Powered by Deep Web Technologies
Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:  

Broader source: Energy.gov (indexed) [DOE]

A Roadmap to Deploy New Nuclear Power Plants in the United States A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report The objective of this document is to provide the Department of Energy (DOE) and the nuclear industry with the basis for a plan to ensure the availability of near-term nuclear energy options that can be in operation in the U.S. by 2010. This document identifies the technological, regulatory, and institutional gaps and issues that need to be addressed for new nuclear plants to be deployed in the U.S. in this timeframe. It also identifies specific designs that could be deployed by 2010, along with the actions and resource requirements that are needed to ensure their

2

A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010:  

Broader source: Energy.gov (indexed) [DOE]

A Roadmap to Deploy New Nuclear Power Plants in the United States A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume II, Main Report The objective of this document is to provide the Department of Energy (DOE) and the nuclear industry with the basis for a plan to ensure the availability of near-term nuclear energy options that can be in operation in the U.S. by 2010. This document identifies the technological, regulatory, and institutional gaps and issues that need to be addressed for new nuclear plants to be deployed in the U.S. in this timeframe. It also identifies specific designs that could be deployed by 2010, along with the actions and resource requirements that are needed to ensure their

3

Experience in operating and upgrading the No. 5 unit of the Novovoronezh nuclear power plant – practical base for developing a reliable source of nuclear energy  

Science Journals Connector (OSTI)

The No. 5 unit of the Novovoronezh nuclear power plant, starting commercial operations on September 26, 1980, is the first power-generating unit with a 1000 MW VVER in our country. The assimilation of its power g...

I. L. Vitkovskii

2011-03-01T23:59:59.000Z

4

Illinois Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois nuclear power plants, summer capacity and net generation, 2010" Illinois nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Braidwood Generation Station Unit 1, Unit 2","2,330","19,200",20.0,"Exelon Nuclear" "Byron Generating Station Unit 1, Unit 2","2,300","19,856",20.6,"Exelon Nuclear" "Clinton Power Station Unit 1","1,065","8,612",9.0,"Exelon Nuclear" "Dresden Generating Station Unit 2, Unit 3","1,734","14,593",15.2,"Exelon Nuclear" "LaSalle Generating Station

5

The virtual digital nuclear power plant: A modern tool for supporting the lifecycle of VVER-based nuclear power units  

Science Journals Connector (OSTI)

The article describes the “Virtual Digital VVER-Based Nuclear Power Plant” computerized system comprising a totality of verified ... a model intended for describing the behavior of nuclear power plant (NPP) syste...

G. V. Arkadov; A. P. Zhukavin; A. E. Kroshilin; I. A. Parshikov…

2014-10-01T23:59:59.000Z

6

Tennessee Nuclear Profile - Watts Bar Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Watts Bar Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

7

Wisconsin Nuclear Profile - Point Beach Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

8

Measurements of photon ionizing radiation fields in the reactor room of the 4th power-generating unit of the chernobyl nuclear power plant  

Science Journals Connector (OSTI)

A radiation examination of the reactor room of the damaged fourth unit of the Chernobyl nuclear power plant was performed. The most strongly radiating surfaces...

A. G. Volkovich; V. N. Potapov; S. V. Smirnov; L. I. Urutskoev…

2000-03-01T23:59:59.000Z

9

Pennsylvania Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania nuclear power plants, summer capacity and net generation, 2010" Pennsylvania nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Beaver Valley Unit 1, Unit 2","1,777","14,994",19.3,"FirstEnergy Nuclear Operating Company" "Limerick Unit 1, Unit 2","2,264","18,926",24.3,"Exelon Nuclear" "PPL Susquehanna Unit 1, Unit 2","2,450","18,516",23.8,"PPL Susquehanna LLC" "Peach Bottom Unit 2, Unit 3","2,244","18,759",24.1,"Exelon Nuclear" "Three Mile Island Unit 1",805,"6,634",8.5,"Exelon Nuclear"

10

Economic feasibility of heat supply from nuclear power plants in the United States  

SciTech Connect (OSTI)

Nuclear energy is regarded as competitive for urban district heating applications. Hot water heat transport systems of up to 50 miles are feasible for heat loads over 1500 MWt, and heat load density of over 130 MWt/mi/sup 2/is most suitable for nuclear applications. An incremental approach and a nuclear plant design provision for future heat extraction are recommended. Nuclear district heating technology status is discussed, particularly turbine design. Results of a study for retrofitting a major existing nuclear power plant to cogeneration operation are presented. The study indicates that for transmission distances up to 20 miles it is economical to generate and transport between 600 and 1200 MWt of district heat.

Roe, K.K.; Oliker, I.

1988-01-01T23:59:59.000Z

11

Restoration of the graphite memory of a reactor in the third power-generating unit of the Leningrad nuclear power plant  

Science Journals Connector (OSTI)

The restoration of the graphite masonry of cell 52-16 in the reactor in the third power-generating unit of the Leningrad nuclear power plant is described. The process reduces to moving...

V. I. Lebedev; Yu. V. Garusov; M. A. Pavlov; A. N. Peunov; E. P. Kozlov

1999-11-01T23:59:59.000Z

12

New York Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Indian Point Unit 2, Unit 3","2,063","16,321",39.0,"Entergy Nuclear Indian Point" "James A Fitzpatrick Unit 1",855,"6,361",15.2,"Entergy Nuc Fitzpatrick LLC" "Nine Mile Point Nuclear Station Unit 1, Unit 2","1,773","14,239",34.0,"Nine Mile Point Nuclear Sta LLC" "R E Ginna Nuclear Power Plant Unit 1",581,"4,948",11.8,"R.E. Ginna Nuclear Power Plant, LLC" "4 Plants

13

Owners of nuclear power plants  

SciTech Connect (OSTI)

Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

Hudson, C.R.; White, V.S.

1996-11-01T23:59:59.000Z

14

Induced Radioactivity and Waste Classification of Reactor Zone Components of the Chernobyl Nuclear Power Plant Unit 1 After Final Shutdown  

SciTech Connect (OSTI)

The dismantlement of the reactor core materials and surrounding structural components is a major technical concern for those planning closure and decontamination and decommissioning of the Chernobyl Nuclear Power Plant (NPP). Specific issues include when and how dismantlement should be accomplished and what the radwaste classification of the dismantled system would be at the time it is disassembled. Whereas radiation levels and residual radiological characteristics of the majority of the plant systems are directly measured using standard radiation survey and radiochemical analysis techniques, actual measurements of reactor zone materials are not practical due to high radiation levels and inaccessibility. For these reasons, neutron transport analysis was used to estimate induced radioactivity and radiation levels in the Chernobyl NPP Unit 1 reactor core materials and structures.Analysis results suggest that the optimum period of safe storage is 90 to 100 yr for the Unit 1 reactor. For all of the reactor components except the fuel channel pipes (or pressure tubes), this will provide sufficient decay time to allow unlimited worker access during dismantlement, minimize the need for expensive remote dismantlement, and allow for the dismantled reactor components to be classified as low- or medium-level radioactive waste. The fuel channel pipes will remain classified as high-activity waste requiring remote dismantlement for hundreds of years due to the high concentration of induced {sup 63}Ni in the Zircaloy pipes.

Bylkin, Boris K. [Russian Research Center 'Kurchatov Institute' (Russian Federation); Davydova, Galina B. [Russian Research Center 'Kurchatov Institute' (Russian Federation); Zverkov, Yuri A. [Russian Research Center 'Kurchatov Institute' (Russian Federation); Krayushkin, Alexander V. [Russian Research Center 'Kurchatov Institute' (Russian Federation); Neretin, Yuri A. [Chernobyl Nuclear Power Plant (Ukraine); Nosovsky, Anatoly V. [Slavutych Division of the International Chernobyl Center (Ukraine); Seyda, Valery A. [Chernobyl Nuclear Power Plant (Ukraine); Short, Steven M. [Pacific Northwest National Laboratory (United States)

2001-10-15T23:59:59.000Z

15

NUCLEAR PLANT AND CONTROL  

E-Print Network [OSTI]

for the digital protection systems of a nuclear power plant. When spec- ifying requirements for software and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital, the missiles, and the digital protection systems embed- ded in nuclear power plants. Obviously, safety

16

Maryland Nuclear Profile - Calvert Cliffs Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Calvert Cliffs Nuclear Power Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

17

New York Nuclear Profile - R E Ginna Nuclear Power Plant  

U.S. Energy Information Administration (EIA) Indexed Site

R E Ginna Nuclear Power Plant" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License...

18

ASSESSMENT OF THE RADIONUCLIDE COMPOSITION OF "HOT PARTICLES" SAMPLED IN THE CHERNOBYL NUCLEAR POWER PLANT FOURTH REACTOR UNIT  

SciTech Connect (OSTI)

Fuel-containing materials sampled from within the Chernobyl Nuclear Power Plant (ChNPP) 4th Reactor Unit Confinement Shelter were spectroscopically studied for gamma and alpha content. Isotopic ratios for cesium, europium, plutonium, americium, and curium were identified and the fuel burnup in these samples was determined. A systematic deviation in the burnup values based on the cesium isotopes, in comparison with other radionuclides, was observed. The conducted studies were the first ever performed to demonstrate the presence of significant quantities of {sup 242}Cm and {sup 243}Cm. It was determined that there was a systematic underestimation of activities of transuranic radionuclides in fuel samples from inside of the ChNPP Confinement Shelter, starting from {sup 241}Am (and going higher), in comparison with the theoretical calculations.

Farfan, E.; Jannik, T.; Marra, J.

2011-10-01T23:59:59.000Z

19

An examination of the pursuit of nuclear power plant construction projects in the United States .  

E-Print Network [OSTI]

??The recent serious reconsideration of nuclear power as a means for U.S. electric utilities to increase their generation capacity provokes many questions regarding the achievable… (more)

Guyer, Brittany (Brittany Leigh)

2011-01-01T23:59:59.000Z

20

A Roadmap to Deploy New Nuclear Power Plants in the United States...  

Broader source: Energy.gov (indexed) [DOE]

will also serve as input for a longer term and broader scope Generation IV Nuclear Technology Roadmap being prepared by DOE, as discussed below. In order to meet this...

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

South Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina nuclear power plants, summer capacity and net generation, 2010" South Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Catawba Unit 1, Unit 2","2,258","18,964",36.5,"Duke Energy Carolinas, LLC" "H B Robinson Unit 2",724,"3,594",6.9,"Progress Energy Carolinas Inc" "Oconee Unit 1, Unit 2, Unit 3","2,538","20,943",40.3,"Duke Energy Carolinas, LLC" "V C Summer Unit 1",966,"8,487",16.3,"South Carolina Electric&Gas Co" "4 Plants 7 Reactors","6,486","51,988",100.0

22

Tennessee Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

23

Minnesota Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

24

Massachusetts Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

25

Kansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

26

Missouri Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

27

Nebraska Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

28

Arizona Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

29

Georgia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

30

Texas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

31

Wisconsin Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

32

Ohio Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

33

Alabama Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

34

Virginia Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

35

Michigan Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

36

Iowa Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

37

Arkansas Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

38

Maryland Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

39

Vermont Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

40

Nuclear reactors in the United States  

Science Journals Connector (OSTI)

Nuclear reactors in the United States ... A chart listing the operating and planned nuclear reactors in the United States. ... Nuclear / Radiochemistry ...

Hubert N. Alyea

1956-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Shutdown and low-power operation at commercial nuclear power plants in the United States. Final report  

SciTech Connect (OSTI)

The report contains the results of the NRC Staff`s evaluation of shutdown and low-power operations at US commercial nuclear power plants. The report describes studies conducted by the staff in the following areas: Operating experience related to shutdown and low-power operations, probabilistic risk assessment of shutdown and low-power conditions and utility programs for planning and conducting activities during periods the plant is shut down. The report also documents evaluations of a number of technical issues regarding shutdown and low-power operations performed by the staff, including the principal findings and conclusions. Potential new regulatory requirements are discussed, as well as potential changes in NRC programs. A draft report was issued for comment in February 1992. This report is the final version and includes the responses to the comments along with the staff regulatory analysis of potential new requirements.

Not Available

1993-09-01T23:59:59.000Z

42

Joint US/Russian study on the development of a decommissioning strategy plan for RBMK-1000 unit No. 1 at the Leningrad Nuclear Power Plant  

SciTech Connect (OSTI)

The objective of this joint U.S./Russian study was to develop a safe, technically feasible, economically acceptable strategy for decommissioning Leningrad Nuclear Power Plant (LNPP) Unit No. 1 as a representative first-generation RBMK-1000 reactor. The ultimate goal in developing the decommissioning strategy was to select the most suitable decommissioning alternative and end state, taking into account the socioeconomic conditions, the regulatory environment, and decommissioning experience in Russia. This study was performed by a group of Russian and American experts led by Kurchatov Institute for the Russian efforts and by the Pacific Northwest National Laboratory for the U.S. efforts and for the overall project.

NONE

1997-12-01T23:59:59.000Z

43

Next Generation Nuclear Plant Phenomena  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 ORNLTM-2007147, Vol. 5 Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 5: Graphite PIRTs Office of Nuclear Regulatory Research...

44

California Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

California nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

45

Connecticut Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

46

Mississippi Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

47

Washington Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Washington nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

48

Louisiana Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant NameTotal Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

49

Cabell on Nuclear Energy Power Plants  

Science Journals Connector (OSTI)

Cabell on Nuclear Energy Power Plants ... IN EXPLAINING the function of his research group t o the new works superintendent of a nuclear power plant at a mining and reduction installation in the Alaskan mountains, Dr. Blank, of the United Nations Inspection and Research Laboratories, said, "We can't inspect what we don't know. ... In order to know what you're doing, we have to know more about atomic energy than you do—more than anybody does. ...

1947-02-17T23:59:59.000Z

50

United States and Italy Sign Nuclear Energy Agreements | Department of  

Broader source: Energy.gov (indexed) [DOE]

United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to encourage their respective nuclear industries to seek opportunities for the

51

United States and Italy Sign Nuclear Energy Agreements | Department of  

Broader source: Energy.gov (indexed) [DOE]

United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements United States and Italy Sign Nuclear Energy Agreements September 30, 2009 - 1:23pm Addthis U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to encourage their respective nuclear industries to seek opportunities for the

52

Safety Evaluation Report related to the operation of Watts Bar Nuclear Plant, Units 1 and 2 (Docket Numbers 50-390 and 50-391). Supplement Number 13  

SciTech Connect (OSTI)

This report supplements the Safety Evaluation Report (SER), NUREG-0847 (June 1982), Supplement No. 1 (September 1982), Supplement No. 2 (January 1984), Supplement No. 3 (January 1985), Supplement No. 4 (March 1985), Supplement No. 5 (November 1990), Supplement No. 6 (April 1991), Supplement No. 7 (September 1991), Supplement No. 8 (January 1992), Supplement No. 9 (June 1992), Supplement No. 10 (October 1992), Supplement No. 11 (April 1993), and Supplement No. 12 (October 1993), issued by the Office of Nuclear Reactor Regulation of the US Nuclear Regulatory Commission with respect to the application filed by the Tennessee Valley Authority, as applicant and owner, for licenses to operate the Watts Bar Nuclear Plant, Units 1 and 2 (Docket Nos. 50-390 and 50-391). The facility is located in Rhea County, Tennessee, near the Watts Bar Dam on the Tennessee River. This supplement provides recent information regarding resolution of some of the outstanding and confirmatory items, and proposed license conditions identified in the SER. These issues relate to: Design criteria -- structures, components, equipment, and systems; Reactor; Instrumentation and controls; Electrical power systems; Auxiliary systems; Conduct of operations; Accident analysis; and Quality assurance.

Not Available

1994-04-01T23:59:59.000Z

53

Issues for New Nuclear Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Explore * Idaho's energy picture * Nuclear power in the U.S. * Potential for a nuclear power plant in Idaho 0 5 10 15 20 25 1960 1970 1980 1990 2000 Million Megawatt-Hours Total...

54

Secretary Chu Visits Vogtle Nuclear Power Plant | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vogtle Nuclear Power Plant Vogtle Nuclear Power Plant Secretary Chu Visits Vogtle Nuclear Power Plant February 15, 2012 - 3:54pm Addthis Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Secretary Chu traveled to Waynesboro, Georgia, to visit the Vogtle nuclear power plant, the site of what will be the first new nuclear reactors to be built in the United States in three decades. | Image credit: Southern Company. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Just over 60 years ago, scientists in Arco, Idaho, successfully used nuclear energy to power four light bulbs, laying the foundation for U.S.

55

Power conversion unit studies for the next generation nuclear plant coupled to a high-temperature steam electrolysis facility  

E-Print Network [OSTI]

turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. A high temperature steam electrolysis hydrogen production plant was coupled to the reactor...

Barner, Robert Buckner

2007-04-25T23:59:59.000Z

56

North Carolina Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear...

57

New Jersey Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net...

58

New Hampshire Nuclear Profile - Power Plants  

U.S. Energy Information Administration (EIA) Indexed Site

nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (nw)","Net generation (thousand mwh)","Share of State nuclear net...

59

Nuclear Power Plants  

Science Journals Connector (OSTI)

A third issue related to the production, use and transportation of nuclear materials is the safety issue associated with ... an act of war or an act of terrorism. While the containment buildings of typical nuclear

Efstathios E. (Stathis) Michaelides

2012-01-01T23:59:59.000Z

60

United States Nuclear Waste Technical Review Board  

E-Print Network [OSTI]

United States Nuclear Waste Technical Review Board Experience Gained From Programs to Manage High-Level Radioactive Waste and Spent Nuclear Fuel in the United States and Other Countries A Report to Congress and the Secretary of Energy April 2011 #12;#12;U.S. Nuclear Waste Technical Review Board Experience Gained From

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

United States Nuclear Regulatory Commission  

Broader source: Energy.gov (indexed) [DOE]

qU oSoLTJRC qU oSoLTJRC United States Nuclear Regulatory Commission Protecting People and the Environment NUREG-1872, Vol. 2 HudcD [jE©wftamfsýýpc Wafm(M oran EA Office of New Reactors AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS NRC Reference Material As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at http:t/www.nrc..ov/reading-rm.html. Publicly released records include, to name a few, NUREG-series publications; Federal Register notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

62

Another Nuclear Plant To Close  

Science Journals Connector (OSTI)

The Vermont Yankee Nuclear Power Station in Vernon, Vt., will permanently shut down in 2014, according to plant owner Entergy. ... In the Vermont Yankee case, Entergy’s announcement ends a long-simmering dispute between the utility and state officials and residents over the continued operation of the 620-MW plant. ... The Vermont Yankee plant design nearly mirrors that of the Fukushima reactor facility. ...

JEFF JOHNSON

2013-09-02T23:59:59.000Z

63

Douglas United Nuclear monthly report, June 1971  

SciTech Connect (OSTI)

This report presents the details of the activities of Douglas United Nuclear at the Hanford site during the month of June 1971.

NONE

1995-07-01T23:59:59.000Z

64

Nuclear Energy In the United States Executive Summary  

Broader source: Energy.gov (indexed) [DOE]

10 10 Status and Outlook for Nuclear Energy In the United States Executive Summary The U.S. nuclear power industry continues to make pro- gress toward the construction of new nuclear power plants in the United States. Currently, 13 license applica- tions are under active review by the Nuclear Regulatory Commission (NRC) for up to 22 new reactors. The De- partment of Energy has awarded conditional commit- ments for loan guarantees to the partners in the Vogtle project and is negotiating terms for loan guarantees with several new nuclear projects. The 104 operating plants continue to perform well, turn- ing in sustained performance for output and capacity factor - an estimated 798.7 billion kilowatt-hours and 90.5 percent respectively in 2009.

65

United States -Japan Joint Nuclear Energy Action Plan | Department...  

Energy Savers [EERE]

United States -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan...

66

The future of nuclear power in the United States : economic and regulatory challenges  

E-Print Network [OSTI]

This paper examines the economic and regulatory challenges that must be faced by potential investors in new nuclear power plants in the United States. The historical development of the existing fleet of over 100 nuclear ...

Joskow, Paul L.

2006-01-01T23:59:59.000Z

67

United States and Japan Sign Joint Nuclear Energy Action Plan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

68

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network [OSTI]

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington Dear Speaker Pelosi, Senator Byrd, and Secretary Bodman: The Nuclear Waste Technical Review Board, and transporting high-level radioactive waste and spent nuclear fuel. The Board is required to report its findings

69

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network [OSTI]

con202vf UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300, the Nuclear Waste Technical Review Board (Board) submits its second report of 2003 in accordance with provisions of the Nuclear Waste Policy Amendments Act of 1987, Public Law 100-203. The Act requires the Board

70

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD  

E-Print Network [OSTI]

UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington are pleased to transmit a technical report prepared by the Nuclear Waste Technical Review Board (Board. Based on its review of data gathered by the DOE and the Center for Nuclear Waste Regulatory Analyses

71

Some aspects of the decommissioning of nuclear power plants  

SciTech Connect (OSTI)

The major factors influencing the choice of a national concept for the decommissioning of nuclear power plants are examined. The operating lifetimes of power generating units with nuclear reactors of various types (VVER-1000, VVER-440, RBMK-1000, EGP-6, and BN-600) are analyzed. The basic approaches to decommissioning Russian nuclear power plants and the treatment of radioactive waste and spent nuclear fuel are discussed. Major aspects of the ecological and radiation safety of personnel, surrounding populations, and the environment during decommissioning of nuclear installations are identified.

Khvostova, M. S., E-mail: marinakhvostova@list.ru [St. Petersburg State Maritime Technical University (Sevmashvtuz), Severodvinsk Branch (Russian Federation)

2012-03-15T23:59:59.000Z

72

Nuclear power plants: structure and function  

SciTech Connect (OSTI)

Topics discussed include: steam electric plants; BWR type reactors; PWR type reactors; thermal efficiency of light water reactors; other types of nuclear power plants; the fission process and nuclear fuel; fission products and reactor afterheat; and reactor safety.

Hendrie, J.M.

1983-01-01T23:59:59.000Z

73

United States-Japan Joint Nuclear Energy Action Plan | Department...  

Broader source: Energy.gov (indexed) [DOE]

United States-Japan Joint Nuclear Energy Action Plan United States-Japan Joint Nuclear Energy Action Plan An outline on the United States and Japan's joint nuclear energy action...

74

Advanced nuclear plant control complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

75

Effect of the Fukushima nuclear accident on the risk perception of residents near a nuclear power plant in China  

Science Journals Connector (OSTI)

...political anchoring”: The case of nuclear power in the United Kingdom . Risk Anal...social-cognitive perspective of terrorism risk perception and individual...just global warming and fear of a nuclear power plant accident? Risk Anal 31 ( 5...

Lei Huang; Ying Zhou; Yuting Han; James K. Hammitt; Jun Bi; Yang Liu

2013-01-01T23:59:59.000Z

76

A review of the methods of economic analysis of nuclear power plants.  

E-Print Network [OSTI]

??Nuclear power plants across the United States are reaching the end of their current operating licenses, forcing decision makers to think about the way forward.… (more)

Cavender, Brittainy Anne

2011-01-01T23:59:59.000Z

77

Nuclear Plant Dynamics and Safety - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Systems Nuclear Systems Modeling and Design Analysis > Nuclear Plant Dynamics and Safety Capabilities Nuclear Systems Modeling and Design Analysis Reactor Physics and Fuel Cycle Analysis Overview Current Projects Software Nuclear Plant Dynamics and Safety Nuclear Data Program Advanced Reactor Development Nuclear Waste Form and Repository Performance Modeling Nuclear Energy Systems Design and Development Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Reactor Physics and Fuel Cycle Analysis Nuclear Plant Dynamics and Safety Bookmark and Share Activities in Nuclear Plant Dynamics and Safety research and development fulfill a primary goal of the Nuclear Engineering (NE) Division to promote improvements in safe and reliable operation of present and future

78

UNITED STATES NUCLEAR REGULATORY COMMISSION  

Office of Legacy Management (LM)

WASHINGTON, 0. C. 20555 WASHINGTON, 0. C. 20555 AUG i 3 1979 ,,~---Y--*. FCAF:Wi3 )I 70-364 : i: SNM-414,jAmendment No. 3 --A Babcock and Wilcox Company Nuclear Materials Division ATTN: Mr. Michael A. Austin Manager, Technical Control 609 North Warren Avenue Apollo, Pennsylvania 15613 Gentiemen: (1 i' \ (. \ In accordance with your application dated June 18, 1979, and pursuant to Title 10, Code of Federal Regulations, Part 70, Materials License SNM-414 is hereby amended to: 1. Delete the function of the Regulatory Projects Coordinator, and 2. Alter the experience requirements for the function of Licensing and Nuclear Safety Specialist. Replacement pages for the license and condition section of the application are attached. Included are changes to License SNM-414 pages to reflect

79

The Politically Correct Nuclear Energy Plant  

E-Print Network [OSTI]

The Politically Correct Nuclear Energy Plant Andrew C. Kadak Massachusetts Institute of Technology - Small is Beautiful · Nuclear Energy - But Getting Better #12;Politically Correct ! · Natural Safety is a bad idea. · There is no new nuclear energy plant that is competitive at this time. · De-regulation did

80

Technical evaluation report TMI action -- NUREG-0737 (II.D.1). Relief and safety valve testing, Watts Bar Nuclear Plant, Units 1 and 2 (Dockets 50-390 and 50-391)  

SciTech Connect (OSTI)

In the past, safety and relief valves installed in the primary coolant system of light water reactors have performed improperly. As a result, the authors of NUREG-0578 (TMI-2 Lessons Learned Task Force Status Report and Short-Term Recommendations) and, subsequently, NUREG-0737 (Clarification of TMI Action Plan Requirements) recommended development and completion of programs to do two things. First, they should reevaluate the functional performance capabilities of pressurized water reactor safety, relief, and block valves. Second, they should verify the integrity of the pressurizer safety and relief valve piping systems for normal, transient, and accident conditions. This report documents the review of those programs by Lockheed Idaho Technologies Company. Specifically, this report documents the review of the Watts Bar Nuclear Plant, Units 1 and 2, Applicant response to the requirements of NUREG-0578 and NUREG-0737. This review found the Applicant provided an acceptable response reconfirming they met General Design Criteria 14, 15, and 30 of Appendix A to 10 CFR 50 for the subject equipment. It should also be noted Lockheed Idaho performed this review for both Units 1 and 2. However, the applicability of this review to Unit 2 depends on verifying that the Unit 2 as-built system conforms to the Unit 1 design reviewed in this report.

Fineman, C.P.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear Plant/Hydrogen Plant Safety: Issues and Approaches  

SciTech Connect (OSTI)

The U.S. Department of Energy, through its agents the Next Generation Nuclear Plant Project and the Nuclear Hydrogen Initiative, is working on developing the technologies to enable the large scale production of hydrogen using nuclear power. A very important consideration in the design of a co-located and connected nuclear plant/hydrogen plant facility is safety. This study provides an overview of the safety issues associated with a combined plant and discusses approaches for categorizing, quantifying, and addressing the safety risks.

Steven R. Sherman

2007-06-01T23:59:59.000Z

82

July 2010, Status and Outlook for Nuclear Energy In the United States |  

Broader source: Energy.gov (indexed) [DOE]

July 2010, Status and Outlook for Nuclear Energy In the United July 2010, Status and Outlook for Nuclear Energy In the United States July 2010, Status and Outlook for Nuclear Energy In the United States The U.S. nuclear power industry continues to make pro- gress toward the construction of new nuclear power plants in the United States. Currently, 13 license applica- tions are under active review by the Nuclear Regulatory Commission (NRC) for up to 22 new reactors. The De- partment of Energy has awarded conditional commit- ments for loan guarantees to the partners in the Vogtle project and is negotiating terms for loan guarantees with several new nuclear projects. The 104 operating plants continue to perform well, turn- ing in sustained performance for output and capacity factor - an estimated 798.7 billion kilowatt-hours and 90.5 percent respectively in 2009.

83

Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants  

Broader source: Energy.gov (indexed) [DOE]

Federal Risk Insurance for Nuclear Power Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy Secretary Bodman Announces Federal Risk Insurance for Nuclear Power Plants & Touts Robust Economy August 4, 2006 - 8:42am Addthis ATLANTA, GA - After touring Georgia Power and speaking to its employees, U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced completion of the final rule that establishes the process for utility companies building the next six new nuclear power plants in the United States to qualify for a portion of $2 billion in federal risk insurance. The rule will be available on DOE's web site soon. "Providing federal risk insurance is an important step in speeding the nuclear renaissance in this country," Secretary Bodman said. "Companies

84

Minimal nuclear deterrence : a nuclear arsenal reduction plan for the United States ; Nuclear arsenal reduction plan for the United States .  

E-Print Network [OSTI]

??The global political climate has called for reductions to nuclear arsenals around the world. This thesis researches how potential deep cuts to the United States'… (more)

Laderman, Sarah (Sarah Jane)

2012-01-01T23:59:59.000Z

85

Postconstruction report of the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

Remedial actions conducted under the auspices of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) were completed at the Y-12 United Nuclear Corporation (UNC) Disposal Site in August 1992. The purpose of this Postconstruction Report is to summarize numerous technical reports and provide CERCLA documentation for completion of the remedial actions. Other CERCLA reports, such as the Feasibility Study for the UNC Disposal Site, provide documentation leading up to the remedial action decision. The remedial action chosen, placement of a modified RCRA cap, was completed successfully, and performance standards were either met or exceeded. This remedial action provided solutions to two environmentally contaminated areas and achieved the goal of minimizing the potential for contamination of the shallow groundwater downgradient of the site, thereby providing protection of human health and the environment. Surveillance and maintenance of the cap will be accomplished to ensure cap integrity, and groundwater monitoring downgradient of the site will continue to confirm the acceptability of the remedial action chosen.

Oakley, L.B.; Siberell, J.K.; Voskuil, T.L.

1993-06-01T23:59:59.000Z

86

Wednesday, November 17, 2004 EU proposes nuclear fusion plant without Japan if there's no accord  

E-Print Network [OSTI]

Wednesday, November 17, 2004 EU proposes nuclear fusion plant without Japan if there's no accord by itself in building a nuclear fusion plant if no agreement is reached with Japan, according to a report, the United States, Russia, China and South Korea are collaborating on the international nuclear fusion

87

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in  

Broader source: Energy.gov (indexed) [DOE]

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Nuclear power plants in the United States currently produce about 20 percent of the nation's electricity. This nuclear-generated electricity is safe, clean and economical, and does not emit greenhouse gases. Continued and expanded reliance on nuclear energy is one key to meeting future demand for electricity in the U.S. and is called for in the National Energy Policy. Nevertheless, no new nuclear plants have been built in the U.S. in many years, and none are currently slated for construction. The U.S. Department of Energy (DOE) has been working with the nuclear

88

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in  

Broader source: Energy.gov (indexed) [DOE]

Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Volume I, Summary Report: A Roadmap to Deploy New Nuclear Power Plants in the United States by 2010: Nuclear power plants in the United States currently produce about 20 percent of the nation's electricity. This nuclear-generated electricity is safe, clean and economical, and does not emit greenhouse gases. Continued and expanded reliance on nuclear energy is one key to meeting future demand for electricity in the U.S. and is called for in the National Energy Policy. Nevertheless, no new nuclear plants have been built in the U.S. in many years, and none are currently slated for construction. The U.S. Department of Energy (DOE) has been working with the nuclear

89

Safety system augmentation at Russian nuclear power plants  

SciTech Connect (OSTI)

This paper describes the design and procurement of a Class IE DC power supply system to upgrade plant safety at the Kola Nuclear Power Plant (NPP). Kola NPP is located above the Arctic circle at Polyarnie Zorie, Murmansk, Russia. Kola NPP consists of four units. Units 1 and 2 have VVER-440/230 type reactors: Units 3 and 4 have VVER-440/213 type reactors. The VVER-440 reactor design is similar to the pressurized water reactor design used in the US. This project provided redundant, Class 1E DC station batteries and DC switchboards for Kola NPP, Units 1 and 2. The new DC power supply system was designed and procured in compliance with current nuclear design practices and requirements. Technical issues that needed to be addressed included reconciling the requirements in both US and Russian codes and satisfying the requirements of the Russian nuclear regulatory authority. Close interface with ATOMENERGOPROEKT (AEP), the Russian design organization, KOLA NPP plant personnel, and GOSATOMNADZOR (GAN), the Russian version of US Nuclear Regulatory Commission, was necessary to develop a design that would assure compliance with current Russian design requirements. Hence, this project was expected to serve as an example for plant upgrades at other similar VVER-440 nuclear plants. In addition to technical issues, the project needed to address language barriers and the logistics of shipping equipment to a remote section of the Former Soviet Union (FSU). This project was executed by Burns and Roe under the sponsorship of the US DOE as part of the International Safety Program (INSP). The INSP is a comprehensive effort, in cooperation with partners in other countries, to improve nuclear safety worldwide. A major element within the INSP is the improvement of the safety of Soviet-designed nuclear reactors.

Scerbo, J.A.; Satpute, S.N.; Donkin, J.Y.; Reister, R.A. [Burns and Roe, Oradell, NJ (United States); [Department of Energy, Germantown, MD (United States)

1996-12-31T23:59:59.000Z

90

Radioactive Effluents from Nuclear Power Plants Annual Report 2008  

SciTech Connect (OSTI)

This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2008. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

2010-12-10T23:59:59.000Z

91

Radioactive Effluents from Nuclear Power Plants Annual Report 2007  

SciTech Connect (OSTI)

This report describes radioactive effluents from commercial nuclear power plants (NPPs) in the United States. This information was reported by the licensees for radioactive discharges that occurred in 2007. The report provides information relevant to the potential impact of NPPs on the environment and on public health.

U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation

2010-12-10T23:59:59.000Z

92

United States-Republic of Korea (ROK) International Nuclear Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting United States-Republic of Korea (ROK) International...

93

Pantex Plant | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant | National Nuclear Security Administration Plant | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Pantex Plant Pantex Plant http://www.pantex.com/ Field Office: The NNSA Production Office is responsible for contract management and oversight of the Pantex Plant in Amarillo, Texas and the Y-12 National Security Complex in Oak Ridge, Tenn. The Pantex Plant is

94

Plutonium Processing Plant Deactivated | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Processing Plant Deactivated | National Nuclear Security Processing Plant Deactivated | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Plutonium Processing Plant Deactivated Plutonium Processing Plant Deactivated June 20, 1997 Hanford, WA Plutonium Processing Plant Deactivated The Plutonium Uranium Extraction Facility (PUREX), the largest of the

95

Plutonium Processing Plant Deactivated | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Processing Plant Deactivated | National Nuclear Security Processing Plant Deactivated | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Plutonium Processing Plant Deactivated Plutonium Processing Plant Deactivated June 20, 1997 Hanford, WA Plutonium Processing Plant Deactivated The Plutonium Uranium Extraction Facility (PUREX), the largest of the

96

Nuclear Energy In the United States Executive Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Status and Outlook for Nuclear Energy In the United States Executive Summary The U.S. nuclear power industry continues to make pro- gress toward the construction of new nuclear...

97

Use of combined-cycle power units at cogeneration plants  

Science Journals Connector (OSTI)

Indices of reconstructed and new cogeneration plants (CPs) using combined cycle units (CCPUs) are considered. The conclusions...

V. M. Batenin; Yu. A. Zeigarnik; V. M. Maslennikov; Yu. L. Shekhter…

2008-12-01T23:59:59.000Z

98

DOE Announces Loan Guarantee Applications for Nuclear Power Plant...  

Energy Savers [EERE]

Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis...

99

Beta Dosimetry at Nuclear Power Plants  

Science Journals Connector (OSTI)

......function of gamma dose and energy of the beta rays. Measurements...radiation and effective beta energy obtained in the working environment at nuclear power plants during the shut-down...decommissioning. The effective beta energy is most frequently between......

P. Carný; M. Lieskovsky

1991-08-01T23:59:59.000Z

100

Kansas City Plant | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Kansas City Plant Kansas City Plant http://honeywell.com/sites/aero-kcp/Pages/Home.aspx Field Office: The Kansas City Field Office (KCFO) stewards the NNSA Kansas City Plant, the principal nonnuclear production site within the nuclear

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Kansas City Plant | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

| National Nuclear Security Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our Locations > Kansas City Plant Kansas City Plant http://honeywell.com/sites/aero-kcp/Pages/Home.aspx Field Office: The Kansas City Field Office (KCFO) stewards the NNSA Kansas City Plant, the principal nonnuclear production site within the nuclear

102

EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 | Department of  

Broader source: Energy.gov (indexed) [DOE]

76: Vogtle Electric Generating Plant, Units 3 and 4 76: Vogtle Electric Generating Plant, Units 3 and 4 EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4 Summary This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011). Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download February 17, 2012 EIS-0476: Notice of Adoption of Final Environmental Impact Statement Vogtle Electric Generating Plant, Units 3 and 4, Issuance of a Loan Guarantee to Support Funding for Construction, Burke County, GA

103

US nuclear power plant operating cost and experience summaries  

SciTech Connect (OSTI)

NUREG/CR-6577, U.S. Nuclear Power Plant Operating Cost and Experience Summaries, has been prepared to provide historical operating cost and experience information on U.S. commercial nuclear power plants. Cost incurred after initial construction are characterized as annual production costs, representing fuel and plant operating and maintenance expenses, and capital expenditures related to facility additions/modifications which are included in the plant capital asset base. As discussed in the report, annual data for these two cost categories were obtained from publicly available reports and must be accepted as having different degrees of accuracy and completeness. Treatment of inconclusive and incomplete data is discussed. As an aid to understanding the fluctuations in the cost histories, operating summaries for each nuclear unit are provided. The intent of these summaries is to identify important operating events; refueling, major maintenance, and other significant outages; operating milestones; and significant licensing or enforcement actions. Information used in the summaries is condensed from annual operating reports submitted by the licensees, plant histories contained in Nuclear Power Experience, trade press articles, and the Nuclear Regulatory Commission (NRC) web site (www.nrc.gov).

Kohn, W.E.; Reid, R.L.; White, V.S.

1998-02-01T23:59:59.000Z

104

Evolution of Nuclear Power Plant Design  

Science Journals Connector (OSTI)

... research is expensive, and applied research and development on atomic energy is so expensive that expenditure should be justified either by the needs of defence or by the expectation of a ... per cent) have risen, and this rise reacts against nuclear power with its high capital cost. The result of these changes is that nuclear power from the plants which ...

CHRISTOPHER HINTON

1960-09-24T23:59:59.000Z

105

Nuclear Power Plant NDE Challenges - Past, Present, and Future  

SciTech Connect (OSTI)

The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship, not fitness for service) and with good engineering judgment. Fortuitously, those nuclear power plants were designed using defense-in-depth concepts, with nondestructive examination (NDE) an important layer, so they can tolerate almost any component failure and still continue to operate safely. In the 30+ years of reactor operation, many material failures have occurred. Unfortunately, NDE has not provided the reliability to detect degradation prior to initial failure (breaching the pressure boundary). However, NDE programs have been improved by moving from prescriptive procedures to performance demonstrations that quantify inspection effectiveness for flaw detection probability and sizing accuracy. Other improvements include the use of risk-informed strategies to ensure that reactor components contributing the most risk receive the best and most frequent inspections. Another challenge is the recent surge of interest in building new nuclear power plants in the United States to meet increasing domestic energy demand. New construction will increase the demand for NDE but also offers the opportunity for more proactive inspections. This paper reviews the inception and evolution of NDE for nuclear power plants over the past 40 years, recounts lessons learned, and describes the needs remaining as existing plants continue operation and new construction is contemplated.

Doctor, S. R. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352 (United States)

2007-03-21T23:59:59.000Z

106

The Evolution of Nuclear Power Plant Design: Synopsis  

Science Journals Connector (OSTI)

1 April 1961 research-article The Evolution of Nuclear Power Plant Design: Synopsis Christopher Hinton

1961-01-01T23:59:59.000Z

107

United States and Italy Sign Agreements to Advance Developments in Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Italy Sign Agreements to Advance Developments in Italy Sign Agreements to Advance Developments in Nuclear Energy United States and Italy Sign Agreements to Advance Developments in Nuclear Energy September 30, 2009 - 12:00am Addthis Washington, D.C. - U.S. Secretary of Energy Steven Chu and Italian Minister for Economic Development Claudio Scajola today signed two important nuclear energy agreements that may lead to construction of new nuclear power plants and improved cooperation on advanced nuclear energy systems and fuel cycle technologies in both countries. The U.S.-Italy Joint Declaration Concerning Industrial and Commercial Cooperation in the Nuclear Energy Sector, which was signed on behalf of the United States by Secretary Chu and Deputy Secretary of Commerce Dennis F. Hightower, affirms the strong interest of the United States and Italy to

108

Uncertainties in the Anti-neutrino Production at Nuclear Reactors  

E-Print Network [OSTI]

Output and Performance of Nuclear Power Plants by Im- provedPower, Tomari Nuclear Power Plant (Units 1, 2) License

Djurcic, Zelimir

2009-01-01T23:59:59.000Z

109

Video camera use at nuclear power plants  

SciTech Connect (OSTI)

A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs.

Estabrook, M.L.; Langan, M.O.; Owen, D.E. (ENCORE Technical Resources, Inc., Middletown, PA (USA))

1990-08-01T23:59:59.000Z

110

Confirmation of the seismic resistance of nuclear power plant equipment after assembly  

SciTech Connect (OSTI)

It is shown that the natural frequencies and damping decrements of nuclear power plant equipment can only be determined experimentally and directly at the power generation units (reactors) of nuclear power plants under real disassembly conditions for the equipment, piping network, thermal insulation, etc. A computational experimental method is described in which the natural frequencies and damping decrements are determined in the field and the seismic resistance is reevaluated using these values. This method is the basis of the standards document 'Methods for confirming the dynamic characteristics of systems and components of the generating units of nuclear power plants which are important for safety' prepared and introduced in 2012.

Kaznovsky, P. S.; Kaznovsky, A. P.; Saakov, E. S.; Ryasnyj, S. I. [JSC 'Atomtehenergo' (Russian Federation)

2013-05-15T23:59:59.000Z

111

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants |  

Broader source: Energy.gov (indexed) [DOE]

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants January 31, 2012 - 2:09pm Addthis The Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and the U.S. Nuclear Regulatory Commission (NRC) released a new seismic study today that will help U.S. nuclear facilities in the central and eastern United States reassess seismic hazards. The Central and Eastern United States Seismic Source Characterization for Nuclear Facilities model and report is the culmination of a four-year effort among the participating organizations and replaces previous seismic source models used by industry and government since the late 1980s. The NRC is requesting U.S. nuclear power plants to reevaluate seismic

112

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants |  

Broader source: Energy.gov (indexed) [DOE]

New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants January 31, 2012 - 2:09pm Addthis The Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and the U.S. Nuclear Regulatory Commission (NRC) released a new seismic study today that will help U.S. nuclear facilities in the central and eastern United States reassess seismic hazards. The Central and Eastern United States Seismic Source Characterization for Nuclear Facilities model and report is the culmination of a four-year effort among the participating organizations and replaces previous seismic source models used by industry and government since the late 1980s. The NRC is requesting U.S. nuclear power plants to reevaluate seismic

113

SELFMONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION)  

E-Print Network [OSTI]

SELF­MONITORING DISTRIBUTED MONITORING SYSTEM FOR NUCLEAR POWER PLANTS (PRELIMINARY VERSION) Aldo and identification are extremely important activities for the safety of a nuclear power plant. In particular inside huge and complex production plants. 1 INTRODUCTION Safety in nuclear power plants requires

114

Bonuses at nuclear arms plants condemned  

Science Journals Connector (OSTI)

The Department of Energy's management of its 17 nuclear weapons plants, already beset by massive environmental, safety, and health problems, drew further fire at a House hearing last week. ... Keith O. Fultz, director of energy issues at the General Accounting Office, presented a report detailing how DOE downplayed or ignored serious environmental, safety, and health problems at the Rocky Flats plant near Denver while awarding the operator, Rockwell International Corp., $26.8 million in performance bonuses in fiscal years 1986- 88. ...

RICHARD SELTZER

1989-10-30T23:59:59.000Z

115

(Nuclear power plant control and instrumentation technology)  

SciTech Connect (OSTI)

While on vacation, the traveler attended the European Nuclear Conference in Lyon, France. This trip was part of an outside activity approved by DOE. The traveler is a consultant to Loyola College, serving as chairman of a panel to assess the state of the art in the controls and instrumentation technology in the European nuclear community. This study is being conducted by Loyola College under subcontract to the National Science Foundation. The traveler was surprised by the level of automation claimed (by the company Siemens AG KWU) to be present in the German Konvoi nuclear power plants. The claim was that this was done to improve the safety of the plant by keeping the operator out of the loop'' for the first 30 minutes of some transients or accidents.

White, J.D.

1990-10-10T23:59:59.000Z

116

Enhancement of NRC station blackout requirements for nuclear power plants  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) established a Near-Term Task Force (NTTF) in response to Commission direction to conduct a systematic and methodical review of NRC processes and regulations to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission for its policy direction, in light of the accident at the Fukushima Dai-ichi Nuclear Power Plant. The NTTF's review resulted in a set of recommendations that took a balanced approach to defense-in-depth as applied to low-likelihood, high-consequence events such as prolonged station blackout (SBO) resulting from severe natural phenomena. Part 50, Section 63, of Title 10 of the Code of Federal Regulations (CFR), 'Loss of All Alternating Current Power,' currently requires that each nuclear power plant must be able to cool the reactor core and maintain containment integrity for a specified duration of an SBO. The SBO duration and mitigation strategy for each nuclear power plant is site specific and is based on the robustness of the local transmission system and the transmission system operator's capability to restore offsite power to the nuclear power plant. With regard to SBO, the NTTF recommended that the NRC strengthen SBO mitigation capability at all operating and new reactors for design-basis and beyond-design-basis external events. The NTTF also recommended strengthening emergency preparedness for prolonged SBO and multi-unit events. These recommendations, taken together, are intended to clarify and strengthen US nuclear reactor safety regarding protection against and mitigation of the consequences of natural disasters and emergency preparedness during SBO. The focus of this paper is on the existing SBO requirements and NRC initiatives to strengthen SBO capability at all operating and new reactors to address prolonged SBO stemming from design-basis and beyond-design-basis external events. The NRC initiatives are intended to enhance core and spent fuel pool cooling, reactor coolant system integrity, and containment integrity. (authors)

McConnell, M. W. [United States Nuclear Regulatory Commission, Mail Stop: 012-H2, Washington, DC 20555 (United States)

2012-07-01T23:59:59.000Z

117

1 INTRODUCTION In Nuclear Power Plant (NPP) systems, effective  

E-Print Network [OSTI]

1 INTRODUCTION In Nuclear Power Plant (NPP) systems, effective prediction methods are sought for Nuclear Power Plant Failure Scenarios Using an Ensemble-based Approach J. Liu & V. Vitelli Chair

Paris-Sud XI, Université de

118

Nuclear power pros and cons: A comparative analysis of radioactive emissions from nuclear power plants and thermal power plants  

Science Journals Connector (OSTI)

On the basis of the public data statistics of recent years on pollution and emissions from nuclear power plants (NPPs) and thermal power plants...

V. A. Gordienko; S. N. Brykin; R. E. Kuzin…

2012-02-01T23:59:59.000Z

119

Marine Nuclear Propulsion for the United Kingdom  

Science Journals Connector (OSTI)

... the Government in an adjournment debate in the House of Commons on March 21 on marine nuclear ... nuclear propulsion, the Joint Parliamentary Secretary to the Ministry of Transport, Mr. John Hay, said ...

1960-04-09T23:59:59.000Z

120

Advanced nuclear plant control room complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Configuration management in nuclear power plants  

E-Print Network [OSTI]

Configuration management (CM) is the process of identifying and documenting the characteristics of a facility's structures, systems and components of a facility, and of ensuring that changes to these characteristics are properly developed, assessed, approved, issued, implemented, verified, recorded and incorporated into the facility documentation. The need for a CM system is a result of the long term operation of any nuclear power plant. The main challenges are caused particularly by ageing plant technology, plant modifications, the application of new safety and operational requirements, and in general by human factors arising from migration of plant personnel and possible human failures. The IAEA Incident Reporting System (IRS) shows that on average 25% of recorded events could be caused by configuration errors or deficiencies. CM processes correctly applied ensure that the construction, operation, maintenance and testing of a physical facility are in accordance with design requirements as expressed in the d...

2003-01-01T23:59:59.000Z

122

Relative Movements for Design of Commodities in Nuclear Power Plants  

Broader source: Energy.gov [DOE]

Relative Movements for Design of Commodities in Nuclear Power Plants Javad Moslemian, Vice President, Nuclear Power Technologies, Sargent & Lundy LLC Nezar Abraham, Senior Associate II, Nuclear Power Technologies, Sargent & Lundy LLC

123

Natural Gas Processing Plants in the United States: 2010 Update  

Gasoline and Diesel Fuel Update (EIA)

This special report presents an analysis of natural gas processing plants This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations. Key Findings There were 493 operational natural gas processing plants in the United States with a combined operating capacity of 77 billion cubic feet (Bcf) per day. Overall, operating capacity increased about 12 percent between 2004 and 2009, not including the processing capacity in Alaska1. At the same time, the number of all processing plants in the lower 48 States decreased

124

Minimal nuclear deterrence : a nuclear arsenal reduction plan for the United States  

E-Print Network [OSTI]

The global political climate has called for reductions to nuclear arsenals around the world. This thesis researches how potential deep cuts to the United States' large strategic nuclear arsenal would affect its current ...

Laderman, Sarah (Sarah Jane)

2012-01-01T23:59:59.000Z

125

Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan...  

Broader source: Energy.gov (indexed) [DOE]

United States-Japan Joint Nuclear Energy Action Plan Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan Fact Sheet: United States-Japan Joint Nuclear Energy Action...

126

A Study of United States Hydroelectric Plant Ownership  

SciTech Connect (OSTI)

Ownership of United States hydroelectric plants is reviewed from several perspectives. Plant owners are grouped into six owner classes as defined by the Federal Energy Regulatory Commission. The numbers of plants and the corresponding total capacity associated with each owner class are enumerated. The plant owner population is also evaluated based on the number of owners in each owner class, the number of plants owned by a single owner, and the size of plants based on capacity ranges associated with each owner class. Plant numbers and corresponding total capacity associated with owner classes in each state are evaluated. Ownership by federal agencies in terms of the number of plants owned by each agency and the corresponding total capacity is enumerated. A GIS application that is publicly available on the Internet that displays hydroelectric plants on maps and provides basic information about them is described.

Douglas G Hall

2006-06-01T23:59:59.000Z

127

EIA - AEO2010 - U.S. nuclear power plants: Continued life or replacement  

Gasoline and Diesel Fuel Update (EIA)

U.S. nuclear power plants: continued life or replacement after 60? U.S. nuclear power plants: continued life or replacement after 60? Annual Energy Outlook 2010 with Projections to 2035 U.S. nuclear power plants: Continued life or replacement after 60? Background Nuclear power plants generate approximately 20 percent of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of GHG regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating. The nuclear industry has expressed strong interest in continuing the operation of existing nuclear facilities, and no particular technical issues have been identified that would impede their continued operation. Recent AEOs had assumed that existing nuclear units would be retired after 60 years of operation (the initial 40-year license plus one 20-year license renewal). Maintaining the same assumption in AEO2010, with the projection horizon extended to 2035, would result in the retirement of more than one-third of existing U.S. nuclear capacity between 2029 and 2035. Given the uncertainty about when existing nuclear capacity actually will be retired, EIA revisited the assumption for the development of AEO2010 and modified it to allow the continued operation of all existing U.S. nuclear power plants through 2035 in the Reference case.

128

Regression analysis of technical parameters affecting nuclear power plant performances  

SciTech Connect (OSTI)

Since the 80's many studies have been conducted in order to explicate good and bad performances of commercial nuclear power plants (NPPs), but yet no defined correlation has been found out to be totally representative of plant operational experience. In early works, data availability and the number of operating power stations were both limited; therefore, results showed that specific technical characteristics of NPPs were supposed to be the main causal factors for successful plant operation. Although these aspects keep on assuming a significant role, later studies and observations showed that other factors concerning management and organization of the plant could instead be predominant comparing utilities operational and economic results. Utility quality, in a word, can be used to summarize all the managerial and operational aspects that seem to be effective in determining plant performance. In this paper operational data of a consistent sample of commercial nuclear power stations, out of the total 433 operating NPPs, are analyzed, mainly focusing on the last decade operational experience. The sample consists of PWR and BWR technology, operated by utilities located in different countries, including U.S. (Japan)) (France)) (Germany)) and Finland. Multivariate regression is performed using Unit Capability Factor (UCF) as the dependent variable; this factor reflects indeed the effectiveness of plant programs and practices in maximizing the available electrical generation and consequently provides an overall indication of how well plants are operated and maintained. Aspects that may not be real causal factors but which can have a consistent impact on the UCF, as technology design, supplier, size and age, are included in the analysis as independent variables. (authors)

Ghazy, R.; Ricotti, M. E.; Trueco, P. [Politecnico di Milano, Via La Masa, 34, 20156 Milano (Italy)

2012-07-01T23:59:59.000Z

129

Nuclear Power Plants and Their Fuel as Terrorist Targets  

Science Journals Connector (OSTI)

...applied to terrorism. To tell...Shipment Risk Estimates...Director of Nuclear Control Institute...said that an attack on a plant could make a huge...believe nuclear power is being...operation of nuclear facilities...applied to terrorism. To...Shipment Risk Estimates...Director of Nuclear Control Institute...said that an attack on a plant could make...believe nuclear power is being...

Douglas M. Chapin; Karl P. Cohen; W. Kenneth Davis; Edwin E. Kintner; Leonard J. Koch; John W. Landis; Milton Levenson; I. Harry Mandil; Zack T. Pate; Theodore Rockwell; Alan Schriesheim; John W. Simpson; Alexander Squire; Chauncey Starr; Henry E. Stone; John J. Taylor; Neil E. Todreas; Bertram Wolfe; Edwin L. Zebroski

2002-09-20T23:59:59.000Z

130

UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS  

E-Print Network [OSTI]

1 UNSUPERVISED CLUSTERING FOR FAULT DIAGNOSIS IN NUCLEAR POWER PLANT COMPONENTS Piero Baraldi1 on transients originated by different faults in the pressurizer of a nuclear power reactor. Key Words: Fault of Nuclear Power Plants (NPPs) [Cheon et al., 1993; Kim et al., 1996; Reifman, 1997; Zio et al., 2006a; Zio

Boyer, Edmond

131

United States Nuclear Data Program (USNDP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NNDC Databases: NuDat | NSR | XUNDL | ENSDF | MIRD | ENDF | CSISRS | Sigma NNDC Databases: NuDat | NSR | XUNDL | ENSDF | MIRD | ENDF | CSISRS | Sigma Search the NNDC: Go NNDC Site Index USNDP Meetings 2013 Nov. 18-22 USNDP Proceedings 2012 Annual Meeting Nov. 5-9 2011 Annual Meeting 2010 Annual Meeting 2009 Annual Meeting 2008 Annual Meeting 2007 Annual Meeting 2006 Annual Meeting Distributions CSEWG List USNDP List CSEWG & USNDP List Nuclear Data Needs for Homeland Security USNDP Structure Coordinating Committee Members Member Organizations Archival Webpage 1996 U.S. Nuclear Data Program Sponsored by the Office of Nuclear Physics - Office of Science - U.S. Department of Energy Reports FY 2012 Annual Report FY 2011 Annual Report FY 2010 Annual Report FY 2009 Annual Report FY 2008 Annual Report FY 2007 Annual Report FY 2006 Annual Report

132

Cesium Removal at Fukushima Nuclear Plant - 13215  

SciTech Connect (OSTI)

The Great East Japan Earthquake that took place on March 11, 2011 created a number of technical challenges at the Fukushima Daiichi Nuclear Plant. One of the primary challenges involved the treatment of highly contaminated radioactive wastewater. Avantech Inc. developed a unique patent pending treatment system that addressed the numerous technical issues in an efficient and safe manner. Our paper will address the development of the process from concept through detailed design, identify the lessons learned, and provide the updated results of the project. Specific design and operational parameters/benefits discussed in the paper include: - Selection of equipment to address radionuclide issues; - Unique method of solving the additional technical issues associated with Hydrogen Generation and Residual Heat; - Operational results, including chemistry, offsite discharges and waste generation. Results show that the customized process has enabled the utility to recycle the wastewater for cooling and reuse. This technology had a direct benefit to nuclear facilities worldwide. (authors)

Braun, James L.; Barker, Tracy A. [Avantech Incorporated, 95A Sunbelt Blvd Columbia, SC 29203 (United States)] [Avantech Incorporated, 95A Sunbelt Blvd Columbia, SC 29203 (United States)

2013-07-01T23:59:59.000Z

133

EM Renews Information-Sharing Agreement with United Kingdom's Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Renews Information-Sharing Agreement with United Kingdom's Renews Information-Sharing Agreement with United Kingdom's Nuclear Decommissioning Authority EM Renews Information-Sharing Agreement with United Kingdom's Nuclear Decommissioning Authority March 1, 2012 - 12:00pm Addthis DOE Senior Advisor for Environmental Management David Huizenga (left) and Mark Lesinski, U.K.'s Nuclear Decommissioning Authority (NDA) Executive Director for Delivery, renewed the Statement of Intent between DOE and NDA in a signing ceremony this week. DOE Senior Advisor for Environmental Management David Huizenga (left) and Mark Lesinski, U.K.'s Nuclear Decommissioning Authority (NDA) Executive Director for Delivery, renewed the Statement of Intent between DOE and NDA in a signing ceremony this week. Florida International University's DOE Fellows gather for a photo with DOE Senior Advisor for Environmental Management David Huizenga (eighth from left) and DOE Fellows director, Dr. Leo Lagos (tenth from left), at the 2012 Waste Management Symposia in Phoenix this week.

134

The Salton Sea 10 MWe power plant, unit 1  

SciTech Connect (OSTI)

The Southern California Edison Company's Salton Sea Geothermal Electric Project is the second of two flashsteam projects located in the Imperial Valley of California to successfully demonstrate the feasibility of utilizing steam from highly saline geothermal fluids for electric power generation. The objective of Edison's Power Plant Unit 1 program at the Salton Sea KGRA is to develop design, operating, and economic criteria for commercial geothermal developments in the Imperial Valley of California. The Edison plant is designed specifically for utilization of geothermal steam and employs principles found in conventional fossil-fueled electric generating plants. This plant serves as a model of a full scale commercial plant, using systems and components which likely will be utilized in large scale follow-on units.

Moss, W.E.; Whitescarver, O.D.; Yamasaki, R.N.

1982-10-01T23:59:59.000Z

135

From the first nuclear power plant to fourth-generation nuclear power installations [on the 60th anniversary of the World’s First nuclear power plant  

Science Journals Connector (OSTI)

Successful commissioning in the 1954 of the World’s First nuclear power plant constructed at the Institute for Physics ... center for training Soviet and foreign specialists on nuclear power plants, the personnel...

V. I. Rachkov; S. G. Kalyakin; O. F. Kukharchuk; Yu. I. Orlov…

2014-05-01T23:59:59.000Z

136

Water generator replaces bottled water in nuclear power plant  

Science Journals Connector (OSTI)

WaterPure International Incorporated of Doylestown, Pennsylvania, USA, has announced that it has placed its atmospheric water generator (AWG) inside a selected nuclear power plant.

2007-01-01T23:59:59.000Z

137

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network [OSTI]

Feb 17, 2012 ... Abstract: Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the ...

Kengy Barty

2012-02-17T23:59:59.000Z

138

Optimization Online - Nuclear norm minimization for the planted ...  

E-Print Network [OSTI]

Jan 21, 2009 ... Nuclear norm minimization for the planted clique and biclique problems. Brendan Ames(bpames ***at*** math.uwaterloo.ca) Stephen ...

Brendan Ames

2009-01-21T23:59:59.000Z

139

Electromagnetic Compatibility in Nuclear Power Plants  

SciTech Connect (OSTI)

Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

1999-08-29T23:59:59.000Z

140

Risk-informed incident management for nuclear power plants  

E-Print Network [OSTI]

Decision making as a part of nuclear power plant operations is a critical, but common, task. Plant management is forced to make decisions that may have safety and economic consequences. Formal decision theory offers the ...

Smith, Curtis Lee, 1966-

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Portsmouth Gaseous Diffusion Plant- Quadrant I Groundwater Investigative (5-Unit) Area Plume  

Broader source: Energy.gov [DOE]

Groundwater Database Report - Portsmouth Gaseous Diffusion Plant - Quadrant I Groundwater Investigative (5-Unit) Area Plume

142

Announced United States nuclear tests, July 1945--December 1990  

SciTech Connect (OSTI)

This document lists chronologically and alphabetically by event name all nuclear tests conducted and announced by the United States from July 1945 to December 1990 with the exception of the GMX experiments. Discussion is included on test dates, test series, test yields, test locations, test types and purposes, test totals for Nevada Test Site (NTS) detection of radioactivity from NTS events, and categorization of NTS nuclear tests. Briefly discussed are agreements between the US and the Soviet Union regarding test banning. (MB)

Not Available

1991-01-01T23:59:59.000Z

143

The Status of Plant Life Assessment Program of Wolsong Unit 1  

SciTech Connect (OSTI)

Wolsong Unit 1 is a CANDU plant which began its commercial operation in 1983 with design life of 30 years. Korea Electric Power Research Institute (KEPRI) had performed the phase 1 of plant life assessment program of Wolsong Unit 1 from the year of 2000 to 2003. The following program phase II is on going to 2007 in order to assess in-detail life evaluation and aging management program development. The phase 1 performed life evaluations of critical components such as fuel channels, feeder pipes, steam-generators and so on. The phase II assesses aging degradations and residual life of the components, structures, and systems (SSCs) screened as important to the continued operation beyond its design life. This paper summarizes recent trends of CANDU PLiM (plant lifetime management) in Canada and introduces the status of Wolsong Unit 1 plant life assessment program in Korea. KEPRI and KHNP (Korea Hydro and Nuclear Power) had performed aging analysis of the fuel channels and feeder pipes of Wolsong Unit 1. The aging analysis showed that some fuel channels could be elongated longer and the thickness of some feeder pipes less than the criteria before plant design life. (authors)

Taek-Ho, Song; Ill-Seok, Jeong; Sung-Yull, Hong [Korea Electric Power Research Institute, 103-16, Munji-dong, Yousung-Gu, Daejeon (Korea, Republic of); Sue-Deuk, Lee [Korea Hydro and Nuclear Power (Korea, Republic of)

2006-07-01T23:59:59.000Z

144

UNITED STATES NUCLEAR REGULATORY COMMISSION REGION I  

Office of Legacy Management (LM)

REGION I REGION I 475 ALLENDALE ROAD KING OF PRUSSIA, PENNSYLVANIA 194061415 Docket No. 040-07123 JUL. 19 '996 License No. SUB-748 (Retired) United States -Department of Energy O ffice of EnvironmentalRestoration ATTN: W. Alexander Williams, Ph.D. EM-241 Cloverleaf Building 19901 Germantown Road Germantown, Maryland 20874-1290 SUBJECT: NL INDUSTRIES, ALBANY, NEW YORK Dear Dr. Williams: We are aware that DOE is responsible for the former National Lead Company (NL Industries) facility near Albany, New York. During a recent review of retired AEC License No. SUB-748, we found records which provide additional information concerning the use of source material at the facility. Copies of AEC documents which describe activities at that facility are enclosed. License No. SUB-00748 authorized possession of 38,000 pounds of uranium during

145

SUPERCRITICAL STEAM CYCLE FOR NUCLEAR POWER PLANT  

SciTech Connect (OSTI)

Revolutionary improvement of the nuclear plant safety and economy with light water reactors can be reached with the application of micro-fuel elements (MFE) directly cooled by a supercritical pressure light-water coolant-moderator. There are considerable advantages of the MFE as compared with the traditional fuel rods, such as: Using supercritical and superheated steam considerably increases the thermal efficiency of the Rankine cycle up to 44-45%. Strong negative coolant and void reactivity coefficients with a very short thermal delay time allow the reactor to shutdown quickly in the event of a reactivity or power excursion. Core melting and the creation of corium during severe accidents are impossible. The heat transfer surface area is larger by several orders of magnitude due to the small spherical dimensions of the MFE. The larger heat exchange surface significantly simplifies residual heat removal by natural convection and radiation from the core to a subsequent passive system of heat removal.

Tsiklauri, Georgi V.; Talbert, Robert J.; Schmitt, Bruce E.; Filippov, Gennady A.; Bogojavlensky, Roald G.; Grishanin, Evgeny I.

2005-07-01T23:59:59.000Z

146

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . • . . . .

Yen, W.W.S.

2010-01-01T23:59:59.000Z

147

NUCLEAR ARMS PLANTS: Idaho bars entry of plutonium wastes  

Science Journals Connector (OSTI)

The Department of Energy—already beset by massive cleanup and safety problems at its nuclear arms plants—now must grapple with a further dilemma in dealing with radioactive wastes. ... Gov. Cecil D. Andrus of Idaho closed the state's borders on Sept. 1 to waste shipments from the Rocky Flats nuclear weapons plant near Denver. ...

RICHARD SELTZER

1989-09-11T23:59:59.000Z

148

Construction or Extended Operation of Nuclear Plant (Vermont) | Department  

Broader source: Energy.gov (indexed) [DOE]

Construction or Extended Operation of Nuclear Plant (Vermont) Construction or Extended Operation of Nuclear Plant (Vermont) Construction or Extended Operation of Nuclear Plant (Vermont) < Back Eligibility Investor-Owned Utility Utility Program Info State Vermont Program Type Siting and Permitting Any petition for approval of construction of a nuclear energy generating plant within the state, or any petition for approval of the operation of a nuclear energy generating plant beyond the date established in a certificate of public good issued under this title, must be submitted to the public service board no later than four years before the date upon which the approval may take effect. Upon receipt of a petition for approval of construction or operation as provided under this section, the public service board shall notify the

149

Design issues concerning Iran`s Bushehr nuclear power plant VVER-1000 conversion  

SciTech Connect (OSTI)

On January 8, 1995, the Atomic Energy Organization of Iran (AEOI) signed a contract for $800 million with the Russian Federation Ministry for Atomic Energy (Minatom) to complete Bushehr nuclear power plant (BNPP) unit 1. The agreement called for a Russian VVER-1000/320 pressurized water reactor (PWR) to be successfully installed into the existing German-built BNPP facilities in 5 yr. System design differences, bomb damage, and environmental exposure are key issues with which Minatom must contend in order to fulfill the contract. The AEOI under the Shah of Iran envisioned Bushehr as the first of many nuclear power plants, with Iran achieving 24 GW(electric) by 1993 and 34 GW(electric) by 2000. Kraftwerk Union AG (KWU) began construction of the two-unit plant near the Persian Gulf town of Halileh in 1975. Unit 1 was {approx}80% complete and unit 2 was {approx}50% complete when construction was interrupted by the 1979 Iranian Islamic revolution. Despite repeated AEOI attempts to lure KWU and other companies back to Iran to complete the plant, Western concerns about nuclear proliferation in Iran and repeated bombings of the plant during the 1980-1988 Iran-Iraq war dissuaded Germany from resuming construction.

Carson, C.F. [Lawrence Livermore National Laboratory, CA (United States)

1996-12-31T23:59:59.000Z

150

Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants |  

Broader source: Energy.gov (indexed) [DOE]

Feasibility Study of Hydrogen Production at Existing Nuclear Power Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants A funding opportunity announcement of the cost shared feasibility studies of nuclear energy based production of hydrogen using available technology. The objective of this activity is to select and conduct project(s) that will utilize hydrogen production equipment and nuclear energy as necessary to produce data and analysis on the economics of hydrogen production with nuclear energy. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants More Documents & Publications https://e-center.doe.gov/iips/faopor.nsf/UNID/E67E46185A67EBE68 Microsoft Word - FOA cover sheet.doc Microsoft Word - hDE-FOA-0000092.rtf

151

A regional simulation study on dispersion of nuclear pollution from the damaged Fukushima Nuclear Power Plant  

Science Journals Connector (OSTI)

A nuclear accident involving the leaking of radioactive pollutants occurred at the Fukushima Nuclear Power Plant in Japan, following an earthquake and subsequent tsunami on ... accident, this study simulates the ...

JianFang Fei; PengFei Wang; XiaoPing Cheng; XiaoGang Huang…

2014-07-01T23:59:59.000Z

152

16N ?-Ray Diagnostics of a Nuclear Reactor in a Nuclear Power Plant  

Science Journals Connector (OSTI)

The AIRM system, which uses the 16N activity in the VVÉR-1000 reactor at the Kalinin nuclear power plant to measure the thermal power of the reactor and the coolant flow rate, and similar systems used in nuclear

S. G. Tsypin; V. V. Lysenko; A. I. Musorin; L. N. Bogachek; V. F. Bai…

2003-09-01T23:59:59.000Z

153

Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors  

SciTech Connect (OSTI)

The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

OHara J. M.; Higgins, J.; DAgostino, A.

2012-01-17T23:59:59.000Z

154

United States and Czech Republic Establish a Joint Civil Nuclear  

Broader source: Energy.gov (indexed) [DOE]

Establish a Joint Civil Nuclear Establish a Joint Civil Nuclear Cooperation Center in Prague United States and Czech Republic Establish a Joint Civil Nuclear Cooperation Center in Prague June 12, 2013 - 12:17pm Addthis News Media Contact (202) 586-4940 PRAGUE, Czech Republic - The U.S. Department of Energy (DOE) recently joined with the U.S. Embassy in Prague and the Czech Republic's Ministry of Education, Youth and Sports to sign an agreement that establishes a joint Civil Nuclear Cooperation Center in Prague. The creation of this Center is another valued step in expanding U.S.-Czech energy collaboration and fulfills the commitment made by President Obama and Czech Prime Minister NeÄŤas in October 2011 to establish such a Center to facilitate and coordinate joint activities and support regional initiatives in the

155

Viability of an expanded United States nuclear power program and its effects on energy markets .  

E-Print Network [OSTI]

??The four biggest energy sources in the United States are coal, crude oil, natural gas, and nuclear power. While coal and nuclear power are produced… (more)

Khan, Tanzeer S

2006-01-01T23:59:59.000Z

156

Lesson 7 - Waste from Nuclear Power Plants | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7 - Waste from Nuclear Power Plants 7 - Waste from Nuclear Power Plants Lesson 7 - Waste from Nuclear Power Plants This lesson takes a look at the waste from electricity production at nuclear power plants. It considers the different types of waste generated, as well as how we deal with each type of waste. Specific topics covered include: Nuclear Waste Some radioactive Types of radioactive waste Low-level waste High-level waste Disposal and storage Low-level waste disposal Spent fuel storage Waste isolation Reprocessing Decommissioning Lesson 7 - Waste.pptx More Documents & Publications National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

157

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

DOE Announces Loan Guarantee Applications for Nuclear Power Plant DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are

158

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

159

Nuclear plant-aging research on reactor protection systems  

SciTech Connect (OSTI)

This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

Meyer, L.C.

1988-01-01T23:59:59.000Z

160

DOE Announces Loan Guarantee Applications for Nuclear Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Loan Guarantee Applications for Nuclear Power Plant Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power plants in response to its June 30, 2008 solicitation. The applications reflect the intentions of those companies to build 21 new reactors, with some applications covering two reactors at the same site. All five reactor designs that have been certified, or are currently under review for possible certification, by the Nuclear Regulatory Commission (NRC) are represented in the Part I applications. DOE also has received Part I

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Acoustic Emission Monitoring of ASME Section III Hydrostatic Test: Watts Bar Unit 1 Nuclear Reactor  

SciTech Connect (OSTI)

Through the cooperation of the Tennessee Valley Authority, Pacific Northwest Laboratory has installed instrumentation on Watts Bar Nuclear Power Plant Unit 1 for the purpose of test and evaluation of acoustic emission (AE) monitoring of nuclear reactor pressure vessels and piping for flaw detection. This report describes the acoustic emission monitoring performed during the ASME Section III hydrostatic testing of Watts Bar Nuclear Power Plant Unit 1 and the results obtained. Highlights of the results are: • Spontaneous AE was detected from a nozzle area during final pressurization. • Evaluation of the apparent source of the spontaneous AE using an empirically derived AE/fracture mechanics relationship agreed within a factor of two with an evaluation by ASME Section XI Code procedures. • AE was detected from a fracture specimen which was pressure coupled to the 10-inch accumulator nozzle. This provided reassurance of adequate system sensitivity. • High background noise was observed when all four reactor coolant pumps were operating. Work is continuing at Watts Bar Unit 1 toward AE monitoring hot functional testing and subsequently monitoring during reactor operation.

Hutton,, P. H.; Taylor,, T. T.; Dawson,, J. F.; Pappas,, R. A.; Kurtz,, R. J.

1982-06-01T23:59:59.000Z

162

Industry Participation Sought for Design of Next Generation Nuclear Plant |  

Broader source: Energy.gov (indexed) [DOE]

Industry Participation Sought for Design of Next Generation Nuclear Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant (NGNP), a very high temperature gas-cooled nuclear reactor prototype with the capability to produce process heat, electricity and/or hydrogen. The very high temperature reactor is based on research and development activities supported by DOE's Generation IV nuclear energy systems initiative.

163

FAULT DETECTION IN NUCLEAR POWER PLANTS COMPONENTS BY A COMBINATION OF STATISTICAL METHODS  

E-Print Network [OSTI]

FAULT DETECTION IN NUCLEAR POWER PLANTS COMPONENTS BY A COMBINATION OF STATISTICAL METHODS Independent Component Analysis nc Normal conditions NPP Nuclear Power Plant PCA Principal Component Analysis

Paris-Sud XI, Université de

164

Update report on the performance of 400 megawatt and larger nuclear and coal-fired generating units. Performance through 1977  

SciTech Connect (OSTI)

Forty-seven nuclear generating units and 125 coal-fired generating plants that have had at least one full year of commercial operation are covered in this report. Their performances are evaluated using the capacity factor, availability factor, equivalent availability, and forced outage rate. The data are arranged by state and utility. (DLC)

None

1981-01-01T23:59:59.000Z

165

Job Creation Due to Nuclear Power Resurgence in The United States  

SciTech Connect (OSTI)

The recent revival of global interest in the next generation of nuclear power reactors is causing a reexamination of the role of nuclear power in the United States. This renewed interest has led to questions regarding the capability and capacity of current U.S. industries to support a renewal of nuclear power plant deployment. Key among the many questions currently being asked is what potential exists for the creation of new jobs as a result of developing and operating these new plants? Idaho National Laboratory and Bechtel Power Corporation collaborated to perform a Department of Energy-sponsored study that evaluated the potential for job creation in the U.S. should these new next generation nuclear power plants be built. The study focused primarily on providing an initial estimate of the numbers of new manufacturing jobs that could be created, including those that could be repatriated from overseas, resulting from the construction of these new reactors. In addition to the growth in the manufacturing sector, the study attempted to estimate the potential increase in construction trades necessary to accomplish the new construction.

C. R. Kenley; R. D. Klingler; C. M. Plowman; R. Soto; R. J. Turk; R. L. Baker; S. A. Close; V. L. McDonnell; S. W. Paul; L. R. Rabideau; S. S. Rao; B. P. Reilly

2009-11-01T23:59:59.000Z

166

Can New Nuclear Power Plants be Project Financed?  

E-Print Network [OSTI]

This paper considers the prospects for financing a wave of new nuclear power plants (NPP) using project financing, which is used widely in large capital intensive infrastructure investments, including the power and gas sectors, but has...

Taylor, Simon

167

Risk Framework for the Next Generation Nuclear Power Plant Construction  

E-Print Network [OSTI]

sector projects, and recently elevated to Best Practice status. However, its current format is inadequate to address the unique challenges of constructing the next generation of nuclear power plants (NPP). To understand and determine the risks...

Yeon, Jaeheum 1981-

2012-12-11T23:59:59.000Z

168

United States-Russia Joint Statement on the Results of the Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

States-Russia Joint Statement on the Results of the Nuclear Energy and Nuclear Security Working Group Meeting United States-Russia Joint Statement on the Results of the Nuclear...

169

Advanced Sensor Diagnostics in Nuclear Power Plant Applications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensor Diagnostics in Nuclear Power Plant Applications Sensor Diagnostics in Nuclear Power Plant Applications R.B. Vilim Argonne National Laboratory Sensor degradation occurs routinely during nuclear power plant operation and can contribute to reduced power production and less efficient plant operation. Mechanisms include drift of sensor electronics and mechanical components, fouling and erosion of flow meter orifice plates, and general degradation of thermocouples. One solution to this problem is the use of higher quality instrumentation and of physical redundancy. This, however, increases plant cost and does not address the degradation problem in a fundamental way. An alternative approach is to use signal processing algorithms to detect a degraded sensor and to construct a replacement value using an

170

US nuclear power plants: Emergency planning inadequate  

Science Journals Connector (OSTI)

... local ! area are considered inadequate. The I operators of the plants - both at IndianIndianPoint ...

Peter David

1983-05-12T23:59:59.000Z

171

Fresh nuclear fuel measurements at Ukrainian nuclear power plants  

SciTech Connect (OSTI)

In 2005, the Provisions on Nuclear Material Measurement System was enacted in Ukraine as an important regulatory driver to support international obligations in nuclear safeguards and nonproliferation. It defines key provisions and requirements for material measurement and measurement control programs to ensure the quality and reliability of measurement data within the framework of the State MC&A System. Implementing the Provisions requires establishing a number of measurement techniques for both fresh and spent nuclear fuel for various types of Ukrainian reactors. Our first efforts focused on measurements of fresh nuclear fuel from a WWR-1000 power reactor.

Kuzminski, Jozef [Los Alamos National Laboratory; Ewing, Tom [ANL; Dickman, Debbie [PNNL; Gavrilyuk, Victor [UKRAINE; Drapey, Sergey [UKRAINE; Kirischuk, Vladimir [UKRAINE; Strilchuk, Nikolay [UKRAINE

2009-01-01T23:59:59.000Z

172

Modelling power output at nuclear power plant by neural networks  

Science Journals Connector (OSTI)

In this paper, we propose two different neural network (NN) approaches for industrial process signal forecasting. Real data is available for this research from boiling water reactor type nuclear power reactors. NNs are widely used for time series prediction, ... Keywords: evaluation methods, model input selection, neural networks, nuclear power plant, one-step ahead prediction

Jaakko Talonen; Miki Sirola; Eimontas Augilius

2010-09-01T23:59:59.000Z

173

Acoustic emission monitoring of hot functional testing: Watts Bar Unit 1 Nuclear Reactor  

SciTech Connect (OSTI)

Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Power Plant during hot functional preservice testing is described in this report. The report deals with background, methodology, and results. The work discussed here is a major milestone in a program supported by NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing toward AE monitoring during reactor operation.

Hutton, P.H.; Dawson, J.F.; Friesel, M.A.; Harris, J.C.; Pappas, R.A.

1984-06-01T23:59:59.000Z

174

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant,  

Broader source: Energy.gov (indexed) [DOE]

Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington SUMMARY This EA evaluates the environmental impacts associated with the U.S. Department of Energy proposed action to conduct a lead test assembly program to confirm the viability of using a commercial light water reactor to produce tritium. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 22, 1997 EA-1210: Finding of No Significant Impact Lead Test Assembly Irradiation and Analysis Watts Bar Nuclear Plant, Tennessee and Hanford Site, Richland, Washington July 22, 1997 EA-1210: Final Environmental Assessment

175

Bioenergy plants in the United States and China  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

181 (2011) 621- 622 Contents lists available at SciVerse ScienceDirect Plant Science j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / p l a n t s c i Editorial Bioenergy plants in the United States and China The emerging bio-economies of the US and China hinge on the development of dedicated bioenergy feedstocks that will increase the production of next-generation biofuels and bioproducts. While biofuels might have less eventual importance than bioproducts, transportation needs for both countries require increasingly more biofuels to be produced in the coming decades. The US Renewable Fuels Standard mandate 136 billion litres of biofuels by 2022. Nearly 80 billion litres are required to be "advanced biofuels," generally regarded as fuels from non-corn and soybean feedstocks. Because

176

Regulatory guidance for lightning protection in nuclear power plants  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects. (authors)

Kisner, R. A.; Wilgen, J. B.; Ewing, P. D.; Korsah, K. [Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831-6007 (United States); Antonescu, C. E. [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

2006-07-01T23:59:59.000Z

177

Regulatory Guidance for Lightning Protection in Nuclear Power Plants  

SciTech Connect (OSTI)

Abstract - Oak Ridge National Laboratory (ORNL) was engaged by the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) to develop the technical basis for regulatory guidance to address design and implementation practices for lightning protection systems in nuclear power plants (NPPs). Lightning protection is becoming increasingly important with the advent of digital and low-voltage analog systems in NPPs. These systems have the potential to be more vulnerable than older analog systems to the resulting power surges and electromagnetic interference (EMI) when lightning strikes facilities or power lines. This paper discusses the technical basis for guidance to licensees and applicants covered in Regulatory Guide (RG) 1.204, Guidelines for Lightning Protection of Nuclear Power Plants, issued August 2005. RG 1.204 describes guidance for practices that are acceptable to the NRC staff for protecting nuclear power structures and systems from direct lightning strikes and the resulting secondary effects.

Kisner, Roger A [ORNL; Wilgen, John B [ORNL; Ewing, Paul D [ORNL; Korsah, Kofi [ORNL; Antonescu, Christina E [ORNL

2006-01-01T23:59:59.000Z

178

Nuclear Navy United States Atomic Energy Commission Historical Advisory  

Broader source: Energy.gov (indexed) [DOE]

Navy Navy United States Atomic Energy Commission Historical Advisory Committee Chairman, Alfred D. Chandler, Jr. Harvard University John T. Conway Consolidated Edison Company Lauchlin M. Currie Carmel, California A. Hunter Dupree Brown University Ernest R. May Harvard University Robert P. Multhauf Smithsonian Institution Nuclear Navy 1946-1962 Richard G. Hewlett and Francis Duncan The University of Chicago Press Chicago and London The University of Chicago Press Chicago 60637 The University of Chicago Press Ltd., London Published 1974 Printed in the United States of America International Standard Book Number: 0-226-33219-5 Library of Congress Catalog Card Number: 74-5726 RICHARD G. HEWLETT is chief historian of the U. S. Atomic Energy Commission. He is coauthor, with Oscar E.

179

Energy Praises the Nuclear Regulatory Commission Approval of...  

Office of Environmental Management (EM)

Praises the Nuclear Regulatory Commission Approval of the First United States Nuclear Plant Site in Over 30 Years Energy Praises the Nuclear Regulatory Commission Approval of the...

180

Engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico  

SciTech Connect (OSTI)

Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing.The cost of the uranium recovered would be about $87/lb of U/sub 3/O/sub 8/ by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions.

none,

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Next Generation Nuclear Plant (NGNP) Project  

SciTech Connect (OSTI)

The Next Generation Nuclear Power (NGNP) Project will demonstrate emissions-free nuclearassisted electricity and hydrogen production by 2015. The NGNP reactor will be a helium-cooled, graphite moderated, thermal neutron spectrum reactor with a design goal outlet temperature of 1000 C or higher. The reactor thermal power and core configuration will be designed to assure passive decay heat removal without fuel damage during hypothetical accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. This paper provides a description of the project to build the NGNP at the Idaho National Engineering and Environmental Laboratory (INEEL). The NGNP Project includes an overall reactor design activity and four major supporting activities: materials selection and qualification, NRC licensing and regulatory support, fuel development and qualification, and the hydrogen production plant. Each of these activities is discussed in the paper. All the reactor design and construction activities will be managed under the DOE’s project management system as outlined in DOE Order 413.3. The key elements of the overall project management system discussed in this paper include the client and project management organization relationship, critical decisions (CDs), acquisition strategy, and the project logic and timeline. The major activities associated with the materials program include development of a plan for managing the selection and qualification of all component materials required for the NGNP; identification of specific materials alternatives for each system component; evaluation of the needed testing, code work, and analysis required to qualify each identified material; preliminary selection of component materials; irradiation of needed sample materials; physical, mechanical, and chemical testing of unirradiated and irradiated materials; and documentation of final materials selections. The NGNP will be licensed by the NRC under 10 CFR 50 or 10 CFR 52, for the purpose of demonstrating the suitability of high-temperature gas-cooled reactors for commercial electric power and hydrogen production. Products that will support the licensing of the NGNP include the environmental impact statement, the preliminary safety analysis report, the NRC construction permit, the final safety analysis report, and the NRC operating license. The fuel development and qualification program consists of five elements: development of improved fuel manufacturing technologies, fuel and materials irradiations, safety testing and post-irradiation examinations, fuel performance modeling, and fission product transport and source term modeling. Two basic approaches will be explored for using the heat from the high-temperature helium coolant to produce hydrogen. The first technology of interest is the thermochemical splitting of water into hydrogen and oxygen. The most promising processes for thermochemical splitting of water are sulfur-based and include the sulfur-iodine, hybrid sulfur-electrolysis, and sulfur-bromine processes. The second technology of interest is thermally assisted electrolysis of water. The efficiency of this process can be substantially improved by heating the water to high-temperature steam before applying electrolysis.

F. H. Southworth; P. E. MacDonald

2003-11-01T23:59:59.000Z

182

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 1, FEBRUARY 2011 277 Anomaly Detection in Nuclear Power Plants via  

E-Print Network [OSTI]

in Nuclear Power Plants via Symbolic Dynamic Filtering Xin Jin, Student Member, IEEE, Yin Guo, Soumik Sarkar detection algorithm for condition monitoring of nuclear power plants, where symbolic feature extraction Innova- tive & Secure (IRIS) simulator of nuclear power plants, and its per- formance is evaluated

Ray, Asok

183

AEC's New Environmental Rules for Nuclear Plant May Open New Debate, Extend Delays, Raise Plant Costs  

Science Journals Connector (OSTI)

...such times, and the Vermont Yankee plant would take turn...private power companies, Vermont Central and Green Mountain...majority in-vestors in the Yankee Nuclear Power Company...Among these is the Vermont Yankee plant at Vernon (see...

Robert Gillette

1971-09-17T23:59:59.000Z

184

A methodology for evaluating ``new`` technologies in nuclear power plants  

SciTech Connect (OSTI)

As obsolescence and spare parts issues drive nuclear power plants to upgrade with new technology (such as optical fiber communication systems), the ability of the new technology to withstand stressors present where it is installed needs to be determined. In particular, new standards may be required to address qualification criteria and their application to the nuclear power plants of tomorrow. This paper discusses the failure modes and age-related degradation mechanisms of fiber optic communication systems, and suggests a methodology for identifying when accelerated aging should be performed during qualification testing.

Korsah, K.; Clark, R.L.; Holcomb, D.E.

1994-06-01T23:59:59.000Z

185

20 - Licensing for nuclear power plant siting, construction and operation  

Science Journals Connector (OSTI)

Abstract: This chapter addresses the need for licensing of nuclear power plants, and how such licenses can be requested by an applicant and granted by a regulatory authority. The licensing process is country dependent, although based on the common principle that the applicant must demonstrate that the proposed nuclear power plant will comply with the established regulations, and that it will operate safely without undue risks to the health and safety of plant personnel, the population and the environment. During the construction and operational phases the regulatory authority ensures compliance with the the license conditions through evaluation, monitoring and inspection. The license may be a single document covering all the phases in the life of the plant, or a set of consecutive documents requested and issued for different phases, which may include design certification, site approval, design and construction, commissioning and operation, design changes during operation, life extension and, finally, decommissioning.

A. Alonso; S.K. Sharma; D.F. Torgerson

2012-01-01T23:59:59.000Z

186

Developing new methodology for nuclear power plants vulnerability assessment  

Science Journals Connector (OSTI)

The fundamental aim of an efficient regulatory emergency preparedness and response system is to provide sustained emergency readiness and to prevent emergency situations and accidents. But when an event occurs, the regulatory mission is to mitigate consequences and to protect people and the environment against nuclear and radiological damage. The regulatory emergency response system, which would be activated in the case of a nuclear and/or radiological emergency and release of radioactivity to the environment, is an important element of a comprehensive national regulatory system of nuclear and radiation safety. In the past, national emergency systems explicitly did not include vulnerability assessments of the critical nuclear infrastructure as an important part of a comprehensive preparedness framework. But after the huge terrorist attack on 11/09/2001, decision-makers became aware that critical nuclear infrastructure could also be an attractive target to terrorism, with the purpose of using the physical and radioactive properties of the nuclear material to cause mass casualties, property damage, and detrimental economic and/or environmental impacts. The necessity to evaluate critical nuclear infrastructure vulnerability to threats like human errors, terrorist attacks and natural disasters, as well as preparation of emergency response plans with estimation of optimized costs, are of vital importance for assurance of safe nuclear facilities operation and national security. In this paper presented new methodology and solution methods for vulnerability assessment can help the overall national energy sector to identify and understand the terrorist threats to and vulnerabilities of its critical infrastructure. Moreover, adopted methodology could help national regulators and agencies to develop and implement a vulnerability awareness and education programs for their critical assets to enhance the security and a safe operation of the entire energy infrastructure. New methods can also assist nuclear power plants to develop, validate, and disseminate assessment and surveys of new efficient countermeasures. Consequently, concise description of developed new quantitative method and adapted new methodology for nuclear regulatory vulnerability assessment of nuclear power plants are presented.

Venceslav Kostadinov

2011-01-01T23:59:59.000Z

187

Long range planning at former nuclear weapon plants  

SciTech Connect (OSTI)

This paper discusses the approach to planning the cleanup of former nuclear weapon manufacturing plants. The limit of backward planning is the knowledge horizon. Extension of backward planning beyond this horizon is futile. Forward planning is the customary method for planning missions extending beyond that horizon. Planning the future of former plant sites is a political activity by political decision makers. Scientists, professional planners, and public interest groups have an advisory role in this activity.

Vrouwes, J.H. [EG & G Rocky Flats, Inc., Golden, CO (United States)

1994-12-31T23:59:59.000Z

188

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

189

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

U. S. Conunercial Nuclear Power Plants", Report WASH-1400 (Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

190

Seismic functionality of essential relays in operating nuclear plants  

Science Journals Connector (OSTI)

The regulatory criteria for licensing of nuclear power plants require that certain safety-related equipment and systems be designed to function during and following a postulated, design basis earthquake. Demonstration of seismic adequacy must be performed and formally documented by shake-table testing, analysis or other specified methods. Since many older, operating nuclear power plants were designed and constructed prior to the issuance of the current seismic qualification criteria, the NRC has questioned whether the seismic adequacy of the essential equipment has been adequately demonstrated and documented. This concern is identified in Unresolved Safety Issue A-46, “Seismic Qualification of Equipment in Operating Nuclear Power Plants”. In response to this concern, a group of affected plant owners, the Seismic Qualification Utility Group (SQUG), with support from the Electric Power Research Institute (EPRI), has undertaken a program to demonstrate the seismic adequacy of essential equipment by the use of actual experience with such equipment in plants which have undergone significant earthquakes and by the use of available seismic qualification data for similar equipment. An important part of this program is the development of data and the methodology for verifying the functionality of electrical relays used in essential circuits needed for plant shutdown during a seismic event. This paper describes this part of the Seismic Qualification Utility Group program. The relay functionality evaluation methodology is being developed under EPRI Project No. RP2849-1.

W.R. Schmidt; R.P. Kassawara

1988-01-01T23:59:59.000Z

191

Liquid metal cooled nuclear reactor plant system  

DOE Patents [OSTI]

A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting for fuel decay during reactor shutdown, or heat produced during a mishap. The reactor system is enhanced with sealing means for excluding external air from contact with the liquid metal coolant leaking from the reactor vessel during an accident. The invention also includes a silo structure which resists attack by leaking liquid metal coolant, and an added unique cooling means.

Hunsbedt, Anstein (Los Gatos, CA); Boardman, Charles E. (Saratoga, CA)

1993-01-01T23:59:59.000Z

192

Viability of an expanded United States nuclear power program and its effects on energy markets  

E-Print Network [OSTI]

The four biggest energy sources in the United States are coal, crude oil, natural gas, and nuclear power. While coal and nuclear power are produced domestically, more than 70% of crude oil and 20% of natural gas is imported. ...

Khan, Tanzeer S

2006-01-01T23:59:59.000Z

193

The United States Nuclear Regulatory Commission and the United States Department Of Energy Public Meeting  

Broader source: Energy.gov (indexed) [DOE]

2 The UNITED STATES 3 NUCLEAR REGULATORY COMMISSION and 4 the UNITED STATES 5 DEPARTMENT OF ENERGY 6 7 PUBLIC MEETING 8 9 DISCUSSION OF THE IMPLEMENTATION OF SECTION 3116 OF 10 THE NATIONAL DEFENSE AUTHORIZATION ACT 11 12 Commencing at 9:10 a.m., November 16, 2006 13 at the L'Enfant Plaza Hotel 14 480 L'Enfant Plaza, SW 15 Washington DC 20024 16 17 Public meeting organized by: 18 Advanced Technologies and Laboratories International, Inc. 19 20010 Century Boulevard, Suite 500 20 Germantown, Maryland 20874 21 (301) 972-4430 22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 P R O C E E D I N G S MR. CAMERON: Good morning everyone. My name is Chip Cameron. I'm an assistant general counsel in the office of General Counsel at the Nuclear Regulatory Commission. And I would like to

194

I UNITED STATES NUCLEAR REGU.LATORYCOMMISS& REGION I  

Office of Legacy Management (LM)

' \*-'- ' \*-'- I UNITED STATES NUCLEAR REGU.LATORYCOMMISS& REGION I 63, PARK AVENUE KING OF PRUSSIA. PENNSY LVANIA 19406 I..*. :+ 2 6 JUN 1979 2.lr.b The Commonwealth of Massachusetts Department of Public Health Division of Health Care Standards 8 Regulation ATTN: Mr. Gerald S. Parker, Director Radiation Control Programs 80 Boylston Street, Room 835 Boston, Massachusetts 02116 Dear Mr. Parker: Enclosed for your information and retention is a copy of the NRC, Region I Investigation Report No. 078-154-A which documents our investigation into.the source of the radioactive material found at the privately owned landfill in Norton, Massachusetts. The report has been prepared in two parts. Confidential - Restricted data has been intentionally omitted.

195

Peach Bottom and Vermont Yankee Nuclear Power Plants  

SciTech Connect (OSTI)

A dramatic and extraordinary instance of state and local government control of nuclear power, the purchase by New York of the Shoreham plant is nonetheless indicative of the political demands that some states confront for additional involvement in the regulation of the radiological hazards associated with commercial nuclear power plants. Although the Supreme Court has appeared to expand, in the eight years since PG&E and Silkwood, the acceptable extent of state regulation, some states, in addition to New York, have acquired, with the acquiescence of the NRC, a degree of involvement that exceeds the role for state and local governments provided by the Court. For example, the Commonwealth of Pennsylvania concluded with the Philadelphia Electric Company (PECO) in June 1989 an agreement that commits PECO to various initiatives, not otherwise required under NRC regulations, for the safe operation of the Peach Bottom nuclear power plant in Pennsylvania. In July 1991 the State of Vermont and Vermont Yankee Nuclear Power Corporation (Vermont Yankee) concluded an agreement similar to that concluded between Pennsylvania and PECO. The agreement also commits Vermont Yankee to certain initiatives, not otherwise required under NRC regulations, related to its operation of the Vermont Yankee nuclear power plant in Vermont. The agreement was precipitated by a challenge to an application, submitted to the NRC by Vermont Yankee in April 1989, to amend the Vermont Yankee plant license to extend its expiration date from December 11, 2007 to March 21, 2012. The amendment would allow the Vermont Yankee plant to operate for forty full years.

NONE

1992-12-31T23:59:59.000Z

196

Aging management guideline for commercial nuclear power plants - heat exchangers  

SciTech Connect (OSTI)

This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

1994-06-01T23:59:59.000Z

197

Comparison between the measured and calculated reactivity in measuring the effectiveness of the emergency protection at the stage of physical start-up of unit no. 3 at the Kalinin nuclear power plant  

SciTech Connect (OSTI)

This paper presents comparisons between the effectiveness of the emergency protection under both stationary and nonstationary formulations calculated with the use of the RADUGA-7.5 package and experimental data obtained in measuring the 'weight' of the emergency protection in the process of physical start-up of the VVER-1000 reactor of unit no. 3 of the Kalinin NPP. On the basis of the results obtained, recommendations are given on comparing the measured and calculated reactivity and parameters determined by using its value.

Kavun, O. Yu.; Popykin, A. I.; Shevchenko, R. A., E-mail: rshevchenko@secnrs.ru; Shevchenko, S. A. [Scientific and Engineering Center for Nuclear and Radiation Safety (Russian Federation)

2012-12-15T23:59:59.000Z

198

Is natural background or radiation from nuclear power plants leukemogenic  

SciTech Connect (OSTI)

The objective in this review is to provide some facts about normal hemopoietic cell proliferation relevant to leukemogenesis, physical, chemical, and biological facts about radiation effects with the hope that each person will be able to decide for themselves whether background radiation or emissions from nuclear power plants and facilities significantly add to the spontaneous leukemia incidence. 23 refs., 1 tab.

Cronkite, E.P.

1989-01-01T23:59:59.000Z

199

A New Life Adaptive Reuse and Redevelopment of Decommissioned Commercial Nuclear Power Plants.  

E-Print Network [OSTI]

??My study analyzed the challenges and opportunities faced in the historic preservation and adaptive reuse of decommissioned commercial nuclear power plants. While operating, these plants… (more)

Farrow, Elizabeth

2008-01-01T23:59:59.000Z

200

Department of Mechanical and Nuclear Engineering Spring 2012 Automatic Plant Watering System  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Automatic Plant Watering/or audio communication notifications when the product needs maintenance, such as refilling the plant water

Demirel, Melik C.

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Response Planning for Nuclear Power Plants in California",and Related Standards for Nuclear Power Plants", Lawrencejected lifetime for a nuclear power plant is 40 years, a

Nero, jA.V.

2010-01-01T23:59:59.000Z

202

A Roadmap to Deploy New Nuclear Power Plants  

Broader source: Energy.gov (indexed) [DOE]

I I Summary Report Prepared for the United States Department of Energy Office of Nuclear Energy, Science and Technology and its Nuclear Energy Research Advisory Committee Subcommittee on Generation IV Technology Planning October 31, 2001 Disclaimer This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any of its employees make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not

203

United States-Japan Nuclear Security Working Group Fact Sheet | National  

National Nuclear Security Administration (NNSA)

United States-Japan Nuclear Security Working Group Fact Sheet | National United States-Japan Nuclear Security Working Group Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > United States-Japan Nuclear Security Working Group Fact Sheet Fact Sheet United States-Japan Nuclear Security Working Group Fact Sheet Mar 27, 2012

204

Operating nuclear plant feedback to ASME and French codes  

SciTech Connect (OSTI)

The French have an advantage in nuclear plant operating experience feedback due to the highly centralized nature of their nuclear industry. There is only one utility in charge of design as well as operations (EDF) and only one reactor vendor (Framatome). The ASME Code has played a key role in resolving technical issues in the design and operation of nuclear plants since the inception of nuclear power. The committee structure of the Code brings an ideal combination of senior technical people with both broad and specialized experience to bear on complex how safe is safe enough technical issues. The authors now see an even greater role for the ASME Code in a proposed new regulatory era for the US nuclear industry. The current legalistic confrontational regulatory era has been quite destructive. There now appears to be a real opportunity to begin a new era of technical consensus as the primary means for resolving safety issues. This change can quickly be brought about by having the industry take operating plant problems and regulatory technical issues directly to the ASME Code for timely resolution. Surprisingly, there is no institution in the US nuclear industry with such a mandate. In fact, the industry is organized to feedback through the Nuclear Regulatory Commission issues which could be far better resolved through the ASME Code. Major regulatory benefits can be achieved by closing this loop and providing systematic interaction with the ASME Code. The essential elements of a new regulatory era and ideas for organizing US institutional industry responsibilities, taken from the French experience, are described in this paper.

Journet, J. [Electricite de France, Clamart (France); O`Donnell, W.J. [O`Donnell Consulting Engineers, Bethel Park, PA (United States)

1996-12-01T23:59:59.000Z

205

Transients Analysis of a Nuclear Power Plant Component for Fault Diagnosis  

E-Print Network [OSTI]

Transients Analysis of a Nuclear Power Plant Component for Fault Diagnosis Piero Baraldia.baraldi@polimi.it, We analyze signal data collected during 148 shut-down transients of a nuclear power plant (NPP

Paris-Sud XI, Université de

206

Fact Sheet: United States-Japan Joint Nuclear Energy Action Plan  

Broader source: Energy.gov (indexed) [DOE]

United States-Japan Joint Nuclear Energy Action Plan United States-Japan Joint Nuclear Energy Action Plan The United States-Japan Joint Nuclear Energy Action Plan is intended to provide a framework for bilateral collaboration in nuclear energy. This Action Plan builds upon our significant, longstanding civilian nuclear cooperation, and will contribute to increasing energy security and managing nuclear waste, addressing nuclear nonproliferation and climate change, advancing goals put forth in President Bush's Global Nuclear Energy Partnership (GNEP) initiative. The Action Plan was signed by representatives of both nations in April 2007. The Action Plan will be implemented by Steering Committee Co-Chairs. Assistant Secretary of Energy Dennis Spurgeon, or his designee, will serve as the U.S. Co-Chair. Japanese Co-Chairs will be selected

207

United States and Japan Sign Joint Nuclear Energy Action Plan to Promote  

Broader source: Energy.gov (indexed) [DOE]

Japan Sign Joint Nuclear Energy Action Plan to Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation April 25, 2007 - 12:36pm Addthis WASHINGTON, DC - United States Department of Energy Secretary Samuel W. Bodman and Japan's Ministers Akira Amari, Bunmei Ibuki, and Taro Aso, this week presented to U.S. President George W. Bush and Japanese Prime Minister Shinzo Abe, the United States-Japan Joint Nuclear Energy Action Plan. The Action Plan - a product of extensive negotiations between the U.S. and Japan - provides a framework for increased collaboration in nuclear energy. It builds upon the significant, longstanding civilian nuclear cooperation between the two nations and will contribute to increasing

208

Innovative applications of technology for nuclear power plant productivity improvements  

SciTech Connect (OSTI)

The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

Naser, J. A. [Electric Power Research Inst., 3420 Hillview Avenue, Palo Alto, CA 94303 (United States)

2012-07-01T23:59:59.000Z

209

United States Nuclear Regulatory Commission staff practice and procedure digest  

SciTech Connect (OSTI)

This Revision 9 of the fifth edition of the NRC Staff Practice and Procedure Digest contains a digest of a number of Commission, Atomic Safety and Licensing Appeal Board, and Atomic Safety and Licensing Board decisions issued during the period from July 1, 1972 to September 30, 1990 interpreting the NRC's Rules of Practice in 10 CFR Part 2. This Revision 9 replaces in part earlier editions and revisions and includes appropriate changes reflecting the amendments to the Rules of Practice effective through September 30, 1990. This edition of the Digest was prepared by attorneys from Aspen Systems Corporation pursuant to Contract number 18-89-346. Persons using this Digest are placed on notice that it may not be used as an authoritative citation in support of any position before the Commission or any of its adjudicatory tribunals. Persons using this Digest are also placed on notice that it is intended for use only as an initial research tool, that it may, and likely does, contain errors, including errors in analysis and interpretation of decisions, and that the user should not rely on the Digest analyses and interpretations but must read, analyze and rely on the user's own analysis of the actual Commission, Appeal Board and Licensing Board decisions cited. Further, neither the United States, the Nuclear Regulatory Commission, Aspen Systems Corporation, nor any of their employees makes any expressed or implied warranty or assumes liability or responsibility for the accuracy, completeness or usefulness of any material presented in the Digest. The Digest is roughly structured in accordance with the chronological sequence of the nuclear facility licensing process as set forth in Appendix A to 10 CFR Part 2. Those decisions which did not fit into that structure are dealt with in a section on general matters. Where appropriate, particular decisions are indexed under more than one heading. (JF)

Not Available

1991-02-01T23:59:59.000Z

210

Indicator system for advanced nuclear plant control complex  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1993-01-01T23:59:59.000Z

211

Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector , Redouane Seraouib  

E-Print Network [OSTI]

Nuclear Power Plant Components Condition Monitoring by Probabilistic Support Vector Machine Jie.zio@ecp.fr Abstract In this paper, an approach for the prediction of the condition of Nuclear Power Plant (NPP monitoring, Nuclear power plant, Point prediction hal-00790421,version1-12Jun2013 Author manuscript

Boyer, Edmond

212

Childhood leukaemia incidence below the age of 5 years near French nuclear power plants  

E-Print Network [OSTI]

Childhood leukaemia incidence below the age of 5 years near French nuclear power plants D Laurier 1 living in the vicinity of nuclear power plants in Germany. We present herein results about the incidence of childhood leukaemia in the vicinity of nuclear power plants in France for the same age range. These results

Paris-Sud XI, Université de

213

Energy Spectra of Stray Neutron Fields at PWR Nuclear Power Plants  

Science Journals Connector (OSTI)

......Protection Dosimetry Article Energy Spectra of Stray Neutron Fields at PWR Nuclear Power Plants P. ~Jujak...equivalent to workers at nuclear power plants are discussed...The measured spectra of energy distribution of neutron...protection of the staff at nuclear power plants are presented......

P. ~Jujak; P. Carný; Z. Prouza; J. Hermanská

1987-07-01T23:59:59.000Z

214

United Kingdom HEU Removal | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

HEU Removal United Kingdom HEU Removal Location United Kingdom United States 52 24' 15.1416" N, 1 34' 55.3116" W See map: Google Maps Javascript is required to view this map...

215

U.S. Nuclear Power Plants: Continued Life or Replacement After 60? (released in AEO2010)  

Reports and Publications (EIA)

Nuclear power plants generate approximately 20% of U.S. electricity, and the plants in operation today are often seen as attractive assets in the current environment of uncertainty about future fossil fuel prices, high construction costs for new power plants (particularly nuclear plants), and the potential enactment of greenhouse gas regulations. Existing nuclear power plants have low fuel costs and relatively high power output. However, there is uncertainty about how long they will be allowed to continue operating.

2010-01-01T23:59:59.000Z

216

Next Generation Nuclear Plant Materials Selection and Qualification Program Plan  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

R. Doug Hamelin; G. O. Hayner

2004-11-01T23:59:59.000Z

217

United States-Russia Joint Statement on the Results of the Nuclear Energy  

Broader source: Energy.gov (indexed) [DOE]

States-Russia Joint Statement on the Results of the Nuclear States-Russia Joint Statement on the Results of the Nuclear Energy and Nuclear Security Working Group Meeting United States-Russia Joint Statement on the Results of the Nuclear Energy and Nuclear Security Working Group Meeting December 10, 2010 - 12:00am Addthis Moscow - Earlier this week, Deputy Secretary of Energy Daniel Poneman, representing the United States government, signed a joint statement with Russia's Director General of the State Atomic Energy Corporation "Rosatom" Sergey Kirienko on the results of the Nuclear Energy and Nuclear Security Working Group meeting that took place on December 6-7, 2010. The Working Group meeting strengthened cooperation between the U.S. and Russia on civil nuclear energy and nuclear security. Read the joint statement (PDF - 412 kb) signed by Deputy Secretary Poneman

218

Infrastructure development assistance modeling for nuclear power plant  

SciTech Connect (OSTI)

The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to make the model more sophisticated as a 'semi-tailored model' so that it can be applied to a certain country reflecting its unique conditions. In accordance with its degree of established infrastructure, we can adjust or modify the model. Despite lots of benefits of using this model, there remain limitations such as time and budget constraints. These problems, however, can be addressed by cooperating with international organization such as the IAEA and other companies that share the same goal of helping newcomer countries introduce nuclear power. (authors)

Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M. [Korea Hydro and Nuclear Power Co., LTD, 23, 106 gil, Yeongdong-daero, Gangnam-gu, 153-791 (Korea, Republic of)

2012-07-01T23:59:59.000Z

219

Fast neutron fluence of yonggwang nuclear unit 1 reactor pressure vessel  

SciTech Connect (OSTI)

The Code of Federal Regulations, Title 10, Part 50, Appendix H, requires that the neutron dosimetry be present to monitor the reactor vessel throughout plant life. The Ex-Vessel Neutron Dosimetry System has been installed for Yonggwang Nuclear Unit 1 after complete withdrawal of all six in-vessel surveillance capsules. This system has been installed in the reactor cavity annulus in order to measure the fast neutron spectrum coming out through the reactor pressure vessel. Cycle specific neutron transport calculations were performed to obtain the energy dependent neutron flux throughout the reactor geometry including dosimetry positions. Comparisons between calculations and measurements were performed for the reaction rates of each dosimetry sensors and results show good agreements. (authors)

Yoo, C.; Km, B.; Chang, K.; Leeand, S. [Korea Atomic Energy Research Inst., 150 Dukjin-dong, Yuseung-gu, Daejeon 305-353 (Korea, Republic of); Park, J. [Chungnam National Univ., 220 Gung-dong, Yuseung-gu, Daejeon 305-764 (Korea, Republic of)

2006-07-01T23:59:59.000Z

220

Impacts of the Fukushima Nuclear Power Plants on Marine Radioactivity  

Science Journals Connector (OSTI)

Impacts of the Fukushima Nuclear Power Plants on Marine Radioactivity ... Discussion of these data has involved many of our colleagues in Japan, including M. Uematsu (Atmosphere and Ocean Research Institute, University of Tokyo), M. Honda and T. Kawano (Research Institute for Global Change, Japan Agency for Marine Earth Science and Technology) and D. Tsumune (Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry). ...

Ken Buesseler; Michio Aoyama; Masao Fukasawa

2011-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Next Generation Nuclear Plant Project 2009 Status Report  

SciTech Connect (OSTI)

The mission of the NGNP Project is to broaden the environmental and economic benefits of nuclear energy technology to the United States and other economies by demonstrating its applicability to market sectors not served by light water reactors (LWRs). Those markets typically use fossil fuels to fulfill their energy needs, and high temperature gas-cooled reactors (HTGRs) like the NGNP can reduce this dependence and the resulting carbon footprint.

Larry Demick; Jim Kinsey; Keith Perry; Dave Petti

2010-05-01T23:59:59.000Z

222

Understanding the nature of nuclear power plant risk  

SciTech Connect (OSTI)

This paper describes the evolution of understanding of severe accident consequences from the non-mechanistic assumptions of WASH-740 to WASH-1400, NUREG-1150, SOARCA and today in the interpretation of the consequences of the accident at Fukushima. As opposed to the general perception, the radiological human health consequences to members of the Japanese public from the Fukushima accident will be small despite meltdowns at three reactors and loss of containment integrity. In contrast, the radiation-related societal impacts present a substantial additional economic burden on top of the monumental task of economic recovery from the nonnuclear aspects of the earthquake and tsunami damage. The Fukushima accident provides additional evidence that we have mis-characterized the risk of nuclear power plant accidents to ourselves and to the public. The human health risks are extremely small even to people living next door to a nuclear power plant. The principal risk associated with a nuclear power plant accident involves societal impacts: relocation of people, loss of land use, loss of contaminated products, decontamination costs and the need for replacement power. Although two of the three probabilistic safety goals of the NRC address societal risk, the associated quantitative health objectives in reality only address individual human health risk. This paper describes the types of analysis that would address compliance with the societal goals. (authors)

Denning, R. S. [Ohio State Univ., 201 West 19th Avenue, Columbus, OH 43210-1142 (United States)

2012-07-01T23:59:59.000Z

223

Leukemia, Lymphomas, and Myeloma Mortality in the Vicinity of Nuclear Power Plants and Nuclear Fuel Facilities in Spain  

Science Journals Connector (OSTI)

...patterns in the Denver metropolitan area in relation to the Rocky Flats plant. Am. J. Epidemiol., 126: 127-135, 1987...the Hanford Site, Oak Ridge National Laboratory, and Rocky Flats Nuclear Weapons Plant. Radiat. Res., 120: 19-35...

Gonzalo López-Abente; Nuria Aragonés; Marina Pollán; María Ruiz; and Ana Gandarillas

1999-10-01T23:59:59.000Z

224

The development of KM portals for nuclear power plants  

Science Journals Connector (OSTI)

This paper has been prepared with close collaboration between the International Atomic Energy Agency (IAEA)'s International Nuclear Information System (INIS) and Nuclear Knowledge Management Section and representatives of several Nuclear Power Plants (NPPs) and other supporting organisations (IAEA, 2009). The practical experiences of different NPPs show that the development and existence of a knowledge portal for NPPs help to keep the staff informed and the sharing of information helps to maintain safety at a high level. Some examples show that, if the process management is also integrated into the portal system, it helps the organisation to achieve its goals more easily. In this paper we introduce a general concept of designing of a knowledge portal and also a typical content. We are not going to show any examples of IT support systems, because their availability is quite variable in different NPPs and the development stage of the integrated management system (IAEA, 2006a).

A. Kosilov; Z. Pasztory

2009-01-01T23:59:59.000Z

225

Hydrogen Production from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

M. Patterson; C. Park

2008-03-01T23:59:59.000Z

226

United States Nuclear Energy and Non-Proliferation Policy  

Science Journals Connector (OSTI)

I believe that U.S. nuclear energy and non-proliferation policy is not well understood, and I hope ... I shall speak first about the role of nuclear energy within the context of overall energy policy, then about ...

Daniel P. Serwer

1980-01-01T23:59:59.000Z

227

Conceivable new recycling of nuclear waste by nuclear power companies in their plants  

E-Print Network [OSTI]

We outline the basic principles and the needed experiments for a conceivable new recycling of nuclear waste by the power plants themselves to avoid its transportation and storage to a (yet unknown) dumping area. Details are provided in an adjoining paper and in patents pending.

Ruggero Maria Santilli

1997-04-09T23:59:59.000Z

228

Reviewing PSA-based analyses to modify technical specifications at nuclear power plants  

SciTech Connect (OSTI)

Changes to Technical Specifications (TSs) at nuclear power plants (NPPs) require review and approval by the United States Nuclear Regulatory Commission (USNRC). Currently, many requests for changes to TSs use analyses that are based on a plant`s probabilistic safety assessment (PSA). This report presents an approach to reviewing such PSA-based submittals for changes to TSs. We discuss the basic objectives of reviewing a PSA-based submittal to modify NPP TSs; the methodology of reviewing a TS submittal, and the differing roles of a PSA review, a PSA Computer Code review, and a review of a TS submittal. To illustrate this approach, we discuss our review of changes to allowed outage time (AOT) and surveillance test interval (STI) in the TS for the South Texas Project Nuclear Generating Station. Based on this experience gained, a check-list of items is given for future reviewers; it can be used to verify that the submittal contains sufficient information, and also that the review has addressed the relevant issues. Finally, recommended steps in the review process and the expected findings of each step are discussed.

Samanta, P.K.; Martinez-Guridi, G. [Brookhaven National Lab., Upton, NY (United States); Vesely, W.E. [Science Applications International Corporation, Dublin, OH (United States)

1995-12-01T23:59:59.000Z

229

An expert display system and nuclear power plant control rooms  

SciTech Connect (OSTI)

An expert display system controls automatically the display of segments on a cathode ray tube's screen to form an image of plant operations. The image consists of an icon of: 1) the process (heat engine cycle), 2) plant control systems, and 3) safety systems. A set of data-driven, forward-chaining computer stored rules control the display of segments. As plant operation changes, measured plant data are processed through the rules, and the results control the deletion and addition of segments to the display format. The icon contains information needed by control rooms operators to monitor plant operations. One example of an expert display is illustrated for the operator's task of monitoring leakage from a safety valve in a steam line of a boiling water reactor (BWR). In another example, the use of an expert display to monitor plant operations during pre-trip, trip, and post-trip operations is discussed as a universal display. The viewpoints and opinions expressed herein are the author's personal ones, and they are not to be interpreted as Nuclear Regulatory Commission criteria, requirements, or guidelines.

Beltracchi, L.

1988-04-01T23:59:59.000Z

230

NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

Mark Holbrook

2010-09-01T23:59:59.000Z

231

Aging management guideline for commercial nuclear power plants-pumps  

SciTech Connect (OSTI)

This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D. [MDC-Ogden Environmental and Energy Services, Southfield, MI (United States)

1994-03-01T23:59:59.000Z

232

Environmental noise of a nuclear power plant and its substations  

Science Journals Connector (OSTI)

In order to fulfill government requirements for construction of a nuclear power plant an environmental noiseimpact as?assessment has been conducted. Ambient noise was measured continuously for 24 hour periods at the plant and substation sites and in the vicinity. Week long surveys were performed in each of the four seasons. A statistical interpretation of construction noise accounts for variability of construction equipment usage its location and range of sound pressure levels. Histograms of construction noise and measured ambient noise are added to obtain the statistical representation of the predicted construction ambient noise. Operational noise of the plant is similarly predicted. The predicted noise contours of both operation and construction noise are formulated on the topographic maps. Meteorologic and topographic effects on the noise data are discussed.

E. E. Dennison; R. E. Maier; J. W. McGaughey; S. P. Ying

1976-01-01T23:59:59.000Z

233

Supporting Our Nation's Nuclear Industry  

ScienceCinema (OSTI)

On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

Lyons, Peter

2013-05-29T23:59:59.000Z

234

United States and Mexico to Partner in Fight Against Nuclear Smuggling |  

Broader source: Energy.gov (indexed) [DOE]

United States and Mexico to Partner in Fight Against Nuclear United States and Mexico to Partner in Fight Against Nuclear Smuggling United States and Mexico to Partner in Fight Against Nuclear Smuggling April 16, 2007 - 12:36pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman and Mexican Minister of Finance and Public Credit Agustin Carstens today signed an agreement to help detect and prevent the smuggling of nuclear and other radioactive material. Under the Megaports agreement, the Department of Energy's National Nuclear Security Administration (NNSA) will collaborate with Mexican Customs to install radiation detection equipment at four Mexican seaports that account for nearly 90 percent of container traffic in Mexico. The agreement is part of the 2005 Security and Prosperity Partnership. "The Megaports Agreement signed today solidifies the United States and

235

Security by Design in the United States: Fact Sheet | National Nuclear  

National Nuclear Security Administration (NNSA)

by Design in the United States: Fact Sheet | National Nuclear by Design in the United States: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Security by Design in the United States: ... Fact Sheet Security by Design in the United States: Fact Sheet Mar 23, 2012 Since the events of September 11, 2001, security requirements for nuclear

236

United States and Mexico to Partner in Fight Against Nuclear Smuggling |  

Broader source: Energy.gov (indexed) [DOE]

United States and Mexico to Partner in Fight Against Nuclear United States and Mexico to Partner in Fight Against Nuclear Smuggling United States and Mexico to Partner in Fight Against Nuclear Smuggling April 16, 2007 - 12:36pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman and Mexican Minister of Finance and Public Credit Agustin Carstens today signed an agreement to help detect and prevent the smuggling of nuclear and other radioactive material. Under the Megaports agreement, the Department of Energy's National Nuclear Security Administration (NNSA) will collaborate with Mexican Customs to install radiation detection equipment at four Mexican seaports that account for nearly 90 percent of container traffic in Mexico. The agreement is part of the 2005 Security and Prosperity Partnership. "The Megaports Agreement signed today solidifies the United States and

237

United States Department of Energy Nuclear Materials Stewardship  

SciTech Connect (OSTI)

The Department of Energy launched the Nuclear Materials Stewardship Initiative in January 2000 to accelerate the work of achieving integration and cutting long-term costs associated with the management of the Department's nuclear materials, with the principal focus on excess materials. Management of nuclear materials is a fundamental and enduring responsibility that is essential to meeting the Department's national security, nonproliferation, energy, science, and environmental missions into the distant future. The effective management of nuclear materials is important for a set of reasons: (1) some materials are vital to our national defense; (2) the materials pose physical and security risks; (3) managing them is costly; and (4) costs are likely to extend well into the future. The Department currently manages nuclear materials under eight programs, with offices in 36 different locations. Through the Nuclear Materials Stewardship Initiative, progress was during calendar year 20 00 in achieving better coordination and integration of nuclear materials management responsibilities and in evaluating opportunities to further coordinate and integrate cross-program responsibilities for the treatment, storage, and disposition of excess nuclear materials. During CY 2001 the Departmental approach to nuclear materials stewardship changed consistent with the business processes followed by the new administration. This paper reports on the progress of the Nuclear Materials Stewardship Initiative in evaluating and implementing these opportunities, and the remaining challenges in integrating the long-term management of nuclear materials.

Newton, J. W.

2002-02-27T23:59:59.000Z

238

The United States Plutonium Balance, 1944-2009 | National Nuclear Security  

National Nuclear Security Administration (NNSA)

United States Plutonium Balance, 1944-2009 | National Nuclear Security United States Plutonium Balance, 1944-2009 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The United States Plutonium Balance, 1944-2009 Home > Our Mission > Managing the Stockpile > Plutonium Pits > The United States Plutonium Balance, 1944-2009 The United States Plutonium Balance, 1944-2009

239

UNITED STATES NUCLEAR REGULATORY COMMISSION WAWINQTON, 0. C....  

Office of Legacy Management (LM)

of technology, and the economics of improvements in relation to benefits to the public health and safety.' Surface Contamination The Nuclear Regulatory Commission's Division of...

240

Sec. Moniz to Georgia, Energy Department Scheduled to Close on Loan Guarantees to Construct New Nuclear Power Plant Reactors  

Broader source: Energy.gov [DOE]

Project represents first new nuclear reactors to begin construction in the United States in three decades

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Privatization of the gaseous diffusion plants and impacts on nuclear criticality safety administration  

SciTech Connect (OSTI)

The Energy Policy Act of 1992 created the United States Enrichment Corporation (USEC) on July 1, 1993. The USEC is a government-owned business that leases those Gaseous Diffusion Plant (GDP) facilities at the Portsmouth, Ohio, and Paducah, Kentucky, sites from the U.S. Department of Energy (DOE) that are required for enriching uranium. Lockheed Martin Utility Services is the operating contractor for the USEC-leased facilities. The DOE has retained use of, and regulation over, some facilities and areas at the Portsmouth and Paducah sites for managing legacy wastes and environmental restoration activities. The USEC is regulated by the DOE, but is currently changing to regulation under the U.S. Nuclear Regulatory Commission (NRC). The USEC is also preparing for privatization of the uranium enrichment enterprise. These changes have significantly affected the nuclear criticality safety (NCS) programs at the sites.

D`Aquila, D.M.; Holliday, R.T. [Lockheed Martin Utility Services, Inc., Piketon, OH (United States); Dean, J.C. [Lockheed Martin Utility Services, Inc., Paducah, KY (United States)

1996-12-31T23:59:59.000Z

242

J.K. Spruce power plant, Unit 1, San Antonio, Texas  

SciTech Connect (OSTI)

CPS Energy's J.K. Spruce power plant, Unit 1 was recently recognised by the EUCG Fossil Productivity Committee as the best performer in the large coal plant category over the 2002-2006 evaluation period. The competition was tough, with more than 80 plants in the running, but Unit 1 emerged as the clear winner by earning top points for high plant reliability and very low nonfuel O & M costs. It meets its environmental goals when burning PRB coal in its tangentially fired furnace with recently upgraded low NOx burners, overfire air and a new combustion control system. A baghouse and wet flue gas desulfurization system clean up combustion products. 3 photos.

Peltier, R. [CPS Energy (United States)

2008-10-15T23:59:59.000Z

243

France to host world's first nuclear fusion plant swissinfo June 28, 2005 3:35 PM  

E-Print Network [OSTI]

France to host world's first nuclear fusion plant swissinfo June 28, 2005 3:35 PM France to host world's first nuclear fusion plant By Guy Faulconbridge MOSCOW (Reuters) - Science's quest to find-nation consortium chose France to host the world's first nuclear fusion reactor. After months

244

A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo  

E-Print Network [OSTI]

A Verification Framework for FBD based Software in Nuclear Power Plants Junbeom Yoo Div, conducted using a nuclear power plant shutdown system being developed in Korea, demonstrated (2001~2008) is to develop a suite of I&C software for use in the next generation Korean nuclear power

Jee, Eunkyoung

245

Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon  

E-Print Network [OSTI]

Condition monitoring of motor-operated valves in nuclear power plants Pierre Granjon Gipsa of nuclear power plants. Unfortunately, today's policies present a major drawback. Indeed, these monitoring is illustrated through experimental data. 1. Introduction Nuclear power provides about 14% of the world

Boyer, Edmond

246

Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-08-01T23:59:59.000Z

247

Management of radioactive waste from nuclear power plants: An overview  

SciTech Connect (OSTI)

The nuclear power industry, which accounts for about 20% of the total electricity supply, is a vital part of the nation`s energy resource. While it generates approximately one-third of the commercial low-level radioactive waste produced in the country, it has achieved one of the most successful examples in waste minimization. On the other hand, progress on development of new disposal facilities by the state compacts is currently stalled. The milestones have been repeatedly postponed, and the various Acts passed by Congress on nuclear waste disposal have not accomplished what they were intended to do. With dwindling access to waste disposal sites and with escalating disposal costs, the power plant utilities are forced to store wastes onsite as an interim measure. However, such temporary measures are not a permanent solution. A national will is sorely needed to break out of the current impasse.

Devgun, J.S.

1994-07-01T23:59:59.000Z

248

Joint Statement by the United States and Italy on the 2014 Nuclear...  

National Nuclear Security Administration (NNSA)

the 2014 Nuclear Security Summit Press Release Mar 24, 2014 See a fact sheet here. The White House Office of the Press Secretary Italy and the United States of America are pleased...

249

Fiber optic sensors for nuclear power plant applications  

SciTech Connect (OSTI)

Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu-603102 (India)

2012-05-17T23:59:59.000Z

250

Float level switch for a nuclear power plant containment vessel  

DOE Patents [OSTI]

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

Powell, James G. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

251

Float level switch for a nuclear power plant containment vessel  

DOE Patents [OSTI]

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

Powell, J.G.

1993-11-16T23:59:59.000Z

252

A proposal of nuclear fusion power plant equipped with SMES  

Science Journals Connector (OSTI)

When we intend to operate the nuclear fusion power plant (NFPP) under the economically efficient conditions as an independent power plant, it is desirable that the generated electric power should be sent to network according to the power demand. With such strategy being expanded, some energy storage system is available. In this paper, NFPP equipped with the superconducting magnetic energy storage system (SMES) as electric power storage device is proposed. The advantages of NFPP equipped with SMES are discussed and a case study of 500 MW NFPP equipped with 6 \\{GWh\\} SMES is done with estimating its operational value. For SMES coil, the concept of Force Balanced Coil (FBC) is applied and 6 \\{GWh\\} class FBC is briefly designed.

Tatsuya Natsukawa; Hirokazu Makamura; Marta Molinas; Shinichi Nomura; Shunji Tsuji-Iio; Ryuichi Shimada

2000-01-01T23:59:59.000Z

253

Next Generation Nuclear Plant Resilient Control System Functional Analysis  

SciTech Connect (OSTI)

Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

Lynne M. Stevens

2010-07-01T23:59:59.000Z

254

Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine Nuclear Fuel Qualification Program  

Broader source: Energy.gov [DOE]

fficials from the U.S. Department of Energy’s (DOE) Office of Nuclear Energy today (April 8, 2010) participated in a ceremony in Ukraine to mark the insertion of Westinghouse-produced nuclear fuel into a nuclear power plant in Ukraine.

255

Effect of the Fukushima nuclear accident on the risk perception of residents near a nuclear power plant in China  

Science Journals Connector (OSTI)

...favored the use of nuclear energy (21). A 2009 research...nuclear power is a viable energy option again...nuclear power plant. In Japan, Katsuya (25) found...residential communities. Households within each community...Forty-three percent had a household income between 2,000...

Lei Huang; Ying Zhou; Yuting Han; James K. Hammitt; Jun Bi; Yang Liu

2013-01-01T23:59:59.000Z

256

TVA's Shawnee Fossil Plant Unit 6 sets new record for continuous operation  

SciTech Connect (OSTI)

Tennessee Valley Authority's Shawnee Fossil Plant Unit 6 recently set a new 1,093 day continuous run record. The 10 top practices at Shawnee for achieving high performance are discussed.

Peltier, R.

2008-02-15T23:59:59.000Z

257

Nuclear Waste Management in the United States—Starting Over  

Science Journals Connector (OSTI)

...Morris, IL, reprocessing plant; an additional DOE site with HLW is the decommissioned commercial reprocessing plant, West Valley, NY. There is no SNF or HLW in Alaska, Hawaii, Puerto Rico, or the Virgin Islands. 16 The U.S. Department of...

Rodney C. Ewing; Frank N. von Hippel

2009-07-10T23:59:59.000Z

258

United States -Japan Joint Nuclear Energy Action Plan  

Broader source: Energy.gov (indexed) [DOE]

-Japan Joint Nuclear Energy Action Plan -Japan Joint Nuclear Energy Action Plan 1. Introduction 1.1 Background and Objective President Bush of the U n i t e d States and Prime Minister Koizumi of Japan have both stated their strong support for the contribution of nuclear power to energy security and the global environment. Japan w a s the first nation to endorse President Bush's Global Nuclear Energy Partnership. During the June 29,2006 meeting between President Bush and Prime Minister Koizumi, "We discussed research and development that will help speed up fnt breeder reactors and new types of reprocessing so that we cmt help deal with the cost of globalization when it comes to energy; make ourselves more secure, economicallyI a s well n make us less dependent on hycirocmbons ..... " (I)

259

Nuclear Waste Management in the United States—Starting Over  

Science Journals Connector (OSTI)

...selection of Yucca Mountain prevented the...Unreliable funding source...The Yucca Mountain program will...nuclear waste disposal” (17...Underground—Yucca Mountain and the Nation's...Sweden, SNF disposal site , www...

Rodney C. Ewing; Frank N. von Hippel

2009-07-10T23:59:59.000Z

260

INL Director Discusses the Future for Nuclear Energy in the United States  

ScienceCinema (OSTI)

Idaho National Laboratory's Director John Grossenbacher explains that the United States should develop its energy policies based on an assessment of the current events at Japan's Fukushima nuclear reactors and the costs and benefits of providing electricity through various energy sources. For more information about INL's nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.

Grossenbacher, John

2013-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thirty states sign ITER nuclear fusion plant deal 1 hour, 28 minutes ago  

E-Print Network [OSTI]

Thirty states sign ITER nuclear fusion plant deal 1 hour, 28 minutes ago Representatives of more than 30 countries signed a deal on Tuesday to build the world's most advanced nuclear fusion reactor

262

An Evaluation of Our National Policy to Manage Nuclear Waste from Power Plants  

Science Journals Connector (OSTI)

The current national policy to manage nuclear waste from power plants is to dispose ... of the analysis strongly suggest that our national policy to manage nuclear waste should be changed.

Ralph L. Keeney; Detlof von Winterfeldt

1997-01-01T23:59:59.000Z

263

Identification of good practices in the operation of nuclear power plants  

E-Print Network [OSTI]

This work developed an approach to diagnose problems and identify good practices in the operation of nuclear power plants using the system dynamics technique. The research began with construction of the ORSIM (Nuclear Power ...

Chen, Haibo, 1975-

2005-01-01T23:59:59.000Z

264

Incremental costs and optimization of in-core fuel management of nuclear power plants  

E-Print Network [OSTI]

This thesis is concerned with development of methods for optimizing the energy production and refuelling decision for nuclear power plants in an electric utility system containing both nuclear and fossil-fuelled stations. ...

Watt, Hing Yan

1973-01-01T23:59:59.000Z

265

Fuzzy Failure Rate for Nuclear Power Plant Probabilistic Safety Assessment by Fault Tree Analysis  

Science Journals Connector (OSTI)

Reliability data is essential for a nuclear power plant probabilistic safety assessment by fault tree analysis ... a failure possibility-based reliability algorithm to assess nuclear event reliability data from f...

Julwan Hendry Purba; Jie Lu; Guangquan Zhang

2012-01-01T23:59:59.000Z

266

Nuclear power plant Generic Aging Lessons Learned (GALL). Appendix B  

SciTech Connect (OSTI)

The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters, 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This report consists of Volume 2, which consists of the GALL literature review tables for the NUMARC Industry Reports reviewed for the report.

Kasza, K.E.; Diercks, D.R.; Holland, J.W.; Choi, S.U. [and others

1996-12-01T23:59:59.000Z

267

Structural Aging Program to evaluate continued performance of safety-related concrete structures in nuclear power plants  

SciTech Connect (OSTI)

This report discusses the Structural Aging (SAG) Program which is being conducted at the Oak Ridge National Laboratory (ORNL) for the United States Nuclear Regulatory commission (USNRC). The SAG Program is addressing the aging management of safety-related concrete structures in nuclear power plants for the purpose of providing improved technical bases for their continued service. The program is organized into three technical tasks: Materials Property Data Base, Structural Component Assessment/Repair Technologies, and Quantitative Methodology for continued Service Determinations. Objectives and a summary of recent accomplishments under each of these tasks are presented.

Naus, D.J.; Oland, C.B. [Oak Ridge National Lab., TN (United States); Ellingwood, B.R. [Johns Hopkins Univ., Baltimore, MD (United States)

1994-03-01T23:59:59.000Z

268

A Participatory Design Framework: Incorporating Public Views into the Design of Nuclear Power Plants.  

E-Print Network [OSTI]

??This thesis presents a participatory systems design framework for the design of a nuclear power plant. The work begins with a review of the so-called… (more)

Goodfellow, Martin J

2013-01-01T23:59:59.000Z

269

Resilience and Procedure Use in the Training of Nuclear Power Plant Operating Crews.  

E-Print Network [OSTI]

?? Control room operating crews are a crucial component in maintaining the safety of nuclear power plants. The primary support to operators during disturbances or… (more)

Gustavsson, Pär

2011-01-01T23:59:59.000Z

270

DOE - Office of Legacy Management -- United Nuclear Corp - MO 0-03  

Office of Legacy Management (LM)

United Nuclear Corp - MO 0-03 United Nuclear Corp - MO 0-03 FUSRAP Considered Sites Site: UNITED NUCLEAR CORP. (MO.0-03) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Mallinckrodt Chemical Works Mallinckrodt Nuclear Corporation MO.0-03-1 MO.0-03-2 Location: Hematite , Missouri MO.0-03-1 Evaluation Year: Circa 1987 MO.0-03-3 Site Operations: Commercial fuel fabrication operation. Licensed to reclaim unirradiated enriched uranium from scrap generated in fuel fabrication and fuel material preparation. MO.0-03-1 MO.0-03-2 MO.0-03-3 MO.0-03-4 Site Disposition: Eliminated - NRC licensed - Commercial operations MO.0-03-3 MO.0-03-5 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium MO.0-03-3 Radiological Survey(s): None Indicated

271

Alternative off-site power supply improves nuclear power plant safety  

Science Journals Connector (OSTI)

Abstract A reliable power system is important for safe operation of the nuclear power plants. The station blackout event is of great importance for nuclear power plant safety. This event is caused by the loss of all alternating current power supply to the safety and non-safety buses of the nuclear power plant. In this study an independent electrical connection between a pumped-storage hydro power plant and a nuclear power plant is assumed as a standpoint for safety and reliability analysis. The pumped-storage hydro power plant is considered as an alternative power supply. The connection with conventional accumulation type of hydro power plant is analysed in addition. The objective of this paper is to investigate the improvement of nuclear power plant safety resulting from the consideration of the alternative power supplies. The safety of the nuclear power plant is analysed through the core damage frequency, a risk measure assess by the probabilistic safety assessment. The presented method upgrades the probabilistic safety assessment from its common traditional use in sense that it considers non-plant sited systems. The obtained results show significant decrease of the core damage frequency, indicating improvement of nuclear safety if hydro power plant is introduced as an alternative off-site power source.

Blaže Gjorgiev; Andrija Volkanovski; Duško Kan?ev; Marko ?epin

2014-01-01T23:59:59.000Z

272

Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities  

SciTech Connect (OSTI)

A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

MM Hall

2006-01-31T23:59:59.000Z

273

A pilot application of risk-informed methods to establish inservice inspection priorities for nuclear components at Surry Unit 1 Nuclear Power Station. Revision 1  

SciTech Connect (OSTI)

As part of the Nondestructive Evaluation Reliability Program sponsored by the US Nuclear Regulatory Commission, the Pacific Northwest National Laboratory has developed risk-informed approaches for inservice inspection plans of nuclear power plants. This method uses probabilistic risk assessment (PRA) results to identify and prioritize the most risk-important components for inspection. The Surry Nuclear Power Station Unit 1 was selected for pilot application of this methodology. This report, which incorporates more recent plant-specific information and improved risk-informed methodology and tools, is Revision 1 of the earlier report (NUREG/CR-6181). The methodology discussed in the original report is no longer current and a preferred methodology is presented in this Revision. This report, NUREG/CR-6181, Rev. 1, therefore supersedes the earlier NUREG/CR-6181 published in August 1994. The specific systems addressed in this report are the auxiliary feedwater, the low-pressure injection, and the reactor coolant systems. The results provide a risk-informed ranking of components within these systems.

Vo, T.V.; Phan, H.K.; Gore, B.F.; Simonen, F.A.; Doctor, S.R. [Pacific Northwest National Lab., Richland, WA (United States)

1997-02-01T23:59:59.000Z

274

Feature Extraction for Data-Driven Fault Detection in Nuclear Power Plants Xin Jin, Robert M. Edwards and Asok Ray  

E-Print Network [OSTI]

Feature Extraction for Data-Driven Fault Detection in Nuclear Power Plants Xin Jin, Robert M monitoring of nuclear power plants (NPP) is one of the key issues addressed in nuclear energy safety research is performed during each nuclear power plant refueling outage, which may not be cost effective [1

Ray, Asok

275

Next Generation Nuclear Plant: A Report to Congress | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a high-temperature nuclear energy source. The project is being executed in collaboration with industry, DOE national laboratories, and U.S. universities. The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing and regulatory oversight of the demonstration nuclear reactor.

276

Next Generation Nuclear Plant: A Report to Congress | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress Next Generation Nuclear Plant: A Report to Congress The U.S. Department of Energy's (DOE's) Next Generation Nuclear Plant (NGNP) project helps address the President's goals for reducing greenhouse gas emissions and enhancing energy security. The NGNP project was formally established by the Energy Policy Act of 2005 (EPAct 2005), designated as Public Law 109-58, 42 USC 16021, to demonstrate the generation of electricity and/or hydrogen with a high-temperature nuclear energy source. The project is being executed in collaboration with industry, DOE national laboratories, and U.S. universities. The U.S. Nuclear Regulatory Commission (NRC) is responsible for licensing and regulatory oversight of the demonstration nuclear reactor.

277

Decision to reorganise or reorganising decisions? A First-Hand Account of the Decommissioning of the Phnix Nuclear Power Plant  

E-Print Network [OSTI]

of the Decommissioning of the Phénix Nuclear Power Plant Melchior Pelleterat de Borde, MINES ParisTech, Christophe Martin looks at the effect of ongoing organisational changes taking place in a nuclear power plant being campaigns, the Phénix nuclear power plant was taken out of service at the end of 2009. The plant has two

Paris-Sud XI, Université de

278

Environmental Assessment for the Modernization of Facilities and Infrastructure for the Non-Nuclear Production Activities Conducted at the Kansas City Plant  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment Environmental Assessment for the Modernization of Facilities and Infrastructure for the Non-Nuclear Production Activities Conducted at the Kansas City Plant DOE/EA - 1592 April 21, 2008 - - This Page Intentionally Blank - - ii COVER SHEET RESPONSIBLE AGENCIES: United States General Services Administration (GSA) and National Nuclear Security Administration (NNSA) TITLE: Modernization of Facilities and Infrastructure for the Non-Nuclear Production Activities Conducted at the Kansas City Plant (DOE/EA-1592) CONTACT: For further information on this EA, write or call: Carlos Salazar GSA Public Buildings Service Heartland Region 1500 E. Bannister Road, Room 2191 (6PTA) Kansas City, MO 64131-3088 (816) 823-2305 Abstract: The United States General Services Administration (GSA) and the United States

279

A critical review of nuclear power plant decommissioning planning studies  

Science Journals Connector (OSTI)

During the past decade there have been at least ten major efforts to perform comprehensive, analytical studies of the complex issues associated with decommissioning civilian nuclear power plants. These planning efforts are reviewed, using the standard framework of technology assessment. In particular, each study is analysed to determine the degree to which formal methods of decision analysis have been employed to evaluate options and make recommendations and the degree to which formal methods of consensus have been employed to engage citizen involvement and promote public acceptance. Not unexpectedly, we find that the greatest strides in decommissioning analyses have been made in forecasting the economic costs of decommissioning to licensees. Comparatively few improvements have been made in the processes used to compare the impacts of alternative technologies more broadly, or to address the legitimate concerns of interested parties more widely.

W.Timothy Lough; K.Preston White Jr.

1990-01-01T23:59:59.000Z

280

MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA  

SciTech Connect (OSTI)

This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors and hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.

GREENE,G.A.; GUPPY,J.G.

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Numerical study and prediction of nuclear contaminant transport from Fukushima Daiichi nuclear power plant in the North Pacific Ocean  

Science Journals Connector (OSTI)

On March 11, 2011, a large earthquake and subsequent tsunami near the east coast of Japan destroyed the Fukushima Daiichi nuclear power plant (FD-NPP), causing a massive ... Pacific circulation model, based on th...

Hui Wang; ZhaoYi Wang; XueMing Zhu; DaKui Wang; GuiMei Liu

2012-09-01T23:59:59.000Z

282

Pacific Basin Nuclear Conference (PBNC 2012), BEXCO, Busan, Korea, March 18 ~ 23, 2012 CHALLENGES OF CYBER SECURITY FOR NUCLEAR POWER PLANTS  

E-Print Network [OSTI]

PBNC 2012 CHALLENGES OF CYBER SECURITY FOR NUCLEAR POWER PLANTS Kwangjo Kim KAIST, Daejeon, Korea.kim@kustar.ac.ae Abstract Nuclear Power Plants (NPPs) become one of the most important infrastructures in providing improvement. 1. Introduction Nuclear Power Plants (NPPs) become one of the most important infrastructures

Kim, Kwangjo

283

Efficiency of Energy Use in the United States  

Science Journals Connector (OSTI)

...at the power plant. Conversely...by nuclear plants for this purpose...required at the power plant for each unit...Comparison of insulation requirements...Insulation specification Gas Electric...ample use of thermal insulation...

Eric Hirst; John C. Moyers

1973-03-30T23:59:59.000Z

284

Association between thyroid cancer incidence and the distance from nuclear power plants in the U.S.  

E-Print Network [OSTI]

??Concerns have been widespread that living near nuclear power plants might increase the risk of cancer in surrounding communities. Nuclear power generation is still the… (more)

Watase, Hiroko

2012-01-01T23:59:59.000Z

285

License Stewardship Approach to Commercial Nuclear Power Plant Decommissioning  

SciTech Connect (OSTI)

The paper explores both the conceptual approach to decommissioning commercial nuclear facilities using a license stewardship approach as well as the first commercial application of this approach. The license stewardship approach involves a decommissioning company taking control of a site and the 10 CFR 50 License in order to complete the work utilizing the established trust fund. In conclusion: The license stewardship approach is a novel way to approach the decommissioning of a retired nuclear power plant that offers several key advantages to all parties. For the owner and regulators, it provides assurance that the station will be decommissioned in a safe, timely manner. Ratepayers are assured that the work will be completed for the price they already have paid, with the decommissioning contractor assuming the financial risk of decommissioning. The contractor gains control of the assets and liabilities, the license, and the decommissioning fund. This enables the decommissioning contractor to control their work and eliminates redundant layers of management, while bringing more focus on achieving the desired end state - a restored site. (authors)

Daly, P.T.; Hlopak, W.J. [Commercial Services Group, EnergySolutions 1009 Commerce Park, Oak Ridge, TN (United States)

2008-07-01T23:59:59.000Z

286

United States and South Africa Sign Agreement on Cooperation in Nuclear  

Broader source: Energy.gov (indexed) [DOE]

South Africa Sign Agreement on Cooperation in South Africa Sign Agreement on Cooperation in Nuclear Energy Research and Development United States and South Africa Sign Agreement on Cooperation in Nuclear Energy Research and Development September 16, 2009 - 12:00am Addthis Vienna, Austria - U.S. Secretary of Energy Steven Chu and South African Minister of Energy Dipuo Peters signed a bilateral Agreement on Cooperation in Research and Development of Nuclear Energy on September 14 in Vienna. This Agreement will facilitate cooperation in the areas of advanced nuclear energy systems and reactor technology. The two countries will collaborate in research and development of advanced technologies for improving the cost, safety, and proliferation-resistance of nuclear power systems. The agreement will also expand efforts to promote and maintain nuclear science

287

The desulfurization of flue gas at the Mae Moh Power Plant Units 12 and 13  

SciTech Connect (OSTI)

As pollution of air, water and ground increasingly raises worldwide concern, the responsible national and international authorities establish and issue stringent regulations in order to maintain an acceptable air quality in the environment. In Thailand, the Electricity Generating Authority of Thailand (EGAT) takes full responsibility in environmental protection matters as well as in generating the electricity needed to supply the country`s very rapid power demand growth. Due to the rapidly increasing electricity demand of the country, EGAT had decided to install two further lignite-fired units of 300 MW each (Units 12 and 13) at the Mae Moh power generation station and they are now under construction. The arrangement and the capacity of all the power plant units are as shown. In 1989, EGAT started the work on the flue gas desulfurization system of Mae Moh power plant units 12 and 13 as planned. A study has been conducted to select the most suitable and most economical process for flue gas desulfurization. The wet scrubbing limestone process was finally selected for the two new units. Local limestone will be utilized in the process, producing a by-product of gypsum. Unfortunately, natural gypsum is found in abundance in Thailand, so the produced gypsum will be treated as landfill by mixing it with ash from the boilers of the power plants and then carrying it to the ash dumping area. The water from the waste ash water lake is utilized in the process as much as possible to minimize the requirement of service water, which is a limited resource. The Mae Moh power generation station is situated in the northern region of Thailand, 600 km north of Bangkok and about 30 km east of the town of Lampang, close to the Mae Moh lignite mine. Three lignite-fired units (Units 1-3) of 75 MW each, four units (Units 4-7) of 150 MW each and four units (Units 8-11) of 300 MW each are in operation.

Haemapun, C.

1993-12-31T23:59:59.000Z

288

Current Concentration of Artificial Radionuclides and Estimated Radiation Doses from 137Cs around the Chernobyl Nuclear Power Plant, the Semipalatinsk Nuclear Testing Site, and in Nagasaki  

Science Journals Connector (OSTI)

......137Cs around the Chernobyl Nuclear Power Plant, the Semipalatinsk Nuclear Testing Site, and in Nagasaki...the Chernobyl accident and nuclear tests at SNTS were simultaneously...from sev- eral statistical datasets, as there were no detailed......

Yasuyuki Taira; Naomi Hayashida; Gopalganapathi M. Brahmanandhan; Yuji Nagayama; Shunichi Yamashita; Jumpei Takahashi; Alexander Gutevitc; Alexander Kazlovsky; Marat Urazalin; Noboru Takamura

2011-01-01T23:59:59.000Z

289

Activities in support of continuing the service of nuclear power plant concrete structures  

SciTech Connect (OSTI)

In general, nuclear power plant concrete structure s performance has been very good; however, aging of concrete structures occurs with the passage of time that can potentially result in degradation if is effects are not controlled. Safety-related nuclear power plant concrete structures are described. In-service inspection and testing requirements in the U.S. are summarized. The interaction of the license renewal process and concrete structures is noted. A summary of operating experience related to aging of nuclear power plant concrete structures is provided. Several candidate areas are identified where additional research would be beneficial for aging management of nuclear power plant concrete structures. Finally, an update on recent activities at Oak Ridge National Laboratory related to aging management of nuclear power plant concrete structures is provided.

Naus, Dan J [ORNL

2012-01-01T23:59:59.000Z

290

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Broader source: Energy.gov (indexed) [DOE]

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

291

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant |  

Broader source: Energy.gov (indexed) [DOE]

DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant DOE, NRC Issue Licensing Roadmap For Next-Generation Nuclear Plant August 15, 2008 - 3:15pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) today delivered to Congress the Next Generation Nuclear Plant (NGNP) Licensing Strategy Report which describes the licensing approach, the analytical tools, the research and development activities and the estimated resources required to license an advanced reactor design by 2017 and begin operation by 2021. The NGNP represents a new concept for nuclear energy utilization, in which a gas-cooled reactor provides process heat for any number of industrial applications including electricity production, hydrogen production, coal-to-liquids, shale oil

292

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,Summary of Nuclear Power Plant Operating Experience for

Nero, A.V.

2010-01-01T23:59:59.000Z

293

Reproductive Life Events in the Population Living in the Vicinity of a Nuclear Waste Reprocessing Plant  

E-Print Network [OSTI]

Reproductive Life Events in the Population Living in the Vicinity of a Nuclear Waste Reprocessing: There is concern about the health of populations living close to nuclear waste reprocessing plants. We conducted a comparative study on reproductive life events in the general population living near the nuclear waste

Paris-Sud XI, Université de

294

Figure A1. Natural gas processing plant capacity in the United States, 2013 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Figure A1. Natural gas processing plant capacity in the United States, 2013 2012 Table A2. Natural gas processing plant capacity, by state, 2013 (million cubic feet per day) Alabama 1,403 Arkansas 24 California 926 Colorado 5,450 Florida 90 Illinois 2,100 Kansas 1,818 Kentucky 240 Louisiana 10,737 Michigan 479 Mississippi 1,123

295

Criticality prevention during postaccident decontamination of TMI-2 (Three Mile Island Unit 2) plant systems  

SciTech Connect (OSTI)

Following the accident at Three Mile Island Unit 2 (TMI-2), the likelihood of a criticality outside of the reactor coolant system (RCS) during the plant cleanup was very small. Given the consequence of any possible critical event in the TMI-2 systems, However, it was always necessary to ensure that all steps were taken to prevent criticality. Therefore, engineered controls were developed to ensure that decontamination of plant systems containing fuel material could be conducted in a manner that precluded criticality.

Palau, G. L.

1988-01-01T23:59:59.000Z

296

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, jA.V.

2010-01-01T23:59:59.000Z

297

TVA chooses nuclear power  

Science Journals Connector (OSTI)

TVA chooses nuclear power ... In giving the nod to a nuclear (over a coal) power generating station 10 days ago, TVA probably gave nuclear power its biggest boost to date. ... The $247 million nuclear power plant—a dual boiling-water reactor unit with a total capacity of 2.2 million kw(e).—will ...

1966-06-27T23:59:59.000Z

298

CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE MATERIALS AND EQUIPMENT FROM UNITS 1 AND 2 AT THE HUMBOLDT BAY POWER PLANT, EUREKA, CALIFORNIA  

SciTech Connect (OSTI)

The Pacific Gas & Electric Company (PG&E) operated the Humboldt Bay Power Plant (HBPP) Unit 3 nuclear reactor near Eureka, California under Atomic Energy Commission (AEC) provisional license number DPR-7. HBPP Unit 3 achieved initial criticality in February 1963 and began commercial operations in August 1963. Unit 3 was a natural circulation boiling water reactor with a direct-cycle design. This design eliminated the need for heat transfer loops and large containment structures. Also, the pressure suppression containment design permitted below-ground construction. Stainless steel fuel claddings were used from startup until cladding failures resulted in plant system contamination—zircaloy-clad fuel was used exclusively starting in 1965 eliminating cladding-related contamination. A number of spills and gaseous releases were reported during operations resulting in a range of mitigative activities (see ESI 2008 for details).

W.C. Adams

2011-04-01T23:59:59.000Z

299

Example G Cost of construction of nuclear power plants Description of data  

E-Print Network [OSTI]

Example G Cost of construction of nuclear power plants Description of data Table G.1 gives data) power plants constructed in USA. It is required to predict the capital cost involved in the construction of further LWR power plants. The notation used in Table G.1 is explained in Table G.2. The final 6 lines

Reid, Nancy

300

Example G Cost of construction of nuclear power plants Description of data  

E-Print Network [OSTI]

1 Example G Cost of construction of nuclear power plants Description of data Table G.1 gives reactor (LWR) power plants constructed in USA. It is required to predict the capital cost involved in the construction of further LWR power plants. The notation used in Table G.1 is explained in Table G.2. The final 6

Reid, Nancy

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Department of Mechanical and Nuclear Engineering Spring 2012 East Campus Power Plant Deaerator Optimization  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 East Campus Power Plant Deaerator Optimization Overview In the East Campus Power plant a new Deaerator system has been installed. Approach Understand the inner-workings and operations of the power plant and the Deaerator system. Visit

Demirel, Melik C.

302

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010  

Broader source: Energy.gov [DOE]

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010

303

Safeguards Issues at Nuclear Reactors and Enrichment Plants  

SciTech Connect (OSTI)

The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

Boyer, Brian D [Los Alamos National Laboratory

2012-08-15T23:59:59.000Z

304

Two novel procedures for aggregating randomized model ensemble outcomes for robust signal reconstruction in nuclear power plants monitoring systems  

E-Print Network [OSTI]

reconstruction in nuclear power plants monitoring systems P. Baraldi1 , E. Zio1,* , G. Gola2 , D. Roverso2 , M importance for the safe and reliable operation of nuclear power plants. Auto-associative regression models of nuclear power plants for it allows the timely detection of malfunctions and anomalies during operation

Paris-Sud XI, Université de

305

Abstract--Resins are used in nuclear power plants for water ultrapurification. Two approaches are considered in this work  

E-Print Network [OSTI]

Abstract--Resins are used in nuclear power plants for water ultrapurification. Two approaches in manufacturing ultrapure water for nuclear power plants. Resins allow the removal of ionic impurities to subparts-per-million. Thereby in nuclear power plants, resins contribute to guarantee personnel safety, to control feed system

Paris-Sud XI, Université de

306

DOE Seeks Additional Input on Next Generation Nuclear Plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Seeks Additional Input on Next Generation Nuclear Plant Seeks Additional Input on Next Generation Nuclear Plant DOE Seeks Additional Input on Next Generation Nuclear Plant April 17, 2008 - 10:49am Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced it is seeking public and industry input on how to best achieve the goals and meet the requirements for the Next Generation Nuclear Plant (NGNP) demonstration project work at DOE's Idaho National Laboratory. DOE today issued a Request for Information and Expressions of Interest from prospective participants and interested parties on utilizing cutting-edge high temperature gas reactor technology in the effort to reduce greenhouse gas emissions by enabling nuclear energy to replace fossil fuels used by industry for process heat. "This is an opportunity to advance the development of safe, reliable, and

307

Letter to NEAC to Review the Next Generation Nuclear Plant Activities |  

Broader source: Energy.gov (indexed) [DOE]

to NEAC to Review the Next Generation Nuclear Plant to NEAC to Review the Next Generation Nuclear Plant Activities Letter to NEAC to Review the Next Generation Nuclear Plant Activities The Next Generation Nuclear Plant (NGNP) project was established under the Energy Policy Act in August 2005 (EPACT-2005). EPACT-2005 defined an overall plan and timetable for NGNP research, design, licensing, construction and operation by the end of FY 2021. At the time that EPACT-2005 was passed, it was envisioned that key aspects of the project included: NGNP is based on R&D activities supported by the Gen-IV Nuclear Energy initiative; ď‚· NGNP is to be used to generate electricity, to produce hydrogen or (to do) both; ď‚· The Idaho National Laboratory (INL) will be the lead national lab for the project; ď‚· NGNP will be sited at the INL in

308

Applying Human Factors Evaluation and Design Guidance to a Nuclear Power Plant Digital Control System  

SciTech Connect (OSTI)

The United States (U.S.) nuclear industry, like similar process control industries, has moved toward upgrading its control rooms. The upgraded control rooms typically feature digital control system (DCS) displays embedded in the panels. These displays gather information from the system and represent that information on a single display surface. In this manner, the DCS combines many previously separate analog indicators and controls into a single digital display, whereby the operators can toggle between multiple windows to monitor and control different aspects of the plant. The design of the DCS depends on the function of the system it monitors, but revolves around presenting the information most germane to an operator at any point in time. DCSs require a carefully designed human system interface. This report centers on redesigning existing DCS displays for an example chemical volume control system (CVCS) at a U.S. nuclear power plant. The crucial nature of the CVCS, which controls coolant levels and boration in the primary system, requires a thorough human factors evaluation of its supporting DCS. The initial digital controls being developed for the DCSs tend to directly mimic the former analog controls. There are, however, unique operator interactions with a digital vs. analog interface, and the differences have not always been carefully factored in the translation of an analog interface to a replacement DCS. To ensure safety, efficiency, and usability of the emerging DCSs, a human factors usability evaluation was conducted on a CVCS DCS currently being used and refined at an existing U.S. nuclear power plant. Subject matter experts from process control engineering, software development, and human factors evaluated the DCS displays to document potential usability issues and propose design recommendations. The evaluation yielded 167 potential usability issues with the DCS. These issues should not be considered operator performance problems but rather opportunities identified by experts to improve upon the design of the DCS. A set of nine design recommendations was developed to address these potential issues. The design principles addressed the following areas: (1) color, (2) pop-up window structure, (3) navigation, (4) alarms, (5) process control diagram, (6) gestalt grouping, (7) typography, (8) terminology, and (9) data entry. Visuals illustrating the improved DCS displays accompany the design recommendations. These nine design principles serve as the starting point to a planned general DCS style guide that can be used across the U.S. nuclear industry to aid in the future design of effective DCS interfaces.

Thomas Ulrich; Ronald Boring; William Phoenix; Emily Dehority; Tim Whiting; Jonathan Morrell; Rhett Backstrom

2012-08-01T23:59:59.000Z

309

Applications of neural networks to monitoring and decision making in the operation of nuclear power plants  

SciTech Connect (OSTI)

Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of noise'' data from TVA's Sequoyah Nuclear Power Plant, and (5) examination of the NRC's database of Letter Event Reports'' for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

Uhrig, R.E. (Tennessee Univ., Knoxville, TN (United States) Oak Ridge National Lab., TN (United States))

1990-01-01T23:59:59.000Z

310

Dynamic safeguard assessment of terror attacks using system dynamics method for nuclear power plants  

Science Journals Connector (OSTI)

For the minimisation of the damage in possible terror attacks on the nuclear power plants and other nuclear facilities, a dynamic assessment is performed in the aspects of nuclear safeguard. The incidents against nuclear facilities are modelled by the time-step scenario. Several cases are explained for the illicit trafficking of radioactive material. The dynamic simulation is examined by the system dynamics method. In the modelling, there are three major models that include the nuclear insider terror, the reaction control and the nuclear forensic steps. The risk increases slowly and decreases rapidly in the result. This is the similar pattern of the September 2001 terror where many lives were lost.

Tae-Ho Woo; Un-Chul Lee; Yun-Il Kim

2010-01-01T23:59:59.000Z

311

Quiz # 7, STAT 383, Prof. Suman Sanyal, April 8, 2009 (Q2, Page 354) To decide whether the pipe welds in a nuclear power plant meet  

E-Print Network [OSTI]

welds in a nuclear power plant meet specifications, a random sample of welds is to be selected : µ nuclear power plants is to determine if welds

Sanyal, Suman

312

Status of radioiodine control for nuclear fuel reprocessing plants  

SciTech Connect (OSTI)

This report summarizes the status of radioiodine control in a nuclear fuel reprocessing plant with respect to capture, fixation, and disposal. Where possible, we refer the reader to a number of survey documents which have been published in the last four years. We provide updates where necessary. Also discussed are factors which must be considered in developing criteria for iodine control. For capture from gas streams, silver mordenite and a silver nitrate impregnated silica (AC-6120) are considered state-of-the-art and are recommended. Three aqueous scrubbing processes have been demonstrated: Caustic scrubbing is simple but probably will not give an adequate iodine retention by itself. Mercurex (mercuric nitrate-nitric acid scrubbing) has a number of disadvantages including the use of toxic mercury. Iodox (hyperazeotropic nitric acid scrubbing) is effective but employs a very corrosive and hazardous material. Other technologies have been tested but require extensive development. The waste forms recommended for long-term storage or disposal are silver iodide, the iodates of barium, strontium, or calcium, and silver loaded sorbents, all fixed in cement. Copper iodide in bitumen (asphalt) is a possibility but requires testing. The selection of a specific form will be influenced by the capture process used.

Burger, L.L.; Scheele, R.D.

1983-07-01T23:59:59.000Z

313

Proposal for broader United States-Russian transparency of nuclear arms reductions  

SciTech Connect (OSTI)

During the January 1994 Summit Presidents Clinton and Yeltsin agreed on the goal of ensuring the ``transparency and irreversibility`` of the nuclear arms reduction process. As a result, negotiations are presently underway between the United States Government and the Russian Federation to confirm the stockpiles of plutonium and highly enriched uranium removed from nuclear weapons. In December 1994 the United States presented a paper to the Russian Federation proposing additional measures to provide broader transparency of nuclear arms reduction. The US Department of Energy is studying the implementation of these broader transparency measures at appropriate DOE facilities. The results of the studies include draft protocols for implementation, assessments of the implementation procedures and the impacts on the facilities and estimates of the cost to implement these measures at various facilities.

Percival, C.M. [Sandia National Labs., Albuquerque, NM (United States); Ingle, T.H.; Bieniawski, A.J. [USDOE, Washington, DC (United States)

1995-07-01T23:59:59.000Z

314

Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability  

SciTech Connect (OSTI)

This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants.

Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

1986-03-01T23:59:59.000Z

315

Land-Use Requirements of Modern Wind Power Plants in the United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 August 2009 Land-Use Requirements of Modern Wind Power Plants in the United States Paul Denholm, Maureen Hand, Maddalena Jackson, and Sean Ong National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-45834 August 2009 Land-Use Requirements of Modern Wind Power Plants in the United States Paul Denholm, Maureen Hand, Maddalena Jackson, and Sean Ong Prepared under Task No. WER9.3550 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

316

Blending mining and nuclear industries at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

At the Waste Isolation Pilot Plant (WIPP) traditional procedures for underground mining activities have been significantly altered in order to assure underground safety and project adherence to numerous regulatory requirements. Innovative techniques have been developed for WIPP underground procedures, mining equipment, and operating environments. The mining emphasis at WIPP is upon the quality of the excavation, not (as in conventional mines) on the production of ore. The WIPP is a United States Department of Energy (DOE) project that is located 30 miles southeast of Carlsbad, New Mexico, where the nation's first underground engineered nuclear repository is being constructed. The WIPP site was selected because of its location amidst a 607 meter thick salt bed, which provides a remarkably stable rock formation for the permanent storage of nuclear waste. The underground facility is located 655 meters below the earth's surface, in the Salado formation, which comprises two-hundred million year old halites with minor amounts of clay and anhydrites. When completed, the WIPP underground facility will consist of two components: approximately 81 square kilometers of experimental areas, and approximately 405 square kilometers of repository. 3 figs.

Walls, J.R.

1990-01-01T23:59:59.000Z

317

Burnup verification at Arkansas Nuclear One-unit 1 using the Fork measurement system  

SciTech Connect (OSTI)

The Fork measurement system, designed at Los Alamos National Laboratory for the International Atomic Energy Agency safeguards program, has been used for several years to examine spent fuel assemblies at nuclear reactors around the world. The objective of the test program described here is to demonstrate the ability of the Fork system to verify the records for assembly burnup at U.S. nuclear utilities. The measurements described here were performed at Arkansas Nuclear One, operated by Energy Operations, Inc. The Fork system was used to examine 34 assemblies in the storage pool of Arkansas Nuclear One-Unit 1. The correlation between the neutron measurements and the reactor records produced an average random deviation in burnup of 3.0% from the calibration, which translates into an average variation of 2.2% in the reactor records for burnup. The system proved to be compatible with utility operations.

Ewing, R.I. [Sandia National Lab., Albuquerque, NM (United States); Bosler, G.E. [Los Alamos National Lab., Los Alamos, NM (United States); Priore, J. [Entergy Oerations, Inc., Russellville, AR (United States)

1995-12-01T23:59:59.000Z

318

Natural Gas Processing Plants in the United States: 2010 Update / Appendix  

Gasoline and Diesel Fuel Update (EIA)

Appendix Appendix The preceding report is the most comprehensive report published by the EIA on natural gas processing plants in the United States. The data in the report for the year 2008 were collected on Form EIA-757, Natural Gas Processing Survey Schedule A, which was fielded to EIA respondents in the latter part of 2008 for the first time. This survey was used to collect information on the capacity, status, and operations of natural gas processing plants and to monitor constraints of natural gas processing plants during periods of supply disruption in areas affected by an emergency, such as a hurricane. EIA received authorization to collect information on processing plants from the Office of Management and Budget in early 2008. The form consists of two parts, Schedule A and Schedule B. Schedule A is

319

Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.  

SciTech Connect (OSTI)

Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

Elcock, D. (Environmental Science Division)

2011-05-09T23:59:59.000Z

320

Behavior of a Nuclear Power Plant Ventilation Stack for Wind Loads  

Science Journals Connector (OSTI)

This paper describes behavior of self supporting tall reinforced concrete (RC) ventilation stack of a nuclear power plant (NPP) for wind loads. Since the static and equivalent dynamic wind loads are inter-dependa...

V. Venkatachalapathy

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Episode Analysis of Deposition of Radiocesium from the Fukushima Daiichi Nuclear Power Plant Accident  

Science Journals Connector (OSTI)

Episode Analysis of Deposition of Radiocesium from the Fukushima Daiichi Nuclear Power Plant Accident ... Center for Regional Environment Research, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan ...

Yu Morino; Toshimasa Ohara; Mirai Watanabe; Seiji Hayashi; Masato Nishizawa

2013-02-07T23:59:59.000Z

322

137Cs Trapped by Biomass within 20 km of the Fukushima Daiichi Nuclear Power Plant  

Science Journals Connector (OSTI)

137Cs Trapped by Biomass within 20 km of the Fukushima Daiichi Nuclear Power Plant ... † Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan ...

Akio Koizumi; Tamon Niisoe; Kouji H. Harada; Yukiko Fujii; Ayumu Adachi; Toshiaki Hitomi; Hirohiko Ishikawa

2013-07-26T23:59:59.000Z

323

A modeling and control approach to advanced nuclear power plants with gas turbines  

Science Journals Connector (OSTI)

Abstract Advanced nuclear power plants are currently being proposed with a number of various designs. However, there is a lack of modeling and control strategies to deal with load following operations. This research investigates a possible modeling approach and load following control strategy for gas turbine nuclear power plants in order to provide an assessment way to the concept designs. A load frequency control strategy and average temperature control mechanism are studied to get load following nuclear power plants. The suitability of the control strategies and concept designs are assessed through linear stability analysis methods. Numerical results are presented on an advanced molten salt reactor concept as an example nuclear power plant system to demonstrate the validity and effectiveness of the proposed modeling and load following control strategies.

Günyaz Ablay

2013-01-01T23:59:59.000Z

324

Tornado vs. Hurricane Which is More Critical for Design of U.S. Nuclear Power Plants?  

Broader source: Energy.gov [DOE]

Tornado vs. Hurricane Which is More Critical for Design of U.S. Nuclear Power Plants? Javad Moslemian Sargent & Lundy, LLC U. S. Department of Energy Natural Phenomena Hazards Meeting October 21-22, 2014

325

Power System Frequency Control Characteristics as a Function of Nuclear Power Plant Participation  

Science Journals Connector (OSTI)

When the participation of nuclear power plants in electric power system increases then they have to be ... take an increasing part in the frequency and power control of the power system. However there are specifi...

Z. Domachowski

1988-01-01T23:59:59.000Z

326

THE ROLE OF STRUCTURAL MATERIALS IN THE VULNERABILITY OF NUCLEAR POWER PLANTS  

Science Journals Connector (OSTI)

The nuclear power plants (NPPs) world-wide are generally very robustly designed and constructed, capable to stand very extreme conditions. Small design differences from this point of view can be found among th...

LUIGI DEBARBERIS; KAISA SIMOLA…

2006-01-01T23:59:59.000Z

327

Brackish groundwater as an alternative source of cooling water for nuclear power plants in Israel  

Science Journals Connector (OSTI)

Because of a high population density in the coastal plain, any future nuclear power plants will be located in the sparsely ... no surface water, the only alternatives to cooling water are piped-in Mediterranean. ...

A. Arad; A. Olshina

1984-01-01T23:59:59.000Z

328

Radionuclides in the Natural–Anthropogenic System Comprising a Nuclear Power Plant and a Cooling Reservoir  

Science Journals Connector (OSTI)

The sources of technological radionuclides coming into the ecosystem of a nuclear power plant (NPP) cooling reservoir are considered and estimated. The information ... The activity reserve in the ecosystems of th...

Yu. A. Egorov

2002-07-01T23:59:59.000Z

329

Impact assessment of nuclear and thermal power plants on zooplankton in cooling ponds  

Science Journals Connector (OSTI)

The current state of assessment of nuclear and thermal power plant toxic effects on zooplankton entrained in ... particular emphasis is given to specific features of cooling reservoirs and their ecosystems. Compl...

N. V. Kartasheva; D. V. Fomin; A. V. Popov…

2008-09-01T23:59:59.000Z

330

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

331

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

332

Trait, state or artefact? Assessing experts' regulatory focus in nuclear power plant control  

Science Journals Connector (OSTI)

We apply the theory of regulatory focus in the field of nuclear power plant (NPP) control. The first pilot study was conducted at the German simulator centre for NPPs. Here, we tested the influence of accident training lessons on the experts' regulatory ... Keywords: Experts, Human factors, Nuclear, Regulatory focus, Self-report measures

Johannes Beck, Armin Eichinger, Klaus Bengler

2014-11-01T23:59:59.000Z

333

Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants - Final Technical Report  

SciTech Connect (OSTI)

OAK B188 Summary of methods proposed for risk informing the design and regulation of future nuclear power plants. All elements of the historical design and regulation process are preserved, but the methods proposed for new plants use probabilistic risk assessment methods as the primary decision making tool.

Ritterbusch, Stanley; Golay, Michael; Duran, Felicia; Galyean, William; Gupta, Abhinav; Dimitrijevic, Vesna; Malsch, Marty

2003-01-29T23:59:59.000Z

334

Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor  

SciTech Connect (OSTI)

This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

M. J. Russell

2006-06-01T23:59:59.000Z

335

The Fukushima Disaster and Japan’s Nuclear Plant Vulnerability in Comparative Perspective  

Science Journals Connector (OSTI)

Off-site power can be severed by a variety of events, such as terrorism, tornadoes, hurricanes, and other disasters. ... Figure 1 plots base plant elevation, seawall height, emergency power system elevation, and waterproofing of backup power systems for nuclear plants according to country. ...

Phillip Y. Lipscy; Kenji E. Kushida; Trevor Incerti

2013-05-16T23:59:59.000Z

336

Nuclear norm minimization for the planted clique and biclique ...  

E-Print Network [OSTI]

Jan 21, 2009 ... We write both problems as matrix-rank minimization and then relax them using the nuclear norm. This technique, which may be regarded as a ...

2009-01-21T23:59:59.000Z

337

Radiation-proof windows for nuclear-power plants  

Science Journals Connector (OSTI)

This paper presents a brief analysis of the main technical characteristics of means of direct observation and biological protection for this country’s nuclear-power...

Belousov, S P; Golikov, D A; Ignatov, A N; Kuznetsov, S A; Kuleshov, N P

2013-01-01T23:59:59.000Z

338

Nuclear energy policy in the United States 1990–2010: A federal or state responsibility?  

Science Journals Connector (OSTI)

Abstract This paper examines from a policy perspective nuclear energy policy in the United States (US) from 1990 to 2010 and questions whether it is or has become a Federal or State responsibility. The present study, as befits policy research, engages with many disciplines (for example, in particular, law and politics) and hence the contributions move beyond that of nuclear energy policy literature and in particular to that on nuclear new build and other assessments of large infrastructure projects. Several examples at the Federal level are identified that demonstrate that the nuclear industry has evolved to a stage where it requires a focus on the power of actions at a more localised (state) level in order to re-ignite the industry. The research concludes that there remains a misunderstanding of the issue of project management for complex construction projects, and it is highly arguable whether many of its issues have been resolved. Further, the research asserts that the economics of nuclear energy are not the most influential reason for no nuclear new build in the US.

Raphael J. Heffron

2013-01-01T23:59:59.000Z

339

Simultaneous Sampling of Indoor and Outdoor Airborne Radioactivity after the Fukushima Daiichi Nuclear Power Plant Accident  

Science Journals Connector (OSTI)

Simultaneous Sampling of Indoor and Outdoor Airborne Radioactivity after the Fukushima Daiichi Nuclear Power Plant Accident ... Large amts. of radioactive substances were released into the environment from the Fukushima Dai-ichi Nuclear Power Plants in eastern Japan as a consequence of the great earthquake (M 9.0) and tsunami of 11 March 2011. ... Proceedings of the International Symposium on Environmental Monitoring and Dose Estimation of Residents after Accident of TEPCO’s Fukushima Daiichi Nuclear Power Station; Shiran Hall, Kyoto, Japan, Dec 14, 2012; http://www.rri.kyoto-u.ac.jp/anzen_kiban/outcome/. ...

Tetsuo Ishikawa; Atsuyuki Sorimachi; Hideki Arae; Sarata Kumar Sahoo; Miroslaw Janik; Masahiro Hosoda; Shinji Tokonami

2014-01-22T23:59:59.000Z

340

Assessment of Nuclear Safety Culture at the Pantex Plant, November 2012  

Broader source: Energy.gov (indexed) [DOE]

Pantex Plant Pantex Plant May 2011 November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Pantex Plant Table of Contents 1.0 Introduction........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2 3.0 Results and Conclusions ....................................................................................................................... 3 4.0 Recommendations................................................................................................................................. 5

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration  

E-Print Network [OSTI]

, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL

Siefert, Chris

342

Identifying and Characterizing Candidate Areas for Siting New Nuclear Capacity in the United States  

SciTech Connect (OSTI)

Oak Ridge National Laboratory (ORNL) staff recently completed an internal 'Energy Assurance' study examining the key issues associated with the country's energy needs for the future focusing on generation sources, baseload options, transmission and distribution, reduction of greenhouse gases, and overall energy security issues. In examining the various generation sources including nuclear power and renewables, one principal finding was that 300 GW(e) of new nuclear electrical generating capacity would be needed by 2050. With that need, the initial, obvious question is can 300 GW(e) of nuclear capacity be sited in the United States? In an attempt to address that question as well as others, ORNL initiated a 'National Electric Generation Siting Study,' which is to be a multiphase study to address several key questions related to our national electrical energy supply. The initial phase of this study is to examine the nuclear option. This paper summarizes the approach developed for screening sites, the methodology employed that includes spatial modeling, and preliminary results using the southeast United States to demonstrate the usefulness of the overall approach as a test case.

Mays, Gary T [ORNL] [ORNL; Jochem, Warren C [ORNL] [ORNL; Greene, Sherrell R [ORNL] [ORNL; Belles, Randy [ORNL] [ORNL; Cetiner, Mustafa Sacit [ORNL] [ORNL; Hadley, Stanton W [ORNL] [ORNL

2009-01-01T23:59:59.000Z

343

DATA-DRIVEN ON-LINE PREDICTION OF THE AVAILABLE RECOVERY TIME IN NUCLEAR POWER PLANT FAILURE SCENARIOS  

E-Print Network [OSTI]

1 DATA-DRIVEN ON-LINE PREDICTION OF THE AVAILABLE RECOVERY TIME IN NUCLEAR POWER PLANT FAILURE-XADS). Key Words: Recovery Time, Emergency Accident Management, Nuclear Power Plant, Lead- Bismuth Eutectic e-26Jul2012 Author manuscript, published in "ESREL 2010 (2010) 1 - 8" #12;2 1. Introduction Nuclear Power

Boyer, Edmond

344

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Plant Utilization Data collected for 2009 show that the States with the highest total processing capacity are among the States with the highest average utilization rates. This is to be expected as most of the plants are located in production areas that have been prolific for many years. In fact, the five States situated along the Gulf of Mexico accounted for nearly 49 percent of total processing volume in 2009. The total utilization rate in the United States averaged 66 percent of total capacity in 2009 (Table 2). Plants in Alaska ran at 86 percent of total capacity during the year, the highest capacity utilization rate in the country. Texas had significant utilization capacity at 71 percent, for an average of 14 Bcf per day of natural gas in 2009. However, a number of

345

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico States Gulf of Mexico States Gulf of Mexico States The Gulf of Mexico area, which includes the States of Texas, Louisiana, Mississippi, Alabama, and Florida, has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in the natural gas produced and existence of numerous petro-chemical plants seeking that feedstock in this area. Consequently, the States along the Gulf of Mexico are home to the largest number of plants and the most processing capacity in the United States. Natural gas produced in this area of the country is typically rich in NGLs and requires processing before it is pipeline-quality dry natural gas. Offshore natural gas production can contain more than 4 gallons of

346

Incentive regulation of investor-owned nuclear power plants by public utility regulators. Revision 1  

SciTech Connect (OSTI)

The US Nuclear Regulatory Commission (NRC) periodically surveys the Federal Energy Regulatory Commission (FERC) and state regulatory commissions that regulate utility owners of nuclear power plants. The NRC is interested in identifying states that have established economic or performance incentive programs applicable to nuclear power plants, how the programs are being implemented, and in determining the financial impact of the programs on the utilities. The NRC interest stems from the fact that such programs have the potential to adversely affect the safety of nuclear power plants. The current report is an update of NUREG/CR-5975, Incentive Regulation of Investor-Owned Nuclear Power Plants by Public Utility Regulators, published in January 1993. The information in this report was obtained from interviews conducted with each state regulatory agency that administers an incentive program and each utility that owns at least 10% of an affected nuclear power plant. The agreements, orders, and settlements that form the basis for each incentive program were reviewed as required. The interviews and supporting documentation form the basis for the individual state reports describing the structure and financial impact of each incentive program.

McKinney, M.D.; Seely, H.E.; Merritt, C.R.; Baker, D.C. [Pacific Northwest Lab., Richland, WA (United States)

1995-04-01T23:59:59.000Z

347

Sensitivity analysis for the outages of nuclear power plants  

E-Print Network [OSTI]

Feb 17, 2012 ... Energy generation in France is a competitive market, whereas ... from wind farms, solar energy or run of river plant without pondage.

2012-02-17T23:59:59.000Z

348

Dynamic alarm presentation in a nuclear plant control room  

DOE Patents [OSTI]

The alarm activation set point and priority for a given, spatially fixed alarm tile can vary depending in part on the mode of plant operation.

Kenneth, Scarola (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1994-01-01T23:59:59.000Z

349

Kansas City Plant - 10/01/2010 to 09/30/2013 | National Nuclear Security  

National Nuclear Security Administration (NNSA)

0/01/2010 to 09/30/2013 | National Nuclear Security 0/01/2010 to 09/30/2013 | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Kansas City Plant - 10/01/2010 to 09/30/2013 Home > About Us > Our Operations > Acquisition and Project Management > M & O Support Department > Kansas City Plant - 10/01/2010 to 09/30/2013 Kansas City Plant - 10/01/2010 to 09/30/2013

350

Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for  

Broader source: Energy.gov (indexed) [DOE]

Vogtle Nuclear Power Plant -- As Vogtle Nuclear Power Plant -- As Prepared for Delivery Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for Delivery February 15, 2012 - 12:27pm Addthis It's great to be with all of you today. I want to acknowledge the many people who are playing a role here: Tom Fanning, President of Southern Company Paul Bowers, President and Chief Executive Officer of Georgia Power Tom Smith, Chief Executive Officer of Oglethorpe Power Bob Johnston, Chief Executive Officer of MEAG (Me-ag) Power Jim Bernhard, President and Chief Executive Officer of The Shaw Group Ric Perez, President of Westinghouse Operations Marv Fertel, President and Chief Executive Officer of the Nuclear Energy Institute; and Finally, all of the workers here, whose skill and expertise are

351

Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for  

Broader source: Energy.gov (indexed) [DOE]

Chu's Remarks at Vogtle Nuclear Power Plant -- As Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for Delivery Secretary Chu's Remarks at Vogtle Nuclear Power Plant -- As Prepared for Delivery February 15, 2012 - 12:27pm Addthis It's great to be with all of you today. I want to acknowledge the many people who are playing a role here: Tom Fanning, President of Southern Company Paul Bowers, President and Chief Executive Officer of Georgia Power Tom Smith, Chief Executive Officer of Oglethorpe Power Bob Johnston, Chief Executive Officer of MEAG (Me-ag) Power Jim Bernhard, President and Chief Executive Officer of The Shaw Group Ric Perez, President of Westinghouse Operations Marv Fertel, President and Chief Executive Officer of the Nuclear Energy Institute; and Finally, all of the workers here, whose skill and expertise are

352

The assessment of the absorbed dose of radiation around a nuclear fuel manufacturing plant  

Science Journals Connector (OSTI)

The estimation of the absorbed dose of radiation by the public around a nuclear plant is a substantial issue for nuclear industries and serves as an essential factor in radiation protection. In this study, the absorbed dose of radiation by the individuals living around a nuclear fuel manufacturing plant was calculated. The Atomic Force Microscopy (AFM) code, which is the generalised version of the AIREM program manual – a computer code for calculating doses, population doses, and ground depositions due to atmospheric emissions of radionuclides – was used to investigate the following pathways: cloud immersion, ground deposition, inhalation and ingestion. The study was carried out in 16 geographical directions over an 80 km radius. The experimental results demonstrate that the maximum dose is absorbed at 800 m distance from the nuclear plant stack in the east southeast (ESE) direction and is equal to 3.7 × 10ł ?Sv, which is negligible in comparison with the background radiation.

Seyed Mahmoud Reza Aghamiri; Neda Bostani; Manuchehr Roshanzamir

2009-01-01T23:59:59.000Z

353

Plant Outage Time Savings Provided by Subcritical Physics Testing at Vogtle Unit 2  

SciTech Connect (OSTI)

The most recent core reload design verification physics testing done at Southern Nuclear Company's (SNC) Vogtle Unit 2, performed prior to initial power operations in operating cycle 12, was successfully completed while the reactor was at least 1% {delta}K/K subcritical. The testing program used was the first application of the Subcritical Physics Testing (SPT) program developed by the Westinghouse Electric Company LLC. The SPT program centers on the application of the Westinghouse Subcritical Rod Worth Measurement (SRWM) methodology that was developed in cooperation with the Vogtle Reactor Engineering staff. The SRWM methodology received U. S. Nuclear Regulatory Commission (NRC) approval in August of 2005. The first application of the SPT program occurred at Vogtle Unit 2 in October of 2005. The results of the core design verification measurements obtained during the SPT program demonstrated excellent agreement with prediction, demonstrating that the predicted core characteristics were in excellent agreement with the actual operating characteristics of the core. This paper presents an overview of the SPT Program used at Vogtle Unit 2 during operating cycle 12, and a discussion of the critical path outage time savings the SPT program is capable of providing. (authors)

Cupp, Philip [Southern Nuclear Company (United States); Heibel, M.D. [Westinghouse Electric Company, LLC (United States)

2006-07-01T23:59:59.000Z

354

Identification of performance indicators for nuclear power plants  

E-Print Network [OSTI]

Performance indicators have been assuming an increasingly important role in the nuclear industry. An integrated methodology is proposed in this research for the identification and validation of performance indicators for ...

Sui, Yu, 1973-

2001-01-01T23:59:59.000Z

355

Modelling Power Output at Nuclear Power Plant by Neural Networks  

Science Journals Connector (OSTI)

In this paper, we propose two different neural network (NN) approaches for industrial process signal forecasting. Real data is available for this research from boiling water reactor type nuclear power reactors. N...

Jaakko Talonen; Miki Sirola; Eimontas Augilius

2010-01-01T23:59:59.000Z

356

Nuclear Power Plant NDE Challenges - Past, Present, and Future  

SciTech Connect (OSTI)

This is a paper that covers the major thrust of NDE work that PNNL has conducted for the U.S. Nuclear Regulatory Commission from 1977 to the present.

Doctor, Steven R.

2007-01-01T23:59:59.000Z

357

Use of neural networks in the operation of nuclear power plants  

SciTech Connect (OSTI)

Application of neural networks to the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (a) diagnosing specific abnormal conditions, (b) detection of the change of mode of operation, (c) signal validation, (d) monitoring of check valves, (e) modeling of the plant thermodynamics, (f) emulation of core reload calculations, (g) analysis of temporal sequences in NRC's licensee event report,'' (h) monitoring of plant parameters, and (i) analysis of plant vibrations. Each of these projects and its status are described briefly in this article. the objective of each of these projects is to enhance the safety and performance of nuclear plants through the use of neural networks. 6 refs.

Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA) Oak Ridge National Lab., TN (USA))

1990-01-01T23:59:59.000Z

358

Radiation consequences of seawater contamination during floating storage of reactor-compartment units from salvaged nuclear-powered submarines  

Science Journals Connector (OSTI)

The storage time before salvaging of decommissioned nuclear-powered submarines and the floating storage time of reactor units from salvaged submarines ... decades. During this time, radioactive contamination of seawater

A. Ya. Blekher; N. L. Kuchin; I. V. Sergeev

359

Inspection of Nuclear Power Plant Structures - Overview of Methods and Related Applications  

SciTech Connect (OSTI)

The objectives of this limited study were to provide an overview of the methods that are available for inspection of nuclear power plant reinforced concrete and metallic structures, and to provide an assessment of the status of methods that address inspection of thick, heavily-reinforced concrete and inaccessible areas of the containment metallic pressure boundary. In meeting these objectives a general description of nuclear power plant safety-related structures was provided as well as identification of potential degradation factors, testing and inspection requirements, and operating experience; methods for inspection of nuclear power plant reinforced concrete structures and containment metallic pressure boundaries were identified and described; and applications of nondestructive evaluation methods specifically related to inspection of thick-section reinforced concrete structures and inaccessible portions of containment metallic pressure boundaries were summarized. Recommendations are provided on utilization of test article(s) to further advance nondestructive evaluation methods related to thick-section, heavily-reinforced concrete and inaccessible portions of the metallic pressure boundary representative of nuclear power plant containments. Conduct of a workshop to provide an update on applications and needed developments for nondestructive evaluation of nuclear power plant structures would also be of benefit.

Naus, Dan J [ORNL

2009-05-01T23:59:59.000Z

360

Social Decision-making Processes in Local Contexts: An STS Case Study on Nuclear Power Plant Siting in Japan  

Science Journals Connector (OSTI)

This is an STS case study of the social decision-making process on the siting of a nuclear power plant in Japan, from the point of view of a ... and the phase involving introduction into society. Nuclear power te...

Kohta Juraku; Tatsujiro Suzuki; Osamu Sakura

2007-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Use of fuel cells for improving on-site emergency power availability and reliability ad nuclear power plants  

E-Print Network [OSTI]

To assure safe shutdown of a nuclear power plant, there must always be reliable means of decay heat removal provided, in last resort, by an Emergency Core Cooling System (ECCS). Currently the majority of nuclear power ...

Akkaynak, Derya

2005-01-01T23:59:59.000Z

362

Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator is also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.

Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald; Jacques Hugo; Bruce Hallbert

2013-03-01T23:59:59.000Z

363

Initiating Event Rates at U.S. Nuclear Power Plants 1988–2013  

SciTech Connect (OSTI)

Analyzing initiating event rates is important because it indicates performance among plants and also provides inputs to several U.S. Nuclear Regulatory Commission (NRC) risk-informed regulatory activities. This report presents an analysis of initiating event frequencies at U.S. commercial nuclear power plants since each plant’s low-power license date. The evaluation is based on the operating experience from fiscal year 1988 through 2013 as reported in licensee event reports. Engineers with nuclear power plant experience staff reviewed each event report since the last update to this report for the presence of valid scrams or reactor trips at power. To be included in the study, an event had to meet all of the following criteria: includes an unplanned reactor trip (not a scheduled reactor trip on the daily operations schedule), sequence of events starts when reactor is critical and at or above the point of adding heat, occurs at a U.S. commercial nuclear power plant (excluding Fort St. Vrain and LaCrosse), and is reported by a licensee event report. This report displays occurrence rates (baseline frequencies) for the categories of initiating events that contribute to the NRC’s Industry Trends Program. Sixteen initiating event groupings are trended and displayed. Initiators are plotted separately for initiating events with different occurrence rates for boiling water reactors and pressurized water reactors. p-values are given for the possible presence of a trend over the most recent 10 years.

John A. Schroeder; Gordon R. Bower

2014-02-01T23:59:59.000Z

364

Investigation of main coolant pump trip problem in case of SB LOCA for Kozloduy Nuclear Power Plant, WWER-440/V230  

Science Journals Connector (OSTI)

Abstract This paper presents the results of thermal-hydraulic calculation of accident scenarios that involve the trip of main coolant pump (MCP) in case of Small break loss of coolant accident (SB LOCA) for WWER-440/V230 units at Kozloduy Nuclear Power Plant (KNPP), done in support of the development of Symptom Based Emergency Operating Procedures (SB EOPs) for this plant. The main purpose of these analyses is to show how the different time of MCP switching off results in primary inventory depletion in case of SB LOCA and it is reflect on peak cladding temperature. According to this, the SB LOCA scenario is regarded from the point of view of an inadequate core cooling. Therefore, the primary concern is Critical Safety Function (CSF) “Core cooling” and “Primary inventory”. High core residual heat, minimal safety injection flow and other initial conditions challenging the mentioned \\{CSFs\\} are the main particularities of the accepted scenarios. The RELAP5/MOD3.2 computer code has been used to perform the analyses in a WWER-440 Nuclear Power Plant (NPP) model. A model of WWER-440 based on Unit 4 of Kozloduy NPP has been developed for the system’s thermal-hydraulics code RELAP5/MOD3.2 at the Institute for Nuclear Research and Nuclear Energy – Bulgarian Academy of Sciences (INRNE-BAS), Sofia.

Pavlin Groudev; Marina Andreeva; Malinka Pavlova

2015-01-01T23:59:59.000Z

365

Evaluation of an advanced fault detection system using Koeberg nuclear power plant data / H.L. Pelo.  

E-Print Network [OSTI]

??The control and protection system of early nuclear power plants (Generation II) have been designed and built on the then reliable analog system. Technology has… (more)

Pelo, Herbert Leburu

2013-01-01T23:59:59.000Z

366

Investigation on the Benefits of Safety Margin Improvement in CANDU Nuclear Power Plant Using an FPGA-based Shutdown System.  

E-Print Network [OSTI]

??The relationship between response time and safety margin of CANadian Deuterium Uranium (CANDU) nuclear power plant (NPP) is investigated in this thesis. Implementation of safety… (more)

She, Jingke

2012-01-01T23:59:59.000Z

367

Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant  

SciTech Connect (OSTI)

A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated with the construction of the combined nuclear plant and hydrogen production facility. Operation and maintenance costs represent about 18% of the total cost ($0.57/kg). Variable costs (including the cost of nuclear fuel) contribute about 8.7% ($0.28/kg) to the total cost of hydrogen production, and decommissioning and raw material costs make up the remaining fractional cost.

E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

2008-01-01T23:59:59.000Z

368

Health Risks of Accidents at Nuclear Power Plants  

Science Journals Connector (OSTI)

To the Editor: Christodouleas et al. (June 16 issue) discuss the health risks of nuclear accidents but do not include the psychological and social effects of such events. Such casualties in Fukushima will far exceed any cases of physical illness. Having just returned from the region to assess mental... To the Editor: Christodouleas et al. (June 16 issue)1 discuss the health risks of nuclear accidents but do not include the psychological and social effects of such events. Such casualties in Fukushima will far exceed any cases of physical illness. Having ...

2011-09-08T23:59:59.000Z

369

Decommissioning of Large Components as an Example of Steam Generator from PWR Nuclear Power Plants  

SciTech Connect (OSTI)

This paper describes the procedure for the qualification of large components (Steam Generators) as an IP-2 package, the ship transport abroad to Sweden and the external treatment of this components to disburden the Nuclear Power Plant from this task, to assure an accelerated the deconstruction phase and to minimize the amount of waste. In conclusion: The transport of large components to an external treatment facility is linked with many advantages for a Nuclear Power Plant: - Disburden of the Nuclear Power Plant from the treatment of such components, - no timely influence on the deconstruction phase of the power reactor and therewith an accelerated deconstruction phase and - minimization of the waste to be returned and therewith less demand of required waste storage capacity. (authors)

Beverungen, M. [GNS Gesellschaft fur Nuklear-Service mbH, Hollestrabe 7A (Germany)

2008-07-01T23:59:59.000Z

370

OVERVIEW OF A RECONFIGURABLE SIMULATOR FOR MAIN CONTROL ROOM UPGRADES IN NUCLEAR POWER PLANTS  

SciTech Connect (OSTI)

This paper provides background on a reconfigurable control room simulator for nuclear power plants. The main control rooms in current nuclear power plants feature analog technology that is growing obsolete. The need to upgrade control rooms serves the practical need of maintainability as well as the opportunity to implement newer digital technologies with added functionality. There currently exists no dedicated research simulator for use in human factors design and evaluation activities for nuclear power plant modernization in the U.S. The new research simulator discussed in this paper provides a test bed in which operator performance on new control room concepts can be benchmarked against existing control rooms and in which new technologies can be validated for safety and usability prior to deployment.

Ronald L. Boring

2012-10-01T23:59:59.000Z

371

300-FF-1 Operable Unit physical separation of soils pilot plant study  

SciTech Connect (OSTI)

Alternative Remedial Technologies, Inc. (ART) was selected in a competitive selection process to conduct a pilot study for the physical separation of soils in the North Process Pond of the 300 Area at the Hanford Site. In January 1994, ART mobilized its 15 tons-per-hour pilot plant to the site. The plant was initially staged in a commercial area to allow for pretest inspections and minor modifications. The plant was specifically designed for use as a physical separations unit and consisted of a feed hopper, wet screens, hydrocyclones, as well as settling and dewatering equipment. The plant was supported in the field with prescreening equipment, mobile generators, air compressors, and water storage tanks. The plant was moved into the surface contamination area on March 24, 1994. The testing was conducted during the period March 23, 1994 through April 13, 1994. Two soil types were treated during the testing: a natural soil contaminated with low levels of uranium, cesium, cobalt, and heavy metals, and a natural soil contaminated with a uranium carbonate material that was visually recognizable by the presence of a green sludge material in the soil matrix. The ``green`` material contained significantly higher levels of the same contaminants. Both source materials were treated by the plant in a manner that fed the material, produced clean gravel and sand fractions, and concentrated the contaminants in a sludge cake. Process water was recycled during the operations. The testing was extremely successful in that for both source waste streams, it was demonstrated that volume reductions of greater than 90% could be achieved while also meeting the test performance criteria. The volume reduction for the natural soils averaged a 93.8%, while the ``green`` soils showed a 91.4% volume reduction.

Freeman-Pollard, J.R.

1994-01-15T23:59:59.000Z

372

Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water  

SciTech Connect (OSTI)

An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

Bud'ko, I. O. [JSC NIITsE 'Tsentrenergo' (Russian Federation)] [JSC NIITsE 'Tsentrenergo' (Russian Federation); Zhukov, A. G. [Rostov Nuclear Power Plant (Russian Federation)] [Rostov Nuclear Power Plant (Russian Federation)

2013-11-15T23:59:59.000Z

373

UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAR MATERIAL LlCENSE  

Office of Legacy Management (LM)

' ' ,' ' .:,: ' ,' ,,.. : .-: .: .A,.. :. .:,: ' .' :l:. ,:.:,. ,. ."i i..' ./. ' . : :, *:..: ,.a~ :.. ,::;: ;#j ,,. .,.' ' : 8:;) ,,> ,' UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAR MATERIAL LlCENSE pp.o-o\ 43 Licensee 1. Name spm%r ch+ti (hlqay 3. 2. Address i%si&t Building Kansas cay 5, ifissouri ~..--. 3. License No. .m4-329 I 4. Exp/rotion Date Sepikmber 30, I.962 -6. Special Nuclear:Material ~~~~SnrichedtoS~ I under this license ia the a-235 i.soto~p. one thoti (1ooo) kgs u-235 Contab$i in mani- etiched ta s$in ths U23.5 / isotope. -- 8. Authorized useFor i&e C' nwiC&. professing Of +ZXlXX enriohd IQ t0 s$-tifie u-235 isoi;ope bn, accordanoe 6th the procedures desczibed ii the, J.ic3x1m3~s ag@kations of Jme 22 andduly 28; 19%

374

United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management  

SciTech Connect (OSTI)

The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas.

Stewart, L.

2004-10-03T23:59:59.000Z

375

Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants  

SciTech Connect (OSTI)

This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.

Robert Bean; Casey Durst

2009-10-01T23:59:59.000Z

376

Natural Gas Processing Plants in the United States: 2010 Update / Table 2  

Gasoline and Diesel Fuel Update (EIA)

2. Average Annual Flows and Utilization Rates for Processing Plants in the United States 2. Average Annual Flows and Utilization Rates for Processing Plants in the United States Average Annual Flows (Million Cubic Feet per Day) Minimum Plant Utilization Rate Maximum Plant Utilization Rate Average Utilization Rate (Percent) 2008 Percent of U.S. Total Texas 14,020 27.3 3 100 71 Louisiana 10,462 20.4 3 100 56 Alaska 8,105 15.8 77 100 86 Wyoming 4,462 8.7 21 100 61 Colorado 2,934 5.7 15 100 77 Oklahoma 2,789 5.4 12 100 75 New Mexico 2,221 4.3 17 95 73 Illinois 1,601 3.1 35 76 76 Kansas 852 1.7 51 84 68 Alabama 746 1.5 32 80 60 Utah 728 1.4 22 100 61 Mississippi 688 1.3 29 67 30 California 557 1.1 2 100 64 West Virginia 382 0.7 70 91 82 Kentucky 217 0.4 40 92 75 Michigan 182 0.4 5 100 19 North Dakota 158 0.3 33 94 80 Montana 89 0.2 27 88 54 Pennsylvania 36 0.1 43 89 70 Arkansas 27 0.1 3 90 4 Florida 20 0.0 22 22 22 Tennessee 16 0.0 64 64 64 TOTAL U.S. 51,289 100.0 2 100 66 Note: Average utilization rates are based on 2008 flows and 2009 capacity,

377

Supplemnental Volume - Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Broader source: Energy.gov (indexed) [DOE]

Volume Volume Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS i Independent Oversight Assessment of Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant Supplemental Volume Table of Contents Foreword ...................................................................................................................................................... iii Acronyms ...................................................................................................................................................... v

378

Nuclear criticality safety evaluation of Spray Booth Operations in X-705, Portsmouth Gaseous Diffusion Plant  

SciTech Connect (OSTI)

This report evaluates nuclear criticality safety for Spray Booth Operations in the Decontamination and Recovery Facility, X-705, at the Portsmouth Gaseous Diffusion Plant. A general description of current procedures and related hardware/equipment is presented. Control parameters relevant to nuclear criticality safety are explained, and a consolidated listing of administrative controls and safety systems is developed. Based on compliance with DOE Orders and MMES practices, the overall operation is evaluated, and recommendations for enhanced safety are suggested.

Sheaffer, M.K.; Keeton, S.C.

1993-09-20T23:59:59.000Z

379

An analysis of nuclear power plant operating costs: A 1995 update  

SciTech Connect (OSTI)

Over the years real (inflation-adjusted) O&M cost have begun to level off. The objective of this report is to determine whether the industry and NRC initiatives to control costs have resulted in this moderation in the growth of O&M costs. Because the industry agrees that the control of O&M costs is crucial to the viability of the technology, an examination of the factors causing the moderation in costs is important. A related issue deals with projecting nuclear operating costs into the future. Because of the escalation in nuclear operating costs (and the fall in fossil fuel prices) many State and Federal regulatory commissions are examining the economics of the continued operation of nuclear power plants under their jurisdiction. The economics of the continued operation of a nuclear power plant is typically examined by comparing the cost of the plants continued operation with the cost of obtaining the power from other sources. This assessment requires plant-specific projections of nuclear operating costs. Analysts preparing these projections look at past industry-wide cost trends and consider whether these trends are likely to continue. To determine whether these changes in trends will continue into the future, information about the causal factors influencing costs and the future trends in these factors are needed. An analysis of the factors explaining the moderation in cost growth will also yield important insights into the question of whether these trends will continue.

NONE

1995-04-21T23:59:59.000Z

380

Natural Circulation in Water Cooled Nuclear Power Plants Phenomena, models, and methodology for system reliability assessments  

SciTech Connect (OSTI)

In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

Jose Reyes

2005-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

YAEC's view of the cause and control of escalating nuclear plant O and M costs  

SciTech Connect (OSTI)

This paper provides insights on this issue in terms of both the genesis and effective long-term control of O and M costs. Yankee Atomic Electric Company's (YAEC's) insights stem not only from an analysis of certain industry data, but also from its unique position within the nuclear industry in terms of its age, plant size, and organization. First, at 30 yr of age, the YAEC plant has endured the full swing of the regulatory/institutional pendulum and the associated impact on O and M costs. Second, with a size of only 185 MW(electric), YAEC's imperative since start-up has been the strict control of O and M costs while still achieving operational excellence. Finally, YAEC is an organization strictly focused on nuclear power operations and has not been distracted by fossil plant operations or other utility requirements like distribution, retail sales, etc., that may have plagued other plant operators.

Haseltine, J.D.; Lessard, L.P.

1990-01-01T23:59:59.000Z

382

Nuclear safety procedure upgrade project at USEC/MMUS gaseous diffusion plants  

SciTech Connect (OSTI)

Martin Marietta Utility Services has embarked on a program to upgrade procedures at both of its Gaseous Diffusion Plant sites. The transition from a U.S. Department of Energy government-operated facility to U.S. Nuclear Regulatory Commission (NRC) regulated has necessitated a complete upgrade of plant operating procedures and practices incorporating human factors as well as a philosophy change in their use. This program is designed to meet the requirements of the newly written 10CFR76, {open_quotes}The Certification of Gaseous Diffusion Plants,{close_quotes} and aid in progression toward NRC certification. A procedures upgrade will help ensure increased nuclear safety, enhance plant operation, and eliminate personnel procedure errors/occurrences.

Kocsis, F.J. III

1994-12-31T23:59:59.000Z

383

Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident  

SciTech Connect (OSTI)

To evaluate the genetic consequences of radioactive contamination originating from the Nuclear reactor accident of Chernobyl on indigenous populations of plants and animals, it is essential to determine the rates of accumulating genetic changes in chronically irradiated populations. An increase in germline mutation rates in humans living close to the Chernobyl Nuclear Power Plant site, and a two- to tenfold increase in germline mutations in barn swallows breeding in Chernobyl have been reported. Little is known, however, about the effects of chronic irradiation on plant genomes. Ionizing radiation causes double-strand breaks in DNA, which are repaired via illegitimate or homologous recombination. The authors make use of Arabidopsis thaliana plants carrying a {beta}-glucuronidase marker gene as a recombination substrate to monitor genetic alterations in plant populations, which are caused by nuclear pollution of the environment around Chernobyl. A significant increase in somatic intrachromosomal recombination frequencies was observed at nuclear pollution levels from 0.1--900 Ci/km{sup 2}, consistent with an increase in chromosomal aberrations. This bioindicator may serve as a convenient and ethically acceptable alternative to animal systems.

Kovalchuk, I.; Kovalchuk, O. [Ivano-Frankivsk State Medical Academy (Ukraine)]|[Friedrich Miescher Inst., Basel (Switzerland); Arkhipov, A. [Chernobyl Scientific and Technical Center of International Research (Ukraine); Hohn, B. [Friedrich Miescher Inst., Basel (Switzerland)

1998-11-01T23:59:59.000Z

384

The influence of condenser cooling seawater fouling on the thermal performance of a nuclear power plant  

Science Journals Connector (OSTI)

Abstract This study performs a thermodynamic analysis and energy balance to study the effect of fouling change on the thermal performance of the condenser and the thermal efficiency of a proposed nuclear power plant. The study is carried out on a pressurized water reactor nuclear power plant. The results of the study show that the increasing of fouling factor decreases the power output and the thermal efficiency of the nuclear power plant. The main results of this study is that the impact of an increase in the condenser cooling seawater fouling factor in the range 0.00015–0.00035 m2 K/W is led to a decrease in the plant output power and thermal efficiency of 1.36% and 0.448%, respectively. The present paper researches into a real practical factor that has significant negative effect on the thermal efficiency of the nuclear power plants, which is fouling of condenser cooling seawater. This is abundantly important since one of the top goals of new power stations are to increase their thermal efficiency, and to prevent or minimize the reasons that lead to loss of output power.

Said M.A. Ibrahim; Sami I. Attia

2015-01-01T23:59:59.000Z

385

The Debate over Re-Licensing the Vermont Yankee Nuclear Power Plant  

Science Journals Connector (OSTI)

In 2009, the NRC's Atomic Safety and Licensing Board approved a 20-year license extension for the Vermont Yankee Nuclear Power plant. Less than seven months later, the Vermont State Senate voted 26-4 to block the required certificate for public good. How did a plant seen as likely to be re-licensed become the first in 20 years to be rejected in a public vote?

Richard Watts; Paul Hines; Jonathan Dowds

2010-01-01T23:59:59.000Z

386

The debate over re-licensing the Vermont Yankee nuclear power plant  

SciTech Connect (OSTI)

In 2009, the NRC's Atomic Safety and Licensing Board approved a 20-year license extension for the Vermont Yankee Nuclear Power plant. Less than seven months later, the Vermont State Senate voted 26-4 to block the required certificate for public good. How did a plant seen as likely to be re-licensed become the first in 20 years to be rejected in a public vote? (author)

Watts, Richard; Hines, Paul; Dowds, Jonathan

2010-05-15T23:59:59.000Z

387

The Ural Electrochemical Integrated Plant Process for Managing Equipment Intended for Nuclear Material Protection, Control and Accounting System Upgrades  

SciTech Connect (OSTI)

Since 1996, the Ural Electrochemical Integrated Plant (UEIP) located in the town of Novouralsk, Russia, (previously known as Sverdlovsk-44) and the United States Department of Energy (U.S. DOE) have been cooperating under the Nuclear Material Protection, Control and Accounting (MPC&A) Program. Because UEIP is involved in the processing of highly enriched uranium (HEU) into low enriched uranium (LEU), and there are highly enriched nuclear materials on its territory, the main goal of the MPC&A cooperation is to upgrade those systems that ensure secure storage, processing and transportation of nuclear materials at the plant. UEIP has completed key upgrades (equipment procurement and installation) aimed at improving MPC&A systems through significant investments made by both the U.S. DOE and UEIP. These joint cooperative efforts resulted in bringing MPC&A systems into compliance with current regulations, which led to nuclear material (NM) theft risk reduction and prevention from other unlawful actions with respect to them. Upon the U.S. MPC&A project team’s suggestion, UEIP has developed an equipment inventory control process to track all the property provided through the MPC&A Program. The UEIP process and system for managing equipment provides many benefits including: greater ease and efficiency in determining the quantities, location, maintenance and repair schedule for equipment; greater assurance that MPC&A equipment is in continued satisfactory operation; and improved control in the development of a site sustainability program. While emphasizing UEIP’s equipment inventory control processes, this paper will present process requirements and a methodology that may have practical and helpful applications at other sites.

Yuldashev, Rashid; Nosov, Andrei; Carroll, Michael F.; Garrett, Albert G.; Dabbs, Richard D.; Ku, Esther M.

2008-10-01T23:59:59.000Z

388

Detection of radioxenon in Darwin, Australia following the Fukushima Dai-ichi nuclear power plant accident  

Science Journals Connector (OSTI)

Abstract A series of 133Xe detections in April 2011 made at the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) International Monitoring System noble gas station in Darwin, Australia, were analysed to determine the most likely source location. Forward and backwards atmospheric transport modelling simulations using FLEXPART were conducted. It was shown that the most likely source location was the Fukushima Dai-ichi nuclear power plant accident. Other potential sources in the southern hemisphere were analysed, including the Australian Nuclear Science and Technology Organisation (ANSTO) radiopharmaceutical facility, but it was shown that sources originating from these locations were highly unlikely to be the source of the observed 133Xe Darwin detections.

Blake Orr; Michael Schöppner; Rick Tinker; Wolfango Plastino

2013-01-01T23:59:59.000Z

389

Engineering and planning for decommissioning of nuclear power plants  

SciTech Connect (OSTI)

With the publication of NUREG-0586, ''Draft Generic Environmental Impact Statement on Decommissioning of Nuclear Facilities'' in January, 1981 the Nuclear Regulatory Commission staff has put the industry on notice that the termination of operating licenses and the final disposal of physical facilities will require the early consideration of several options and approaches and the preparation of comprehensive engineering and planning documents for the selected option at the end of useful life. This paper opens with a discussion of the options available and the principal aspects of decommissioning. The major emphasis of the composition is the nature of documents, the general approach to be followed, and special considerations to be taken into account when performing the detailed engineering and planning for decommissioning, as the end of life approaches and actual physical disposal is imminent. The author's main point of reference is on-going work by Burns and Roe, with Nuclear Energy Services, under contract to the Department of Energy's Richland Office, to perform the engineering and planning for the decommissioning of the Shippingport Atomic Power Station in Pennsylvania.

Gans, G.M. Jr.

1982-01-01T23:59:59.000Z

390

COOLING WATER ISSUES AND OPPORTUNITIES AT U.S. NUCLEAR POWER PLANTS  

SciTech Connect (OSTI)

This report has been prepared for the Department of Energy, Office of Nuclear Energy (DOE-NE), for the purpose of providing a status report on the challenges and opportunities facing the U.S. commercial nuclear energy industry in the area of plant cooling water supply. The report was prompted in part by recent Second Circuit and Supreme Court decisions regarding cooling water system designs at existing thermo-electric power generating facilities in the U.S. (primarily fossil and nuclear plants). At issue in the courts have been Environmental Protection Agency regulations that define what constitutes “Best Technology Available” for intake structures that withdraw cooling water that is used to transfer and reject heat from the plant’s steam turbine via cooling water systems, while minimizing environmental impacts on aquatic life in nearby water bodies used to supply that cooling water. The report was also prompted by a growing recognition that cooling water availability and societal use conflicts are emerging as strategic energy and environmental issues, and that research and development (R&D) solutions to emerging water shortage issues are needed. In particular, cooling water availability is an important consideration in siting decisions for new nuclear power plants, and is an under-acknowledged issue in evaluating the pros and cons of retrofitting cooling towers at existing nuclear plants. Because of the significant ongoing research on water issues already being performed by industry, the national laboratories and other entities, this report relies heavily on ongoing work. In particular, this report has relied on collaboration with the Electric Power Research Institute (EPRI), including its recent work in the area of EPA regulations governing intake structures in thermoelectric cooling water systems.

Gary Vine

2010-12-01T23:59:59.000Z

391

Analysis of population radiation dose from a postulated nuclear power plant complex  

E-Print Network [OSTI]

CALCULATIONS Plant Complex Layout Site Of Study The site was chosen to coincide with the current site of the A. W. Vogtle Nuclear Plant (VNP) of Georgia Power Company. This site is located in Burke County, Georgia on the western bank of the Savannah River... mile from neighboring power plants. All eight facilities were sited collinearly along a NW to SE line through site number 4. This approximately parallels the Savannah River. A diagram of this layout is given in Figure 3. As may be seen in Figure 4...

Williford, John Michael

2012-06-07T23:59:59.000Z

392

Applicability of base-isolation R D in non-reactor facilities to a nuclear reactor plant  

SciTech Connect (OSTI)

Seismic isolation is gaining increased attention worldwide for use in a wide spectrum of critical facilities, ranging from hospitals and computing centers to nuclear power plants. While the fundamental principles and technology are applicable to all of these facilities, the degree of assurance that the actual behavior of the isolation systems is as specified varies with the nature of the facility involved. Obviously, the level of effort to provide such assurance for a nuclear power plant will be much greater than that required for, say, a critical computer facility. The question, therefore, is to what extent can research and development (R D) for non-nuclear use be used to provide technological data needed for seismic isolation of a nuclear power plant. This question, of course is not unique to seismic isolation. Virtually every structural component, system, or piece of equipment used in nuclear power plants is also used in non- nuclear facilities. Experience shows that considerable effort is needed to adapt conventional technology into a nuclear power plant. Usually, more thorough analysis is required, material and fabrication quality-control requirements are more stringent as are controls on field installation. In addition, increased emphasis on maintainability and inservice inspection throughout the life of the plant is generally required to gain acceptance in nuclear power plant application. This paper reviews the R D programs ongoing for seismic isolation in non-nuclear facilities and related experience and makes a preliminary assessment of the extent to which such R D and experience can be used for nuclear power plant application. Ways are suggested to improve the usefulness of such non-nuclear R D in providing the high level of confidence required for the use of seismic isolation in a nuclear reactor plant. 2 refs.

Seidensticker, R.W.; Chang, Y.W.

1990-01-01T23:59:59.000Z

393

The integrated workstation: A common, consistent link between nuclear plant personnel and plant information and computerized resources  

SciTech Connect (OSTI)

The increasing use of computer technology in the US nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. Data concerning a power plant`s design, configuration, operational and maintenance histories, and current status, and the information that can be derived from them, provide the link between the plant and plant staff. It is through this information bridge that operations, maintenance and engineering personnel understand and manage plant performance. However, it is necessary to transform the vast quantity of data available from various computer systems and across communications networks into clear, concise, and coherent information. In addition, it is important to organize this information into a consolidated, structured form within an integrated environment so that various users throughout the plant have ready access at their local station to knowledge necessary for their tasks. Thus, integrated workstations are needed to provide the inquired information and proper software tools, in a manner that can be easily understood and used, to the proper users throughout the plant. An effort is underway at the Oak Ridge National Laboratory to address this need by developing Integrated Workstation functional requirements and implementing a limited-scale prototype demonstration. The integrated Workstation requirements will define a flexible, expandable computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades to add enhanced applications. The functionality to be supported by the integrated workstation and inherent capabilities to be provided by the workstation environment win be described. In addition, general technology areas which are to be addressed in the Integrated Workstation functional requirements will be discussed.

Wood, R.T.; Knee, H.E.; Mullens, J.A.; Munro, J.K. Jr.; Swail, B.K.; Tapp, P.A.

1993-05-01T23:59:59.000Z

394

The EOP Visualization Module Integrated into the Plasma On-Line Nuclear Power Plant Safety Monitoring and Assessment System  

SciTech Connect (OSTI)

An ambitious project to replace the unit information systems (UISs) at the Hungarian Paks nuclear power plant was started in 1998-99. The basic aim of the reconstruction project is to install a modern, distributed UIS architecture on all four Paks VVER-440 units. The new UIS includes an on-line plant safety monitoring and assessment system (PLASMA), which contains a critical safety functions monitoring module and provides extensive operator support during the execution of the new, symptom-oriented emergency operating procedures (EOPs). PLASMA includes a comprehensive EOP visualization module, based on the COPMA-III procedure-handling software developed by the Organization for Economic Cooperation and Development, Halden Reactor Project. Intranet technology is applied for the presentation of the EOPs with the use of a standard hypertext markup language (HTML) browser as a visualization tool. The basic design characteristics of the system, with a detailed description of its user interface and functions of the new EOP display module, are presented.

Hornaes, Arne [Organization for Economic Cooperation and Development (France); Hulsund, John Einar [Organization for Economic Cooperation and Development (France); Vegh, Janos [KFKI Atomic Energy Research Institute (Hungary); Major, Csaba [KFKI Atomic Energy Research Institute (Hungary); Horvath, Csaba [KFKI Atomic Energy Research Institute (Hungary); Lipcsei, Sandor [KFKI Atomic Energy Research Institute (Hungary); Kapocs, Gyoergy [Paks Nuclear Power Plant Ltd. (Hungary)

2001-08-15T23:59:59.000Z

395

Materials characterization capabilities at DOE Nuclear Weapons Laboratories and Production Plants  

SciTech Connect (OSTI)

The materials characterization and analytical chemistry capabilities at the 11 DOE Nuclear Weapons Laboratories or Production Plants have been surveyed and compared. In general, all laboratories have similar capabilities and equipment. Facilities or capabilities that are unique or that exist at only a few laboratories are described in detail.

Pyper, J.W.

1984-06-01T23:59:59.000Z

396

PLC-Based Safety Critical Software Development for Nuclear Power Plants  

E-Print Network [OSTI]

PLC-Based Safety Critical Software Development for Nuclear Power Plants Junbeom Yoo1 , Sungdeok Cha}@kaeri.re.kr Abstract. This paper proposes a PLC(Programmable Logic Controller)-based safety critical software(FBD), a widely used PLC programming language. Finally, we manually refine the FBD programs so that redundant

397

Survey of thermal-hydraulic models of commercial nuclear power plants  

SciTech Connect (OSTI)

A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC`s current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

Determan, J.C.; Hendrix, C.E.

1992-12-01T23:59:59.000Z

398

Survey of thermal-hydraulic models of commercial nuclear power plants  

SciTech Connect (OSTI)

A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

Determan, J.C.; Hendrix, C.E.

1992-12-01T23:59:59.000Z

399

A formal software requirements specification method for digital nuclear plant protection systems  

E-Print Network [OSTI]

of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology (KAIST those in aerospace, satellite and nuclear power plants, whose failure could result in danger to human life, property or environment. It is recently becoming more important due to the increase

400

Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident  

SciTech Connect (OSTI)

This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.

Guss, P. P.

2012-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An evaluation of the dismantling technologies for decommissioning of nuclear power plants  

Science Journals Connector (OSTI)

Abstract This paper is to suggest an evaluation method on the dismantling technologies for decommissioning of nuclear power plants. The parameters of evaluation are performance impacts, site-specific impacts, safety impacts, and cost impacts. The evaluation model was provided and applied for dismantling of a steam generator.

KwanSeong Jeong; ByungSeon Choi; Jeikwon Moon; Dongjun Hyun; JongHwan Lee; IkJune Kim; GeunHo Kim; JaeSeok Seo

2014-01-01T23:59:59.000Z

402

Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants,  

Broader source: Energy.gov (indexed) [DOE]

Cooling Water Issues and Opportunities at U.S. Nuclear Power Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants, December 2010 Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants, December 2010 Energy and water are both essential to sustainable development and economic productivity. Ample supplies of water are essential to energy production, and water management is dependent on ample supplies of energy for water treatment and transportation. The critical nexus between energy and water has been recognized in a variety of recent studies, but the policy and regulatory machinery that this nexus depends on is not keeping up with the growing challenges. Population growth and societal demand for improved quality of life will require more clean water for drinking and sanitation, more water for

403

Extending Sensor Calibration Intervals in Nuclear Power Plants  

SciTech Connect (OSTI)

Currently in the USA, sensor recalibration is required at every refueling outage, and it has emerged as a critical path item for shortening outage duration. International application of calibration monitoring, such as at the Sizewell B plant in UK, has shown that sensors may operate for eight years, or longer, within calibration tolerances. Online monitoring can be employed to identify those sensors which require calibration, allowing for calibration of only those sensors which need it. The US NRC accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no plants have been granted the necessary license amendment to apply it. This project addresses key issues in advanced recalibration methodologies and provides the science base to enable adoption of best practices for applying online monitoring, resulting in a public domain standardized methodology for sensor calibration interval extension. Research to develop this methodology will focus on three key areas: (1) quantification of uncertainty in modeling techniques used for calibration monitoring, with a particular focus on non-redundant sensor models; (2) accurate determination of acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and (3) the use of virtual sensor estimates to replace identified faulty sensors to extend operation to the next convenient maintenance opportunity.

Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Shumaker, Brent; Hashemian, Hash

2012-11-15T23:59:59.000Z

404

State of the art review of radioactive waste volume reduction techniques for commercial nuclear power plants  

SciTech Connect (OSTI)

A review is made of the state of the art of volume reduction techniques for low level liquid and solid radioactive wastes produced as a result of: (1) operation of commercial nuclear power plants, (2) storage of spent fuel in away-from-reactor facilities, and (3) decontamination/decommissioning of commercial nuclear power plants. The types of wastes and their chemical, physical, and radiological characteristics are identified. Methods used by industry for processing radioactive wastes are reviewed and compared to the new techniques for processing and reducing the volume of radioactive wastes. A detailed system description and report on operating experiences follow for each of the new volume reduction techniques. In addition, descriptions of volume reduction methods presently under development are provided. The Appendix records data collected during site surveys of vendor facilities and operating power plants. A Bibliography is provided for each of the various volume reduction techniques discussed in the report.

Not Available

1980-04-01T23:59:59.000Z

405

EU could go it alone on nuclear fusion plant 29.11.2004 -10:02 CET | By Richard Carter  

E-Print Network [OSTI]

EU could go it alone on nuclear fusion plant 29.11.2004 - 10:02 CET | By Richard Carter The EU research ministers. Talks over the world's first nuclear fusion reactor have stalled because Japan apart, the fusion technique binds atoms together to produce energy. But to produce nuclear fusion

406

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR POWER PLANTS IN  

E-Print Network [OSTI]

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Accepted June 2008 1 HYDROGEN STORAGE FOR MIXED WIND-NUCLEAR evaluation of hydrogen production and storage for a mixed wind-nuclear power plant considering some new of a combined nuclear-wind-hydrogen system is discussed first, where the selling and buying of electricity

Cañizares, Claudio A.

407

France clings to fusion dreams Paris is demanding that Europe go ahead with plans to build a nuclear fusion plant,  

E-Print Network [OSTI]

a nuclear fusion plant, even if it misses out on international funding. Cadarache in the south of France" but cautioned that the ¤10 billion needed was "a significant amount of money". Supporters of nuclear fusion say are in plentiful supply, and fusion reactors would not produce fissile materials that could be used in nuclear

408

The integrated workstation: A common, consistent link between nuclear plant personnel and plant information and computerized resources  

SciTech Connect (OSTI)

The increasing use of computer technology in the US nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. Data concerning a power plant's design, configuration, operational and maintenance histories, and current status, and the information that can be derived from them, provide the link between the plant and plant staff. It is through this information bridge that operations, maintenance and engineering personnel understand and manage plant performance. However, it is necessary to transform the vast quantity of data available from various computer systems and across communications networks into clear, concise, and coherent information. In addition, it is important to organize this information into a consolidated, structured form within an integrated environment so that various users throughout the plant have ready access at their local station to knowledge necessary for their tasks. Thus, integrated workstations are needed to provide the inquired information and proper software tools, in a manner that can be easily understood and used, to the proper users throughout the plant. An effort is underway at the Oak Ridge National Laboratory to address this need by developing Integrated Workstation functional requirements and implementing a limited-scale prototype demonstration. The integrated Workstation requirements will define a flexible, expandable computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades to add enhanced applications. The functionality to be supported by the integrated workstation and inherent capabilities to be provided by the workstation environment win be described. In addition, general technology areas which are to be addressed in the Integrated Workstation functional requirements will be discussed.

Wood, R.T.; Knee, H.E.; Mullens, J.A.; Munro, J.K. Jr.; Swail, B.K.; Tapp, P.A.

1993-01-01T23:59:59.000Z

409

Covert plant detection - Excerpt from Nuclear Engineering International (Nov. 2007)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NOVEMBER 2007 NOVEMBER 2007 I N T E R N A T I O N A L 6 www.neimagazine.com [ .ol52 No 640 November 2007 CONTENTS b . . - . 4 First full COL application; Scotland rejects new build; EPR state aid ruling; GNEP swells; U S risk ' urance conditional agreement - . - - - - -- - -- - - s I N T E R N A T I O N A L I COMPANY NEWS 6 The latest company news and contract results Editor: COMMENT > . 12 Developing nations must take the lead on new Editorial Assistants: Tracey Honney Elaine Sneath nuclear build 14 AECL has optimised instrumentation for its ACR-1000 reactor I Group Advertisement Mana Scott Calvin European Sales Executive: Journal Secretary: ' - I . i RADIATION MONITORING & ALARA . % * - 17 lonising radiation for medical diagnosis contributes 90% of the total exposure of the UK population to

410

Nuclear safeguard protocol construction for nuclear power plants using analytic hierarchy process with zero-sum method  

Science Journals Connector (OSTI)

A nuclear safeguard protocol (NSP) is constructed for the nuclear material flow in the operation of nuclear power plants (NPPs). Secure plant operation is one of critical issues against the risk of possible terrorism. The basic event of the related incidents is quantified by the random sampling of the Monte-Carlo method incorporating a zero-sum method. The analytic hierarchy process is developed as the maximum pair values with multiplications which are decided by the matrix-form analysis used to compare five types of NPPs of interest. Using the life cycle of 60 years, the range of the secure operation is between 0.0166000 and 0.0209531 as relative numbers. This means that the highest value in the range of secure power operation is about 1.26 times higher than the lowest one in this study. Consistency in terms of Consistency Index (CI) and Consistency Ratio (CR) is the highest in the 24th and the 54th years. Therefore, the NSP is constructed for successful safe operation.

Taeho Woo

2011-01-01T23:59:59.000Z

411

Nuclear & Uranium - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Find statistics on nuclear operable units, nuclear electricity net Find statistics on nuclear operable units, nuclear electricity net generation, nuclear share of electricity net generation, and capacity factor. + EXPAND ALL Summary Additional Formats Nuclear Overview: PDF CSV XLS Monthly statistics on nuclear operable units, nuclear electricity net generation, nuclear share of electricity net generation, and capacity factor. PDFXLS Annual statistics on nuclear generating units, power plants operations, and uranium. › Nuclear Generating Units, 1955-2010 › PDF XLS Nuclear Power Plant Operations, 1957-2010 › PDF XLS Uranium Overview, 1949-2010 › PDF XLS Uranium & Nuclear Fuel Additional Formats U.S. Uranium Reserves Estimates › Release Date: July 2010 The U.S. Energy Information Administration (EIA) has updated its estimates of uranium reserves for year-end 2008. This represents the first revision of the estimates since 2004. PDF

412

Next Generation Nuclear Plant Defense-in-Depth Approach  

SciTech Connect (OSTI)

The purpose of this paper is to (1) document the definition of defense-in-depth and the pproach that will be used to assure that its principles are satisfied for the NGNP project and (2) identify the specific questions proposed for preapplication discussions with the NRC. Defense-in-depth is a safety philosophy in which multiple lines of defense and conservative design and evaluation methods are applied to assure the safety of the public. The philosophy is also intended to deliver a design that is tolerant to uncertainties in knowledge of plant behavior, component reliability or operator performance that might compromise safety. This paper includes a review of the regulatory foundation for defense-in-depth, a definition of defense-in-depth that is appropriate for advanced reactor designs based on High Temperature Gas-cooled Reactor (HTGR) technology, and an explanation of how this safety philosophy is achieved in the NGNP.

Edward G. Wallace; Karl N. Fleming; Edward M. Burns

2009-12-01T23:59:59.000Z

413

The Relationship of Science Knowledge, Attitude and Decision Making on Socio-scientific Issues: The Case Study of Students’ Debates on a Nuclear Power Plant in Korea  

Science Journals Connector (OSTI)

In line with their attitude toward radioactivity, the students felt that accidents in nuclear power plants would become more frequent. They stated that nuclear power plants are not safe from terrorism or natural ...

Hunkoog Jho; Hye-Gyoung Yoon; Mijung Kim

2014-05-01T23:59:59.000Z

414

Experimental validation of the cooling loop for a passive system for removing heat from the AES-2006 protective envelope design for the Leningradskaya nuclear power plant site  

Science Journals Connector (OSTI)

Equipping new-generation nuclear power plants with passive means for controlling unanticipated ... design for the site of the Leningradskaya nuclear power plant. An urgent problem is to obtain ... validation of t...

A. M. Bakhmet’ev; M. A. Bol’shukhin; V. V. Vakhrushev; A. M. Khizbullin…

2009-03-01T23:59:59.000Z

415

High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion  

SciTech Connect (OSTI)

In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

El-Genk, Mohamed S.; Tournier, Jean-Michel P. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Department, The University of New Mexico, Albuquerque, NM (United States)

2002-07-01T23:59:59.000Z

416

Technical cooperation on nuclear security between the United States and China : review of the past and opportunities for the future.  

SciTech Connect (OSTI)

The United States and China are committed to cooperation to address the challenges of the next century. Technical cooperation, building on a long tradition of technical exchange between the two countries, can play an important role. This paper focuses on technical cooperation between the United States and China in the areas of nonproliferation, arms control and other nuclear security topics. It reviews cooperation during the 1990s on nonproliferation and arms control under the U.S.-China Arms Control Exchange, discusses examples of ongoing activities under the Peaceful Uses of Technology Agreement to enhance security of nuclear and radiological material, and suggests opportunities for expanding technical cooperation between the defense nuclear laboratories of both countries to address a broader range of nuclear security topics.

Pregenzer, Arian Leigh

2011-12-01T23:59:59.000Z

417

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration  

E-Print Network [OSTI]

, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL ­ Supply chains and logistics ­ Systems of systems (e.g., the nuclear fuel cycle, fleet management) #12

Langerhans, Brian

418

Suez SNC-Lavalin Nuclear to replace US steam generator  

Science Journals Connector (OSTI)

SNC-Lavalin Nuclear (USA) has signed a contract with Xcel Energy to replace the Unit #2 steam generators at the Prairie Island Nuclear Generating Plant (PINGP) in Welch, Minnesota.

2010-01-01T23:59:59.000Z

419

Auxiliary feedwater system risk-based inspection guide for the H. B. Robinson nuclear power plant  

SciTech Connect (OSTI)

In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. H. B. Robinson was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the H. B. Robinson plant.

Moffitt, N.E.; Lloyd, R.C.; Gore, B.F.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States); Garner, L.W. [Nuclear Regulatory Commission, Washington, DC (United States)

1993-08-01T23:59:59.000Z

420

Auxiliary feedwater system risk-based inspection guide for the McGuire nuclear power plant  

SciTech Connect (OSTI)

In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. McGuire was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the McGuire plant.

Bumgardner, J.D.; Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Auxiliary feedwater system risk-based inspection guide for the South Texas Project nuclear power plant  

SciTech Connect (OSTI)

In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. South Texas Project was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the South Texas Project plant.

Bumgardner, J.D.; Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V. [Pacific Northwest Lab., Richland, WA (United States)

1993-12-01T23:59:59.000Z

422

Nuclear-power-plant perimeter-intrusion alarm systems  

SciTech Connect (OSTI)

Timely intercept of an intruder requires the examination of perimeter barriers and sensors in terms of reliable detection, immediate assessment and prompt response provisions. Perimeter security equipment and operations must at the same time meet the requirements of the Code of Federal Regulations, 10 CFR 73.55 with some attention to the performance and testing figures of Nuclear Regulatory Guide 5.44, Revision 2, May 1980. A baseline system is defined which recommends a general approach to implementing perimeter security elements: barriers, lighting, intrusion detection, alarm assessment. The baseline approach emphasizes cost/effectiveness achieved by detector layering and logic processing of alarm signals to produce reliable alarms and low nuisance alarm rates. A cost benefit of layering along with video assessment is reduction in operating expense. The concept of layering is also shown to minimize testing costs where detectability performance as suggested by Regulatory Guide 5.44 is to be performed. Synthesis of the perimeter intrusion alarm system and limited testing of CCTV and Video Motion Detectors (VMD), were performed at E-Systems, Greenville Division, Greenville, Texas during 1981.

Halsey, D.J.

1982-04-01T23:59:59.000Z

423

A Review of Information for Managing Aging in Nuclear Power Plants  

SciTech Connect (OSTI)

Age related degradation effects in safety related systems of nuclear power plants should be managed to prevent safety margins from eroding below the acceptable limits provided in plant design bases. The Nuclear Plant Aging Research (NPAR) Pro- gram, conducted under the auspices of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, and other related aging management programs are developing technical information on managing aging. The aging management process central to these efforts consists of three key elements: 1) selecting structures, systems, and components (SSCs) in which aging should be controlled; 2) understanding the mechanisms and rates of degradation in these SSCs; and 3) managing degradation through effective inspection, surveillance, condition monitoring, trending, record keeping, mainten- ance, refurbishment, replacement, and adjustments in the operating environment and service conditions. This document concisely reviews and integrates information developed under the NPAR Program and other aging management studies and other available information related to understanding and managing age-related degradation effects and provides specific refer- ences to more comprehensive information on the same subjects.

WC Morgan; JV Livingston

1995-09-01T23:59:59.000Z

424

Method of installing a control room console in a nuclear power plant  

DOE Patents [OSTI]

An advanced control room complex for a nuclear power plant, including a discrete indicator and alarm system (72) which is nuclear qualified for rapid response to changes in plant parameters and a component control system (64) which together provide a discrete monitoring and control capability at a panel (14-22, 26, 28) in the control room (10). A separate data processing system (70), which need not be nuclear qualified, provides integrated and overview information to the control room and to each panel, through CRTs (84) and a large, overhead integrated process status overview board (24). The discrete indicator and alarm system (72) and the data processing system (70) receive inputs from common plant sensors and validate the sensor outputs to arrive at a representative value of the parameter for use by the operator during both normal and accident conditions, thereby avoiding the need for him to assimilate data from each sensor individually. The integrated process status board (24) is at the apex of an information hierarchy that extends through four levels and provides access at each panel to the full display hierarchy. The control room panels are preferably of a modular construction, permitting the definition of inputs and outputs, the man machine interface, and the plant specific algorithms, to proceed in parallel with the fabrication of the panels, the installation of the equipment and the generic testing thereof.

Scarola, Kenneth (Windsor, CT); Jamison, David S. (Windsor, CT); Manazir, Richard M. (North Canton, CT); Rescorl, Robert L. (Vernon, CT); Harmon, Daryl L. (Enfield, CT)

1994-01-01T23:59:59.000Z

425

Redundant Sensor Calibration and Estimation for Monitoring and Control of Nuclear Power Plants Xin Jin, Asok Ray and Robert M. Edwards  

E-Print Network [OSTI]

Redundant Sensor Calibration and Estimation for Monitoring and Control of Nuclear Power Plants Xin@engr.psu.edu INTRODUCTION Performance, reliability and safety of nuclear power plants depend upon validity and accuracy are installed with redundancy in nuclear power plants. Redundancy can be classified into two groups: direct

Ray, Asok

426

Compressor and Turbine Models of Brayton Units for Space Nuclear Power Systems  

SciTech Connect (OSTI)

Closed Brayton Cycles with centrifugal flow, single-shaft turbo-machines are being considered, with gas cooled nuclear reactors, to provide 10's to 100's of electrical power to support future space exploration missions and Lunar and Mars outposts. Such power system analysis is typically based on the cycle thermodynamics, for given operating pressures and temperatures and assumed polytropic efficiencies of the compressor and turbine of the Brayton energy conversion units. Thus the analysis results not suitable for modeling operation transients such as startup and changes in the electric load. To simulate these transients, accurate models of the turbine and compressor in the Brayton rotating unit, which calculate the changes in the compressor and turbine efficiencies with system operation are needed. This paper presents flow models that account for the design and dimensions of the compressor impeller and diffuser, and the turbine stator and rotor blades. These models calculate the various enthalpy losses and the polytropic efficiencies along with the pressure ratios of the turbine and compressor. The predictions of these models compare well with reported performance data of actual hardware. In addition, the results of a parametric analysis to map the operations of the compressor and turbine, as functions of the rotating shaft speed and inlet Mach number of the gas working fluid, are presented and discussed. The analysis used a binary mixture of He-Xe with a molecular weight of 40 g/mole as the working fluid.

Gallo, Bruno M.; El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM, 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM, 87131 (United States)

2007-01-30T23:59:59.000Z

427

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters  

Broader source: Energy.gov [DOE]

Arrangement between the Office for Nuclear Regulation of Great Britain and the United States Department of Energy for the Exchange of Information and Co-operation in the Area of Nuclear Safety Matters.

428

Applications of neural networks to monitoring and decision making in the operation of nuclear power plants. Summary  

SciTech Connect (OSTI)

Application of neural networks to monitoring and decision making in the operation of nuclear power plants is being investigated under a US Department of Energy sponsored program at the University of Tennessee. Projects include the feasibility of using neural networks for the following tasks: (1) diagnosing specific abnormal conditions or problems in nuclear power plants, (2) detection of the change of mode of operation of the plant, (3) validating signals coming from detectors, (4) review of ``noise`` data from TVA`s Sequoyah Nuclear Power Plant, and (5) examination of the NRC`s database of ``Letter Event Reports`` for correlation of sequences of events in the reported incidents. Each of these projects and its status are described briefly in this paper. This broad based program has as its objective the definition of the state-of-the-art in using neural networks to enhance the performance of commercial nuclear power plants.

Uhrig, R.E. [Tennessee Univ., Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

1990-12-31T23:59:59.000Z

429

Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays  

Science Journals Connector (OSTI)

Recently world has been confused by issues of energy resourcing including fossil fuel use global warming and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end?users particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN?IV reactors nuclear projects (HTGRs HTR VHTR) is also can produce hydrogen from the process. In the present study hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

2010-01-01T23:59:59.000Z

430

Resource Conservation and Recovery Act (RCRA) Part B permit application for Production Associated Units at the Oak Ridge Y-12 Plant  

SciTech Connect (OSTI)

Attention is focused on permit applications for the following units: Building 9206 Container Storage Unit; Building 9212 Container Storage Unit; Building 9720-12 Container Storage Unit; and Cyanide Treatment Unit. This report addresses the following areas: facility description; waste characteristics; process information; ground water monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plant, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification.

NONE

1995-05-01T23:59:59.000Z

431

UNIT NUMBER:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

432

Development of a Flexible Computerized Management Infrastructure for a Commercial Nuclear Power Plant  

SciTech Connect (OSTI)

The report emphasizes smooth transition from paper-based procedure systems (PBPSs) to computer-based procedure systems (CBPSs) for the existing commercial nuclear power plants in the U.S. The expected advantages and of the transition are mentioned including continued, safe and efficient operation of the plants under their recently acquired or desired extended licenses. The report proposes a three-stage survey to aid in developing a national strategic plan for the transition from PBPSs to CBPSs. It also includes a comprehensive questionnaire that can be readily used for the first stage of the suggested survey.

Ali, Syed Firasat; Hajek, Brian K.; Usman, Shoaib

2006-05-01T23:59:59.000Z

433

Auxiliary feedwater system risk-based inspection guide for the Byron and Braidwood nuclear power plants  

SciTech Connect (OSTI)

In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Byron and Braidwood were selected for the fourth study in this program. The produce of this effort is a prioritized listing of AFW failures which have occurred at the plants and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Byron/Braidwood plants. 23 refs., 1 fig., 1 tab.

Moffitt, N.E.; Gore, B.F.: Vo, T.V. (Pacific Northwest Lab., Richland, WA (USA))

1991-07-01T23:59:59.000Z

434

An aerial radiological survey of the Pilgrim Station Nuclear Power Plant and surrounding area, Plymouth, Massachusetts  

SciTech Connect (OSTI)

Terrestrial radioactivity surrounding the Pilgrim Station Nuclear Power Plant was measured using aerial radiolog- ical survey techniques. The purpose of this survey was to document exposure rates near the plant and to identify unexpected, man-made radiation sources within the survey area. The surveyed area included land areas within a three-mile radius of the plant site. Data were acquired using an airborne detection system that employs sodium iodide, thallium-activated detectors. Exposure rate and photopeak counts were computed from these data and plotted on aerial photographs of the survey area. Several ground-based exposure measurements were made for comparison with the,aerial survey results. Exposure rates in areas surrounding the plant site varied from 6 to 10 microroentgens per hour, with exposure rates below 6 microroentgens per hour occurring over bogs and marshy areas. Man-made radiation was found to be higher than background levels at the plant site. Radation due to nitrogen-1 6, which is produced in the steam cycle of a boiling-water reactor, was the primaty source of activity found at the plant site. Cesium-137 activity at levels slightly above those expected from natural fallout was found at isolated locations inland from the plant site. No other detectable sources of man-made radioactivity were found.

Proctor, A.E.

1997-06-01T23:59:59.000Z

435

Release of Pu Isotopes from the Fukushima Daiichi Nuclear Power Plant Accident to the Marine Environment Was Negligible  

Science Journals Connector (OSTI)

Release of Pu Isotopes from the Fukushima Daiichi Nuclear Power Plant Accident to the Marine Environment Was Negligible ... On 11 March 2011, a massive earthquake with a magnitude of M 9.0 occurred in the western North Pacific about 180 km off the Fukushima Daiichi Nuclear Power Plant (FDNPP) in the northeast coast of Japan and it was followed by gigantic tsunami. ... Since the accident at Fukushima Daiichi Nuclear Power Plant (1FNPP), significant levels of anthropogenic radionuclides have been detected in seabed sediments off the east coast of Japan. ...

Wenting Bu; Miho Fukuda; Jian Zheng; Tatsuo Aono; Takashi Ishimaru; Jota Kanda; Guosheng Yang; Keiko Tagami; Shigeo Uchida; Qiuju Guo; Masatoshi Yamada

2014-07-22T23:59:59.000Z

436

Summary and analysis of public comments on NUREG-1317: Regulatory options for nuclear plant license renewal: Final report  

SciTech Connect (OSTI)

On August 29, 1988, the US Nuclear Regulatory Commission (NRC) issued an Advance Notice of Proposed Rulemaking on nuclear plant license renewal and solicited public comments on NUREG-1317, ''Regulatory Options for Nuclear Plant License Renewal.'' NUREG-1317 presents a discussion of fifteen topics involving technical, environmental, and procedural issues and poses a set of related questions. As part of its ongoing task for the NRC, The MITRE Corporation has summarized and analyzed the public comments received. Fifty-three written comments were received. Of these, 83 percent were from nuclear industry representatives; the remaining comments represented federal and state agencies, public interest groups, and a private citizen.

Ligon, D.M.; Seth, S.S.

1989-03-01T23:59:59.000Z

437

Safety at a glance; Upgrading the displays in a nuclear plant control room  

SciTech Connect (OSTI)

As part of an effort to upgrade aging plants, computer-integrated data-acquisition systems are beginning to penetrate the nation's nuclear power control rooms. The impetus is also partly due to the legacy of Three Mile Island, where control room operators, confused about which stream pressure line reading was correct, unfortunately believed the wrong one. This paper reports on the Vermont Yankee nuclear generating facility near Brattleboro, Vt., where the new SPDS requirement provided the opportunity to reassess the existing automated data-acquisition system, an installation that came as original equipment when the plant opened in 1972. The system, a Honeywell industrial computer repackaged by General Electric (which built the reactor), has become obsolete.

Baer, T.

1992-01-01T23:59:59.000Z

438

Aerial radiation monitoring around the Fukushima Dai-ichi nuclear power plant using an unmanned helicopter  

Science Journals Connector (OSTI)

Abstract The Great East Japan Earthquake on March 11, 2011 generated a series of large tsunami that seriously damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which resulted in the release of radioactive materials into the environment. To provide further details regarding the distribution of air dose rate and the distribution of radioactive cesium (134Cs and 137Cs) deposition on the ground within a radius of approximately 5 km from the nuclear power plant, we carried out measurements using an unmanned helicopter equipped with a radiation detection system. The distribution of the air dose rate at a height of 1 m above the ground and the radioactive cesium deposition on the ground was calculated. Accordingly, the footprint of radioactive plumes that extended from the FDNPP was illustrated.

Yukihisa Sanada; Tatsuo Torii

2015-01-01T23:59:59.000Z

439

Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants  

SciTech Connect (OSTI)

This report describes the status of ongoing research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Lin, Guang [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Crawford, Susan L. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Konomi, Bledar A. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Braatz, Brett G. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Coble, Jamie B. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Shumaker, Brent [Analysis and Measurement Services Corp., Knoxville, TN (United States); Hashemian, Hash [Analysis and Measurement Services Corp., Knoxville, TN (United States)

2013-09-01T23:59:59.000Z

440

Nuclear power plant on-line sensor calibration monitoring implementation issues  

Science Journals Connector (OSTI)

The use of empirical models for on-line monitoring (OLM) of safety-critical instrumentation for calibration reduction has been investigated for over a decade. To help support the regulatory review of possible licence amendments for US nuclear power plants, a series of three NUREG/CRs is being developed for the US Nuclear Regulatory Commission. The third of these volumes, entitled 'Limiting Case Studies', presents the results of applying OLM models to a wide variety of plant data. Specifically, Volume III summarises seven case studies investigating the effects of model development and data assumptions on model performance, and offers recommendations for identifying and handling these limiting cases. This paper discusses the seven case studies. Although this study is not an exhaustive review of the many issues in OLM system development, it provides a base set of considerations that must be accounted for and a method for testing these considerations with other model architectures.

Jamie Garvey; Dustin Garvey; Rebecca Seibert; J. Wesley Hines

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants  

SciTech Connect (OSTI)

This report describes research towards the development of advanced algorithms for online calibration monitoring. The objective of this research is to develop the next generation of online monitoring technologies for sensor calibration interval extension and signal validation in operating and new reactors. These advances are expected to improve the safety and reliability of current and planned nuclear power systems as a result of higher accuracies and increased reliability of sensors used to monitor key parameters. The focus of this report is on documenting the outcomes of the first phase of R&D under this project, which addressed approaches to uncertainty quantification (UQ) in online monitoring that are data-driven, and can therefore adjust estimates of uncertainty as measurement conditions change. Such data-driven approaches to UQ are necessary to address changing plant conditions, for example, as nuclear power plants experience transients, or as next-generation small modular reactors (SMR) operate in load-following conditions.

Ramuhalli, Pradeep; Lin, Guang; Crawford, Susan L.; Konomi, Bledar A.; Coble, Jamie B.; Shumaker, Brent; Hashemian, Hash

2014-04-30T23:59:59.000Z

442

Devices and methods for managing noncombustible gasses in nuclear power plants  

DOE Patents [OSTI]

Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.

Marquino, Wayne; Moen, Stephan C; Wachowiak, Richard M; Gels, John L; Diaz-Quiroz, Jesus; Burns, Jr., John C

2014-12-23T23:59:59.000Z

443

A survey of repair practices for nuclear power plant containment metallic pressure boundaries  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission has initiated a program at the Oak Ridge National Laboratory to provide assistance in their assessment of the effects of potential degradation on the structural integrity and leaktightness of metal containment vessels and steel liners of concrete containments in nuclear power plants. One of the program objectives is to identify repair practices for restoring metallic containment pressure boundary components that have been damaged or degraded in service. This report presents issues associated with inservice condition assessments and continued service evaluations and identifies the rules and requirements for the repair and replacement of nonconforming containment pressure boundary components by welding or metal removal. Discussion topics include base and welding materials, welding procedure and performance qualifications, inspection techniques, testing methods, acceptance criteria, and documentation requirements necessary for making acceptable repairs and replacements so that the plant can be returned to a safe operating condition.

Oland, C.B.; Naus, D.J. [Oak Ridge National Lab., TN (United States)

1998-05-01T23:59:59.000Z

444

The History and Future of NDE in the Management of Nuclear Power Plant Materials Degradation  

SciTech Connect (OSTI)

The author has spent more than 25 years conducting engineering and research studies to quantify the performance of nondestructive evaluation (NDE) in nuclear power plant (NPP) applications and identifying improvements to codes and standards for NDE to manage materials degradation. This paper will review this fundamental NDE engineering/research work and then look to the future on how NDE can be optimized for proactively managing materials degradation in NPP components.

Doctor, Steven R.

2009-04-01T23:59:59.000Z

445

Survey of insulation used in nuclear power plants and the potential for debris generation. Technical report  

SciTech Connect (OSTI)

In support of Unresolved Safety Issue A-43, 'Containment Emergency Sump Performance,' 11 nuclear power plants representative of different U.S. reactor manufacturers and architect-engineers were surveyed to identify and document the types and amounts of insulation used, location within containment, components insulated, material characteristics, and methods of installation and attachment. A preliminary assessment was made of the potential effects of insulation debris generated as the result of a loss-of-coolant accident (pipe break).

Reyer, R.; Gahan, E.; Riddington, J.W.

1981-10-01T23:59:59.000Z

446

Dose-projection considerations for emergency conditions at nuclear power plants  

SciTech Connect (OSTI)

The purpose of this report is to review the problems and issues associated with making environmental radiation-dose projections during emergencies at nuclear power plants. The review is divided into three areas: source-term development, characterization of atmospheric dispersion and selection of appropriate dispersion models, and development of dosimetry calculations for determining thyroid dose and whole-body dose for ground-level and elevated releases. A discussion of uncertainties associated with these areas is also provided.

Stoetzel, G.A.; Ramsdell, J.V.; Poeton, R.W.; Powell, D.C.; Desrosiers, A.E.

1983-05-01T23:59:59.000Z

447

Vascular Plant Survey of the Canyonlands Unit of the Big Thicket National Preserve, Tyler County, Texas  

E-Print Network [OSTI]

The Big Thicket National Preserve is located in the southern part of the United States. It is within the Pineywoods vegetation region of southeastern Texas. This study area was the Canyonlands Unit, a unit located entirely within Tyler County, Texas...

Haile, Kelly

2012-10-19T23:59:59.000Z

448

Seamless remote dismantling system for heavy and highly radioactive components of Korean nuclear power plants  

Science Journals Connector (OSTI)

Abstract A seamless remote system for dismantling heavy and highly radioactive components during the decommissioning of a nuclear power plant is proposed. The originality of the dismantling system is in its ability to handle all the processes involved in the dismantling of major components of a nuclear power plant without external intervention. Previous types of dismantling equipment were designed for specific components or a particular process, which required time consuming and risky equipment replacement tasks between different processes. The proposed dismantling system was designed and verified by simulation of all the processes for dismantling the major components of a Korean nuclear power plant. Several challenges such as working in confined spaces and with complex movement lines as well as interference between components were overcome. The proposed system is capable of handling all the dismantling processes without equipment replacement tasks or the need to drain the reactor pool. The system is expected to considerably reduce the time and cost of the entire decommissioning process while also improving safety.

Dongjun Hyun; Sung-Uk Lee; Yong-Chil Seo; Geun-Ho Kim; Jonghwan Lee; Kwan-Seong Jeong; Byung-Seon Choi; Jei-Kwon Moon

2014-01-01T23:59:59.000Z

449

Informing the next nuclear generation - how does the Ginna plant branch do it?  

SciTech Connect (OSTI)

Most of us are familiar with the latest advertising phrase, ``Our children are our future.`` This phrase has been used in so many instances - from concerns about waste, Social Security, and the federal deficit to drug abuse and violence. One more area can be added to the list and advertised nuclear power. Since the establishment of the Ginna plant branch (GPB) in 1992, our target audience has been the next nuclear generation (our children), but our vehicle for dissemination has been the current generation (the adults). Have you ever thought about how often your opinions affect the children you come in contact with? One of GPB`s goals is to provide as much information as possible to teachers, neighbors, and civic organizations of our community so that there is a nuclear future that can be carried on by the next generation.

Saavedra, A. [Rochester Gas and Electric Corporation, Ontario, NY (United States)

1995-12-31T23:59:59.000Z

450

Knowledge and abilities catalog for nuclear power plant operators: Boiling water reactors, Revision 1  

SciTech Connect (OSTI)

The Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Boiling-Water Reactors (BWRs) (NUREG-1123, Revision 1) provides the basis for the development of content-valid licensing examinations for reactor operators (ROs) and senior reactor operators (SROs). The examinations developed using the BWR Catalog along with the Operator Licensing Examiner Standards (NUREG-1021) and the Examiner`s Handbook for Developing Operator Licensing Written Examinations (NUREG/BR-0122), will cover the topics listed under Title 10, Code of Federal Regulations, Part 55 (10 CFR 55). The BWR Catalog contains approximately 7,000 knowledge and ability (K/A) statements for ROs and SROs at BWRs. The catalog is organized into six major sections: Organization of the Catalog, Generic Knowledge and Ability Statements, Plant Systems grouped by Safety Functions, Emergency and Abnormal Plant Evolutions, Components, and Theory. Revision 1 to the BWR Catalog represents a modification in form and content of the original catalog. The K/As were linked to their applicable 10 CFR 55 item numbers. SRO level K/As were identified by 10 CFR 55.43 item numbers. The plant-wide generic and system generic K/As were combined in one section with approximately one hundred new K/As. Component Cooling Water and Instrument Air Systems were added to the Systems Section. Finally, High Containment Hydrogen Concentration and Plant Fire On Site evolutions added to the Emergency and Abnormal Plant Evolutions section.

NONE

1995-08-01T23:59:59.000Z

451

The potential role of new technology for enhanced safety and performance of nuclear power plants through improved service maintenance  

E-Print Network [OSTI]

Refinements in the safety and performance of nuclear power plants must be made to maintain public confidence and ensure competitiveness with other power sources. The aircraft industry, US Navy, and other programs have ...

Achorn, Ted Glen

1991-01-01T23:59:59.000Z

452

What are the security threats to further development of nuclear power plants in the U.S.? .  

E-Print Network [OSTI]

??What are the security threats to further development of nuclear power plants in the U.S.? The U.S. stands alone today in terms of the vast… (more)

Nottestad, Tammie L.

2010-01-01T23:59:59.000Z

453

Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants  

SciTech Connect (OSTI)

Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

Sokolov, A. S. [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)] [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)

2013-07-15T23:59:59.000Z

454

Development of a hybrid intelligent system for on-line real-time monitoring of nuclear power plant operations  

E-Print Network [OSTI]

A nuclear power plant (NPP) has an intricate operational domain involving systems, structures and components (SSCs) that vary in scale and complexity. Many of the large scale SSCs contribute to the lost availability in the ...

Yildiz, Bilge, 1976-

2003-01-01T23:59:59.000Z

455

Numerical simulation of propagation of radioactive pollution in the ocean from the Fukushima Dai-ichi nuclear power plant  

Science Journals Connector (OSTI)

Numerical simulation of the large-scale horizontal mixing and transport of radioactive water from the Fukushima Dai-ichi nuclear power plant (NPP) (141°02? E, 37°27? N, east coast of Honshu Island, Japan) and ...

S. V. Prants; M. Yu. Uleysky; M. V. Budyansky

2011-08-01T23:59:59.000Z

456

"This awesome field"; a history of United States nuclear testing and its influence on nuclear thought, 1945-1963.  

E-Print Network [OSTI]

??The history of U. S. nuclear testing between 1945 and 1963 is not only a vivid and exciting story but also one of profound historical… (more)

Blades, D

2013-01-01T23:59:59.000Z

457

Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers  

SciTech Connect (OSTI)

This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

Toman, G.; Gazdzinski, R. [Sandia National Labs., Albuquerque, NM (United States)

1994-05-01T23:59:59.000Z

458

Assessment of the radiological impact of a decommissioning nuclear power plant in Italy  

E-Print Network [OSTI]

The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

A. Petraglia; C. Sabbarese; M. De Cesare; N. De Cesare; F. Quinto; F. Terrasi; A. D'Onofrio; P. Steier; L. K. Fifield; A. M. Esposito

2012-07-17T23:59:59.000Z

459

Assessment of the radiological impact of a decommissioning nuclear power plant in Italy  

E-Print Network [OSTI]

The assessment of the radiological impact of a decommissioning Nuclear Power Plant is presented here through the results of an environmental monitoring survey carried out in the area surrounding the Garigliano Power Plant. The levels of radioactivity in soil, water, air and other environmental matrices are shown, in which {\\alpha}, {\\beta} and {\\gamma} activity and {\\gamma} equivalent dose rate are measured. Radioactivity levels of the samples from the Garigliano area are analyzed and then compared to those from a control zone situated more than 100 km away. Moreover, a comparison is made with a previous survey held in 2001. The analyses and comparisons show no significant alteration in the radiological characteristics of the area surroundings the plant, with an overall radioactivity depending mainly from the global fallout and natural sources.

Petraglia, A; De Cesare, M; De Cesare, N; Quinto, F; Terrasi, F; D'Onofrio, A; Steier, P; Fifield, L K; Esposito, A M; 10.1051/radiopro/2012010

2012-01-01T23:59:59.000Z

460

4 - Hydrogen production in conventional, bio-based and nuclear power plants  

Science Journals Connector (OSTI)

Abstract: A hydrogen economy advent cannot be based on the current processes and plants, but will need to take advantage of distributed generation systems and to exploit the potential of hydrogen generation in synergy with large electricity or heat generation plants, provided their CO2 emissions are intrinsically low or are abated by means of carbon capture and/or sequestration (CCS) systems. This chapter will focus on real carbon-based energy process appliances and new business cases. A section is also devoted to CCS technologies. Finally, the simultaneous production of hydrogen and power from nuclear plants will be reviewed from a technical point of view, and its future potential impact on the hydrogen economy will be evaluated.

D. Fino

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units nuclear plant" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Flow Noise Prediction and Control in Steam Piping Systems for Nuclear Power Plants  

Science Journals Connector (OSTI)

The flow noise of steam in pipe lines particularly in power plants is a major noise source and contributor to OSHA noise problems. The ability to predict flow noise levels is vital to efficient and economical noise control. Octave?band measurements of flow noise in the main steam piping system of a nuclear power plant were made. To determine the effect of velocity measurements were conducted for a wide range of velocities during plant start?up. Results in the form of plots of measured flow noise as a function of velocity were compared with limited data that have been recently published. An empirical formula for prediction of flow noise and corresponding design techniques for control of noise by proper pipe sizing have been developed. Alternate methods of noise control are reviewed.

F. H. Brittain; S. W. Giampapa

1973-01-01T23:59:59.000Z

462

Aging Management Guideline for commercial nuclear power plants: Motor control centers; Final report  

SciTech Connect (OSTI)

This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) commercial nuclear power plant motor control centers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

Toman, G.; Gazdzinski, R.; O`Hearn, E. [Ogden Environmental and Energy Services Co., Inc., Blue Bell, PA (United States)

1994-02-01T23:59:59.000Z

463

AGE-RELATED DEGRADATION OF NUCLEAR POWER PLANT STRUCTURES AND COMPONENTS.  

SciTech Connect (OSTI)

This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what are the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk.

BRAVERMAN,J.

1999-03-29T23:59:59.000Z

464

Age-Related Degradation of Nuclear Power Plant Structures and Components  

SciTech Connect (OSTI)

This paper summarizes and highlights the results of the initial phase of a research project on the assessment of aged and degraded structures and components important to the safe operation of nuclear power plants (NPPs). A review of age-related degradation of structures and passive components at NPPs was performed. Instances of age-related degradation have been collected and reviewed. Data were collected from plant generated documents such as Licensing Event Reports, NRC generic communications, NUREGs and industry reports. Applicable cases of degradation occurrences were reviewed and then entered into a computerized database. The results obtained from the review of degradation occurrences are summarized and discussed. Various trending analyses were performed to identify which structures and components are most affected, whether degradation occurrences are worsening, and what was the most common aging mechanisms. The paper also discusses potential aging issues and degradation-susceptible structures and passive components which would have the greatest impact on plant risk.

Braverman, J.; Chang, T.-Y.; Chokshi, N.; Hofmayer, C.; Morante, R.; Shteyngart, S.

1999-03-29T23:59:59.000Z

465

Aging Management Guideline for commercial nuclear power plants: Electrical switchgear. Final report  

SciTech Connect (OSTI)

This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant electrical switchgear important to license renewal. The latent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance, to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

Toman, G.; Gazdzinski, R.; Schuler, K. [Ogden Environmental and Energy Services Co., Inc., Blue Bell, PA (United States)

1993-07-01T23:59:59.000Z

466

Operational air pollution prediction and doses calculation in case of nuclear emergency at Krško Nuclear Power Plant  

Science Journals Connector (OSTI)

The paper presents fully operational air pollution prediction and doses calculation system working in 2/24/7/365 mode for more than a decade in Krško Nuclear Power Plant (NPP). Krško NPP lies in complex terrain in Slovenia very close to Croatia border. A dedicated software is available for detailed estimation of possible radioactive emission (source term). This part of the procedure is used by trained NPP operators and then automatically coupled with dilution coefficients to obtain radionuclide air pollution concentrations. As radioactive material causes dose also with distant cloud shine not only by direct touch or inhalation, special procedure is implemented for dose estimation. We present in detail our algorithm for distant cloud shine estimation based on dilution coefficients calculation. The paper concludes by stressing the importance of correct air pollution prediction with best possible modelling techniques where achieving time and space accurate modelling is required for proper population protection.

PrimoĹľ Mlakar; Marija Zlata BoĹľnar; Borut Breznik

2014-01-01T23:59:59.000Z

467

Evaluation criteria and procedure for nuclear power plant temporary loads/temporary conditions  

SciTech Connect (OSTI)

Operating nuclear power plants frequently encounter temporary loads/temporary conditions in plant normal operation and maintenance (O and M). The most obvious examples are installation of temporary shielding and scaffolding, or removal of certain supports, to facilitate plant refueling and maintenance outage activities. Short-term operability calls such as those due to snubber failures or unanticipated transients also create temporary loads/temporary conditions. These temporary situations often generate loads that are outside the original plant design basis. Consequently, separate evaluations are needed to ensure that plant structures, systems and components (SSCs) maintain their integrity and functionality while these temporary loads are active. Also, the temporary structures and components need to be evaluated to ensure their integrity during the temporary duration of use. Three types of approaches are normally adopted either individually or in combination to perform needed evaluations: relax the design allowables, use a more refined analysis model but retain the design basis acceptance criteria, or offset temporary loads by eliminating or reducing part of the design basis loads based on short duration considerations. This paper reviews temporary loading/temporary condition issues and the current industry criteria and procedures proposed in dealing with these issues. Where appropriate, regulatory positions on temporary loads/temporary conditions are discussed.

Tang, H.T. [Electric Power Research Inst., Palo Alto, CA (United States); Minichiello, J.C. [Commonwealth Edison Co., Downers Grove, IL (United States); Olson, D.E. [Sargent and Lundy, Chicago, IL (United States)

1996-12-01T23:59:59.000Z

468

An Accelerated Aging Analysis Method Based on Local Data for Components and Materials in Nuclear Power Plants  

Science Journals Connector (OSTI)

In nuclear power plants, accelerated aging of certain components can lead to reduction of their service life, which has potential impact on the safety and economics of the whole plant. In order to effectively manage the accelerated aging of critical ... Keywords: accelerated aging, life estimation, accelerating factor, performance degradation data

Zeng Yuyun; Liu Jingquan; Huang Weigang

2013-07-01T23:59:59.000Z

469

Feasibility study of a small-sized nuclear heat-only plant dedicated to desalination in the UAE  

Science Journals Connector (OSTI)

Abstract The development of a small-sized nuclear heat-only plant with maximized safety features dedicated to seawater thermal desalination was proposed to address both a serious water crisis and nuclear safety issues, which continue to be perennial problems. In this study, the feasibility of a dedicated nuclear heat-only desalination system for a target country was evaluated in comparison with a target nuclear thermal desalination system. First, the target country was selected, and its current energy and desalination status was investigated. The suitable nuclear desalination options for the target country were then selected. Finally, using corresponding analysis tools, performance and economic analyses were conducted for a dedicated nuclear heat-only desalination system and the target nuclear thermal desalination system. The results of the analyses indicate that operating the small-sized nuclear heat-only plant at low pressures coupled with a seawater thermal desalination plant will considerably improve both the safety and economy without a significant loss in desalination performance. In conclusion, the proposed dedicated nuclear heat-only desalination system is expected to have high potential for solving both problems.

Yong Hun Jung; Yong Hoon Jeong; Jinyoung Choi; Andhika F. Wibisono; Jeong Ik Lee; Hee Cheon No

2014-01-01T23:59:59.000Z

470

ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND  

SciTech Connect (OSTI)

Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

Farfan, E.

2009-09-30T23:59:59.000Z

471

Environmental Problems Associated With Decommissioning The Chernobyl Nuclear Power Plant Cooling Pond  

SciTech Connect (OSTI)

Decommissioning of nuclear power plants and other nuclear fuel cycle facilities has been an imperative issue lately. There exist significant experience and generally accepted recommendations on remediation of lands with residual radioactive contamination; however, there are hardly any such recommendations on remediation of cooling ponds that, in most cases, are fairly large water reservoirs. The literature only describes remediation of minor reservoirs containing radioactive silt (a complete closure followed by preservation) or small water reservoirs resulting in reestablishing natural water flows. Problems associated with remediation of river reservoirs resulting in flooding of vast agricultural areas also have been described. In addition, the severity of environmental and economic problems related to the remedial activities is shown to exceed any potential benefits of these activities. One of the large, highly contaminated water reservoirs that require either remediation or closure is Karachay Lake near the MAYAK Production Association in the Chelyabinsk Region of Russia where liquid radioactive waste had been deep well injected for a long period of time. Backfilling of Karachay Lake is currently in progress. It should be noted that secondary environmental problems associated with its closure are considered to be of less importance since sustaining Karachay Lake would have presented a much higher radiological risk. Another well-known highly contaminated water reservoir is the Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond, decommissioning of which is planned for the near future. This study summarizes the environmental problems associated with the ChNPP Cooling Pond decommissioning.

Farfan, E. B.; Jannik, G. T.; Marra, J. C.; Oskolkov, B. Ya.; Bondarkov, M. D.; Gaschak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.

2009-11-09T23:59:59.000Z

472

Protection of Nuclear Plants Against Vehicular Bombs Via Full Spectrum Risk Assessment  

SciTech Connect (OSTI)

A more urgent need now exists since 9/11 to protect vital assets at nuclear plants from physical security threats. Any approach to successful defense must result in the best possible risk profile , while also performing this defense against credible threats within the context of limited personnel and materiel resources. Engineered solutions need to be well thought out, and take advantage of each plant's available organic strengths and opportunities. A robust, well trained/equipped highly motivated protective force will help reduce concerns where there are weaknesses making the plant vulnerable to threats. A thorough risk assessment takes into account the proper combination of both deterministic and probabilistic application of resources as a most advantageous approach; this is postulated to be development of integrated protection methods and plans, which blend solid engineering design with the highest caliber of protection forces. By setting a clear and ambitious objective to shield the nuclear assets with this type of dynamic full spectrum defense in depth, the risk of harm-breach or likelihood of any opponent's threat being realized should be reduced to the lowest practicable levels.

Campagna, M. S.; Sawruk, W.

2003-02-25T23:59:59.000Z

473

A practical approach to risk-based inservice inspection in U.S. nuclear power plants  

SciTech Connect (OSTI)

To provide guidelines for practical implementation of risk-based ISI, EPRI sponsored work to develop evaluation procedures and criteria for defining risk-based inservice inspection programs for nuclear power plant piping. These procedures and criteria include efficient means to identify risk significant piping segments, inspection locations, and available inspection techniques. These procedures were applied in a pilot study to assess the feasibility of successfully implementing risk-based inservice inspection programs at nuclear plants. The results from the pilot study indicate that implementation of risk-based inservice inspection programs can reduce the cost and radiation exposure associated with inservice inspection, while maintaining a high level of safety. The list of references provides additional details of these procedures and plant-specific applications. Also, an EPRI technical report has been published to document these procedures. Software has been developed to support and fully document this procedure. Additional development is adding an expert system to the present data base system. The approach compares well to approaches used (or being considered) in other industries and can easily be adapted to these other industries and to address economic and personnel safety in addition to public safety measures.

Gosselin, S.R. [Electric Power Research Inst., Charlotte, NC (United States); Gamble, R. [Sartrex Corp., Rockville, MD (United States); Dimitrijevic, V.B.; O`Regan, P.J.; Chapman, J.R. [Yankee Atomic Electric Co., Bolton, MS (United States)

1996-12-01T23:59:59.000Z

474

Supplement Analysis for the Final Environmental Impact Statement for the Continued Operation of the Pantex Plant and Associated Storage of Nuclear Weapon Components  

Broader source: Energy.gov (indexed) [DOE]

D D E P A R T M E N T O F E N E R G Y U N I T E D S T A T E S O F A M E R I C A SUPPLEMENT ANALYSIS FOR THE FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE CONTINUED OPERATION OF THE PANTEX PLANT AND ASSOCIATED STORAGE OF NUCLEAR WEAPON COMPONENTS DOE/EIS-0225/SA-03 United States Department of Energy National Nuclear Security Administration Pantex Site Operations P.O. Box 30030 Amarillo, Texas 79120-0030 February 2003 i Summary The U.S. Department of Energy's (DOE's) National Environmental Policy Act (NEPA) Implementing Procedures at 10 CFR 1021.330(d) require evaluation of its site-wide environmental impact statements (EISs) at least every 5 years by preparation of a supplement analysis (SA), as provided in 10 CFR 1021.314. Based on the SA, a determination is made as to whether the existing EIS remains

475

Disaster policy and nuclear liability: Insights from post-Chernobyl agriculture in the United Kingdom  

Science Journals Connector (OSTI)

The recent events at Chernobyl have again brought the issues of nuclear safety to the forefront of the nuclear power debate. Fortunately, our experience with such incidents has been very limited, but it is imp...

William A. Kerr; Adrienne S. Kwaczek; Sian Mooney

476

International Energy Outlook 2001 - Nuclear  

Gasoline and Diesel Fuel Update (EIA)

Nuclear Power Nuclear Power picture of a printer Printer Friendly Version (PDF) Nuclear power is projected to represent a growing share of the developing worldÂ’s electricity consumption from 1999 through 2020. New plant construction and license extensions for existing plants are expected to produce a net increase in world nuclear capacity. Nuclear power plants generated electricity in 29 countries in 1999. A total of 433 nuclear power reactors were in operation (Figure 61), including 104 in the United States, 59 in France, and 53 in Japan. The largest national share of electricity from nuclear power was in France, at 75 percent (Figure 62). Belgium, Bulgaria, France, Lithuania, Slovenia, Slovakia, Sweden, Ukraine, and South Korea depended on nuclear power for at least 40

477

An Integrated Scheme for Anomaly Identification and Automatic Control of Nuclear Power Plants Xin Jin, Robert M. Edwards and Asok Ray  

E-Print Network [OSTI]

An Integrated Scheme for Anomaly Identification and Automatic Control of Nuclear Power Plants Xin.edu INTRODUCTION Nuclear Power Plants (NPPs) are complex systems with many variables that require adjustment to the NPP. METHODOLOGY This proposed integrated scheme consists of three inter-related subsystems: Nuclear

Ray, Asok

478

Evaluation of potential severe accidents during low power and shutdown operations at Grand Gulf, Unit 1: Evaluation of severe accident risks for plant operational state 5 during a refueling outage. Supporting MELCOR calculations, Volume 6, Part 2  

SciTech Connect (OSTI)

To gain a better understanding of the risk significance of low power and shutdown modes of operation, the Office of Nuclear Regulatory Research at the NRC established programs to investigate the likelihood and severity of postulated accidents that could occur during low power and shutdown (LP&S) modes of operation at commercial nuclear power plants. To investigate the likelihood of severe core damage accidents during off power conditions, probabilistic risk assessments (PRAs) were performed for two nuclear plants: Unit 1 of the Grand Gulf Nuclear Station, which is a BWR-6 Mark III boiling water reactor (BWR), and Unit 1 of the Surry Power Station, which is a three-loop, subatmospheric, pressurized water reactor (PWR). The analysis of the BWR was conducted at Sandia National Laboratories while the analysis of the PWR was performed at Brookhaven National Laboratory. This multi-volume report presents and discusses the results of the BWR analysis. The subject of this part presents the deterministic code calculations, performed with the MELCOR code, that were used to support the development and quantification of the PRA models. The background for the work documented in this report is summarized, including how deterministic codes are used in PRAS, why the MELCOR code is used, what the capabilities and features of MELCOR are, and how the code has been used by others in the past. Brief descriptions of the Grand Gulf plant and its configuration during LP&S operation and of the MELCOR input model developed for the Grand Gulf plant in its LP&S configuration are given.

Kmetyk, L.N.; Brown, T.D. [Sandia National Labs., Albuquerque, NM (United States)

1995-03-01T23:59:59.000Z

479

Formation of hot particles during the Chernobyl nuclear power plant accident  

SciTech Connect (OSTI)

The oxidation of irradiated Chernobyl nuclear fuel at 670 to 1,170 K for 3 to 21 h resulted in its destruction into fine particles, the dispersal composition of which is well described by lognormal distribution regularity. The median radius of the formed particles does not depend on the annealing temperature and decreases with the increase of the annealing period from 10 to 3 {micro}m. Proceeding from the dispersal composition and matrix composition of the Chernobyl hot fuel particles, it can be concluded that the oxidation of nuclear fuel was one of the basic mechanisms of hot fuel particle formation during the accident at the Chernobyl nuclear power plant. With oxidation in air and the dispersal of irradiated oxide nuclear fuel at as low as 670 K, ruthenium, located on the granular borders, is released. Ruthenium is oxidized to volatile RuO{sub 4}, sublimated, and condensed on materials of iron. Nickel and stainless steel can be efficiently used at high temperatures (tested to 1,200 K) for radioruthenium adsorption in accidents and for some technological operations. As the temperature of hot fuel particles annealed in inert media increases from 1,270 to 2,270 K, the relative release of radionuclides increases in the following sequence: cesium isotopes; europium isotopes; cerium isotopes; americium isotopes; and ruthenium, plutonium, and curium isotopes.

Kashparov, V.A.; Ivanov, Y.A.; Zvarisch, S.I.; Protsak, V.P.; Khomutinin, Y.V.; Kurepin, A.D.; Pazukhin, E.M. [Ukrainian Inst. of Agricultural Radiology, Chabany (Ukraine)

1996-05-01T23:59:59.000Z