State Report Data File Report Data File 2009

  13. Measurement and modeling of advanced coal conversion processes

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. ); Smoot, L.D.; Brewster, B.S. )

    1992-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specific conversion behavior is AFR's Functional Group (FG) and Devolatilization, Vaporization and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU's comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (i) validation of the submodels by comparison with laboratory data obtained in this program, (ii) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (iii) development of well documented user friendly software applicable to a workstation'' environment.

  14. FE Clean Coal News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Coal News FE Clean Coal News RSS June 3, 2016 U.S., Saudi Arabia Announce International Collaboration on Supercritical CO2 Tech Development The U. S. and the Kingdom of Saudi Arabia have announced the intention to establish an international consortium to promote the research, development, and demonstration (RD&D) of supercritical carbon dioxide (sCO2) power cycles. December 2, 2015 DOE Selects Projects To Enhance Its Research into Recovery of Rare Earth Elements from Coal and Coal

  15. Mechanical properties of reconstituted Australian black coal

    SciTech Connect (OSTI)

    Jasinge, D.; Ranjith, P.G.; Choi, S.K.; Kodikara, J.; Arthur, M.; Li, H.

    2009-07-15

    Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstituted coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.

  16. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  17. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM

  18. Coal Industry Annual 1995

    SciTech Connect (OSTI)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  19. Coal industry annual 1996

    SciTech Connect (OSTI)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  20. Effectiveness factors for hydroprocessing of coal and coal liquids

    SciTech Connect (OSTI)

    Massoth, F.E.; Seader, J.D.

    1990-03-29

    The aim of this project is to develop a methodology to predict, from a knowledge of feed and catalyst properties, effectiveness factors for catalytic hydroprocessing of coal and coal liquids. To achieve this aim, it is necessary to account for restrictive diffusion, which has not hitherto been done from a fundamental approach under reaction conditions. The research entails a study of hydrodenitrogenation of model compounds and coal-derived liquids using three NiMo/alumina catalysts of different pore size to develop, for restrictive diffusion, a relationship that can be used for estimating reliable effectiveness factors. The research program includes: Task A - measurement of pertinent properties of the catalysts and of several coal liquids; Task B - determination of effective diffusivities and turtuosities of the catalysts; Task C - development of restrictive diffusion correlations from data on model N-compound reactions; Task D - testing of correlations with coal-liquid cuts and whole coal-liquid feed. Results are presented and discussed from Tasks B and D. 9 refs., 6 figs., 4 tabs.

  1. Effectiveness factors for hydroprocessing of coal and coal liquids

    SciTech Connect (OSTI)

    Massoth, F.E.; Seader, J.D.

    1990-01-01

    The aim of this research project is to develop a methodology to predict, from a knowledge of feed and catalyst properties, effectiveness factors for catalytic hydroprocessing of coal and coal liquids. To achieve this aim, it is necessary to account for restrictive diffusion, which has not hitherto been done from a fundamental approach under reaction conditions. The research proposed here entails a study of hydrodenitrogenation of model compounds and coal-derived liquids using three NiMo/alumina catalysts of different pore size to develop, for restrictive diffusion, a relationship that can be used for estimating reliable effectiveness factors. The program is divided into four parts: measurements of pertinent properties of the catalysts and of a coal liquid and its derived boiling-point cuts; determination of effective diffusivities and tortuosities of the catalysts; development of restrictive diffusion correlations from data on model N-compounds at reaction conditions; and testing of correlations with coal-liquid cuts and whole coal-liquid feed, modifying correlations as necessary.

  2. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, G.W.; Lewis, S.N.

    1988-01-21

    The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

  3. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect (OSTI)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  4. Paul V. Braun and John A. Rogers Materials Research Laboratory, University of Illinois at Urbana-Champaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    V. Braun and John A. Rogers Materials Research Laboratory, University of Illinois at Urbana-Champaign Three-Dimensionally Architectured Optoelectronics Achievement: We have developed an approach for three- dimensional template-directed epitaxy of high- performance III-V semiconductor materials. We have demonstrated optoelectronic functionality by fabricating a 3D photonic crystal LED, the rst- ever electrically driven emission from a 3D photonic crystal device. We also demonstrate that the LED

  5. John A. Rogers and Ralph G. Nuzzo Materials Research Laboratory, University of Illinois at Urbana-Champaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Rogers and Ralph G. Nuzzo Materials Research Laboratory, University of Illinois at Urbana-Champaign Luminescent Waveguide Concentrator Photovoltaics Achievement: We have developed composite luminescent concentrator photovoltaic system that embeds large scale, interconnected arrays of microscale silicon solar cells in thin matrix layers loaded with luminescent dopants. We have efficiently launched wavelength-downconverted photons that waveguide into the sides and bottom surfaces of the sparse

  6. coal contacts | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coal contacts Strategic Center for Coal Director: Sean Plasynski 412-386-4867 Senior Management & Technical Advisor: Gregory Kawalkin 412-386-6135 Senior Management & Technical Advisor: Dan Driscoll 304-285-4717 Program Analyst: Kathleen Wolf 412-386-4693 Supervisory Administrative Specialist: Ken Mechling 412-386-7249 Office of Coal and Power Research and Development Director: John Wimer 304-285-4124 Deputy Director: Robert Romanosky 304-285-4721 Technology Manager, Fuel Cells: Shailesh

  7. Preparation for upgrading western subbituminous coal

    SciTech Connect (OSTI)

    Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

    1990-11-01

    The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

  8. Measurement and modeling of advanced coal conversion processes. Twenty-sixth quarterly report, January 1, 1993--March 31, 1993

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1993-09-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The program includes: (i) validation of the submodels by comparison with laboratory data obtained in this program, (ii) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (iii) development of well documented user friendly software applicable to a ``workstation`` environment. Success in this program will be a major step in improving the predictive capabilities for coal conversion processes including: Demonstrated accuracy and reliability and a generalized ``first principles`` treatment of coals based on readily obtained composition data.

  9. Energy Efficient Industrialized Housing Research Program, Center for Housing Innovation, University of Oregon and the Florida Solar Energy Center

    SciTech Connect (OSTI)

    Brown, G.Z.

    1990-01-01

    This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. The current research program, under the guidance of a steering committee composed of industry and government representatives, focuses on three interdependent concerns -- (1) energy, (2) industrial process, and (3) housing design. Building homes in a factory offers the opportunity to increase energy efficiency through the use of new materials and processes, and to increase the value of these homes by improving the quality of their construction. Housing design strives to ensure that these technically advanced homes are marketable and will meet the needs of the people who will live in them.

  10. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal

  11. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  12. Coal industry annual 1993

    SciTech Connect (OSTI)

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  13. Coal liquefaction and hydrogenation

    DOE Patents [OSTI]

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  14. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  15. Annual Coal Distribution Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Coal Distribution Report Release Date: April 16, 2015 | Next Release Date: March 2016 | full report | RevisionCorrection Revision to the Annual Coal Distribution Report ...

  16. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  17. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  18. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  19. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  20. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  1. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  2. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  3. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  4. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  5. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  6. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  7. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Origin State, Consumer, Destination and Method of Transportation, 2009 Final February 2011 2 Overview of 2009 Coal Distribution Tables...

  8. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  9. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  10. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  11. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  12. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  13. NETL: Coal Gasification Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gasification Systems Coal Gasification is a process that can turn coal into clean power, chemicals, hydrogen and transportation fuels, and can be used to capture the carbon from ...

  14. Final Report for the UNIVERSITY-BASED DETECTOR RESEARCH AND DEVELOPMENT FOR THE INTERNATIONAL LINEAR COLLIDER

    SciTech Connect (OSTI)

    Brau, James E

    2013-04-22

    The U.S Linear Collider Detector R&D program, supported by the DOE and NSF umbrella grants to the University of Oregon, made significant advances on many critical aspects of the ILC detector program. Progress advanced on vertex detector sensor development, silicon and TPC tracking, calorimetry on candidate technologies, and muon detection, as well as on beamline measurements of luminosity, energy, and polarization.

  15. Analysis of the University of Texas at Austin compressed natural gas demonstration bus. Interim research report

    SciTech Connect (OSTI)

    Wu, C.M.; Matthews, R.; Euritt, M.

    1994-06-01

    A demonstration compressed natural gas (CNG) bus has been operating on The University of Texas at Austin shuttle system since 1992. This CNG vehicle, provided by the Blue Bird Company, was an opportunity for the University to evaluate the effectiveness of a CNG bus for shuttle operations. Three basic operating comparisons were made: (1) fuel consumption, (2) tire wear, and (3) vehicle performance. The bus was equipped with a data logger, which was downloaded regularly, for trip reports. Tire wear was monitored regularly, and performance tests were conducted at the Natural Gas Vehicle Technology Center. Overall, the data suggest that fuel costs for the CNG bus are comparable to those for University diesel buses. This is a result of the lower fuel price for natural gas. Actual natural gas fuel consumption was higher for the CNG buses than for the diesel buses. Due to weight differences, tire wear was much less on the CNG buses. Finally, after installation of a closed-loop system, the CNG bus out-performed the diesel bus on acceleration, grade climbing ability, and speed.

  16. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  17. The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research

    SciTech Connect (OSTI)

    Langanke, K. [GSI Helmholtzzentrum fr Schwerionenforschung, Technische Universitt Darmstadt, Frankfurt Institute of Advanced Studies, D-64291 Darmstadt (Germany)

    2014-05-09

    In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum fr Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

  18. University Research & National Labs | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Institute for High Energy Physics, Protvino, Russia External link Institute for High Energy Physics, Beijing, China External link Other Research Institutions: Aspen Center For ...

  19. Coal liquefaction

    DOE Patents [OSTI]

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  20. Comparison of the National Survey of Compensation with other surveys of research and development professionals. Final report on universe update

    SciTech Connect (OSTI)

    Newborg, J.; Spurgeon, M.; Price, B.; Evans, P.

    1981-10-01

    The National Survey of Compensation Paid Scientists and Engineers Engaged in Research and Development (NSC) has been conducted for the Department of Energy since 1967. During this time the NSC has come to be considered the most comprehensive survey of its kind available in the United States. Its methodology and results are reliable and highly useful to compensation personnel in research and development (R and D) establishments. Each year project staff pinpoint areas of improvement which are necessary and desirable. The three tasks that are the subject of this report have been undertaken to maintain and improve the NSC and increase its usefulness to participants. The three tasks are: an update of the universe listing; comparison of NSC survey methodology and results with other surveys of research and development professionals; and development of a methodology to project salaries for the near-term. Each task is described.

  1. The Government-University-Industry Research Roundtable. Annual reports for 1997, 1998, 1999

    SciTech Connect (OSTI)

    1999-12-31

    The Roundtable was created in 1984 to provide a unique forum for dialog among top government, university, and industry leaders of the national science and technology enterprise. The purpose is to facilitate personal working relationships and exchange of ideas regarding issues, problems, and promising opportunities that are facing those charged with developing and deploying science and technology resources. These annual reports begin by describing the purpose, structure, and mode of operation of the Roundtable. There follow sections devoted to the council activities, major projects, and follow-up planning, and the activities of the Roundtable working groups. Meeting agendas and publications lists are also included.

  2. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    SciTech Connect (OSTI)

    Herrera, M.N.

    1994-12-31

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  3. Bioprocessing research

    SciTech Connect (OSTI)

    Kaufman, E.N.

    1996-06-01

    This section describes research and development activities performed for the Fossil Energy Bioprocessing Research Program. This program includes fundamental research for coal applications that investigates advanced reactor design for conversion of coal and coal liquids, the use of enzymes in pure organic media, and development of biological processes for the conversion of coal residuum. In addition, the program includes studies on advanced bioreactor systems for the treatment of gaseous substrates and the conversion to liquid fuels, removal of heteroatoms from heavy oils, renewable hydrogen production, remediation of oil containing soils. The program also includes natural gas and oil technology partnership support.

  4. Utilization of coal associated minerals. Quarterly report No. 11, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-08-29

    The purpose of this research program is to examine the effects of coal mineral materials on coal waste by-product utilization and to investigate new and improved methods for the utilization of waste by-products from cleaning, combustion and conversion processing of coal. The intermediate objectives include: (1) the examination of the effects of cleaning, gasification and combustion on coal mineral materials; and (2) the changes which occur in the coal wastes as a result of both form and distribution of mineral materials in feed coals in conjunction with the coal treatment effects resulting from coal cleaning or either gasification or combustion.

  5. EA-0965: Cancer Research Center Indiana University School of Medicine, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and equip the proposed Cancer Research Center (CRC), which would be located on the Indianapolis campus of the Indiana...

  6. Live Webinar on the Funding Opportunity for Marine and Hydrokinetic Research and Development University Consortium

    Office of Energy Efficiency and Renewable Energy (EERE)

    On April 24, 2014 from 1:00 - 2:30 PM EDT, the Water Power Program will hold a live webinar to provide information to potential applicants for the Marine and Hydrokinetic (MHK) Research and...

  7. This research was supported as part of the Catalysis Center for Energy Innovatio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Direct Carbon Fuel Cell with a Molten Antimony Anode This research was conducted by the groups of Ray Gorte and John Vohs at the University of Pennsylvania and Doug Buttrey at the University of Delaware. In order to secure our energy future, researchers have been working to develop technology capable of efficiently producing energy from cheap and abundant solid carbonaceous fuel resources, like coal and renewable biomass. Much research has been devoted to developing direct carbon fuel cells

  8. Annual Coal Distribution

    Reports and Publications (EIA)

    2016-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  9. Coal production 1988

    SciTech Connect (OSTI)

    Not Available

    1989-11-22

    Coal Production 1988 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1989. 5 figs., 45 tabs.

  10. Annual Coal Distribution

    Reports and Publications (EIA)

    2015-01-01

    The Annual Coal Distribution Report (ACDR) provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is a summary of foreign coal distribution by coal-producing state. All data for the report year are final and this report supersedes all data in the quarterly distribution reports.

  11. 2015 Gasification Systems and Coal and Coal-Biomass to Liquids Workshop |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    netl.doe.gov 5 Gasification Systems and Coal & Coal-Biomass to Liquids Workshop Workshop Summary Additional materials will be added when they are received from the author. Presentations Monday, August 10, 2015 Welcome and Introduction Jenny Tennant, Technology Manager for Gasification and C&CBTL U.S. Department of Energy, National Energy Technology Laboratory Wyoming Coal's Role in the World-Recent Past, Present and Future Don Collins, CEO of the Western Research Institute SESSION I

  12. Laboratory for Energy-Related Health Research (LEHR) University of California at Davis, California. Final report

    SciTech Connect (OSTI)

    1997-09-01

    This Annual Site Environmental Report for the Laboratory for Energy-Related Health Research (LEHR) Site (the Site) includes 1996 environmental monitoring data for Site air, soil, ground water, surface water, storm water and ambient radiation. DOE operation of LEHR as a functioning research location ceased in 1989, after the completion of three decades of research on the health effects of low-level radiation exposure (primarily strontium-90 and radium-226), using beagles to simulate effects on human health. During 1996, the U.S. Department of Energy (DOE) conducted activities at the Site in support of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Environmental remediation and the decontamination and decommissioning (D&D) of Site buildings. Extensive environmental data were collected in 1996 to evaluate appropriate remedial actions for the Site.

  13. TOXIC SUBSTANCES FROM COAL COMBUSTION-A COMPREHENSIVE ASSESSMENT

    SciTech Connect (OSTI)

    C.L. Senior; F. Huggins; G.P. Huffman; N. Shah; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F. Sarofim; S. Swenson; J.S. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowski; J.J. Helble; R. Mamani-Paco; R. Sterling; G. Dunham; S. Miller

    2001-06-30

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the National Energy Technology Laboratory (NETL), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). The work discussed in this report covers the Phase II program. Five coals were studied (three in Phase I and two new ones in Phase II). In this work UK has used XAFS and Moessbauer spectroscopies to characterize elements in project coals. For coals, the principal use was to supply direct information about certain hazardous and other key elements (iron) to complement the more complete indirect investigation of elemental modes of occurrence being carried out by colleagues at USGS. Iterative selective leaching using ammonium acetate, HCl, HF, and HNO3, used in conjunction with mineral identification/quantification, and microanalysis of individual mineral grains, has allowed USGS to delineate modes of occurrence for 44 elements. The Phase II coals show rank-dependent systematic differences in trace-element modes of occurrence. The work at UU

  14. Investigation of coal structure. Final report

    SciTech Connect (OSTI)

    Nishioka, Masaharu

    1994-03-01

    A better understanding of coal structure is the first step toward more effective utilization of the most abundant hydrocarbon resource. Detailed characterization of coal structure is very difficult, even with today`s highly developed analytical techniques. This is primarily due to the amorphous nature of these high-molecular-weight mixtures. Coal has a polymeric character and has been popularly represented as a three-dimensional cross-linked network. There is, however, little or no information which positively verifies this model. The principal objective of this research was to further investigate the physical structure of coal and to determine the extent to which coal molecules may be covalently cross-linked and/or physically associated. Two common characterization methods, swellability and extractability, were used. A technique modifying the conventional swelling procedure was established to better determine network or associated model conformation. A new method for evaluating coal swelling involving laser scattering has also been developed. The charge-transfer interaction is relatively strong in high-volatile bituminous coal. Soaking in the presence of electron donors and acceptors proved effective for solubilizing the coal, but temperatures in excess of 200 C were required. More than 70 wt% of the coal was readily extracted with pyridine after soaking. Associative/dissociative equilibria of coal molecules were observed during soaking. From these results, the associated model has gained credibility over the network model as the representative structure of coal. Significant portions of coal molecules are unquestionably physically associated, but the overall extent is not known at this time.

  15. IMPROVED COMPUTATIONAL CHARACTERIZATION OF THE THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    SciTech Connect (OSTI)

    Stuart R. Slattery; David W. Nigg; John D. Brockman; M. Frederick Hawthorne

    2010-05-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential for detailed dosimetric studies required for the anticipated research program.

  16. Coal data: A reference

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  17. Reducing the moisture content of clean coals

    SciTech Connect (OSTI)

    Kehoe, D. )

    1992-12-01

    Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

  18. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  19. WRI-14-R002r CONVERSION OF LOW-RANK WYOMING COALS INTO GASOLINE...

    Office of Scientific and Technical Information (OSTI)

    ... samples were obtained from coal sample bank of Energy Institute, Penn State University. ... Commercial sample of lignin was obtained from Green value Enterprises LLC, and organosolv ...

  20. Coal conversion. 1979 technical report

    SciTech Connect (OSTI)

    1980-09-01

    Individual reports are made on research programs which are being conducted by various organizations and institutions for the commercial development of processes for converting coal into products that substitute for these derived from oil and natural gas. Gasification, liquefaction, and demonstration processes and plants are covered. (DLC)

  1. Investigation into the effects of trace coal syn gas species on the performance of solid oxide fuel cell anodes, PhD. thesis, Russ College of Engineering and Technology of Ohio University

    SciTech Connect (OSTI)

    Trembly, J. P.

    2007-06-01

    Coal is the United States’ most widely used fossil fuel for the production of electric power. Coal’s availability and cost dictates that it will be used for many years to come in the United States for power production. As a result of the environmental impact of burning coal for power production more efficient and environmentally benign power production processes using coal are sought. Solid oxide fuel cells (SOFCs) combined with gasification technologies represent a potential methodology to produce electric power using coal in a much more efficient and cleaner manner. It has been shown in the past that trace species contained in coal, such as sulfur, severely degrade the performance of solid oxide fuel cells rendering them useless. Coal derived syngas cleanup technologies have been developed that efficiently remove sulfur to levels that do not cause any performance losses in solid oxide fuel cells. The ability of these systems to clean other trace species contained in syngas is not known nor is the effect of these trace species on the performance of solid oxide fuel cells. This works presents the thermodynamic and diffusion transport simulations that were combined with experimental testing to evaluate the effects of the trace species on the performance of solid oxide fuel cells. The results show that some trace species contained in coal will interact with the SOFC anode. In addition to the transport and thermodynamic simulations that were completed experimental tests were completed investigating the effect of HCl and AsH3 on the performance of SOFCs.

  2. Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992

    SciTech Connect (OSTI)

    Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F.; Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C.; Hu, W.; Zou, Y.; Chen, W.; Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R.

    1992-03-01

    The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

  3. Toxic substances from coal combustion -- A comprehensive assessment

    SciTech Connect (OSTI)

    C.L. Senior; T. Panagiotou; F.E. Huggins; G.P. Huffman; N. Yap; J.O.L. Wendt; W. Seames; M.R. Ames; A.F Sarofim; J. Lighty; A. Kolker; R. Finkelman; C.A. Palmer; S.J. Mroczkowsky; J.J. Helble; R. Mamani-Paco

    1999-11-01

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1999 to 30 September 1999. During this period the MIT INAA procedures were revised to improve the quality of the analytical results. Two steps have been taken to reduce the analytical errors. A new nitric acid leaching procedure, modified from ASTM procedure D2492, section 7.3.1 for determination of pyritic sulfur, was developed by USGS and validated. To date, analytical results have been returned for all but the last complete round of the four-step leaching procedure. USGS analysts in Denver have halted development of the cold vapor atomic fluorescence technique for mercury analysis procedure in favor of a new direct analyzer for Hg that the USGS is in the process of acquiring. Since early June, emphasis at USGS has been placed on microanalysis of clay minerals in project coals in preparation

  4. Coal production 1985

    SciTech Connect (OSTI)

    Not Available

    1986-11-07

    Coal Production 1985 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, reserves, and stocks to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. All data presented in this report, except the total production table presented in the Highlights section, and the demonstrated reserve base data presented in Appendix A, were obtained from form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1985. The data cover 4105 of the 5477 US coal mining operations active in 1985. These mining operations accounted for 99.4% of total US coal production and represented 74.9% of all US coal mining operations in 1985. This report also includes data for the demonstrated reserve vase of coal in the US on January 1, 1985.

  5. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect (OSTI)

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  6. Adsorption of various alcohols on Illinois No. 6 coal in aqueous solutions

    SciTech Connect (OSTI)

    Kwon, K.C.; Rigby, R.R.

    1993-07-01

    Hydrophilicity, hydrophobicity and aromacity of Illinois {number_sign}6 coal in water are relatively determined by evaluating equilibrium physical/chemical adsorption of probe compounds on the coal. Experiments on equilibrium adsorption loadings of various additives on 60--200 mesh Illinois {number_sign}6 coal (DECS-2; Randolph county) were performed to investigate relatively surface properties of the coal at 25{degree}C. The additives include various alcohols, alkanes and aromatic compounds. The main objectives of this research are to evaluate relatively surface properties of raw coals, treated coals and coal minerals with the inverse liquid chromatography technique, using various probe compounds, to analyze flotation recoveries of coals with a micro-flotation apparatus in order to relate coal floatability to evaluated coal surface properties, and to delineate roles of coal-cleaning/handling additives with the inverse liquid chromatography technique.

  7. DOE's Coal Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Statement of Christopher Smith, Acting Assistant Secretary for Fossil Energy, before the House Committee on Science, Space and Technology Subcommittee on Energy

  8. Coal feed lock

    DOE Patents [OSTI]

    Pinkel, I. Irving

    1978-01-01

    A coal feed lock is provided for dispensing coal to a high pressure gas producer with nominal loss of high pressure gas. The coal feed lock comprises a rotor member with a diametral bore therethrough. A hydraulically activated piston is slidably mounted in the bore. With the feed lock in a charging position, coal is delivered to the bore and then the rotor member is rotated to a discharging position so as to communicate with the gas producer. The piston pushes the coal into the gas producer. The rotor member is then rotated to the charging position to receive the next load of coal.

  9. Upgraded Coal Interest Group

    SciTech Connect (OSTI)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  10. EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Zhu, Xiaoyang; CST Staff

    2011-05-01

    'EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center' was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC:CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  11. EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Zhu, Xiaoyang (Director, Understanding Charge Separation and Transfer at Interfaces in Energy Materials); CST Staff

    2011-11-03

    'EFRC:CST at the University of Texas at Austin - A DOE Energy Frontier Research Center' was submitted by the EFRC for Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. EFRC:CST is directed by Xiaoyang Zhu at the University of Texas at Austin in partnership with Sandia National Laboratories. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  12. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect (OSTI)

    1998-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a detailed comparative analysis of the suite of spectral editing results obtained on the Argonne coals. We have extended our fitting procedure to include carbons of all types in the analysis.

  13. High-pressure gasification of Montana subbituminous coal

    SciTech Connect (OSTI)

    Goyal, A.; Bryan, B.; Rehmat, A.

    1991-01-01

    A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

  14. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    SciTech Connect (OSTI)

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  15. Testing of FMI's Coal Upgrading Process

    SciTech Connect (OSTI)

    Vijay Sethi

    2009-03-21

    WRI and FMI have collaborated to develop and test a novel coal upgrading technology. Proprietary coal upgrading technology is a fluidized bed-based continuous process which allows high through-puts, reducing the coal processing costs. Processing is carried out under controlled oxidizing conditions at mild enough conditions that compared to other coal upgrading technologies; the produced water is not as difficult to treat. All the energy required for coal drying and upgrading is derived from the coal itself. Under the auspices of the Jointly Sponsored Research Program, Cooperative Agreement DE-FC26-98FT40323, a nominal 400 lbs/hour PDU was constructed and operated. Over the course of this project, several low-rank coals were successfully tested in the PDU. In all cases, a higher Btu, low moisture content, stable product was produced and subsequently analyzed. Stack emissions were monitored and produced water samples were analyzed. Product stability was established by performing moisture readsorption testing. Product pyrophobicity was demonstrated by instrumenting a coal pile.

  16. Optimization of Coal Particle Flow Patterns in Low N0x Burners

    SciTech Connect (OSTI)

    Caner Yurteri; Gregory E. Ogden; Jennifer Sinclair; Jost O.L. Wendt

    1998-03-06

    The proposed research is directed at evaluating the effect of flame aerodynamics on NOX emissions tlom coal fired burners in a systematic manner. This fimdamental research includes both experimental and modeling efforts being petiormed at the University of Arizona in collaboration with Purdue University. The objective of this effort is to develop rational design tools for optimizing low NOX burners to the kinetic emissions limit (below 0.2 lb./MMBTU). Experimental studies include both cold and hot flow evaluations of the following parameters: flame holder geometry, secondary air swirl, primary and secondary inlet air velocity, coal concentration in the primary air and coal particle size distribution. Hot flow experiments will also evaluate the effect of wall temperature on burner performance. Cold flow studies will be conducted with surrogate particles as well as pulverized coal. The cold flow furnace will be similar in size and geometry to the hot-flow furnace but will be designed to use a laser Doppler velocimeter/phase Doppler particle size analyzer. The results of these studies will be used to predict particle trajectories in the hot-flow fhrnace as well as to estimate the effect of flame holder geometry on furnace flow field. The hot-flow experiments will be conducted in a novel near-flame down-flow pulverized coal furnace. The fhrnace will be equipped with externally heated walls. Both reactors will be sized to minimize wall effects on particle flow fields. The cold-flow results will be compared with Fluent computation fluid dynamics model predictions and correlated with the hot-flow results with the overall goal of providing insight for novel low NOX burner geometry's.

  17. Progress in research, April 1, 1991--March 31, 1992, Texas A and M University Cyclotron Institute

    SciTech Connect (OSTI)

    1992-06-01

    Reports on research activities, facility operation, and facility development of the Texas A and M Cyclotron Institute for the period 1 April 1991--31 March 1992 are presented in this document. During the report period, the ECR-K500 Cyclotron Combination operated 4,377 hours. Of this time, 832 hours was used for beam development, 942 hours was used for tuning and optics, and the beam was available for experiments 2,603 hours. This time was used in a variety of studies including elastic and inelastic scattering, projectile break-up, the production and decay of giant resonances, fusion and fission dynamics, intermediate mass fragment emission, e{sup +}e{sup {minus}} production and molecular dissociation. In addition, studies of surfaces and metastable states in highly charged ions were carried out using the ECR source. Completion of two 19-element BaF{sub 2} arrays, of the focal plane detector for the proton spectrometer and installation of the HiLi multidetector have provided significant new experimental capabilities which have been further enhanced by major additions to the computer network. Progress on the Mass Achromat Recoil Spectrometer (MARS) is such that first operation of that device should occur this summer. Funding for installation of the MDM spectrometer was obtained at the beginning of this year. As this report is being completed, the Enge Split Pole Spectrometer is being disassembled and removed to make room for the MDM spectrometer. The split-pole will be shipped to CEBAF for use in experiments there. Installation of the MDM should be completed within the next year. Also expected in the next year is a 92 element plastic-CsI ball.

  18. Final Report for Research in High Energy Physics at the University of Pennsylvania for the period ending April 30, 2012

    SciTech Connect (OSTI)

    Williams, Hugh H.; Balasubramanian, V.; Bernstein, G.; Beier, E. W.; Cvetic, M.; Gladney, L.; Jain, B.; Klein, J.; Kroll, J.; Lipeles, E.; Ovrut, B.; Thomson, E.

    2015-07-23

    The University of Pennsylvania elementary particle physics/particle cosmology group, funded by the Department of Energy Office of Science, participates in research in high energy physics and particle cosmology that addresses some of the most important unanswered questions in science. The research is divided into five areas. Energy Frontier - We participate in the study of proton-proton collisions at the Large Hadron Collider in Geneva, Switzerland using the ATLAS detector. The University of Pennsylvania group was responsible for the design, installation, and commissioning of the front-end electronics for the Transition Radiation Tracker (TRT) and plays the primary role in its maintenance and operation. We play an important role in the triggering of ATLAS, and we have made large contributions to the TRT performance and to the study and identification of electrons, photons, and taus. We have been actively involved in searches for the Higgs boson and for SUSY and other exotic particles. We have made significant contributions to measurement of Standard Model processes such as inclusive photon production and WW pair production. We also have participated significantly in R&D for upgrades to the ATLAS detector. Cosmic Frontier - The Dark Energy Survey (DES) telescope will be used to elucidate the nature of dark energy and the distribution of dark matter. Penn has played a leading role both in the use of weak gravitational lensing of distant galaxies and the discovery of large numbers of distant supernovae. The techniques and forecasts developed at Penn are also guiding the development of the proposed Large Synoptic Survey Telescope (LSST).We are also developing a new detector, MiniClean, to search for direct detection of dark matter particles. Intensity Frontier - We are participating in the design and R&D of detectors for the Long Baseline Neutrino Experiment (now DUNE), a new experiment to study the properties of neutrinos. Advanced Techology R&D - We have an extensive

  19. Indonesian coal mining

    SciTech Connect (OSTI)

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  20. Chemicals from coal

    SciTech Connect (OSTI)

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  1. Coal Production 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  2. Microbial solubilization of coal

    DOE Patents [OSTI]

    Strandberg, Gerald W.; Lewis, Susan N.

    1990-01-01

    This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

  3. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    4Q 2009 April 2010 Quarterly Coal Distribution Table Format and Data Sources 4Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  4. Coal Distribution Database, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    3Q 2009 February 2010 Quarterly Coal Distribution Table Format and Data Sources 3Q 2009 In keeping with EIA's efforts to increase the timeliness of its reports, this Quarterly Coal...

  5. "Annual Coal Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Coal Report Data Released: January 20, 2015 Data for: 2013 Re-Release Date: April 23, 2015 (CORRECTION) Annual Coal Report 2013 CorrectionUpdate April 23, 2015 The Annual ...

  6. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Citation Details In-Document Search Title: Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction Under the cooperative agreement program of DOE and funding from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly

  7. Coal gasification apparatus

    DOE Patents [OSTI]

    Nagy, Charles K.

    1982-01-01

    Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

  8. Coal Fleet Aging Meeting

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2016 MEMORANDUM TO: Dr. Ian Mead Assistant Administrator for Energy Analysis Jim Diefenderfer Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis FROM: Coal and Uranium Analysis Team SUBJECT: Notes from the Coal Fleet Aging Meeting held on June 14, 2016 Attendees (36) *Indicates attendance via WebEx. 2 Framing the question This adjunct meeting of the AEO Coal Working Group (CWG) was held as a follow up to the previous Future Operating and Maintenance Considerations for the

  9. Method for fluorinating coal

    DOE Patents [OSTI]

    Huston, John L.; Scott, Robert G.; Studier, Martin H.

    1978-01-01

    Coal is fluorinated by contact with fluorine gas at low pressure. After pial fluorination, when the reaction rate has slowed, the pressure is slowly increased until fluorination is complete, forming a solid fluorinated coal of approximate composition CF.sub.1.55 H.sub.0.15. The fluorinated coal and a solid distillate resulting from vacuum pyrolysis of the fluorinated coal are useful as an internal standard for mass spectrometric unit mass assignments from about 100 to over 1500.

  10. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  11. Flash hydrogenation of coal

    DOE Patents [OSTI]

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  12. Coal Combustion Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge.

  13. Coal Study Guide for Elementary School

    Office of Energy Efficiency and Renewable Energy (EERE)

    Focuses on the basics of coal, history of coal use, conversion of coal into electricity, and climate change concerns.

  14. Development of an advanced process for drying fine coal in an inclined fluidized bed: Technical progress report for the second quarter, January 19--March 31, 1989

    SciTech Connect (OSTI)

    Boysen, J.E.; Cha, C.Y.; Berggren, M.H.; Jha, M.C.

    1989-05-01

    This research project is for the development of a technically and economically feasible process for drying and stabilizing of fine particles of high-moisture subbituminous coal. Research activities were initiated with efforts concentrating on characterization of the two feed coals: Eagle Butte coal from AMAX Coal Company's mine located in the Powder River Basin of Wyoming; and coal from Usibelli Coal Mine, Inc.'s mine located in central Alaska. Both of the feed coals are high-moisture subbituminous coals with ''as received'' moisture contents of 29% and 22% for the Eagle Butte and Usibelli coals, respectively. However, physical analyses of the crushed coal samples (--28-mesh particle size range) indicate many differences. The minimum fluidization velocity (MFV) of the feed coals were experimentally determined. The MFV for --28-mesh Eagle Butte coal is approximately 1 ft/min, and the MFV for --28-mesh Usibelli coal is approximately 3 ft/min. 2 refs., 16 figs., 3 tabs.

  15. Coal Data: A reference

    SciTech Connect (OSTI)

    Not Available

    1991-11-26

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  16. Coal recovery process

    DOE Patents [OSTI]

    Good, Robert J.; Badgujar, Mohan

    1992-01-01

    A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

  17. University Research News

    Office of Science (SC) Website

    of Delaware recently reported a breakthrough that promises to bring down the cost of hydrogen fuel cells by replacing expensive platinum catalysts with cheaper ones made from...

  18. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, June--August 1991

    SciTech Connect (OSTI)

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  19. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    SciTech Connect (OSTI)

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O'Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  20. Self-Scrubbing Coal -- an integrated approach to clean air

    SciTech Connect (OSTI)

    Harrison, K.E.

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceeding boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.

  1. Coal Utilization Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crosscutting Research » Coal Utilization Science Coal Utilization Science Computer scientists at FE's NETL study a visualization of a power plant component. Computer scientists at FE's NETL study a visualization of a power plant component. Traditionally the process of taking a new power plant system from the drawing board to a first-of-a-kind prototype has involved a series of progressively larger engineering test facilities and pilot plants, leading ultimately to a full-scale demonstration.

  2. Research on fundamental aspects of inorganic particle deposition on coal-fired equipment. Final technical report, 6 September 1990--31 October 1994

    SciTech Connect (OSTI)

    Rosner, D.E.

    1995-01-01

    We review results of our recent DOE-PETC research program on the deposition dynamics of combustion-generated particles in power production technologies. We outline and illustrate the results of recently developed methods to predict total surface deposition rates and associated convective heat transfer reductions for targets exposed to a distribution of particles suspended in a mainstream. Our methods combine the essential features of recently developed single particle sticking probability laws with correlations of the inertial impaction of particles on targets in high Reynolds number cross-flow, to develop formulae and ``universal`` graphs which provide the dependence of particle deposition rates, and associated reductions in convective heat transfer, on such system parameters as mainstream velocity, mean suspended particle size and target size. The deposition rate/deposit microstructue/properties prediction and correlation procedures illustrated be incorporated into improved ``fouling propensity indices,`` to motivate, evaluate and implement ``ruggedization`` and/or fouling reduction strategies, and/or incorporated (as subroutines) into more ``comprehensive`` CFD models of an entire power plant.

  3. The Role of Research Universities in Helping Solve our Energy Challenges: A Case Study at Stanford and SLAC (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Hennessey, John (President, Stanford University)

    2012-03-14

    The first speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was John Hennessey, President of Stanford University. He discussed the important role that the academic world plays as a partner in innovative energy research by presenting a case study involving Stanford and SLAC. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  4. Process for hydrogenating coal and coal solvents

    DOE Patents [OSTI]

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  5. sup 31 P NMR analysis of coal moieties bearing -OH, -NH, and -SH functions

    SciTech Connect (OSTI)

    Verkade, J.G.

    1991-01-01

    Research on coal structural analysis continues. This paper discusses the use of {sup 31}P, {sup 119}Sn, and {sup 195}Pt as NMR tagging reagents in the probing of coal structure. (VC)

  6. Cost of presumptive source term Remedial Actions Laboratory for energy-related health research, University of California, Davis

    SciTech Connect (OSTI)

    Last, G.V.; Bagaasen, L.M.; Josephson, G.B.; Lanigan, D.C.; Liikala, T.L.; Newcomer, D.R.; Pearson, A.W.; Teel, S.S.

    1995-12-01

    A Remedial Investigation/Feasibility Study (RI/FS) is in progress at the Laboratory for Energy Related Health Research (LEHR) at the University of California, Davis. The purpose of the RI/FS is to gather sufficient information to support an informed risk management decision regarding the most appropriate remedial actions for impacted areas of the facility. In an effort to expedite remediation of the LEHR facility, the remedial project managers requested a more detailed evaluation of a selected set of remedial actions. In particular, they requested information on both characterization and remedial action costs. The US Department of Energy -- Oakland Office requested the assistance of the Pacific Northwest National Laboratory to prepare order-of-magnitude cost estimates for presumptive remedial actions being considered for the five source term operable units. The cost estimates presented in this report include characterization costs, capital costs, and annual operation and maintenance (O&M) costs. These cost estimates are intended to aid planning and direction of future environmental remediation efforts.

  7. LOCA simulation in the national research universal reactor program: postirradiation examination results for the third materials experiment (MT-3)

    SciTech Connect (OSTI)

    Rausch, W.N.

    1984-04-01

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program. The third materials experiment (MT-3) was the sixth in the series of thermal-hydraulic and materials deformation/rutpure experiments conducted in the National Research Universal (NRU) reactor, Chalk River, Ontario, Canada. The main objective of the experiment was to evaluate ballooning and rupture during active two-phase cooling in the temperature range from 1400 to 1500/sup 0/F (1030 to 1090 K). The 12 test rods in the center of the 32-rod bundle were initially pressurized to 550 psi (3.8 MPa) to insure rupture in the correct temperature range. All 12 of the rods ruptured, with an average peak bundle strain of approx. 55%. The UKAEA also funded destructive postirradiation examination (PIE) of several of the ruptured rods from the MT-3 experiment. This report describes the work performed and presents the PIE results. Information obtained during the PIE included cladding thickness measurements metallography, and particle size analysis of the cracked and broken fuel pellets.

  8. aligned-research-programs | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to coal use. For this purpose, NETL's Clean Coal Research Program (CCRP) is developing a portfolio of innovative technologies, including those for carbon capture and storage (CCS). ...

  9. DOE Selects Projects To Enhance Its Research into Recovery of...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory (NETL) has selected 10 projects to receive funding for research in support of the lab's program on Recovery of Rare Earth Elements from Coal and Coal Byproducts. ...

  10. Measurement and modeling of advanced coal conversion processes. Twenty-seventh quarterly report, April 1, 1993--June 30, 1993

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1993-09-01

    Significant advances have been made at Brigham Young University (BYU) in comprehensive two-dimensional computer codes for mechanistic modeling of entrained-bed gasification and pulverized coal combustion. During the same time period, significant advances have been made at Advanced Fuel Research, Inc. (AFR) in the mechanisms and kinetics of coal pyrolysis and secondary reactions of pyrolysis products. This program presents a unique opportunity to merge the technology developed by each organization to provide detailed predictive capability for advanced coal characterization techniques in conjunction with comprehensive computer models to provide accurate process simulations. The program will streamline submodels existing or under development for coal pyrolysis chemistry, volatile secondary reactions, tar formation, soot formation, char reactivity, and SO{sub x}-NO{sub x} pollutant formation. Submodels for coal viscosity, agglomeration, tar/char secondary reactions, sulfur capture, and ash physics and chemistry will be developed or adapted. The submodels will first be incorporated into the BYU entrained-bed gasification code and subsequently, into a fixed-bed gasification code (to be selected and adapted). These codes will be validated by comparison with small scale laboratory and PDU-scale experiments. Progress is described.

  11. Microbial solubilization of coals

    SciTech Connect (OSTI)

    Campbell, J.A.; Fredrickson, J.K.; Stewart, D.L.; Thomas, B.L.; McCulloch, M.; Wilson, B.W.; Bean, R.M.

    1988-11-01

    Microbial solubilization of coal may serve as a first step in a process to convert low-rank coals or coal-derived products to other fuels or products. For solubilization of coal to be an economically viable technology, a mechanistic understanding of the process is essential. Leonardite, a highly oxidized, low-rank coal, has been solubilized by the intact microorganism, cell-free filtrate, and cell-free enzyme of /ital Coriolus versicolor/. A spectrophotometric conversion assay was developed to quantify the amount of biosolubilized coal. In addition, a bituminous coal, Illinois No. 6, was solubilized by a species of /ital Penicillium/, but only after the coal had been preoxidized in air. Model compounds containing coal-related functionalities have been incubated with the leonardite-degrading fungus, its cell-free filtrate, and purified enzyme. The amount of degradation was determined by gas chromatography and the degradation products were identified by gas chromatography/mass spectrometry. We have also separated the cell-free filtrate of /ital C. versicolor/ into a <10,000 MW and >10,000 MW fraction by ultrafiltration techniques. Most of the coal biosolubilization activity is contained in the <10,000 MW fraction while the model compound degradation occurs in the >10,000 MW fraction. The >10,000 MW fraction appears to contain an enzyme with laccase-like activity. 10 refs., 8 figs., 5 tabs.

  12. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  13. Coal combustion under conditions of blast furnace injection

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-01

    Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal with particular reference to the coals from the Illinois Basin. Although this research is not yet completed the results to date support the following conclusions: (1) based on the results of computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in their injection properties with a variety of other bituminous coals, although the replacement ratio improves with increasing rank; (2) based on the results of petrographic analysis of material collected from an active blast furnace, it is clear the coal derived char is entering into the raceway of the blast furnace; (3) the results of reactivity experiments on a variety of coal chars at a variety of reaction temperatures show that lower rank bituminous coals, including coal from the Illinois basin, yield chars with significantly higher reactivities in both air and CO{sub 2} than chars from higher rank Appalachian coals and blast furnace coke. These results indicate that the chars from the lower rank coals should have a superior burnout rate in the tuyere and should survive in the raceway environment for a shorter time. These coals, therefore, will have important advantages at high rates of injection that may overcome their slightly lower replacement rates.

  14. Pulverized coal fuel injector

    DOE Patents [OSTI]

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  15. Integrated coal liquefaction process

    DOE Patents [OSTI]

    Effron, Edward

    1978-01-01

    In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

  16. Weekly Coal Production Estimation Methodology

    Gasoline and Diesel Fuel Update (EIA)

    Weekly Coal Production Estimation Methodology Step 1 (Estimate total amount of weekly U.S. coal production) U.S. coal production for the current week is estimated using a ratio ...

  17. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Recurring Reserves Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud Data For: 2001 Next Release Date: October 2003 U. S. Coal-Producing Districts...

  18. Coal | Open Energy Information

    Open Energy Info (EERE)

    Assuming no additional constraints on CO2 emissions, coal remains the largest source of electricity generation in the AEO2011 Reference case because of continued reliance on...

  19. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    TF RailroadVesselShip Fuel It is also noted that Destination State code of "X Export" indicates movements to foreign destinations. 1 68 Domestic Coal Distribution...

  20. Coal Market Module

    Gasoline and Diesel Fuel Update (EIA)

    The use of coals with sub- optimal characteristics carries with it penalties in operating efficiency, maintenance cost, and system reliability. Such penalties range from the...

  1. By Coal Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  2. Balancing coal pipes

    SciTech Connect (OSTI)

    Earley, D.; Kirkenir, B.

    2009-11-15

    Balancing coal flow to the burners to optimise combustion by using real-time measurement systems (such as microwave mass measurement) is discussed. 3 figs.

  3. British coal privatization procedures

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The form in which British Coal is to be privatized has finally been announced. Offers are to be invited for the operating underground and opencast mines which will be grouped into five regionally based companies. Additionally, offers will be invited for a number of collieries which are currently under care and maintenance. The five Regional Coal Companies to be formed are Central North, which will comprise the assets in the Yorkshire and Durham coalfields, including the five collieries in the Selby Complex; Central South, which will contain the assets located in the Nottinghamshire, Leicestershire, Derbyshire, and Warwickshire coalfields; North East, which has four opencast sites, Scotland, which has nine operating open-cast sites and a single underground mine, Longannet; and South Wales with its nine operating opencast sites. Tower colliery, the last underground mine in South Wales, was finally put on care and maintenance on April 20, 1994. Details of the five Regional Coal Companies are given. A new public sector body, the Coal Authority will be set up to which all British Coal's title to unworked coal and coal mines will be transferred. All the relevant property rights and liabilities of British Coal will be transferred into the Regional Coal Companies prior to their sun.

  4. Annual Coal Distribution Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Distribution of U.S. Coal by Destination State, Consumer, Destination and Method of Transportation, 2001 (Thousand Short Tons) DESTINATION: Alabama State of Origin by...

  5. Coal Distribution Database, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Report - Annual provides detailed information on domestic coal distribution by origin state, destination state, consumer category, and method of transportation. Also provided is...

  6. Coal liquefaction quenching process

    DOE Patents [OSTI]

    Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  7. COAL & POWER SYSTEMS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... stitutions * InternationalCoal Technology Export C&PS ... * Systems Integration * Plant Designs Central Power ... Boiler System - Indirect Fired Cycles - Pressurized ...

  8. WCI Case for Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... technology: It has been calculated that if the thermal efficiency of existing coal-fired power plant worldwide were brought up to current German levels of efficiency, the ...

  9. Energy Department’s Fossil Energy Chief to Tour Western Michigan University’s Clean Coal Research Facilities, Host Business Roundtable

    Broader source: Energy.gov [DOE]

    WASHINGTON  – Tomorrow, Wednesday, June 27, 2012, Assistant Energy Secretary for Fossil Energy Charles McConnell will join Western Michigan University President John M. Dunn and Core Energy CEO Bob...

  10. UNIVERSITY RESEARCH PROGRAMS IN ROBOTICS, TECHNOLOGIES FOR MICROELECTROMECHANICAL SYSTEMS IN DIRECTED STOCKPILE WORK RADIATION AND ENGINEERING CAMPAIGNS - 2005-06 FINAL ANNUAL REPORT

    SciTech Connect (OSTI)

    James S. Tulenko; Dean Schoenfeld; David Hintenlang; Carl Crane; Shannon Ridgeway; Jose Santiago; Charles Scheer

    2006-11-30

    The research performed by the University of Florida (UF) is directed to the development of technologies that can be utilized at a micro-scale in varied environments. Work is focused on micro-scale energy systems, visualization, and mechanical devices. This work will impact the NNSA need related to micro-assembly operations. The URPR activities are executed in a University environment, yet many applications of the resulting technologies may be classified or highly restrictive in nature. The NNSA robotics technologists apply an NNSA needs focus to the URPR research, and actively work to transition relevant research into the deployment projects in which they are involved. This provides a Research to Development to Application structure within which innovative research has maximum opportunity for impact without requiring URPR researchers to be involved in specific NNSA projects. URPR researchers need to be aware of the NNSA applications in order to ensure the research being conducted has relevance, the URPR shall rely upon the NNSA sites for direction.

  11. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  12. Research and development studies for MHD/coal power flow train components. Technical progress report, 1 September 1979-31 August 1980

    SciTech Connect (OSTI)

    Bloom, M. H.

    1980-01-01

    The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to a significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)

  13. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    SciTech Connect (OSTI)

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  14. Coal production, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-12-05

    Coal Production 1987 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. The data presented in this report were collected and published by the Energy Information Administration (EIA), to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (P.L. 93-275) as amended. The 1987 coal production and related data presented in this report were obtained from Form EIA-7A, ''Coal Production Report,'' from companies owning mining operations that produced, processed, or prepared 10,000 or more short tons of coal in 1987. This survey originated at the Bureau of Mines, US Department of the Interior. In 1977, the responsibility for taking the survey was transferred to the EIA under the Department of Energy Organization Act (P.L. 95-91). The data cover 3667 of the 4770 US coal mining operations active in 1987. These mining operations accounted for over 99 percent of total US coal production and represented 77 percent of all US coal mining operations in 1987. This issue is the 12th annual report published by EIA and continues the series formerly included as a chapter in the Minerals Yearbook published by the Bureau of Mines. This report also includes data for the demonstrated reserve base of coal in the United States on January 1, 1988. This is the eighth annual summary on minable coal, pursuant to Section 801 of Public Law 95-620. 18 figs., 105 tabs.

  15. Coal resources of Kyrgyzstan

    SciTech Connect (OSTI)

    Landis, E.R.; Bostick, N.H.; Gluskoter, H.J.; Johnson, E.A.; Harrison, C.D.; Huber, D.W.

    1995-12-31

    The rugged, mountainous country of Kyrgyzstan contains about one-half of the known coal resources of central Asia (a geographic and economic region that also includes Uzbekistan, Tadjikistan and Turkmenistan). Coal of Jurassic age is present in eight regions in Kyrgyzstan in at least 64 different named localities. Significant coal occurrences of about the same age are present in the central Asian countries of Kazakhstan, China, and Russia. Separation of the coal-bearing rocks into individual deposits results more than earth movements before and during formation of the present-day mountains and basins of the country than from deposition in separate basins.Separation was further abetted by deep erosion and removal of the coal-bearing rocks from many areas, followed by covering of the remaining coal-bearing rocks by sands and gravels of Cenozoic age. The total resources of coal in Kyrgyzstan have been reported as about 30 billion tons. In some of the reported localities, the coal resources are known and adequately explored. In other parts of the republic, the coal resources are inadequately understood or largely unexplored. The resource and reserve inventory of Kyrgyzstan is at best incomplete; for some purposes, such as short-term local and long-range national planning, it may be inadequate. Less than 8% of the total estimated resources are categorized as recoverable reserves, and the amount that is economically recoverable is unknown. The coal is largely of subbituminous and high-volatile C bituminous rank, most has low and medium ash and sulfur contents, and coals of higher rank (some with coking qualities) are present in one region. It is recommended that appropriate analyses and tests be made during planning for utilization.

  16. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect (OSTI)

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  17. Converting coal to liquid fuels. [US DOE

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    Liquid fuels play a vital role in the US economy. Oil represents about 40 percent of the energy consumed each year in this country. In many cases, it fills needs for which other energy forms cannot substitute efficiently or economically - in transportation, for example. Despite a current world-wide surplus of oil, conventional petroleum is a depletable resource. It inevitably will become harder and more expensive to extract. Already in the US, most of the cheap, easily reached oil has been found and extracted. Even under optimistic projections of new discoveries, domestic oil production, particularly in the lower 48 states, will most likely continue to drop. A future alternative to conventional petroleum could be liquid fuels made from coal. The technique is called coal liquefaction. From 1 to 3 barrels of oil can be made from each ton of coal. The basic technology is known; the major obstacles in the US have been the high costs of the synthetic oil and the risks of building large, multi-billion dollar first-of-a-kind plants. Yet, as natural petroleum becomes less plentiful and more expensive, oil made from abundant coal could someday become an increasingly important energy option. To prepare for that day, the US government is working with private industries and universities to establish a sound base of technical knowledge in coal liquefaction.

  18. Mechanochemical hydrogenation of coal

    DOE Patents [OSTI]

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  19. Dry piston coal feeder

    DOE Patents [OSTI]

    Hathaway, Thomas J.; Bell, Jr., Harold S.

    1979-01-01

    This invention provides a solids feeder for feeding dry coal to a pressurized gasifier at elevated temperatures substantially without losing gas from the gasifier by providing a lock having a double-acting piston that feeds the coals into the gasifier, traps the gas from escaping, and expels the trapped gas back into the gasifier.

  20. Method for coal liquefaction

    DOE Patents [OSTI]

    Wiser, Wendell H.; Oblad, Alex G.; Shabtai, Joseph S.

    1994-01-01

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  1. Coal liquefaction process

    DOE Patents [OSTI]

    Carr, Norman L.; Moon, William G.; Prudich, Michael E.

    1983-01-01

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  2. Sustainable Coal Use

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coal is a vital energy resource, not only for the United States, but also for many developed and developing economies around the world. Finding ways to use coal cleanly and more efficiently at lower costs is a major R&D challenge, and an ongoing focus of activities by the DOE's Office of Fossil Energy.

  3. State coal profiles, January 1994

    SciTech Connect (OSTI)

    Not Available

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  4. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  5. Coal in China

    SciTech Connect (OSTI)

    Minchener, A.J.

    2005-07-01

    The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

  6. Enzymatic desulfurization of coal

    SciTech Connect (OSTI)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  7. Apparatus and method for feeding coal into a coal gasifier

    DOE Patents [OSTI]

    Bissett, Larry A.; Friggens, Gary R.; McGee, James P.

    1979-01-01

    This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

  8. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fog and Rain in the Amazon Download a printable PDF Submitter: Gentine, P., Columbia University Sobel, A., Columbia University Area of Research: Cloud-Aerosol-Precipitation...

  9. UNIRIB: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the University Radioactive Ion Beam (UNIRIB) consortium is to perform nuclear physics research, and provide training and education. UNIRIB member universities have gained...

  10. Pennsylvania State University Hydrodynamics | Open Energy Information

    Open Energy Info (EERE)

    State University Hydrodynamics Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name Pennsylvania State University Address Applied Research Laboratory, Garfield...

  11. Coal - U.S. Energy Information Administration (EIA) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    IHS. ALL RIGHTS RESERVED. CHINA'S COAL MARKET: Did peak demand come and go? EIA Energy Conference: World Coal Markets JULY 12, 2016 Xizhou Zhou Senior Director Head of Asia Gas, Power & Coal Research +86 10 6533 4536 xizhou.zhou@ihs.com © 2016 IHS. ALL RIGHTS RESERVED. Key implications * China's industrial economy is experiencing a "hard landing" as the economic transition accelerates, impacting major industrial fuels, with coal feeling the most pain. * This long-term

  12. Co-combustion of sludge with coal or wood

    SciTech Connect (OSTI)

    Leckner, B.; Aamand, L.-E.

    2004-07-01

    There are several options for co-combustion of biomass or waste with coal. In all cases the fuel properties are decisive for the success of the arrangement: contents of volatile matter and of potential emission precursors, such as sulphur, nitrogen, chlorine, and heavy metals. The content of alkali in the mineral substance of the fuel is important because of the danger of fouling and corrosion. Research activities at Chalmers University of Technology include several aspects of the related problems areas. An example is given concerning emissions from co-combustion in circulating fluidized beds with coal or wood as base fuels, and with sewage sludge as additional fuel. Two aspects of the properties of sludge are studied: emissions of nitrogen and sulphur oxides as well as of chlorine, because the contents of the precursors to these emissions are high. The possibility of utilizing the phosphorus in sludge as a fertilizer is also discussed. The results show that emissions can be kept below existing emission limits if the fraction of sludge is sufficiently small but the concentration of trace elements in the sludge ash prevents the sludge from being used as a fertilizer. 15 refs., 9 figs., 2 tabs.

  13. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    SciTech Connect (OSTI)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-31

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates.

  14. Robert Gordon University | Open Energy Information

    Open Energy Info (EERE)

    Gordon University Jump to: navigation, search Name: Robert Gordon University Address: Centre for Research in Energy and the Environment The Robert Gordon University Schoolhill...

  15. University of Cape Town | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: University of Cape Town Place: South Africa Product: Teaching and research university. References: University of Cape Town1 This article is a...

  16. University Research Program in Robotics - "Technologies for Micro-Electrical-Mechanical Systems in directed Stockpile Work (DSW) Radiation and Campaigns", Final Technical Annual Report, Project Period 9/1/06 - 8/31/07

    SciTech Connect (OSTI)

    James S. Tulenko; Carl D. Crane

    2007-12-13

    The University Research Program in Robotics (URPR) is an integrated group of universities performing fundamental research that addresses broad-based robotics and automation needs of the NNSA Directed Stockpile Work (DSW) and Campaigns. The URPR mission is to provide improved capabilities in robotics science and engineering to meet the future needs of all weapon systems and other associated NNSA/DOE activities.

  17. Coal in a changing climate

    SciTech Connect (OSTI)

    Lashof, D.A.; Delano, D.; Devine, J.

    2007-02-15

    The NRDC analysis examines the changing climate for coal production and use in the United States and China, the world's two largest producers and consumers of coal. The authors say that the current coal fuel cycle is among the most destructive activities on earth, placing an unacceptable burden on public health and the environment. There is no such thing as 'clean coal.' Our highest priorities must be to avoid increased reliance on coal and to accelerate the transition to an energy future based on efficient use of renewable resources. Energy efficiency and renewable energy resources are technically capable of meeting the demands for energy services in countries that rely on coal. However, more than 500 conventional coal-fired power plants are expected in China in the next eight years alone, and more than 100 are under development in the United States. Because it is very likely that significant coal use will continue during the transition to renewables, it is important that we also take the necessary steps to minimize the destructive effects of coal use. That requires the U.S. and China to take steps now to end destructive mining practices and to apply state of the art pollution controls, including CO{sub 2} control systems, to sources that use coal. Contents of the report are: Introduction; Background (Coal Production; Coal Use); The Toll from Coal (Environmental Effects of Coal Production; Environmental Effects of Coal Transportation); Environmental Effects of Coal Use (Air Pollutants; Other Pollutants; Environmental Effects of Coal Use in China); What Is the Future for Coal? (Reducing Fossil Fuel Dependence; Reducing the Impacts of Coal Production; Reducing Damage From Coal Use; Global Warming and Coal); and Conclusion. 2 tabs.

  18. Technical basis in support of the conversion of the University of Missouri Research Reactor (MURR) core from highly-enriched to low-enriched uranium - core neutron physics

    SciTech Connect (OSTI)

    Stillman, J.; Feldman, E.; Foyto, L; Kutikkad, K; McKibben, J C; Peters, N.; Stevens, J.

    2012-09-01

    This report contains the results of reactor design and performance for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support of the U. S. government.

  19. Coal market momentum converts skeptics

    SciTech Connect (OSTI)

    Fiscor, S.

    2006-01-15

    Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

  20. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator

    SciTech Connect (OSTI)

    Zhong Zhaoping . E-mail: zzhong@seu.edu.cn; Jin Baosheng; Huang Yaji; Zhou Hongcang; Lan Jixiang

    2006-07-01

    This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m{sup 3}/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5 m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10{sup -13} kg/Nm{sup 3} and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries.

  1. Natural mercury isotope variation in coal deposits and organic soils

    SciTech Connect (OSTI)

    Abir, Biswas; Joel D. Blum; Bridget A. Bergquist; Gerald J. Keeler; Zhouqing Xie

    2008-11-15

    There is a need to distinguish among sources of Hg to the atmosphere in order to more fully understand global Hg pollution. In this study we investigate whether coal deposits within the United States, China, and Russia-Kazakhstan, which are three of the five greatest coal-producing regions, have diagnostic Hg isotopic fingerprints that can be used to discriminate among Hg sources. We also investigate the Hg isotopic composition of modern organic soil horizons developed in areas distant from point sources of Hg in North America. Mercury stored in coal deposits displays a wide range of both mass dependent fractionation and mass independent fractionation. {delta}{sup 202}Hg varies in coals by 3{per_thousand} and {Delta}{sup 201}Hg varies by 0.9{per_thousand}. Combining these two Hg isotope signals results in what may be a unique isotopic 'fingerprint' for many coal deposits. Mass independent fractionation of mercury has been demonstrated to occur during photochemical reactions of mercury. This suggests that Hg found in most coal deposits was subjected to photochemical reduction near the Earth's surface prior to deposition. The similarity in MDF and MIF of modern organic soils and coals from North America suggests that Hg deposition from coal may have imprinted an isotopic signature on soils. This research offers a new tool for characterizing mercury inputs from natural and anthropogenic sources to the atmosphere and provides new insights into the geochemistry of mercury in coal and soils. 35 refs., 2 figs., 1 tab.

  2. Aqueous coal slurry

    SciTech Connect (OSTI)

    Berggren, M.H.; Smit, F.J.; Swanson, W.W.

    1989-10-30

    A principal object of the invention is the provision of an aqueous coal slurry containing a dispersant, which is of low-cost and which contains very low or no levels of sodium, potassium, sulfur and other contaminants. In connection with the foregoing object, it is an object of the invention to provide an aqueous slurry containing coal and dextrin as a dispersant and to provide a method of preparing an aqueous coal slurry which includes the step of adding an effective amount of dextrin as a dispersant. The invention consists of certain novel features and a combination of parts hereinafter fully described, and particularly pointed out in the appended claims. 6 tabs.

  3. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, C.H.

    1986-02-11

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  4. Chapter 4 - Coal

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 4 Coal Overview In the International Energy Outlook 2016 (IEO2016) Reference case, coal remains the second-largest energy source worldwide- behind petroleum and other liquids-until 2030. From 2030 through 2040, it is the third-largest energy source, behind both liquid fuels and natural gas. World coal consumption increases from 2012 to 2040 at an average rate of 0.6%/year, from 153 quadrillion Btu in 2012 to 169

  5. Coal liquefaction process

    DOE Patents [OSTI]

    Wright, Charles H.

    1986-01-01

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  6. Underground gasification of coal

    DOE Patents [OSTI]

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  7. Measurement and modeling of advanced coal conversion processes. 23rd quarterly report, April 1, 1992--June 30, 1992

    SciTech Connect (OSTI)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S.

    1992-12-31

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This technology is important to reduce the technical and economic risks inherent in utilizing coal, a feedstock whose variable and often unexpected behavior presents a significant challenge. This program will merge significant advances made at Advanced Fuel Research, Inc. (AFR) in measuring and quantitatively describing the mechanisms in coal conversion behavior, with technology being developed at Brigham Young University (BYU) in comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors. The foundation to describe coal-specific conversion behavior is AFR`s Functional Group (FG) and Devolatilization, Vaporization and Crosslinking (DVC) models, developed under previous and on-going METC sponsored programs. These models have demonstrated the capability to describe the time dependent evolution of individual gas species, and the amount and characteristics of tar and char. The combined FG-DVC model will be integrated with BYU`s comprehensive two-dimensional reactor model, PCGC-2, which is currently the most widely used reactor simulation for combustion or gasification. The program includes: (i) validation of the submodels by comparison with laboratory data obtained in this program, (ii) extensive validation of the modified comprehensive code by comparison of predicted results with data from bench-scale and process scale investigations of gasification, mild gasification and combustion of coal or coal-derived products in heat engines, and (iii) development of well documented user friendly software applicable to a ``workstation`` environment.

  8. Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, September 30, 1992

    SciTech Connect (OSTI)

    Doyle, F.M.

    1992-12-31

    The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville {number_sign}2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

  9. DOE - Fossil Energy: Coal Mining and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mining Fossil Energy Study Guides Coal Mining and Transportation Coal Miners - One type of mining, called "longwall mining", uses a rotating blade to shear coal away from the ...

  10. Puda Coal Inc | Open Energy Information

    Open Energy Info (EERE)

    Puda Coal Inc Jump to: navigation, search Name: Puda Coal, Inc Place: Taiyuan, Shaanxi Province, China Product: Specializes in coal preparation by applying a water jig washing...

  11. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 3 (April 2016) Archived Editions: Coal ...

  12. Enzymantic Conversion of Coal to Liquid Fuels

    SciTech Connect (OSTI)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time

  13. Stanford University | OSTI, US Dept of Energy, Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    Social Media Stanford University's YouTube Channel Connect with Stanford University on Facebook Stay in touch with Stanford University on Twitter Standford University research news ...

  14. INDEPENDENT CONFIRMATORY SURVEY OF THE NUCLEAR RESEARCH LABORATORY AT THE UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN, ILLINOIS

    SciTech Connect (OSTI)

    EVAN M. HARPENAU

    2012-06-28

    ORAU conducted confirmatory survey activities within the NRL at the University during the week of May 7, 2012. The survey activities included visual inspections/ assessments, surface activity measurements, and volumetric concrete sampling activities. During the course of the confirmatory activities, ORAU noted several issues with the survey-for-release activities performed at the University. Issues included inconsistencies with: survey unit classifications were not designated according to Multi-Agency Radiation Survey and Site Investigation Manual guidance; survey instrument calibrations were not representative of the radionuclides of concern; calculations for instrumentation detection capabilities did not align with the release criteria discussed in the licensee’s survey guidance documents; total surface activity measurements were in excess of the release criteria; and Co-60 and Eu-152 concentrations in the confirmatory concrete samples were above their respective guidelines. Based on the significant programmatic issues identified, ORAU cannot independently conclude that the NRL satisfied the requirements and limits for release of materials without radiological restrictions.

  15. Quarterly coal report

    SciTech Connect (OSTI)

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  16. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

    1993-04-06

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

  17. Delineating coal market regions

    SciTech Connect (OSTI)

    Solomon, B.D.; Pyrdol, J.J.

    1986-04-01

    This study addresses the delineation of US coal market regions and their evolution since the 1973 Arab oil embargo. Dichotomizing into compliance (low sulfur) and high sulfur coal deliveries, market regions are generated for 1973, 1977, and 1983. Focus is restricted to steam coal shipments to electric utilities, which currently account for over 80% of the total domestic market. A two-stage method is used. First, cluster analyses are performed on the origin-destination shipments data to generate baseline regions. This is followed by multiple regression analyses on CIF delivered price data for 1983. Sensitivity analysis on the configuration of the regions is also conducted, and some thoughts on the behavior of coal markets conclude the paper. 37 references, 6 figures, 2 tables.

  18. Proximate analysis of coal

    SciTech Connect (OSTI)

    Donahue, C.J.; Rais, E.A.

    2009-02-15

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

  19. Coal markets squeeze producers

    SciTech Connect (OSTI)

    Ryan, M.

    2005-12-01

    Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

  20. Aqueous coal slurry

    DOE Patents [OSTI]

    Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

    1993-01-01

    An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.