Powered by Deep Web Technologies
Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray  

SciTech Connect

This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of the open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.

Vigil-Holterman, Luciana R. [Los Alamos National Laboratory

2012-05-07T23:59:59.000Z

2

Radioactivity in smoke particulates from prescribed burns at the Savannah River Site and at selected southeastern United States forests.  

Science Conference Proceedings (OSTI)

In this study we compare airborne radionuclide concentrations during prescribed burns at the Savannah River Site (SRS) and a sample of forests in the Southeastern United States. The spatial trends of airborne radionuclide concentrations from prescribed burn areas at SRS are also characterized. Total suspended particulate (TSP) samples were taken at three settings (subsequently termed burn sample populations): during prescribed burns at SRS (n = 34), on nonburn days at SRS (n = 12) and during prescribed burns at five offsite locations in the Southeastern United States (n = 2 per location). Mass concentrations of TSP were calculated and alpha, beta and gamma spectroscopy was performed to determine radionuclide activity concentrations. Spatial correlation in radionuclide concentration was assessed and ordinary kriging was used to create continuous surface maps across our study area. Median activity concentrations of natural radionuclides including {sup 40}K, thorium and uranium isotopes (n = 34) were higher in samples from SRS prescribed fires (p radionuclides did not significantly differ among burn sample populations except for {sup 238}Pu (p = 0.0022) and {sup 239,240}Pu (p = 0.014) with median concentrations of 8.41 x 10{sup -4} and 6.72 x 10{sup -5} pCi m{sup -3} at SRS compared to 1.55 x 10{sup -4} and -7.07 x 10{sup -6} pCi m{sup -3} (nonburn days) and 1.46 x 10{sup -4} and 2.78 x 10{sup -6} pCi m{sup 3} (offsite burns) respectively. Results from our spatial analysis found that only {sup 40}K demonstrated significant spatial correlation (X{sup 2} = 15.48, p = 0.0004) and spatial trends do not appear to directly link areas with higher activity concentrations with SRS facilities.

Commodore, Adwoa, A.; Jannik, G. Timothy; Eddy, Teresa, P.; Rathbun, Stephen, L.; Hejl, Anna, M.; Pearce, John, L.; Irvin-Barnwell, Elizabeth, A.; Naeher, Luke, P.

2012-01-01T23:59:59.000Z

3

Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

K. B. Campbell

2002-04-01T23:59:59.000Z

4

Data integrity review of Three Mile Island Unit 2. Hydrogen burn data. Volume 3  

DOE Green Energy (OSTI)

About 10 hours after the March 28, 1979 loss-of-coolant accident began at Three Mile Island Unit 2 (TMI-2), a hydrogen burn occurred inside the Reactor Building. This report reviews and presents data from 16 channels of resistance temperature detectors (RTDs), 2 steam generator pressure transmitters, 16 Reactor Building pressure switches, 2 channels of Reactor Building pressure measurements, and measurements of Reactor Building hydrogen, oxygen, and nitrogen concentrations with regard to their usefulness for determining the extent of the burn and the resulting pressure and temperature excursions inside the building.

Jacoby, J.K.; Nelson, R.A.; Nalezny, C.L.; Averill, R.H.

1983-09-01T23:59:59.000Z

5

The United States has significant natural gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States has significant natural gas United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this challenge, the U.S. Department of Energy's Office of Fossil Energy over the years has amassed wide ranging expertise in areas related to deepwater resource location, production, safety and environmental protection. The goal of these activities has been to not only help overcome

6

Measurement of adiabatic burning velocity in natural gas-like mixtures  

SciTech Connect

Experimental measurements of the adiabatic burning velocities were carried out for natural gas-like mixtures burning in air over a range of equivalence ratios at atmospheric pressure. Effect of CO{sub 2} dilution up to 60%, N{sub 2} dilution up to 40% and 25% enrichment of ethane on burning velocity of methane-air flames were studied. Heat flux method with setup similar to that of [K.J. Bosschaart, L.P.H. de Goey, Detailed analysis of the heat flux method for measuring burning velocity, Combustion and Flame 132 (2003) 170-180] was used for measurement of burning velocities. Initially experiments were done for methane-air and ethane-air mixtures at various equivalence ratios and the results were in good agreement with published data in the literature. Computations were performed using PREMIX code with GRI 3.0 reaction mechanism for all the mixtures. Predicted flame structures were used to the explain the effect of N{sub 2} and CO{sub 2} dilution on burning velocity of methane-air flames. Peak burning velocity for CH{sub 4}/CO{sub 2}-air mixtures occur near to {phi} = 1.0. (author)

Ratna Kishore, V.; Duhan, Nipun; Ravi, M.R.; Ray, Anjan [Department of Mechanical Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India)

2008-10-15T23:59:59.000Z

7

Unit Cost Natural Gas | OpenEI  

Open Energy Info (EERE)

2 2 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281532 Varnish cache server Unit Cost Natural Gas Dataset Summary Description Provides annual energy usage for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005 through 2010. Source University of Texas (UT) at Austin, Utilities & Energy Management Date Released Unknown Date Updated Unknown Keywords Electricity Consumption Natural Gas Texas Unit Cost Electricity Unit Cost Natural Gas University Water Data application/vnd.ms-excel icon Energy and Water Use Data for UT-Austin (xls, 32.8 KiB) Quality Metrics

8

The effects of technological change, experience and environmental regulation on the construction of coal-burning generating units  

E-Print Network (OSTI)

This paper provides an empirical analysis of the technological, regulatory and organizational factors that have influenced the costs of building coal-burning steam-electric generating units over the past twenty year. We ...

Joskow, Paul L.

1984-01-01T23:59:59.000Z

9

Price Liquefied Freeport, TX Natural Gas Exports Price to United...  

Gasoline and Diesel Fuel Update (EIA)

United Kingdom (Dollars per Thousand Cubic Feet) Price Liquefied Freeport, TX Natural Gas Exports Price to United Kingdom (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

10

Sabine Pass, LA Exports to United kingdom Liquefied Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

United kingdom Liquefied Natural Gas (Million Cubic Feet) Sabine Pass, LA Exports to United kingdom Liquefied Natural Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

11

Investigation of hydrogen-burn damage in the Three Mile Island Unit 2 reactor building  

DOE Green Energy (OSTI)

About 10 hours after the March 28, 1979 Loss-of-Coolant Accident began at Three Mile Island Unit 2, a hydrogen deflagration of undetermined extent occurred inside the reactor building. Examinations of photographic evidence, available from the first fifteen entries into the reactor building, yielded preliminary data on the possible extent and range of hydrogen burn damage. These data, although sparse, contributed to development of a possible damage path and to an estimate of the extent of damage to susceptible reactor building items. Further information gathered from analysis of additional photographs and samples can provide the means for estimating hydrogen source and production rate data crucial to developing a complete understanding of the TMI-2 hydrogen deflagration. 34 figures.

Alvares, N.J.; Beason, D.G.; Eidem, G.R.

1982-06-01T23:59:59.000Z

12

Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines  

SciTech Connect

Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.

Nigel N. Clark

2006-12-31T23:59:59.000Z

13

ERRATA SHEET for Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

SciTech Connect

Section 2.1.1.3 of the Table of Contents reference on Page v and on Page 12 of the Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada erroneously refers to the Nevada Environmental Policy Act Determination. The correct title of the referenced document is the National Environmental Policy Act Determination.

K. B. Campbell

2002-04-01T23:59:59.000Z

14

SELECTIVE NOx RECIRCULATION FOR STATIONARY LEAN-BURN NATURAL GAS ENGINES  

DOE Green Energy (OSTI)

The research program conducted at the West Virginia University Engine and Emissions Research Laboratory (EERL) is working towards the verification and optimization of an approach to remove nitric oxides from the exhaust gas of lean burn natural gas engines. This project was sponsored by the US Department of Energy, National Energy Technology Laboratory (NETL) under contract number: DE-FC26-02NT41608. Selective NOx Recirculation (SNR) involves three main steps. First, NOx is adsorbed from the exhaust stream, followed by periodic desorption from the aftertreatment medium. Finally the desorbed NOx is passed back into the intake air stream and fed into the engine, where a percentage of the NOx is decomposed. This reporting period focuses on the NOx decomposition capability in the combustion process. Although researchers have demonstrated NOx reduction with SNR in other contexts, the proposed program is needed to further understand the process as it applies to lean burn natural gas engines. SNR is in support of the Department of Energy goal of enabling future use of environmentally acceptable reciprocating natural gas engines through NOx reduction under 0.1 g/bhp-hr. The study of decomposition of oxides of nitrogen (NOx) during combustion in the cylinder was conducted on a 1993 Cummins L10G 240 hp lean burn natural gas engine. The engine was operated at different air/fuel ratios, and at a speed of 800 rpm to mimic a larger bore engine. A full scale dilution tunnel and analyzers capable of measuring NOx, CO{sub 2}, CO, HC concentrations were used to characterize the exhaust gas. Commercially available nitric oxide (NO) was used to mimic the NOx stream from the desorption process through a mass flow controller and an injection nozzle. The same quantity of NOx was injected into the intake and exhaust line of the engine for 20 seconds at various steady state engine operating points. NOx decomposition rates were obtained by averaging the peak values at each set point minus the baseline and finding the ratio between the injected NO amounts. It was observed that the air/fuel ratio, injected NO quantity and engine operating points affected the NOx decomposition rates of the natural gas engine. A highest NOx decomposition rate of 27% was measured from this engine. A separate exploratory tests conducted with a gasoline engine with a low air/fuel ratio yielded results that suggested, that high NOx decomposition rates may be possible if a normally lean burn engine were operated at conditions closer to stoichiometric, with high exhaust gas recirculation (EGR) for a brief period of time during the NOx decomposition phase and with a wider range of air/fuel ratios. Chemical kinetic model predictions using CHEMKIN were performed to relate the experimental data with the established rate and equilibrium models. NOx decomposition rates from 35% to 42% were estimated using the CHEMKIN software. This provided insight on how to maximize NOx decomposition rates for a large bore engine. In the future, the modeling will be used to examine the effect of higher NO{sub 2}/NO ratios that are associated with lower speed and larger bore lean burn operation.

Nigel Clark; Gregory Thompson; Richard Atkinson; Chamila Tissera; Matt Swartz; Emre Tatli; Ramprabhu Vellaisamy

2005-01-01T23:59:59.000Z

15

Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)  

DOE Green Energy (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, Nevada Operations Office

2000-06-09T23:59:59.000Z

16

OpenEI - Unit Cost Natural Gas  

Open Energy Info (EERE)

for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005...

17

Natural ventilation possibilities for buildings in the United States  

E-Print Network (OSTI)

In the United States, many of the commercial buildings built in the last few decades are completely mechanically air conditioned, without the capability to use natural ventilation. This habit has occurred in building designs ...

Dean, Brian N. (Brian Nathan), 1974-

2001-01-01T23:59:59.000Z

18

Natural Gas Processing Plants in the United States: 2010 Update  

Gasoline and Diesel Fuel Update (EIA)

This special report presents an analysis of natural gas processing plants This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations. Key Findings There were 493 operational natural gas processing plants in the United States with a combined operating capacity of 77 billion cubic feet (Bcf) per day. Overall, operating capacity increased about 12 percent between 2004 and 2009, not including the processing capacity in Alaska1. At the same time, the number of all processing plants in the lower 48 States decreased

19

Analysis of the Three Mile Island Unit 2 hydrogen burn. Volume 4  

DOE Green Energy (OSTI)

As a basis for the analysis of the hydrogen burn which occurred in the Three Mile Island Containment on March 28, 1979, a study of recorded temperatures and pressures was made. Long-term temperature information was obtained from the multipoint temperature recorder which shows 12 containment atmosphere temperatures plotted every 6 min. The containment atmosphere pressure recorder provided excellent long- and short-term pressure information. Short-term information was obtained from the multiplex record of 24 channels of data, recorded every 3 sec, and the alarm printer record which shows status change events and prints out temperatures, pressures, and the time of the events. The timing of these four data recording systems was correlated and pertinent data were tabulated, analyzed, and plotted to show average containment temperature and pressure versus time. Photographs and videotapes of the containment entries provided qualitative burn information.

Henrie, J.O.; Postma, A.K.

1983-03-01T23:59:59.000Z

20

Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines  

Science Conference Proceedings (OSTI)

Selective NOx Recirculation (SNR) involves cooling the engine exhaust gas and then adsorbing the oxides of nitrogen (NOx) from the exhaust stream, followed by the periodic desorption of NOx. By returning the desorbed, concentrated NOx into the engine intake and through the combustion chamber, a percentage of the NOx is decomposed during the combustion process. An initial study of NOx decomposition during lean-burn combustion was concluded in 2004 using a 1993 Cummins L10G 240hp natural gas engine. It was observed that the air/fuel ratio, injected NO (nitric oxide) quantity and engine operating points affected NOx decomposition rates of the engine. Chemical kinetic modeling results were also used to determine optimum NOx decomposition operating points and were published in the 2004 annual report. A NOx decomposition rate of 27% was measured from this engine under lean-burn conditions while the software model predicted between 35-42% NOx decomposition for similar conditions. A later technology 1998 Cummins L10G 280hp natural gas engine was procured with the assistance of Cummins Inc. to replace the previous engine used for 2005 experimental research. The new engine was equipped with an electronic fuel management system with closed-loop control that provided a more stable air/fuel ratio control and improved the repeatability of the tests. The engine was instrumented with an in-cylinder pressure measurement system and electronic controls, and was adapted to operate over a range of air/fuel ratios. The engine was connected to a newly commissioned 300hp alternating current (AC) motoring dynamometer. The second experimental campaign was performed to acquire both stoichiometric and slightly rich (0.97 lambda ratio) burn NOx decomposition rates. Effects of engine load and speed on decomposition were quantified, but Exhaust Gas Recirculation (EGR) was not varied independently. Decomposition rates of up to 92% were demonstrated. Following recommendations at the 2004 ARES peer review meeting at Argonne National Laboratories, in-cylinder pressure was measured to calculate engine indicated mean effective pressure (IMEP) changes due to NOx injections and EGR variations, and to observe conditions in the cylinder. The third experimental campaign gathered NOx decomposition data at 800, 1200 and 1800 rpm. EGR was added via an external loop, with EGR ranging from zero to the point of misfire. The air/fuel ratio was set at both stoichiometric and slightly rich conditions, and NOx decomposition rates were calculated for each set of runs. Modifications were made to the engine exhaust manifold to record individual exhaust temperatures. The three experimental campaigns have provided the data needed for a comprehensive model of NOx decomposition during the combustion process, and data have confirmed that there was no significant impact of injected NO on in-cylinder pressure. The NOx adsorption system provided by Sorbent Technologies Corp. (Twinsburg, OH), comprised a NOx adsorber, heat exchanger and a demister. These components were connected to the engine, and data were gathered to show both the adsorption of NOx from the engine, and desorption of NOx from the carbon-based sorbent material back into the engine intake, using a heated air stream. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a bench top adsorption system was constructed and instrumented with thermocouples and the system output was fed into a NOx analyzer. The temperature of this apparatus was controlled while gathering data on the characteristics of the sorbent material. These data were required for development of a system model. Preliminary data were gathered in 2005, and will continue in early 2006. To assess the economic benefits of the proposed SNR technology the WVU research team has been joined in the last quarter by Dr Richard Turton (WVU-Chemical Engineering), who is modeling, sizing and costing the major components. The tasks will address modeling and preliminary design of the heat exchanger, demister and NOx sorbent chamber s

Nigel Clark; Gregory Thompson; Richard Atkinson; Richard Turton; Chamila Tissera; Emre Tatli; Andy Zimmerman

2005-12-28T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

United States Senate Committee on Energy and Natural Resources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Senate Committee on Energy and Natural Resources United States Senate Committee on Energy and Natural Resources United States Senate Committee on Energy and Natural Resources February 6, 2008 - 11:13am Addthis Testimony of Secretary Samuel Bodman Mr. Chairman and members of the Committee, I am pleased to be before you today to present the President's fiscal year (FY) 2009 budget proposal for the Department of Energy. The strength and prosperity of America's economy is built on the security of our nation and the reliability of energy sources. Since 2001, the Administration has committed $183 billion through the Department of Energy (DOE) to help drive America's economic growth, provide for our national security, and address the energy challenges that face our nation. The Department of Energy's FY 2009

22

United States Senate Committee on Energy and Natural Resources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Senate Committee on Energy and Natural Resources United States Senate Committee on Energy and Natural Resources United States Senate Committee on Energy and Natural Resources February 7, 2007 - 10:15am Addthis Testimony of Energy Secretary Samuel Bodman Chairman Bingaman, Ranking Member Domenici, and members of the Committee, I am pleased to be with you this morning to present the President's FY 2008 budget proposal for the Department of Energy. Before I discuss the details of our budget proposal, I would like to briefly mention the President's energy initiatives announced during the State of the Union. As you know, President Bush asked Congress and America's scientists, farmers, industry leaders and entrepreneurs to join him in pursuing the goal of reducing U.S. gasoline usage by 20 percent in the next ten years. We have named this our "Twenty in Ten" plan and I

23

Bittersweet and Burning Bush  

NLE Websites -- All DOE Office Websites (Extended Search)

Bittersweet and Burning Bush Nature Bulletin No. 250 December 25, 1982 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation...

24

Excitation energy transfer in natural photosynthetic complexes and chlorophyll trefoils: hole-burning and single complex/trefoil spectroscopic studies  

SciTech Connect

In this project we studied both natural photosynthetic antenna complexes and various artificial systems (e.g. chlorophyll (Chl) trefoils) using high resolution hole-burning (HB) spectroscopy and excitonic calculations. Results obtained provided more insight into the electronic (excitonic) structure, inhomogeneity, electron-phonon coupling strength, vibrational frequencies, and excitation energy (or electron) transfer (EET) processes in several antennas and reaction centers. For example, our recent work provided important constraints and parameters for more advanced excitonic calculations of CP43, CP47, and PSII core complexes. Improved theoretical description of HB spectra for various model systems offers new insight into the excitonic structure and composition of low-energy absorption traps in very several antenna protein complexes and reaction centers. We anticipate that better understanding of HB spectra obtained for various photosynthetic complexes and their simultaneous fits with other optical spectra (i.e. absorption, emission, and circular dichroism spectra) provides more insight into the underlying electronic structures of these important biological systems. Our recent progress provides a necessary framework for probing the electronic structure of these systems via Hole Burning Spectroscopy. For example, we have shown that the theoretical description of non-resonant holes is more restrictive (in terms of possible site energies) than those of absorption and emission spectra. We have demonstrated that simultaneous description of linear optical spectra along with HB spectra provides more realistic site energies. We have also developed new algorithms to describe both nonresonant and resonant hole-burn spectra using more advanced Redfield theory. Simultaneous description of various optical spectra for complex biological system, e.g. artificial antenna systems, FMO protein complexes, water soluble protein complexes, and various mutants of reaction centers continues; this work is supported by the new DOE BES grant.

Ryszard Jankowiak, Kansas State University, Department of Chemistry, CBC Bldg., Manhattan KS, 66505; Phone: (785) 532-6785

2012-09-12T23:59:59.000Z

25

Burns Prevention  

NLE Websites -- All DOE Office Websites (Extended Search)

Burns Burns Burns can result from everyday things and activities in your home. The most common causes of burns are from scalds (steam, hot bath water, hot drinks and foods), fire, chemicals, electricity and overexposure to the sun. Some burns may be more serious than others. The severity of the burn is based on the depth of the burn. First degree burns are the least severe, and third degree burns are the most severe. Call 911 or seek medical attention if you are unsure of how severe your burn is. All burns are susceptible to tetanus (lockjaw). Get a tetanus shot every 10 years. If your last shot was 5 years ago, talk to your doctor - you may need a booster shot. Causes of Burns: Scalds Scalding injuries and burns are caused by hot tap water, hot beverages and food, and steam.

26

Smoke Management for Prescribed Burning  

E-Print Network (OSTI)

Smoke Management for Prescribed Burning E-1008 Oklahoma Cooperative Extension Service Division of Agricultural Sciences and Natural Resources Oklahoma State University Smoke Management for Prescribed Burning Extension #12;#12;Smoke Management for Prescribed Burning John R. Weir Research Associate Natural Resource

Balasundaram, Balabhaskar "Baski"

27

A Natural Mass Unit Hidden in the Planck Action Quantum Bernd Binder  

E-Print Network (OSTI)

A Natural Mass Unit Hidden in the Planck Action Quantum Bernd Binder binder@quanics.com c 2003 baryon mass a natural mass unit µ can be identified by extrapolating dimensionless Planck units h = c = 1 to the System of Units (SI). Similar to quantum measurements that determine h it is only necessary to relate

Binder, Bernd

28

A Natural Mass Unit Hidden in the Planck Action Quantum Bernd Binder  

E-Print Network (OSTI)

A Natural Mass Unit Hidden in the Planck Action Quantum Bernd Binder binder@quanics.com c #2003 baryon mass a natural mass unit µ can be identified by extrapolating dimensionless Planck units h = c = 1 to the System of Units (SI). Similar to quantum measurements that determine h it is only necessary to relate

Binder, Bernd

29

United States Natural Gas Industrial Price (Dollars per Thousand ...  

U.S. Energy Information Administration (EIA)

Release Date: 9/30/2013: Next Release Date: 10/31/2013: Referring Pages: Natural Gas Industrial Price ; U.S. Natural Gas Prices; Natural Gas Industrial Price

30

Natural Gas Processing Plants in the United States: 2010 ...  

U.S. Energy Information Administration (EIA)

Natural Gas Processing Plants and Production Basins, 2009 Source: U.S. Energy Information Administration, GasTran Natural Gas Transportation ...

31

Natural Gas Processing Plants in the United States: 2010 Update...  

Gasoline and Diesel Fuel Update (EIA)

3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Figure 3. Natural Gas Processing Plants Utilization Rates Based on 2008 Flows Note: Average utilization rates...

32

How much natural gas does the United States have and how ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including ... How much natural gas does the United States have and how ... 2012. Other ...

33

Price of Lake Charles, LA Natural Gas LNG Imports from United...  

U.S. Energy Information Administration (EIA) Indexed Site

Arab Emirates (Dollars per Thousand Cubic Feet) Price of Lake Charles, LA Natural Gas LNG Imports from United Arab Emirates (Dollars per Thousand Cubic Feet) Decade Year-0...

34

,"U.S. Liquefied Natural Gas Imports From The United Arab Emirates...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Liquefied Natural Gas Imports From The United Arab Emirates (MMcf)",1,"Monthly","92013" ,"Release...

35

System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines  

SciTech Connect

Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

Shahrokh Etemad; Lance Smith; Kevin Burns

2004-12-01T23:59:59.000Z

36

Development of a closed-loop, lean-burn natural gas engine control system. Final report, February 1993-December 1995  

SciTech Connect

The overall objective of this project was to develop a closed-loop, lean-burn control system for medium and heavy duty, lean-burn, gaseous fueled engines. The closed-loop F/A ratio control system was designed to provide diesel engine-like performance and fuel economy, and take advantage of the emissions benefits of a gaseous fueled engine. The control system was designed to have the processing power and I/O capacity to accommodate the engine Original Equipment Manufacturers (OEM`s).

Morris, D.A.

1996-06-01T23:59:59.000Z

37

Natural Gas Processing Plants in the United States: 2010 Update...  

Annual Energy Outlook 2012 (EIA)

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and...

38

Abstract The natural gas price surged in 2004. As a result, the marginal cost of some generators burning gas also rose sharply.  

E-Print Network (OSTI)

Abstract ­ The natural gas price surged in 2004. As a result, the marginal cost of some generators marginal cost, which is closely related to the natural gas price. Since gas units are usually the marginal the sensitivity of Var benefit with respect to generation cost. The U.S. natural gas industry has been

Tolbert, Leon M.

39

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

Bechel Nevada

2004-05-01T23:59:59.000Z

40

Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug  

DOE Green Energy (OSTI)

To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

2008-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Corporate bodies and chemical bonds : an STS analysis of natural gas development in the United States  

E-Print Network (OSTI)

Natural gas extraction in the United States in the early 21st century has transformed social, physical, legal and biological landscapes. The technique of hydraulic fracturing, which entails the high-pressure injection into ...

Wylie, Sara Ann

2011-01-01T23:59:59.000Z

42

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Babb, MT Havre, MT Port of Morgan, MT Pittsburg, NH Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Kenai, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Sabine Pass, LA Period: Monthly Annual

43

U.S. Liquefied Natural Gas Exports to United Kingdom  

Gasoline and Diesel Fuel Update (EIA)

Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to India Freeport, TX Sabine Pass, LA Total to Japan Cameron, LA Freeport, TX Kenai, AK Port Nikiski, AK Sabine Pass, LA Total to Mexico Douglas, AZ Nogales, AZ Calexico, CA Ogilby Mesa, CA Otay Mesa, CA San Diego, CA Alamo, TX Clint, TX Del Rio, TX Eagle Pass, TX El Paso, TX Hidalgo, TX McAllen, TX Penitas, TX Rio Bravo, TX Roma, TX Total to Portugal Sabine Pass, LA Total to Russia Kenai, AK Total to South Korea Freeport, TX Sabine Pass, LA Total to Spain Cameron, LA Sabine Pass, LA Total to United Kingdom Freeport, TX Sabine Pass, LA LNG Exports from Cameron, LA LNG Exports from Kenai, AK LNG Exports from Freeport, TX LNG Exports from Nogales, AZ LNG Exports from Otay Mesa, CA LNG Exports from Sabine Pass, LA LNG Exports from Sweetgrass, MT Period: Monthly Annual

44

Results of Water and Sediment Toxicity Tests and Chemical Analyses Conducted at the Central Shops Burning Rubble Pit Waste Unit, January 1999  

SciTech Connect

The Central Shops Burning Rubble Pit Operable Unit consists of two inactive rubble pits (631-1G and 631-3G) that have been capped, and one active burning rubble pit (631-2G), where wooden pallets and other non-hazardous debris are periodically burned. The inactive rubble pits may have received hazardous materials, such as asbestos, batteries, and paint cans, as well as non-hazardous materials, such as ash, paper, and glass. In an effort to determine if long term surface water flows of potentially contaminated water from the 631-1G, 631-3G, and 631-2G areas have resulted in an accumulation of chemical constituents at toxic levels in the vicinity of the settling basin and wetlands area, chemical analyses for significant ecological preliminary constituents of concern (pCOCs) were performed on aqueous and sediment samples. In addition, aquatic and sediment toxicity tests were performed in accordance with U.S. EPA methods (U.S. EPA 1989, 1994). Based on the results of the chemical analyses, unfiltered water samples collected from a wetland and settling basins located adjacent to the CSBRP Operable Unit exceed Toxicity Reference Values (TRVs) for aluminum, barium, chromium, copper, iron, lead, and vanadium at one or more of the four locations that were sampled. The water contained very high concentrations of clay particles that were present as suspended solids. A substantial portion of the metals were present as filterable particulates, bound to the clay particles, and were therefore not biologically available. Based on dissolved metal concentrations, the wetland and settling basin exceeded TRVs for aluminum and barium. However, the background reference location also exceeded the TRV for barium, which suggests that this value may be too low, based on local geochemistry. The detection limits for both total and dissolved mercury were higher than the TRV, so it was not possible to determine if the TRV for mercury was exceeded. Dissolved metal levels of chromium, copper, iron, lead and vanadium were below the TRVs. Metal concentrations in the sediment exceeded the TRVs for arsenic, chromium, copper, and mercury but not for antimony and lead. The results of the water toxicity tests indicated no evidence of acute toxicity in any of the samples. The results of the chronic toxicity tests indicated possible reproductive impairment at two locations. However, the results appear to be anomalous, since the toxicity was unrelated to concentration, and because the concentrations of pCOCs were similar in the toxic and the non-toxic samples. The results of the sediment toxicity tests indicated significant mortality in all but one sample, including the background reference sediment. When the results of the CSBRP sediment toxicity tests were statistically compared to the result from the background reference sediment, there was no significant mortality. These results suggest that the surface water and sediment at the CSBRP Operable Unit are not toxic to the biota that inhabit the wetland and the settling basin.

Specht, W.L.

1999-06-02T23:59:59.000Z

45

Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0  

Science Conference Proceedings (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located within Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive residues, herbicides, pesticides, polychlorinated biphenyls, metals, and radionuclides. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

NNSA /NV

2002-07-18T23:59:59.000Z

46

The Performance Culture of Burning Man.  

E-Print Network (OSTI)

??Theatre in the United States for the last twenty years has been evolving in scope by way of a cultural phenomenon known as Burning Man. (more)

Clupper, Wendy Ann

2007-01-01T23:59:59.000Z

47

United States, Canada and Mexico Release the "North American Natural Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Mexico Release the "North American and Mexico Release the "North American Natural Gas Vision" United States, Canada and Mexico Release the "North American Natural Gas Vision" February 25, 2005 - 10:29am Addthis WASHINGTON, DC -- The North American Energy Working Group (NAEWG), a group of senior energy officials from Canada, Mexico and the United States, today released the "North American Natural Gas Vision," a trilateral report by the three governments that includes information on the natural gas market in the North American region, including forecasts through the year 2012. U.S. Energy Secretary Samuel Bodman joined Minister of Natural Resources Canada R. John Efford and Mexico's Energy Secretary Fernando Elizondo in announcing the report's release. "This document is a key cooperative effort among the three countries to

48

Corrective Action Decision Document for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada: Revision No. 0  

Science Conference Proceedings (OSTI)

This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Areas 5, 22, and 23 of the NTS, CAU 140 consists of nine corrective action sites (CASs). Investigation activities were performed from November 13 through December 11, 2002, with additional sampling to delineate the extent of contaminants of concern (COCs) conducted on February 4 and March 18 and 19, 2003. Results obtained from the investigation activities and sampling indicated that only 3 of the 9 CASs at CAU 140 had COCs identified. Following a review of existing data, future land use, and current operations at the NTS, the following preferred alternatives were developed for consideration: (1) No Further Action - six CASs (05-08-02, 05-17-01, 05-19-01, 05-35-01, 05-99-04, and 22-99-04); (2) Clean Closure - one CAS (05-08-01), and (3) Closure-in-Place - two CASs (05-23-01 and 23-17-01). These alternatives were judged to meet all requirements for the technical components evaluated. Additionally, the alternatives meet all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated media at CAU 140.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-10-17T23:59:59.000Z

49

United States Producing and Nonproducting Crude Oil and Natural Gas Reserves From 1985 Through 2004  

Gasoline and Diesel Fuel Update (EIA)

United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004 By Philip M. Budzik Abstract The Form EIA-23 survey of crude oil and natural gas producer reserves permits reserves to be differentiated into producing reserves, i.e., those reserves which are available to the crude oil and natural gas markets, and nonproducing reserves, i.e., those reserves which are unavailable to the crude oil and natural gas markets. The proportion of nonproducing reserves relative to total reserves grew for both crude oil and natural gas from 1985 through 2004, and this growth is apparent in almost every major domestic production region. However, the growth patterns in nonproducing crude oil and natural gas reserves are

50

Figure A1. Natural gas processing plant capacity in the United States, 2013 2012  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 Figure A1. Natural gas processing plant capacity in the United States, 2013 2012 Table A2. Natural gas processing plant capacity, by state, 2013 (million cubic feet per day) Alabama 1,403 Arkansas 24 California 926 Colorado 5,450 Florida 90 Illinois 2,100 Kansas 1,818 Kentucky 240 Louisiana 10,737 Michigan 479 Mississippi 1,123

51

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico States Gulf of Mexico States Gulf of Mexico States The Gulf of Mexico area, which includes the States of Texas, Louisiana, Mississippi, Alabama, and Florida, has in the past accounted for the majority of natural gas production. Processing plants are especially important in this part of the country because of the amount of NGLs in the natural gas produced and existence of numerous petro-chemical plants seeking that feedstock in this area. Consequently, the States along the Gulf of Mexico are home to the largest number of plants and the most processing capacity in the United States. Natural gas produced in this area of the country is typically rich in NGLs and requires processing before it is pipeline-quality dry natural gas. Offshore natural gas production can contain more than 4 gallons of

52

The burning bush  

E-Print Network (OSTI)

ISSN 1948-6596 The burning bush Fire in Mediterraneandiscussion. Pre- scription burning is used in many forest

Schwilk, Dylan W

2013-01-01T23:59:59.000Z

53

Assessing the viability of compressed natural gas as a transportation fuel for light-duty vehicles in the United States.  

E-Print Network (OSTI)

??Recent optimistic revisions to projections for recoverable natural gas resources in the United States have generated renewed interest in the possibility of greater utilization of (more)

Kennedy, Castlen Moore

2011-01-01T23:59:59.000Z

54

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network (OSTI)

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames P.-T. Bremer1, G. Weber2 flames subject to different levels of tur- bulence. Due to their unstable nature, lean flames burn to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly

55

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network (OSTI)

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames Peer-Timo Bremer, Member levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally the turbulence of the burning process with the distribution of burning regions, properly segmented and selected

Pascucci, Valerio

56

Natural Gas Processing Plants in the United States: 2010 Update / Appendix  

Gasoline and Diesel Fuel Update (EIA)

Appendix Appendix The preceding report is the most comprehensive report published by the EIA on natural gas processing plants in the United States. The data in the report for the year 2008 were collected on Form EIA-757, Natural Gas Processing Survey Schedule A, which was fielded to EIA respondents in the latter part of 2008 for the first time. This survey was used to collect information on the capacity, status, and operations of natural gas processing plants and to monitor constraints of natural gas processing plants during periods of supply disruption in areas affected by an emergency, such as a hurricane. EIA received authorization to collect information on processing plants from the Office of Management and Budget in early 2008. The form consists of two parts, Schedule A and Schedule B. Schedule A is

57

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Portugal Egypt Figure 2. Natural gas supply and disposition in the United States, 2012 (trillion cubic feet) Natural Gas Plant Liquids Production Gross Withdrawals From Gas and Oil Wells Nonhydrocarbon Gases Removed Vented/Flared Reservoir Repressuring Production Dry Gas Imports Canada Trinidad/Tobago Natural Gas Storage Facilities Exports Japan Canada Mexico Additions Withdrawals Gas Industry Use Residential Commercial Industrial Vehicle Fuel Electric Power 29.5 0.8 0.2 3.3 2.963 0.112 0.620 0.971 0.014 24.1 1.3 2.9 2.8 2.5 2.9 7.2 0.03 9.1 0.003 Sources: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition"; Form EIA-895, "Annual Quantity and

58

Development of a digital control unit to displace diesel fuel with natural gas  

DOE Green Energy (OSTI)

Full Circle Engineering (FCE), supported by the Colorado School of Mines (CSM), proposed a Small Business CRADA with Allied Signal Federal Manufacturing & Technologies/Kansas City (FM&T/KC) for the development of a fumigation digital control unit (DCU) that would allow the displacement of diesel fuel with natural gas. Nationwide, diesel trucks and buses consumed over 21 billion gallons of fuel in 1992. The development of systems that allow the use of alternative fuels, natural gas in particular, for transportation would significantly reduce emissions and pollutants. It would also help implement DOE`s mandate for energy security (use of domestic fuels) required by the Energy Policy Act (EPACT).

Talbott, A.D. [AlliedSignal FM& T, Kansas City, MO (United States)]|[Full Circle Engineering, Northglenn, CO (United States)

1997-03-01T23:59:59.000Z

59

The effects of spark ignition parameters on the lean burn limit of natural gas combustion in an internal combustion engine  

E-Print Network (OSTI)

A full factorial experiment was conducted to determine the effects of internal combustion engine ignition parameters on the air-fuel ratio (A/F) lean limit of combustion with compressed natural gas (CNG). Spark electrical characteristics (voltage, current, power, energy and duration), electrode design, electrode gap and compression ratio were the control variables and A/F lean limit, fuel consumption and hydrocarbon and oxides of nitrogen emission concentrations were the response variables. Experiments were performed on a General Motors' 2.2 liter four cylinder engine. Spark electrical characteristics were varied by applying various primary voltages and secondary resistances to the production inductive ignition system, with the engine operating at two operating conditions, a light load and a road load, and with two compression ratios. Cylinder pressure data was acquired to quantify load and combustion stability. Spark electrical characteristics were acquired with a digital oscilloscope to quantify secondary spark electrical characteristics. The results indicated that the response variables were generally insensitive to all the control variables, except for compression ratio. However, contrary to the literature, the A/F lean limit and fuel efficiency degraded with a higher compression ratio. Single and multi-variant linear regressions were studied between the A/F lean limit and the spark electrical characteristics. The only statistically significant and notable finding was a multi-variant linear regression of the A/F lean limit to increasing spark duration and decreasing spark energy at the road load operating condition. Statistical significance of the effect of the ignition system control variables on the response variables was higher at the road load than the light load operating condition. Emissions responded as expected with the higher compression ratio.

Chlubiski, Vincent Daniel

1997-01-01T23:59:59.000Z

60

Burning plasmas  

SciTech Connect

The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.

Furth, H.P.; Goldston, R.J.; Zweben, S.J. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Sigmar, D.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

1990-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Considerations for Prescribed Burning  

E-Print Network (OSTI)

Considerations for Prescribed Burning NEW M EX ICO S TAE U N I V E R SI T YT Cooperative Extension prescribed burns ...................... 1 Fire effects ................................................ 3 Justification for burning ......................................... 3 Reclamation versus

Castillo, Steven P.

62

NETL: Releases & Briefs - Laser ignition for lean-burn engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Technology Laboratory have successfully operated a laser-spark lean-burn natural gas reciprocating engine. Development of lean-burn engines is driven by demand for higher...

63

Methane Emissions from Natural Wetlands in the United States: Satellite-Derived Estimation Based on Ecosystem Carbon Cycling  

Science Conference Proceedings (OSTI)

Wetlands are an important natural source of methane to the atmosphere. The amounts of methane emitted from inundated ecosystems in the United States can vary greatly from area to area. Seasonal temperature, water table dynamics, and carbon ...

Christopher Potter; Steven Klooster; Seth Hiatt; Matthew Fladeland; Vanessa Genovese; Peggy Gross

2006-12-01T23:59:59.000Z

64

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Plant Utilization Data collected for 2009 show that the States with the highest total processing capacity are among the States with the highest average utilization rates. This is to be expected as most of the plants are located in production areas that have been prolific for many years. In fact, the five States situated along the Gulf of Mexico accounted for nearly 49 percent of total processing volume in 2009. The total utilization rate in the United States averaged 66 percent of total capacity in 2009 (Table 2). Plants in Alaska ran at 86 percent of total capacity during the year, the highest capacity utilization rate in the country. Texas had significant utilization capacity at 71 percent, for an average of 14 Bcf per day of natural gas in 2009. However, a number of

65

Evaluation of concrete masonry unit walls for lateral natural phenomena hazards loads  

Science Conference Proceedings (OSTI)

Older single-story facilities (Pre-1985 vintage) are commonly constructed of structural steel framing with concrete masonry unit (CMU) walls connected to columns and roof girders of the steel framing system. The CMU walls are designed for lateral wind and seismic loads (perpendicular to the wall) and transmit shear loads from the roof diaphragm to the foundation footings. The lateral loads normally govern their design. The structural framing system and the roof diaphragm system are straight forward when analyzing or upgrading the structure for NPH loads. Because of a buildings design vintage, probable use of empirical methodology, and poor design basis documentation (and record retention); it is difficult to qualify or upgrade CMU walls for lateral Natural Phenomena Hazards (NPH) loads in accordance with References 1, 2 and 3. This paper discusses three analytical approaches and/or techniques (empirical, working stress and yield line) to determine the collapse capacity of a laterally loaded CMU wall, and compares their results

Faires, W.E. Jr.

1996-03-08T23:59:59.000Z

66

Biomass Burning Observation Project Specifically,  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning Observation Project Burning Observation Project Specifically, the aircraft will obtain measurements of the microphysical, chemical, hygroscopic, and optical properties of aerosols. Data captured during BBOP will help scientists better understand how aerosols combine and change at a variety of distances and burn times. Locations Pasco, Washington. From July through September, the G-1 will be based out of its home base in Washington. From this location, it can intercept and measure smoke plumes from naturally occurring uncontrolled fires across Washington, Oregon, Idaho, Northern California, and Western Montana. Smoke plumes aged 0-5 hours are the primary targets for this phase of the campaign. Memphis, Tennessee. In October, the plane moves to Tennessee to sample prescribed

67

Table B1. Summary statistics for natural gas in the United States...  

Gasoline and Diesel Fuel Update (EIA)

of Natural Gas Purchases and Deliveries to Consumers"; Form EIA-910, "Monthly Natural Gas Marketer Survey"; Form EIA-816, "Monthly Natural Gas Liquids Report"; Form EIA-64A,...

68

Spring Cleaning. Calorie Burning.  

E-Print Network (OSTI)

Spring Cleaning. Calorie Burning. Laundry: 73 Dusting: 85 Mopping the Floor: 153 Washing the Car Painting: 161 (Estimate based on 150 lb person per 30 minutes, more calories burned if weigh more, fewer calories burned if weigh less) Allergy Sufferers' Survival Guide > Wash your hair before bed to avoid

Acton, Scott

69

Table 1. Summary statistics for natural gas in the United States, 2007-2011  

Gasoline and Diesel Fuel Update (EIA)

Table 1. Summary statistics for natural gas in the United States, 2007-2011 See footnotes at end of table. Number of Wells Producing at End of Year 452,945 476,652 493,100 487,627 514,637 Production (million cubic feet) Gross Withdrawals From Gas Wells R 14,991,891 R 15,134,644 R 14,414,287 R 13,247,498 12,291,070 From Oil Wells R 5,681,871 R 5,609,425 R 5,674,120 R 5,834,703 5,907,919 From Coalbed Wells R 1,999,748 R 2,022,228 R 2,010,171 1,916,762 1,779,055 From Shale Gas Wells 1,990,145 R 2,869,960 R 3,958,315 5,817,122 8,500,983 Total 24,663,656 25,636,257 26,056,893 R 26,816,085 28,479,026 Repressuring 3,662,685 3,638,622 3,522,090 3,431,587 3,365,313 Vented and Flared 143,457 166,909 165,360

70

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

71

1. Selected average prices of natural gas in the United States,  

U.S. Energy Information Administration (EIA)

Report; Office of Fossil Energy, U.S. Department of Energy, Natural Gas Imports and Exports; Form EIA?857, Monthly ...

72

Addendum to the Closure Report for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada (Revision 0)  

SciTech Connect

Corrective Action Unit (CAU) 484 Streamlined Approach for Environmental Restoration (SAFER) activities called for the identification and remediation of surface hot spot depleted uranium (DU) with some excavation to determine the vertical extent of contamination (NNSA/NSO, 2004). During the CAU 484 SAFER investigation (conducted November 2003 through August 2007), approximately 50 locations containing DU were identified on Antelope Lake. All but four locations (CA-1, SA-5-9, SA-12-15, and SA-4) were remediated. Figure 1-1 shows locations of the four use restriction (UR) sites. The four locations were determined to have failed the SAFER conceptual site model assumption of a small volume hot spot. Two of the locations (CA-1 and SA-5-9) were excavated to depths of 3.5 to 7 feet (ft) below ground surface (bgs), and a third location (SA-12-15) with a footprint of 30 by 60 ft was excavated to a depth of 0.5 ft. At the fourth site (SA-4), the discovery of unexploded ordnance (UXO) halted the excavation due to potential safety concerns. Remediation activities on Antelope Lake resulted in the removal of approximately 246 cubic yards (yd3) of DU-impacted soil from the four UR sites; however, Kiwi surveys confirmed that residual DU contamination remained at each of the four sites. (The Kiwi was a Remote Sensing Laboratory [RSL] vehicle equipped with a data-acquisition system and four sodium iodide gamma detectors. Surveys were conducted with the vehicle moving at a rate of approximately 10 miles per hour with the gamma detectors positioned 14 to 28 inches [in.] above the ground surface [NNSA/NSO, 2004]).

Mark Burmeister

2011-03-01T23:59:59.000Z

73

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Btu Content The natural gas received and transported by the major intrastate and interstate mainline transmission systems must be within a specific energy (Btu) content range. Generally, the acceptable Btu content is 1,035 Btu per cubic foot, with an acceptable deviation of +/-50 Btu. However, when natural gas is extracted, its Btu content can be very different from acceptable pipeline specifications. The Btu content of natural gas extracted varies depending on the presence of water, NGLs, as well as CO2, nitrogen, helium, and others. Significant amounts of NGLs in natural gas is generally associated with higher Btu values. Consistent with this, Btu values reported by plants in Texas and other Gulf of Mexico States are comparatively high (Table 3). On

74

Relations between Temperature and Residential Natural Gas Consumption in the Central and Eastern United States  

Science Conference Proceedings (OSTI)

The increased U.S. natural gas price volatility since the mid-to-late-1980s deregulation generally is attributed to the deregulated market being more sensitive to temperature-related residential demand. This study therefore quantifies relations ...

Reed P. Timmer; Peter J. Lamb

2007-11-01T23:59:59.000Z

75

Role of the nature of the support (alumina or silica), of the support porosity, and of the Pt dispersion in the selective reduction of NO by C{sub 3}H{sub 6} under lean-burn conditions  

SciTech Connect

During selective reduction of NO{sub x} under lean-burn conditions, a Pt particle size dependency has previously been observed with various supports. In this study, the authors have examined the influence of various parameters over a large range of initial metal dispersion: nature of the support (silica or alumina), support porosity, presence of impurities (particularly chlorine or sulfur), nature of the platinum precursor salt, and Pt particle size distribution. Furthermore, the authors have considered the mean particle size after sintering under the reactant mixture up to 773 K. Of the factors considered, only the Pt dispersion is of key importance. The intrinsic activity increases with decreasing dispersion (measured initially or after reaction) for each of the main reactions: reduction of NO into N{sub 2} or N{sub 2}O, oxidation of NO into NO{sub 2}, or oxidation of C{sub 3}H{sub 6} into CO{sub 2}. The dispersion does not clearly affect the selectivity.

Denton, P.; Giroir-Fendler, A.; Praliaud, H.; Primet, M.

2000-01-25T23:59:59.000Z

76

Actinide Burning in CANDU Reactors  

Science Conference Proceedings (OSTI)

Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

Hyland, B.; Dyck, G.R. [Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada)

2007-07-01T23:59:59.000Z

77

Natural  

Gasoline and Diesel Fuel Update (EIA)

Summary of U.S. Natural Gas Imports and Exports, 1992-1996 Table 1992 1993 1994 1995 1996 Imports Volume (million cubic feet) Pipeline Canada............................. 2,094,387 2,266,751 2,566,049 2,816,408 2,883,277 Mexico .............................. 0 1,678 7,013 6,722 13,862 Total Pipeline Imports....... 2,094,387 2,268,429 2,573,061 2,823,130 2,897,138 LNG Algeria .............................. 43,116 81,685 50,778 17,918 35,325 United Arab Emirates ....... 0 0 0 0 4,949 Total LNG Imports............. 43,116 81,685 50,778 17,918 40,274 Total Imports......................... 2,137,504 2,350,115 2,623,839 2,841,048 2,937,413 Average Price (dollars per thousand cubic feet) Pipeline Canada............................. 1.84 2.02 1.86 1.48 1.96 Mexico .............................. - 1.94 1.99 1.53 2.25 Total Pipeline Imports.......

78

Clean-Burning Wood Stove Grant Program (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean-Burning Wood Stove Grant Program (Maryland) Clean-Burning Wood Stove Grant Program (Maryland) Clean-Burning Wood Stove Grant Program (Maryland) < Back Eligibility Residential Savings Category Bioenergy Program Info Start Date 09/07/2012 State Maryland Program Type State Rebate Program Rebate Amount Stick Burning Stove: $500 Pellet Burning Stove: $700 The Maryland Energy Administration (MEA) now offers the Clean Burning Wood Stove Grant program as part of its Residential Clean Energy Grant Program. The Clean Burning Wood Stove Grant program offers a flat grant award of $500 for stick burning wood stoves and $700 for pellet burning wood stoves that meet program eligibility requirements. Basic requirements for grant funding include: *The property must serve as primary residence *Clean burning wood stove must replace existing electric or non-natural gas

79

Paradigm Shift: Burning Coal to Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paradigm Shift: Burning Coal Paradigm Shift: Burning Coal to Geothermal" November 20, 2012 jlowe@bsu.edu 765.285.2805 Ball State University Ball State University Administration Building 1899 Ball State 1920s Ball State University Ball State University (4) Coal Fired Boilers Installed 1941/1955 (3) Natural Gas Fired Boilers Installed in the 1970s Heat and Chilled Water Plant Operations Heat Plant: 4 Coal Fired Boilers 3 Natural Gas Fired Boilers 320,000 Lbs/Hr nameplate 240,000 Lbs/Hr current 700,000,000 Lbs/Year Chilled Water Plant: 5 Electrical Centrifugal Chillers 9,300 ton capacity 25,000,000 Ton Hours/Year Pollutants Produced from Burning 36,000 tons of Coal * Carbon Dioxide 85,000 tons (Global Warming)

80

Sun tanning/burning  

NLE Websites -- All DOE Office Websites (Extended Search)

Sun tanning/burning Sun tanning/burning Name: Richardo Cossyleon Location: N/A Country: N/A Date: N/A Question: Why doesn't the sun affect or burn people with dark pigment in their skin? Replies: Good question! The pigment, melanin, is more toward the surface of the upper skin layer and absorbs ultraviolet rays from the Sun or artificial sources. This absorption protects the lower layers from damage and inflammation (burning). A very dark skinned person may have over a 1000X the protection from UV compared to a fair skinned person. Fair skinned people should use sun-block lotions especially early in the warm season AND keep exposure to the sun, particularly at midday, to less than 30 min. Even if a person gets a good tan, the sun's UV will age the skin over time. It will get wrinkled and develop age lines, etc. after many years of exposure. Moderation is the key!

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Study of composite cement containing burned oil shale  

E-Print Network (OSTI)

Study of composite cement containing burned oil shale Julien Ston Supervisors : Prof. Karen properties. SCMs can be by-products from various industries or of natural origin, such as shale. Oil shale correctly, give a material with some cementitious properties known as burned oil shale (BOS). This study

Dalang, Robert C.

82

RH: Burning index in Los Angeles A Note on Non-parametric and Semi-parametric  

E-Print Network (OSTI)

1 RH: Burning index in Los Angeles A Note on Non-parametric and Semi-parametric Modeling for comparative purposes in order to assess the predictive performance of the Burning Index. 1 Department including the Burning Index (BI) at each of various Remote Automated Weather Stations (RAWS) in the United

Schoenberg, Frederic Paik (Rick)

83

Open Burning Permit Events Management  

E-Print Network (OSTI)

Open Burning Permit Events Management Form Revision Date: 09/29/2010 OpenBurningPermit.docx A Use being burned: (check all that apply) [ ] Small logs (less than 16 in. long) [ ] Finished Lumber________________________________ As the individual responsible for this event, I have read the attached Regulations for Open Burning. The sponsoring

Manning, Sturt

84

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Rocky Mountain States and California Rocky Mountain States and California The Rocky Mountain States, which include all of the States west of the Great Plains and Texas and those east of California, have seen significant natural gas production increases over the last decade. With the development of new production basins, including the San Juan Basin, Powder River Basin, and Green River Basin, natural gas processing capacity in this region has expanded significantly. In 2009, California and Rocky Mountain States accounted for a total of 16.9 Bcf per day or about 22 percent of total U.S. capacity. Since 2004, only California and New Mexico noted a decrease in overall processing capacity, falling by 17 and 12 percent, respectively. Processing capacity in all of the remaining States (Colorado, Montana, New

85

Natural Gas Processing Plants in the United States: 2010 Update / National  

Gasoline and Diesel Fuel Update (EIA)

National Overview National Overview Processing Capacity Processing plants are typically clustered close to major producing areas, with a high number of plants close to the Federal Gulf of Mexico offshore and the Rocky Mountain production areas (Figure 1). In terms of both the number of plants and processing capacity, about half of these plants are concentrated in the States along the Gulf of Mexico. Gulf States have been some of the most prolific natural gas producing areas. U.S. natural gas processing capacity showed a net increase of about 12 percent between 2004 and 2009 (not including the State of Alaska), with the largest increase occurring in Texas, where processing capacity rose by more than 4 Bcf per day. In fact, increases in Texas' processing capacity accounted for 57 percent of the total lower 48 States' capacity increase

86

Natural Gas Processing Plants in the United States: 2010 Update / Table 1  

Gasoline and Diesel Fuel Update (EIA)

1. Natural Gas Processing Plant Capacity by State 1. Natural Gas Processing Plant Capacity by State Natural Gas Processing Capacity (Million Cubic Feet per Day) Number of Natural Gas Plants Average Plant Capacity (Million Cubic Feet per Day) Change Between 2004 and 2009 State 2009 Percent of U.S. Total 2009 Percent of U.S. Total 2004 2009 Capacity (Percent) Number of Plants Texas 19,740 25.5 163 33.1 95 121 24.7 -3 Louisiana 18,535 23.9 60 12.2 271 309 12.3 -1 Wyoming 7,273 9.4 37 7.5 154 197 5.1 -8 Colorado 3,791 4.9 44 8.9 49 86 81.1 1 Oklahoma 3,740 4.8 58 11.8 58 64 8.8 -1 New Mexico 3,022 3.9 24 4.9 137 126 -11.8 -1 Mississippi 2,273 2.9 4 0.8 262 568 44.6 -2 Illinois 2,102 2.7 2 0.4 1101 1,051 -4.6 0 Kansas 1,250 1.6 6 1.2 353 208 -64.6 -4 Alabama 1,248 1.6 12 2.4 87 104 -4.7 -3 Utah 1,185 1.5 12 2.4 61 99 22.2 -4 Michigan 977 1.3 10 2.0 30 98 102.2 -6 California 876 1.1 20 4.1 43 44 -15.5 -4 Arkansas 710 0.9 4 0.8 10 178

87

Price Discovery in the Natural Gas Markets of the United States and Canada  

E-Print Network (OSTI)

The dynamics of the U.S. and Canada natural gas spot markets are evolving through deregulation policies and technological advances. Economic theory suggests that these markets will be integrated. The key question is the extent of integration among the markets. This thesis characterizes the degree of dynamic integration among 11 major natural gas markets, six from the U.S. and five from Canada, and determines each individual markets role in price discovery. This is the first study to include numerous Canadian markets in a North American natural gas market study. Causal flows modeling using directed acyclic graphs in conjunction with time series analysis are used to explain the relationships among the markets. Daily gas price data from 1994 to 2009 are used. The 11 natural gas market prices are tied together with nine long-run co-integrating relationships. All markets are included in the co-integration space, providing evidence the markets are integrated. Results show the degree of integration varies by region. Further results indicate no clear price leader exists among the 11 markets. Dawn market is exogenous in contemporaneous time, while Sumas market is an information sink. Henry Hub plays a significant role in the price discovery of markets in the U.S. Midwest and Northeast, but little to markets in the west. The uncertainty of a markets price depends primarily on markets located in nearby regions. Policy makers may use information on market integration for important policy matters in efforts of attaining efficiency. Gas traders benefit from knowing the price discovery relationships.

Olsen, Kyle

2010-12-01T23:59:59.000Z

88

Relating United States crop land use to natural resources and climate change  

Science Conference Proceedings (OSTI)

Crop production depends not only on the yield but also on the area harvested. The yield response to climate change has been widely examined, but the sensitivity of crop land use to hypothetical climate change has not been examined directly. Crop land-use regression models for estimating crop area indices (CAIs)-the percent of land used for corn, soybean, wheat, and sorghum production-are presented. Inputs to the models include available water-holding capacity of the soil, percent of land available for rain-fed agricultural production, annual precipitation, and annual temperature. The total variance of CAI explained by the models ranged from 78% from wheat to 87% for sorghum, and the root-mean-square errors ranged from 1.74% for sorghum to 4.24% for corn. The introduction of additional climatic variables to the models did not significantly improve their performance. The crop land-use models were used to predict the CAI for every crop reporting district in the United States for the current climatic condition and for possible future climate change scenarios (various combinations of temperature and precipitation changes over a range of -3{degrees} to +6{degrees}C and -20% to +20% respectively). The magnitude of climatic warming suggested by GCMs (GISS and GFDL) is from 3.5{degrees} to 5.9{degrees}C for regions of the United States. For this magnitude of warming, the model suggests corn and soybean production areas may decline while wheat and sorghum production areas may expand. If the warming is accompanied by a decrease in annual precipitation from 1% to 10%, then the areas used for corn and soybean production could decrease by as much as 20% and 40%, respectively. The area for sorghum and wheat under these conditions would increase by as much as 80% and 70%, respectively; the exact amount depending strongly on the change in precipitation. 15 refs., 6 figs.

Flores-Mendoza, F.J.; Hubbard, K.G. [Univ. of Nebraska, Lincoln, NE (United States)

1995-02-01T23:59:59.000Z

89

Natural Gas Processing Plants in the United States: 2010 Update / Table 2  

Gasoline and Diesel Fuel Update (EIA)

2. Average Annual Flows and Utilization Rates for Processing Plants in the United States 2. Average Annual Flows and Utilization Rates for Processing Plants in the United States Average Annual Flows (Million Cubic Feet per Day) Minimum Plant Utilization Rate Maximum Plant Utilization Rate Average Utilization Rate (Percent) 2008 Percent of U.S. Total Texas 14,020 27.3 3 100 71 Louisiana 10,462 20.4 3 100 56 Alaska 8,105 15.8 77 100 86 Wyoming 4,462 8.7 21 100 61 Colorado 2,934 5.7 15 100 77 Oklahoma 2,789 5.4 12 100 75 New Mexico 2,221 4.3 17 95 73 Illinois 1,601 3.1 35 76 76 Kansas 852 1.7 51 84 68 Alabama 746 1.5 32 80 60 Utah 728 1.4 22 100 61 Mississippi 688 1.3 29 67 30 California 557 1.1 2 100 64 West Virginia 382 0.7 70 91 82 Kentucky 217 0.4 40 92 75 Michigan 182 0.4 5 100 19 North Dakota 158 0.3 33 94 80 Montana 89 0.2 27 88 54 Pennsylvania 36 0.1 43 89 70 Arkansas 27 0.1 3 90 4 Florida 20 0.0 22 22 22 Tennessee 16 0.0 64 64 64 TOTAL U.S. 51,289 100.0 2 100 66 Note: Average utilization rates are based on 2008 flows and 2009 capacity,

90

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States Midwestern and Eastern States combined accounted for about 13 percent of total U.S. processing capacity in 2009, accounting for the smallest portion of any region in the lower 48 States. The combined processing capacity in these States more than doubled, although a few of the States saw decreased capacity compared with 2004. Processing capacity in Illinois, Kansas, North Dakota, and Pennsylvania fell since 2004, with the highest decrease occurring in Kansas, which saw a 65 percent drop in processing capacity. At the same time, the number of plants in Kansas decreased by four. The decrease was likely the result of falling natural gas proved reserves, which decreased in this State between 1995 and 2005. While the proved reserves have

91

Natural Gas Processing Plants in the United States: 2010 Update / Regional  

Gasoline and Diesel Fuel Update (EIA)

Regional Analysis Regional Analysis Alaska Alaska The State of Alaska had the third-largest processing capacity, trailing only Texas and Louisiana. While much of the natural gas processed in Alaska does not enter any transmission system and is instead re-injected into reservoirs, its processing capability is nonetheless significant. At 9.5 Bcf per day of processing capacity, the State of Alaska accounted for about 12 percent of total U.S. capacity. As of 2009, there were a total of 4 plants in the State, with the largest one reporting a capacity of 8.5 Bcf per day. Average plant size of 2.4 Bcf per day far exceeded any other State, with Illinois noting the next largest average plant size of 1.1 Bcf per day. In addition to the significant processing total capacity, plants in

92

Natural-gas-fired CC unit holds NO[sub x] emissions below 9. 0 ppm  

Science Conference Proceedings (OSTI)

This article describes the East Syracuse generating plant, one of first commercial stations to include LM6000 gas turbines, designed to solve noise and emissions problems. This natural-gas-fired, combined-cycle cogeneration facility provides 97 MW of power to Niagara Mohawk Power Corp and up to 80,000 lb/hr of process steam to a nearby Bristol-Myers Squibb Co plant. The plant's original design had contemplated a base-loaded facility. This stemmed from the original power sales agreement with Niagara Mohawk Power Corp. Flexibility of original design proved advantageous to the East Syracuse (NY) plant when, during the latter stages of construction, the original agreement was renegotiated into a schedulable'' contract. The new agreement now in force, providing for limited dispatch of one of the two gas turbines, is designed around other pre-existing project agreements. Design flexibility and the choice of two gas turbines made the plant capable of meeting dispatch requirements with only minor modifications of plant design and staffing.

Grunbeck, G.

1994-09-01T23:59:59.000Z

93

Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2005-2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2005-2009 See footnotes at end of table. Number of Wells Producing at End of Year .... 425,887 440,516 452,945 R 476,652 493,100 Production (million cubic meters) Gross Withdrawals From Gas Wells .............................................. 494,748 509,577 483,238 R 442,265 420,197 From Oil Wells ................................................ 169,476 156,860 164,759 R 162,742 164,611 From Coalbed Wells ....................................... NA NA 50,400 R 56,249 55,990 From Shale Gas Wells .................................... NA NA NA 64,682 95,811 Total ................................................................. 664,223 666,438 698,397 R 725,938 736,609

94

Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2004-2008  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2004-2008 See footnotes at end of table. Number of Wells Producing at End of Year .... 406,147 425,887 440,516 R 452,945 478,562 Production (million cubic meters) Gross Withdrawals From Gas Wells .............................................. 506,454 494,748 509,577 R 483,238 510,019 From Oil Wells ................................................ 172,292 169,476 156,860 R 164,759 165,506 From Coalbed Wells ....................................... NA NA NA 50,400 53,757 Total ................................................................. 678,746 664,223 666,438 R 698,397 729,282 Repressuring .................................................... 104,819 104,759

95

Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2003-2007  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2003-2007 See footnotes at end of table. Number of Wells Producing at End of Year .... 393,327 406,147 425,887 R 440,516 452,768 Production (million cubic meters) Gross Withdrawals From Gas Wells .............................................. 506,356 506,454 494,748 R 509,577 530,629 From Oil Wells ................................................ 176,617 172,292 169,476 R 156,860 165,699 Total ................................................................. 682,973 678,746 664,223 R 666,438 696,328 Repressuring .................................................... 100,462 104,819 104,759 92,453 107,274 Vented and Flared ............................................

96

Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2002-2006  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table B1. Summary Statistics for Natural Gas in the United States, Metric Equivalents, 2002-2006 See footnotes at end of table. Number of Gas and Gas Condensate Wells Producing at End of Year .................................. 387,772 393,327 406,147 R 425,887 448,641 Production (million cubic meters) Gross Withdrawals From Gas Wells .............................................. 503,894 506,356 506,454 R 494,748 508,075 From Oil Wells ................................................ 174,047 176,617 172,292 R 169,476 157,583 Total ................................................................. 677,942 682,973 678,746 R 664,223 665,657 Repressuring .................................................... 97,839 100,462 104,819 R 104,759 92,453 Vented and Flared

97

5, 27912831, 2005 Biomass burning  

E-Print Network (OSTI)

ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract Introduction measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia P. Guyon1 , G. Frank1. 2791 #12;ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract

Paris-Sud XI, Université de

98

Burning Plasma Developments Presented to  

E-Print Network (OSTI)

Burning Plasma Developments Dale Meade Presented to VLT Program Advisory Committee UCLA December 4 and Burning Plasma Issues · NSO PAC Activities First Meeting July 20-21, 2001 at GA Action Items and Status Second Meeting January 17-18, 2001 at MIT Agenda items · FuSAC Recommendation on a burning plasma

99

7, 1733917366, 2007 Biomass burning  

E-Print Network (OSTI)

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

100

Comparison of resource assessment methods and geologic controls--deep natural gas plays and zones, United States and Russia  

Science Conference Proceedings (OSTI)

Deep (greater than 4.5 km--15,000 ft) conventional natural gas resources will play an important role in the future energy needs of the United States and Russia. Deep sedimentary basins are widespread in these countries and have formed in a variety of depositional and tectonic settings. Significant volumes of undiscovered deep natural gas are in the Gulf Coast, Anadarko, Permian, and Rocky Mountain basins of the U.S., and in the Timan-Pechora, West Siberia, East Siberia, and North and South Caspian basins of the former Soviet Union. Deep natural gas resources are regularly assessed by the All-Russia Petroleum Research Exploration Institute (VNIGRI) and the U.S. Geological Survey (USGS) as part of their normal research activities. Both VNIGRI and the USGS employ similar assessment methods involving play (or zone) analysis using geological data and based on an analysis of confirmed and hypothetical plays using field-size distributions, discovery-process models, and statistical estimation procedures that yield probabilistic estimates of undiscovered accumulations. Resource estimates for the deep structural and statigraphic plays of the Anadarko basin and deep Paleozoic zones in the Timan-Pechora basin are compared and contrasted using both methods. Differences in results of assessments between VNIGRI and USGS arise due to (1) the way in which plays/zones are defined, (2) different geochemical models for hydrocarbon generation as applied to hypothetical plays, (3) variations in the ways in which statistical estimation procedures are applied to plays and regions, and (4) differences in economic and technologic assumptions, reserve growth calculations, and accumulation size limits and ranges.

Dyman, T.S. (Geological Survey, Denver, CO (United States)); Belonin, M.D. (All-Russia Petroleum Research Exploration Inst., St. Petersburg (Russian Federation)) (and others)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Table B1. Summary statistics for natural gas in the United States, metric equivalents, 2008-2012  

U.S. Energy Information Administration (EIA) Indexed Site

6 6 Table B1. Summary statistics for natural gas in the United States, metric equivalents, 2008-2012 See footnotes at end of table. Number of Wells Producing at End of Year 476,652 493,100 487,627 514,637 482,822 Production (million cubic meters) Gross Withdrawals From Gas Wells 428,565 408,167 375,127 348,044 360,663 From Oil Wells 158,841 160,673 165,220 167,294 140,725 From Coalbed Wells 57,263 56,922 54,277 50,377 43,591 From Shale Gas Wells 81,268 112,087 164,723 240,721 291,566 Total 725,938 737,849 759,347 806,436 836,545 Repressuring 103,034 99,734 97,172 95,295 92,304 Vented and Flared 4,726 4,682 4,699 5,931 6,027 Nonhydrocarbon Gases Removed 20,351 20,431 23,693 24,577 21,573

102

Simulating past and future dynamics of natural ecosystems in the United States. Global Biogeochemical Cycles 17(2)1045  

E-Print Network (OSTI)

[1] Simulations of potential vegetation distribution, natural fire frequency, carbon pools, and fluxes are presented for two DGVMs (Dynamic Global Vegetation Models) from the second phase of the Vegetation/Ecosystem Modeling and Analysis Project. Results link vegetation dynamics to biogeochemical cycling for the conterminous United States. Two climate change scenarios were used: a moderately warm scenario from the Hadley Climate Centre and a warmer scenario from the Canadian Climate Center. Both include sulfate aerosols and assume a gradual CO2 increase. Both DGVMs simulate a reduction of southwestern desert areas, a westward expansion of eastern deciduous forests, and the expansion of forests in the western part of the Pacific Northwest and in north-central California. Both DGVMs predict an increase in total biomass burnt in the next century, with a more pronounced increase under the Canadian scenario. Under the Hadley scenario, both DGVMs simulate increases in total carbon stocks. Under the Canadian scenario, both DGVMs simulate a decrease in live vegetation carbon. We identify similarities in model behavior due to the climate forcing and explain differences by the different structure of the models and their different sensitivity to

Dominique Bachelet; Ronald P. Neilson; Thomas Hickler; Raymond J. Drapek; James M. Lenihan; Martin T. Sykes; Benjamin Smith; Stephen Sitch; Kirsten Thonicke

2003-01-01T23:59:59.000Z

103

Systematics and Biodiversity 2 (4): 375417 Issued 18 April 2005 doi:10.1017/S1477200004001574 Printed in the United Kingdom C The Natural History Museum  

E-Print Network (OSTI)

Printed in the United Kingdom C The Natural History Museum Phylogenetic systematics and historical biogeography of the Neotropical electric fish Gymnotus (Teleostei: Gymnotidae) J. S. Albert1, *, W. G. R Rates of character state evolution 397 Geographic and ecological distributions 400 Discussion 401

Lovejoy, Nathan

104

Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol  

DOE Green Energy (OSTI)

Natural and prescribed biomass fires are a major source of atmospheric aerosols that can persist in the atmosphere for long periods of time. Biomass burning aerosols (BBA) can be associated with long range transport of water soluble N?, S?, P?, and metal?containing species. In this study, BBA samples were collected using a particle?into?liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR?MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of probable elemental formulae. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba?containing organometallic species were identified. The results suggest that the biomass may have accumulated metal?containing species that were reemitted during biomass burning. Further research into the sources, persistence, and dispersion of metal?containing aerosols as well as their environmental effects is needed.

Chang-Graham, Alexandra L.; Profeta, Luisa Tm; Johnson, Timothy J.; Yokelson, Robert J.; Laskin, Alexander; Laskin, Julia

2011-01-10T23:59:59.000Z

105

Bending Burning Matches and Crumpling Burning Paper Texas A&M University  

E-Print Network (OSTI)

Bending Burning Matches and Crumpling Burning Paper Zeki Melek Texas A&M University Department burning. Specifically, we can simulate the bending of burning matches, and the folding of burning paper interactively. 1 Introduction We present a simple method to increase the realism of the simu- lation of burning

Keyser, John

106

Signposts of Change in Evolving Natural Gas Markets: Key Factors Affecting Expected Future Supply and Demand for Natural Gas in the United States  

Science Conference Proceedings (OSTI)

In recent years, the North American natural gas industry has undergone a major restructuring as a result of the so-called shale revolution.This is an amazing situation when one considers the magnitude of the changes the shale revolution has spurred not only in domestic natural gas markets, but across many sectors of the overall economy.In essence, the shale revolution is a black swan event that many industry observers consider to have been a once in more than ...

2013-12-18T23:59:59.000Z

107

BLM Burns District Office | Open Energy Information  

Open Energy Info (EERE)

Burns District Office Jump to: navigation, search Name BLM Burns District Office Place Hines, Oregon References BLM Burns District Office1 This article is a stub. You can help...

108

INHIBITION EFFECTS ON EXTINCTION OF POLYMER BURNING  

E-Print Network (OSTI)

ON EXTINCTION OF POLYMER BURNING* W.J. Pitz R.F. SawyerQuantitative determinations of burning rates, extinctionlayer at the surface of a burning polymer. The char l ayer

Pitz, W.J.

2011-01-01T23:59:59.000Z

109

More than words : a biography of Daniel Francis Burns  

E-Print Network (OSTI)

Daniel Francis Burns was born in Ireland in 1888 and immigrated to the United States in 1912. He married Mary O'Neill in 1923 and had a family of seven children. He worked as a police officer in the Boston Police Department ...

Burns, Matthew R. (Matthew Robert)

2005-01-01T23:59:59.000Z

110

,"Price of U.S. Liquefied Natural Gas Imports From The United Arab Emirates (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

The United Arab Emirates (Dollars per Thousand Cubic Feet)" The United Arab Emirates (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Price of U.S. Liquefied Natural Gas Imports From The United Arab Emirates (Dollars per Thousand Cubic Feet)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n9103ua3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n9103ua3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

111

Effects of Moisture Released during Forest Burning on Fog Formation and Implications for Visibility  

Science Conference Proceedings (OSTI)

Smoke from wildland burning in association with fog has been implicated as a visibility hazard over roadways in the United States. Visibilities at accident sites have been estimated in the range from 1 to 3 m (extinction coefficients between 1000 ...

Gary L. Achtemeier

2008-05-01T23:59:59.000Z

112

Burning Plasma Support Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning Plasma Support Research Program on Alcator C-Mod Presented by: Stephen M. Wolfe Alcator C-Mod Five Year Proposal Review MIT Plasma Science & Fusion Center Cambridge, MA May...

113

UNITED STATES ENVIRONMENTALPROTECTIONAGENCY WASHINGTON, D.C. 20460  

E-Print Network (OSTI)

as a hazardous waste treatment unit under RCRA interim status and is undergoing RCRA closure. The pad was built.................................................................................2-3 2.6 CLOSURE Closure Plan for the Technical Area 16 Open Burning Units G Technical Area (TA) 16 Open Burning Units

114

Natural Gas Storage in the United States in 2001: A Current Assessment and Near-Term Outlook  

Reports and Publications (EIA)

This report examines the large decline of underground natural gas storage inventories during the 2000-2001 heating season and the concern that the nation might run out of working gas in storage prior to the close of the heating season on March 31, 2001. This analysis also looks at the current profile and capabilities of the U.S. natural gas underground storage sector.

Information Center

2001-03-01T23:59:59.000Z

115

Category:Burns, OR | Open Energy Information  

Open Energy Info (EERE)

Burns, OR Burns, OR Jump to: navigation, search Go Back to PV Economics By Location Media in category "Burns, OR" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Burns OR PacifiCorp (Oregon).png SVFullServiceRestauran... 71 KB SVHospital Burns OR PacifiCorp (Oregon).png SVHospital Burns OR Pa... 74 KB SVLargeHotel Burns OR PacifiCorp (Oregon).png SVLargeHotel Burns OR ... 74 KB SVLargeOffice Burns OR PacifiCorp (Oregon).png SVLargeOffice Burns OR... 69 KB SVMediumOffice Burns OR PacifiCorp (Oregon).png SVMediumOffice Burns O... 71 KB SVMidriseApartment Burns OR PacifiCorp (Oregon).png SVMidriseApartment Bur... 72 KB SVOutPatient Burns OR PacifiCorp (Oregon).png SVOutPatient Burns OR ... 69 KB SVPrimarySchool Burns OR PacifiCorp (Oregon).png

116

Patch Burning: Integrating Fire and Grazing  

E-Print Network (OSTI)

Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Oklahoma Cooperative Extension Service Oklahoma State University June 2013 #12;#12;Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Fire and Grazing to Promote

Balasundaram, Balabhaskar "Baski"

117

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network (OSTI)

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR #12;PT COGENERATION LLC A wood-burning cogeneration power plant - Generates electricity (for sale off paper making process, black and white liquor , sludge #12;SLASH BURNING Slash burned in 2008: Jefferson

118

FROM YEARNING TO BURNING Marshall Rosenbluth  

E-Print Network (OSTI)

FROM YEARNING TO BURNING Marshall Rosenbluth Possible broad-brush guidelines for "burning plasma" thinking December 6, 2000 The "yearn to burn" is well motivated. Most of us came into the fusion program for many years, the point at which science and the fusion energy goal converge is in a burning plasma

119

Patch Burning: Integrating Fire and Grazing  

E-Print Network (OSTI)

Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Oklahoma Cooperative Extension Service Oklahoma State University September 2007 #12;#12;Patch Burning: Integrating Fire and Grazing to Promote Heterogeneity Patch Burning: Integrating Fire and Grazing to Promote

Debinski, Diane M.

120

SUBCHAPTER D. OUTDOOR BURNING Sec. 352.081. REGULATION OF OUTDOOR BURNING. (a) In this  

E-Print Network (OSTI)

SUBCHAPTER D. OUTDOOR BURNING Sec. 352.081. REGULATION OF OUTDOOR BURNING. (a) In this section measurement that takes into consideration the burning index, spread component, or ignition component court of a county by order may prohibit or restrict outdoor burning in general or outdoor burning

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydrogen Burning on Magnetar Surfaces  

E-Print Network (OSTI)

We compute the rate of diffusive nuclear burning for hydrogen on the surface of a "magnetar" (Soft Gamma-Ray Repeater or Anomalous X-Ray Pulsar). We find that hydrogen at the photosphere will be burned on an extremely rapid timescale of hours to years, depending on composition of the underlying material. Improving on our previous studies, we explore the effect of a maximally thick "inert" helium layer, previously thought to slow down the burning rate. Since hydrogen diffuses faster in helium than through heavier elements, we find this helium buffer actually increases the burning rate for magnetars. We compute simple analytic scalings of the burning rate with temperature and magnetic field for a range of core temperature. We conclude that magnetar photospheres are very unlikely to contain hydrogen. This motivates theoretical work on heavy element atmospheres that are needed to measure effective temperature from the observed thermal emission and constrains models of AXPs that rely on magnetar cooling through thick light element envelopes.

P. Chang; P. Arras; L. Bildsten

2004-10-18T23:59:59.000Z

122

Adjusting to Overcapacity: Impacts of New Gas-Fired Units on Power Supply and Fuel Use: Report Series on Natural Gas and Power Relia bility  

Science Conference Proceedings (OSTI)

Capacity additions of gas-fired combined-cycle units reached a peak in 2003 and will drop sharply in 2004. While the extraordinary boom of merchant capacity is now largely over, it has resulted in overbuilding in many regions and will have impacts that are widespread. The overall efficiency of this new capacity has been strong, but trends toward greater capacity utilization have been arrested by the combination of overbuilding and high natural gas prices. Capacity premiums have been driven to low levels,...

2004-03-22T23:59:59.000Z

123

Texas A&M AgriLife Extension Service Procedures 24.01.01.X0.09 Outdoor Burning  

E-Print Network (OSTI)

Texas A&M AgriLife Extension Service Procedures 24.01.01.X0.09 Outdoor Burning Approved: October 5 Review: August 27, 2014 Texas A&M AgriLife Extension Service Procedure 24.01.01.X0.09 Outdoor Burning burning (30 TAC 111.201-221).Those units located on the Texas A&M University campus will follow the Open

124

Open Burning (New Mexico) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Open Burning (New Mexico) Open Burning (New Mexico) Open Burning (New Mexico) < Back Eligibility Commercial Construction General Public/Consumer Industrial Residential Program Info Start Date 2003 State New Mexico Program Type Environmental Regulations Provider New Mexico Environment Department The New Mexico Environment Department's Air Quality Bureau regulates the open burning rules established by the Environmental Improvement Board. These rules are established to protect public health and welfare by establishing controls on pollution produced by open burning. Open burning is allowed for recreational and ceremonial purposes, for barbecuing, for heating purposes in fireplaces, for the noncommercial cooking of food for human consumption and for warming by small wood fires at construction

125

Paradigm Shift: Burning Coal to Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Paradigm Shift: Burning Coal to Geothermal Paradigm Shift: Burning Coal to Geothermal Paradigm Shift: Burning Coal to Geothermal 20121120ballstatepresentation.pdf More Documents...

126

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

E-Print Network (OSTI)

effects on cellular burning structures in lean premixedAnalyzing and Tracking Burning Structures in Lean Premixedthe turbulence of the burning process with the distribution

Bremer, Peer-Timo

2010-01-01T23:59:59.000Z

127

Practical tip: Precooling topical calcineurin inhibitors tube; reduces burning sensation  

E-Print Network (OSTI)

inhibitors tube; reduces burning sensation Sultan Al-salkhenaizan@hotmail.com Abstract Burning sensation at theuse, does reduce the burning sensation and enable most

Al-Khenaizan, Sultan

2010-01-01T23:59:59.000Z

128

Biomass Burning: A Driver for Global Change!  

Science Conference Proceedings (OSTI)

Biomass burning includes the burning of the world''s vegetation---forests, savannas, and agricultural lands---to clear the land and change its use. Only in the past decade have researchers realized the important contributions of biomass burning to the ...

Levine J. S.; III W. R. Cofer; Jr D. R. Cahoon; Winstead E. L.

1995-01-01T23:59:59.000Z

129

7, 80178033, 2007 burning-tropopause  

E-Print Network (OSTI)

ACPD 7, 8017­8033, 2007 Biomass burning-tropopause mixing J. Brioude et al. Title Page Abstract Discussions Mixing between a stratospheric intrusion and a biomass burning plume J. Brioude1 , O. R. Cooper1.brioude@noaa.gov) 8017 #12;ACPD 7, 8017­8033, 2007 Biomass burning-tropopause mixing J. Brioude et al. Title Page

Paris-Sud XI, Université de

130

MFE Burning Plasmas Innovative Confinement Concepts (ICCs)  

E-Print Network (OSTI)

MFE Burning Plasmas and Innovative Confinement Concepts (ICCs) Bick Hooper LLNL Presentation power requires: · A burning plasma experiment · An advancing portfolio of ICCs · Plasma physics unified Improved Configurations Magnetic Configurations Knowledge Base Burning Plasma Phys. & Tech. Knowledge Base

131

TQ2. Global Biomass Burning What is the impact of global biomass burning on the terrestrial  

E-Print Network (OSTI)

TQ2. Global Biomass Burning What is the impact of global biomass burning on the terrestrial and land use. MODIS active fire detections 2000-2006 for Southern California 2001-2004 mean annual burned (bottom), expressed as fraction of grid cell that burns each year. From Giglio et al. (2005), Atmos. Chem

Christian, Eric

132

Schoenberg, Chang, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles  

E-Print Network (OSTI)

Schoenberg, Chang, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles A Critical Assessment of the Burning Index in Los Angeles County, California Frederic Paik SchoenbergA,E , Chien: The effectiveness of the Burning Index (BI) in predicting wildfire ac- tivity is assessed using 25 years of area

Schoenberg, Frederic Paik (Rick)

133

Schoenberg, Chang, Keeley, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles  

E-Print Network (OSTI)

Schoenberg, Chang, Keeley, Pompa, Woods, Xu. Burning Index. 1 RH: Burning index in Los Angeles A Critical Assessment of the Burning Index in Los Angeles County, California Frederic Paik Schoenberg: The effectiveness of the Burning Index (BI) in predicting wildfire ac- tivity is assessed using 25 years of area

Schoenberg, Frederic Paik (Rick)

134

Exhaust gas purification system for lean burn engine  

DOE Patents (OSTI)

An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

Haines, Leland Milburn (Northville, MI)

2002-02-19T23:59:59.000Z

135

Natural gas-assisted steam electrolyzer  

DOE Patents (OSTI)

An efficient method of producing hydrogen by high temperature steam electrolysis that will lower the electricity consumption to an estimated 65 percent lower than has been achievable with previous steam electrolyzer systems. This is accomplished with a natural gas-assisted steam electrolyzer, which significantly reduces the electricity consumption. Since this natural gas-assisted steam electrolyzer replaces one unit of electrical energy by one unit of energy content in natural gas at one-quarter the cost, the hydrogen production cost will be significantly reduced. Also, it is possible to vary the ratio between the electricity and the natural gas supplied to the system in response to fluctuations in relative prices for these two energy sources. In one approach an appropriate catalyst on the anode side of the electrolyzer will promote the partial oxidation of natural gas to CO and hydrogen, called Syn-Gas, and the CO can also be shifted to CO.sub.2 to give additional hydrogen. In another approach the natural gas is used in the anode side of the electrolyzer to burn out the oxygen resulting from electrolysis, thus reducing or eliminating the potential difference across the electrolyzer membrane.

Pham, Ai-Quoc (San Jose, CA); Wallman, P. Henrik (Berkeley, CA); Glass, Robert S. (Livermore, CA)

2000-01-01T23:59:59.000Z

136

Alternative Fuels Data Center: Liquefied Natural Gas Allows for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

its entire diesel refuse-hauler fleet to clean-burning liquefied natural gas (LNG). The fleet worked with Sacramento Clean Cities, the local air district, and other...

137

Opportunities in Liquefied Natural Gas - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Natural gas burns more cleanly than petroleum fuels or coal, and new gas-fired combined-cycle turbine power plants can turn heat into electricity more efficiently ...

138

New Computer Codes Unlock the Secrets of Cleaner Burning Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Codes Unlock the Secrets of Cleaner Burning Coal New Computer Codes Unlock the Secrets of Cleaner Burning Coal March 29, 2012 | Tags: Advanced Scientific Computing Research (ASCR), Combustion, Franklin, Hopper Linda Vu, lvu@lbl.gov, +1 510 495 2402 The Polk Power Station near Mulberry, Florida, is an Integrated Gasification Combined Cycle gasification plant. It is capable of generating 313 megawatts of electricity - 250 megawatts of which are supplied to the electric grid. The plant's gas cleaning technology removes more than 98 percent of the sulfur in coal, converting it to a commercial product. Nitrogen oxide emissions are reduced by more than 90 percent. (Photo courtesy of DOE-NETL) Approximately half of all electricity used in the United States comes from

139

H.R. 432: A Bill to amend chapter 601 of title 49, United States Code, to improve natural gas and hazardous liquid pipeline safety, in response to the natural gas pipeline accident in Edison, New Jersey, and for other purposes. Introduced in the House of Representatives, One Hundred Fourth Congress, First session  

SciTech Connect

This document contains H.R. 432, A Bill to amend chapter 601 of title 49, United States Code, to improve natural gas and hazardous liquid pipeline safety, in response to the natural gas pipeline accident in Edison, New Jersey, and for other purposes. This Bill was introduced in the House of Representatives, 104th Congress, First Session, January 5, 1995.

NONE

1995-12-31T23:59:59.000Z

140

Biomass burning in Asia : annual and seasonal estimates and atmospheric emissions.  

DOE Green Energy (OSTI)

Estimates of biomass burning in Asia are developed to facilitate the modeling of Asian and global air quality. A survey of national, regional, and international publications on biomass burning is conducted to yield consensus estimates of 'typical' (i.e., non-year-specific) estimates of open burning (excluding biofuels). We conclude that 730 Tg of biomass are burned in a typical year from both anthropogenic and natural causes. Forest burning comprises 45% of the total, the burning of crop residues in the field comprises 34%, and 20% comes from the burning of grassland and savanna. China contributes 25% of the total, India 18%, Indonesia 13%, and Myanmar 8%. Regionally, forest burning in Southeast Asia dominates. National, annual totals are converted to daily and monthly estimates at 1{sup o} x 1{sup o} spatial resolution using distributions based on AVHRR fire counts for 1999--2000. Several adjustment schemes are applied to correct for the deficiencies of AVHRR data, including the use of moving averages, normalization, TOMS Aerosol Index, and masks for dust, clouds, landcover, and other fire sources. Good agreement between the national estimates of biomass burning and adjusted fire counts is obtained (R{sup 2} = 0.71--0.78). Biomass burning amounts are converted to atmospheric emissions, yielding the following estimates: 0.37 Tg of SO{sub 2}, 2.8 Tg of NO{sub x}, 1100 Tg of CO{sub 2}, 67 Tg of CO, 3.1 Tg of CH{sub 4}, 12 Tg of NMVOC, 0.45 Tg of BC, 3.3 Tg of OC, and 0.92 Tg of NH{sub 3}. Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of {+-}65% for CO{sub 2} emissions in Japan to a high of {+-}700% for BC emissions in India.

Streets, D. G.; Yarber, K. F.; Woo, J.-H.; Carmichael, G. R.; Decision and Information Sciences; Univ. of Iowa

2003-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

In Situ Burning of Oil Spills  

Science Conference Proceedings (OSTI)

... burns, the Teflon filters were weighed and sealed in Petri dishes, while the ... terrain, solar heating and surface friction creates a tur- bulent wind field ...

2001-02-13T23:59:59.000Z

142

Uniform-burning matrix burner  

DOE Patents (OSTI)

Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

Bohn, Mark S. (Golden, CO); Anselmo, Mark (Arvada, CO)

2001-01-01T23:59:59.000Z

143

AIAA 2001-0339 INTERMITTENT BURNING AND ITS  

E-Print Network (OSTI)

AIAA 2001-0339 INTERMITTENT BURNING AND ITS CONTRIBUTION TO PLATEAU BURNING OF COMPOSITE and Astronautics, Inc. with permission. INTERMITTENT BURNING AND ITS CONTRIBUTION TO PLATEAU BURNING OF COMPOSITE; Fellow AIAA §Senior Research Engineer Abstract The plateau burning behavior of composite solid

Seitzman, Jerry M.

144

Addendum to High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant  

Science Conference Proceedings (OSTI)

As part of a small follow-on study, the burn rate of the ammonium perchlorate (AP) based material TAL-1503 was studied at a relatively mild pressure. The goal of this final experiment was to burn TAL-1503 at the lowest pressures possible using the LLNL High Pressure Strand Burner (LLNL-HPSB). The following is a description of the experiment and the results with a brief discussion of data and a comparison to the higher pressure data. This is not meant to be a stand-alone report and readers should refer to the main report for experimental details and discussion. High pressure deflagration rate measurements of a unique AP/HTPB based material (TAL-1503) were performed using the LLNL high pressure strand burner apparatus. The material burns in a well behaved, laminar fashion between 20 and 300 MPa with a burn law of B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} that was calculated based on the best data available from the experiments. In the pressure range of 2 and 10 MPa the material burned laminarly with a burn law of B = (2.0 {+-} 0.2) x P{sup (0.66{+-}0.05)}. In these results, B is the burn rate in mm/s and P is the pressure in units of MPa. Comparison of the TAL-1503 results with similar propellants that contain micrometer sized aluminum indicate that the burn rates are relatively unaffected by the aluminum. However, the pressure change is significantly larger when aluminum is present, most likely due to the high temperatures achieved from burning aluminum.

Glascoe, E A; Tan, N

2010-11-08T23:59:59.000Z

145

S. 625: Natural Gas Regulatory Reform Act of 1989. Introduced in the Senate of the United States, One Hundredth First Congress, First Session, March 16, 1989  

Science Conference Proceedings (OSTI)

S. 625 would eliminate artificial distortions in the natural gas marketplace to promote competition in the natural gas industry. It would do this by amending certain sections of the Natural Gas Policy Act of 1978. Title I: Decontrol of Natural Gas describes provisions for elimination of wellhead price controls; coordination with the Natural Gas Act; application to first sales; technical and conforming amendments; effective date (January 1, 1993). Title II: Transitional Provisions describes the decontrol of natural gas subject to a newly executed contract, a renegotiated contract, a terminated contract, or to a contract which expires; coordination with the Natural Gas Act; and effective date (enactment of this bill).

Not Available

1989-01-01T23:59:59.000Z

146

NuclearNuclear ""BurningBurning"" of Nuclearof Nuclear ""WasteWaste"" Constantine P. Tzanos  

E-Print Network (OSTI)

1. INTRODUCTION 1.1. Yucca Mountain Project The Yucca Mountain site in Nevada has been designated as United States choice for nuclear waste repository. Yucca Mountain is in a remote dry area, on federal has been made to characterize the nature of the discontinuities of the Yucca Mountain proposed nuclear

147

Employing the EPRI Vista Program for Test Burn Risk Assessment  

Science Conference Proceedings (OSTI)

The drive to use fuel switching as a means to meet more stringent SO2 and NOX emissions requirements has in many cases led to both a reduction in power station efficiency and a poorer net plant heat rate (NPHR) at the power station, as well as significant reductions in operating margins and increases in the risk of unit derates. One excellent method to manage or mitigate this risk is a comprehensive test burn for fuels under consideration. The objectives of this technical report are to demonstrate how th...

2011-12-19T23:59:59.000Z

148

Visualizing Buoyant Burning Bubbles in Type Ia Supernovae at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning in Supernovae Buoyant Burning Bubbles in Type Ia Supernovae bubble-s.jpeg Flame ignition in type Ia supernovae leads to isolated bubbles of burning buoyant fluid. As a...

149

Unit Conversion  

Science Conference Proceedings (OSTI)

Unit Conversion. ... Unit Conversion Example. "If you have an amount of unit of A, how much is that in unit B?"; Dimensional Analysis; ...

2012-12-04T23:59:59.000Z

150

Test Burns of Torrefied Wood  

Science Conference Proceedings (OSTI)

Biomass fuel is an important option for mitigating the production of carbon dioxide emissions from generating units that are designed to fire conventional fossil fuels. The key attraction of biomass fuels is that they are carbon neutralthe carbon dioxide released by combustion was fixed or removed from the atmosphere by photosynthesis, so its return does not provide a net carbon addition. Utilities in the United States and Canada are considering options both for co-firing biomass with coal and for comple...

2010-06-24T23:59:59.000Z

151

REMOTE SENSING OF BURN SEVERITY AND THE INTERACTIONS BETWEEN BURN SEVERITY, TOPOGRAPHY AND VEGETATION IN INTERIOR ALASKA  

E-Print Network (OSTI)

REMOTE SENSING OF BURN SEVERITY AND THE INTERACTIONS BETWEEN BURN SEVERITY, TOPOGRAPHY likely to change vegetation type. Finally, vegetation recovery, estimated using a remotely-sensed................................................................................6 Chapter 2. Mapping Burn Severity Using Satellite Remote Sensing..........................8

Ruess, Roger W.

152

FESAC Panel on Burning Plasmas 1.What scientific issues should be addressed by a burning plasma physics experiment and  

E-Print Network (OSTI)

FESAC Panel on Burning Plasmas Charge 1.What scientific issues should be addressed by a burning of using various magnetic confinement concepts in studying burning plasma physics? As a part of your

153

New Computer Codes Unlock the Secrets of Cleaner Burning Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Codes Unlock the Secrets of Cleaner Burning Coal New Computer Codes Unlock the Secrets of Cleaner Burning Coal March 29, 2012 | Tags: Advanced Scientific Computing Research (ASCR),...

154

The QSE-Reduced Nuclear Reaction Network for Silicon Burning.  

E-Print Network (OSTI)

??Iron and neighboring nuclei are formed by silicon burning in massive stars before core collapse and during supernova outbursts. Complete and incomplete silicon burning is (more)

Parete-Koon, Suzanne T

2008-01-01T23:59:59.000Z

155

OLIGOMERIZATION OF LEVOGLUCOSAN IN PROXIES OF BIOMASS BURNING AEROSOLS.  

E-Print Network (OSTI)

??Biomass burning aerosols play an important role in the chemistry and physics of the atmosphere and therefore, affect global climate. Biomass burning aerosols are generally (more)

Holmes, Bryan J.

156

UNCORRECTED 2 Burning biodiversity: Woody biomass use by commercial  

E-Print Network (OSTI)

UNCORRECTED PROOF 2 Burning biodiversity: Woody biomass use by commercial 3 and subsistence groups as: Lisa Naughton-Treves et al., Burning biodiversity: Woody biomass use by commercial

Kammen, Daniel M.

157

Lessons learned from hydrogen generation and burning during the TMI-2 event  

DOE Green Energy (OSTI)

This document summarizes what has been learned from generation of hydrogen in the reactor core and the hydrogen burn that occurred in the containment building of the Three Mile Island Unit No. 2 (TMI-2) nuclear power plant on March 28, 1979. During the TMI-2 loss-of-coolant accident (LOCA), a large quantity of hydrogen was generated by a zirconium-water reaction. The hydrogen burn that occurred 9 h and 50 min after the initiation of the TMI-2 accident went essentially unnoticed for the first few days. Even through the burn increased the containment gas temperature and pressure to 1200/sup 0/F (650/sup 0/C) and 29 lb/in/sup 2/ (200 kPa) gage, there was no serious threat to the containment building. The processes, rates, and quantities of hydrogen gas generated and removed during and following the LOCA are described in this report. In addition, the methods which were used to define the conditions that existed in the containment building before, during, and after the hydrogen burn are described. The results of data evaluations and engineering calculations are presented to show the pressure and temperature histories of the atmosphere in various containment segments during and after the burn. Material and equipment in reactor containment buildings can be protected from burn damage by the use of relatively simple enclosures or insulation.

Henrie, J.O.; Postma, A.K.

1987-05-01T23:59:59.000Z

158

Baseline Risk Assessment for the F-Area Burning/Rubble Pits and Rubble Pit  

SciTech Connect

This document provides an overview of the Savannah River Site (SRS) and a description of the F-Area Burning/Rubble Pits (BRPs) and Rubble Pit (RP) unit. It also describes the objectives and scope of the baseline risk assessment (BRA).

Palmer, E. [Westinghouse Savannah River Company, AIKEN, SC (United States)

1996-03-01T23:59:59.000Z

159

Analyzing and Tracking Burning Structures in Lean Premixed Hydrogen Flames  

DOE Green Energy (OSTI)

This paper presents topology-based methods to robustly extract, analyze, and track features defined as subsets of isosurfaces. First, we demonstrate how features identified by thresholding isosurfaces can be defined in terms of the Morse complex. Second, we present a specialized hierarchy that encodes the feature segmentation independent of the threshold while still providing a flexible multi-resolution representation. Third, for a given parameter selection we create detailed tracking graphs representing the complete evolution of all features in a combustion simulation over several hundred time steps. Finally, we discuss a user interface that correlates the tracking information with interactive rendering of the segmented isosurfaces enabling an in-depth analysis of the temporal behavior. We demonstrate our approach by analyzing three numerical simulations of lean hydrogen flames subject to different levels of turbulence. Due to their unstable nature, lean flames burn in cells separated by locally extinguished regions. The number, area, and evolution over time of these cells provide important insights into the impact of turbulence on the combustion process. Utilizing the hierarchy we can perform an extensive parameter study without re-processing the data for each set of parameters. The resulting statistics enable scientist to select appropriate parameters and provide insight into the sensitivity of the results wrt. to the choice of parameters. Our method allows for the first time to quantitatively correlate the turbulence of the burning process with the distribution of burning regions, properly segmented and selected. In particular, our analysis shows that counter-intuitively stronger turbulence leads to larger cell structures, which burn more intensely than expected. This behavior suggests that flames could be stabilized under much leaner conditions than previously anticipated.

Bremer, Peer-Timo; Weber, Gunther; Pascucci, Valerio; Day, Marc; Bell, John

2009-06-01T23:59:59.000Z

160

united stadium. united station.  

E-Print Network (OSTI)

??DC United is one of Major League Soccers most decorated franchises, yet it still plays its home games within the crumbling confines of RFK Stadium. (more)

Groff, David R.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

U.K. HiGEM: Simulations of Desert Dust and Biomass Burning Aerosols with a High-Resolution Atmospheric GCM  

Science Conference Proceedings (OSTI)

The atmospheric component of the United Kingdoms new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are ...

M. J. Woodage; A. Slingo; S. Woodward; R. E. Comer

2010-04-01T23:59:59.000Z

162

HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation  

Science Conference Proceedings (OSTI)

HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where

Reaugh, J E

2011-11-22T23:59:59.000Z

163

HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation  

SciTech Connect

HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where

Reaugh, J E

2011-11-22T23:59:59.000Z

164

Wood-Burning Heating System Deduction  

Energy.gov (U.S. Department of Energy (DOE))

This statute allows individual taxpayers a deduction for the purchase and installation of a wood-burning heating system. The deduction is equal to the total cost of purchase and installation for...

165

Clean Burn Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

developer planning to build a 60m gallons per year (227.12m litres per year) bioethanol plant in Raeford, North Carolina. References Clean Burn Fuels LLC1 LinkedIn...

166

Simulation of a Burning Plasma C. Kessel, PPPL  

E-Print Network (OSTI)

Simulation of a Burning Plasma Experiment C. Kessel, PPPL UFA Workshop on Burning Plasma Science, December 11-13, 2000 #12;FIRE Burning Plasma Discharge Simulation with TSC ELMy H-mode, N, R=2.0 m, Ip=6.5 MA #12;Burning Plasma Experiment Simultaneously Needs · L-H mode transition · Non

167

BURNING PLASMA NEXT STEPS: DISCUSSION OF KEY DEVELOPMENTS  

E-Print Network (OSTI)

BURNING PLASMA NEXT STEPS: DISCUSSION OF KEY DEVELOPMENTS Gerald A. Navratil Columbia University/FESAC Burning Plasma Strategy Dec 2002 NRC/NAS Interim Report on Burning Plasmas Jan 30, 2003 DOE of the physics of burning plasma, advance fusion technology, and contribute to the development of fusion energy

168

Global observations of desert dust and biomass burning aerosols  

E-Print Network (OSTI)

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

169

Effects of Range Burning on Kansas Flint Hills Soil  

E-Print Network (OSTI)

Effects of Range Burning on Kansas Flint Hills Soil CLENTON E. OWENSBY AND JOHN BRUCE WYRILL, III Highlight: Two tallgrass prairie areas burned annually for 20 (grazed) nnd 48 (un. grazed) years ar-spring burned ungrared plots were generally higher in soil pH, organic ma~fer, and K than late-spring burned

Owensby, Clenton E.

170

Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

United Arab Emirates (Million Cubic Feet) Lake Charles, LA Natural Gas Liquefied Natural Gas Imports from United Arab Emirates (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

171

Natural Gas - CNG & LNG  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Natural Gas Natural gas pump Natural gas, a fossil fuel comprised mostly of methane, is one of the cleanest burning alternative fuels. It can be used in the form of compressed natural gas (CNG) or liquefied natural gas (LNG) to fuel cars and trucks. Dedicated natural gas vehicles are designed to run on natural gas only, while dual-fuel or bi-fuel vehicles can also run on gasoline or diesel. Dual-fuel vehicles allow users to take advantage of the wide-spread availability of gasoline or diesel but use a cleaner, more economical alternative when natural gas is available. Since natural gas is stored in high-pressure fuel tanks, dual-fuel vehicles require two separate fueling systems, which take up passenger/cargo space. Natural gas vehicles are not available on a large scale in the U.S.-only

172

Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry  

DOE Green Energy (OSTI)

Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

2009-05-13T23:59:59.000Z

173

Method and apparatus for controlling fuel/air mixture in a lean burn engine  

DOE Patents (OSTI)

The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

1998-04-07T23:59:59.000Z

174

Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols  

E-Print Network (OSTI)

laboratory measurements of biomass-burning emissions: 1.tar balls: Particles from biomass and biofuel burning, J.Eleuterio (2005), A review of biomass burning emissions part

2008-01-01T23:59:59.000Z

175

Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?  

E-Print Network (OSTI)

fication of drought-induced biomass burning in Indonesiavariability in global biomass burning emissions from 1997 toChemistry and Physics Do biomass burning aerosols intensify

Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

2010-01-01T23:59:59.000Z

176

Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?  

E-Print Network (OSTI)

of drought-induced biomass burning in Indonesia since 1960,variability in global biomass burning emissions from 1997 toand Physics Do biomass burning aerosols intensify drought in

Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

2010-01-01T23:59:59.000Z

177

A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures  

E-Print Network (OSTI)

K. Fig. 2 Comparisons of burning-velocity predictions withcurve), when an experimental burning velocity (points) of 53and calculated laminar burning velocities of lean hydrogen-

Grcar, Joseph F

2008-01-01T23:59:59.000Z

178

United States  

Gasoline and Diesel Fuel Update (EIA)

United States United States Coal ................................................ 4,367 4,077 4,747 4,181 4,473 4,125 4,983 4,330 4,414 4,003 4,796 4,178 4,344 4,479 4,348 Natural Gas .................................... 2,802 2,843 3,694 2,863 2,713 2,880 3,636 2,707 2,792 2,972 3,815 2,849 3,052 2,986 3,109 Petroleum (a) .................................. 74 73 81 67 73 70 75 66 75 70 76 66 74 71 71 Other Gases ................................... 32 33 36 32 32 34 37 33 33 35 39 34 33 34 35 Nuclear ........................................... 2,176 2,044 2,257 2,170 2,106 2,037 2,167 2,010 2,144 2,074 2,206 2,055 2,162 2,080 2,120 Renewable Energy Sources: Conventional Hydropower ........... 736 886 716 633 765 887 708 646 767 919 729 659 742 751 768 Wind ............................................ 491 520 353 449 477 521 379 475

179

Reactive burn models and ignition & growth concept  

SciTech Connect

Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition and Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogeneized burn rate needs to account for three mesoscale physical effects (i) the density of burnt hot spots, which depends on the lead shock strength; (ii) the growth of the burn fronts triggered by hot spots, which depends on the local deflagration speed; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent hot spots. These effects can be combined and the burn model defined by specifying the reaction progress variable {lambda}(t) as a function of a dimensionless reaction length {tau}{sub hs}(t)/{ell}{sub hs}, rather than by xpecifying an explicit burn rate. The length scale {ell}{sub hs} is the average distance between hot spots, which is proportional to [N{sub hs}(P{sub s})]{sup -1/3}, where N{sub hs} is the number density of hot spots activated by the lead shock. The reaction length {tau}{sub hs}(t) = {line_integral}{sub 0}{sup t} D(P(t'))dt' is the distance the burn front propagates from a single hot spot, where D is the deflagration speed and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. They have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

Menikoff, Ralph S [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

180

Reflective Terahertz Imaging for early diagnosis of skin burn severity  

E-Print Network (OSTI)

97 Fig 7.3 Cross shaped brass brand used for burnFig 7.21 3-D drawing of the brass brand used for controlledfor imaging burns[10]. A brass brand heated to 315C was

TEWARI, PRIYAMVADA

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Biomass Burning and the Production of Greenhouse Gases  

Science Conference Proceedings (OSTI)

Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along ...

Levine J. S.

1994-01-01T23:59:59.000Z

182

How much carbon dioxide is produced by burning gasoline and ...  

U.S. Energy Information Administration (EIA)

How much carbon dioxide is produced by burning gasoline and diesel fuel? About 19.64 pounds of carbon dioxide (CO 2) are produced from burning a gallon of gasoline ...

183

Legend Units  

Science Conference Proceedings (OSTI)

... Syntax: LEGEND UNIT units> where is an integer number or parameter in the range 1 to 100 that specifies the legend identifier; and ...

2013-11-27T23:59:59.000Z

184

Burning Thermals in Type Ia Supernovae A. J. Aspden1  

E-Print Network (OSTI)

Burning Thermals in Type Ia Supernovae A. J. Aspden1 , J. B. Bell1 , S. Dong2 , and S. E. Woosley2 ABSTRACT We develop a one-dimensional theoretical model for thermals burning in Type Ia supernovae based for the burning and for the expansion of the thermal due to changes in the background stratification found

Bell, John B.

185

Burning Plasma Physics Technical Subgroup of the Magnetic  

E-Print Network (OSTI)

1 Burning Plasma Physics Technical Subgroup of the Magnetic Fusion Concepts Working Group 1999 Woolley, Stewart Zweben. #12;2 Contents 1. Introduction 3 2. Burning Plasma Physics Issues 8 2.1 Energetic and physics integration 22 3. Technical Readiness for a Burning Plasma Experiment 26 3.1 Background

186

A Next Step Burning Plasma Experiment Dale M. Meade  

E-Print Network (OSTI)

A Next Step Burning Plasma Experiment Dale M. Meade Princeton Plasma Physics Laboratory Fusion). ARIES Group #12;Advanced Toroidal Physics Fusion Plasma Conditions Burning Plasma Physics 1.0 0.5 Alpha Energy #12;Magnetic Fusion Science Issues - Strongly Coupled in a Fusion (Burning) Plasma Improved

187

Presented at UFA Burning Plasma Science Workshop II  

E-Print Network (OSTI)

FIRE D. Meade Presented at UFA Burning Plasma Science Workshop II General Atomics San Diego, CA May for a Next Step Experiment in Magnetic Fusion · Compact High Field Approach - General Parameters · Burning, Madison, WI · Charge for First and Second meetings Scientific value of a Burning Plasma experiment

188

Guanine tautomerism revealed by UVUV and IRUV hole burning spectroscopy  

E-Print Network (OSTI)

Guanine tautomerism revealed by UV­UV and IR­UV hole burning spectroscopy E. Nir Department spectroscopy. 1-methylguanine, in which the Keto­Enol tautomerism is blocked, shows hole burning spectra from hole burning SHB by using two counter- propagating dye laser pulses with a delay of about 150 ns

de Vries, Mattanjah S.

189

Stellar Burning Falk Herwig, Alexander Heger, and Frank  

E-Print Network (OSTI)

Stellar Burning and Mixing Falk Herwig, Alexander Heger, and Frank Timmes (T-6); and Rob Hueckstaedt and Rob Coker (X-2); fherwig@lanl.gov D uring most phases of stellar evolution, nuclear burning nuclear burning in convective regions in which mixing and nuclear energy release proceeds on comparable

Herwig, Falk

190

Electromagnetically induced transparency over spectral hole-burning  

E-Print Network (OSTI)

Electromagnetically induced transparency over spectral hole-burning temperature in a rare the spectral hole-burning temperature. The transmission of the probe laser beam is increased by a factor of exp over the spectral hole-burning temperature in a rare-earth­doped solid represents important progress

Shahriar, Selim

191

Supercritical Burning of Liquid Oxygen (LOX) Droplet with Detailed Chemistry  

E-Print Network (OSTI)

Supercritical Burning of Liquid Oxygen (LOX) Droplet with Detailed Chemistry J. DAOU,* P with diameter less than I pm vaporize before burning. A quasi-steady-like diffusion flame is then established is considered; temperature and pressure in the combustion chamber have a weak influence on the burning time

Heil, Matthias

192

Burning of high Tc bridges M. E. Gaevski,a)  

E-Print Network (OSTI)

Burning of high Tc bridges M. E. Gaevski,a) T. H. Johansen, Yu. Galperin,a) and H. Bratsberg February 1997; accepted for publication 24 September 1997 Burning of superconducting thin film bridges containing extended defects magneto-optic investigation is sufficient to locate the incipient burning region

Johansen, Tom Henning

193

December 2010 HYDROLOGIC AND VEGETAL RESPONSES TO PRESCRIBED BURNING AND  

E-Print Network (OSTI)

December 2010 HYDROLOGIC AND VEGETAL RESPONSES TO PRESCRIBED BURNING AND HERBICIDAL TREATMENT@nmsu.edu #12;i HYDROLOGIC AND VEGETAL RESPONSES TO PRESCRIBED BURNING AND HERBICIDAL TREATMENT OF BROOM both burning and spraying with herbicide. However, the broom snakeweed was not eradicated, and numbers

Johnson, Eric E.

194

LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL  

E-Print Network (OSTI)

1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 (2014) 162-169" DOI : 10.1016/j.fuel.2013.07.015 #12;2 LAMINAR BURNING VELOCITY OF GASOLINES, Sweden Abstract The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n

195

Hot Bottom Burning in Asymptotic Giant Branch Stars  

E-Print Network (OSTI)

Hot Bottom Burning in Asymptotic Giant Branch Stars By J OHN C. LATTANZ I O 1 , CHERYL A. FROST 1 state of knowledge about the phenomenon of Hot Bottom Burning as seen in Asymptotic Giant Branch stars. This is illustrated with some results from new 6M fi stellar models. 1. Introduction and Motivation Hot Bottom Burning

Lattanzio, John

196

Burning Plasma Science Workshop Astrophysics and Laboratory Plasmas  

E-Print Network (OSTI)

Burning Plasma Science Workshop Astrophysics and Laboratory Plasmas Robert Rosner The University of Chicago Dec. 12, 2000 Austin, TX (http://flash.uchicago.edu) #12;Burning Plasma Science Workshop Austin ¥ Plasma conditions ¥ Overview of plasma physics issues for astrophysics ¥ Specific examples #12;Burning

197

Greyscale Photograph Geometry Informed by Dodging and Burning  

E-Print Network (OSTI)

Greyscale Photograph Geometry Informed by Dodging and Burning Carlos Phillips and Kaleem Siddiqi the same negative may vary in inten- sity values due, in part, to the liberal use of dodging and burning to linear dodging and burning. 1 Introduction Photographs are often used as test data in the computer vision

Siddiqi, Kaleem

198

Prescribed Burning in the Kings River Ecosystems Project Area: Lessons  

E-Print Network (OSTI)

Prescribed Burning in the Kings River Ecosystems Project Area: Lessons Learned1 David S. Mc burning was initiated in 1994 in two 32,000-acre watersheds in the Kings River District of the Sierra various effects of these fires. Approximately 11,900 acres of prescription burns were completed by the end

Standiford, Richard B.

199

Burning Plasma Physics -The Next Frontier Three Options  

E-Print Network (OSTI)

Burning Plasma Physics - The Next Frontier Three Options (same scale) ITER-FEATFIRE IGNITOR US in Magnetic Fusion · Burning Plasma Performance Considerations · Compact High Field Approach - General for strengthening the base fusion sciences program 2. Directs DOE to submit a plan for a U.S. Burning Plasma

200

Great Plains coal gasification project. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session, September 12, 1988  

Science Conference Proceedings (OSTI)

The hearing was called to review the announcement by the Department of Energy that it has selected Basin Electric Power Cooperative of Bismarck, North Dakota, as the preferred buyer for the Great Plains Coal Gasification Plant. The plant produces 142 billion standard cubic feet of synthetic natural gas per day from lignite coal plus several byproducts which are marketed. The hearing examines the bids of the finalists, the composition of the trust funds, the status of the siting permits, questions of air quality, employee retirement funds and employee benefits, and the ability of the successful bidder to pursue byproduct development and marketing. Testimony was heard from 7 witnesses.

Not Available

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

B. Gonalves, Workshop on "Burning Plasma" Physics and Simulation Tarragona, 3-4 July, 2005 Burning Plasma Diagnostics on JET  

E-Print Network (OSTI)

B. Gonçalves, Workshop on "Burning Plasma" Physics and Simulation Tarragona, 3-4 July, 2005 Burning;B. Gonçalves, Workshop on "Burning Plasma" Physics and Simulation Tarragona, 3-4 July, 2005 on "Burning Plasma" Physics and Simulation Tarragona, 3-4 July, 2005 3.5 MeV n 14 MeV DT 3.5 MeV n 14 MeV DT

202

The United States of America Meets the Planet Earth  

E-Print Network (OSTI)

, U.C. Berkeley August 23, 2005, National Press Club #12;We Burn More Than Plants Produce Hydro Inputs Ethanol Energy Fuel Cell Car Hybrid Car Average Car Energy per unit area and unit time, W/m2 Bill 082305 NPC ­ p.6/13 #12;U.S. Ethanol Inflated Car Tires 1960 1965 1970 1975 1980 1985 1990 1995

Patzek, Tadeusz W.

203

Role of Fusion Product Measurements in Physics Understanding of a Burning Plasma (A25955)  

E-Print Network (OSTI)

Proc. Of Int. Workshop On Burning Plasma Diagnostics, Varenna, Italy, 2007International Workshop on Burning Plasma Diagnostics Varenna, IT, 2007999614195

Boivin, R.L.

2007-10-17T23:59:59.000Z

204

Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States  

E-Print Network (OSTI)

Fire and biofuel contributions to annual mean aerosol mass concentrations in the United States 1 2: Aerosols, Wildfires, Biomass burning, Biofuel, Air quality, Visibility Index terms: 1 #12;Abstract.1 2 3 4 burning (summer wildfires, other fires, residential biofuel, and industrial biofuel) to seasonal

Jacob, Daniel J.

205

An Interactive Simulation Framework for Burning Objects  

E-Print Network (OSTI)

We present a simulation framework to integrate several aspects of the combustion and burning process in a unified and modular manner. A simple three gas flame model is used to simulate a combustion process, while air motion is simulated as a single moving fluid. Solid objects inside the simulation domain can catch fire and start burning. Heat information is transferred from the fluid simulator to a solid simulator, while the solid simulator injects fuel into the fluid simulation. We also present a simple yet effective method for modeling of object decomposition under combustion using level set methods. The interaction between modules is presented as well as a discussion of fluid-solid coupling. All simulation modules run together at interactive rates, enabling the user to tweak the simulation parameters and setup for desired behavior 1. 1

Zeki Melek; John Keyser

2005-01-01T23:59:59.000Z

206

Operation Redwing. Project 4. 1. Chorioretinal burns  

SciTech Connect

This Redwing project was designed to furnish supplemental information on the requirements for protection against retinal burns, using both rabbits and monkeys as experimental animals. Chorioretinal burns were produced by various segments of the thermal pulse. This was accomplished by two series of time-fractionating shutters. The first group, the early closing shutters, were open at time zero and closed at increasing intervals of time. The second series, the delayed-opening shutters, were closed at time zero and subsequently opened for preselected time increments during the flash. The feasibility of protection by fixed-density optical filters was explored. Two types of protective electronic shutters were field tested. Additional objectives were to: (1) determine whether blink reflexes would prevent chorioretinal burns; (2) ascertain which portions of the time-intensity pulse can produce thermal injury to the retina and choroid of the eye; (3) determine the time required for blink reflex in rabbits and monkeys exposed to the extreme light intensity of the nuclear detonations; (4) explore the feasibility of ocular protection by means of fixed-density optical filters or combinations of filters; and (5) tests, under field conditions, protective shutter devices that are in the developmental state and are designed to close more rapidly than the blink reflex.

Fixott, R.; Pickering, J.E.; Williams, D.B.; Brown, D.V.L.; Rose, H.W.

1985-09-01T23:59:59.000Z

207

U.S. BURNING PLASMA ORGANIZATION ACTIVITIES  

Science Conference Proceedings (OSTI)

The national U.S. Burning Plasma Organization (USBPO) was formed to provide an umbrella structure in the U.S. fusion science research community. Its main purpose is the coordination of research activities in the U.S. program relevant to burning plasma science and preparations for participation in the international ITER experiment. This grant provided support for the continuing development and operations of the USBPO in its first years of existence. A central feature of the USBPO is the requirement for broad community participation in and governance of this effort. We concentrated on five central areas of activity of the USBPO during this grant period. These included: 1) activities of the Director and support staff in continuing management and development of the USBPO activity; 2) activation of the advisory Council; 3) formation and initial research activities of the research community Topical Groups; 4) formation of Task Groups to perform specific burning plasma related research and development activities; 5) integration of the USBPO community with the ITER Project Office as needed to support ITER development in the U.S.

Raymond J. Fonck

2009-08-11T23:59:59.000Z

208

BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL AND SURFACE PROPERTIES FROM THE ORAC-AATSR RETRIEVAL  

E-Print Network (OSTI)

BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL@atm.ox.ac.uk AEROSOL AND GAS PROPERTIESSEASONALITY OF BURNING Biomass burning in the Amazon shows strong seasonal counts are generally highest up to 3 months after the burning of ground. ACKNOWLEDGEMENTS ESA

209

Natural Gas Annual, 2001  

Gasoline and Diesel Fuel Update (EIA)

1 1 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2001 The Natural Gas Annual, 2001 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2001. Summary data are presented for each State for 1997 to 2001. The data that appear in the tables of the Natural Gas Annual, 2001 are available as self-extracting executable files in ASCII TXT or CSV file format. This volume emphasizes information for 2001, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1997-2001 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2001 (Table 2) ASCII TXT.

210

Experiments for the Measurement of LNG Mass Burning Rates  

E-Print Network (OSTI)

Liquefied Natural Gas (LNG) is a commonly used flammable fuel that has safety concerns associated with vapor dispersion and radiation emitted from pool fires. The main objective of this effort is to advance the knowledge of pool fires and to expand the data that is commonly used to validate semi-empirical models. This includes evaluation of the methods that are utilized to obtain experimental values of mass burning rates, which are used in models where semi-empirical correlations cannot be applied. A total of three small-size experiments designed to study the radiative characteristics of LNG pool fires were carried out at Texas A & M University's Brayton Fire Training Field (BFTF). This set of experiments was designed to study how the heat feedback from the fire to the pool surface is subsequently distributed through the liquid volume and the validity of different methods for measuring burning rates. In this work, a number of semi-empirical correlations were used to predict the characteristics of the flame and examine the predictive accuracy of these correlations when compared to the values obtained experimentally. In addition, the heat transferred from the energy received at the pool's surface to the surroundings was investigated. Finally, the parameters that influenced the measurement of radiative head feedback to the liquid pool were analyzed to investigate potential causes of calibration drift in the instrumentation. The results of this work provided information regarding the validity of certain techniques for the measurement of mass burning rates and the use of correlations to predict the characteristics of an LNG pool fire on a small-scale. The findings from this work indicate that the energy received at the liquid surface was used entirely for evaporation and no indications of transmission to the surroundings were observed. Lastly, it was found that during the experiments, the sink temperature of the sensor was not constant, and therefore, the readings of the radiative heat were unreliable. This was due to the insufficient cooling effect of the water circulated. It was later shown in the laboratory that through a series of qualitative tests, a change of 20C in the cooling water resulted in a calibration drift.

Herrera Gomez, Lady Carolina

2011-05-01T23:59:59.000Z

211

English Units  

Science Conference Proceedings (OSTI)

English Units. A, B, C, D, E, F, G, H, I, J. 1, Steam Point Calculator: English Units, ... 6, Height of steam point apparatus above ground (ft.), 0, ft. ...

2011-12-22T23:59:59.000Z

212

Unit Conversions  

Science Conference Proceedings (OSTI)

... volume flow units, which contain "atm", assume that the gas is: ideal; at a pressure of 101325 Pa; at a temperature of 0 C. Be aware that the unit "atm ...

2012-10-02T23:59:59.000Z

213

Natural Gas Monthly (NGM) - Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, ... Spot Prices of Natural Gas and Natural Gas Plant Liquids in the United States, ...

214

Plasma-wall interaction data needs critical to a Burning Core Experiment (BCX)  

Science Conference Proceedings (OSTI)

The Division of Development and Technology has sponsored a four day US-Japan workshop ''Plasma-Wall Interaction Data Needs Critical to a Burning Core Experiment (BCX)'', held at Sandia National Laboratories, Livermore, California on June 24 to 27, 1985. The workshop, which brought together fifty scientists and engineers from the United States, Japan, Germany, and Canada, considered the plasma-material interaction and high heat flux (PMI/HHF) issues for the next generation of magnetic fusion energy devices, the Burning Core Experiment (BCX). Materials options were ranked, and a strategy for future PMI/HHF research was formulated. The foundation for international collaboration and coordination of this research was also established. This volume contains the last three of the five technical sessions. The first of the three is on plasma materials interaction issues, the second is on research facilities and the third is from smaller working group meetings on graphite, beryllium, advanced materials and future collaborations.

Not Available

1985-11-01T23:59:59.000Z

215

Neutrino-Accelerated Hot Hydrogen Burning  

E-Print Network (OSTI)

We examine the effects of significant electron anti-neutrino fluxes on hydrogen burning. Specifically, we find that the bottleneck weak nuclear reactions in the traditional pp-chain and the hot CNO cycle can be accelerated by anti-neutrino capture, increasing the energy generation rate. We also discuss how anti-neutrino capture reactions can alter the conditions for break out into the rp-process. We speculate on the impact of these considerations for the evolution and dynamics of collapsing very- and super- massive compact objects.

Chad T. Kishimoto; George M. Fuller

2006-06-23T23:59:59.000Z

216

NETL: Oil and Natural Gas: Natural Gas Reources  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Resources Research Project Summaries Reference Shelf O&G Document Archive The United States is endowed with an abundance of natural gas resources. Besides its use for...

217

Natural Gas as a Boiler Fuel of Choice in Texas  

E-Print Network (OSTI)

Natural gas is abundant, clean burning, and cost competitive with other fuels. In addition to superior economic fundamentals, the expanded use of natural gas will be enhanced by political and industry leaders. Natural gas therefore will continue to be the boiler fuel choice for Texas electric generating companies.

Kmetz, W. J.

1992-04-01T23:59:59.000Z

218

'Live Burns' in Spartanburg, SC, Will Benefit Research and ...  

Science Conference Proceedings (OSTI)

... in Spartanburg, SC, battle a 'test burn' of an abandoned house in an ... organizations will turn abandoned wood-frame, single-family houses near ...

2013-02-05T23:59:59.000Z

219

Burns Harbor, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

with form History Share this page on Facebook icon Twitter icon Burns Harbor, Indiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

220

C. Langton1, D. Kosson2 and H. Burns1  

G. Flach, R. Seitz, S. Marra, H. Burns, SRNL DOE-EM Project Manager: Pramod Mallick CBP Project Support Provided by EM-30 Contact Information

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Biomass burning : particle emissions, characteristics, and airborne measurements.  

E-Print Network (OSTI)

??Biomass burning started to attract attention since the last decade because of its impacts on the atmosphere and the environmental air quality, as well as (more)

Wardoyo, Arinto Yudi

2007-01-01T23:59:59.000Z

222

Advanced Nuclear Fuel Concepts for Minor Actinide Burning  

Science Conference Proceedings (OSTI)

Abstract Scope, New fuel cycle strategies entail advanced nuclear fuel concepts. This especially applies for the burning of minor actinides in a fast reactor cycle...

223

Burning Man: Transforming Community through Countercultural Ritual Process.  

E-Print Network (OSTI)

??This thesis will examine the countercultural event called Burning Man through the lens of the ritual process. Through the personal narratives of six main collaborators (more)

McCaffrey, Jessica

2012-01-01T23:59:59.000Z

224

Reflective Terahertz Imaging for early diagnosis of skin burn severity  

E-Print Network (OSTI)

of injuries caused by flame/flash burns[23, 24]. OtherDeep partial IIb Deep III Flame, chemical, electrical, hotliquids with high viscosity Flame, electrical, chemical,

TEWARI, PRIYAMVADA

2013-01-01T23:59:59.000Z

225

NETL: Oil and Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Supply Technologies Oil and Natural Gas Supply Oil and natural gas are the lifeblood of our economy, accounting for more than 60 percent of the energy consumed in the United...

226

Mechanistic Reactive Burn Modeling of Solid Explosives  

SciTech Connect

This report describes a computational framework for reactive burn modeling of solid explosives and the development of a test case where physical mechanisms represent RDX or RDX-based materials. The report is a sequel to LA-13794-MS, ''A Unifying Framework for Hot Spots and the Ignition of Energetic Materials,'' where we proposed a new approach to the building of a general purpose model that captures the essential features of the three primary origins of hot-spot formation: void collapse, shear banding, friction. The purpose of the present report is to describe the continuing task of coupling the unifying hot-spot model to hydrodynamic calculations to develop a mechanistic reactive burn model. The key components of the coupling include energy localization, the growth of hot spots, overall hot-spot behavior, and a phase-averaged mixture equation of state (EOS) in a Mie-Grueneisen form. The nucleation and growth of locally heated regions is modeled by a phenomenological treatment as well as a statistical model based on an exponential size distribution. The Mie-Grueneisen form of the EOS is one of many possible choices and is not a critical selection for implementing the model. In this report, model calculations are limited to proof-of-concept illustrations for shock loading. Results include (1) shock ignition and growth-to-detonation, (2) double shock ignition, and (3) quenching and reignition. A comparative study of Pop-plots is discussed based on the statistical model.

Y.Horie; Y.Hamate; D.Greening

2003-04-01T23:59:59.000Z

227

Modeling Deep Burn TRISO Particle Nuclear Fuel  

Science Conference Proceedings (OSTI)

Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. First principles calculations are being used to investigate the critical issue of fission product palladium attack on the SiC coating layer. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel. Kinetic Monte Carlo techniques are shedding light on transport of fission products, most notably silver, through the carbon and SiC coating layers. The diffusion of fission products through an alternative coating layer, ZrC, is being assessed via DFT methods. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

Besmann, Theodore M [ORNL; Stoller, Roger E [ORNL; Samolyuk, German D [ORNL; Schuck, Paul C [ORNL; Rudin, Sven [Los Alamos National Laboratory (LANL); Wills, John [Los Alamos National Laboratory (LANL); Wirth, Brian D. [University of California, Berkeley; Kim, Sungtae [University of Wisconsin, Madison; Morgan, Dane [University of Wisconsin, Madison; Szlufarska, Izabela [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

228

Impact of biomass burning on the atmosphere  

DOE Green Energy (OSTI)

Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet`s atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate.

Dignon, J.

1993-03-01T23:59:59.000Z

229

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

0, 2013 | Release Date: July 11, 0, 2013 | Release Date: July 11, 2013 | Next Release: July 18, 2013 Previous Issues Week: 12/22/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Northeast and Southeast spur growth in Lower 48 natural gas power burn Increased consumption of natural gas for electric generation in the northeastern and southeastern United States drove national growth through the second quarter (April-June) of 2013, a trend that continues into July. During the second quarter, power plant gas consumption in the Lower 48 states averaged 21.4 billion cubic feet per day (Bcf/d), a 1.1 Bcf/d increase over the average for this period from 2008 to 2012, according to data from Bentek Energy Services. States in the Northeast and Southeast

230

On the burning behavior of pulverized coal chars  

SciTech Connect

A model that predicts the physical changes that pulverized coal char particles undergo during combustion has been developed. In the model, a burning particle is divided into a number of concentric annular volume elements. The mass loss rate, specific surface area, and apparent density in each volume element depend upon the local particle conditions, which vary as a consequence of the adsorbed oxygen and gas-phase oxygen concentration gradients inside the particle. The model predicts the particle's burning rate, temperature, diameter, apparent density, and specific surface area as combustion proceeds, given ambient conditions and initial char properties. A six-step heterogeneous reaction mechanism is used to describe carbon reactivity to oxygen. A distributed activation energy approach is used to account for the variation in desorption energies of adsorbed O-atoms on the carbonaceous surface. Model calculations support the three burning zones established for the oxidation of pulverized coal chars. The model indicates two types of zone II behavior, however. Under weak zone II burning conditions, constant-diameter burning occurs up to 30% to 50% conversion before burning commences with reductions in both size and apparent density. Under strong zone II conditions, particles burn with reductions in both size and apparent density after an initial short period (conversion) of constant-diameter burning. Model predictions reveal that early in the oxidation process, there is mass loss at constant diameter under all zone II burning conditions. Such weak and strong burning behavior cannot be predicted with the commonly used power-law model for the mode of burning employing a single value for the burning mode parameter. Model calculations also reveal how specific surface area evolves when oxidation occurs in the zone II burning regime. Based on the calculated results, a surface area submodel that accounts for the effects of pore growth and coalescence during combustion under zone I conditions was modified to permit the characterization of the variations in specific surface area that occur during char conversion under zones II conditions. The modified surface area model is applicable to all burning regimes. Calculations also indicate that the particle's effectiveness factor varies during conversion under zone II burning conditions. With the adsorption/desorption mechanism employed, a near first-order Thiele modulus-effectiveness factor relationship is obeyed over the particle's lifetime. (author)

Mitchell, Reginald E.; Ma, Liqiang; Kim, BumJick [Thermosciences Group, Mechanical Engineering Department, Stanford University, Stanford, CA 94305-3032 (United States)

2007-11-15T23:59:59.000Z

231

Issues in "Burning Plasma Science" S. J. Zweben, D. S. Darrow  

E-Print Network (OSTI)

Issues in "Burning Plasma Science" S. J. Zweben, D. S. Darrow (with inputs from many people at PPPL) Burning Plasma Science Workshop Austin, Texas 12/11/00 · Burning plasma physics issues · Fusion energy development issues => big issue: local burn control in an AT · Our conclusions · Alternate path #12;Burning

232

UNITED STATES NATURAL GAS PRICES TO 2015  

E-Print Network (OSTI)

The contents of this paper are the sole responsibility of the author. They do not necessarily represent the views of the Oxford Institute for Energy Studies or any of its Members. Copyright 2007 Oxford Institute for Energy Studies (Registered Charity, No. 286084) This publication may be reproduced in part for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior

Michelle Michot Foss, Ph.D.

2007-01-01T23:59:59.000Z

233

Conceptual Design study of Small Long-life Gas Cooled Fast Reactor With Modified CANDLE Burn-up Scheme  

SciTech Connect

In this paper, conceptual design study of Small Long-life Gas Cooled Fast Reactors with Natural Uranium as Fuel Cycle Input has been performed. In this study Gas Cooled Fast Reactor is slightly modified by employing modified CANDLE burn-up scheme so that it can use Natural Uranium as fuel cycle input. Due to their hard spectrum, GCFR in this study showed very good performance in converting U-238 to plutonium in order to maintain the operation condition requirement of long-life reactors. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. With such condition we got an optimal design of 325 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input. The average discharge burn-up is about 290 GWd/ton HM.

Nur Asiah, A.; Su'ud, Zaki [Nuclear Physics and Biophysics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung (Indonesia); Ferhat, A. [National Nuclear Energ Agency of Indonesia (BATAN) (Indonesia); Sekimoto, H. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology (Japan)

2010-06-22T23:59:59.000Z

234

Tropical biomass burning smoke plume size, shape, reflectance, and age based on 2001??2009 MISR imagery of Borneo  

E-Print Network (OSTI)

C. S. Zender et al. : Tropical biomass burning smoke plumeslaboratory measurements of biomass-burning emis- sions: 1.aerosol optical depth biomass burning events: a comparison

Zender, C. S.; Krolewski, A. G.; Tosca, M. G.; Randerson, J. T.

2012-01-01T23:59:59.000Z

235

PHOTOCHEMICAL AND NON-PHOTOCHEMICAL HOLE BURNING IN DIMETHYL-S-TETRAZINE IN A POLYVINYL CARBAZOLE FILM  

E-Print Network (OSTI)

AND NON-PHOTOCHEMICAL HOLE BURNING IN DIMETHYL-S-TETRAZINE~ CA 95193 ABSTRACT Hole burning as well as uorescence lineamorphous organic hosts. burning. Evidence is presented for

Cuellar, E.

2013-01-01T23:59:59.000Z

236

Classification of burn degrees in grinding by neural nets  

Science Conference Proceedings (OSTI)

One of the problems found in the implementation of intelligent grinding process is the automatic detection of surface burn of the parts. Several systems of monitoring have been assessed by researchers in order to control the grinding process and guarantee ... Keywords: acoustic emission, burn, grinding, monitoring, neural network

Marcelo M. Spadotto; Paulo R. Aguiar; Carlos C. P. Souza; Eduardo C. Bianchi; Andr N. de Souza

2008-02-01T23:59:59.000Z

237

Optimal Mechansim Design and Money Burning  

E-Print Network (OSTI)

Mechanism design is now a standard tool in computer science for aligning the incentives of self-interested agents with the objectives of a system designer. There is, however, a fundamental disconnect between the traditional application domains of mechanism design (such as auctions) and those arising in computer science (such as networks): while monetary transfers (i.e., payments) are essential for most of the known positive results in mechanism design, they are undesirable or even technologically infeasible in many computer systems. Classical impossibility results imply that the reach of mechanisms without transfers is severely limited. Computer systems typically do have the ability to reduce service quality--routing systems can drop or delay traffic, scheduling protocols can delay the release of jobs, and computational payment schemes can require computational payments from users (e.g., in spam-fighting systems). Service degradation is tantamount to requiring that users burn money}, and such ``payments'' can...

Hartline, Jason D

2008-01-01T23:59:59.000Z

238

Microsoft PowerPoint - burns.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Low Evaluation of Low Tank Level Mixing Technologies for DOE High Level Waste Tank Retrieval (10516) Heather Burns Andrew Fellinger and Richard Minichan Savannah River National Laboratory March 7 - 11, 2010 Phoenix, Arizona Waste Management Symposia 2010 SRNL-STI-2010-00139 2 W A S T E M A N A G E M E N T S Y M P O S I A 2 0 1 0 Agenda Overview Background Why a retrieval knowledge center Initial objectives / goals Low Level Mixing Addressing a challenge through technology demonstration Evaluation criteria Instrumentation Test matrix HOW DID WE GET THERE? WHERE DID WE GO? "Building a Foundation" The challenges that lead to gaps in retrieval Development and mock-up of retrieval technologies 3 W A S T E M A N A G E M E N T S Y M P O S I A 2 0 1 0 Background -

239

Dynamic Optimization of Lean Burn Engine Aftertreatment  

E-Print Network (OSTI)

The competition to deliver fuel e#cient and environmentally friendly vehicles is driving the 1 2 Submitted to Journal of Dynamics Systems, Measurement, & Control automotive industry to consider ever more complex powertrain systems. Adequate performance of these new highly interactive systems can no longer be obtained through traditional approaches, which are intensive in hardware use and #nal control software calibration. This paper explores the use of Dynamic Programming to make model-based design decisions for a lean burn, direct injection spark ignition engine, in combination with a three way catalyst and an additional threeway catalyst, often referred to as a lean NOx trap. The primary contribution is the development ofavery rapid method to evaluate the tradeo#s in fuel economy and emissions for this novel powertrain system, as a function of design parameters and controller structure, over a standard emission test cycle. 1 Introduction Designing a powertrain system to m...

Jun-Mo Kang; Ilya Kolmanovsky; J. W. Grizzle

2001-01-01T23:59:59.000Z

240

Wood Burning Combined Cycle Power Plant  

E-Print Network (OSTI)

A combined cycle power plant utilizing wood waste products as a fuel has been designed. This plant will yield a 50% efficiency improvement compared to conventional wood-fueled steam power plants. The power plant features an externally-fired gas turbine combined cycle system that obtains its heat input from a high temperature, high pressure ceramic air heater burning wood waste products as a fuel. This paper presents the results of the design study including the cycle evaluation and a description of the major components of the power plant. The cycle configuration is based on maximum fuel efficiency with minimum capital equipment risk. The cycle discussion includes design point performance of the power plant. The design represents a significant step forward in wood-fueled power plants.

Culley, J. W.; Bourgeois, H. S.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Method for correcting for isotope burn-in effects in fission neutron dosimeters  

DOE Patents (OSTI)

A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.

Gold, Raymond (Richland, WA); McElroy, William N. (Richland, WA)

1988-01-01T23:59:59.000Z

242

Pre-burning wxperiments commence in August 2008. A controlled burning takes place late September 2008 and field observations continues untill at least  

E-Print Network (OSTI)

Pre-burning wxperiments commence in August 2008. A controlled burning takes place late September) and long-term (months to a years) effects of fires (burning) in macchia ecosystem on [i] soil emissions ecosystems, land use and land use change scenarios. October 29-30, 2007, Barcelona, Spain Effect of burning

243

Method and apparatus to measure the depth of skin burns  

DOE Patents (OSTI)

A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

Dickey, Fred M. (Albuquerque, NM); Holswade, Scott C. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

244

Turbulent burning rates of methane and methane-hydrogen mixtures  

Science Conference Proceedings (OSTI)

Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

2009-04-15T23:59:59.000Z

245

Local Burn-Up Effects in the NBSR Fuel Element  

SciTech Connect

This study addresses the over-prediction of local power when the burn-up distribution in each half-element of the NBSR is assumed to be uniform. A single-element model was utilized to quantify the impact of axial and plate-wise burn-up on the power distribution within the NBSR fuel elements for both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. To validate this approach, key parameters in the single-element model were compared to parameters from an equilibrium core model, including neutron energy spectrum, power distribution, and integral U-235 vector. The power distribution changes significantly when incorporating local burn-up effects and has lower power peaking relative to the uniform burn-up case. In the uniform burn-up case, the axial relative power peaking is over-predicted by as much as 59% in the HEU single-element and 46% in the LEU single-element with uniform burn-up. In the uniform burn-up case, the plate-wise power peaking is over-predicted by as much as 23% in the HEU single-element and 18% in the LEU single-element. The degree of over-prediction increases as a function of burn-up cycle, with the greatest over-prediction at the end of Cycle 8. The thermal flux peak is always in the mid-plane gap; this causes the local cumulative burn-up near the mid-plane gap to be significantly higher than the fuel element average. Uniform burn-up distribution throughout a half-element also causes a bias in fuel element reactivity worth, due primarily to the neutronic importance of the fissile inventory in the mid-plane gap region.

Brown N. R.; Hanson A.; Diamond, D.

2013-01-31T23:59:59.000Z

246

4. Natural Gas Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

4. Natural Gas Statistics Dry Natural Gas Proved Reserves The United States had 192,513 billion cubic feet of dry natural gas reserves as of December 31, 2004, a 2

247

Vertical distribution and radiative effects of mineral dust and biomass burning aerosol over West Africa during DABEX  

SciTech Connect

This paper presents measurements of the vertical distribution of aerosol extinction coefficient over West Africa, during the Dust and Biomass burning aerosol Experiment (DABEX) / African Monsoon Multidisciplinary Analysis dry season Special Observing period zero (AMMA-SOP0). In situ aircraft measurements from the UK FAAM aircraft are compared with two ground based lidars (POLIS and ARM MPL) and an airborne lidar on an ultra-light aircraft. In general mineral dust was observed at low altitudes (up to 2km) and a mixture of biomass burning aerosol and dust was observed at altitudes of 2-5km. The study exposes difficulties associated with spatial and temporal variability when inter-comparing aircraft and ground measurements. Averaging over many profiles provided a better means of assessing consistent errors and biases associated with in situ sampling instruments and retrievals of lidar ratios. Shortwave radiative transfer calculations and a 3-year simulation with the HadGEM2-A climate model show that the radiative effect of biomass burning aerosol is somewhat sensitive to the vertical distribution of aerosol. Results show a 15% increase in absorption of solar radiation by elevated biomass burning aerosol when the observed low-level dust layer is included as part of the background atmospheric state in the model. This illustrates that the radiative forcing of anthropogenic absorbing aerosol is sensitive to the treatment of other aerosol species and that care is needed in simulating natural aerosols assumed to exist in the pre-industrial, or natural state of the atmosphere.

Johnson, Ben; Heese, B.; McFarlane, Sally A.; Chazette, P.; Jones, A.; Bellouin, N.

2008-09-12T23:59:59.000Z

248

Opportunities for LNG supply infrastructure and demand growth in US and International markets; Opportunities for liquefied natural gas supply infrastructure and demand growth in United States and International markets.  

E-Print Network (OSTI)

??Countries are looking beyond their borders for options to satiate a forecasted increase in natural gas consumption. A strong option for importing natural gas is (more)

Connell, Richard Perry

2004-01-01T23:59:59.000Z

249

Metric Units  

Science Conference Proceedings (OSTI)

... A, B, C, D, E, F, G, H, I, J. 1, Steam Point Calculator: Metric Units, Elevation Converter, ... 6, Height of steam point apparatus above ground (m), 0, m, ...

2011-12-22T23:59:59.000Z

250

United States  

Office of Legacy Management (LM)

- I - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency

251

Effect of Fuel Fraction on Small Modified CANDLE Burn-up Based Gas Cooled Fast Reactors  

Science Conference Proceedings (OSTI)

A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE Burn-up has been performed. The objective of this research is to get optimal design parameters of such type reactors. The parameters of nuclear design including the critical condition, conversion ratio, and burn-up level were compared. These parameters are calculated by variation in the fuel fraction 47.5% up to 70%. Two dimensional full core multi groups diffusion calculations was performed by CITATION code. Group constant preparations are performed by using SRAC code system with JENDL-3.2 nuclear data library. In this design the reactor cores with cylindrical cell two dimensional R-Z core models are subdivided into several parts with the same volume in the axial directions. The placement of fuel in core arranged so that the result of plutonium from natural uranium can be utilized optimally for 10 years reactor operation. Modified CANDLE burn-up was established successfully in a core radial width 1.4 m. Total thermal power output for reference core is 550 MW. Study on the effect of fuel to coolant ratio shows that effective multiplication factor (k{sub eff}) is in almost linear relations with the change of the fuel volume to coolant ratio.

Ariani, Menik [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Physics Department, Sriwijaya University, Kampus Indralaya, Ogan Ilir, Sumatera Selatan (Indonesia); Su'ud, Zaki; Waris, Abdul; Asiah, Nur [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Shafii, M. Ali [Departmen of Physics Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40134 (Indonesia); Physics Department, Andalas University, Kampus Limau Manis, Padang, Sumatera Barat (Indonesia); Khairurrijal

2010-12-23T23:59:59.000Z

252

Transmutation Analysis of Enriched Uranium and Deep Burn High Temperature Reactors  

Science Conference Proceedings (OSTI)

High temperature reactors (HTRs) have been under consideration for production of electricity, process heat, and for destruction of transuranics for decades. As part of the transmutation analysis efforts within the Fuel Cycle Research and Development (FCR&D) campaign, a need was identified for detailed discharge isotopics from HTRs for use in the VISION code. A conventional HTR using enriched uranium in UCO fuel was modeled having discharge burnup of 120 GWd/MTiHM. Also, a deep burn HTR (DB-HTR) was modeled burning transuranic (TRU)-only TRU-O2 fuel to a discharge burnup of 648 GWd/MTiHM. For each of these cases, unit cell depletion calculations were performed with SCALE/TRITON. Unit cells were used to perform this analysis using SCALE 6.1. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were first set by using Serpent calculations to match a spectral index between unit cell and whole core domains. In the case of the DB-HTR, the unit cell which was arrived at in this way conserved the ratio of fuel to moderator found in a single block of fuel. In the conventional HTR case, a larger moderator-to-fuel ratio than that of a single block was needed to simulate the whole core spectrum. Discharge isotopics (for 500 nuclides) and one-group cross-sections (for 1022 nuclides) were delivered to the transmutation analysis team. This report provides documentation for these calculations. In addition to the discharge isotopics, one-group cross-sections were provided for the full list of 1022 nuclides tracked in the transmutation library.

Michael A. Pope

2012-07-01T23:59:59.000Z

253

Furniture wood wastes: Experimental property characterisation and burning tests  

Science Conference Proceedings (OSTI)

Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected 'raw' and primarily 'engineered' ('composite') wood wastes. The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in 'engineered' wood wastes as compared with 'raw' wood wastes; and relatively high energy content values of 'engineered' wood wastes (ranging on the whole from 3675 to 5105 kcal kg{sup -1} for HHV, and from 3304 to 4634 kcal kg{sup -1} for LHV). The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in 'engineered' wood burning tests of pyrroles and amines, as well as the additional presence (as compared with 'raw' wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon. Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in 'engineered' wood burning tests as compared with 'raw' wood burning test; and considerable generation of the respirable PM{sub 1} fraction during incomplete industrial wood burning.

Tatano, Fabio [Faculty of Sciences and Technologies, University of Urbino 'Carlo Bo', Campus Scientifico - Sogesta, 61029 Urbino (Italy)], E-mail: fabio.tatano@uniurb.it; Barbadoro, Luca; Mangani, Giovanna; Pretelli, Silvia; Tombari, Lucia; Mangani, Filippo [Faculty of Sciences and Technologies, University of Urbino 'Carlo Bo', Campus Scientifico - Sogesta, 61029 Urbino (Italy)

2009-10-15T23:59:59.000Z

254

Oil/gas separator for installation at burning wells  

DOE Patents (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, Carol T. (Orinda, CA); Bender, Donald A. (Dublin, CA); Bowman, Barry R. (Livermore, CA); Burnham, Alan K. (Livermore, CA); Chesnut, Dwayne A. (Pleasanton, CA); Comfort, III, William J. (Livermore, CA); Guymon, Lloyd G. (Livermore, CA); Henning, Carl D. (Livermore, CA); Pedersen, Knud B. (Livermore, CA); Sefcik, Joseph A. (Tracy, CA); Smith, Joseph A. (Livermore, CA); Strauch, Mark S. (Livermore, CA)

1993-01-01T23:59:59.000Z

255

Oil/gas separator for installation at burning wells  

DOE Patents (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait`s oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R. [and others

1991-12-31T23:59:59.000Z

256

Oil/gas separator for installation at burning wells  

DOE Patents (OSTI)

An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.

Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.

1993-03-09T23:59:59.000Z

257

Can Consumers Escape the Market? Emancipatory Illuminations from Burning Man  

E-Print Network (OSTI)

This ethnography explores the emancipatory dynamics of the Burning Man project, a one-week-long antimarket event. Practices used at Burning Man to distance consumers from the market include discourses supporting communality and disparaging market logics, alternative exchange practices, and positioning consumption as self-expressive art. Findings reveal several communal practices that distance consumption from broader rhetorics of efficiency and rationality. Although Burning Mans participants materially support the market, they successfully construct a temporary hypercommunity from which to practice divergent social logics. Escape from the market, if possible at all, must be conceived of as similarly temporary and local.

Robert V. Kozinets

2002-01-01T23:59:59.000Z

258

Spectral hole burning for stopping light  

E-Print Network (OSTI)

We propose a novel protocol for storage and retrieval of photon wave packets in a $\\Lambda$-type atomic medium. This protocol derives from spectral hole burning and takes advantages of the specific properties of solid state systems at low temperature, such as rare earth ion doped crystals. The signal pulse is tuned to the center of the hole that has been burnt previously within the inhomogeneously broadened absorption band. The group velocity is strongly reduced, being proportional to the hole width. This way the optically carried information and energy is carried over to the off-resonance optical dipoles. Storage and retrieval are performed by conversion to and from ground state Raman coherence by using brief $\\pi$-pulses. The protocol exhibits some resemblance with the well known electromagnetically induced transparency process. It also presents distinctive features such as the absence of coupling beam. In this paper we detail the various steps of the protocol, summarize the critical parameters and theoretically examine the recovery efficiency.

R. Lauro; T. Chaneliere; J. -L. Le Gouet

2009-02-16T23:59:59.000Z

259

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Energy Company BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) . On May 22,2006, BP Energy Company (BP Energy) applied to DOE for an authorization to transmit electric energy from the United States to Mexico as a power marketer. BP Energy proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export that energy to ~Mexico. The cnergy

260

United States  

Office of Legacy Management (LM)

Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection Agency (EPA) and its predecessor the U.S, Public Health Service (PHs) has conducted radiological monitoring in the offsite areas around United States nuclear test areas. The primary objective of this monitoring has been the protection of the health and safety of

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural Gas Annual, 2004  

Gasoline and Diesel Fuel Update (EIA)

4 4 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2004 Natural Gas Annual 2004 Release date: December 19, 2005 Next release date: January 2007 The Natural Gas Annual, 2004 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2004. Summary data are presented for each State for 2000 to 2004. The data that appear in the tables of the Natural Gas Annual, 2004 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2004, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

262

Fisheries Employment in Cooperative Research Units: Where  

E-Print Network (OSTI)

venture among the federal government (USGS), a state natural resource agency, and a state host university, and other state and federal agencies may also serve as cooperators at various units. The three-point mission natural resource agencies and universities. Federal and state agencies are afforded access to Unit

Kwak, Thomas J.

263

Econometric analysis of residential demand for fuelwood in the United States, 1980-1981  

Science Conference Proceedings (OSTI)

This paper presents an econometric study of residential fuelwood demand in the United States. It is based on a residential energy consumption survey conducted by the U.S. Department of Energy in 1980-1981. Estimates are derived of the probability that a particular household will burn wood and of the wood that will be burned. Aggregate fuelwood demand is predicted for five census regions and for the contiguous United States. The predicted average probability of burning wood is 0.32, and the average predicted quantity burned is 1.57 cords. Residential fuelwood demand is found to be quite responsive to changes in the price of nonwood heating fuel. 16 references.

Hardie, I.W.; Hanssan, A.A.

1986-12-01T23:59:59.000Z

264

ARM - Field Campaign - Biomass Burning Observation Project - BBOP  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBiomass Burning Observation Project - BBOP govCampaignsBiomass Burning Observation Project - BBOP Campaign Links BNL BBOP Website ARM Aerial Facility Payload Science Plan Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biomass Burning Observation Project - BBOP 2013.07.01 - 2013.10.24 Website : http://campaign.arm.gov/bbop/ Lead Scientist : Larry Kleinman For data sets, see below. Description This field campaign will address multiple uncertainties in aerosol intensive properties, which are poorly represented in climate models, by means of aircraft measurements in biomass burning plumes. Key topics to be investigated are: Aerosol mixing state and morphology Mass absorption coefficients (MACs) Chemical composition of non-refractory material associated with

265

The Way We Burn: Combustion, Climate, and Carbonaceous Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

The Way We Burn: Combustion, Climate, and Carbonaceous Particles Speaker(s): Tami Bond Date: June 5, 2002 - 12:00pm Location: Bldg. 90 Carbonaceous particles-- which engineers...

266

Study of Buoyancy-Driven Turbulent Nuclear Burning and Validation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of Buoyancy-Driven Turbulent Nuclear Burning and Validation of Type Ia Supernova Models PI Name: Don Lamb PI Email: lamb@oddjob.uchicago.edu Institution: ASCAlliance Flash...

267

Study of Buoyancy-Driven Turbulent Nuclear Burning and Validation...  

NLE Websites -- All DOE Office Websites (Extended Search)

created from a simulation run on the Blue GeneP at the Argonne Leadership Computing Facility in 2009. Study of Buoyancy-Driven Turbulent Nuclear Burning and Validation of Type Ia...

268

Evaluation of the carbon content of aerosols from the burning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the carbon content of aerosols from the burning of biomass in the Brazilian Amazon using thermal, optical and thermal-optical analysis methods Title Evaluation of the...

269

EIA - Natural Gas Analysis Basics  

Gasoline and Diesel Fuel Update (EIA)

for Natural Gas Basics for Natural Gas Basics Where Our Natural Gas Comes From Natural Gas Prices Natural Gas Statistics Natural Gas Kid's Page (Not Just for Kids) How natural gas was formed, how we get it, how it is stored and delivered, how it is measured, what it is used for, how it affects the environment and more. Natural Gas Residential Choice This site provides an overview of the status of natural gas industry restructuring in each state, focusing on the residential customer class. About U.S. Natural Gas Pipelines State Energy Profiles What role does liquefied natural gas (LNG) play as an energy source for the United States? This Energy In Brief discusses aspects of LNG industry in the United States. LNG is natural gas that has been cooled to about minus 260 degrees Fahrenheit for shipment and/or storage as a liquid. Growth in LNG imports to the United States has been uneven in recent years, with substantial changes in year-over-year imports as a result of suppliers’ decisions to either bring spare cargos to the United States or to divert cargos to countries where prices may be higher. Categories: Imports & Exports/Pipelines (Released, 12/11/2009)

270

Transuranic Burning Issues Related to a Second Geologic Repository  

Science Conference Proceedings (OSTI)

This report defines issues that need to be addressed by a development program recently initiated to establish the viability of a transuranic burning concept application that would achieve a substantial delay to the need date for a second geologic repository. The visualized transuranic burning concept application is one in which spent fuel created after a date in the 2010 time frame or later would be processed and the separated plutonium used to start up liquid metal reactors (LMRs).

1992-07-01T23:59:59.000Z

271

Natural Gas Annual, 2000  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. Natural Gas Annual, 2000 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2000. Summary data are presented for each Census Division and State for 1996 to 2000. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 2000 are available as self-extracting executable files in ASCII TXT or CSV file formats. This volume emphasizes information for 2000, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file. Also available are files containing the following data: Summary Statistics - Natural Gas in the United States, 1996-2000 (Table 1) ASCII TXT, and Natural Gas Supply and Disposition by State, 2000 (Table 2) ASCII TXT, are also available.

272

E.A. Gilbert Generating Unit, Maysville, Kentucky  

Science Conference Proceedings (OSTI)

The new, 368-MW E.A. Gilbert Generating Unit at the H.L. Spurlock Power Station in Maysville isn't just the cleanest coal-burning plant in Kentucky. Thanks to its circulating liquidized bed boiler from Alstom, it is one of the cleanest in the US. The boiler's ability to burn a wide variety of coals and even pet coke, biomass, or tire-derived fuels - also was a factor in Power's decision to name E.A. Gilbert a Top Plant of 2005. 3 figs., 2 tabs.

Wicker, K.

2005-08-01T23:59:59.000Z

273

I I Green, Lisle R. Burning by prescriptionin chaparral. Berkeley, Calif.: Pacific Southwest Forest  

E-Print Network (OSTI)

;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;#12;I I I I I Green, Lisle R. Burning.S. Dep. Agric.: 1981; Gen. Tech. Rep. PSW-51. 36 p. 1 I Prescribed burning is frequently suggested for reducing conflagration costs in chaparral. Prepara- tion for a prescribed burn includes environmental

Standiford, Richard B.

274

THE BURNING ISSUES OF MUNICIPAL SOLID WASTE DISPOSAL WHAT WORKS AND WHAT DOESN'T  

E-Print Network (OSTI)

1 THE BURNING ISSUES OF MUNICIPAL SOLID WASTE DISPOSAL ­ WHAT WORKS AND WHAT DOESN'T By: Jack D devil burns and the Lord recycles." Perhaps these negative references to waste burning come from, the Valley of Hinnom south of ancient Jerusalem. This was the site of a foul, smoking, open burning garbage

Columbia University

275

Patch-Burning: "Rotational Grazing Without Fences" Using Fire and Grazing to Restore Diversity on Grasslands  

E-Print Network (OSTI)

Patch-Burning: "Rotational Grazing Without Fences" Using Fire and Grazing to Restore Diversity characteristics. Patch Burning and Grazing Can Promote Diversity The objective of patch burning is to create State University burn portions of unfenced landscapes each year. Livestock focus grazing on recently

Debinski, Diane M.

276

Proceedings of the Sudden Oak Death Third Science Symposium Implementation of a Thinning and Burning  

E-Print Network (OSTI)

and Burning Study in Tanoak-Redwood Stands in Santa Cruz and Mendocino Counties1 Kevin L. O'Hara2 and Kristen the effects of thinning and prescribed burning on infection and spread of Phytophthora ramorum. Study sites burning. Introduction Thinning and burning effects on infection by and spread of Phytophthora ramorum

Standiford, Richard B.

277

Fertilizing and Burning Flint Hills Bluestem CLENTON E. OWENSBY AND ED F. SMITH  

E-Print Network (OSTI)

Fertilizing and Burning Flint Hills Bluestem CLENTON E. OWENSBY AND ED F. SMITH Abstract Burned of nitrogen applied more than 80 lb N/acre did. Maintenance of good quality range was favored by burning and 0 and 40 lb N/acre compared to not burning and the same fertilizer rates. Eighty lb N/acre produced poor

Owensby, Clenton E.

278

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E-T Global Energy, LLC E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e)) 1 * On May 10,2011, DOE received an application from E-T Global Energy, LLC (E-T Global) for authority to transmit electric energy from the United States to Mexico for five years as a power marketer using existing international transmission facilities. E-

279

United States  

Office of Legacy Management (LM)

WASHINGTON, TUESDAY, JUNE 28, 1983 @nngmeional Ruord United States of America .__ -- . . ,- PROCEEDINGS AND DEBATES OF THE 9@ CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmgton, D C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $xX Congresstonal Record (USPS 087-390) Postage and Fees Pad U S Government Prlnhng 0ffv.X 375 SECOND CLASS NEWSPAPER H.4578 ' C.QNGRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 273: Mr. BOUND. Mr. W~.XMAN. Mr. OBERSTAR, Mr. BEDELL. Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB, Mr. CONTE. Mr. RAHALL; Mr. GRAY, Mr. VANDER JACT. Mr. TRAKLER, and Mr. Vxrrro. H. Con. Res. 107: Mr. KASICH. Mr. AUCOIN. Mr. CARPER, and Mr. SIZHFIJER. H. Con. Res. 118: Mr. FISH. Mr. LANTOS.

280

United States  

Office of Legacy Management (LM)

ongrees;ional Record ongrees;ional Record United States of America __._ -.. I. :- PROCEEDINGS AND DEBATES OF THE 9tth CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmcqton. Cl C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $300 Congressmal Record (USPS 087-390) Postage and Fees Pad U S Governme3n:jPnntmg OfIce SECOND CLASS NEWSPAPER H.4578 ' June 28, 1983 -: I H.J. Res. 273: Mr. BOLAND, Mr. WA-. Mr. OBERSTAFC, M' r. BEDELL, Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB. Mr. CONTE. Mr. RAHALL,. Mr. GRAY, Mr. VANDER JAGT. Mr. TRAKLER. and Mr. VENTO. H. Con. Res. iO7: Mr. KASICH. Mr. ALCOIN. Mr. CARPER. and Mr. SCHEUER. H. Con. Res. 118: Mr. FISH, Mr. LANTOS. Mr. KILDEE. Mr. SOLARZ Mr. Bmrr, Mr. BELWLL, Mr. RANG~L, Mr. DYMALLY. Mr.

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Monitoring Soil Erosion of a Burn Site in the Central Basin and Range Ecoregion: Final Report on Measurements at the Gleason Fire Site, Nevada  

SciTech Connect

The increase in wildfires in arid and semi-arid parts of Nevada and elsewhere in the southwestern United States has implications for post-closure management and long-term stewardship for Soil Corrective Action Units (CAUs) on the Nevada National Security Site (NNSS) for which the Nevada Field Office of the United States Department of Energy, National Nuclear Security Administration has responsibility. For many CAUs and Corrective Action Sites, where closure-in-place alternatives are now being implemented or considered, there is a chance that these sites could burn over at some time while they still pose a risk to the environment or human health, given the long half lives of some of the radionuclide contaminants. This study was initiated to examine the effects and duration of wildfire on wind and water erodibility on sites analogous to those that exist on the NNSS. The data analyzed herein were gathered at the prescribed Gleason Fire site near Ely, Nevada, a site comparable to the northern portion of the NNSS. Quantification of wind erosion was conducted with a Portable In-Situ Wind ERosion Lab (PI-SWERL) on unburned soils, and on interspace and plant understory soils within the burned area. The PI-SWERL was used to estimate emissions of suspendible particles (particulate matter with aerodynamic diameters less than or equal to 10 micrometers) at different wind speeds. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Based on nearly three years of data, the Gleason Fire site does not appear to have returned to pre burn wind erosion levels. Chemical composition data of suspendible particles are variable and show a trend toward pre-burn levels, but provide little insight into how the composition has been changing over time since the fire. Soil, runoff, and sediment data were collected from the Gleason Fire site to monitor the water erosion potential over the nearly three-year period. Soil hydrophobicity (water repellency) was noted on burned understory soils up to 12 months after the fire, as was the presence of ash on the soil surface. Soil deteriorated from a strong, definable pre-fire structure to a weakly cohesive mass (unstructured soil) immediately after the fire. Surface soil structure was evident 34 months after the fire at both burned and unburned sites, but was rare and weaker at burned sites. The amount of runoff and sediment was highly variable, but runoff occurred more frequently at burned interspace sites compared to burned understory and unburned interspace sites up to 34 months after the burn. No discernible pattern was evident on the amount of sediment transported, but the size of sediment from burned understory sites was almost double that of burned and unburned interspace soils after the fire, and decreased over the monitoring period. Curve numbers, a measure of the runoff potential, did not indicate any obvious runoff response to the fire. However, slight seasonal changes in curve numbers and runoff potential and, therefore, post-fire runoff response may be a function of fire impacts as well as the time of year that precipitation occurs. Site (interspace or understory) differences in soil properties and runoff persisted even after the fire. Vegetation data showed the presence of invasive grasses after the fire. Results from analysis of wind and water coupled with the spatial analysis of vegetation suggest that wind erosion may continue to occur due to the additional exposed soil surface (burned understory sites) until vegetation becomes re-established, and runoff may occur more frequently in interspace sites. The potential for fire-related wind erosion and water erosion may persist beyond three years in this system.

Miller, Julianne [DRI] [DRI; Etyemezian, Vicken [DRI] [DRI; Shillito, Rose [DRI] [DRI; Cablk, Mary [DRI] [DRI; Fenstermaker, Lynn [DRI] [DRI; Shafer, David [DOE Legacy Management] [DOE Legacy Management

2013-10-01T23:59:59.000Z

282

U.S. Natural Gas Imports & Exports 2012 - Energy Information ...  

U.S. Energy Information Administration (EIA)

This growth led to greater domestic natural gas supply and relatively low prices in the United States, thus reducing U.S. reliance on foreign natural gas.

283

December natural gas prices spike in Boston - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Although growth in domestic natural gas production has driven down natural gas prices throughout most of the United States in recent years, ...

284

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

285

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

286

Topical Area MFE Title: Burning Plasma Science_____________________________________________ Description Fusion energy is released by burning light elements using nuclear reactions which consume mass and  

E-Print Network (OSTI)

Page 1 Topical Area MFE Title: Burning Plasma Science_____________________________________________ · Description Fusion energy is released by burning light elements using nuclear reactions which consume mass-sustained purely by its alpha particle heating. The science of burning plasmas consists of: (1) the physics

287

Topical Area: MFE Title: Burning Plasma Experimental Options______________________________ Description The options for a Next Step Burning Plasma Experiment are defined by the overall strategic  

E-Print Network (OSTI)

Page 1 Topical Area: MFE Title: Burning Plasma Experimental Options______________________________ · Description The options for a Next Step Burning Plasma Experiment are defined by the overall strategic of developing and integrating burning plasma physics, long pulse physics and technology, and fusion technologies

288

Monitoring Soil Erosion on a Burned Site in the Mojave-Great Basin Transition Zone: Final Report for the Jacob Fire Site  

SciTech Connect

A historic return interval of 100 years for large fires in the U.S. southwestern deserts is being replaced by one where fires may reoccur as frequently as every 20 to 30 years. The shortened return interval, which translates to an increase in fires, has implications for management of Soil Corrective Action Units (CAUs) and Corrective Action Sites (CASs) for which the Department of Energy, National Nuclear Security Administration Nevada Field Office has responsibility. A series of studies was initiated at uncontaminated analog sites to better understand the possible impacts of erosion and transport by wind and water should contaminated soil sites burn. The first of these studies was undertaken at the Jacob Fire site approximately 12 kilometers (7.5 miles) north of Hiko, Nevada. A lightning-caused fire burned approximately 200 hectares during August 6-8, 2008. The site is representative of a transition between Mojave and Great Basin desert ecoregions on the Nevada National Security Site (NNSS), where the largest number of Soil CAUs/CASs are located. The area that burned at the Jacob Fire site was primarily a Coleogyne ramosissima (blackbrush) and Ephedra nevadensis (Mormon tea) community, also an abundant shrub assemblage in the similar transition zone on the NNSS. This report summarizes three years of measurements after the fire. Seven measurement campaigns at the Jacob Fire site were completed. Measurements were made on burned ridge (upland) and drainage sites, and on burned and unburned sites beneath and between vegetation. A Portable In-Situ Wind Erosion Lab (PI-SWERL) was used to estimate emissions of suspended particles at different wind speeds. Context for these measurements was provided through a meteorological tower that was installed at the Jacob Fire site to obtain local, relevant environmental parameters. Filter samples, collected from the exhaust of the PI-SWERL during measurements, were analyzed for chemical composition. Runoff and water erosion were quantified through a series of rainfall/runoff simulation tests in which controlled amounts of water were delivered to the soil surface in a specified amount of time. Runoff data were collected from understory and interspace soils on burned ridge and drainage areas. Runoff volume and suspended sediment in the runoff were sampled; the particle size distribution of the sediment was determined by laboratory analysis. Several land surface and soil characteristics associated with runoff were integrated by the calculation of site-specific curve numbers. Several vegetation surveys were conducted to assess post-burn recovery. Data from plots in both burned and unburned areas included species identification, counts, and location. Characterization of fire-affected area included measures at both the landscape scale and at specific sites. Although wind erosion measurements indicate that there are seasonal influences on almost all parameters measured, several trends were observed. PI-SWERL measurements indicated the potential for PM10 windblown dust emissions was higher on areas that were burned compared to areas that were not. Among the burned areas, understory soils in drainage areas were the most emissive, and interspace soils along burned ridges were least emissive. By 34 months after the burn (MAB), at the end of the study, emissions from all burned soil sites were virtually indistinguishable from unburned levels. Like the amount of emissions, the chemical signature of the fire (indicated by the EC-Soil ratio) was elevated immediately after the fire and approached pre-burn levels by 24 MAB. Thus, the potential for wind erosion at the Jacob Fire site, as measured by the amount and type of emissions, increased significantly after the fire and returned to unburned levels by 24 MAB. The effect of fire on the potential for water erosion at the Jacob Fire site was more ambiguous. Runoff and sediment from ridge interspace soils and unburned interspace soils were similar throughout the study period. Seldom, if ever, did runoff and sediment occur in burned drainage area soils. Fo

Miller, Julianne [DRI] DRI; Etyemezian, Vic [DRI] DRI; Cablk, Mary E. [DRI] DRI; Shillito, Rose [DRI] DRI; Shafer, David [DOE Grand Junction, Colorado] DOE Grand Junction, Colorado

2013-06-01T23:59:59.000Z

289

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CC-1-I Availability: This rate schedule shall be available to public bodies and cooperatives served through the facilities of Carolina Power & Light Company, Western Division (hereinafter called the Customers). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the "Cumberland Projects") and sold in wholesale quantities. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

290

A worldwide perspective on actinide burning  

SciTech Connect

Worldwide interest has been evident over the past few years in reexamining the merits of recovering the actinides from spent light-water reactor (LWR) fuel and transmuting them in fast reactors to reduce hazards in geologic repositories. This paper will summarize some of the recent activities in this field. Several countries are embarked on programs of reprocessing and vitrification of present wastes, from which removal of the actinides is largely precluded. The United States is assessing the ideas related to the fast reactor program and the potential application to defense wastes. 18 refs., 2 figs.

Burch, W.D.

1991-01-01T23:59:59.000Z

291

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tenaslta Power Services Co. Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act (FPA) ( Z 6 U. s.c.824a(e)j1. On August 16,2001, DOE issued Order No. EA-243 authorizing Tenaska Power Scrvices Co. (Tenaska) to transmit electric cncrgy from the United States to Canada as a power marketer. That authority expired on August 16,2003. On August 14,2006, Teilaska applied to renew the electricity export authority

292

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TexMex Energy, LLC TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.824a(e)) . On August 25,2004, DOE issued Order No. EA-294 authorizing TexMex Energy LLC (TexMex) to transmit electric energy fiom the United States to Mexico as a power marketer. That authority expired on August 25, 2006. On September 8, 2006, TexMex applied to renew the electricity export authority

293

Natural Gas Annual 2008  

Gasoline and Diesel Fuel Update (EIA)

8 8 Released: March 2, 2010 The Natural Gas Annual 2008 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2008. Summary data are presented for each State for 2004 to 2008. The Natural Gas Annual 2008 Summary Highlights provides an overview of the supply and disposition of natural gas in 2008 and is intended as a supplement to the Natural Gas Annual 2008. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2008) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2008) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

294

Natural Gas Annual 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 Released: January 28, 2009 The Natural Gas Annual 2007 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2007. Summary data are presented for each State for 2003 to 2007. The Natural Gas Annual 2007 Summary Highlights provides an overview of the supply and disposition of natural gas in 2007 and is intended as a supplement to the Natural Gas Annual 2007. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2007) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2007) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

295

Natural Gas Annual, 2003  

Gasoline and Diesel Fuel Update (EIA)

3 3 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2003 Natural Gas Annual 2003 Release date: December 22, 2004 Next release date: January 2006 The Natural Gas Annual, 2003 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2003. Summary data are presented for each State for 1999 to 2003. “The Natural Gas Industry and Markets in 2003” is a special report that provides an overview of the supply and disposition of natural gas in 2003 and is intended as a supplement to the Natural Gas Annual 2003. The data that appear in the tables of the Natural Gas Annual, 2003 is available as self-extracting executable file or CSV file format. This volume emphasizes information for 2003, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

296

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

297

Natural Gas Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

9 9 Released: December 28, 2010 The Natural Gas Annual 2009 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2009. Summary data are presented for each State for 2005 to 2009. The Natural Gas Annual 2009 Summary Highlights provides an overview of the supply and disposition of natural gas in 2009 and is intended as a supplement to the Natural Gas Annual 2009. Natural Gas Annual --- Full report in PDF (5 MB) Special Files --- All CSV files contained in a self-extracting executable file. Respondent/Company Level Natural Gas Data Files Annual Natural and Supplemental Gas Supply and Disposition Company level data (1996 to 2009) as reported on Form EIA-176 are provided in the EIA-176 Query System and selected data files. EIA-191A Field Level Underground Natural Gas Storage Data: Detailed annual data (2005 to 2009) of storage field capacity, field type, and maximum deliverability as of December 31st of the report year, as reported by operators of all U.S. underground natural gas storage fields.

298

Natural gas consumption reflects shifting sectoral patterns ...  

U.S. Energy Information Administration (EIA)

For many years, while coal-fired generation was less expensive, those natural gas-fired combined-cycle units were used at relatively low rates.

299

EIA'S Natural Gas Residential Programs by State  

U.S. Energy Information Administration (EIA)

United States Summary. Marketer ... is the division of those services required to supply natural gas to consumers ... Specialized Services from NEIC: For Technical ...

300

Pipeline constraints in wholesale natural gas markets.  

E-Print Network (OSTI)

??Natural gas markets in the United States depend on an extensive network of pipelines to transport gas from production fields to end users. While these (more)

Avalos, Roger George.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Outlook for Natural Gas Supply and Prices  

Reports and Publications (EIA)

Presented by: Guy F. Caruso, EIA AdministratorPresented to: Committee On Energy And Natural ResourcesUnited States SenateWashington, DCFebruary 25, 2003

Information Center

2003-02-25T23:59:59.000Z

302

U.S. natural gas exports to Mexico reach record high in 2012 ...  

U.S. Energy Information Administration (EIA)

Natural gas consumption is rising faster in Mexico than natural gas production, and as a result, Mexico is relying more on natural gas imports from the United States.

303

On burning regimes and long duration X-ray bursts  

E-Print Network (OSTI)

Hydrogen and helium accreted onto a neutron star undergo thermonuclear burning. Explosive burning is observed as a type I X-ray burst. We describe the different burning regimes and focus on some of the current inconsistencies between theory and observations. Of special interest are the rare kinds of X-ray bursts such as carbon-fueled superbursts and helium-fueled intermediately long X-ray bursts. These bursts are thought to originate deeper in the neutron star envelope, such that they are probes of the thermal properties of the crust. We investigate the possibility of observing superbursts with the wide-field instruments INTEGRAL-ISGRI and Swift-BAT. We find that only the brightest bursts are detectable.

L. Keek; J. J. M. in 't Zand

2008-11-27T23:59:59.000Z

304

Results of emissions testing while burning densified refuse derived fuel, Dordt College, Sioux Center, Iowa  

DOE Green Energy (OSTI)

Pacific Environmental Services, Inc. provided engineering and source testing services to the Council of Great Lake Governors to support their efforts in promoting the development and utilization of densified refuse derived fuels (d-RDF) and pelletized wastepaper fuels in small steam generating facilities. The emissions monitoring program was designed to provide a complete air emissions profile while burning various refuse derived fuels. The specific goal of this test program was to conduct air emissions tests at Dordt College located in Sioux Center, Iowa and to identify a relationship between fuel types and emission characteristics. The sampling protocol was carried out June 12 through June 20, 1989 on boiler {number sign}4. This unit had been previously modified to burn d-RDF. The boiler was not equipped with any type of air pollution control device so the emissions samples were collected from the boiler exhaust stack on the roof of the boilerhouse. The emissions that were sampled included: particulates; PM{sub 10} particulates; hydrochloric acid; dioxins; furans; polychlorinated biphenyls (PCB); metals and continuous monitors for CO, CO{sub 2}O{sub 2}SO{sub x}NO{sub x} and total hydrocarbons. Grab samples of the fuels were collected, composited and analyzed for heating value, moisture content, proximate and ultimate analysis, ash fusion temperature, bulk density and elemental ash analysis. Grab samples of the boiler ash were also collected and analyzed for total hydrocarbons total dioxins, total furans, total PCBs and heavy metals. 77 figs., 20 tabs.

Not Available

1989-10-01T23:59:59.000Z

305

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bangor Hydro-Electric Company Bangor Hydro-Electric Company OE Docket No. PP-89-1 Amendment to Presidential Permit Order No. PP-89-1 December 30,2005 PRESIDENTIAL PERMIT AMENDMENT Bangor Hydro-Electric Company Order No. PP-89-1 I. BACKGROUND The Department of Energy (DOE) has responsibility for implementing Executive Order (E.O.) 10485, as amended by E.O. 12038, which requires the issuance of a Presidential permit by DOE before electric trans~nission facilities may be constructed, operated, maintained, or connected at the borders of the United States. DOE may issue such a permit if it determines that the permit is in the public interest and after obtaining favorable recommendations from the U.S. Departments of State and Defense. On December 16, 1988, Bangor Hydro-Electric Company (BHE) applied to DOE

306

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTV-1-H Availability: This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and TVA. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating current at a frequency of approximately 60 hertz at the outgoing terminals of the Cumberland

307

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTVI-1-A Availability: This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and the Customer. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

308

UNITED STATES  

Office of Legacy Management (LM)

f).~<~~ \--\c :y-,ai F p"- KG f).~<~~ \--\c :y-,ai F p"- KG WASHINOTDN 28.0. C. ' -lr ' \ ' ' --- ".I ?--" ' z I. .~;-4.' J frr*o& 2 ii, - - -4 70-147 LRL:JCD JAN !! 8 1958 Oregon Metallurgical Corporation P. 0. Box 484 Albany, Oregon Attention: Mr. Stephen M. Shelton General Manager Gentlemen: Enclosed is Special Nuclear Material License No. SNM-144, as amended. Very 33uly yours, r:; I,;, ll)~gQ""d".- Lyall Johnson Chief, Licensing Branch Division of Licensing & Regulation Enclosure: SNM-144, as amended Distribution: bRO0 Attn: Dr. H.M.Roth DFMusser NMM MMMann INS JCRyan FIN (2) HSteele LRL SRGustavson LRL Document room Formal file Suppl. file Br & Div rf's ' .b liwwArry s/VW- ' q+ ' yj/ 2; 2-' , COP' 1 J JAM01958 -- UNITED STATES ATOMIC ENERGY COMMISSION

309

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule JW-2-F Availability: This rate schedule shall be available to the Florida Power Corporation (or Progress Energy Florida, hereinafter called the Company). Applicability: This rate schedule shall be applicable to electric energy generated at the Jim Woodruff Project (hereinafter called the Project) and sold to the Company in wholesale quantities. Points of Delivery: Power sold to the Company by the Government will be delivered at the connection of the Company's transmission system with the Project bus. Character of Service: Electric power delivered to the Company will be three-phase alternating current at a nominal frequency of 60 cycles per second.

310

Burned Area Emergency Response (BAER) Assessment FINAL Specialist Report GEOLOGIC HAZARDS Station Fire, Angeles N.F.  

E-Print Network (OSTI)

Three USFS BAER Team geologists assessed increased risks from geologic hazards within the 161,000 acre Station Fire. Watershed response to moderate and high severity burned areas will depend on storm intensity and duration, but is likely to be threatening to life, property and natural resources, and costly. Even small storms have a high to severe relative hazard rating for dangerous debris flows across most of the burned area. Most treatments to reduce debris flow risk were deemed not feasible, not effective, and cost prohibitive. Rockfall, debris slides and dry ravel will add additional hazard and sediment bulk to flood flows. Debris basins will fill quickly, and could overtop and damage downstream communities and infrastructure. Debris storage sites are lacking. Abandoned mines are exposed and add additional hazards. Treatment options are few, and warning systems and public education are critical.

Jerry Degraff Geologist; Sierra N. F; Jonathan Yonni; Schwartz Geologist; Angeles N. F

2009-01-01T23:59:59.000Z

311

Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels  

E-Print Network (OSTI)

This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

Hayes, A C; Nieto, Michael Martin; WIlson, W B

2011-01-01T23:59:59.000Z

312

Thermal regimes of high burn-up nuclear fuel rod  

E-Print Network (OSTI)

The temperature distribution in the nuclear fuel rods for high burn-up is studied. We use the numerical and analytical approaches. It is shown that the time taken to have the stationary thermal regime of nuclear fuel rod is less than one minute. We can make the inference that the behavior of the nuclear fuel rod can be considered as a stationary task. Exact solutions of the temperature distribution in the fuel rods in the stationary case are found. Thermal regimes of high burn-up the nuclear fuel rods are analyzed.

Kudryashov, Nikolai A; Chmykhov, Mikhail A; 10.1016/j.cnsns.2009.05.063

2012-01-01T23:59:59.000Z

313

Theory of Antineutrino Monitoring of Burning MOX Plutonium Fuels  

E-Print Network (OSTI)

This letter presents the physics and feasibility of reactor antineutrino monitoring to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected for different MOX fuels, for the purposes of nuclear accountability and safeguards. The antineutrino signals from reactor-grade and weapons-grade MOX are shown to be distinct from those from burning low enriched uranium. Thus, antineutrino monitoring could be used to verify the destruction of plutonium in reactors, though verifying the grade of the plutonium being burned is found to be more challenging.

A. C. Hayes; H. R. Trellue; Michael Martin Nieto; W. B. WIlson

2011-10-03T23:59:59.000Z

314

Searching, naturally  

Science Conference Proceedings (OSTI)

Keywords: artificial intelligence, computational linguistics, information retrieval, knowledge representation, natural language processing, text processing

Eileen E. Allen

1998-06-01T23:59:59.000Z

315

Reduction in Unit Steam Production  

E-Print Network (OSTI)

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects of thes

Gombos, R.

2004-01-01T23:59:59.000Z

316

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

317

DOE/SC-ARM-13-014 Biomass Burning Observation Project Science  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Biomass Burning Observation Project Science Plan LI Kleinman AJ Sedlacek September 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and

318

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

Constance Senior

2004-04-30T23:59:59.000Z

319

Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel  

Science Conference Proceedings (OSTI)

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

2012-11-20T23:59:59.000Z

320

Vortex combustor for low NOx emissions when burning lean premixed high hydrogen content fuel  

DOE Patents (OSTI)

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

Steele, Robert C. (Woodinville, WA); Edmonds, Ryan G. (Renton, WA); Williams, Joseph T. (Kirkland, WA); Baldwin, Stephen P. (Winchester, MA)

2009-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY  

E-Print Network (OSTI)

BURNING BURIED SUNSHINE: HUMAN CONSUMPTION OF ANCIENT SOLAR ENERGY JEFFREY S. DUKES Department of as a vast store of solar energy from which society meets >80% of its current energy needs. Here, using of ancient solar energy decline, humans are likely to use an increasing share of modern solar resources. I

Dukes, Jeffrey

322

Burning Man at Google: a cultural infrastructure for  

E-Print Network (OSTI)

Burning Man at Google: a cultural infrastructure for new media production FRED TURNER Stanford's bohemian ethos supports new forms of production emerging in SiliconValley and especially at Google to shape and legitimate the collaborative manufacturing processes driving the growth of Google and other

Straight, Aaron

323

Sodium and sulfur release and recapture during black liquor burning  

DOE Green Energy (OSTI)

The objective of this study was to provide data on sulfur and sodium volatilization during black liquor burning, and on SO2 capture by solid sodium carbonate and sodium chloride. This data was interpreted and modeled into rate equations suitable for use in computational models for recovery boilers.

Frederick, W.J.; Iisa, K.; Wag, K.; Reis, V.V.; Boonsongsup, L.; Forssen, M.; Hupa, M.

1995-08-01T23:59:59.000Z

324

Electron Dynamics of Silicon Surface States: Second-Harmonic Hole Burning on Si(111)7x7  

E-Print Network (OSTI)

States: Second-Harmonic Hole Burning on Si(111) 7 7 John A.transient spectral hole burning. Spectral holes induced by atransient spectral hole burning, i.e. , the surface-speci?c

McGuire, John A.; Raschke, Markus B.; Shen, Yuen-Ron

2005-01-01T23:59:59.000Z

325

Liquefied Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Liquefied Natural Gas Natural gas plays a vital role in the U.S. energy supply and in achieving the nation's economic and environmental goals. One of several supply options involves increasing imports of liquefied natural gas (LNG) to ensure that American consumers have adequate supplies of natural gas for the future. Natural gas consumption in the United States is expected to increase slightly from about 24.3 trillion cubic feet (Tcf) in 2011 to 26.6 Tcf by 2035. Currently, most of the demand for natural gas in the United States is met with domestic production and imports via pipeline from Canada. A small percentage of gas supplies are imported and received as liquefied natural gas. A significant portion of the world's natural gas resources are

326

United States Geological Survey Geospatial Information Response  

E-Print Network (OSTI)

requirements, capabilities, and operations in response to a natural or man-made disaster1 United States Geological Survey Geospatial Information Response Information Response Team (GIRT) Standard Operating Procedures (SOP) contains the GIRT

Fleskes, Joe

327

Activities of the US Burning Plasma Organization Vice-Chair of Council,  

E-Print Network (OSTI)

is the principal coordinating body for MFE burning plasma research · It exists to advance the scientific to advance burning plasma research · Began with the 2006-7 ITER Design Review ­ US MFE community contributed

328

Ac#vi#es of the US Burning Plasma Organiza#on  

E-Print Network (OSTI)

=ons · USBPO ­ Coordinates US burning plasma research, to advance scien=fic understanding USBPO organizes the US Fusion Energy Science community to support burning plasma research 5 Charles Greenfield (Director) Amanda Hubbard (Deputy Director) Nermin

329

Physical and Chemical Characterization of Particulate and Gas phase Emissions from Biomass Burning  

E-Print Network (OSTI)

during the open combustion of biomass in the laboratory, J.J. R. , and Veres, P. : Biomass burning in Siberia andOpen burning of agricultural biomass: Physical and chemical

Hosseini, Seyedehsan

2012-01-01T23:59:59.000Z

330

Spatial hole burning in actively mode-locked quantum cascade lasers  

E-Print Network (OSTI)

A theoretical study of active mode-locking in quantum cascade lasers including spatial hole-burning is presented. It is found that spatial hole-burning reduces the pulse duration at the expense of slight pulse instability ...

Kartner, Franz X.

331

Department of Industrial and Manufacturing Engineering Fall 2012 Automation of Test Sample Burning  

E-Print Network (OSTI)

Sample Burning Overview ArcelorMittal Steelton produces multiple grades of steel rail. Their operators's burning station by creating a safer process for cutting test-sample premium rails To design a system

Demirel, Melik C.

332

MODIS Reflectance and Active Fire Data for Burn Mapping in Colombia  

Science Conference Proceedings (OSTI)

Satellite-based strategies for burned area mapping may rely on two types of remotely sensed data: postfire reflectance images and active fire detection. This study uses both methods in a synergistic way. In particular, burned area mapping is ...

Silvia Merino-de-Miguel; Federico Gonzlez-Alonso; Margarita Huesca; Dolors Armenteras; Carol Franco

2011-02-01T23:59:59.000Z

333

SIDA DemoEast programme in Estonia. Supply, delivery and installation of wood pellet burning equipment  

E-Print Network (OSTI)

burning equipment SUMMARY DemoEast programme is a part of Baltic Billion Fund 2 with the overall aim and Kiltsi light oil fired boilers have been converted to wood pellets burning. The supplier

334

Open Questions in Stellar Helium Burning Addressed With Real Photons  

E-Print Network (OSTI)

The outcome of helium burning is the formation of the two elements, carbon and oxygen. The ratio of carbon to oxygen at the end of helium burning is crucial for understanding the final fate of a progenitor star and the nucleosynthesis of heavy elements in Type II supernova, with oxygen rich star predicted to collapse to a black hole, and a carbon rich star to a neutron star. Type Ia supernovae (SNeIa) are used as standard candles for measuring cosmological distances with the use of an empirical light curve-luminosity stretching factor. It is essential to understand helium burning that yields the carbon/oxygen white dwarf and thus the initial stage of SNeIa. Since the triple alpha-particle capture reaction, $^{8}Be(\\alpha,\\gamma)^{12}C$, the first burning stage in helium burning, is well understood, one must extract the cross section of the $^{12}C(\\alpha,\\gamma)^{16}O$ reaction at the Gamow window (300 keV) with high accuracy of approximately 10% or better. This goal has not been achieved despite repeated strong statements that appeared in the literature. In particular constraint from the beta-delayed alpha-particle emission of $^{16}N$ were shown to not sufficiently restrict the p-wave cross section factor; e.g. a low value of $S_{E1}(300)$ can not be ruled out. Measurements at low energies, are thus mandatory for determining the elusive cross section factor for the $^{12}C(\\alpha,\\gamma)^{16}O$ reaction. We are constructing a Time Projection Chamber (TPC) for use with high intensity photon beams extracted from the HI$\\gamma$S/TUNL facility at Duke University to study the $^{16}O(\\gamma,\\alpha)^{12}C$ reaction, and thus the direct reaction at energies as low as 0.7 MeV. This work is in progress.

Moshe Gai

2003-03-20T23:59:59.000Z

335

Effect of inactive impurities on the burning of ICF targets  

Science Conference Proceedings (OSTI)

The efficiency of thermonuclear burning of the spherical deuterium-tritium (DT) plasma of inertial confinement fusion (ICF) targets in the presence of low-Z impurities (such as lithium, carbon, or beryllium) with arbitrary concentrations is investigated. The effect of impurities produced due to the mixing of the thermonuclear fuel with the material of the structural elements of the target during its compression on the process of target burning is studied, and the possibility of using solid noncryogenic thermonuclear fuels in ICF targets is analyzed. Analytical dependences of the ignition energy and target thermonuclear gain on the impurity concentration are obtained. The models are constructed for homogeneous and inhomogeneous plasmas for the case in which the burning is initiated in the central heated region of the target and then propagates into the surrounding relatively cold fuel. Two possible configurations of an inhomogeneous plasma, namely, an isobaric configuration formed in the case of spark ignition of the target and an isochoric configuration formed in the case of fast ignition, are considered. The results of numerical simulations of the burning of the DT plasma of ICF targets in a wide range of impurity concentrations are presented. The simulations were performed using the TEPA one-dimensional code, in which the thermonuclear burning kinetics is calculated by the Monte Carlo method. It is shown that the strongest negative effect related to the presence of impurities is an increase in the energy of target ignition. It is substantiated that the most promising solid noncryogenic fuel is DT hydride of beryllium (BeDT). The requirements to the plasma parameters at which BeDT can be used as a fuel in noncryogenic ICF targets are determined. Variants of using noncryogenic targets with a solid thermonuclear fuel are proposed.

Gus'kov, S. Yu. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Il'in, D. V.; Sherman, V. E. [St. Petersburg State Engineering Institute (Russian Federation)

2011-12-15T23:59:59.000Z

336

Natural gas monthly  

Science Conference Proceedings (OSTI)

This report presents current data on the consumption, disposition, production, prices, storage, import and export of natural gas in the United States. Also included are operating and financial data for major interstate natural gas pipeline companies plus data on fillings, ceiling prices, and transportation under the Natural Gas Policy Act of 1978. A feature article, entitled Main Line Natural Gas Sales to Industrial Users, 1981, is included. Highlights of this month's publication are: Marketed production of natural gas during 1982 continued its downward trend compared to 1981, with November production of 1511 Bcf compared to 1583 Bcf for November 1981; total natural gas consumption also declined when compared to 1981; as of November 1982, working gas in underground storage was running ahead of a similar period in 1981 by 109 Bcf (3.4 percent); the average wellhead price of natural gas continued to rise in 1982; and applications for determination of maximum lawful prices under the Natural Gas Policy Act (NGPA) showed a decrease from October to November, principally for Section 103 classification wells (new onshore production wells).

Not Available

1983-01-01T23:59:59.000Z

337

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

338

Major Conclusions of the MFE Study 1. Why a burning plasma Navratil  

E-Print Network (OSTI)

of scientific maturity that we are ready to undertake the essential step of burning plasma research. · Present

339

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

2, 2011 at 2:00 P.M. 2, 2011 at 2:00 P.M. Next Release: Thursday, September 29, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 21, 2011) Natural gas spot prices declined at most market locations across the United States, as moderate temperatures led to declines in demand. Prices at the Henry Hub fell from $4.01 per MMBtu last Wednesday, September 14, to $3.78 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month futures contract (October 2011) dropped from $4.039 per MMBtu last Wednesday to $3.73 per MMBtu yesterday. Working natural gas in storage rose to 3,201 billion cubic feet (Bcf) as of Friday, September 16, according to EIA’s Weekly Natural Gas Storage Report (WNGSR). The natural gas rotary rig count, as reported by Baker Hughes

340

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, June 16, 2011 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, June 8, 2011) Natural gas prices rose on the week across the board, with somewhat moderate increases in most areas and steep increases in the Northeast United States. The Henry Hub spot price rose 20 cents on the week from $4.63 per million Btu (MMBtu) last Wednesday, June 1, to $4.83 per MMBtu yesterday. At the New York Mercantile Exchange, the price of the near-month (July 2011) contract rose about 5 percent, from $4.692 last Wednesday to $4.847 yesterday. Working natural gas in storage rose to 2,187 billion cubic feet (Bcf) as of Friday, June 3, according to EIA’s Weekly Natural Gas Storage

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

6 6 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1996 and detailed annual historical information by State for 1967-1996. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1996. The remaining tables contain detailed annual historical information, by State, for 1967-1996. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

342

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

7 7 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1997 and detailed annual historical information by State for 1967-1997. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1997. The remaining tables contain detailed annual historical information, by State, for 1967-1997. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

343

Historical Natural Gas Annual  

Gasoline and Diesel Fuel Update (EIA)

8 8 The Historical Natural Gas Annual contains historical information on supply and disposition of natural gas at the national, regional, and State level as well as prices at selected points in the flow of gas from the wellhead to the burner-tip. Data include production, transmission within the United States, imports and exports of natural gas, underground storage activities, and deliveries to consumers. The publication presents historical data at the national level for 1930-1998 and detailed annual historical information by State for 1967-1998. The Historical Natural Gas Annual tables are available as self-extracting executable files in ASCII TXT or CDF file formats. Tables 1-3 present annual historical data at the national level for 1930-1998. The remaining tables contain detailed annual historical information, by State, for 1967-1998. Please read the file entitled READMEV2 for a description and documentation of information included in this file.

344

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is...

345

Natural Gas as a Transportation Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production.

346

Natural gas pipeline technology overview.  

Science Conference Proceedings (OSTI)

The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies. Compressor stations at required distances boost the pressure that is lost through friction as the gas moves through the steel pipes (EPA 2000). The natural gas system is generally described in terms of production, processing and purification, transmission and storage, and distribution (NaturalGas.org 2004b). Figure 1.1-2 shows a schematic of the system through transmission. This report focuses on the transmission pipeline, compressor stations, and city gates.

Folga, S. M.; Decision and Information Sciences

2007-11-01T23:59:59.000Z

347

Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006  

E-Print Network (OSTI)

Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006 Robert D biomass burning C emissions in Indonesia for 1997­2006, obtained from the Global Fire Emissions Database), Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006, J. Geophys. Res., 113, G

Field, Robert

348

SAE Paper 2004-01-2936 Molecular Structure Effects On Laminar Burning Velocities At  

E-Print Network (OSTI)

1 SAE Paper 2004-01-2936 Molecular Structure Effects On Laminar Burning Velocities At Elevated and Engineering Copyright © 2004 Society of Automotive Engineers, Inc ABSTRACT The laminar burning velocities and pressure of 304 kPa. Data have been acquired over the stoichiometry range of 0.55 1.4. The burning

Androulakis, Ioannis (Yannis)

349

Biomass burning emission inventory with daily resolution: Application to aircraft observations of Asian outflow  

E-Print Network (OSTI)

Biomass burning emission inventory with daily resolution: Application to aircraft observations for biomass burning using AVHRR satellite observations of fire activity corrected for data gaps and scan angle biomass burning in SE Asia was a major contributor to the outflow of Asian pollution observed in TRACE

Palmer, Paul

350

Cellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental and  

E-Print Network (OSTI)

Cellular burning in lean premixed turbulent hydrogen-air flames: coupling experimental for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification, including those burning lean hydrogen at both at atmospheric and elevated pressures [6]. The low

Bell, John B.

351

Abstract The savannas (cerrado) of south-central Brazil are currently subjected to frequent anthropogenic burning,  

E-Print Network (OSTI)

anthropogenic burning, causing widespread reduction in tree density. Increasing concentrations of atmospheric CO2 could reduce the im- pact of such frequent burning by increasing the availabili- ty CO2 and at two nutrient levels. To simulate burning, the plants were either clipped at 15 weeks

Jackson, Robert B.

352

CANDLE BURNING IN AN INVERTED JAR OVER WATER IN A TROUGH EXPERIMENT: SCIENCE TEACHERS' CONCEPTIONS  

E-Print Network (OSTI)

CANDLE BURNING IN AN INVERTED JAR OVER WATER IN A TROUGH EXPERIMENT: SCIENCE TEACHERS' CONCEPTIONS contains about 20% oxygen despite our knowledge that burning in a closed environment does not consume during burning of carbon in oxygen (air) and the solubility rate of carbon dioxide in water

Knill, Oliver

353

Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa  

E-Print Network (OSTI)

Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa Steven Met Office C-130 within a distinct biomass burning plume during the Southern AFricAn Regional science, and P. R. Buseck, Evolution of biomass burning aerosol properties from an agricultural fire in southern

Highwood, Ellie

354

IEA Workshop (W60) on Burning Plasmas and Simulation Name Institute Speaker/ C Title talk  

E-Print Network (OSTI)

IEA Workshop (W60) on Burning Plasmas and Simulation Name Institute Speaker/ C Title talk Start End 04-Jul-05 Session 1 Transport and Confinement in Burning Plasmas 8.30 8.40 Miura Y. JAERI- Naka chair Experiments on JET 10.00 10.20 Peng M. PPPL speaker NSTX Results relevant for Burning Plasmas 10.20 10

355

1 | Barbecues and Open Burning, September 2010 UC SANTA BARBARA POLICY AND PROCEDURE  

E-Print Network (OSTI)

1 | Barbecues and Open Burning, September 2010 UC SANTA BARBARA POLICY AND PROCEDURE Barbecues and Open Burning Contact: Environmental Health and Safety, Campus Fire Marshal/Designee Updated: September 2, 2010 Supersedes: Burning and Open Fires on UCSB Property, February 1, 1985 Pages: 2 BARBECUES

356

Burning Forest Residues231 Corstorphine Road www.forestry.gov.uk  

E-Print Network (OSTI)

1 Burning Forest Residues231 Corstorphine Road Edinburgh EH12 7AT www.forestry.gov.uk S E P T E M B E R 2 0 0 2 FCTN004 SUMMARY Burning forest residues is a traditional method of ground clearance following harvesting operations. Guidance is given on suitable types of cut material for burning, equipment

357

A HYPOTHETICAL BURNING-VELOCITY FORMULA FOR VERY LEAN HYDROGEN-AIR MIXTURES  

E-Print Network (OSTI)

1 A HYPOTHETICAL BURNING-VELOCITY FORMULA FOR VERY LEAN HYDROGEN-AIR MIXTURES by Forman A. Williams experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated

Geddes, Cameron Guy Robinson

358

Affordable Near-Term Burning-Plasma Experiments Dale M. Meade and Robert D. Woolley  

E-Print Network (OSTI)

Affordable Near-Term Burning-Plasma Experiments Dale M. Meade and Robert D. Woolley Princeton more than one, where the dynamics of a burning plasma can be studied, optimized and understood so must be developed within the next decade that will lead to an Affordable Burning Plasma Experiment

359

Tundra burning in Alaska: Linkages to climatic change and sea ice retreat  

E-Print Network (OSTI)

Tundra burning in Alaska: Linkages to climatic change and sea ice retreat Feng Sheng Hu,1 Philip E record. Tundra burning is potentially one such component. Here we report paleoecological evidence showing that recent tundra burning is unprecedented in the central Alaskan Arctic within the last 5000 years. Analysis

Hu, Feng Sheng

360

Nuclear quadrupole resonance of an electronically excited state from high-resolution hole-burning spectroscopy  

E-Print Network (OSTI)

Nuclear quadrupole resonance of an electronically excited state from high-resolution hole-burning 2003; published 5 May 2003 Hole-burning spectroscopy can eliminate inhomogeneous broadening and thereby, the homogeneous linewidth is often small compared to the splittings due to nuclear-spin interactions. Hole-burning

Suter, Dieter

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Prescribed Burning Costs: Trends and Influences in the National Forest System1  

E-Print Network (OSTI)

Prescribed Burning Costs: Trends and Influences in the National Forest System1 David A. Cleaves,2 Service's National Forest System prescribed burning activity and costs are examined. Fuels management officers from 95 National Forests reported costs and acreage burned for 4 types of prescribed fire

Standiford, Richard B.

362

Mass burning rate of premixed stretched flames: integral analysis versus large activation energy asymptotics  

E-Print Network (OSTI)

Mass burning rate of premixed stretched flames: integral analysis versus large activation energy, The Netherlands Abstract. New expressions for the mass burning rate are derived from a recently introduced burning rate. The consequences for experimental and numerical studies are investigated. Keywords: premixed

Eindhoven, Technische Universiteit

363

A Compact Advanced Burning Plasma Experiment Dale M. Meade and Robert D. Woolley  

E-Print Network (OSTI)

A Compact Advanced Burning Plasma Experiment Dale M. Meade and Robert D. Woolley Princeton Plasma and optimization of a burning plasma. The achievement of an ignited (Q # 10) plasma will allow these scientific OBJECTIVES AND REQUIREMENTS FOR AN ADVANCED BURNING PLASMA PHYSICS EXPERIMENT The primary physics objectives

364

Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2  

E-Print Network (OSTI)

1 Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2 Naoko effects of biomass burning aerosols from Southern African fires9 during July-October are investigated region the overall TOA radiative effect from the23 biomass burning aerosols is almost zero due

Wood, Robert

365

Thank you for your interest in Fire Prevention! Burning Ban Flags  

E-Print Network (OSTI)

Thank you for your interest in Fire Prevention! Burning Ban Flags Texas A&M Forest Service image to the public, a signal to stop outdoor burning and begin conserving water. They are sold on outdoor burning as a wildfire prevention tool. To support this prevention effort, TFS posts a list

366

Forest Service -U.S. Department of Agriculture Prescribed Burning in the  

E-Print Network (OSTI)

Forest Service - U.S. Department of Agriculture Prescribed Burning in the Interior Ponderosa Pine, California 94701 #12;Gordon, Donald T. 1967. Prescribed burning in the interior ponderosa pine type., illus. (U. S. Forest Serv. Res. Paper PSW- 45 ) Three prescribed burns, made in 1959-62, in the in

Standiford, Richard B.

367

Direct and semidirect aerosol effects of southern African biomass burning aerosol  

E-Print Network (OSTI)

Direct and semidirect aerosol effects of southern African biomass burning aerosol Naoko Sakaeda,1 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols static stability. Over the entire region the overall TOA radiative effect from the biomass burning

Wood, Robert

368

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame  

E-Print Network (OSTI)

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame S. E structure which, de- pending on density, may involve separate regions of carbon, oxygen and silicon burning, all propagating in a self-similar, subsonic front. The separation between these three burning regions

369

Impact of prescribed burning on endophytic insect communities of prairie perennials (Asteraceae  

E-Print Network (OSTI)

Impact of prescribed burning on endophytic insect communities of prairie perennials (Asteraceae, Eurytomidae, Fire, Mordellidae, Population dynamics Abstract. Prescribed burning currently is used to preserve changes in plant communities brought about by burning, other species that are endemic to prairies may

Hanks, Lawrence M.

370

Second UFA Workshop on Burning Plasmas Experimental Approaches, Issues and Opportunities  

E-Print Network (OSTI)

Second UFA Workshop on Burning Plasmas Experimental Approaches, Issues and Opportunities R. Parker UFA Burning Plasma Workshop 1 May 2001 Why Are We Here? R. Parker Program Committee Chairman #12;Second UFA Workshop on Burning Plasmas Experimental Approaches, Issues and Opportunities R. Parker UFA

371

Chengdu 10/18/2006 Theory of Alfvn waves and energetic particle physics in burning plasmas  

E-Print Network (OSTI)

Chengdu 10/18/2006 Theory of Alfvén waves and energetic particle physics in burning plasmas 1 IAEA FEC 2006 Liu Chen Theory of Alfvén waves and energetic particle physics in burning plasmas* 21.st IAEA and energetic particle physics in burning plasmas 2 IAEA FEC 2006 Liu Chen Outlines (I) Introduction (II) Linear

372

A Compact Advanced Burning Plasma Experiment Dale M. Meade and Robert D. Woolley  

E-Print Network (OSTI)

A Compact Advanced Burning Plasma Experiment Dale M. Meade and Robert D. Woolley Princeton Plasma and optimization of a burning plasma. The achievement of an ignited (Q 10) plasma will allow these scientific OBJECTIVES AND REQUIREMENTS FOR AN ADVANCED BURNING PLASMA PHYSICS EXPERIMENT The primary physics objectives

373

Bulk Burning Rate in Passive Reactive Diffusion. Peter Constantin Alexander Kiselev Adam Oberman  

E-Print Network (OSTI)

Bulk Burning Rate in Passive ­ Reactive Diffusion. Peter Constantin Alexander Kiselev Adam Oberman, diffuses, and reacts according to a KPP­type nonlinear reaction. We introduce a quantity, the bulk burning­defined notion of front speed. We establish rigorous lower bounds for the bulk burning rate that are linear

Ryzhik, Lenya

374

Residential wood burning: Energy modeling and conventional fuel displacement in a national sample  

SciTech Connect

This research studied the natural, built, and behavioral factors predictive of energy consumption for residential space heating with wood or conventional fuels. This study was a secondary analysis of survey data from a nationwide representative sample of 5,682 households collected DOE in the 1984-1985 REC survey. Included were: weather, census division and utility data, interviewer-supplied dwelling measurements and respondent-reported energy-related family behaviors. Linear-regression procedures were used to develop a model that identified key determinants accounting for the variability in wood consumption. A nonlinear-regression model was employed to estimate the amount of conventional fuels used for space heating. The model was also used to estimate the amount of conventional fuels being displaced by wood-heating systems. There was a significant (p {le} .05) linear relationship between the dependent variable, square root of cords burned, various independent variables.

Warsco, K.S.

1988-01-01T23:59:59.000Z

375

Influence of aerosols from biomass burning on the spectral analysis of Cherenkov telescopes  

E-Print Network (OSTI)

During the last decade, imaging atmospheric Cherenkov telescopes (IACTs) have proven themselves as astronomical detectors in the very-high-energy (VHE; E>0.1 TeV) regime. The IACT technique observes the VHE photons indirectly, using the Earth's atmosphere as a calorimeter. Much of the calibration of Cherenkov telescope experiments is done using Monte Carlo simulations of the air shower development, Cherenkov radiation and detector, assuming certain models for the atmospheric conditions. Any deviation of the real conditions during observations from the assumed atmospheric model will result in a wrong reconstruction of the primary gamma-ray energy and the resulting source spectra. During eight years of observations, the High Energy Stereoscopic System (H.E.S.S.) has experienced periodic natural as well as anthropogenic variations of the atmospheric transparency due to aerosols created by biomass burning. In order to identify data that have been taken under such long-term reductions in atmospheric transparency, ...

Reyes, R de los; Bernloehr, K; Krueger, P; Deil, C; Gast, H; Kosack, K; Marandon, V

2013-01-01T23:59:59.000Z

376

Investigation of the fundamental constants stability based on the reactor Oklo burn-up analysis  

E-Print Network (OSTI)

The burn-up for SC56-1472 sample of the natural Oklo reactor zone 3 was calculated using the modern Monte Carlo codes. We reconstructed the neutron spectrum in the core by means of the isotope ratios: $^{147}$Sm/$^{148}$Sm and $^{176}$Lu/$^{175}$Lu. These ratios unambiguously determine the spectrum index and core temperature. The effective neutron absorption cross section of $^{149}$Sm calculated using this spectrum was compared with experimental one. The disagreement between these two values allows to limit a possible shift of the low laying resonance of $^{149}$Sm even more . Then, these limits were converted to the limits for the change of the fine structure constant $\\alpha$. We found that for the rate of $\\alpha$ change the inequality $|\\delta \\dot{\\alpha}/\\alpha| \\le 5\\cdot 10^{-18}$ is fulfilled, which is of the next higher order than our previous limit.

M. S. Onegin

2010-10-29T23:59:59.000Z

377

Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency  

E-Print Network (OSTI)

Total Expected U.S. Natural Gas Consumption Inverse PriceTotal Expected U.S. Natural Gas Consumption Inverse Pricetotal natural gas consumption in the United States (U.S. )

Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

2004-01-01T23:59:59.000Z

378

Combustion of Illinois coals and chars with natural gas. [Quarterly] technical report, March 1, 1992--May 31, 1992  

Science Conference Proceedings (OSTI)

Combined combustion of coal and natural gas offers advantages compared to burning coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use due to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary ``volatiles`` to enhance the combustion. Additionally, natural gas provides a clean cofiring fuel source which can enhance the usefulness of coals with high sulfur content. Addition of natural gas may reduce SO{sub x} emissions through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. This research program seeks to clarify the contributions and to identify the controlling mechanisms of coining natural gas with Illinois coal through studies of particle ignition, burning rates and ash characterization. The first two quarters focused on the ignition delay measurements and their analysis, along with the incorporation of particle porosity into the burning rate model. The emphasis of the third quarter was on a more detailed understanding of the burning rate process, as well as understanding of cofiring`s effects on sulfur retention. The contributions of particle burning area to the quantification of the particle burning mechanisms have been shown to be important and continue to be investigated. Ash samples for various methane concentrations under similar other conditions have shown positive trends in reducing S0{sub 2} emission through increased sulfur capture in the ash.

Buckius, R.O.; Peters, J.E.; Krier, H.

1992-10-01T23:59:59.000Z

379

Natural Gas - U.S. Energy Information Administration (EIA) - U.S. Energy  

Gasoline and Diesel Fuel Update (EIA)

1, 2012 | Release Date: August 2, 1, 2012 | Release Date: August 2, 2012 | Next Release: August 9, 2012 Previous Issues Week: 12/22/2013 (View Archive) JUMP TO: In The News | Overview | Prices/Demand/Supply | Storage In the News: Natural gas consumed for power generation (power burn) declined slightly for the report week, while remaining high for recent years. After extremely hot temperatures last month receded some, natural gas demand for power generation decreased below last year's levels. Despite this week's declines, power burn this summer has been at historically high levels, partly because of a much warmer-than-normal July. In particular, the Southeast has shown large year-over-year increases in power burn. Southeast power burn peaked this summer at 12.5 billion cubic feet (Bcf) per day on July 26, according to BENTEK Energy LLC (Bentek) data.

380

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2000 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2000, as well as production volumes for the United States and selected States and State subdivisions for the year 2000.

Rafi Zeinalpour

2001-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1998 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1998, as well as production volumes for the United States and selected States and State subdivisions for the year 1998.

Rafi Zeinalpour

1999-12-01T23:59:59.000Z

382

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2002 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2002, as well as production volumes for the United States and selected States and State subdivisions for the year 2002.

Rafi Zeinalpour

2003-12-01T23:59:59.000Z

383

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2006 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2006

Information Center

2007-12-31T23:59:59.000Z

384

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1996 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the United States and selected States and State subdivisions for the year 1996.

Rafi Zeinalpour

1997-11-01T23:59:59.000Z

385

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2005 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2005

Rafi Zeinalpour

2006-12-05T23:59:59.000Z

386

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1997 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the United States and selected States and State subdivisions for the year 1997.

Rafi Zeinalpour

1998-12-01T23:59:59.000Z

387

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1995 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the United States and selected States and State subdivisions for the year 1995.

Rafi Zeinalpour

1996-11-01T23:59:59.000Z

388

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1993 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1993, as well as production volumes for the United States and selected States and State subdivisions for the year 1993.

Rafi Zeinalpour

1994-11-01T23:59:59.000Z

389

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2003 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2003, as well as production volumes for the United States and selected States and State subdivisions for the year 2003.

Rafi Zeinalpour

2004-11-01T23:59:59.000Z

390

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2007 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2007

Information Center

2009-02-10T23:59:59.000Z

391

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1999 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1999, as well as production volumes for the United States and selected States and State subdivisions for the year 1999.

Rafi Zeinalpour

2000-12-01T23:59:59.000Z

392

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2001 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2001, as well as production volumes for the United States and selected States and State subdivisions for the year 2001.

Rafi Zeinalpour

2002-11-01T23:59:59.000Z

393

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1994 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1994, as well as production volumes for the United States and selected States and State subdivisions for the year 1994.

Rafi Zeinalpour

1995-10-01T23:59:59.000Z

394

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2004 Annual Report  

Reports and Publications (EIA)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 2004, as well as production volumes for the United States and selected States and State subdivisions for the year 2004.

Rafi Zeinalpour

2005-11-30T23:59:59.000Z

395

Why is the United States exporting gasoline when prices ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural ... 2012. Other FAQs about ... Why is the United States ...

396

United Arab Emirates - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

The United Arab Emirates has the seventh-largest proved reserves of both crude oil and natural gas. Enhanced oil recovery techniques continued to underpin strong ...

397

Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

Grant Evenson

2006-04-01T23:59:59.000Z

398

Nature Climate Change features Los Alamos forest research  

NLE Websites -- All DOE Office Websites (Extended Search)

Nature Climate Change Features Forest Research Nature Climate Change Features Forest Research Nature Climate Change features Los Alamos forest research The print issue features as its cover story the tree-stress research of LANL scientist A. Park Williams and partners from the U.S. Geological Survey, University of Arizona and several other organizations. February 27, 2013 Burned trees in the Jemez Mountains of New Mexico after the 2011 Las Conchas fire. Image by Craig D. Allen, USGS. Burned trees in the Jemez Mountains of New Mexico after the 2011 Las Conchas fire. Image by Craig D. Allen, USGS. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email New print edition of journal tags tree-stress project for cover story LOS ALAMOS, N.M., Feb. 27, 2013-The print issue of the journal Nature Climate Change released this week features as its cover story the

399

Energy Audits in Process Units  

E-Print Network (OSTI)

Emphasis is placed on practical considerations in the effective organization and execution of a successful in-house energy audit of a process unit, based upon experience gained in several such audits of Gulf Coast petrochemical units. Staffing requirements, membership qualifications, probable time span for the audit, cost-benefit ratios, and necessary line management commitment are discussed. The scope and importance of pre-audit preparation and related responsibilities are explained. Activities of the Audit Team are likely to fall naturally into six general phases, each of which is reviewed in detail.

Corwin, J. D.

1980-01-01T23:59:59.000Z

400

Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning impacts  

Science Conference Proceedings (OSTI)

The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. In particular

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

United States Goveinment  

Office of Legacy Management (LM)

,325.B ,325.B jO8.93) United States Goveinment ~~~rntir-andu~rvi Depr?rtnient of Energy \L, IO' " 1' !ATE:' MAY i o 1995 ,' Kzb9. ":cz$ EM-421 (W.,A. Williams, 301-903-8149) SUBJECT: Records for the West Chicago Site .The File TO: After review.of the available r&rds concerning the former 'Lindsay Light and Chemical.Corhpany site in West Chicago, Illinois. I have determined that it is not necessary to transmit Department of Energy (DOE) records to the municipa,llty to inform public officials of the activities at this ~ site. This site has been licgnsed by the Nuclear Regulatory Commission (NRC) for many.years, and the nature of the. rare'earth and thorium production at the site, are well known. Remediation of this faci'lity ii~ being addressed by the current owner, 'the NRC, the U.S; Environmental

402

Kleinman 2013 Biomass Burn Plan B.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

if There are Few Fires? if There are Few Fires? Fire Plan Major focus is to sample fires in near-field where there are rapid changes, with a particular emphasis on soot, brown carbon, and SOA This includes sampling other sources for contrast Urban, Long range transport Plan B Same instruments can be used for multiple purposes Year to Year Burn Variability Fire Data from FINN version 1.0, courtesy of Christine Wiedinmyer Areas are ~ 1000 km by 1000 km centered on Pasco, WA and Little Rock, AK Year to year variability in Monthly Fire Emissions ~ factor of 10. Year to Year Burn Variability Fire Data from FINN version 1.0, courtesy of Christine Wiedinmyer Large year to year variability in Fire Counts Sometimes, 2 week periods between fire activity Other Soot/Brown Carbon Sources

403

NETL: News Release - Combustion Optimization Systems - Cleaner Coal Burning  

NLE Websites -- All DOE Office Websites (Extended Search)

"Combustion Optimization System" - Cleaner Coal Burning at Lower Costs "Combustion Optimization System" - Cleaner Coal Burning at Lower Costs DOE Joins with Sunflower Electric to Outfit Kansas Coal Plant with Lower Cost System to Cut Air Emissions FINNEY COUNTY, KS - A unique combination of high-tech combustion modifications and sophisticated control systems will be tested on a Kansas coal-fired power plant as part of the federal government's efforts to show how new technology can reduce air emissions and save costs for ratepayers. - Sunflower Electric's Holcomb Station - Sunflower Electric's Holcomb Station will be outfitted with a combination of innovative hardware and software to further reduce air emissions. - The U.S. Department of Energy and Sunflower Electric Power Corporation have signed an agreement to use the utility's Holcomb Station power plant in

404

Type Ia Supernova: Burning and Detonation in the Distributed Regime  

E-Print Network (OSTI)

A simple, semi-analytic representation is developed for nuclear burning in Type Ia supernovae in the special case where turbulent eddies completely disrupt the flame. The speed and width of the ``distributed'' flame front are derived. For the conditions considered, the burning front can be considered as a turbulent flame brush composed of corrugated sheets of well-mixed flames. These flames are assumed to have a quasi-steady-state structure similar to the laminar flame structure, but controlled by turbulent diffusion. Detonations cannot appear in the system as long as distributed flames are still quasi-steady-state, but this condition is violated when the distributed flame width becomes comparable to the size of largest turbulent eddies. When this happens, a transition to detonation may occur. For current best estimates of the turbulent energy, the most likely density for the transition to detonation is in the range 0.5 - 1.5 x 10^7 g cm^{-3}.

S. E. Woosley

2007-09-26T23:59:59.000Z

405

Affordable Near-term Burning-plasma Experiments  

SciTech Connect

Fusion energy is a potential energy source for the future with plentiful fuel supplies and is expected to have benign environmental impact. The issue with fusion energy has been the scientific feasibility, and recently the cost of this approach. The key technical milestone for fusion is the achievement of a self-sustained fusion fire, ignition, in the laboratory. Despite 40 years of research and the expenditure of almost $20B worldwide, a self-sustained fusion fire has not yet been produced in the laboratory. The fusion program needs a test bed, preferably more than one, where the dynamics of a burning plasma can be studied, optimized and understood so that the engineering requirements for an engineering test reactor can be determined. Engineering and physics concepts must be developed within the next decade that will lead to an Affordable Burning Plasma Experiment if fusion is going to be perceived as making progress toward a potential long-range energy source.

D.M. Meade; R.D. Wooley

1998-04-01T23:59:59.000Z

406

Explanation of Significant Difference (ESD) for the A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) (U)  

DOE Green Energy (OSTI)

The A-Area Burning/Rubble Pits (731-A/1A) and Rubble Pit (731-2A) (ABRP) operable unit (OU) is located in the northwest portion of Savannah River Site (SRS), approximately 2.4 kilometers (1.5 miles) south of the A/M Area operations. Between 1951 and 1973, Pits 731-A and 731-1A were used to burn paper, plastics, wood, rubber, rags, cardboard, oil, degreasers, and solvents. Combustible materials were burned monthly. After burning was discontinued in 1973, Pits 731-A and 731-1A were also converted to rubble pits and used to dispose of concrete rubble, bricks, tile, asphalt, plastics, metal, wood products, and rubber until about 1978. When the pits were filled to capacity, there were covered with compacted clay-rich native soils and vegetation was established. Pit 731-2A was only used as a rubble pit until 1983 after which the area was backfilled and seeded. Two other potential source areas within the OU were investigated and found to be clean. The water table aquifer (M-Area aquifer) was also investigated.

Morgan, Randall

2000-11-17T23:59:59.000Z

407

Uniform DT 3T burn: computations and sensitivities  

Science Conference Proceedings (OSTI)

A numerical model was developed in C to integrate the nonlinear deutrium-tritium (DT) burn equations in a three temperature (3T) approximation for spatially uniform test problems relevant to Inertial Confinement Fusion (ICF). Base model results are in excellent agreement with standard 3T results. Data from NDI, SESAME, and TOPS databases is extracted to create fits for the reaction rate parameter, the Planck opacity, and the coupling frequencies of the plasma temperatures. The impact of different fits (e.g., TOPS versus SESAME opacity data, higher order polynomial fits ofNDI data for the reaction rate parameter) were explored, and sensitivity to several model inputs are presented including: opacity data base, Coulomb logarithm, and Bremsstrahlung. Sensitivity to numerical integration time step size, and the relative insensitivity to the discretized numerics and numerical integration method was demonstrated. Variations in the IC for densities and temperatures were explored, showing similar DT burn profiles in most cases once ignition occurs. A coefficient multiplying the Compton coupling term (default, A = 1) can be adjusted to approximate results from more sophisticated models. The coefficient was reset (A = 0.4) to match the maximum temperatures resulting from standard multi-group simulations of the base case test problem. Setting the coefficient to a larger value, (A = 0.6) matches maximum ion temperatures in a kinetic simulation of a high density ICF-like regime. Matching peak temperatures does not match entire temperature-time profiles, indicating the Compton coefficient is density and time dependent as the photon distribution evolves. In the early time burn during the ignition of the DT, the present model with modified Compton coupling provides a very simple method to obtain a much improved match to the more accurate solution from the multi-group radiation model for these DT burn regimes.

Vold, Erik [Los Alamos National Laboratory; Hryniw, Natalia [Los Alamos National Laboratory; Hansen, Jon A [Los Alamos National Laboratory; Kesler, Leigh A [Los Alamos National Laboratory; Li, Frank [Los Alamos National Laboratory

2011-01-27T23:59:59.000Z

408

Superheater Corrosion in Plants Burning High-Chlorine Coals  

Science Conference Proceedings (OSTI)

Corrosion caused by molten alkali sulfates can cause premature failure in superheaters and reheaters of coal-fired boilers. Coals with a high chlorine content are more likely to cause molten sulfate corrosion than those with a low chlorine content. Tests in a boiler burning coal with 0.37% chlorine and 1.3% sulfur show that stainless steels with at least 35% chromium are very corrosion resistant, while steels containing less than 20% chromium have high corrosion rates.

1992-12-01T23:59:59.000Z

409

Alternative Fuels Data Center: Natural Gas Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions to someone by E-mail Emissions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Emissions Natural gas burns cleaner than conventional gasoline or diesel due to its

410

Evolution of the First Stars with Dark Matter Burning  

E-Print Network (OSTI)

Recent theoretical studies have revealed the possibly important role of the capture and annihilation process of weakly interacting massive particles (WIMPs) for the first stars. Using new evolutionary models of metal-free massive stars, we investigate the impact of such ``dark matter burning'' for the first stars in different environments of dark matter (DM) halos, in terms of the ambient WIMP density (rho_chi). We find that, in agreement with existing literature, stellar life times can be significantly prolonged for a certain range of rho_\\chi (i.e., 10^{10} ~ 2*10^{11} GeV/cm3 may not undergo nuclear burning stages, confirming the previous work, and that ionizing photon fluxes from such DM supported stars are very weak. Delayed metal enrichment and slow reionization in the early universe would have resulted if most of the first stars had been born in DM halos with such high rho_\\chi, unless it had been lowered significantly below the threshold for efficient DM burning on a short time scale.

Sung-Chul Yoon; Fabio Iocco; Shizuka Akiyama

2008-06-17T23:59:59.000Z

411

PULSATIONS IN HYDROGEN BURNING LOW-MASS HELIUM WHITE DWARFS  

SciTech Connect

Helium core white dwarfs (WDs) with mass M {approx}< 0.20 M {sub sun} undergo several Gyr of stable hydrogen burning as they evolve. We show that in a certain range of WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations similar to their passively cooling, more massive carbon/oxygen core counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes on helium cores yield g-mode periods and period spacings longer than the canonical ZZ Cetis by nearly a factor of 2. We show that core composition and structure can be probed using seismology since the g-mode eigenfunctions predominantly reside in the helium core. Though we have not carried out a fully nonadiabatic stability analysis, the scaling of the thermal time in the convective zone with surface gravity highlights several low-mass helium WDs that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753, and the companion to PSR J1012+5307. Seismological studies of these He core WDs may prove especially fruitful, as their luminosity is related (via stable hydrogen burning) to the hydrogen envelope mass, which eliminates one model parameter.

Steinfadt, Justin D. R. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106 (United States); Bildsten, Lars [Kavli Institute for Theoretical Physics and Department of Physics, Kohn Hall, University of California, Santa Barbara, CA 93106 (United States); Arras, Phil, E-mail: jdrs@physics.ucsb.ed, E-mail: bildsten@kitp.ucsb.ed, E-mail: arras@virginia.ed [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States)

2010-07-20T23:59:59.000Z

412

Nuclear fusion in dense matter: Reaction rate and carbon burning  

E-Print Network (OSTI)

In this paper we analyze the nuclear fusion rate between equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones, and the intermediate regime). The rate is determined by Coulomb barrier penetration in dense environments and by the astrophysical S-factor at low energies. We evaluate previous studies of the Coulomb barrier problem and propose a simple phenomenological formula for the reaction rate which covers all cases. The parameters of this formula can be varied, taking into account current theoretical uncertainties in the reaction rate. The results are illustrated for the example of the ^{12}C+^{12}C fusion reaction. This reaction is very important for the understanding of nuclear burning in evolved stars, in exploding white dwarfs producing type Ia supernovae, and in accreting neutron stars. The S-factor at stellar energies depends on a reliable fit and extrapolation of the experimental data. We calculate the energy dependence of the S-factor using a recently developed parameter-free model for the nuclear interaction, taking into account the effects of the Pauli nonlocality. For illustration, we analyze the efficiency of carbon burning in a wide range of densities and temperatures of stellar matter with the emphasis on carbon ignition at densities rho > 10^9 g/cc.

L. R. Gasques; A. V. Afanasjev; E. F. Aguilera; M. Beard; L. C. Chamon; P. Ring; M. Wiescher; D. G. Yakovlev

2005-06-16T23:59:59.000Z

413

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Used and End Uses in U.S. Homes, by Housing Unit Type, 2009" Fuels Used and End Uses in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Fuels Used and End Uses" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Fuels Used for Any Use" "Electricity",113.6,71.8,6.7,9,19.1,6.9 "Natural Gas",69.2,45.6,4.7,6.1,11,1.8 "Propane/LPG",48.9,39.6,2.4,1.7,2,3.2 "Wood",13.1,11.4,0.3,0.2,0.5,0.7 "Fuel Oil",7.7,5.1,0.4,0.7,1.3,0.1

414

Natural Gas  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department supports research and policy options to ensure environmentally sustainable domestic and global supplies of oil and natural gas.

415

Deep Burn Fuel Cycle Integration: Evaluation of Two-Tier Scenarios  

Science Conference Proceedings (OSTI)

The use of a deep burn strategy using VHTRs (or DB-MHR), as a means of burning transuranics produced by LWRs, was compared to performing this task with LWR MOX. The spent DB-MHR fuel was recycled for ultimate final recycle in fast reactors (ARRs). This report summarizes the preliminary findings of the support ratio (in terms of MWth installed) between LWRs, DB-MHRs and ARRs in an equilibrium two-tier fuel cycle scenario. Values from literature were used to represent the LWR and DB-MHR isotopic compositions. A reactor physics simulation of the ARR was analyzed to determine the effect that the DB-MHR spent fuel cooling time on the ARR transuranic consumption rate. These results suggest that the cooling time has some but not a significant impact on the ARRs conversion ratio and transuranic consumption rate. This is attributed to fissile worth being derived from non-fissile or threshold-fissioning isotopes in the ARRs fast spectrum. The fraction of installed thermal capacity of each reactor in the DB-MHR 2-tier fuel cycle was compared with that of an equivalent MOX 2-tier fuel cycle, assuming fuel supply and demand are in equilibrium. The use of DB-MHRs in the 1st-tier allows for a 10% increase in the fraction of fleet installed capacity of UO2-fueled LWRs compared to using a MOX 1st-tier. Also, it was found that because the DB-MHR derives more power per unit mass of transuranics charged to the fresh fuel, the front-end reprocessing demand is less than MOX. Therefore, more fleet installed capacity of DB-MHR would be required to support a given fleet of UO2 LWRs than would be required of MOX plants. However, the transuranic deep burn achieved by DB-MHRs reduces the number of fast reactors in the 2nd-tier to support the DB-MHRs back-end transuranic output than if MOX plants were used. Further analysis of the relative costs of these various types of reactors is required before a comparative study of these options could be considered complete.

S. Bays; H. Zhang; M. Pope

2009-05-01T23:59:59.000Z

416

Natural Gas Annual, 1997  

Gasoline and Diesel Fuel Update (EIA)

7 7 Historical The Natural Gas Annual, 1997 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1997. Summary data are presented for each Census Division and State for 1993 to 1997. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1997 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1997, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

417

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

8, 2009 at 2:00 P.M. 8, 2009 at 2:00 P.M. Next Release: October 15, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, October 7, 2009) Since last Wednesday, September 30, natural gas prices rose across the board, with increases ranging between 37 cents and $1.32 per million Btu (MMBtu). Natural gas prices oscillated by large amounts at most market locations across the United States. The Henry Hub began the report week at $3.24 per MMBtu, fell to $2.32 on October 2, and ended trading yesterday at $3.70 per MMBtu. At the New York Mercantile Exchange (NYMEX), the near-month contract for November ended the week at $4.904 per MMBtu, a slight increase from the previous week’s value of $4.841 per MMBtu.

418

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2010 at 2:00 P.M. 9, 2010 at 2:00 P.M. Next Release: Thursday, December 16, 2010 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, December 8, 2010) In response to cold weather across much of the United States, natural gas spot prices increased across the board this report week (December 1 – December 8). Though most increases were less than 50 cents per million Btu (MMBtu), prices at a number of trading points (notably in the Northeast and Florida) increased by several dollars. The Henry Hub spot price rose 25 cents, from $4.21 per MMBtu to $4.46 per MMBtu. At the New York Mercantile Exchange (NYMEX), the price of the natural gas near-month contract (January 2011) also increased, rising from $4.269 per MMBtu on December 1 to $4.606 per MMBtu on December 8.

419

Natural Gas Annual, 1998  

Gasoline and Diesel Fuel Update (EIA)

8 8 Historical The Natural Gas Annual, 1998 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 1998. Summary data are presented for each Census Division and State for 1994 to 1998. A section of historical data at the National level shows industry activities back to the 1930's. The data that appear in the tables of the Natural Gas Annual, 1998 are available as self-extracting executable files in ASCII TXT or CDF file formats. This volume emphasizes information for 1998, although some tables show a five-year history. Please read the file entitled README.V1 for a description and documentation of information included in this file.

420

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

6, 2011 at 2:00 P.M. 6, 2011 at 2:00 P.M. Next Release: Thursday, October 13, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 5, 2011) Like autumn leaves floating down to earth, natural gas prices dropped decidedly from their $4 support branch this past week. In a whirlwind of generally unsupportive market fundamentals, the Henry Hub price closed down 25 cents for the week to $3.63 per million British thermal units (MMBtu) on October 5. At the New York Mercantile Exchange (NYMEX), the November 2011 natural gas contract dropped nearly 23 cents per MMBtu to close at $3.570 per MMBtu over the week. Working natural gas in storage rose last week to 3,409 billion cubic feet (Bcf) as of Friday, September 30, according to the U.S. Energy

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2011 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: FRIDAY MARCH 4, 2011 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

422

Unit Outline Training Guide  

E-Print Network (OSTI)

Unit Outline Builder Training Guide Document Status: Final Revision Number: 6.0 Revision Date: 14 Approved #12;Online Unit Outline Builder Training Guide Curtin University of Technology Page 2 TABLE................................................................................................................. 4 4. Log in and Select a Unit Outline

423

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2013 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: MARCH 5, 2013 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

424

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2012 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: FRIDAY MARCH 2, 2012 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

425

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2014 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: MARCH 7, 2014 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

426

Clean-Burning Motor Fuel or Electric Vehicle Personal Credit...  

Open Energy Info (EERE)

compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), methanol, and electricity. These credits expire January 2009. (Reference...

427

Clean-Burning Motor Fuel or Electric Vehicle Corporate Credit...  

Open Energy Info (EERE)

compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (LPG), methanol, and electricity. These credits expire January 2009. (Reference...

428

EIA - Natural Gas Pipeline Network - Major Natural Gas Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Transportation Corridors Natural Gas Transportation Corridors About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Major Natural Gas Transportation Corridors Corridors from the Southwest | From Canada | From Rocky Mountain Area | Details about Transportation Corridors The national natural gas delivery network is intricate and expansive, but most of the major transportation routes can be broadly categorized into 11 distinct corridors or flow patterns. 5 major routes extend from the producing areas of the Southwest 4 routes enter the United States from Canada 2 originate in the Rocky Mountain area. A summary of the major corridors and links to details about each corridor are provided below. Corridors from the Southwest Region

429

EIA - Natural Gas Pipeline Network - Natural Gas Imports/Exports Pipelines  

U.S. Energy Information Administration (EIA) Indexed Site

Pipelines Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Import/Export Pipelines As of the close of 2008 the United States has 58 locations where natural gas can be exported or imported. 24 locations are for imports only 18 locations are for exports only 13 locations are for both imports and exports 8 locations are liquefied natural gas (LNG) import facilities Imported natural gas in 2007 represented almost 16 percent of the gas consumed in the United States annually, compared with 11 percent just 12 years ago. Forty-eight natural gas pipelines, representing approximately 28 billion cubic feet (Bcf) per day of capacity, import and export natural gas between the United States and Canada or Mexico.

430

Natural gas  

E-Print Network (OSTI)

www.eia.gov Over time the electricity mix gradually shifts to lower-carbon options, led by growth in natural gas and renewable generation U.S. electricity net generation trillion kilowatthours 6

Adam Sieminski Administrator; Adam Sieminski Usnic; Adam Sieminski Usnic

2013-01-01T23:59:59.000Z

431

Natural Gas  

U.S. Energy Information Administration (EIA)

Natural Gas. Under the baseline winter weather scenario, EIA expects end-of-October working gas inventories will total 3,830 billion cubic feet (Bcf) and end March ...

432

Natural Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

originate? I need to give the intitial natural source of this energy. Replies: The energy source for most known organisms is the sun. Some organisms, such as deep-sea vent fauna...

433

Microsoft Word - Deep-Burn awardee team members _2_.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

DEEP-BURN AWARDEES RECIPIENTS RECIPIENT TEAM MEMBERS Advanced Modeling and Simulation Capability R&D for $1 million University of Chicago Argonne Argonne National Laboratory Oak Ridge National Laboratory Lawrence Livermore National Lab University of Michigan Transuranic Management Capabilities R&D for $6.3 million Battelle Energy Alliance, LLC Idaho National Laboratory Oak Ridge National Laboratory Argonne National Laboratory Los Alamos National Laboratory University of California, Berkeley University of Wisconsin University of Tennessee University of Nevada Las Vegas North Carolina State University Georgia Institute of Technology Pennsylvania State University Idaho State University Texas A&M University Logos Technologies

434

Hydrogen-burn survival: preliminary thermal model and test results  

DOE Green Energy (OSTI)

This report documents preliminary Hydrogen Burn Survival (HBS) Program experimental and analytical work conducted through February 1982. The effects of hydrogen deflagrations on safety-related equipment in nuclear power plant containment buildings are considered. Preliminary results from hydrogen deflagration experiments in the Sandia Variable Geometry Experimental System (VGES) are presented and analytical predictions for these tests are compared and discussed. Analytical estimates of component thermal responses to hydrogen deflagrations in the upper and lower compartments of an ice condenser, pressurized water reactor are also presented.

McCulloch, W.H.; Ratzel, A.C.; Kempka, S.N.; Furgal, D.T.; Aragon, J.J.

1982-08-01T23:59:59.000Z

435

Testing of the Burns-Milwaukee`s Sun Oven  

DOE Green Energy (OSTI)

A Burns-Milwaukee Sun Oven was tested at Sandia`s Solar Thermal Test Facility. It was instrumented with five type K thermocouples to determine warm-up rates when empty and when a pot containing two liters of water was placed inside. It reached inside air temperatures above 160{degrees}C (320{degrees}F). It heated two liters of water from room temperatures to 80{degrees}C, (175{degrees}F), in 75 minutes. Observations were also made on the cooling and reheating rates during a cloud passage. The adverse effects of wind on operation of the solar oven was also noted.

Moss, T.A.

1997-03-01T23:59:59.000Z

436

Trends in U.S. Residential Natural Gas Consumption  

Reports and Publications (EIA)

This report presents an analysis of residential natural gas consumption trends in the United States through 2009 and analyzes consumption trends for the United States as a whole (1990 through 2009) and for each Census Division (1998 through 2009).

Lejla Alic

2010-06-23T23:59:59.000Z

437

Solar Proton Burning Process Revisited within a Covariant Model Based on the Bethe-Salpeter Formalism  

E-Print Network (OSTI)

A covariant model based on the Bethe-Salpeter formalism is proposed for investigating the solar proton burning process $pp\\to De^+\

L. P. Kaptari; B. Kmpfer; E. Grosse

2000-01-14T23:59:59.000Z

438

An analysis of terrain roughness: Generating a GIS application for prescribed burning.  

E-Print Network (OSTI)

??Prescribed burning is a technique used to rejuvenate pastures by enhancing wildlife habitat, brush control, and removing old growth. The technique has become a science (more)

Crawford, Matthew Allan

2008-01-01T23:59:59.000Z

439

"Burning Man was better next year:" a phenomenology of community identity in the Black Rock counterculture.  

E-Print Network (OSTI)

??This study illustrates and explains communal identity performance and maintenance as manifested by the participants in the counterculture community at Burning Man. This community is (more)

Kehoe, Kara Leeann

2011-01-01T23:59:59.000Z

440

Effects of prescribed burning on undesirable plant species and soil physical properties on tallgrass prairies.  

E-Print Network (OSTI)

??Prescribed burning has been a common conservation practice on native prairie dating back to the days of pioneer settlement. Advantages include increased forage quality, reduction (more)

Ungerer, James L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

O-1: Using of Spent Moulding Sands for Production of Burned ...  

Science Conference Proceedings (OSTI)

The measurements of exhaust gases emissions performed during burning the products containing spent moulding sands as well as during the normal...

442

Coated Particle and Deep Burn Fuels Monthly Highlights December 2010  

SciTech Connect

During FY 2011 the CP & DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for November 2010, ORNL/TM-2010/323, was distributed to program participants on December 9, 2010. The final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Thermochemical Data and Model Development - (a) Thermochemical Modeling, (b) Core Design Optimization in the HTR (high temperature helium-cooled reactor) Pebble Bed Design (INL), (c) Radiation Damage and Properties; (2) TRISO (tri-structural isotropic) Development - (a) TRU (transuranic elements) Kernel Development, (b) Coating Development; (3) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing (ORNL); (4) Fuel Performance and Analytical Analysis - Fuel Performance Modeling (ORNL).

Snead, Lance Lewis [ORNL; Bell, Gary L [ORNL; Besmann, Theodore M [ORNL

2011-01-01T23:59:59.000Z

443

Nonphotochemical hole burning of the reaction center of Rhodopseudomonas viridis  

SciTech Connect

Reddy et al. (Science, accepted) have reported persistent, nonphotochemical hole-burned (NPHB) spectra for the Q[sub y] states of the reaction center of Rhodopseudomonas viridis. The photoinduced structural transformation was shown to be highly localized on the special pair. This transformation leads to a red shift of the special pair's lowest-energy absorption band, P960, of 150 cm[sup [minus]1] and a comparable blue shift for a state at 850 nm, which, as a consequence, could be assigned as being most closely associated with the upper dimer component. Additional experimental results are presented here together with a theoretical analysis of the extent to which the NPHB spectra provide information on the contribution from the bacteriochlorophyll monomers of the special pair to the Q[sub y] states that absorb higher in energy than P960. Structured photochemical hole-burned (PHB) spectra of P960 are also presented that underscore the importance of strong electron-phonon coupling from a broad distribution of modes with a mean frequency of 30 cm[sup [minus]1] for an understanding of the P960 absorption profile. These spectra also identify the zero-phonon hole of the strongly damped special pair marker mode (145 cm[sup [minus]1]) and its associated phonon sideband structure. Calculated spectra are presented which are in good agreement with the experimental PHB spectra. 30 refs., 6 figs., 4 tabs.

Reddy, N.R.S.; Kolaczkowski, S.V.; Small, G.J. (Iowa State Univ., Ames, IA (United States))

1993-07-01T23:59:59.000Z

444

Testing of the Burns-Milwaukee's Sun Oven  

E-Print Network (OSTI)

A Burns-Milwaukee Sun Oven was tested at Sandia's Solar Thermal Test Facility. It was instrumented with five type K thermocouples to determine warm-up rates when empty and when a pot containing two liters of water was placed inside. It reached inside air temperatures above 160 o C (320 o F). It heated two liters of water from room temperature to 80 o C, (175 o F), in 75 minutes. Observations were also made on the cooling and reheating rates during a cloud passage. The adverse effects of wind on operation of the solar oven was also noted. ii 1 The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories evaluated a Sun Oven from Burns-Milwaukee at Sandia's Solar Thermal Test Facility in Albuquerque NM. It was designed for single family household cooking. It is targeting developing countries' alternative energy markets where conventional fuels are not available and wood is the primary fuel used for cooking. Because of the wide variety and types of solar...

Moss Solar Thermal; T. A. Moss

1997-01-01T23:59:59.000Z

445

Biogenic and biomass burning sources of acetone to the troposphere  

DOE Green Energy (OSTI)

Acetone may be an important source of reactive odd hydrogen in the upper troposphere and lower stratosphere. This source of odd hydrogen may affect the concentration of a number of species, including ozone, nitrogen oxides, methane, and others. Traditional, acetone had been considered a by-product of the photochemical oxidation of other species, and had not entered models as a primary emission. However, recent work estimates a global source term of 40-60 Tg acetone/year. Of this, 25% is directly emitted during biomass burning, and 20% is directly emitted by evergreens and other plants. Only 3% is due to anthropogenic/industrial emissions. The bulk of the remainder, 51% of the acetone source, is a secondary product from the oxidation of propane, isobutane, and isobutene. Also, while it is speculated that the oxidation of pinene (a biogenic emission) may also contribute about 6 Tg/year, this term is highly uncertain. Thus, the two largest primary sources of acetone are biogenic emission and biomass burning, with industrial/anthropogenic emissions very small in comparison.

Atherton, C.S.

1997-04-01T23:59:59.000Z

446

Unit Cost Electricity | OpenEI  

Open Energy Info (EERE)

8 8 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281518 Varnish cache server Unit Cost Electricity Dataset Summary Description Provides annual energy usage for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural gas usage (Mcf), associated costs. Also provides water consumption for 2005 through 2010. Source University of Texas (UT) at Austin, Utilities & Energy Management Date Released Unknown Date Updated Unknown Keywords Electricity Consumption Natural Gas Texas Unit Cost Electricity Unit Cost Natural Gas University Water Data application/vnd.ms-excel icon Energy and Water Use Data for UT-Austin (xls, 32.8 KiB) Quality Metrics

447

Natural System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural System Natural System Evaluation and Tool Development - FY11 Progress Report Prepared for U.S. Department of Energy Used Fuel Disposition Program Yifeng Wang (SNL) Michael Simpson (INL) Scott Painter (LANL) Hui-Hai Liu (LBNL) Annie B. Kersting (LLNL) July 15, 2011 FCRD-USED-2011-000223 UFD Natural System Evaluation - FY11 Year-End Report July 15, 2011 2 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

448

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

7, 2011 at 2:00 P.M. 7, 2011 at 2:00 P.M. Next Release: Thursday, November 3, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, October 26, 2011) The weatherman’s promise for chillier temperatures later this week and mention of the word "snow" in some forecasts was the likely catalyst propelling prices upwards this week. In an environment of generally supportive market fundamentals, the Henry Hub price closed up 7 cents for the week to $3.65 per million British thermal units (MMBtu) on October 26. At the New York Mercantile Exchange (NYMEX), the November 2011 natural gas contract rose just under half a cent per MMBtu for the week to close at $3.590 per MMBtu. Working natural gas in storage rose last week to 3,716 billion cubic

449

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2008 9, 2008 Next Release: June 26, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview Since Wednesday, June 11, natural gas spot prices increased at all markets in the Lower 48 States except one, despite the lack of weather-related demand in much of the country. The restoration of production at the Independence Hub to the level prevailing prior to the April 8 shut-in had limited effect on prices. For the week, the Henry Hub spot price increased 44 cents to $12.93 per million British thermal units (MMBtu). At the New York Mercantile Exchange (NYMEX), prices also increased on the week, with the weekly increase of the near-month contract exceeding those observed at spot market locations in the eastern half of the country.

450

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

9, 2011 at 2:00 P.M. 9, 2011 at 2:00 P.M. Next Release: Thursday, October 6, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, September 28, 2011) Natural gas spot prices at most market locations across the country this past week initially declined and then began to creep upwards as natural gas use for power generation increased. The upward trend was halted yesterday, as prices at nearly all points retreated, possibly due to forecasts for considerably colder weather. After declining from $3.78 per million British thermal units (MMBtu) last Wednesday to $3.72 per MMbtu on Thursday, the Henry Hub spot price increased to $3.92 per MMBtu on Tuesday and closed at $3.88 per MMBtu yesterday. At the New York Mercantile Exchange (NYMEX), the October 2011

451

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2008 3, 2008 Next Release: October 30, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the week ending Wednesday, October 22) Natural gas spot prices in the Lower 48 States this report week increased as a result of cold weather in some major gas consuming areas of the country, several ongoing pipeline maintenance projects, and the continuing production shut-ins in the Gulf of Mexico region. At the New York Mercantile Exchange (NYMEX), the price of the near-month contract (November 2008) increased on the week to $6.777 per million British thermal units (MMBtu) as of yesterday (October 22). The net weekly increase occurred during a week in which the price increased in three trading sessions. As of Friday, October 17, working gas in underground storage totaled

452

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

3, 2011 at 2:00 P.M. 3, 2011 at 2:00 P.M. Next Release: Thursday, November 10, 2011 Overview Prices Storage Other Market Trends Overview (For the Week Ending Wednesday, November 2, 2011) The previous report week's increasing prices gave way to relatively consistent declines across a large part of the country over this report week. The Henry Hub spot price showed a slight increase over the weekend, but closed down 26 cents for the week to $3.39 per million British thermal units (MMBtu) on November 2. At the New York Mercantile Exchange (NYMEX), the higher valued December 2011 natural gas contract moved into position as the near-month contract and declined by 2.6 cents per MMBtu to close the week at $3.749 per MMBtu. Working natural gas in storage rose last week to 3794 billion cubic

453

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

1, 2008 1, 2008 Next Release: August 28, 2008 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (Wednesday, August 13, to Wednesday, August 20) During the report week (Wednesday-Wednesday, August 13-20), natural gas prices continued their overall declines in the Lower 48 States, with decreases ranging between 1 and 58 cents per million British thermal units (MMBtu). However, there were a few exceptions in the Rocky Mountains, where the only average regional price increase on the week was recorded. At the New York Mercantile Exchange (NYMEX), prices for the September delivery contract decreased 38 cents per MMBtu, settling yesterday at $8.077. On Monday and Tuesday, the September contract price dipped below $8 per MMBtu, reaching this level for the first time since

454

Natural Gas Weekly Update  

Gasoline and Diesel Fuel Update (EIA)

26, 2009 26, 2009 Next Release: April 2, 2009 Overview Prices Storage Other Market Trends Natural Gas Transportation Update Overview (For the Week Ending Wednesday, March 25, 2009) Spot prices increased at all trading locations this week, with the biggest increases occurring in the Northeast. Many market locations ended the week with spot prices above $4 per million British thermal units (MMBtu). During the report week, the Henry Hub spot price increased by $0.38 to $4.13 per MMBtu. At the New York Mercantile Exchange (NYMEX), futures prices also increased, climbing by $0.65 to $4.329 for the April 2009 contract. Prices for the April 2009 contract reached their highest levels since February 13, 2009, on March 24. Natural gas in storage was 1,654 billion cubic feet (Bcf) as of

455

Figure 5. Percentage change in natural gas dry production and ...  

U.S. Energy Information Administration (EIA)

Figure 5. Percentage change in natural gas dry production and number of gas wells in the United States, 2007?2011 annual ...

456

Mexico Week: Record Mexican natural gas imports include higher ...  

U.S. Energy Information Administration (EIA)

... more than 0.5 Bcf/d. LNG's share of Mexico's imports has declined since then because of growing natural gas imports via pipelines from the United ...

457

Demo Projects Introduce New Class of Natural Gas Vehicles (Fact...  

NLE Websites -- All DOE Office Websites (Extended Search)

address technical and marketplace barriers. With the United States' wealth of natural gas reserves, vehicles powered using this plentiful domestic resource are important...

458

Ruby natural gas pipeline begins service today (July 28, 2011 ...  

U.S. Energy Information Administration (EIA)

El Paso Corporation's Ruby Pipeline (Ruby), the largest natural gas pipeline project dedicated to serving the Western United States since the ...

459

Canada Week: Natural gas net imports from Canada continue to ...  

U.S. Energy Information Administration (EIA)

Net imports of natural gas from Canada have been falling for years. Rising shale gas production in the United States, especially in the Northeast, is ...

460

New Values for Natural Constants Available on NIST Web Site  

Science Conference Proceedings (OSTI)

... and theories which describe our natural world ... the United States, Canada, Japan, China and Russia. ... best measurement of the molar gas constant in ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Global natural gas prices vary considerably - Today in Energy - U ...  

U.S. Energy Information Administration (EIA)

Japanese natural gas prices had been rising over the past year, even before the earthquake. ... Russia, United Kingdom . Email; Share; Print; Email Updates. RSS ...

462

Statistics of interstate natural gas pipeline companies, 1990  

Science Conference Proceedings (OSTI)

This report presents financial and operating information of all major interstate natural gas pipeline companies that operated in the United States during 1990. (VC)

Not Available

1992-04-09T23:59:59.000Z

463

How much carbon dioxide is produced by burning gasoline ...  

U.S. Energy Information Administration (EIA)

Most of the retail gasoline now sold in the U.S ... for transportation in 2012 resulted in the emission of about ... built in the United States?

464

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

134,294 32,451 0.37 0 0.00 32 1.09 43,764 0.83 10,456 0.38 39,786 1.26 126,488 0.63 C o n n e c t i c u t Connecticut 54. Summary Statistics for Natural Gas Connecticut, 1992-1996...

465

Natural Gas  

Annual Energy Outlook 2012 (EIA)

3.91 119,251 0.60 229 7.81 374,824 7.15 2,867 0.10 189,966 6.01 915,035 4.57 O h i o Ohio 83. Summary Statistics for Natural Gas Ohio, 1992-1996 Table 1992 1993 1994 1995 1996...

466

Natural games  

E-Print Network (OSTI)

Behavior in the context of game theory is described as a natural process that follows the 2nd law of thermodynamics. The rate of entropy increase as the payoff function is derived from statistical physics of open systems. The thermodynamic formalism relates everything in terms of energy and describes various ways to consume free energy. This allows us to associate game theoretical models of behavior to physical reality. Ultimately behavior is viewed as a physical process where flows of energy naturally select ways to consume free energy as soon as possible. This natural process is, according to the profound thermodynamic principle, equivalent to entropy increase in the least time. However, the physical portrayal of behavior does not imply determinism. On the contrary, evolutionary equation for open systems reveals that when there are three or more degrees of freedom for behavior, the course of a game is inherently unpredictable in detail because each move affects motives of moves in the future. Eventually, when no moves are found to consume more free energy, the extensive-form game has arrived at a solution concept that satisfies the minimax theorem. The equilibrium is Lyapunov-stable against variation in behavior within strategies but will be perturbed by a new strategy that will draw even more surrounding resources to the game. Entropy as the payoff function also clarifies motives of collaboration and subjective nature of decision making.

Jani Anttila; Arto Annila

2011-03-05T23:59:59.000Z

467

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0 0.00 53 1.81 147,893 2.82 7,303 0.27 93,816 2.97 398,581 1.99 W i s c o n s i n Wisconsin 97. Summary Statistics for Natural Gas Wisconsin, 1992-1996 Table 1992 1993 1994...

468

Natural Gas  

Annual Energy Outlook 2012 (EIA)

10,799 1,953 0.02 0 0.00 0 0.00 2,523 0.05 24 0.00 2,825 0.09 7,325 0.04 V e r m o n t Vermont 93. Summary Statistics for Natural Gas Vermont, 1992-1996 Table 1992 1993 1994 1995...

469

Natural Gas  

Annual Energy Outlook 2012 (EIA)

845,998 243,499 2.75 135,000 0.68 35 1.19 278,606 5.32 7,239 0.26 154,642 4.90 684,022 3.42 P e n n s y l v a n i a Pennsylvania 86. Summary Statistics for Natural Gas...

470

JV Task 126 - Mercury Control Technologies for Electric Utilities Burning Bituminous Coal  

SciTech Connect

The EERC developed an applied research consortium project to test cost-effective mercury (Hg) control technologies for utilities burning bituminous coals. The project goal was to test innovative Hg control technologies that have the potential to reduce Hg emissions from bituminous coal-fired power plants by {ge}90% at costs of one-half to three-quarters of current estimates for activated carbon injection (ACI). Hg control technology evaluations were performed using the EERC's combustion test facility (CTF). The CTF was fired on pulverized bituminous coals at 550,000 Btu/hr (580 MJ/hr). The CTF was configured with the following air pollution control devices (APCDs): selective catalytic reduction (SCR) unit, electrostatic precipitator (ESP), and wet flue gas desulfurization system (WFDS). The Hg control technologies investigated as part of this project included ACI (three Norit Americas, Inc., and eleven Envergex sorbents), elemental mercury (Hg{sup 0}) oxidation catalysts (i.e., the noble metals in Hitachi Zosen, Cormetech, and Hitachi SCR catalysts), sorbent enhancement additives (SEAs) (a proprietary EERC additive, trona, and limestone), and blending with a Powder River Basin (PRB) subbituminous coal. These Hg control technologies were evaluated separately, and many were also tested in combination.

Jason Laumb; John Kay; Michael Jones; Brandon Pavlish; Nicholas Lentz; Donald McCollor; Kevin Galbreath

2009-03-29T23:59:59.000Z

471

Results of the PDF{trademark} test burn at Clifty Creek Station  

Science Conference Proceedings (OSTI)

Process Derived Fuel (PDF{sup TM}) from the ENCOAL process is different from other coals used to generate steam for the power industry. Although PDF{sup TM} is currently produced from Powder River Basin (PRB) subbituminous coal, the coal structure changes during processing. Compared to the parent coal, PDF{sup TM} contains much less moisture and slightly lower volatile matter resulting in a higher heating value and higher ash per million Btu. These coal properties can potentially benefit utility boiler performance. Combining the high combustion reactivity typical of PRB coals with significantly reduced moisture should produce higher flame zone temperatures and shorter flames. As a result, some boilers may experience increased steam production, better burnout, or lower excess air. The objective of the work contracted to Quinapoxet Engineering was to quantify the impacts of burning PDF{sup TM} on boiler performance at Clifty Creek Unit 3. A unique optical temperature monitor called SpectraTemp was used to measure changes in furnace exit gas temperature (FEGT) with time and boiler operating parameters for both PDF{sup TM} blends as well as a baseline coal blend consisting of 60% PRB coal, 20% Ohio coal, and 20% low-volatile eastern bituminous coal from Virginia. FEGT was then related to net plant heat rate, NO{sub x} emissions, and electrostatic precipitator performance.

Johnson, S.A.; Knottnerus, B.

1996-10-01T23:59:59.000Z

472

Steam Generating Units (duct burners) 40 CFR Part 60 Subpart GG- Standards of Performance for Stationary Gas Turbines  

E-Print Network (OSTI)

For nitrogen oxides has been determined to be selective catalytic reduction. l As authorized by the Northwest Clean Air Agency Regulation Section 300, this order is issued subject to the following restrictions and conditions: 1) The gas turbines shall burn either pipeline natural gas, or number 2 distillate oil with a sulfur content not to exceed 0.05 weight percent. The HRSG duct burners shall burn only pipeline natural gas. 2) Pollutant concentrations for each gas turbinelheat recovery steam generator stack shall not exceed the following:

unknown authors

2007-01-01T23:59:59.000Z

473

Reduced Nitrogen and Natural Gas Consumption at Deepwell Flare  

E-Print Network (OSTI)

Facing both an economic downturn and the liklihood of steep natural gas price increases, company plants were challenged to identify and quickly implement energy saving projects that would reduce natural gas usage. Unit operating personnel and engineers w

Williams, C.

2004-01-01T23:59:59.000Z

474

A study of natural gas extraction in Marcellus shale  

E-Print Network (OSTI)

With the dramatic increases in crude oil prices there has been a need to find reliable energy substitutions. One substitution that has been used in the United States is natural gas. However, with the increased use of natural ...

Boswell, Zachary (Zachary Karol)

2011-01-01T23:59:59.000Z

475

Natural gas pricing in the Northeastern U.S.  

E-Print Network (OSTI)

This paper examines natural gas pricing at five citygate locations in the northeastern United States using daily and weekly price series for the years 1994-97. In particular, the effects of the natural gas price at Henry ...

Gunnarshaug, Jasmin

1998-01-01T23:59:59.000Z

476

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation...

477

Kansas refinery starts up coke gasification unit  

SciTech Connect

Texaco Refining and Marketing Inc. has started up a gasification unit at its El Dorado, Kan., refinery. The unit gasifies delayed coke and other refinery waste products. This is the first refinery to install a coke-fueled gasification unit for power generation. Start-up of the $80-million gasification-based power plant was completed in mid-June. The gasifier produces syngas which, along with natural gas, fuels a combustion turbine. The turbine produces virtually 100% of the refinery`s electricity needs and enough heat to generate 40% of its steam requirements.

Rhodes, A.K.

1996-08-05T23:59:59.000Z

478

Estimated United States Transportation Energy Use 2005  

DOE Green Energy (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

479

Burning state recognition of rotary kiln using ELMs with heterogeneous features  

Science Conference Proceedings (OSTI)

Image based burning state recognition plays an important role in sintering process control of rotary kiln. Although many efforts on dealing with this problem have been made over the past years, the recognition performance cannot be satisfactory due to ... Keywords: Burning state, ELM, Eigen-flame image, Latent semantic analysis, Multivariate image analysis

Weitao Li; Dianhui Wang; Tianyou Chai

2013-02-01T23:59:59.000Z

480

Structured hole-burned spectra of reaction centers of rhodopseudomonas viridis  

SciTech Connect

Structured hole-burned spectra for P960 of Rps, viridis are reported which, for appropriate burn wavelengths, exhibit four holes (including a zero-phonon hole). The data indicate that two electronic states contribute significantly to P960 and suggest that the primary electron-transfer step should be modeled in terms of coupled adiabatic trimer states.

Tang, D.; Jankowiak, R.; Gillie, J.K.; Small, G.J.; Tiede, D.M.

1988-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "units burning natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1981-01-01T23:59:59.000Z

482

Fuel injection staged sectoral combustor for burning low-BTU fuel gas  

SciTech Connect

A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

Vogt, Robert L. (Schenectady, NY)

1985-02-12T23:59:59.000Z

483

Soot from the burning of fossil fuels and solid biofuels contributes far more to global  

E-Print Network (OSTI)

Soot from the burning of fossil fuels and solid biofuels contributes far more to global warming Researchers ScienceDaily (July 30, 2010) -- Soot from the burning of fossil fuels and solid biofuels biofuels, such as wood, manure, dung, and other solid biomass used for home heating and cooking in many

484

FLAMES IN TYPE Ia SUPERNOVA: DEFLAGRATION-DETONATION TRANSITION IN THE OXYGEN-BURNING FLAME  

Science Conference Proceedings (OSTI)

The flame in a Type Ia supernova is a conglomerate structure that, depending on density, may involve separate regions of carbon, oxygen, and silicon burning, all propagating in a self-similar, subsonic front. The separation between these three burning regions increases as the density declines until eventually, below about 2 x 10{sup 7} g cm{sup -3}, only carbon burning remains active, the other two burning phases having 'frozen out' on stellar scales. Between 2 and 3 x 10{sup 7} g cm{sup -3}, however, there remains an energetic oxygen-burning region that trails the carbon burning by an amount that is sensitive to the turbulence intensity. As the carbon flame makes a transition to the distributed regime (Karlovitz number {approx}> 10), the characteristic separation between the carbon- and oxygen-burning regions increases dramatically, from a fraction of a meter to many kilometers. The oxygen-rich mixture between the two flames is created at a nearly constant temperature, and turbulence helps to maintain islands of well-mixed isothermal fuel as the temperature increases. The delayed burning of these regions can be supersonic and could initiate a detonation.

Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Kerstein, A. R. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Aspden, A. J., E-mail: woosley@ucolick.org, E-mail: arkerst@sandia.gov, E-mail: ajaspden@lbl.gov [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, CA 94720 (United States)

2011-06-10T23:59:59.000Z

485

The Burning Issue By Alyssa A. Lappen and Jack D. Lauber  

E-Print Network (OSTI)

The Burning Issue By Alyssa A. Lappen and Jack D. Lauber FrontPageMagazine.com | March 1, 2006 in the U.S. By 1999, Japan was burning more than 74 percent of its municipal waste and landfilling only 20

Columbia University

486

A MODIS assessment of the summer 2007 extent burned in Greece  

Science Conference Proceedings (OSTI)

Devastating fires affected Greece in the summer 2007, with the loss of more than 60 human lives, the destruction of more than 100 villages and hundreds of square kilometres of forest burned. This Letter presents a map of the extent burned and the approximate ...

Luigi Boschetti; David Roy; Paulo Barbosa; Roberto Boca; Chris Justice

2008-04-01T23:59:59.000Z

487

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

,366 ,366 95,493 1.08 0 0.00 1 0.03 29,406 0.56 1,206 0.04 20,328 0.64 146,434 0.73 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: South Carolina South Carolina 88. Summary Statistics for Natural Gas South Carolina, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 0 0 0 0 0 Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 0 0 0 0 0 From Oil Wells ...........................................

488

Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

0,216 0,216 50,022 0.56 135 0.00 49 1.67 85,533 1.63 8,455 0.31 45,842 1.45 189,901 0.95 - Natural Gas 1996 Million Percent of Million Percent of Cu. Feet National Total Cu. Feet National Total Net Interstate Movements: Industrial: Marketed Production: Vehicle Fuel: Deliveries to Consumers: Electric Residential: Utilities: Commercial: Total: M a r y l a n d Maryland 68. Summary Statistics for Natural Gas Maryland, 1992-1996 Table 1992 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... NA NA NA NA NA Number of Gas and Gas Condensate Wells Producing at End of Year.............................. 9 7 7 7 8 Production (million cubic feet) Gross Withdrawals From Gas Wells ......................................... 33 28 26 22 135 From Oil Wells ...........................................

489

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

490

Approximate Dynamic Programming Solutions for Lean Burn Engine Aftertreatment  

E-Print Network (OSTI)

The competition to deliver fuel e#cient and environmentally friendly vehicles is driving the automotive industry to consider ever more complex powertrain systems. Adequate performance of these new highly interactive systems can no longer be obtained through traditional approaches, which are intensive in hardware use and #nal control software calibration. This paper explores the use of dynamic programming to make model-based design decisions for a lean burn, direct injection spark ignition engine, in combination with a three way catalyst and lean NOx trap aftertreatment system. The primary contribution is the development ofavery rapid method to evaluate the tradeo#s in fuel economy and emissions for this novel powertrain system, as a function of design parameters and controller structure, over a standard emission test cycle. 1 Introduction Designing a powertrain system to meet drivability, fuel economy and emissions performance requirements is a complicated task. There are many tradeo...

Jun-Mo Kang; Ilya Kolmanovsky; J.W. Grizzle

1999-01-01T23:59:59.000Z

491

Explosive hydrogen burning during type I X-ray bursts  

E-Print Network (OSTI)

Explosive hydrogen burning in type I X-ray bursts (XRBs) comprise charged particle reactions creating isotopes with masses up to A~100. Since charged particle reactions in a stellar environment are very temperature sensitive, we use a realistic time-dependent general relativistic and self-consistent model of type I x-ray bursts to provide accurate values of the burst temperatures and densities. This allows a detailed and accurate time-dependent identification of the reaction flow from the surface layers through the convective region and the ignition region to the neutron star ocean. Using this, we determine the relative importance of specific nuclear reactions in the X-ray burst.

Jacob Lund Fisker; Hendrik Schatz; Friedrich-Karl Thielemann

2007-03-13T23:59:59.000Z

492

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2014 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: MARCH 7, 2014 PLEASE

Arnold, Jonathan

493

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2012 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: FRIDAY MARCH 2, 2012

Arnold, Jonathan

494

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2011 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: FRIDAY MARCH 4, 2011

Arnold, Jonathan

495

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2013 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: MARCH 5, 2013 PLEASE

Arnold, Jonathan

496

Systems Analysis of a Compact Next Step Burning Plasma Experiment  

Science Conference Proceedings (OSTI)

A new burning plasma systems code (BPSC) has been developed for analysis of a next step compact burning plasma experiment with copper-alloy magnet technology. We consider two classes of configurations: Type A, with the toroidal field (TF) coils and ohmic heating (OH) coils unlinked, and Type B, with the TF and OH coils linked. We obtain curves of the minimizing major radius as a function of aspect ratio R(A) for each configuration type for typical parameters. These curves represent, to first order, cost minimizing curves, assuming that device cost is a function of major radius. The Type B curves always lie below the Type A curves for the same physics parameters, indicating that they lead to a more compact design. This follows from that fact that a high fraction of the inner region, r < R-a, contains electrical conductor material. However, the fact that the Type A OH and TF magnets are not linked presents fewer engineering challenges and should lead to a more reliable design. Both the Type A and Type B curves have a minimum in major radius R at a minimizing aspect ratio A typically above 2.8 and at high values of magnetic field B above 10 T. The minimizing A occurs at larger values for longer pulse and higher performance devices. The larger A and higher B design points also have the feature that the ratio of the discharge time to the current redistribution time is largest so that steady-state operation can be more realistically prototyped. A sensitivity study is presented for the baseline Type A configuration showing the dependence of the results on the parameters held fixed for the minimization study.

S.C. Jardin; C.E. Kessel; D. Meade; C. Neumeyer

2002-02-06T23:59:59.000Z

497

Biomass burning sources of nitrogen oxides, carbon monoxide, and non-methane hydrocarbons  

SciTech Connect

Biomass burning is an important source of many key tropospheric species, including aerosols, carbon dioxide (CO{sub 2}), nitrogen oxides (NO{sub {times}}=NO+NO{sub 2}), carbon monoxide (CO), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), methyl bromide (CH{sub 3}Br), ammonia (NH{sub 3}), non-methane hydrocarbons (NMHCs) and other species. These emissions and their subsequent products act as pollutants and affect greenhouse warming of the atmosphere. One important by-product of biomass burning is tropospheric ozone, which is a pollutant that also absorbs infrared radiation. Ozone is formed when CO, CH{sub 4}, and NMHCs react in the presence of NO{sub {times}} and sunlight. Ozone concentrations in tropical regions (where the bulk of biomass burning occurs) may increase due to biomass burning. Additionally, biomass burning can increase the concentration of nitric acid (HNO{sub 3}), a key component of acid rain.

Atherton, C.S.

1995-11-01T23:59:59.000Z

498

Impact of Natural Gas Infrastructure on Electric Power Systems  

E-Print Network (OSTI)

--Combined-cycle unit, electricity market, natural gas infrastructure, pipeline contingency, pumped-storage hydro, renew gas utilities typically rely on the natural gas storage to augment supplies flowing through) in the natural gas system, deliver natural gas from city gate stations, underground storage facilities, and other

Fu, Yong

499

Persistent infrared spectral hole burning of NO; ions in potassium halide crystals. I. Priric9ple and satellite.holle generation  

E-Print Network (OSTI)

Persistent infrared spectral hole burning of NO; ions in potassium halide crystals. I. Priric9ple spectroscopyand persistentinfrared spectralhole (PIRSH) burning separatelyand together. With interferometry cm --'and, with PIRSH burning, it has beendemijnstratedthat the narrowestlinesare

Sethna, James P.

500

A Study of the Relation of Meteorological Variables to Monthly Provincial Area Burned by Wildfire in Canada (195380)  

Science Conference Proceedings (OSTI)

The relation between meteorological variables and the monthly area burned by wildfire from May to August 195380 in nine Canadian provinces was investigated. A purely statistical approach to estimating the monthly provincial area burned, using ...

M. D. Flannigan; J. B. Harrington

1988-04-01T23:59:59.000Z