Powered by Deep Web Technologies
Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

2

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

3

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

4

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

5

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

6

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

7

Passive solar space heating  

SciTech Connect (OSTI)

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

8

Indoor unit for electric heat pump  

DOE Patents [OSTI]

An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

1984-05-22T23:59:59.000Z

9

Indoor unit for electric heat pump  

DOE Patents [OSTI]

An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.

Draper, Robert (Churchill, PA); Lackey, Robert S. (Pittsburgh, PA); Fagan, Jr., Thomas J. (Penn HIlls, PA); Veyo, Stephen E. (Murrysville, PA); Humphrey, Joseph R. (Grand Rapids, MI)

1984-01-01T23:59:59.000Z

10

"Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status2.94.984 Space

11

"Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status2.94.984 Space5

12

"Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status2.94.98434 Space

13

"Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status2.94.98434 Space5

14

Solar air heating system for combined DHW and space heating  

E-Print Network [OSTI]

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren �stergaard Jensen

15

Water and Space Heating Heat Pumps  

E-Print Network [OSTI]

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

16

United Nations Human Space Technology Initiative (HSTI)  

E-Print Network [OSTI]

The Human Space Technology Initiative was launched in 2010 within the framework of the United Nations Programme on Space Applications implemented by the Office for Outer Space Affairs of the United Nations. It aims to involve more countries in activities related to human spaceflight and space exploration and to increase the benefits from the outcome of such activities through international cooperation, to make space exploration a truly international effort. The role of the Initiative in these efforts is to provide a platform to exchange information, foster collaboration between partners from spacefaring and non-spacefaring countries, and encourage emerging and developing countries to take part in space research and benefit from space applications. The Initiative organizes expert meetings and workshops annually to raise awareness of the current status of space exploration activities as well as of the benefits of utilizing human space technology and its applications. The Initiative is also carrying out primary ...

Ochiai, M; Steffens, H; Balogh, W; Haubold, H J; Othman, M; Doi, T

2015-01-01T23:59:59.000Z

17

Heat pump system with selective space cooling  

DOE Patents [OSTI]

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

18

Heat pump system with selective space cooling  

DOE Patents [OSTI]

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

19

Industrial and Commercial Heat Pump Applications in the United States  

E-Print Network [OSTI]

compression cycle. Using readily available fluorocarbon refrigerants as the heat pump working fluid, this cycle is commonly used because of its wide application opportunities. Compressed Vapors Heat Pump Compressor Heat Sink PrOCess (Condenser... and refrigerants most commonly used and the open-cycle mechanical vapor compression heat pumps. Waste heat sources, heat loads served by heat pumps--and typical applications using heat pumps for large-scale space heating, domestic water heating, and industrial...

Niess, R. C.

20

Modesto Memorial Hospital Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Memorial Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility...

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

22

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's...

23

Senior Citizens' Center Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Senior Citizens' Center Space Heating Low Temperature Geothermal Facility...

24

Steamboat Villa Hot Springs Spa Space Heating Low Temperature...  

Open Energy Info (EERE)

Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal...

25

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature...

26

Warm Springs State Hospital Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility...

27

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner...

28

Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Calientes Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Agua Calientes Trailer Park Space Heating Low Temperature Geothermal...

29

Wiesbaden Motel & Health Resort Space Heating Low Temperature...  

Open Energy Info (EERE)

Motel & Health Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal...

30

Pagosa Springs Private Wells Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility...

31

Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility...

32

Hot Springs National Park Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

National Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility...

33

Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...  

Open Energy Info (EERE)

Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature...

34

Salida Hot Springs (Poncha Spring) Space Heating Low Temperature...  

Open Energy Info (EERE)

Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low...

35

Klamath Apartment Buildings (13) Space Heating Low Temperature...  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature...

36

Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Springs Ranch Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Waunita Hot Springs Ranch Space Heating Low Temperature Geothermal Facility...

37

Merle West Medical Center Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal...

38

Maywood Industries of Oregon Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature...

39

Cedarville Elementary & High School Space Heating Low Temperature...  

Open Energy Info (EERE)

Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature...

40

Ongoing Space Nuclear Systems Development in the United States  

SciTech Connect (OSTI)

Reliable, long-life power systems are required for ambitious space exploration missions. Nuclear power and propulsion options can enable a bold, new set of missions and introduce propulsion capabilities to achieve access to science destinations that are not possible with more conventional systems. Space nuclear power options can be divided into three main categories: radioisotope power for heating or low power applications; fission power systems for non-terrestrial surface application or for spacecraft power; and fission power systems for electric propulsion or direct thermal propulsion. Each of these areas has been investigated in the United States since the 1950s, achieving various stages of development. While some nuclear systems have achieved flight deployment, others continue to be researched today. This paper will provide a brief overview of historical space nuclear programs in the U.S. and will provide a summary of the ongoing space nuclear systems research, development, and deployment in the United States.

S. Bragg-Sitton; J. Werner; S. Johnson; Michael G. Houts; Donald T. Palac; Lee S. Mason; David I. Poston; A. Lou Qualls

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Shared Space vs. In-Unit Upgrades in Multifamily Buildings |...  

Energy Savers [EERE]

Shared Space vs. In-Unit Upgrades in Multifamily Buildings Shared Space vs. In-Unit Upgrades in Multifamily Buildings Better Buildings Neighborhood Program Multifamily Peer...

42

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

SciTech Connect (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

43

Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Oregon Institute of Technology's Geo-Heat Center1 Fairmont Hot Springs Resort is a Space Heating low temperature direct use geothermal facility in Fairmont, Montana. This...

44

East Middle School and Cayuga Community College Space Heating...  

Open Energy Info (EERE)

Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name East Middle School and Cayuga Community College Space...

45

GEA Heat Exchangers GEA Searle Cooler and Condensing Unit Ranges  

E-Print Network [OSTI]

have high efficiency EC fans as standard across the range. All our commercial unit coolers have whiteUnits GEA Searle Condensing Units are supplied as standard to a high specification with a complete controlGEA Heat Exchangers GEA Searle Cooler and Condensing Unit Ranges Top-level engineering solutions

Frandsen, Søren

46

Electric heating units in pollination bags avoid damage  

E-Print Network [OSTI]

Electric heating units in pollination bags avoid damage to flowers by spring frost J. CH. FERRAND n'Orlgans Ardon, F 45160 Olivet Summary An effective, cheap and simple heating device was designed by INRA heating, Larix. Controlled crosses are essential for forest tree breeding, but spring frost can destroy

Paris-Sud XI, Université de

47

INTEGRATED CO2 HEAT PUMP SYSTEMS FOR SPACE HEATING AND HOT WATER HEATING IN LOW-ENERGY HOUSES AND  

E-Print Network [OSTI]

designed as stand-alone systems, i.e. a heat pump water heater (HPWH) in combination with separate units

J. Stene

48

Increase of unit efficiency by improved waste heat recovery  

SciTech Connect (OSTI)

For coal-fired power plants with flue gas desulfurization by wet scrubbing and desulfurized exhaust gas discharge via cooling tower, a further improvement of new power plant efficiency is possible by exhaust gas heat recovery. The waste heat of exhaust gas is extracted in a flue gas cooler before the wet scrubber and recovered for combustion air and/or feedwater heating by either direct or indirect coupling of heat transfer. Different process configurations for heat recovery system are described and evaluated with regard to net unit improvement. For unite firing bituminous coal an increase of net unit efficiency of 0.25 to 0.7 percentage points and for lignite 0.7 to 1.6 percentage points can be realized depending on the process configurations of the heat recovery systems.

Bauer, G.; Lankes, F.

1998-07-01T23:59:59.000Z

49

EnergyUnited- Residential Energy Efficient Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

EnergyUnited offers rebates to residential customers who upgrade to high efficiency heat pumps. Rebates range from $150 - $300, varying by efficiency. The rebate form can be found on the program...

50

Roosevelt Warm Springs Institute for Rehab. Space Heating Low...  

Open Energy Info (EERE)

Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute...

51

Passive Solar Building Design and Solar Thermal Space Heating Webinar  

Broader source: Energy.gov [DOE]

Webinar of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's presentation about passive solar building design and solar thermal space heating technologies and applications.

52

Crude Distillation Unit Heat Recovery Study  

E-Print Network [OSTI]

to 426?F. There is no preheat of tower bottoms. All heat beyond the prefractionator comes from fired furnaces. But there is steam generation at 25 pounds pressure from hot oil and an approved project to generate ISO-pound steam from flue gas. Pipe Still... Sinks Sources Difference Disposition Sinks 110 (110) (213) Furnace Duty 400/690 430/720 255 152 (103) l50-Pound Steam Production 365/400 395/430 25 44 19 50-Pound Steam Production 300/365 330/395 47 80 33 29 25-Pound Steam...

John, P.

1979-01-01T23:59:59.000Z

53

1 CO2 Heat Pump System for Space Heating and Hot Water Heating in Low-Energy Houses and Passive  

E-Print Network [OSTI]

designed as a stand-alone system, i.e. a heat pump water heater in combination with a separate unit for

J. Stene

2008-01-01T23:59:59.000Z

54

Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States  

SciTech Connect (OSTI)

Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

2013-07-01T23:59:59.000Z

55

Outdoor unit construction for an electric heat pump  

DOE Patents [OSTI]

The outdoor unit for an electric heat pump is provided with an upper portion containing propeller fan means for drawing air through the lower portion containing refrigerant coil means in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed. 4 figs.

Draper, R.; Lackey, R.S.

1984-09-11T23:59:59.000Z

56

Outdoor unit construction for an electric heat pump  

DOE Patents [OSTI]

The outdoor unit for an electric heat pump is provided with an upper portion 10 containing propeller fan means 14 for drawing air through the lower portion 12 containing refrigerant coil means 16 in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs 64 which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed.

Draper, Robert (Pittsburgh, PA); Lackey, Robert S. (Pittsburgh, PA)

1984-01-01T23:59:59.000Z

57

Performance of Gas-Engine Driven Heat Pump Unit  

SciTech Connect (OSTI)

Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater operating efficiency compared to conventional electric motor-driven units (SCGC 1998). In Japan, many hundreds of thousands of natural gas-driven heat pumps have been sold (typically 40,000 systems annually) (Yahagi et al. 2006). The goal of this program is to develop dependable and energy efficient GHPs suitable for U.S. commercial rooftop applications (the single largest commercial product segment). This study describes the laboratory performance evaluation of an integrated 10-ton GHP rooftop unit (a 900cc Daihatsu-Aisin natural gas engine) which uses R410A as the refrigerant (GEDAC No.23). ORNL Thermally-Activated Heat Pump (TAHP) Environmental Chambers were used to evaluate this unit in a controlled laboratory environment.

Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

2008-09-30T23:59:59.000Z

58

Vacuum Induction Melting Unit Induction heating is a process wherein induced eddy currents heat conductive materials. This heating  

E-Print Network [OSTI]

graphite) crucible inside the coil. The coil serves as the transformer primary and the part to be heated Principle: An outline of the induction melting system is presented here. A solid state RF power supply sends can be melted at a time. There are three main parts to the system: chiller, power unit and vacuum unit

Subramaniam, Anandh

59

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network [OSTI]

to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy...

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

60

Thermosyphon coil arrangement for heat pump outdoor unit  

DOE Patents [OSTI]

For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.

Draper, R.

1984-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thermosyphon coil arrangement for heat pump outdoor unit  

DOE Patents [OSTI]

For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.

Draper, Robert (Churchill, PA)

1984-01-01T23:59:59.000Z

62

Low-Cost Gas Heat Pump for Building Space Heating  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartmentSystem for

63

Traction sheave elevator, hoisting unit and machine space  

DOE Patents [OSTI]

Traction sheave elevator consisting of an elevator car moving along elevator guide rails, a counterweight moving along counterweight guide rails, a set of hoisting ropes (3) on which the elevator car and counterweight are suspended, and a drive machine unit (6) driving a traction sheave (7) acting on the hoisting ropes (3) and placed in the elevator shaft. The drive machine unit (6) is of a flat construction. A wall of the elevator shaft is provided with a machine space with its open side facing towards the shaft, the essential parts of the drive machine unit (6) being placed in the space. The hoisting unit (9) of the traction sheave elevator consists of a substantially discoidal drive machine unit (6) and an instrument panel (8) mounted on the frame (20) of the hoisting unit.

Hakala, Harri (Hyvinkaa, FI); Mustalahti, Jorma (Hyvinkaa, FI); Aulanko, Esko (Kerava, FI)

2000-01-01T23:59:59.000Z

64

Retrofitting Combined Space and Water Heating Systems: Laboratory Tests  

SciTech Connect (OSTI)

Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

2012-10-01T23:59:59.000Z

65

Heat pump augmented radiator for low-temperature space applications  

SciTech Connect (OSTI)

Closed-cycle, space-based heat rejection systems depend solely on radiation to achieve their heat dissipation function. Since the payload heat rejection temperature is typically 50 K above that of the radiation sink in near earth orbit, the size and mass of these systems can be appreciable. Size (and potentially mass) reductions are achievable by increasing the rejection temperature via a heat pump. Two heat pump concept were examined to determine if radiator area reductions could be realized without increasing the mass of the heat rejection system. The first was a conventional, electrically-driven vapor compression system. The second is an innovative concept using a solid-vapor adsorption system driven by reject heat from the prime power system. The mass and radiator area of the heat pumpradiator systems were compared to that of a radiator only system to determine the merit of the heat pump concepts. Results for the compressor system indicated that the mass minimum occured at a temperature lift of about 50 K and radiator area reductions of 35% were realized. With a radiator specific mass of 10 kgm/sup 2/, the heat pump system is 15% higher than the radiator only baseline system. The complex compound chemisorption systems showed more promising results. Using water vapor as the working fluid in a single stage heat amplifier resulted in optimal temperature lifts exceeding 150 K. This resulted in a radiator area reduction of 83% with a mass reduction of 64%. 7 refs., 9 figs.

Olszewski, M.; Rockenfeller, U.

1988-01-01T23:59:59.000Z

66

Solar space heating installed at Kansas City, Kansas. Final report  

SciTech Connect (OSTI)

The solar energy system was constructed with the new 48,800 square feet warehouse to heat the warehouse area of about 39,000 square feet while the auxiliary energy system heats the office area of about 9800 square feet. The building is divided into 20 equal units, and each has its own solar system. The modular design permits the flexibility of combining multiple units to form offices or warehouses of various size floor areas as required by a tenant. Each unit has 20 collectors which are mounted in a single row. The collectors, manufactured by Solaron Corporation, are double glazed flat plate collectors with a gross area of 7800 ft/sup 2/. Air is heated either through the collectors or by the electric resistance duct coils. No freeze protection or storage is required for this system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

Not Available

1981-05-01T23:59:59.000Z

67

Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery  

SciTech Connect (OSTI)

An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

2008-06-20T23:59:59.000Z

68

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive Solar Space Heat Incentives

69

Evaluating Russian space nuclear reactor technology for United States applications  

SciTech Connect (OSTI)

Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch.

Polansky, G.F. [Phillips Lab., Albuquerque, NM (United States); Schmidt, G.L. [New Mexico Engineering Research Institute, Albuquerque, NM (United States); Voss, S.S. [Los Alamos National Lab., NM (United States); Reynolds, E.L. [Applied Physics Lab., Laurel, MD (United States)

1994-08-01T23:59:59.000Z

70

Modoc High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo,Energy Information Modoc High School Space Heating Low

71

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network [OSTI]

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

72

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's  

E-Print Network [OSTI]

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use of vapor compression system configurations including multi-functional integrated heat pumps, multi

Oak Ridge National Laboratory

73

Drying and first heat up of a kiln unit with cyclone heat exchangers with a lining of refractory concretes  

SciTech Connect (OSTI)

This paper describes an accelerated drying and first heatup cycle developed for a kiln unit for dry production of clinker with a capacity of 3000 tons/day with cyclone heat exchangers of refractory concretes of high-alumina cement with a chamotte aggregate. The drying of the lining and the heating of the unit were done in 4 days. The results of the work indicate the desirability of use of refractory concretes for lining the cyclone heat exchangers of kiln units for dry production of clinker.

Petrov-Denisov, V.G.; Matveev, Y.V.; Pichkov, A.M.; Pozdnyakova, N.K.; Shakhov, I.I.

1985-11-01T23:59:59.000Z

74

Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQProved Reserves,0050516,"AL",10610,"AlbertvilleReservesFeet)Product: Total0. Space-Heating

75

Close-spaced thermionic converters with active spacing control and heat-pipe isothermal emitters  

SciTech Connect (OSTI)

Thermionic converters with interelectrode gaps smaller than 10 microns are capable of substantial performance improvements over conventional ignited mode diodes. Previous devices which have demonstrated operation at such small gaps have done so at low power densities and emitter temperatures. Higher power operation requires overcoming two primary design issues: thermal distortion of the emitter due to temperature gradients and degradation of the in-gap spacers at higher emitter temperatures. This work describes two innovations for solution of these issues. The issue of thermal distortion was addressed by an isothermal emitter incorporating a heat-pipe into its structure. Such a heat-pipe emitter, with a single-crystal emitting surface, was fabricated and characterized. Finite-element computational modeling was used to analyze its distortion with an applied heat flux. The calculations suggested that thermal distortion would be significantly reduced as compared with a solid emitter. Ongoing work and preliminary experimental results are described for a system of active interelectrode gap control. In the present design an integral transducer determines the interelectrode gap of the converter. Initial designs for spacing actuators and their required cesium vapor seals are discussed. A novel hot-shell converter design incorporating active spacing control and low-temperature seals is presented. A converter incorporating the above features would be capable of near ideal-converter performance at high power densities. In addition, active spacing control can potentially completely eliminate short-circuit failures in thermionic converter systems.

Fitzpatrick, G.O.; Koester, J.K.; Chang, J.; Britt, E.J.; McVey, J.B. [Space Power, Inc., San Jose, CA (United States)

1996-12-31T23:59:59.000Z

76

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Year of Construction, 2005" " Million U.S. Housing Units" ,,"Year of Construction" ,"Housing Units (millions)" ,,"Before 1940","1940 to...

77

Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building  

E-Print Network [OSTI]

ICEBO2006, Shenzhen, China Heating technologies fo r energy efficiency Vol.III-3-4 Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building Guohui Feng Guangyu Cao Li Gang Ph.D. Ph... achieve above 95%. Since not heating up indoor air, it is specially suited for heating of factory buildings where the conditions of heat preservation and sealing are poor and their gates are opened frequently. The off-on of radiation heating system...

Feng, G.; Cao, G.; Gang, L.

2006-01-01T23:59:59.000Z

78

Utilizing a Russian space nuclear reactor for a United States space mission: Systems integration issues  

SciTech Connect (OSTI)

The Nuclear Electric Propulsion Space Test Program (NEPSTP) has developed a cooperative relationship with several institutes of the former Soviet Union to evaluate Russian space hardware on a US spacecraft One component is the Topaz II Nuclear Power System; a built and flight qualified nuclear reactor that has yet to be tested in space. The access to the Topaz II reactor provides the NEPSTP with a rare opportunity; to conduct an early flight demonstration of nuclear electric propulsion at a relatively low cost. This opportunity, however, is not without challenges. Topaz II was designed to be compatible with Russian spacecraft and launch vehicles. It was manufactured and flight qualified by Russian techniques and standards and conforms to safety requirements of the former Soviet Union, not the United States. As it is desired to make minimal modifications to the Topaz II, integrating the reactor system with a United States spacecraft and launch vehicle presents an engineering challenge. This paper documents the lessons teamed regarding the integration of reactor based spacecraft and also some insight about integrating Russian hardware. It examines the planned integration flow along with specific reactor requirements that affect the spacecraft integration including American-Russian space system compatibility.

Reynolds, E.; Schaefer, E. [Johns Hopkins Univ., Laurel, MD (United States). Applied Physics Lab.; Polansky, G.; Lacy, J. [Phillips Lab., Albuquerque, NM (United States); Bocharov, A. [GDBMB, St. Petersburg (Russian Federation)

1993-09-30T23:59:59.000Z

79

Heat extraction for the CSPonD thermal storage unit  

E-Print Network [OSTI]

Three coiled tube heat exchanger prototypes were designed to extract heat from containers holding 0.5 kg, 2.3 kg, and 10.5 kg of Sodium Nitrate-Potassium Nitrate salt. All of the prototypes were left with an open surface ...

Rojas, Folkers Eduardo

2011-01-01T23:59:59.000Z

80

Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems  

SciTech Connect (OSTI)

This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

Rudd, A.

2012-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

City of Twenty-Nine Palms Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Palms Sector Geothermal energy Type Space Heating Location Twenty-Nine Palms, California Coordinates 34.1355582, -116.0541689 Loading map... "minzoom":false,"mappingservice":"...

82

"Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Survey. " " Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics" "Table HC8.5 Space Heating...

83

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents [OSTI]

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

Jardine, D.M.

1983-03-22T23:59:59.000Z

84

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents [OSTI]

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

Jardine, Douglas M. (Colorado Springs, CO)

1983-01-01T23:59:59.000Z

85

Space Heating and Cooling Products and Services | Department...  

Energy Savers [EERE]

to allow for the use of central heating and air conditioning. Publications Directory American Society of Heating, Refrigerating and Air-Conditioning Engineers Resource guide...

86

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

87

United Nations Basic Space Science Initiative (UNBSSI) 1991-2012 and Beyond  

E-Print Network [OSTI]

This paper contains an overview and summary on the achievements of the United Nations basic space science initiative in terms of donated and provided planetariums, astronomical telescopes, and space weather instruments, particularly operating in developing nations. This scientific equipment has been made available to respective host countries, particularly developing nations, through the series of twenty basic space science workshops, organized through the United Nations Programme on Space Applications since 1991. Organized by the United Nations, the European Space Agency (ESA), the National Aeronautics and Space Administration (NASA) of the United States of America, and the Japan Aerospace Exploration Agency (JAXA), the basic space science workshops were organized as a series of workshops that focused on basic space science (1991-2004), the International Heliophysical Year 2007 (2005-2009), and the International Space Weather Initiative (2010-2012) proposed by the Committee on the Peaceful Uses of Outer Spac...

Mathai, A M; Balogh, W R

2015-01-01T23:59:59.000Z

88

Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)  

SciTech Connect (OSTI)

This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

Not Available

2014-05-01T23:59:59.000Z

89

Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort  

SciTech Connect (OSTI)

Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homes’ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

2014-07-21T23:59:59.000Z

90

A simplistic model of cyclic heat transfer phenomena in closed spaces  

SciTech Connect (OSTI)

Cyclic heat transfer inside closed spaces is investigated analytically using a simple heat transfer model. The model consists of a gas layer exchanging heat with two bounding parallel walls that pulsate against each other in the transverse direction. Correlations for the magnitude and the phase lag of the heat transfer are obtained. Also, an expression for the power loss due to the cyclic heat transfer is presented. It is shown that the loss approaches zero as the heat transfer process approaches either isothermal or adiabatic conditions. The power loss is shown to be a strong function of the phase angle between the bulk gas temperature and the heat transfer.

Lee, K.

1983-08-01T23:59:59.000Z

91

Comparison of Advanced Residential Water Heating Technologies in the United States  

SciTech Connect (OSTI)

Gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the US installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many preexisting models were used, new models of condensing and heat pump water heaters were created specifically for this work.

Maguire, J.; Fang, X.; Wilson, E.

2013-05-01T23:59:59.000Z

92

SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild  

E-Print Network [OSTI]

#12;SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild Energy Division Oak Ridge National Laboratory it*~~ ~Oak Ridge, Tennessee ABSTRACT Because of the heat pump energy research organiza- tions. This paper presents a survey of heat pump RD&D projects with special

Oak Ridge National Laboratory

93

Irregular spacing of heat sources for treating hydrocarbon containing formations  

DOE Patents [OSTI]

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

94

New waste-heat refrigeration unit cuts flaring, reduces pollution  

SciTech Connect (OSTI)

Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

Brant, B.; Brueske, S. [Planetec Utility Services Co., Inc., Evergreen, CO (United States); Erickson, D.; Papar, R. [Energy Concepts Co., Annapolis, MD (United States)

1998-05-18T23:59:59.000Z

95

On Variations of Space-heating Energy Use in Office Buildings  

SciTech Connect (OSTI)

Space heating is the largest energy end use, consuming more than 7 quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings.

Lin, Hung-Wen; Hong, Tianzhen

2013-05-01T23:59:59.000Z

96

Membrane heat pipe development for space radiator applications  

SciTech Connect (OSTI)

A self-deploying membrane heat pipe (SMHP) is being designed and fabricated to operate in an in-cabin experiment aboard a STS flight. The heat pipe comprises a mylar membrane with a woven fabric arterial wick and R-11 as the working fluid. Preliminary results indicate that this SMHP design will successfully expand and retract in response to an applied heat load; the retraction force is provided by a constant force spring.

Woloshun, K.; Merrigan, M.

1986-01-01T23:59:59.000Z

97

Lightning Dock Geothermal Space Heating Project: Lightning Dock...  

Open Energy Info (EERE)

geothermal greenhouse and home heating systems, which consisted of pumping geothermal water and steam through passive steam heaters, and convert the systems to one using modern...

98

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

SciTech Connect (OSTI)

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

99

Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application  

SciTech Connect (OSTI)

In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

100

Development of a coal fired pulse combustor for residential space heating. Technical progress report, July--September 1987  

SciTech Connect (OSTI)

The systematic development of the residential combustion system is divided into three phases. Only Phase I is detailed here. Phase I constitutes the design, fabrication, testing, and evaluation of a pulse combustor sized for residential space heating. Phase II is an optional phase to develop an integrated system including a heat exchanger. Phase III is projected as a field test of the integrated coal-fired residential space heater. The Phase I effort was nearing completion during this reporting period and a final report is in preparation. The configuration testing was completed early in the period and based upon results of the configuration tests, an optimized configuration for the experimental development testing was chosen. The refractory-lined chambers were fabricated and tested from mid-September through early October. The tandem unit was operated on dry micromized coal without support gas or excitation air for periods lasting from one to three hours. Performance was stable and turndown ratios of 3:1 were achieved during the first three-hour test. A early commercial residential heating system configuration has been identified on the basis of the development testing conducted throughout the first phase of this effort. The development effort indicates that the residential unit goals are achievable with some additional product improvement effort to increase carbon burn-out efficiency, reduce CO emissions and develop a reliable and compact dry, ultrafine coal feed system (not included in the present effort).

NONE

1987-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

National Aeronautics and Space Administration Habitat Demonstration Unit  

E-Print Network [OSTI]

and in conjunction with Earth-based analog recycling, regulating temperature, preserving research from the Desert Architecture Team. The project employs a multi-center team ­ led by NASA's Johnson Space Center ­ that pulls

102

Sodium Based Heat Pipe Modules for Space Reactor Concepts: Stainless Steel SAFE-100 Core  

SciTech Connect (OSTI)

A heat pipe cooled reactor is one of several candidate reactor cores being considered for advanced space power and propulsion systems to support future space exploration applications. Long life heat pipe modules, with designs verified through a combination of theoretical analysis and experimental lifetime evaluations, would be necessary to establish the viability of any of these candidates, including the heat pipe reactor option. A hardware-based program was initiated to establish the infrastructure necessary to build heat pipe modules. This effort, initiated by Los Alamos National Laboratory and referred to as the Safe Affordable Fission Engine (SAFE) project, set out to fabricate and perform non-nuclear testing on a modular heat pipe reactor prototype that can provide 100-kWt from the core to an energy conversion system at 700 deg. C. Prototypic heat pipe hardware was designed, fabricated, filled, closed-out and acceptance tested. (authors)

Martin, James J.; Reid, Robert S. [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

2004-07-01T23:59:59.000Z

103

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolarList ofPassive SolarRoofs IncentivesListHeat

104

Enhancement of Pool Boiling Heat Transfer in Confined Space  

E-Print Network [OSTI]

on pool boiling. In the study, confinement was achieved by placing a flat plate over heated surface. The flat plate has a hole in the middle, and there is a gap between the flat plate and the heater. The diameters of hole are 2 mm, 3 mm, and 4 mm; the gap...

Hsu, Chia-Hsiang

2014-05-05T23:59:59.000Z

105

System for thermal energy storage, space heating and cooling and power conversion  

DOE Patents [OSTI]

An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

1981-04-21T23:59:59.000Z

106

Lightning Dock Geothermal Space Heating Project: Lightning Dock KGRA, New  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) Jump to: navigation,Beach

107

Trade-offs between NO{sub x} heat rate and opacity at Morgantown Unit 2  

SciTech Connect (OSTI)

In work carried out at Morgantown Unit 2, PEPCO and Lehigh University developed techniques for optimizing the operation of an ABB-CE LNCFS III low NO{sub x} firing system. Because of marginal ESP capacity, the ability to reduce NO{sub x} is limited by opacity excursions at this unit. Using a parametric boiler testing approach, and guided by neural network techniques for analysis of the data, control settings were identified which minimize the full load heat rate as a function of the target NO{sub x} level, subject to a stack opacity constraint.

D`Agostini, M.; Walsh, R.; Eskenazi, D.; Levy, E. [Lehigh Univ., Bethlehem, PA (United States)] [and others

1996-05-01T23:59:59.000Z

108

General-purpose heat source project and space nuclear safety and fuels program. Progress report  

SciTech Connect (OSTI)

Studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two /sup 238/PuO/sub 2/ pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported.

Maraman, W.J.

1980-02-01T23:59:59.000Z

109

Printed in the United States of America. Available from National Technical Information Service  

E-Print Network [OSTI]

Tests with Outdoor Fan Coil Unit ............. ................. 2 1.2.1 Space and water heating ....................... ... ........ .......................... 10 4. Outdoor Fan Coil Unit Tests ...... ......... ......... . ........................ . 11 4

Oak Ridge National Laboratory

110

Performance of active solar space-heating systems, 1980-1981 heating season  

SciTech Connect (OSTI)

Data are provided on 32 solar heating sites in the National Solar Data Network (NSDN). Of these, comprehensive data are included for 14 sites which cover a range of system types and solar applications. A brief description of the remaining sites is included along with system problems experienced which prevented comprehensive seasonal analyses. Tables and discussions of individual site parameters such as collector areas, storage tank sizes, manufacturers, building dimensions, etc. are provided. Tables and summaries of 1980-1981 heating season data are also provided. Analysis results are presented in graphic form to highlight key summary information. Performance indices are graphed for two major groups of collectors - liquid and air. Comparative results of multiple NSDN systems' operation for the 1980-1981 heating season are summarized with discussions of specific cases and conclusions which may be drawn from the data. (LEW)

Welch, K.; Kendall, P.; Pakkala, P.; Cramer, M.

1981-01-01T23:59:59.000Z

111

Space Heating and Cooling Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServices ServicesRenewableSolar WaterSpace

112

Geothermal Well and Heat Flow Data for the United States (Southern Methodist University (SMU) Geothermal Laboratory)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Southern Methodist University makes two databases and several detailed maps available. The Regional Heat Flow Database for the United States contains information on primarily regional or background wells that determine the heat flow for the United States; temperature gradients and conductivity are used to generate heat flow measurements. Information on geology of the location, porosity, thermal conductivity, water table depth, etc. are also included when known. There are usually three data files for each state or region. The first files were generated in 1989 for the data base creating the Decade of North America Geology (DNAG) Geothermal Map. The second set is from 1996 when the data base was officially updated for the Department of Energy. The third set is from 1999 when the Western U.S. High Temperature Geothermal data base was completed. As new data is received, the files continue to be updated. The second major resource is the Western Geothermal Areas Database, a database of over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean. The majority of the data are from company documents, well logs, and publications with drilling dates ranging from 1960 to 2000. Many of the wells were not previously accessible to the public. Users will need to register, but will then have free, open access to the databases. The contents of each database can be viewed and downloaded as Excel spreadsheets. See also the heat flow maps at http://www.smu.edu/geothermal/heatflow/heatflow.htm

Blackwell, D.D. and others

113

Application analysis of ground source heat pumps in building space conditioning  

SciTech Connect (OSTI)

The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

Qian, Hua; Wang, Yungang

2013-07-01T23:59:59.000Z

114

Heat pipe cooled reactors for multi-kilowatt space power supplies  

SciTech Connect (OSTI)

Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

Ranken, W.A.; Houts, M.G.

1995-01-01T23:59:59.000Z

115

"Table HC14.5 Space Heating Usage Indicators by West Census...  

U.S. Energy Information Administration (EIA) Indexed Site

Used" "Heat Pump",0.6,"Q","N","Q" "Central Warm-Air Furnace",2.3,0.6,"Q",0.5 "SteamHot Water System","Q","Q","N","Q" "Built-in Electric Units",2.2,0.7,"Q",0.5 "Built-in Pipeless...

116

"Table HC12.5 Space Heating Usage Indicators by Midwest Census...  

U.S. Energy Information Administration (EIA) Indexed Site

Used" "Heat Pump",0.6,"Q","Q","Q" "Central Warm-Air Furnace",2.3,0.9,0.5,0.3 "SteamHot Water System","Q","Q","Q","N" "Built-in Electric Units",2.2,0.6,0.4,0.3 "Built-in Pipeless...

117

"Table HC13.5 Space Heating Usage Indicators by South Census...  

U.S. Energy Information Administration (EIA) Indexed Site

"Heat Pump",0.6,0.4,0.3,"Q","N" "Central Warm-Air Furnace",2.3,0.7,0.3,0.2,"Q" "SteamHot Water System","Q","N","N","N","N" "Built-in Electric Units",2.2,0.4,0.3,"Q","N" "Built-in...

118

"Table HC15.5 Space Heating Usage Indicators by Four Most Populated...  

U.S. Energy Information Administration (EIA) Indexed Site

"Heat Pump",0.6,"N","N","N","Q" "Central Warm-Air Furnace",2.3,"Q","Q","Q",0.3 "SteamHot Water System","Q","N","N","N","N" "Built-in Electric Units",2.2,"Q","Q","N",0.3 "Built-in...

119

"Table HC11.5 Space Heating Usage Indicators by Northeast Census...  

U.S. Energy Information Administration (EIA) Indexed Site

Used" "Heat Pump",0.6,"N","N","N" "Central Warm-Air Furnace",2.3,"Q","Q","Q" "SteamHot Water System","Q","Q","Q","Q" "Built-in Electric Units",2.2,0.4,"Q",0.2 "Built-in Pipeless...

120

Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)  

SciTech Connect (OSTI)

This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

Not Available

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimal heat-reversible snap joints for frame-panel assembly in aluminum space frame automotive bodies  

E-Print Network [OSTI]

Optimal heat-reversible snap joints for frame-panel assembly in aluminum space frame automotive, snap-fit joints, aluminum space frame 1 INTRODUCTION Aluminum space frame (AFS) automotive bodies to dramatically improve the recyclability of aluminum space frame (ASF) bodies by enabling clean separation

Saitou, Kazuhiro "Kazu"

122

Examining the Impact of Spatial Development Patterns on Regional Heat Island Effect in Metropolitan Regions of the United States  

E-Print Network [OSTI]

The urban heat island effect is considered one of the main causes of global warming and is contributing to increasing temperatures in the urban United States. This phenomenon enhances the intensity of summer heat waves and the risk to public health...

Kim, Heeju

2013-07-08T23:59:59.000Z

123

Heat Transfer -1 A satellite in space orbits the sun. The satellite can be approximated as a flat plate with  

E-Print Network [OSTI]

Heat Transfer - 1 A satellite in space orbits the sun. The satellite can be approximated as a flat plate with dimensions and properties given below. (a) Calculate the solar heat flux (W/m2 is at a distance where the solar heat flux (as defined above) is 500 W/m2 , and the flat plate is oriented

Virginia Tech

124

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect (OSTI)

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

125

High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing  

SciTech Connect (OSTI)

Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

Henry DeLima; Joe Akin; Joseph Pietsch

2008-09-14T23:59:59.000Z

126

Heat transfer from combustion gases to a single row of closely spaced tubes in a swirl crossflow Stirling engine heater  

SciTech Connect (OSTI)

This paper describes an experimental program to determine the heat-transfer characteristics of a combustor and heat-exchange system in a hybrid solar receiver which utilizes a Stirling engine. The system consists of a swirl conbustor with a crossflow heat exchanger composed of a single row of 48 closely spaced curved tubes. In the present study, heat-transfer characteristics of the combustor/heat-exchanger system without a Stirling engine have been studied over a range of operating conditions and output levels using water as the working fluid. Non-dimensional heat-transfer coefficients based on total heat transfer have been obtained and are compared with available literature data. The results show significantly enhanced heat transfer for the present geometry and test conditions. Also, heat transfer along the length of the tubes is found to vary, the effect depending upon test condition.

Bankston, C.P.; Back, L.H.

1982-02-01T23:59:59.000Z

127

Physics 1114: Unit 7 Homework Use the table in your text for specific heat capacity values.  

E-Print Network [OSTI]

at 20 C? [Specific heat capacity of air = 703 J/(kg C ) at constant volume.] 7. What is the specific of a heat engine and a heat pump. Include QH, QC, TH, TC, and W. What is the major difference in your two not the same? 6. Determine the maximum coefficient of performance of a heat pump used to heat the inside

Mansell, Edward "Ted"

128

Performance Analyses of 38 kWe Turbo-Machine Unit for Space Reactor Power Systems  

SciTech Connect (OSTI)

This paper developed a design and investigated the performance of 38 kWe turbo-machine unit for space nuclear reactor power systems with Closed Brayton Cycle (CBC) energy conversion. The compressor and turbine of this unit are scaled versions of the NASA's BRU developed in the sixties and seventies. The performance results of turbo-machine unit are calculated for rotational speed up to 45 krpm, variable reactor thermal power and system pressure, and fixed turbine and compressor inlet temperatures of 1144 K and 400 K. The analyses used a detailed turbo-machine model developed at University of New Mexico that accounts for the various energy losses in the compressor and turbine and the effect of compressibility of the He-Xe (40 mole/g) working fluid with increased flow rate. The model also accounts for the changes in the physical and transport properties of the working fluid with temperature and pressure. Results show that a unit efficiency of 24.5% is achievable at rotation speed of 45 krpm and system pressure of 0.75 MPa, assuming shaft and electrical generator efficiencies of 86.7% and 90%. The corresponding net electric power output of the unit is 38.5 kWe, the flow rate of the working fluid is 1.667 kg/s, the pressure ratio and polytropic efficiency for the compressor are 1.60 and 83.1%, and 1.51 and 88.3% for the turbine.

Gallo, Bruno M.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

2008-01-21T23:59:59.000Z

129

Investigation of a radiantly heated and cooled office with an integrated desiccant ventilation unit  

E-Print Network [OSTI]

Radiant heating and cooling has a reputation of increasing the comfort level and reducing the energy consumption of buildings. The main advantages of radiant heating and cooling are low operational noise and reduced fan power cost. Radiant heating...

Gong, Xiangyang

2009-05-15T23:59:59.000Z

130

Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration  

SciTech Connect (OSTI)

This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2012-01-01T23:59:59.000Z

131

General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980  

SciTech Connect (OSTI)

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-05-01T23:59:59.000Z

132

Developing Anthropogenic Heating Profiles for Urban Areas Across the United States  

E-Print Network [OSTI]

and approximate state-wide fuel efficiency. Heat added by buildings take into account electricity (e.g., AC systems, appliances) and heating fuel usage. The building component relies on both population and climate, as heating and cooling degree days are proportional to the amount of heating fuel and electricity used

Hall, Sharon J.

133

Direct utilization of geothermal energy for space and water heating at Marlin, Texas. Final report  

SciTech Connect (OSTI)

The Torbett-Hutchings-Smith Memorial Hospital geothermal heating project, which is one of nineteen direct-use geothermal projects funded principally by DOE, is documented. The five-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessments; well drilling and completion; system design, construction, and monitoring; economic analyses; public awareness programs; materials testing; and environmental monitoring. Some of the project conclusions are that: (1) the 155/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private-sector economic incentives currently exist, especially for profit-making organizations, to develop and use this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, poultry dressing, natural cheese making, fruit and vegetable dehydrating, soft-drink bottling, synthetic-rubber manufacturing, and furniture manufacturing; (4) high maintenance costs arising from the geofluid's scaling and corrosion tendencies can be avoided through proper analysis and design; (5) a production system which uses a variable-frequency drive system to control production rate is an attractive means of conserving parasitic pumping power, controlling production rate to match heating demand, conserving the geothermal resource, and minimizing environmental impacts.

Conover, M.F.; Green, T.F.; Keeney, R.C.; Ellis, P.F. II; Davis, R.J.; Wallace, R.C.; Blood, F.B.

1983-05-01T23:59:59.000Z

134

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

SciTech Connect (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

135

Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating  

SciTech Connect (OSTI)

Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

Kingston, T.; Scott, S.

2013-03-01T23:59:59.000Z

136

Measured Impact on Space Conditioning Energy Use in a Residence Due to Operating a Heat Pump Water Heater inside the Conditioned Space  

SciTech Connect (OSTI)

The impact on space conditioning energy use due to operating a heat pump water heater (HPWH) inside the conditioned space is analyzed based on 2010-2011 data from a research house with simulated occupancy and hot water use controls. The 2700 ft2 (345 m2) house is located in Oak Ridge, TN (mixed-humid climate) and is equipped with a 50 gallon (189 l) HPWH that provided approximately 55 gallons/d (208 l/d) of hot water at 120 F (46 C) to the house during the test period. The HPWH has been operated every other week from December 2010 through November 2011 in two modes; a heat pump only mode, and a standard mode that utilizes 15355 Btu/hr (4500 W) resistance heating elements. The energy consumption of the air-source heat pump (ASHP) that provides space conditioning for the house is compared for the two HPWH operating modes with weather effects taken into account. Impacts during the heating and cooling seasons are compared.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2012-01-01T23:59:59.000Z

137

Retrofitting the heating system for NASA's space shuttle engine test facility  

SciTech Connect (OSTI)

The John C. Stennis Space Center is one of nine NASA field installations and is the second largest NASA Center, occupying 13,480 acres (55 km{sup 2}) and surrounded by a 125,327-acre (507 km{sup 2}) unpopulated buffer zone. Since its beginnings, the center has been the prime NASA installation for static firing. This paper reports that because of the critical nature of the center's missions, precise instrumentation and comfortable personnel environments must be constantly and efficiency maintained. When the site was built nearly 30 years ago, two main boiler plants were installed. One was in the base area (which houses administrative and engineering offices) and the second was in the test area where the test stands and test support buildings are located. These two boiler plants generated high pressure, high temperature water (400{degrees} F, 400 psi; 204{degrees} C, 2,756 kPa) that was used for heating, reheating and absorption cooling. This high temperature hot water (HTHW) was circulated by pumps to various buildings on the site through an underground piping network. Once in the buildings, the HTHW passed through absorption chillers for cooling and high temperature-to-medium temperature water converters for heating and reheating.

Arceneaux, T.W. (NASA, St. Louis, MO (US))

1992-07-01T23:59:59.000Z

138

Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report  

SciTech Connect (OSTI)

The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

1993-06-01T23:59:59.000Z

139

Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States  

SciTech Connect (OSTI)

Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships between structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.

D. D. Blackwell; K. W. Wisian; M. C. Richards; J. L. Steele

2000-04-01T23:59:59.000Z

140

Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems  

SciTech Connect (OSTI)

Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

2007-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Application analysis of ground source heat pumps in building space conditioning  

E-Print Network [OSTI]

temporal variation of the heat pump COP over the three-monthfor ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: A

Qian, Hua

2014-01-01T23:59:59.000Z

142

Application analysis of ground source heat pumps in building space conditioning  

E-Print Network [OSTI]

for ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: Afor ground-source heat pumps: A literature review,

Qian, Hua

2014-01-01T23:59:59.000Z

143

Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use Energy1a.5a.9a.0 Home7.4

144

Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use Energy1a.5a.9a.0

145

Earth Planets Space, 57, 895902, 2005 Short time-scale heating of the Earth's mantle by ice-sheet dynamics  

E-Print Network [OSTI]

by modeling the linear response of a self-gravitating viscoelastic planet, the gravity field anoma- lies haveEarth Planets Space, 57, 895­902, 2005 Short time-scale heating of the Earth's mantle by ice-scale energy transfer from the ice sheet loading and unloading processes to the Earth's interior via viscous

Hanyk, Ladislav

146

Constant-flux discrete heating in a unit aspect-ratio annulus This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Constant-flux discrete heating in a unit aspect-ratio annulus This article has been downloaded from to the journal homepage for more Home Search Collections Journals About Contact us My IOPscience #12;IOP.1088/0169-5983/44/6/065507 Constant-flux discrete heating in a unit aspect-ratio annulus J M Lopez1,2 , M Sankar3 and Younghae Do2 1

Lopez, John M.

147

Applications of Commercial Heat Pump Water Heaters in Hot, Humid Climates  

E-Print Network [OSTI]

Heat pump water heaters can provide high-efficiency water heating and supplemental space cooling and dehumidification in commercial buildings throughout the United States. They are particularly attractive in hot, humid areas where cooling loads...

Johnson, K. F.; Shedd, A. C.

148

INTERACTION OF A SOLAR SPACE HEATING SYSTEM WITH THE THERMAL BEHAVIOR OF A BUILDING  

E-Print Network [OSTI]

solar con- trols test facility at Lawrence Berkeley Laboratory The interaction of baseboard, radiant panel, and furnace heating

Vilmer, Christian

2013-01-01T23:59:59.000Z

149

Impacts of Water Loop Management on Simultaneous Heating and Cooling in Coupled Control Air Handling Units  

E-Print Network [OSTI]

The impacts of the water loop management on the heating and cooling energy consumption are investigated by using model simulation. The simulation results show that the total thermal energy consumption can be increased by 24% for a typical AHU in San...

Guan, W.; Liu, M.; Wang, J.

1998-01-01T23:59:59.000Z

150

Impact of Climate Change Heating and Cooling Energy Use in Buildings in the United States  

E-Print Network [OSTI]

of the change in outdoor conditions [3, 4]. In 2010, building energy consumption accounted for 41% of the total activities in buildings. One area directly affected by climate change is the energy consumption for heating on future energy uses. There would be a net increase in source energy consumption by the 2080s for climate

Chen, Qingyan "Yan"

151

Break-Even Cost for Residential Solar Water Heating in the United States: Key Drivers and Sensitivities  

SciTech Connect (OSTI)

This paper examines the break-even cost for residential rooftop solar water heating (SWH) technology, defined as the point where the cost of the energy saved with a SWH system equals the cost of a conventional heating fuel purchased from the grid (either electricity or natural gas). We examine the break-even cost for the largest 1,000 electric and natural gas utilities serving residential customers in the United States as of 2008. Currently, the break-even cost of SWH in the United States varies by more than a factor of five for both electricity and natural gas, despite a much smaller variation in the amount of energy saved by the systems (a factor of approximately one and a half). The break-even price for natural gas is lower than that for electricity due to a lower fuel cost. We also consider the relationship between SWH price and solar fraction and examine the key drivers behind break-even costs. Overall, the key drivers of the break-even cost of SWH are a combination of fuel price, local incentives, and technical factors including the solar resource location, system size, and hot water draw.

Cassard, H.; Denholm, P.; Ong, S.

2011-02-01T23:59:59.000Z

152

Domestic olivine vs magnesite as a thermal-energy-storage material: performance comparisons for electrically heated room-size units in accordance with ASHRAE Standard 94. 2  

SciTech Connect (OSTI)

Electrically heated thermal-energy-storage (TES) heaters employing high-heat-capacity ceramic refractories for sensible heat storage have been in use in Europe for several years. With these heaters, low cost off-peak electrical energy is stored by heating a storage core composed of ceramic material to approximately 800/sup 0/C. During the peak period, no electrical energy is used as the building heating needs are supplied by extracting the stored heat from the core by forced air circulation. Recently significant interest in the use of off-peak TES units in the US has occured, leading to the search for a domestic supply of high heat capacity ceramic refractory material. North Carolina's extensive but under-utilized supply of refractory grade olivine has been proposed as a source of storage material for these units. In this paper, the suitability of North Carolina olivine for heat-storage applications is assessed by comparing its thermal performance with that of European materials. Using the method of ASHRAE Standard 94.2, the thermal performance of two small room-sized commercially available TES units was determined experimentally with two different storage materials, North Carolina olivine and German magnesite. Comparisons between the two materials are made and conclusions are drawn.

Laster, W.R.; Schoenhals, R.J.; Gay, B.M.; Palmour, H. III

1982-01-01T23:59:59.000Z

153

Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling  

E-Print Network [OSTI]

± 10.5 1 ) TBtu (primary energy consumption of 14.6 [± 12.4]± 4.0) TBtu (primary energy consumption of 25.5 [± 12.2]Primary Energy Space Heating Space Cooling Figure 2: Higher space conditioning end-use energy consumption

Blum, Helcio

2010-01-01T23:59:59.000Z

154

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications  

Broader source: Energy.gov [DOE]

Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

155

U.S. Army Fort Knox: Using the Earth for Space Heating and Cooling (Fact Sheet)  

SciTech Connect (OSTI)

FEMP case study overview of the geothermal/ground source heat pump project at the U.S. Army Fort Knox Disney Barracks.

Not Available

2010-04-01T23:59:59.000Z

156

Industrial food processing and space heating with geothermal heat. Final report, February 16, 1979-August 31, 1982  

SciTech Connect (OSTI)

A competitive aware for a cost sharing program was made to Madison County, Idaho to share in a program to develop moderate-to-low temperature geothermal energy for the heating of a large junior college, business building, public shcools and other large buildings in Rexburg, Idaho. A 3943 ft deep well was drilled at the edge of Rexburg in a region that had been probed by some shallower test holes. Temperatures measured near the 4000 ft depth were far below what was expected or needed, and drilling was abandoned at that depth. In 1981 attempts were made to restrict downward circulation into the well, but the results of this effort yielded no higher temperatures. The well is a prolific producer of 70/sup 0/F water, and could be used as a domestic water well.

Kunze, J.F.; Marlor, J.K.

1982-08-01T23:59:59.000Z

157

Heat Flow And Geothermal Potential In The South-Central United States |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division |Hays,Community College Jump

158

"Table HC10.5 Space Heating Usage Indicators by U.S. Census...  

U.S. Energy Information Administration (EIA) Indexed Site

"Very Little or None",24.7,3.2,6.9,8.5,6.1 "Type of Supplemental Heating Equipment Used" "Heat Pump",0.6,"N","Q",0.4,"Q" "Central Warm-Air Furnace",2.3,"Q",0.9,0.7,0.6 "SteamHot...

159

Multigroup half space moment approximations to the radiative heat transfer equations q  

E-Print Network [OSTI]

cooling) over astrophysics to combustion (e.g., in gas turbine combustion chambers). Since radiative heat into direction l 2 ½À1; 1. Furthermore, T ðx; tÞ is the material temperature. The heat conductivity is denoted with the following boundary conditions. For the material temper

Coudière, Yves

160

Small Reactor for Deep Space Exploration  

SciTech Connect (OSTI)

This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

None

2012-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Small Reactor for Deep Space Exploration  

ScienceCinema (OSTI)

This is the first demonstration of a space nuclear reactor system to produce electricity in the United States since 1965, and an experiment demonstrated the first use of a heat pipe to cool a small nuclear reactor and then harvest the heat to power a Stirling engine at the Nevada National Security Site's Device Assembly Facility confirms basic nuclear reactor physics and heat transfer for a simple, reliable space power system.

None

2014-05-30T23:59:59.000Z

162

Federal strategies to increase the implementation of combined heat and power technologies in the United States  

SciTech Connect (OSTI)

Recent interest in combined heat and power (CHP) is providing momentum to efforts aimed at increasing the capacity of this highly-efficient technology. Factors driving this increase in interest include the need to increase the efficiency of the nation's electricity generation infrastructure, DOE Assistant Secretary Dan Reicher's challenge to double the capacity of CHP by 2010, the success of DOE's Advanced Turbine Systems Program in supporting ultra-efficient CHP technologies, and the necessity of finding cost-effective solutions to address climate change and air quality issues. The federal government is committed to increasing the penetration of CHP technologies in the US. The ultimate goal is to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for multiple applications. Specific actions underway at the federal level include technology strategies to improve CHP data collection and assessment and work with industry to encourage the development of advanced CHP technologies. Policy strategies include changes to federal environmental permitting procedures including CHP-friendly strategies in federal restructuring legislation, supporting tax credits and changes to depreciation requirements as economic incentives to CHP, working with industry to leverage resources in the development of advanced CHP technologies, educating state officials about the things they can do to encourage CHP, and increasing awareness about the benefits of CHP and the barriers limiting its increased implementation.

Laitner, J.; Parks, W.; Schilling, J.; Scheer, R.

1999-07-01T23:59:59.000Z

163

Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge  

SciTech Connect (OSTI)

The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation neutron sources, nuclear waste transmutation, etc.

Barnard, J.J.; Lund, S.M.

2008-05-30T23:59:59.000Z

164

Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota)  

Broader source: Energy.gov [DOE]

The Department of Natural Resources is given the authority to create and promulgate regulations related to spacing, pooling, and utilization of oil and gas wells. However, as of September 2012, no...

165

Covered Product Category: Residential Heat Pump Water Heaters...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

used for many years for space heating and cooling. It can be found in small and large products alike, such as window air conditioners used in homes through large rooftop units...

166

Design Method for the Heating/Cooling Coil in the AHU Based on Fuzzy Logic - Part Two: Design of the Minimum Heat-Exchanging Unit  

E-Print Network [OSTI]

Zhang Yongpan Chen Zhen Liang Ph.D. Professor Doctoral Candidate Instructor School of Municipal & Environmental Eng, Harbin Institute of Technology Harbin P. R. China, 150090 zhangjili@hit.edu.cn Abstract: Considering a heating/cooling coil... heat indoor, as is given by Equation (5) (noted in difference scheme), where Qr denotes sensible heat amount indoor (KW); ? denotes time variable (s); ? r denotes air density indoor (Kg/m3); CP denotes air specific heat at constant pressure (KJ...

Zhang, J.; Chen, Y.; Liang, Z.

2006-01-01T23:59:59.000Z

167

General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980  

SciTech Connect (OSTI)

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-04-01T23:59:59.000Z

168

Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.  

SciTech Connect (OSTI)

The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to properly survey the heat shield panels. System features were introduced to minimize the potential for human factors errors in identifying and locating the flaws. The in-situ NDI team completed the transfer of this technology to NASA and USA employees so that they can complete 'Return-to-Flight' certification inspections on all Shuttle Orbiters prior to each launch.

Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

2005-06-01T23:59:59.000Z

169

Solar space heating for the visitors' center, Stephens College, Columbia, Missouri. Final report  

SciTech Connect (OSTI)

This document is the final report of the solar energy system located at the Visitors' Center on the Stephens College Campus, Columbia, Missouri. The system is installed in a four-story, 15,000 square foot building designed to include the college's Admission Office, nine guest rooms for overnight lodging for official guests of the college, a two-story art gallery, and a Faculty Lounge. The solar energy system is an integral design of the building and utilizes 176 Honeywell/Lennox hydronic flat-plate collectors which use a 50% water-ethylene glycol solution and water-to-water heat exchanger. Solar heated water is stored in a 5000 gallon water storage tank located in the basement equipment room. A natural gas fired hot water boiler supplies hot water when the solar energy heat supply fails to meet the demand. The designed solar contribution is 71% of the heating load. The demonstration period for this project ends June 30, 1984.

Not Available

1980-06-01T23:59:59.000Z

170

Residential and commercial space heating and cooling with possible greenhouse operation; Baca Grande development, San Luis Valley, Colorado. Final report  

SciTech Connect (OSTI)

A feasibility study was performed to evaluate the potential of multipurpose applications of moderate-temperature geothermal waters in the vicinity of the Baca Grande community development in the San Luis Valley, Colorado. The project resource assessment, based on a thorough review of existing data, indicates that a substantial resource likely exists in the Baca Grande region capable of supporting residential and light industrial activity. Engineering designs were developed for geothermal district heating systems for space heating and domestic hot water heating for residences, including a mobile home park, an existing motel, a greenhouse complex, and other small commercial uses such as aquaculture. In addition, a thorough institutional analysis of the study area was performed to highlight factors which might pose barriers to the ultimate commercial development of the resource. Finally, an environmental evaluation of the possible impacts of the proposed action was also performed. The feasibility evaluation indicates the economics of the residential areas are dependent on the continued rate of housing construction. If essentially complete development could occur over a 30-year period, the economics are favorable as compared to existing alternatives. For the commercial area, the economics are good as compared to existing conventional energy sources. This is especially true as related to proposed greenhouse operations. The institutional and environmental analyses indicates that no significant barriers to development are apparent.

Goering, S.W.; Garing, K.L.; Coury, G.E.; Fritzler, E.A.

1980-05-01T23:59:59.000Z

171

Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9. Total End-Use Energy1a.5a.9a.004 Space

172

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

173

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to… (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

174

DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS  

E-Print Network [OSTI]

a seasonal mismatch exists between the wind resource and the conventional electric load. The heating system1 DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS Clint Johnson, Utama consists of dispatchable electric space heating units, with integrated thermal storage, functioning

Massachusetts at Amherst, University of

175

Heat transfer in the plate heat exchanger of an ammonia-synthesis column  

SciTech Connect (OSTI)

The planning and construction of high-capacity synthetic ammonia plants requires the development and fabrication of unique, high unit-power equipment with high technical and economic characteristics. In foreign and domestic practice, tubular heat exchangers with relatively low heat-transfer coefficients are used. Plate heat exchangers are a promising alternative. They are compact and have a high heat energy efficiency and a relatively small metal content. To make an experimental check of the operating capability of a plate heat exchanger under ammonia production conditions, a welded plate heat exchanger was designed for an ammonia synthesis column 800mm in diameter. On prolonged testing (four years), the device provided an autothermal operating mode in the column and the heat transfer coefficient was practically constant for fixed space velocities. Consequently, the heat exchange surface was not contaminated significantly with catalyst dust, confirmed by visual observation of the heat exchanger after disassembly.

Obolentsev, Y.G.; Chus', M.S.; Norobchanskii, O.A.; Teplitshi, Y.S.; Tovazhnyanskii, L.L.

1983-01-01T23:59:59.000Z

176

Applications Tests of Commercial Heat Pump Water Heaters  

E-Print Network [OSTI]

Field application tests have been conducted on three 4 to 6-ton commercial heat pump water heater systems in a restaurant, a coin-operated laundry, and an office building cafeteria in Atlanta. The units provide space cooling while rejecting heat...

Oshinski, J. N..; Abrams, D. W.

1987-01-01T23:59:59.000Z

177

Effect of rib spacing on heat transfer and friction in a rotating two-pass rectangular (AR=1:2) channel  

E-Print Network [OSTI]

The research focuses on testing the heat transfer enhancement in a channel for different spacing of the rib turbulators. Those ribs are put on the surface in the two pass rectangular channel with an aspect ratio of AR=1:2. The cross section...

Liu, Yao-Hsien

2006-10-30T23:59:59.000Z

178

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California. Final report  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California`s and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. [San Francisco State Univ., CA (United States). Div. of Engineering

1992-07-01T23:59:59.000Z

179

Comparative evaluation of the impacts of domestic gas and electric heat pump heating on air pollution in California  

SciTech Connect (OSTI)

Residential space and water heating accounts for approximately 12% of California's and 15% of the United States, energy consumption. most Of the residential heating is by direct use of natural gas. combustion of natural gas is a contributor to the overall air pollution,, especially CO and NO{sub x} in the urban areas. Another efficient method for domestic water and space heating is use of electric heat pumps, the most popular category of which uses air as its heat source. Electric heat pumps do not emit air pollutants at the point of use, but use electric power, which is a major contributor to air pollution at its point of generation from fossil fuels. It is the specific objective of this report to evaluate and compare the energy efficiency and source air pollutants of natural gas heaters and electric heat pumps used for domestic heating. Effect of replacing natural gas heaters with electric heat pumps on air pollutant emissions due to domestic heating in two urban areas and in California as a whole has also been evaluated. The analysis shows that with the present state of technology, electric heat pumps have higher heating efficiencies than natural gas heaters. Considering the current electricity generation mix in the US, electric heat pumps produce two to four times more NO{sub x}, much less CO, and comparable amount of CO{sub 2} per unit of useful heating energy compared to natural gas heaters. With California mix, electric heat pumps produce comparable NO{sub x} and much less CO and approximately 30% less CO{sub 2} per unit heat output. Replacement of natural gas heaters with electric heat pumps will slightly increase the overall NO{sub x}, and reduce CO and CO{sub 2} emissions in California. The effect of advanced technology power generation and heat pump heating has also been analyzed.

Ganji, A. (San Francisco State Univ., CA (United States). Div. of Engineering)

1992-07-01T23:59:59.000Z

180

SciTech Connect: Numerical simulation of shock-heated plasma...  

Office of Scientific and Technical Information (OSTI)

Publication: United States Language: English Subject: N70100* --Physics--Controlled Thermonuclear Research-- Confinement & Heating; *HEATING-- SHOCK HEATING; *SHOCK HEATING--...

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

2011-12-31T23:59:59.000Z

182

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living Space in Summer  

E-Print Network [OSTI]

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living and total heat exchanger in terms of both energy conservation and thermal comfort in summer. 1. COP

Miyashita, Yasushi

183

Space  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus Tom Fletcher,Future |Carlos Valencia NamedPolicySowmyaSpace

184

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

185

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

2 119 2 2 10 Food Service ... 217 10 28 24 10 42 13 70 2 2 15 Health Care ... 248 6 34 42 2 105 1 8 4 10 36 Inpatient...

186

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

... 258.3 43.1 17.4 14.8 40.4 25.4 63.5 42.1 1.0 1.0 9.5 Health Care ... 187.7 70.4 14.1 13.3 30.2 33.1 3.5 2.6 1.2 3.2...

187

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

4 2 Q 14 1 35 1 1 3 Food Service ... 63 3 8 7 3 12 4 20 (*) 1 4 Health Care ... 73 2 10 12 1 31 (*) 2 1 3 11 Inpatient...

188

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Dedicated Servers ... 56.0 2.0 7.5 7.7 0.8 21.9 0.2 4.5 1.6 3.4 6.3 Laser Printers ... 47.0 2.0 6.3 6.0 0.8 17.2 0.3 5.5 1.2 2.3 5.4...

189

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Dedicated Servers ... 103.5 37.3 8.3 7.7 8.0 21.9 2.0 4.5 1.6 3.4 8.8 Laser Printers ... 91.2 34.8 6.9 6.0 7.4 17.2 2.4 5.5 1.2 2.3 7.5...

190

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The BasicsTop 1003,037

191

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The BasicsTop

192

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The BasicsTop3,559 167

193

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The BasicsTop3,559 167

194

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The BasicsTop3,559 167

195

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The BasicsTop3,559

196

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The

197

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The

198

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The

199

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The48.0 1.8 6.3 6.1

200

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The48.0 1.8 6.3

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The48.0 1.8 6.3890 34

202

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The48.0 1.8 6.3890

203

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The48.0 1.8 6.3890

204

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The48.0 1.8 6.3890

205

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The48.0 1.8

206

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The48.0 1.8Revised:

207

Total Space Heat-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The48.0 1.8Revised:

208

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network [OSTI]

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

Oak Ridge National Laboratory

209

Photovoltaic roof heat flux  

E-Print Network [OSTI]

under the offset unit's solar panel, the hf formula (16) wasdrop below the angle unit's solar panel at night time. D u rfor both the units, the solar panel covered roof was a heat

Samady, Mezhgan Frishta

2011-01-01T23:59:59.000Z

210

Changing concepts of local open space in inner urban areas with particular reference to Great Britain and the United States   

E-Print Network [OSTI]

The thesis considers the changing concepts of local open space in relation to the demand, supply and standards of open space. The development of parks in Britain first are contrasted with the development of parks in ...

Morris, Eleanor Kenner Smith

1979-01-01T23:59:59.000Z

211

"Table HC3.8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World9, 2014 International PetroleumFuel Oil8Status2.94.984 Space5678

212

Thermal History of the Felsite Unit, Geysers Geothermal Field, From Thermal Modeling of 40Ar/39Ar Incremental Heating Data  

SciTech Connect (OSTI)

An Ar-40/Ar-39 and U-Pb study was performed of the Geysers plutonic complex of the Geysers Geothermal Field in California. Sixty-nine ion microprobe spot analyses of zircons from four granite samples from the plutonic complex that underlies the Geysers geothermal field yielded Pb-207/Pb-206 vs. U-238/Pb-206 concordia ages ranging from 1.13 {+-} 0.04 Ma to 1.25 {+-} 0.04 Ma. The U-Pb ages coincide closely with Ar-40/Ar-39 age spectrum plateau and ''terminal'' ages from coexisting K-feldspars and with the eruption ages of overlying volcanic rocks. The data indicate that the granite crystallized at 1.18 Ma and had cooled below 350 C by {approximately}0.9-1.0 Ma. Interpretation of the feldspar Ar-40/Ar-39 age data using multi-diffusion domain theory indicates that post-emplacement rapid cooling was succeeded either by slower cooling from 350-300 C between 1.0 and 0.4 Ma or transitory reheating to 300-350 C at about 0.4-0.6 Ma. Heat flow calculations constrained with K-feldspar thermal histories and the pre sent elevated regional heal flow anomaly demonstrate that appreciable heat input from sources external to the known Geysers plutonic complex is required to maintain the geothermal system. This requirement is satisfied by either a large, underlying, convecting magma chamber (now solidified) emplaced at 1.2 Ma or episodic intrusion of smaller bodies from 1.2-0.6 Ma.

T. M. Harrison (U of California); G. B. Dalrymple (Oregon State U); J. B. Hulen (U of Utah); M. A. Lanphere; M. Grove; O. M. Lovera

1999-08-19T23:59:59.000Z

213

System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

214

Policy Supporting Energy Efficiency and Heat Pump Technology  

E-Print Network [OSTI]

Policy Supporting Energy Efficiency and Heat Pump Technology Antonio M. Bouza, DOE/BTP Technology Space Heating ResidentialMELs Residential Lighting ResidentialWashing & drying Residential Cooking Residential Refrigeration Residential Water Heating Residential Space Cooling Residential Space Heating 80

Oak Ridge National Laboratory

215

Geothermal space heating applications for the Fort Peck Indian Reservation in the vicinity of Poplar, Montana. Final report, August 20, 1979-May 31, 1980  

SciTech Connect (OSTI)

The results of a first-stage evaluation of the overall feasibility of utilizing geothermal waters from the Madison aquifer in the vicinity of Poplar, Montana for space heating are reported. A preliminary assessment of the resource characteristics, a preliminary design and economic evaluation of a geothermal heating district and an analysis of environmental and institutional issues are included. Preliminary investigations were also made into possible additional uses of the geothermal resource, including ethanol production. The results of the resource analysis showed that the depth to the top of the Madison occurs at approximately 5,500 feet at Poplar, and the Madison Group is characterized by low average porosity (about 5 percent) and permeability (about 0.004 gal/day-ft), and by hot water production rates of a few tens of gallons per minute from intervals a few feet thick. The preliminary heating district system effort for the town of Poplar included design heat load estimates, a field development concept, and preliminary design of heat extraction and hot water distribution systems. The environmental analysis, based on current data, indicated that resource development is not expected to result in undue impacts. The institutional analysis concluded that a Tribal geothermal utility could be established, but no clear-cut procedure can be identified without a more comprehensive evaluation of legal and jurisdistional issues. The economic evaluation found that, if the current trend of rapidly increasing prices for fossil fuels continues, a geothermal heating district within Poplar could be a long-term, economically attractive alternative to current energy sources.

Birman, J.H.; Cohen, J.; Spencer, G.J.

1980-10-01T23:59:59.000Z

216

Japan Atomic Energy Research Institute/United States Integral Neutronics Experiments and Analyses for tritium breeding, nuclear heating, and induced radioactivity  

SciTech Connect (OSTI)

A large member of integral experiments for fusion blanket neutronics were performed using deuterium-tritium (D-T) neutrons at the Fusion Neutronics Source facility as part of a 10-yr collaborative program between the Japan Atomic Energy Research Institute and the United States. A number of measurement techniques were developed for tritium production, induced radioactivity, and nuclear heating. Transport calculations were performed using three-dimensional Monte Carlo and two-dimensional discrete ordinates codes and the latest nuclear data libraries in Japan and the United States. Significant differences among measurement techniques and calculation methods were found. To assure a 90% confidence level for tritium breeding calculations not to exceed measurements, designers should use a safety factor > 1.1 to 1.2, depending on the calculation method. Such a safety factor may not be affordable with most candidate blanket designs. Therefore, demonstration of tritium self-sufficiency is recommended as a high priority for testing in near-term fusion facilities such as the International Thermonuclear Experimental Reactor (ITER). The radioactivity measurements were performed for > 20 materials with the focus on gamma emitters with half-lives < 5 yr. Most discrepancies were attributed directly to deficiencies in the activation libraries, particularly errors in cross sections for certain reactions. 71 refs., 30 figs., 5 tabs.

Abdou, M.A.; Youssef, M.; Kumar, A. [Univ. of California, Los Angeles, CA (United States)] [and others

1995-08-01T23:59:59.000Z

217

Woven heat exchanger  

DOE Patents [OSTI]

This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

Piscitella, R.R.

1984-07-16T23:59:59.000Z

218

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

9 Water Heating in U.S. Homes in Midwest Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Midwest Census Region" ,,,"East North Central Census...

219

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Water Heating in U.S. Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East...

220

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

11 Water Heating in U.S. Homes in West Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"West Census Region" ,,,"Mountain Census Division",,,"Pacific...

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating in U.S. Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census...

222

Case Study: The Effective Use of an Extensive Logical rule Based Data Analytics Approach in Establishing Root Cause of Performance Issues in Widespread Deployments of Unitary Space Air Conditioning Units  

E-Print Network [OSTI]

Today a significant percentage of office spaces are air conditioned using widely deployed unitary systems, either Fan Coil Units (FCU) or Variable Air Volume (VAV) boxes, to achieve high degrees of air conditioned zonal control. However establishing...

Brady, N.

2013-01-01T23:59:59.000Z

223

Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application  

E-Print Network [OSTI]

energy and off-peak electric resistance heating. Estimated energy and first cost savings, as compared with an all-electric VAV HVAC system, are: 30 to 50% in ductwork size and cost; 30% in fan energy; 25% in air handling equipment; 20 to 40% in utility...

Meckler, G.

1985-01-01T23:59:59.000Z

224

The Role of the Consultant in Marketing Industrial Heat Pumps  

E-Print Network [OSTI]

device that serves a process heating load or provides space heating for relatively large loads in an in dustrial plant or complex. A heat pump is typi cally driven by electric motors ranging from 25 kW up to several thousand kW motor input power... considered for development and conunercialization, but few of these have been placed in service in the United States. Process heat recovery designs have been installed with electrical inputs of more than 10,000 kW and with coefficients of performance...

Gilbert, J. S.; Niess, R. C.

225

Total U.S. Housing Units.......................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15.1 5.5 Do Not Have Heating Equipment... 1.2 Q Q Q Have Space Heating Equipment... 109.8 20.5 15.1 5.4 Use Space Heating...

226

Total U.S. Housing Units.......................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5.6 17.7 7.9 Do Not Have Heating Equipment... 1.2 Q Q N Have Space Heating Equipment... 109.8 25.6 17.7 7.9 Use Space Heating...

227

Building America Webinar: Retrofitting Central Space Conditioning...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Control strategies to improve hydronic space heating performance Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings - Control...

228

Heat pipes and use of heat pipes in furnace exhaust  

DOE Patents [OSTI]

An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

Polcyn, Adam D. (Pittsburgh, PA)

2010-12-28T23:59:59.000Z

229

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Q Q Q Q Q Q Q Q Q Q Food Service ... Q Q Q Q Q Q Q Q Q Q Health Care ... 11 6 2 Q 2 5.6 3.3 0.8 Q 1.3 Inpatient...

230

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The48.0

231

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14Base22,667The48.0Released:

232

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand

233

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building Floorspace

234

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building Floorspace

235

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building Floorspace

236

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building

237

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building

238

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building

239

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building602 1,397

240

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building602

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building602634 578

242

Total Space Heating Water Heating Cook-  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198 18 Q 10 14.0 12.2 1.1 Q 0.6 Building602634

243

Development of a Residential Ground-Source Integrated Heat Pump  

SciTech Connect (OSTI)

A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

Rice, C Keith [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Hern, Shawn [ClimateMaster, Inc.] [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC] [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL

2013-01-01T23:59:59.000Z

244

Ammoniated salt heat pump  

SciTech Connect (OSTI)

A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat.

Haas, W.R.; Jaeger, F.J.; Giordano, T.J.

1981-01-01T23:59:59.000Z

245

Development of a Variable-Speed Residential Air-Source Integrated Heat Pump  

SciTech Connect (OSTI)

A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

Rice, C Keith [ORNL] [ORNL; Shen, Bo [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL

2014-01-01T23:59:59.000Z

246

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

247

Heat transfer system  

DOE Patents [OSTI]

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

248

3741SPACE AUDIT PROCEDURE Space audit  

E-Print Network [OSTI]

Page 1 3741SPACE AUDIT PROCEDURE Space audit identified to be conducted Will audit disrupt or disturb occupants of the space Notify Faculty, School or Business Unit of the audit Is the audit for timetabling purposes Is the audit a physical audit Confirm audit requirements Is the audit for other space

249

Heat Transfer Derivation of differential equations for heat transfer conduction  

E-Print Network [OSTI]

) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative

Veress, Alexander

250

A Scientific Trigger Unit for Space-Based Real-Time Gamma Ray Burst Detection, I - Scientific Software Model and Simulations  

E-Print Network [OSTI]

The on-board Scientific Trigger Unit (UTS) is designed to detect Gamma Ray Bursts (GRBs) in real-time, using the data produced by the ECLAIRs camera, foreseen to equip the future French-Chinese satellite mission SVOM (Space-based Variable Objects Monitor). The UTS produces GRB alerts, sent to the ground for GRB follow-up observations, and requests the spacecraft slew to repoint its narrow field instruments onto the GRB afterglow. Because of the diversity of GRBs in duration and variability, two simultaneously running GRB trigger algorithms are implemented in the UTS, the so called Image Trigger performing systematic sky image reconstruction on time scales above 20 s, and the Count-Rate Trigger, selecting a time scale from 10 ms to 20 s showing an excess in count-rate over background estimate, prior to imaging the excess for localization on the sky. This paper describes both trigger algorithms and their implementation in a library, compiled for the Scientific Software Model (SSM) running on standard Linux mach...

Schanne, Stéphane; Kestener, Pierre; Gros, Aleksandra; Cortial, Marin; Götz, Diego; Sizun, Patrick; Château, Frédéric; Cordier, Bertrand

2014-01-01T23:59:59.000Z

251

Designing, selecting and installing a residential ground-source heat pump system  

SciTech Connect (OSTI)

It's a compelling proposition: Use the near-constant-temperature heat underground to heat and cool your home and heat domestic water, slashing your energy bills. Yet despite studies demonstrating significant energy savings from ground-source heat pump (GSHP) systems, their adoption has been hindered by high upfront costs. Fewer than 1% of US homes use a GSHP system. However, compared to a minimum-code-compliant conventional space-conditioning system, when properly designed and installed, a GSHP retrofit at current market prices offers simple payback of 4.3 years on national average, considering existing federal tax credits. Most people understand how air-source heat pumps work: they move heat from indoor air to outdoor air when cooling and from outdoor air to indoor air when heating. The ground-source heat pump operates on the same principle, except that it moves heat to or from the ground source instead of outdoor air. The ground source is usually a vertical or horiontal ground heat exchanger. Because the ground usually has a more favorable temperature than ambient air for the heating and cooling operation of the vapor-compression refrigeration cycle, GSHP sysems can operate with much higher energy efficiencies than air-source heat pump systems when properly designed and installed. A GSHP system used in a residual building typically provides space conditioning and hot water and comprises three major components: a water-source heat pump unit designed to operate at a wider range of entering fluid temperatures (typically from 30 F to 110 F, or 1 C to 43 C) than a conventional water-source heat pump unit; a ground heat exchanger (GHX); and distribution systems to deliver hot water to the storage tank and heating or cooling to the conditioned rooms. In most residual GSHP systems, the circulation pumps and associated valves are integrated with the heat pump to circulate the heat-carrier fluid (water or aqueous antifreeze solution) through the heat pump and the GHX. A recent assessment indicates that if 20% of US homes replaced their existing space-conditioning and water-heating systems with properly designed, installed and operated state-of-the-art GSHP systems, it would yield significant benefits each year. These include 0.8 quad British thermal units (Btu) of primary energy savings, 54.3 million metric tons of CO{sub 2} emission reductions, $10.4 billion in energy cost savings and 43.2 gigawatts of reduction in summer peak electrical demand.

Hughes, Patrick [ORNL; Liu, Xiaobing [ORNL; Munk, Jeffrey D [ORNL

2010-01-01T23:59:59.000Z

252

Energy Management in Olefins Units  

E-Print Network [OSTI]

to the point where waste heat from pyrolysis generates more than enough steam to power the olefins unit recovery section. Furthermore, incorporating gas turbine driven electrical generators or process compressors adds to the utility export potential of the unit...

Wells, T. A.

1982-01-01T23:59:59.000Z

253

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Water Heating in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than...

254

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Water Heating in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to...

255

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Water Heating in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

256

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

7 Water Heating in U.S. Homes, by Census Region, 2009" " Million Housing Units, Final" ,,"Census Region" ,"Total U.S.1 (millions)" ,,"Northeast","Midwest","South","West" "Water...

257

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

4 Water Heating in U.S. Homes, by Number of Household Members, 2009" " Million Housing Units, Final" ,,"Number of Household Members" ,"Total U.S.1 (millions)" ,,,,,,"5 or More...

258

Total U.S. Housing Units.......................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12.1 Do Not Have Heating Equipment... 1.2 Q Q Q 0.2 Have Space Heating Equipment... 109.8 7.1 6.8 7.9 11.9 Use Space...

259

Accelerating Combined Heat & Power Deployment  

Broader source: Energy.gov (indexed) [DOE]

ACCELERATING COMBINED HEAT & POWER DEPLOYMENT An Industry Consultation by the United States Energy Association August 31, 2011 Cover Photograph: CHP Plant at the Mueller Energy...

260

Thermoelectrics: From Space Power Systems to Terrestrial Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications...

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Residential Solar Water Heating Rebates  

Broader source: Energy.gov [DOE]

New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

262

Heat pipe array heat exchanger  

DOE Patents [OSTI]

A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

Reimann, Robert C. (Lafayette, NY)

1987-08-25T23:59:59.000Z

263

Estimated United States Residential Energy Use in 2005  

SciTech Connect (OSTI)

A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

Smith, C A; Johnson, D M; Simon, A J; Belles, R D

2011-12-12T23:59:59.000Z

264

Modelling and simulation of a heat pump for simultaneous heating and cooling  

E-Print Network [OSTI]

Modelling and simulation of a heat pump for simultaneous heating and cooling Paul Byrne1 *, Jacques-012-0089-0 #12;1. ABSTRACT The heat pump for simultaneous heating and cooling (HPS) carries out space heating to a standard reversible heat pump (HP). The air evaporator is defrosted by a two-phase thermosiphon without

Paris-Sud XI, Université de

265

IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems  

SciTech Connect (OSTI)

With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

Baxter, VAN

2003-05-19T23:59:59.000Z

266

Solar heating system  

DOE Patents [OSTI]

An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

1982-01-01T23:59:59.000Z

267

Improved solar heating systems  

DOE Patents [OSTI]

An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

Schreyer, J.M.; Dorsey, G.F.

1980-05-16T23:59:59.000Z

268

Space shuttle based microgravity smoldering combustion experiments  

E-Print Network [OSTI]

zone, and smolder heat of combustion (energy per unit massand Q is the smolder heat of combustion. The mass fluxes ofdata. The smolder heat of combustion is not well determined

Walther, David C; Fernandez-Pello, Carlos; Urban, David L

1999-01-01T23:59:59.000Z

269

Heat-pump-centered integrated community energy systems: system development summary  

SciTech Connect (OSTI)

An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

Calm, J.M.

1980-02-01T23:59:59.000Z

270

Feb. 24, 2012 197www.cqresearcher.com Is the United States in danger of losing a space race to China?yes  

E-Print Network [OSTI]

for resource utilization thus contributes to national security and economic interests as well as scientific toward a new paradigm for space. That new path involves getting people and machines to satellite assets in space for construction, servicing, exten- sion and repair. We cannot access satellites now with people

Spudis, Paul D.

271

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Broader source: Energy.gov (indexed) [DOE]

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

272

A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT  

E-Print Network [OSTI]

models: aggregated by SMSA market share central cooling all gas space heat all oilmodels: aggregated by regions market share central cooling all gas space heat all oil

Wood, D.J.

2010-01-01T23:59:59.000Z

273

Earth's Heat Source - The Sun  

E-Print Network [OSTI]

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Oliver K. Manuel

2009-05-05T23:59:59.000Z

274

Earth's Heat Source - The Sun  

E-Print Network [OSTI]

The Sun encompasses planet Earth, supplies the heat that warms it, and even shakes it. The United Nation Intergovernmental Panel on Climate Change (IPCC) assumed that solar influence on our climate is limited to changes in solar irradiance and adopted the consensus opinion of a Hydrogen-filled Sun, the Standard Solar Model (SSM). They did not consider the alternative solar model and instead adopted another consensus opinion: Anthropogenic greenhouse gases play a dominant role in climate change. The SSM fails to explain the solar wind, solar cycles, and the empirical link of solar surface activity with Earth changing climate. The alternative solar model, that was molded from an embarrassingly large number of unexpected observations revealed by space-age measurements since 1959, explains not only these puzzles but also how closely linked interactions between the Sun and its planets and other celestial bodies induce turbulent cycles of secondary solar characteristics that significantly affect Earth climate.

Manuel, Oliver K

2009-01-01T23:59:59.000Z

275

Frost Growth CFD Model of an Integrated Active Desiccant Rooftop Unit  

SciTech Connect (OSTI)

A frost growth model is incorporated into a Computational Fluid Dynamics (CFD) simulation of a heat pump by means of a user-defined function in FLUENT, a commercial CFD code. The transient model is applied to the outdoor section of an Integrated Active Desiccant Rooftop (IADR) unit in heating mode. IADR is a hybrid vapor compression and active desiccant unit capable of handling 100% outdoor air (dedicated outdoor air system) or as a total conditioning system, handling both outdoor air and space cooling or heating loads. The predicted increase in flow resistance and loss in heat transfer capacity due to frost build-up are compared to experimental pressure drop readings and thermal imaging. The purpose of this work is to develop a CFD model that is capable of predicting frost growth, an invaluable tool in evaluating the effectiveness of defrost-on-demand cycles.

Geoghegan, Patrick J [ORNL; Petrov, Andrei Y [ORNL; Vineyard, Edward Allan [ORNL; Zaltash, Abdolreza [ORNL; Linkous, Randall Lee [ORNL

2008-01-01T23:59:59.000Z

276

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

limits potential use of waste heat for space conditioning.the attractive uses for waste heat in many circumstancesprovide electricity and use the waste heat for cleaning, the

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

277

Heat pump apparatus  

DOE Patents [OSTI]

A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

1983-01-01T23:59:59.000Z

278

High-Performance Refrigerator Using Novel Rotating Heat Exchanger...  

Broader source: Energy.gov (indexed) [DOE]

pumps have the potentially to reduce energy costs and refrigerant charge in a compact space. Rotating heat exchangers installed in appliances and heat pumps have the potentially...

279

Modelling the impact of user behaviour on heat energy consumption  

E-Print Network [OSTI]

come from space heating within homes (Boardman, 2007). If weassociated with heating the home must be an imperative. Theheating and hot water energy consumption of the homes (Zack

Combe, Nicola Miss; Harrison, David Professor; Way, Celia Miss

2011-01-01T23:59:59.000Z

280

Ordered involutive operator spaces  

E-Print Network [OSTI]

This is a companion to recent papers of the authors; here we construct the `noncommutative Shilov boundary' of a (possibly nonunital) selfadjoint ordered space of Hilbert space operators. The morphisms in the universal property of the boundary preserve order. As an application, we consider `maximal' and `minimal' unitizations of such ordered operator spaces.

Blecher, David P; Neal, Matthew; Werner, Wend

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 118, 77837797, doi:10.1002/2013JA019337, 2013 Extended lateral heating of the nighttime ionosphere by ground-based  

E-Print Network [OSTI]

experiments are performed with the 21.4 kHz, 424 kW VLF transmitter NPM in Lualualei, Hawaii, and physical effects of the NPM transmissions are studied with a subionospherically propagating VLF probe signal but rather appear to be the result of scattering from extended lateral heating of the ionosphere by the NPM

282

A Study of Wind Energy Use for Space Heating in Prince Edward Island1 Larry Hughes, Mandeep Dhaliwal, Aaron Long, Nikita Sheth  

E-Print Network [OSTI]

and domestic hot water demand being met by imported fuel oil. Throughout most of the 1990s, the price of crude. Today's high price of crude oil has pushed the cost of home heating fuel to near record levels, bringing oil remained relatively stable. This changed dramatically in late 1999 when prices began to increase

Hughes, Larry

283

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

1983-01-01T23:59:59.000Z

284

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

Swenson, Paul F.; Moore, Paul B.

1983-06-21T23:59:59.000Z

285

Foundation Heat Exchanger Model and Design Tool Development and Validation  

E-Print Network [OSTI]

Heat Exchangers for Residential Ground Source Heat Pump Systems - Numerical Modeling and Experimental. Fisher, J. Shonder, P. Im. 2010. Residential Ground Source Heat Pump Systems Utilizing Foundation Heat. Feasibility of foundation heat exchangers in ground source heat pump systems in the United States. ASHRAE

286

Heat pumps in industrial cleaning applications  

E-Print Network [OSTI]

Heat pumps in industrial cleaning applications Achema 2012 - Frankfurt Bjarke Paaske, bjpa consuming n Plants are often heated by electricity n No standard heat pump units available Project to promote heat pumps in industrial cleaning apps. #12;Cleaning plant, drum type Items enter here #12;Washing

Oak Ridge National Laboratory

287

Heat Loss Measurement Using Infrared Imaging  

E-Print Network [OSTI]

in various applications. Examples of two applications are presented. The first describes the development of heat balance data for a solvent refined coal processing unit. The second describes the measurement of heat loss and thermal resistance in a double...

Seeber, S. A.

1983-01-01T23:59:59.000Z

288

Comparison of energy efficiency between variable refrigerant flow systems and ground source heat pump systems  

E-Print Network [OSTI]

multiple water-to-air heat pump units, which are connectedeach of the water-to-air heat pump units can run in eitheras other types of air source heat pumps, VRF systems need

Hong, Tainzhen

2010-01-01T23:59:59.000Z

289

air heat pump: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: In a double stage-coupling heat pump, comprising an air source and water loop heat pump, the 1320 ? low temperature water is supplied to the water loop heat pump unit....

290

Proceedings of the 1998 oil heat technology conference  

SciTech Connect (OSTI)

The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

McDonald, R.J.

1998-04-01T23:59:59.000Z

291

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

lectricity",38.1,5.6,13.6,4.1,12.4,2.5 "Central Warm-Air Furnace",19.1,1.8,6.5,2.2,8,0.6 "Heat Pump",9.8,0.8,4.7,0.9,3,0.4 "Built-In Electric Units",5.7,2.4,1.6,0.3,0.2,1.2...

292

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

"Electricity",38.1,20,2.1,3.3,8.9,3.9 "Central Warm-Air Furnace",19.1,9.6,1,1.5,4.9,2 "Heat Pump",9.8,7,0.7,0.2,0.9,0.9 "Built-In Electric Units",5.7,1.9,0.3,1.1,2.3,"Q"...

293

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

"Electricity",38.1,2.4,4.6,24.2,7 "Central Warm-Air Furnace",19.1,0.3,2.3,13.7,2.9 "Heat Pump",9.8,0.4,0.6,7.5,1.3 "Built-In Electric Units",5.7,1.4,1.4,1.2,1.7 "Portable...

294

Bio-Heating Oil Tax Credit (Corporate)  

Broader source: Energy.gov [DOE]

Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It...

295

Refundable Clean Heating Fuel Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

The state of New York began offering a personal income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized...

296

Bio-Heating Oil Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It...

297

Refrigerant charge management in a heat pump water heater  

DOE Patents [OSTI]

Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

Chen, Jie; Hampton, Justin W.

2014-06-24T23:59:59.000Z

298

Computer Modeling VRF Heat Pumps in Commercial Buildings using EnergyPlus  

SciTech Connect (OSTI)

Variable Refrigerant Flow (VRF) heat pumps are increasingly used in commercial buildings in the United States. Monitored energy use of field installations have shown, in some cases, savings exceeding 30% compared to conventional heating, ventilating, and air-conditioning (HVAC) systems. A simulation study was conducted to identify the installation or operational characteristics that lead to energy savings for VRF systems. The study used the Department of Energy EnergyPlus? building simulation software and four reference building models. Computer simulations were performed in eight U.S. climate zones. The baseline reference HVAC system incorporated packaged single-zone direct-expansion cooling with gas heating (PSZ-AC) or variable-air-volume systems (VAV with reheat). An alternate baseline HVAC system using a heat pump (PSZ-HP) was included for some buildings to directly compare gas and electric heating results. These baseline systems were compared to a VRF heat pump model to identify differences in energy use. VRF systems combine multiple indoor units with one or more outdoor unit(s). These systems move refrigerant between the outdoor and indoor units which eliminates the need for duct work in most cases. Since many applications install duct work in unconditioned spaces, this leads to installation differences between VRF systems and conventional HVAC systems. To characterize installation differences, a duct heat gain model was included to identify the energy impacts of installing ducts in unconditioned spaces. The configuration of variable refrigerant flow heat pumps will ultimately eliminate or significantly reduce energy use due to duct heat transfer. Fan energy is also studied to identify savings associated with non-ducted VRF terminal units. VRF systems incorporate a variable-speed compressor which may lead to operational differences compared to single-speed compression systems. To characterize operational differences, the computer model performance curves used to simulate cooling operation are also evaluated. The information in this paper is intended to provide a relative difference in system energy use and compare various installation practices that can impact performance. Comparative results of VRF versus conventional HVAC systems include energy use differences due to duct location, differences in fan energy when ducts are eliminated, and differences associated with electric versus fossil fuel type heating systems.

Raustad, Richard

2013-06-01T23:59:59.000Z

299

Urban Sewage Delivery Heat Transfer System (2): Heat Transfer  

E-Print Network [OSTI]

The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

2006-01-01T23:59:59.000Z

300

Design of Heat Exchanger for Heat Recovery in CHP Systems  

E-Print Network [OSTI]

The objective of this research is to review issues related to the design of heat recovery unit in Combined Heat and Power (CHP) systems. To meet specific needs of CHP systems, configurations can be altered to affect different factors of the design...

Kozman, T. A.; Kaur, B.; Lee, J.

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Scientific Trigger Unit for Space-Based Real-Time Gamma Ray Burst Detection, II - Data Processing Model and Benchmarks  

E-Print Network [OSTI]

The Scientific Trigger Unit (UTS) is a satellite equipment designed to detect Gamma Ray Bursts (GRBs) observed by the onboard 6400 pixels camera ECLAIRs. It is foreseen to equip the low-Earth orbit French-Chinese satellite SVOM and acts as the GRB trigger unit for the mission. The UTS analyses in real-time and in great details the onboard camera data in order to select the GRBs, to trigger a spacecraft slew re-centering each GRB for the narrow field-of-view instruments, and to alert the ground telescope network for GRB follow-up observations. A few GRBs per week are expected to be observed by the camera; the UTS targets a close to 100% trigger efficiency, while being selective enough to avoid fake alerts. This is achieved by running the complex scientific algorithms on a radiation tolerant hardware, based on a FPGA data pre-processor and a CPU with a Real-Time Operating System. The UTS is a scientific software, firmware and hardware co-development. A Data Processing Model (DPM) has been developed to fully val...

Provost, Hervé Le; Flouzat, Christophe; Kestener, Pierre; Chaminade, Thomas; Donati, Modeste; Château, Frédéric; Daly, François; Fontignie, Jean

2014-01-01T23:59:59.000Z

302

anisothermal heat treatment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump Texas A&M University - TxSpace Summary: The effects of outdoor heat exchanger...

303

Geothermal direct use developments in the United States  

SciTech Connect (OSTI)

Direct heat use of geothermal energy in the United States is recognized as one of the alternative energy resources that has proven itself technically and economically, and is commercially available. Developments include space conditioning of buildings, district heating, groundwater heat pumps, greenhouse heating, industrial processing, aquaculture, and swimming pool heating. Forty-four states have experienced significant geothermal direct use development in the last ten years. The total installed capacity is 5.7 billion Btu/hr (1700 MW/sub t/), with an annual energy use of nearly 17,000 billion Btu/yr (4.5 million barrels of oil energy equivalent). In this report we provide an overview of how and where geothermal energy is used, the extent of that use, the economics and growth trends. The data is based on an extensive site data gathering effort by the Geo-Heat Center in the spring of 1988, under contract to the US Department of Energy. 100 refs., 4 figs., 4 tabs.

Lienau, P.J.; Culver, G.; Lund, J.W.

1988-08-01T23:59:59.000Z

304

Methanol-based heat pump for solar heating, cooling, and storage. Phase III. Final report  

SciTech Connect (OSTI)

The reaction of CH/sub 3/OH vapor with solid (pellet) CaCl/sub 2/ to form the solid phase compound CaCll/sub 2/ . 2CH/sub 3/OH can be used as the basis of a combined solar heat pump/thermal energy storage system. Such a system is capable of storing heat indefinitely at ambient temperature, and can be used for space and domestic hot water heating, and for air conditioning with forced air (dry) heat rejection. It combines all features required of a residential or commercial space conditioning system except for solar collection. A detailed thermal analysis shows that the coefficient of performance for heating is greater than 1.5, and for cooling, greater than 0.5. This has been confirmed by direct experimental measurement on an engineering development test unit (EDTU). The experimental rate of CH/sub 3/OH absorption is a strong function of the absorber-evaporator temperature difference. The minimum practical hourly rate, 0.10 moles CH/sub 3/OH per mole CaCl/sub 2/, was observed with the salt-bed heat transfer fluid at 40/sup 0/C and the CH/sub 3/OH evaporator at -15/sup 0/C. a detailed performance and economic analysis was carried out for a system operated in Washington, DC. With 25 square meters of evacuated tube solar collectors, the CaCl/sub 2/-CH/sub 3/OH chemical heat pump should be capable of meeting over 90% of the cooling load, 80% of the heating load, and 70% of the domestic hot water load with nonpurchased energy in a typical well-insulated single family residence, thus saving about $600 per year. In small-scale production, the installed cost of the system, including solar collectors and backup, is estimated to be about $10,000 greater than a conventional heating and cooling system, and a much lower cost should be possible in the longer term.

Offenhartz, P O'D; Rye, T V; Malsberger, R E; Schwartz, D

1981-03-01T23:59:59.000Z

305

Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana  

SciTech Connect (OSTI)

The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

1998-03-01T23:59:59.000Z

306

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)  

E-Print Network [OSTI]

Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

Fernández de Córdoba, Pedro

307

1992 National census for district heating, cooling and cogeneration  

SciTech Connect (OSTI)

District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

Not Available

1993-07-01T23:59:59.000Z

308

The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report  

SciTech Connect (OSTI)

This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

Hughes, P.J.; Shonder, J.A.

1998-03-01T23:59:59.000Z

309

DESIGN OF A COMPACT HEAT EXCHANGER FOR HEAT RECUPERATION FROM A HIGH TEMPERATURE ELECTROLYSIS SYSTEM  

SciTech Connect (OSTI)

Design details of a compact heat exchanger and supporting hardware for heat recuperation in a high-temperature electrolysis application are presented. The recuperative heat exchanger uses a vacuum-brazed plate-fin design and operates between 300 and 800°C. It includes corrugated inserts for enhancement of heat transfer coefficients and extended heat transfer surface area. Two recuperative heat exchangers are required per each four-stack electrolysis module. The heat exchangers are mated to a base manifold unit that distributes the inlet and outlet flows to and from the four electrolysis stacks. Results of heat exchanger design calculations and assembly details are also presented.

G. K. Housley; J.E. O'Brien; G.L. Hawkes

2008-11-01T23:59:59.000Z

310

Integrating ducts into the conditioned space: Successes and challenges  

SciTech Connect (OSTI)

In residential and light commercial construction in the United States, heating and cooling ducts are often located outside the thermal or pressure boundary of the conditioned space. This location is selected for aesthetic and space requirement reasons. Typical duct locations include attics, above dropped ceilings, crawlspaces, and attached garages. A wide body of literature has found that distribution system conduction and air leakage can cause 30-40% energy losses before cooling and heating air reaches the conditioned space. Recent innovative attempts at locating ducts in the conditioned space have had mixed results in terms of improving duct efficiency. Some of these strategies include cathedralizing attics (sealing and insulating at the attic roofline) and locating ducts in interstitial spaces. This paper reviews modeling studies that suggest substantial savings could be realized from these strategies and presents field measurements which reveal that construction planning and execution errors can prevent these strategies from being widely applied or from being effective when they are applied. These types of problems will need to be overcome for effective integration of ducts into the conditioned space.

Siegel, Jeffrey; Walker, Iain

2004-05-01T23:59:59.000Z

311

User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume I. Main text  

SciTech Connect (OSTI)

The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. The reservoir and fluid transmission submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the reservoir and fluid transmission system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. Geothermal space heating is assumed to be provided by circulating hot water through radiators, convectors, fan-coil units, or other in-house heating systems. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. Geothermal space or process cooling is simulated by circulating hot water through lithium bromide/water absorption chillers located at each building. Retrofit costs for both heating and cooling applications can be input by the user. The life-cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life-cycle cost of heat (chill) to the end-users are calculated using discounted cash flow analysis.

Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

1982-09-01T23:59:59.000Z

312

Total U.S. Housing Units.......................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

40.7 24.2 Do Not Have Heating Equipment... 1.2 Q Q Q 0.7 Have Space Heating Equipment... 109.8 20.5 25.6 40.3 23.4 Use Space...

313

Total U.S. Housing Units.......................................  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

21.7 6.9 12.1 Do Not Have Heating Equipment... 1.2 Q Q N Q Have Space Heating Equipment... 109.8 40.3 21.4 6.9 12.0 Use Space...

314

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, P.R.; McLennan, G.A.

1984-08-30T23:59:59.000Z

315

Fast reactor power plant design having heat pipe heat exchanger  

DOE Patents [OSTI]

The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

316

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

317

Solar industrial process heat  

SciTech Connect (OSTI)

The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

Lumsdaine, E.

1981-04-01T23:59:59.000Z

318

Heat distribution by natural convection  

SciTech Connect (OSTI)

Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

319

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Space-Heating Supply Hour Load (kW) Storage CHP NG Fig. 14Space-Heating Supply Load (kW) Storage Hour CHP NG Fig. 15Supply Load (kW) Storage CHP NG Hour Fig. 16 July Weekday

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

320

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

.1,0.9,2.6,3.8,7,7.8,7.1,6.8 "Central Warm-Air Furnace",19.1,0.6,0.3,1,1.6,3.5,4,3.8,4.3 "Heat Pump",9.8,0.4,0.2,0.5,0.7,1.6,2,2.2,2.2 "Built-In Electric Units",5.7,0.7,0.2,0.5,0.9...

322

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

.2,7.1,4.4,2.6,1.3,3,6.8 "Central Warm-Air Furnace",19.1,4.6,5.5,3.6,2.2,1.2,0.6,1.4,3.5 "Heat Pump",9.8,1.4,2,2,1.4,1,0.6,1.3,0.9 "Built-In Electric Units",5.7,1.9,1.6,0.9,0.6,0.3...

323

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

.4,0.4,0.3,0.2,2,0.5,1.3,0.1 "Central Warm-Air Furnace",19.1,0.3,0,0,"Q",0.2,0.1,"Q","Q" "Heat Pump",9.8,0.4,"Q","Q","N",0.4,"Q",0.4,"N" "Built-In Electric Units",5.7,1.4,0.3,0.2,0...

324

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

ctricity",38.1,11.7,11.7,5.9,5.1,3.8 "Central Warm-Air Furnace",19.1,5.6,5.5,3.2,2.7,2.2 "Heat Pump",9.8,2.5,3.7,1.6,1.3,0.7 "Built-In Electric Units",5.7,2.4,1.7,0.6,0.7,0.4...

325

AN ASSESSMENT OF HEAT PUMP APPLICATION AT WATER TREATMENT FACILITIES-THAT USE SURFACE WATER.  

E-Print Network [OSTI]

??Energy-efficient heat pumps have been applied in the United States and other regions of the world for decades. Geothermal heat pumps have been used, but… (more)

YAN, WENPENG

2013-01-01T23:59:59.000Z

326

Acoustical heat pumping engine  

DOE Patents [OSTI]

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1983-08-16T23:59:59.000Z

327

Acoustical heat pumping engine  

DOE Patents [OSTI]

The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1983-08-16T23:59:59.000Z

328

Heating system  

SciTech Connect (OSTI)

A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

Nishman, P.J.

1983-03-08T23:59:59.000Z

329

National Aeronautics and Space Administration  

E-Print Network [OSTI]

National Aeronautics and Space Administration Launch Services Program Earth's Bridge to Space 2012 roles, getting rockets and satellites ready for flight, on their way, and all the way to orbit absolutely instrumental for the United States to have access to a dependable and secure Earth-to-space bridge

330

Ground Source Integrated Heat Pump (GS-IHP) Development  

SciTech Connect (OSTI)

Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test experience, CM developed a 2nd generation (or beta) prototype in 2012. Field test verification units were fabricated and installed at the ZEBRAlliance site in Oak Ridge in May 2012 and at several sites near CM headquarters in Oklahoma. Field testing of the units continued through February 2013. Annual performance analyses of the beta unit (prototype 2) with vertical well ground heat exchangers (GHX) in 5 U.S. locations predict annual energy savings of 57% to 61%, averaging 59% relative to the minimum efficiency suite and 38% to 56%, averaging 46% relative to the SOA GSHPwDS. Based on the steady-state performance demonstrated by the test units it was projected that the 2nd generation units would achieve ~58% energy savings relative to the minimum efficiency suite at the Zebra Alliance site with horizontal GHX. A new product based on the beta unit design was announced by CM in 2012 – the Trilogy 40® Q-mode™ (http://cmdealernet.com/trilogy_40.html). The unit was formally introduced in a March 2012 press release (see Appendix A) and was available for order beginning in December 2012.

Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

2013-05-24T23:59:59.000Z

331

Solar heating system at Quitman County Bank, Marks, Mississippi. Final report  

SciTech Connect (OSTI)

Information is provided on the solar heating system installed in a single story wood frame, cedar exterior, sloped roof building, the Quitman County Bank, a branch of the First National Bank of Clarksdale, Mississippi. It is the first solar system in the geographical area and has promoted much interest. The system has on-site temperature and power measurements readouts. The 468 square feet of Solaron air flat plate collectors provide for 2000 square feet of space heating, an estimated 60% of the heating load. Solar heated air is distributed to the 235 cubic foot rock storage box or to the load (space heating) by a 960 cubic feet per minute air handler unit. A 7.5 ton Carrier air-to-air heat pump with 15 kilowatts of electric booster strips serve as a back-up (auxiliary) to the solar system. Motorized dampers control the direction of airflow and back draft dampers prevent thermal siphoning of conditioned air. The system was turned on in September 1979, and acceptance testing completed in February 1980. This is a Pon Cycle 3 Project with the Government sharing $13,445.00 of the $24,921 Solar Energy System installation cost.

None

1980-06-01T23:59:59.000Z

332

Simulations of heating and electron energy distributions in optical field ionized plasmas Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, United Kingdom  

E-Print Network [OSTI]

Simulations of heating and electron energy distributions in optical field ionized plasmas T is important. The consequences that the calculated energy distributions have on three-body recombination rates extent 7­9 . In calculating the magnitude of the collisional heating the electron energy distribution

Ditmire, Todd

333

Performance of evacuated tubular solar collectors in a residential heating and cooling system. Final report, 1 October 1978-30 September 1979  

SciTech Connect (OSTI)

Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season was based on the use of systems comprising an experimental evacuated tubular solar collector, a non-freezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built-up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off-peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. Automatic system control and automatic data acquisition and computation are provided. This system is compared with others evaluated in CSU Solar Houses I, II and III, and with computer predictions based on mathematical models. Of the 69,513 MJ total energy requirement for space heating and hot water during a record cold winter, solar provided 33,281 MJ equivalent to 48 percent. Thirty percent of the incident solar energy was collected and 29 percent was delivered and used for heating and hot water. Of 33,320 MJ required for cooling and hot water during the summer, 79 percent or 26,202 MJ were supplied by solar. Thirty-five percent of the incident solar energy was collected and 26 percent was used for hot water and cooling in the summer. Although not as efficient as the Corning evacuated tube collector previously used, the Philips experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well-insulated heat storage tank. Day time (on-peak) electric auxiliary heating was completely avoided by use of off-peak electric heat storage. A well-designed and operated solar heating and cooling system provided 56 percent of the total energy requirements for heating, cooling, and hot water.

Duff, W.S.; Loef, G.O.G.

1981-03-01T23:59:59.000Z

334

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 UNIT NAME C-611 Underaround Diesel Tank REGULATORY STATUS: AOC LOCATION: Immediately southeast of C-611 APPROXIMATE DIMENSIONS: 1000 gallon FUNCTION: Diesel storage OPERATIONAL...

335

Model Based Diagnosis of an Air Source Heat Pump; Modellbaserad Diagnos av en Luftvärmepump.  

E-Print Network [OSTI]

?? The purpose of a heat pump is to control the temperature of an enclosed space. This is done by using heat exchange with a… (more)

Alfredsson, Sandra

2011-01-01T23:59:59.000Z

336

National Aeronautics and Space Administration  

E-Print Network [OSTI]

Deep Space Atomic Clock Composite Strut Structural Testing Exoskeleton Solar Sail and Boom Fab MSL heat shield with instrumentation Inflatable Re-entry Vehicle Experiment Additive Manufacturing BIRD focal

337

Thermal insulated glazing unit  

SciTech Connect (OSTI)

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

1991-01-01T23:59:59.000Z

338

Thermal insulated glazing unit  

SciTech Connect (OSTI)

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

1988-04-05T23:59:59.000Z

339

Intermountain Gas Company (IGC)- Gas Heating Rebate Program  

Broader source: Energy.gov [DOE]

The Intermountain Gas Company's (IGC) Gas Heating Rebate Program offers customers a $200 per unit rebate when they convert to a high efficiency natural gas furnace that replaces a heating system...

340

CHP: It's Time for Combined Heat and Power  

E-Print Network [OSTI]

and export 16. Creates local jobs for installation, operation and maintenance 17. Supports competitive electricity market structure General Conclusion It is very much in the PUBLIC interest to support CHP distributed energy… even if the private incentives... of use Electricity Electricity Heat Heat Combined Heat and Power Conventional Generation Building Load Power Plant fuel (66 units of remote energy) Boiler fuel (34 units of on-site energy) CHP fuel (x units of on-site energy) Losses Losses 20 29 20...

Herweck, R.

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Retrofit Integrated Space & Water Heating: Field Assessment,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

directly replace the existing forced air furnace and water heater, and consist of a high efficiency water heater or boiler and an optimized hydronic air handler. The air handlers...

342

Passive Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLCPascoag Utility District Jump to:Passive

343

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region - France) JumpBeginnerThin

344

Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver Peak AreaOutlineSolarEnergySolaraka

345

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:Information Silver PeakSystems Jump to:JumpSolar powerfollowing

346

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, Michael A. (Santa Cruz, NM)

1984-01-01T23:59:59.000Z

347

Heat collector  

DOE Patents [OSTI]

A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

Merrigan, M.A.

1981-06-29T23:59:59.000Z

348

United Power- Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

United Power, together with Tri-State Generation and Transmission (TSGT), offers rebates for the installation of a variety of energy efficient equipment including heating and cooling systems, water...

349

Space of Spaces  

E-Print Network [OSTI]

Wheeler emphasized the study of Superspace - the space of 3-geometries on a spatial manifold of fixed topology. This is a configuration space for GR; knowledge of configuration spaces is useful as regards dynamics and QM.In this Article I consider furthmore generalized configuration spaces to all levels within the conventional `equipped sets' paradigm of mathematical structure used in fundamental Theoretical Physics. This covers A) the more familiar issue of topology change in the sense of topological manifolds (tied to cobordisms), including via pinched manifolds. B) The less familiar issue of not regarding as fixed the yet deeper levels of structure: topological spaces themselves (and their metric space subcase), collections of subsets and sets. Isham has previously presented quantization schemes for a number of these. I consider some classical preliminaries for this program, aside from the most obvious (classical dynamics for each). Rather, I provide I) to all levels Relational and Background Independence criteria, which have Problem of Time facets as consequences. I demonstrate that many of these issues descend all the way down, whilst also documenting at which level the others cease to apply. II) Probability theory on configuration spaces. In fact such a stochastic treatment is how to further mathematize the hitherto fairly formal and sketchy subject of records theory (a type of formultion of quantum gravity). Along these lines I provide a number of further examples of records theories. This is in addition to Kendall's shape statistics being the example corresponding to relational mechanics models. To this example I now add 1) Cech cohomology, 2) Kendall's random sets, 3) the lattice of topologies on a fixed set. I finally consider 4) sheaves, both as a generalization of Cech cohomology and in connection to the study of stratified manifolds such as Superspace itself.

Edward Anderson

2014-11-30T23:59:59.000Z

350

Covered Product Category: Light Commercial Heating and Cooling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

capacities of 240,000 British thermal units per hour (Btuhr) or less. Packaged terminal air conditioners and heat pumps are excluded. Meeting Energy Efficiency Requirements for...

351

ITP Industrial Distributed Energy: Cooling, Heating, and Power...  

Broader source: Energy.gov (indexed) [DOE]

United States Government or any agency thereof. Abstract Investigators analyzed the energy consumption and end-user economics of Cooling, Heating, and Power (CHP) systems in...

352

SOOT GENERATION IN FIRES: AN IMPORTANT PARAMETER FOR ACCURATE CALCULATION OF HEAT RELEASE  

E-Print Network [OSTI]

states that heat of complete combustion per unit mass of oxygen consumed is approximately constant similarly states that heat of complete combustion per unit mass of carbon dioxide generated is approximately constant for most organic liquid, gaseous and solid compounds [1]. The heat of combustion per unit mass

Paris-Sud XI, Université de

353

Corrosive resistant heat exchanger  

DOE Patents [OSTI]

A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

Richlen, Scott L. (Annandale, VA)

1989-01-01T23:59:59.000Z

354

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP  

E-Print Network [OSTI]

DEVELOPMENT OF THFEGENERAL ELECTRIC STIRLING ENGINE GAS HEAT PUMP R. C. Meier, Program Manager, Gas Heat Pump Program General Electric Company P. 0. Box 8555 Philadelphia, Pennsylvania 19101 FILE COPY DO NOT REMOVE SUMMARY The Stirling/Rankine Heat Activated Heat Pump is a high performance product for space

Oak Ridge National Laboratory

355

Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants  

E-Print Network [OSTI]

1 Scroll compressor modelling for heat pumps using hydrocarbons as refrigerants Paul BYRNE and to install heat pumps in unoccupied spaces. Nevertheless manufacturers keep working on components for hydrocarbons. In the frame of a research project on heat pumps for simultaneous heating and cooling, an R407C

Paris-Sud XI, Université de

356

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 UNIT NAME C-632-8 Sulfuric Acid Storaqe TaD REGULATORY STATUS CERCLA LOCATION Southwest of C-631 coolin location 76 APPROXIMATE DIMENSIONS 5000 Qal - FUNCTION Sulfuric acid...

357

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 C-750B Diesel UST UNIT NAME REGULATORY STATUS: AOC LOCATION: Southeast corner of C-750 APPROXIMATE DIMENSIONS: 10,000 gallon FUNCTION: Diesel storage OPERATIONAL STATUS: Removed...

358

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 UNIT NAME C-633 PCB So111 Site REGULATORY STATUS CERCLA LOCATION C-633 Transformer area (Mac location 75) APPROXIMATE DIMENSIONS I Unknown FUNCTION Soill site OPERATIONAL STATUS...

359

Check Burner Air to Fuel Ratios (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #2c  

SciTech Connect (OSTI)

This English/Chinese international tip sheet provides information for optimizing efficiency of industrial process heating systems and includes measurements in metric units.

Not Available

2010-10-01T23:59:59.000Z

360

Energy Consumption and Demand as Affected by Heat Pumps that Cool, Heat and Heat Domestic Water  

E-Print Network [OSTI]

heaters. The methods presented demonstrate how integrated systems can be of value in reducing daily summertime peaks. INTRODUCTION A need for descriptors to evaluate systems that condition space and heat domestic water has been recognized for several... added to and used by the water from the desuperheated refrigerant - heat normally provided by the electric water heater's resistance elements. DESCRIPTION OF EQUIPMENT The system considered for this study is best described by U.S. Patent No. 4...

Cawley, R.

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Atoms for space  

SciTech Connect (OSTI)

Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

Buden, D.

1990-10-01T23:59:59.000Z

362

Department of Mechanical Engineering "Heat Under the Microscope  

E-Print Network [OSTI]

applications ranging from thermoelectric waste heat recovery to radio astronomy. BIOGRAPHY Austin MinnichDepartment of Mechanical Engineering presents "Heat Under the Microscope: Uncovering an essential role in nearly every technological application, ranging from space power generation to consumer

Militzer, Burkhard

363

air heat exchanger: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre...

364

air heat exchangers: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre...

365

U.S. geothermal district heating : barriers and enablers  

E-Print Network [OSTI]

Geothermal district heating experience in the U.S. is reviewed and evaluated to explore the potential impact of utilizing this frequently undervalued renewable energy resource for space and hot water heating. Although the ...

Thorsteinsson, Hildigunnur H

2008-01-01T23:59:59.000Z

366

Absorption Heat Pumping- Have You Tried It?  

E-Print Network [OSTI]

The concept of a thermal powered absorption heat pump is not a new or revolutionary idea. It has been successfully demonstrated in the lab and prototypes have been installed in the field. Units have been successfully applied in a number...

Davis, R. C.

367

Heat pipe dehumidification for supermarket energy savings  

E-Print Network [OSTI]

This thesis examines the possibility of using a heat pipe installed in the air conditioning unit of a supermarket to increase the level of dehumidification of the inside air. This dehumidification is expected to reduce the ...

Oliver, Eric M. (Eric Michael)

1994-01-01T23:59:59.000Z

368

Heat Exchanger Technologies for Distillation Columns  

E-Print Network [OSTI]

each type of exchanger in turn. Heat exchanger size is minimised if the temperature driving force is maximised. The design should therefore seek to minimise the temperature changes during phase change. So, streams that are being condensed are kept... Reboiler not always possible (e.g. one part of a unit may be running at reduced load). Result: installed steam driven unit required to ensure integrity or heat recovery not used. Low temperature driving force Operation at low temperature driving force...

Polley, G. T.

369

A study of contact angles in porous solids using heat pipes  

E-Print Network [OSTI]

Aviation and Space Conference, 1968, 655-658. 25 Brosens, P. , "Thermionic Converters with Heat Pipe Radiators, " Advances in Energy Conversion Engineering, 1967, 181-187. 33 26 Werner, R. W. , and G. A. Carlson, "Heat Pipe Radiator for Space Power... heat from a nuclear source to a thermionic generator (~29 , since thermionic generators are sensitive to high levels of radiation. Heat pipes have been suggested for controlling cryogenic boiloff in space (~30 . An investigation of using heat pipes...

Collins, Richard Clark

1971-01-01T23:59:59.000Z

370

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network [OSTI]

natural gas generator with waste heat recovery at a facilityCCHP locations that are using waste heat for cooling alsouse some of the waste heat directly for water or space

Norwood, Zack

2010-01-01T23:59:59.000Z

371

Heating System Specification Specification of Heating System  

E-Print Network [OSTI]

Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

Day, Nancy

372

advanced heat engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

project is funded by the Singapore National Research Foundation 16 Advanced Mechanical Heat Pump Technologies for Industrial Applications Texas A&M University - TxSpace Summary:...

373

advanced heat engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

project is funded by the Singapore National Research Foundation 16 Advanced Mechanical Heat Pump Technologies for Industrial Applications Texas A&M University - TxSpace Summary:...

374

Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report  

SciTech Connect (OSTI)

A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

Nick Rosenberry, Harris Companies

2012-05-04T23:59:59.000Z

375

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

natural gas chillers, waste heat or solar heat; • hot wateris limited by generated waste heat Regulatory constraints: -might favor the use of waste heat from DG units or from

Stadler, Michael

2009-01-01T23:59:59.000Z

376

Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States  

E-Print Network [OSTI]

heat pump product classes are given in Table A.2.5 Gas Furnaces Natural gas space heating contributes 67.1% of residential

Bojda, Nicholas

2011-01-01T23:59:59.000Z

377

Solar process heat technology in action: The process hot water system at the California Correctional Institution at Tehachapi  

SciTech Connect (OSTI)

Solar process heat technology relates to solar thermal energy systems for industry, commerce, and government. Applications include water preheating and heating, steam generation, process hot air, ventilation air heating, and refrigeration. Solar process heat systems are available for commercial use. At the present time, however, they are economically viable only in niche markets. This paper describes a functioning system in one such market. The California Department of Corrections (CDOC), which operates correctional facilities for the state of California, uses a solar system for providing hot water and space heating at the California Correctional Institute at Tehachapi (CCI/Tehachapi). CCI/Tehachapi is a 5100-inmate facility. The CDOC does not own the solar system. Rather, it buys energy from private investors who own the solar system located on CCI/Tehachapi property; this arrangement is part of a long-term energy purchase agreement. United Solar Technologies (UST) of Olympia Washington is the system operator. The solar system, which began operating in the fall of 1990, utilizes 2677 m{sup 2} (28,800 ft{sup 2}) of parabolic through solar concentrators. Thermal energy collected by the system is used to generate hot water for showers, kitchen operations, and laundry functions. Thermal energy collected by the system is also used for space heating. At peak operating conditions, the system is designed to meet approximately 80 percent of the summer thermal load. 4 figs., 4 tabs.

Hewett, R. (National Renewable Energy Lab., Golden, CO (United States)); Gee, R.; May, K. (Industrial Solar Technology, Arvada, CO (United States))

1991-12-01T23:59:59.000Z

378

Radiative heat transfer in porous uranium dioxide  

SciTech Connect (OSTI)

Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

Hayes, S.L. [Texas A and M Univ., College Station, TX (United States)] [Texas A and M Univ., College Station, TX (United States)

1992-12-01T23:59:59.000Z

379

Heat transfer probe  

DOE Patents [OSTI]

Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

2006-10-10T23:59:59.000Z

380

Environmental Health & Safety Fire Safety Unit  

E-Print Network [OSTI]

materials (gas, lighter fluid, charcoal, propane, solvents, etc.) All items powered by combustible fuels heat to start a fire if used improperly). Including but not limited to: George Foreman grills portable heating devices (space heaters of any type) What other items are not allowed in my room? Non

Portman, Douglas

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fresh Way to Cut Combustion, Crop and Air Heating Costs Avoids Million BTU Purchases: Inventions and Innovation Combustion Success Story  

SciTech Connect (OSTI)

Success story written for the Inventions and Innovation Program about a new space heating method that uses solar energy to heat incoming combustion, crop, and ventilation air.

Wogsland, J.

2001-01-17T23:59:59.000Z

382

Geothermal heating for Caliente, Nevada  

SciTech Connect (OSTI)

Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

Wallis, F.; Schaper, J.

1981-02-01T23:59:59.000Z

383

The effects of airflow modulation and multi-stage defrost on the performance of an air source heat pump  

E-Print Network [OSTI]

. This transfer of heat energy from a low temperature ambient to the high temperature conditioned space is accomplished by the input of electrical energy to the compressor. During the heating season, the heat pump transfers heat energy from the low temperature... pump refrigeration circuit includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, an expansion device, and fans to transfer heat energy from a low temperature heat energy source to a higher temperature heat energy sink...

Payne, William Vance

1992-01-01T23:59:59.000Z

384

Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units  

DOE Patents [OSTI]

The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

Backhaus, Scott; Swift, Greg

2013-06-25T23:59:59.000Z

385

Heat distribution by natural convection  

SciTech Connect (OSTI)

Natural convection can provide adequate heat distribution in many situations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others. Natural convection can also be used to reduce the number of auxiliary heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures are predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Experimental results are summarized based on the monitoring of 15 passive solar buildings which employ a wide variety of geometrical configurations including natural convective loops.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

386

Geothermal heating  

SciTech Connect (OSTI)

The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

Aureille, M.

1982-01-01T23:59:59.000Z

387

STATE OF CALIFORNIA SPACE CONDITIONING SYSTEMS, DUCTS AND FANS  

E-Print Network [OSTI]

, crawl- space, etc.) Duct R-value Heating Load (Btu/hr) Heating Capacity (Btu/hr) Equip Type (package Load (Btu/hr) Cooling Capacity (Btu/hr) 1. If project is new construction, see Footnotes to Standards

388

andalusian endoscopy units: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NATIONS UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS 12;12;The space age began on 4 October 1957 with the launch of the first artificial satellite, Sputnik 1. Soon after that...

389

Solar heating and cooling diode module  

DOE Patents [OSTI]

A high efficiency solar heating system comprising a plurality of hollow modular units each for receiving a thermal storage mass, the units being arranged in stacked relation in the exterior frame of a building, each of the units including a port for filling the unit with the mass, a collector region and a storage region, each region having inner and outer walls, the outer wall of the collector region being oriented for exposure to sunlight for heating the thermal storage mass; the storage region having an opening therein and the collector region having a corresponding opening, the openings being joined for communicating the thermal storage mass between the storage and collector regions by thermosiphoning; the collector region being disposed substantially below and in parallel relation to the storage region in the modular unit; and the inner wall of the collector region of each successive modular unit in the stacked relation extending over the outer wall of the storage region of the next lower modular unit in the stacked relation for reducing heat loss from the system. Various modifications and alternatives are disclosed for both heating and cooling applications.

Maloney, Timothy J. (Winchester, VA)

1986-01-01T23:59:59.000Z

390

Performance of ECM controlled VAV fan powered terminal units  

E-Print Network [OSTI]

signal from low pass filter h Enthalpy HVAC Heating, Ventilation, & Air Conditioning IRMS RMS value of current (amps) ? ? m mass flow rate Piav Inlet air velocity differential pressure Pdown Downstream static pressure Punit... Static pressure inside terminal unit Pup Upstream static pressure Powerfan Power consumption of terminal unit fan PF Power Factor PSC Permanent Split Capacitor ? ? Q Change in heat input per unit time Qfan Amount of airflow through...

Cramlet, Andrew Charles

2009-05-15T23:59:59.000Z

391

Heat pump system  

DOE Patents [OSTI]

An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

1982-01-01T23:59:59.000Z

392

Quantum Heat Bath  

E-Print Network [OSTI]

A model for a quantum heat bath is introduced. When the bath molecules have finitely many degrees of freedom, it is shown that the assumption that the molecules are weakly interacting is sufficient to enable one to derive the canonical distribution for the energy of a small system immersed in the bath. While the specific form of the bath temperature, for which we provide an explicit formula, depends on (i) spectral properties of the bath molecules, and (ii) the choice of probability measure on the state space of the bath, we are in all cases able to establish the existence of a strictly positive lower bound on the temperature of the bath. The results can be used to test the merits of different hypotheses for the equilibrium states of quantum systems. Two examples of physically plausible choices for the probability measure on the state space of a quantum heat bath are considered in detail, and the associated lower bounds on the temperature of the bath are worked out.

Dorje C. Brody; Lane P. Hughston

2014-11-17T23:59:59.000Z

393

Industrial Waste Heat Recovery Using Heat Pipes  

E-Print Network [OSTI]

For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

Ruch, M. A.

1981-01-01T23:59:59.000Z

394

United States  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New EnergyofDEVELOPMENTEnergy 1n n d d eAlan8 United

395

Heating systems for heating subsurface formations  

DOE Patents [OSTI]

Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2011-04-26T23:59:59.000Z

396

An evaluation of heat flow transducers as a means of determining soil heat flow  

E-Print Network [OSTI]

provided to the Micrometeorology Section, Department of Oceanography and Meteorology, ARM College of Texas by the Signal Corps of the United States Army, under Contract No. DA 36-039 AMC-02195 (E). The heat flow plates used in this study were provided... surface soil heat flow. The results show that acceptable performance of the plates in the measurement of heat flow is possible although in general should not be expected without thorough testing, and even then there are restrictive considerations...

King, Barney L. D

2012-06-07T23:59:59.000Z

397

Preliminary Analysis of a Solar Heat Pump System with Seasonal Storage for Heating and Cooling  

E-Print Network [OSTI]

and cooling were set up, which is responsible for the space heating and cooling and domestic hot water for a residential block. Through hourly simulation, the performance and the economics of such systems were analyzed, for the different tank volumes...

Yu, G.; Chen, P.; Dalenback, J.

2006-01-01T23:59:59.000Z

398

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, P.J.

1983-12-08T23:59:59.000Z

399

Heat exchanger  

DOE Patents [OSTI]

A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

Brackenbury, Phillip J. (Richland, WA)

1986-01-01T23:59:59.000Z

400

State of Spacef p State of Space 2009  

E-Print Network [OSTI]

State of Spacef p 2009 State of Space 2009 DRAFT ­ For Discussion Only #12;UW Space throughout the World Owned or Leased State of Space 2009 DRAFT ­ For Discussion Only *Space recorded with the Office of Planning & Budgeting or the Real Estate Office #12;UW Space throughout the United States Owned or Leased

Van Volkenburgh, Elizabeth

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report  

SciTech Connect (OSTI)

This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.

None

1980-07-01T23:59:59.000Z

402

Innovation Spaces  

E-Print Network [OSTI]

Innovation ecosystems today are the lifeblood or the great hope of many major economies, but at the heart of these ecosystems, there are places and spaces. Silicon Valley is not just a place, but a cluster of spaces where ...

Schneider-Sikorsky, Patrick A

2014-01-01T23:59:59.000Z

403

Constructal multi-scale package of vertical channels with natural convection and maximal heat transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT  

E-Print Network [OSTI]

transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT AND FLUID FLOW STRUCTURES-scale structures in natural convection with the objective of maximizing the heat transfer density, or the heat transfer rate per unit of volume§ . The flow volume is filled with vertical equidistant heated blades

Kihm, IconKenneth David

404

Heating 7. 2 user's manual  

SciTech Connect (OSTI)

HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

Childs, K.W.

1993-02-01T23:59:59.000Z

405

Radiant heating tests of several liquid metal heat-pipe sandwich panels  

SciTech Connect (OSTI)

Integral heat pipe sandwich panels, which synergistically combine the thermal efficiency of heat pipes and the structural efficiency of honeycomb sandwich construction, were conceived as a means of alleviating thermal stress problems in the Langley Scramjet Engine. Test panels which utilized two different wickable honeycomb cores, facesheets with screen mesh sintered to the internal surfaces, and a liquid metal working fluid (either sodium or potassium) were tested by radiant heating at various heat load levels. The heat pipe panels reduced maximum temperature differences by 31 percent with sodium working fluid and 45 percent with potassium working fluid. Results indicate that a heat pipe sandwich panel is a potential, simple solution to the engine thermal stress problem. Other interesting applications of the concept include: cold plates for electronic component and circuit card cooling, radiators for large space platforms, low distortion large area structures (e.g., space antennas) and laser mirrors.

Camarda, C.J.; Basiulis, A.

1983-08-01T23:59:59.000Z

406

Design Development Analyses in Support of a Heat pipe-Brayton Cycle Heat Exchanger  

SciTech Connect (OSTI)

One of the power systems under consideration for future space exploration applications, including nuclear electric propulsion or as a planetary surface power source, is a heat pipe-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the heat pipes to the Brayton gas via a heat exchanger attached to the heat pipes. This paper discusses the fluid, thermal and structural analyses that were performed in support of the design of the heat exchanger to be tested in the SAFE-100 experimental program at the Marshall Space Flight Center. An important consideration throughout the design development of the heat exchanger was its capability to be utilized for higher power and temperature applications. This paper also discusses this aspect of the design and presents designs for specific applications that are under consideration. (authors)

Steeve, Brian E. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

2004-07-01T23:59:59.000Z

407

Proceedings of the 1991 Oil Heat Technology Conference and Workshop  

SciTech Connect (OSTI)

This Conference, which was the sixth held since 1984, is a key technology-transfer activity supported by the ongoing Combustion Equipment Technology program at BNL, and is aimed at providing a forum for the exchange of information among international researchers, engineers, manufacturers, and marketers of oil-fired space-conditioning equipment. The objectives of the Conference were to: Identify and evaluate the state-of-the-art and recommend; new initiatives to satisfy consumer needs cost-effectively, reliably, and safely; Foster cooperation among federal and industrial representatives with the common goal of national security via energy conservation. The 1991 Oil Technology Conference comprised: (a) two plenary sessions devoted to presentations and summations by public and private sector representatives from the United States, Europe, and Canada; and, (b) four workshops which focused on mainstream issues in oil-heating technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

McDonald, R.J.

1992-07-01T23:59:59.000Z

408

ACCURATE CALCULATIONS OF HEAT RELEASE IN FIRES S. Brohez', C. Delvosalle', G. Marlair2  

E-Print Network [OSTI]

values of the heat of combustion per unit mass of oxygen consumed and carbon dioxide generated are used calorimetry states that heat of complete combustion per unit mass of oxygen consumed is approximately constant an average value of the heat of combustion to be 13.1 Id per gram of oxygen consumed with a ± 5% variation

Paris-Sud XI, Université de

409

Atomic power in space: A history  

SciTech Connect (OSTI)

''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

Not Available

1987-03-01T23:59:59.000Z

410

Field Study of Performance, Comfort, and Sizing of Two Variable-Speed Heat Pumps Installed in a Single 2-Story Residence  

SciTech Connect (OSTI)

With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses, and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.

Munk, Jeffrey D [ORNL; Odukomaiya, Adewale O [ORNL; Gehl, Anthony C [ORNL; Jackson, Roderick K [ORNL

2014-01-01T23:59:59.000Z

411

Space Kimchi  

E-Print Network [OSTI]

Broadcast Transcript: In space, no one can hear you scream... but did you know that in space no one can detect your smell either? The smell-taste connection means that food in space is not only weightless but tasteless, too. What's a flavor...

Hacker, Randi; Oborny, Jaimie; Tsutsui, William

2006-07-05T23:59:59.000Z

412

Using a cold radiometer to measure heat loads and survey heat leaks  

SciTech Connect (OSTI)

We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P. [Cryogenics and Fluids Branch, NASA/Goddard Space Flight Center, Greenbelt MD 20771 (United States)

2014-01-29T23:59:59.000Z

413

Solar heating system at Security State Bank, Starkville, Mississippi. Final report  

SciTech Connect (OSTI)

Information is provided on the Solar Energy Heating System (airtype) installed at the branch bank building, northwest corner of Highway 12 and Spring Street, Starkville, Mississippi. This installation was completed in June, 1979. The 312 square feet of Solaron flat plate air collectors provide for 788 square feet of space heating, an estimated 55 percent of the heating load. Solar heated air is distributed to the 96 cubic foot steel cylinder, which contains two inch diameter rocks. An air handler unit moves the air over the collector and into the steel cylinder. Four motorized dampers and two gravity dampers are also part of the system. A Solaron controller which has sensors located at the collectors, rock storage, and at the return air, automatically controls the system. Auxiliary heating energy is provided by electric resistance duct heaters. This project is part of the US Department of Energy's Solar Demonstration Program with the government sharing $14,201 of the $17,498 solar energy system installation cost. This system was acceptance tested February, 1980, and the demonstration period ends in 1985.

None

1980-08-01T23:59:59.000Z

414

Dual source heat pump  

DOE Patents [OSTI]

What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

1982-01-01T23:59:59.000Z

415

Segmented heat exchanger  

DOE Patents [OSTI]

A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

2010-12-14T23:59:59.000Z

416

Passive solar heating and natural cooling of an earth-integrated design  

SciTech Connect (OSTI)

The Joint Institute for Heavy Ion Research is being designed with innovative features that will greatly reduce its energy consumption for heating, cooling, and lighting. A reference design has been studied and the effects of extending the overhang during summer and fall, varying glazing area, employing RIB, and reducing internal heat by natural lighting have been considered. The use of RIB and the extendable overhang increases the optimum window glazing area and the solar heating fraction. A mass-storage wall which will likely be included in the final design has also been considered. A figure of merit for commercial buildings is the total annual energy consumption per unit area of floor space. A highly efficient office building in the Oak Ridge area typically uses 120 to 160 kWhr/m/sup 2/. The Joint Institute reference design with natural lighting, an annual average heat pump coefficient of performance (COP) equal to 1.8, RIB, and the extendable overhang uses 71 kWhr/m/sup 2/. This figure was determined from NBSLD simulations corrected for the saving from RIB. The internal heat energy from lighting and equipment used in the simulation was 1653 kWhrs/month (high natural lighting case) which is much lower than conventional office buildings. This value was adopted because only a portion of the building will be used as office space and efforts will be made to keep internal heat generation low. The mass-storage wall and ambient air cooling will reduce energy consumption still further. The combined savings of the innovative features in the Joint Institute building are expected to result in a very energy efficient design. The building will be instrumented to monitor its performance and the measured data will provide a means of evaluating the energy-saving features. The efficiency of the design will be experimentally verified over the next several years.

Barnes, P.R.; Shapira, H.B.

1980-01-01T23:59:59.000Z

417

$?$--Rindler space  

E-Print Network [OSTI]

In this paper we construct, and investigate some thermal properties of, the non-commutative counterpart of Rindler space, which we call $\\kappa$--Rindler space. This space is obtained by changing variables in the defining commutators of $\\kappa$--Minkowski space. We then re-derive the commutator structure of $\\kappa$--Rindler space with the help of an appropriate star product, obtained from the $\\kappa$--Minkowski one. Using this star product, following the idea of Padmanabhan, we find the leading order, $1/\\kappa$ correction to the Hawking thermal spectrum.

J. Kowalski-Glikman

2009-07-18T23:59:59.000Z

418

Heat-driven acoustic cooling engine having no moving parts  

DOE Patents [OSTI]

A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM); Hofler, Thomas J. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

419

Space Heaters The University recognizes that individuals have different levels of comfort associated with  

E-Print Network [OSTI]

for space heating. 14. Do not use space heaters or any other electric appliance around water. 15Space Heaters The University recognizes that individuals have different levels of comfort associated with temperature and heat. The use of electric space heaters as a temporary measure is permitted

de Lijser, Peter

420

Termination unit  

SciTech Connect (OSTI)

This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

2014-01-07T23:59:59.000Z

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings...

422

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

Air Conditioning in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

423

Process and apparatus for indirect-fired heating and drying  

DOE Patents [OSTI]

A method for heating flat or curved surfaces comprising injecting fuel and oxidant along the length, width or longitudinal side of a combustion space formed between two flat or curved plates, transferring heat from the combustion products via convection and radiation to the surface being heated on to the material being dried/heated, and recirculating at least 20% of the combustion products to the root of the flame.

Abbasi, Hamid Ali; Chudnovsky, Yaroslav

2005-04-12T23:59:59.000Z

424

Printed in the United States of America. Available from National Technical Information Service  

E-Print Network [OSTI]

.1.4 Split vs Package Unit Shipments/Applications 25 4.1.5 Residential vs Commercial Heat Pump 27.1.9 Total Residential Central Heating/Cooling 37 System Installations by Region 4.1.10 Heat Pump Shipments-95d ADVANCED ELECTRIC HEAT PUMP MARKET AND BUSINESS ANALYSIS FINAL REPORT J. C. Kastovich, Program

Oak Ridge National Laboratory

425

Ceramic heat exchanger  

DOE Patents [OSTI]

A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

1998-06-16T23:59:59.000Z

426

Ceramic heat exchanger  

DOE Patents [OSTI]

A tube containment system. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture.

LaHaye, Paul G. (Kennebunk, ME); Rahman, Faress H. (Portland, ME); Lebeau, Thomas P. E. (Portland, ME); Severin, Barbara K. (Biddeford, ME)

1998-01-01T23:59:59.000Z

427

Control system for fluid heated steam generator  

DOE Patents [OSTI]

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

428

Method for compressing and heating a heating medium to be externally supplied to an engine while using the energy available in the hot exhaust gases of the engine  

SciTech Connect (OSTI)

In a method for compressing and heating a heating medium to be externally supplied to an engine, while using the energy available in the hot exhaust gases of the engine, the exhaust gases are caused to expand in at least two expansion stages to emit energy for compressing the heating medium in at least two compression stages, heat is transmitted from the exhaust gases after the first expansion stage to the heating medium after the last compression stage, and the heating medium is thereafter supplied with additional heat in a heat-producing unit before it is led to the engine.

Carlquist, S. G.

1985-06-04T23:59:59.000Z

429

2. Unit Operation Dynamic simulation Unit operation  

E-Print Network [OSTI]

specification . 2.2 Heat transfer equipment Air cooler, cooler/heater, heat exchanger, fired heater LNG multi flow heat exchanger . 2.3 Piping equipment Mixer, tee, pipe, gas pipe, valve, relief valve . 2.4 Rotating equipment Centrifugal compressor or expander, reciprocating compressor pump ,dynamic simulation

Hong, Deog Ki

430

Model based methodology development for energy recovery in flash heat exchange systems  

E-Print Network [OSTI]

Model based methodology development for energy recovery in flash heat exchange systems Problem with a condensing heat exchanger can be used when heat exchange is required between two streams and where at leastH, consistency etc.). To increase the efficiency of heat exchange, a cascade of these units in series can be used

McCarthy, John E.

431

Multiple source heat pump  

DOE Patents [OSTI]

A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

Ecker, Amir L. (Duncanville, TX)

1983-01-01T23:59:59.000Z

432

Thermionic generator module with heat pipes  

SciTech Connect (OSTI)

A thermionic converter module is described comprising: a first heat pipe with an annular casing which has a first surface located on an inside surface of the annular casing, at least part of the first surface of the casing of the first heat pipe having constructed upon it a thermionic converter emitter located so that heat will be transferred by conduction from the first heat pipe casing to the thermionic converter emitter; a second heat pipe with a casing which has a second surface, the second surface being located within the first surface of the annular casing of the first heat pipe so that it is surrounded by the first surface; a thermionic converter collector located so as to transfer heat by conduction to the second surface of the casing of the second heat pipe with the thermionic converter collector being adjacent to the thermionic converter emitter but being separated from the thermionic converter emitter by an inter electrode space; and end fitting structures located so that, with the thermionic converter collector and the thermionic converter emitter, they complete an enclosure around the inter electrode space and form an evacuated enclosure within which are located the thermionic converter collector and the thermionic converter emitter.

Horner-Richardson, K.; Ernst, D.M.

1993-06-15T23:59:59.000Z

433

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents [OSTI]

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.

Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.

1990-01-01T23:59:59.000Z

434

Triaxial thermopile array geo-heat-flow sensor  

DOE Patents [OSTI]

A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

Carrigan, Charles R. (Tracy, CA); Hardee, Harry C. (Albuquerque, NM); Reynolds, Gerald D. (Tijeras, NM); Steinfort, Terry D. (Tijeras, NM)

1992-01-01T23:59:59.000Z

435

E-Print Network 3.0 - air-conditioning units part Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fans... : Use of mechanical equipment such as refrigeration, air conditioning, heating systems, ventilating fans... -handling units and mechanical, compressed air, and electric ......

436

Heat Pump for High School Heat Recovery  

E-Print Network [OSTI]

The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

Huang, K.; Wang, H.; Zhou, X.

2006-01-01T23:59:59.000Z

437

Unit I-2 Linear Maps 1 Linear maps  

E-Print Network [OSTI]

Unit I-2 Linear Maps 1 Unit I-2 Linear maps Unit I-2 Linear Maps 2 Linear map · V & U are vector spaces over the same scalars · a function f: VU is a linear map if it preserves the vector space transformation [particularly when f: RnRm] ­ linear operator when f: V V [same v.s.] ­ linear mapping ­ linear

Birkett, Stephen

438

Unit II-1 Inner products 1 Inner product and  

E-Print Network [OSTI]

Unit II-1 Inner products 1 Unit II-1 Inner product and orthogonality Unit II-1 Inner products 2 Real inner product · V is a real vector space · for u,vV define a scalar satisfying: linear: symmetric: positive definite: · is called an inner product of u and v · V with an inner product defined is called

Birkett, Stephen

439

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

440

Project Profile: Heat Transfer and Latent Heat Storage in Inorganic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants Project Profile: Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for CSP Plants...

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

442

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

443

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

444

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

445

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

446

Gap between active and passive solar heating  

SciTech Connect (OSTI)

The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

447

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, G.

1982-06-16T23:59:59.000Z

448

Locating Heat Recovery Opportunities  

E-Print Network [OSTI]

Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

Waterland, A. F.

1981-01-01T23:59:59.000Z

449

Absorption heat pump system  

DOE Patents [OSTI]

The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

Grossman, Gershon (Oak Ridge, TN)

1984-01-01T23:59:59.000Z

450

11-14 An ideal vapor-compression refrigeration cycle with refrigerant-134a as the working fluid is considered. The rate of heat removal from the refrigerated space, the power input to the compressor, the rate of heat rejection to the environment,  

E-Print Network [OSTI]

for this air conditioner are to be sketched. The heat absorbed by the refrigerant, the work input of the air conditioner is 689.4 Btu/h3.412 W1 W Btu/h 16 Btu/h3.412 W1 SEERCOPR

Kostic, Milivoje M.

451

air handling unit: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

case of fans, or indirectly, in the case of heat exchangers, which impose loads on the chiller and boiler plant. Air-handling units can comprise a myriad of subsystems (fans,...

452

air handling units: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

case of fans, or indirectly, in the case of heat exchangers, which impose loads on the chiller and boiler plant. Air-handling units can comprise a myriad of subsystems (fans,...

453

Earth-Coupled Water-Source Heat Pump Research, Design and Applications in Louisiana  

E-Print Network [OSTI]

An earth-coupled water-source heat pump uses the earth as the thermal source and sink for economical, energy efficient, space heating and cooling. Water exiting the heat pump passes through an earth heat exchanger, which is a closed loop of plastic...

Braud, H. J.; Klimkowski, H.; Baker, F. E.

1985-01-01T23:59:59.000Z

454

Winter Heating Fuels Update  

Gasoline and Diesel Fuel Update (EIA)

Heating Fuels Update For: Congressional Briefings October 20, 2014 | Washington, DC By U.S. Energy Information Administration Winter Heating Fuels Update October 20, 2014 |...

455

Research Space Use Standards Policy 2.500  

E-Print Network [OSTI]

Research Space Use Standards Policy 2.500 Page 1 Research Space Use Standards Date: November: Department chairs and center directors who have research laboratory space assigned to their unit. Reason for Policy: This policy was developed to help address a research space shortage in the School of Medicine

Acton, Scott

456

CECS Space Request Form Version: August 8, 2012  

E-Print Network [OSTI]

CECS Space Request Form Version: August 8, 2012 COLLEGE OF ENGINEERING AND COMPUTER SCIENCE SPACE COMMITTEE Unit submitting space request (please check one): CECE EECS-CS EECS-ECE IEMS MAE MSE This request for space in ENGR/ENG2/HEC is a (please check one): New request (must be submitted no later than 2 weeks

Wu, Shin-Tson

457

Space Request /Assignment Process University of Nebraska -Lincoln  

E-Print Network [OSTI]

Space Request /Assignment Process University of Nebraska - Lincoln Approved by Chancellor 08/15/2005 Department / Unit Completes IRP Web-based request form Department "triggers" a change to space through, different, and/or additional space Notices sent from IRP to initiating d t t d ffi Does Request Alter Space

Farritor, Shane

458

Heat Integrated Distillation through Use of Microchannel Technology  

Broader source: Energy.gov [DOE]

This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology to integrate heat transfer and separation into a single unit operation.

459

Minnesota Power- Solar-Thermal Water Heating Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; ...

460

Geothermal Resource-Reservoir Investigations Based On Heat Flow...  

Open Energy Info (EERE)

Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Space nuclear power and man's extraterrestrial civilization  

SciTech Connect (OSTI)

This paper examines leading space nuclear power technology candidates. Particular emphasis is given the heat-pipe reactor technology currently under development at the Los Alamos National Laboratory. This program is aimed at developing a 10-100 kWe, 7-year lifetime space nuclear power plant. As the demand for space-based power reaches megawatt levels, other nuclear reactor designs including: solid core, fluidized bed, and gaseous core, are considered.

Angelo, J.J.; Buden, D.

1983-01-01T23:59:59.000Z

462

System Modeling of Gas Engine Driven Heat Pump  

SciTech Connect (OSTI)

To improve the system performance of the GHP, modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated by using ORNL Modulating Heat Pump Design Software, which is used to predict steady-state heating and cooling performance of variable-speed vapor compression air-to-air heat pumps for a wide range of operational variables. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using desiccant system regenerated by waste heat from engine, the SHR can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% in rated operating conditions.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL); Shen, Bo [ORNL] [ORNL; Vineyard, Edward [Oak Ridge National Laboratory (ORNL)] [Oak Ridge National Laboratory (ORNL)

2012-01-01T23:59:59.000Z

463

Space Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Space Nuclear Today the INL is preparing to assist with the Multi-Mission RTG (MMRTG). The INL is assigned the final assembly and testing of the RTG for the project which is...

464

Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)  

SciTech Connect (OSTI)

Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

Not Available

2014-05-01T23:59:59.000Z

465

A ground-coupled storage heat pump system with waste heat recovery  

SciTech Connect (OSTI)

This paper reports on an experimental single-family residence that was constructed to demonstrate integration of waste heat recovery and seasonal energy storage using both a ventilating and a ground-coupled heat pump. Called the Idaho energy Conservation Technology House, it combines superinsulated home construction with a ventilating hot water heater and a ground coupled water-to-water heat pump system. The ground heat exchangers are designed to economically promote seasonal and waste heat storage. Construction of the house was completed in the spring of 1989. Located in Moscow, Idaho, the house is occupied by a family of three. The 3,500 ft{sup 2} (325 m{sup 2}) two-story house combines several unique sub-systems that all interact to minimize energy consumption for space heating and cooling, and domestic hot water.

Drown, D.C.; Braven, K.R.D. (Univ. of Idaho, ID (US)); Kast, T.P. (Thermal Dynamic Towers, Boulder, CO (US))

1992-02-01T23:59:59.000Z

466

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Computers and Other Electronics in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in...

467

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

"Not Asked (Apartments in Buildings" "With 5 or More Units)",19.1,4.4,3.7,6.2,4.7 "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

468

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

"Not Asked (Apartments in Buildings" "With 5 or More Units)",19.1,9.6,5,2.2,1.5,0.8 "FoundationBasement of Single-Family" "Units and Apartments in Buildings With" "2 to 4 Units...

469

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Air Conditioning in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

470

United States Department of  

E-Print Network [OSTI]

Gifford Pinchot Drive Madison, WI #12;2 International system of units (SI conversion factors) Conversion English unit factor SI unit acre 4,046 square meter (m2 ) board foot 0.002 cubic meter (m3 ) bushel (U

471

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

EXCHANGERS; GEOTHERMAL ENERGY: GEOTHERMAL SPACE HEATING;Well INFORMATION OWNER-- GEOTHERMAL ENERGY AND tUNERAL CORP.ION OhNEf. -- GEOTHERMAL ENERGY AND MINERAL CORP. DRILLING

Cosner, S.R.

2010-01-01T23:59:59.000Z

472

Ground Loops for Heat Pumps and Refrigeration  

E-Print Network [OSTI]

Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

Braud, H. J.

1986-01-01T23:59:59.000Z

473

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

Kirol, L.D.

1987-02-11T23:59:59.000Z

474

Mass and Heat Recovery  

E-Print Network [OSTI]

In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

Hindawai, S. M.

2010-01-01T23:59:59.000Z

475

Direct fired heat exchanger  

SciTech Connect (OSTI)

A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

1986-01-01T23:59:59.000Z

476

Rotary magnetic heat pump  

DOE Patents [OSTI]

A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

Kirol, Lance D. (Shelly, ID)

1988-01-01T23:59:59.000Z

477

HEATING 7. 1 user's manual  

SciTech Connect (OSTI)

HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

Childs, K.W.

1991-07-01T23:59:59.000Z

478

Space time and rotations  

E-Print Network [OSTI]

The paper considers the problem of finding the metric of space time around a rotating, weakly gravitating body. Both external and internal metric tensors are consistently found, together with an appropriate source tensor. All tensors are calculated at the lowest meaningful approximation in a power series. The two physical parameters entering the equations (the mass and the angular momentum per unit mass) are assumed to be such that the mass effects are negligible with respect to the rotation effects. A non zero Riemann tensor is obtained. The order of magnitude of the effects at the laboratory scale is such as to allow for experimental verification of the theory.

A. Tartaglia

2002-01-04T23:59:59.000Z

479

JPL S neii space simulator starts its  

E-Print Network [OSTI]

as much as anyone. 25 #12;The Month . . . continued solar panels extended. The space environment simu of the tower contains a solar simulation unit which is designed to simulate the varying intensity of sunlight of its kind in the United States, consists of a 10,000-square-foot building to house offices, a control

Greer, Julia R.

480

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power  

SciTech Connect (OSTI)

The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

2009-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "units space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

air-source heat pump: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

market, the need of the course will cover adult education principles, and program and lesson planning. During the remaining days 328 Thermal Solar Energy Systems for Space Heating...

482

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network [OSTI]

energy consumption. EPRI translates these projections into3 Technology Choices in EPRI's Model of Space Heating andPower Research Institute (EPRI) [1984]: "Household Appliance

Wood, D.J.

2010-01-01T23:59:59.000Z

483

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

concepts for space heating using remote col- lection withheating systems in terms of the fan owing matrix: DIRECT INDIRECT ISOLATED SOUTH APERTURE SHADED ROOF APERTURE ROOF APERTURE REMOTE

Authors, Various

2012-01-01T23:59:59.000Z

484

RESIDENTIAL ON SITE SOLAR HEATING SYSTEMS: A PROJECT EVALUATION USING THE CAPITAL ASSET PRICING MODEL  

E-Print Network [OSTI]

solar energy with rooftop panels, store excess energy in water storage tanks and can, in certain circumstances, provide 100% of the space heating

Schutz, Stephen Richard

2011-01-01T23:59:59.000Z

485

Thulium-170 heat source  

DOE Patents [OSTI]

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

1992-01-01T23:59:59.000Z

486

Heat Treating Apparatus  

DOE Patents [OSTI]

Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

De Saro, Robert (Annandale, NJ); Bateman, Willis (Sutton Colfield, GB)

2002-09-10T23:59:59.000Z

487

Recovering Industrial Waste Heat by the Means of Thermoelectricity  

E-Print Network [OSTI]

Recovering Industrial Waste Heat by the Means of Thermoelectricity Spring 2010 Department available thermoelectric modules and to build a thermoelectric power generator demonstration unit dependent. A calorimeter has been used to measure the heat supplied by a thermoelectric module #12;(operated

Kjelstrup, Signe

488

A Field Study Comparison of the Energy and Moisture Performance Characteristics of Ventilated Versus Sealed Crawl Spaces in the South  

SciTech Connect (OSTI)

This study compared the performance of closed crawl spaces, which had sealed foundation wall vents, a sealed polyethylene film liner and various insulation and drying strategies, to traditional wall-vented crawl spaces with perimeter wall vents and polyethylene film covering 100% of the ground surface. The study was conducted at 12 owner-occupied, all electric, single-family detached houses with the same floor plan located on one cul-de-sac in the southeastern United States. Using the matched pairs approach, the houses were divided into three study groups of four houses each. Comparative data was recorded for each house to evaluate sub-metered heat pump energy consumption, relative humidity, wood moisture content, duct infiltration, house infiltration, temperature, radon, and bioaerosol levels. Findings indicated that in the humid conditions of the southeastern United States, a properly closed crawl space is a robust construction measure that produces a substantially drier crawl space and significantly reduces occupied space conditioning energy use on an annual basis.

Bruce Davis; Cyrus Dastur; William E. Warren; Shawn Fitzpatrick; Christine Maurer; Rob Stevens; Terry Brennan; William Rose

2005-06-22T23:59:59.000Z

489

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

490

Ground-Coupled Heat Pump Applications and Case Studies  

E-Print Network [OSTI]

The paper presents an overview of ground loops for space-conditioning heat pumps, hot water, ice machines, and water-cooled refrigeration in residential and commercial applications. In Louisiana, a chain of hamburger drive-ins uses total ground...

Braud, H. J.

1989-01-01T23:59:59.000Z

491

Energy Saving Guidelines for Portland State University Heating and Ventilation  

E-Print Network [OSTI]

. FPM will then work to identify a long range solution to heating the space to an appropriate level. New construction and renovation will incorporate daylight sensing technology, allowing overhead

Caughman, John

492

Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities  

SciTech Connect (OSTI)

This paper presents a case study of the residential heat pump water heater (HPWH) market. Its principal purpose is to evaluate the extent to which the HPWH will penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to compare readiness and to factor attributes of market demand back into product design. This study is a rapid prototype analysis rather than a detailed case analysis. For this reason, primary data collection was limited and reliance on secondary sources was extensive. Despite having met its technical goals and having been on the market for twenty years, the HPWH has had virtually no impact on contributing to the nation's water heating. In some cases, HPWH reliability and quality control are well below market expectations, and early units developed a reputation for unreliability, especially when measured against conventional water heaters. In addition to reliability problems, first costs of HPWH units can be three to five times higher than conventional units. Without a solid, well-managed business plan, most consumers will not be drawn to this product. This is unfortunate. Despite its higher first costs, efficiency of an HPWH is double that of a conventional water heater. The HPWH also offers an attractive payback period of two to five years, depending on hot water usage. On a strict life-cycle basis it supplies hot water very cost effectively. Water heating accounts for 17% of the nation's residential consumption of electricity (see chart at left)--water heating is second only to space heating in total residential energy use. Simple arithmetic suggests that this figure could be reduced to the extent HPWH technology displaces conventional water heating. In addition, the HPWH offers other benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers should reinvest in R&D to lower the price of the units. The manufacturers should work with ''do-it-yourself'' (DIY) stores to facilitate introduction of th

Ashdown, BG

2004-08-04T23:59:59.000Z

493

Heat Integrate Heat Engines in Process Plants  

E-Print Network [OSTI]

of forcing a good fit between a heat engine and process T', H profiles extends the ideas of appropriate and inappropriate placement to give bet ter overall integration schemes [7] . The new 'and powerful representations of the thermodynamics of a process... HEAT INTEGRATE HEAT ENGINES IN PROCESS PLANTS E. Hindmarsh, D. Boland and D.W. Townsend TENSA Technology, Houston, Texas Shorter Version Appeared in Chemical Engineering Copyright McGraw Hill, 1985 ABSTRACT This paper presents a novel method...

Hindmarsh, E.; Boland, D.; Townsend, D. W.

494

The effects of outdoor heat exchanger hydrophobic treatment on the performance of an air source heat pump  

E-Print Network [OSTI]

mode, the system must remove heat from the cold outdoor air and provide it to the conditioned space. To remove the heat from the outdoor air, the refrigerant entering the outdoor heat exchanger must be colder than the outdoor air. The outdoor air... is pulled across the heat exchanger surface by the outdoor fan Hence, the cold liquid refrigerant passing through the evaporator coil receives heat from the outdoor ambient air passing over the coil, causing the refrigerant to vaporize into a cool gas...

Parker, Brandon DeWayne

1995-01-01T23:59:59.000Z

495

Regional Variation in Residential Heat Pump Water Heater Performance in the U.S.: Preprint  

SciTech Connect (OSTI)

Residential heat pump water heaters (HPWHs) have recently reemerged on the U.S. market. These units have the potential to provide homeowners significant cost and energy savings. However, actual in use performance of a HPWH will vary significantly with climate, installation location, HVAC equipment, and hot water use. To determine what actual in use energy consumption of a HPWH may be in different regions of the U.S., annual simulations of both 50 and 80 gallon HPWHs as well as a standard electric water heater were performed for over 900 locations across the U.S. The simulations included a benchmark home to take into account interactions between the space conditioning equipment and the HPWH and a realistic hot water draw profile. It was found that the HPWH will always save some source energy when compared to a standard electric resistance water heater, although savings varies widely with location. In addition to looking at source energy savings, the breakeven cost (the net installed cost a HPWH would have to have to be a cost neutral replacement for a standard water heater) was also examined. The highest breakeven costs were seen in cases with high energy savings, such as the southeastern U.S., or high energy costs, such as New England and California. While the breakeven cost is higher for 80 gallon units than 50 gallon units, the higher net installed costs of an 80 gallon unit lead to the 50 gallon HPWHs being more likely to be cost effective.

Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

2014-01-01T23:59:59.000Z

496

Mpemba effect, Newton cooling law and heat transfer equation  

E-Print Network [OSTI]

In this work we suggest a simple theoretical solution of the Mpemba effect in full agreement with known experimental data. This solution follows simply as an especial approximation (linearization) of the usual heat (transfer) equation, precisely linearization of the second derivation of the space part of the temperature function (as it is well-known Newton cooling law can be considered as the effective approximation of the heat (transfer) equation for constant space part of the temperature function).

Vladan Pankovic; Darko V. Kapor

2012-12-11T23:59:59.000Z

497

Space Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment2)isomeraseUSChargeSpace Sciences Space

498

Development of a Hydronic Rooftop Unit-HyPak-MA  

SciTech Connect (OSTI)

The majority of U.S. commercial floor space is cooled by rooftop HVAC units (RTUs). RTU popularity derives chiefly from their low initial cost and relative ease of service access without disturbing building occupants. Unfortunately, current RTUs are inherently inefficient due to a combination of characteristics that unnecessarily increase cooling loads and energy use. 36% percent of annual U.S. energy, and two-thirds of electricity, is consumed in and by buildings. Commercial buildings consume approximately 4.2 quads of energy each year at a cost of $230 billion per year, with HVAC equipment consuming 1.2 quads of electricity. More than half of all U.S. commercial floor space is cooled by packaged HVAC units, most of which are rooftop units (RTUs). Inefficient RTUs create an estimated 3.5% of U.S. CO{sub 2} emissions, thus contributing significantly to global warming5. Also, RTUs often fail to maintain adequate ventilation air and air filtration, reducing indoor air quality. This is the second HyPak project to be supported by DOE through NETL. The prior project, referred to as HyPak-1 in this report, had two rounds of prototype fabrication and testing as well as computer modeling and market research. The HyPak-1 prototypes demonstrated the high performance capabilities of the HyPak concept, but made it clear that further development was required to reduce heat exchanger cost and improve system reliability before HyPak commercialization can commence. The HyPak-1 prototypes were limited to about 25% ventilation air fraction, limiting performance and marketability. The current project is intended to develop a 'mixed-air' product that is capable of full 0-100% modulation in ventilation air fraction, hence it was referred to as HyPak-MA in the proposal. (For simplicity, the -MA has been dropped when referencing the current project.) The objective of the HyPak Project is to design, develop and test a hydronic RTU that provides a quantum improvement over conventional RTU performance. Our proposal targeted 60% and 50% reduction in electrical energy use by the HyPak RTU for dry and humid climates, respectively, when compared with a conventional unit, and reduction in peak energy consumption of 50% and 33% respectively. In addition to performance targets, our goal is to develop a production-ready design with durability, reliability and maintainability similar to air-cooled packaged equipment, and that can be commercialized immediately following the conclusion of this project.

Eric Lee; Mark Berman

2009-11-14T23:59:59.000Z

499

--No Title--  

U.S. Energy Information Administration (EIA) Indexed Site

square feet) All Buildings* Heated Buildings Heating Equipment (more than one may apply) Heat Pumps Furnaces Individual Space Heaters District Heat Boilers Packaged Heating Units...

500

Magnetically driven quantum heat engine  

E-Print Network [OSTI]

We studied the efficiency of two different schemes for a magnetically driven quantum heat engine, by considering as the working substance a single nonrelativistic particle trapped in a cylindrical potential well, in the presence of an external magnetic field. The first scheme is a cycle, composed of two adiabatic and two isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic modulation of the external magnetic-field intensity. The second scheme is a variant of the former, where the isoenergetic trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats. This second scheme constitutes a quantum analog of the classical Carnot cycle.

Enrique Muñoz; Francisco J. Peña

2014-05-12T23:59:59.000Z